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Cryptic variation fuels plant phenotypic 
change through hierarchical epistasis

Sophia G. Zebell1,2, Carlos Martí-Gómez1, Blaine Fitzgerald1,2, Camila P. Cunha3, Michael Lach3, 
Brooke M. Seman1,2, Anat Hendelman1,2, Simon Sretenovic4,6, Yiping Qi4, Madelaine Bartlett5, 
Yuval Eshed3 ✉, David M. McCandlish1 ✉ & Zachary B. Lippman1,2 ✉

Cryptic genetic variants exert minimal phenotypic effects alone but are hypothesized 
to form a vast reservoir of genetic diversity driving trait evolvability through epistatic 
interactions1–3. This classical theory has been reinvigorated by pan-genomics, which  
is revealing pervasive variation within gene families, cis-regulatory regions and 
regulatory networks4–6. Testing the ability of cryptic variation to fuel phenotypic 
diversification has been hindered by intractable genetics, limited allelic diversity  
and inadequate phenotypic resolution. Here, guided by natural and engineered 
cis-regulatory cryptic variants in a paralogous gene pair, we identified additional 
redundant trans regulators, establishing a regulatory network controlling tomato 
inflorescence architecture. By combining coding mutations with cis-regulatory alleles 
in populations segregating for all four network genes, we generated 216 genotypes 
spanning a wide spectrum of inflorescence complexity and quantified branching in 
over 35,000 inflorescences. Analysis of this high-resolution genotype–phenotype map 
using a hierarchical model of epistasis revealed a layer of dose-dependent interactions 
within paralogue pairs enhancing branching, culminating in strong, synergistic effects. 
However, we also identified a layer of antagonism between paralogue pairs, whereby 
accumulating mutations in one pair progressively diminished the effects of mutations 
in the other. Our results demonstrate how gene regulatory network architecture and 
complex dosage effects from paralogue diversification converge to shape phenotypic 
space, producing the potential for both strongly buffered phenotypes and sudden 
bursts of phenotypic change.

An enduring debate in evolutionary biology concerns the extent to 
which small-effect genetic variants contribute to expanding phenotypic 
diversity from developmentally stabilized (canalized) states7–10. The 
most enigmatic cohort among small-effect variants may be cryptic 
alleles1,2. In their simplest form, cryptic alleles have substantial effects 
on phenotypes only through interactions with environmental factors 
or with other alleles, including other alleles that may themselves be 
phenotypically cryptic3. Although hidden at the level of organismal 
phenotype, cryptic alleles can generate molecular phenotypes through 
altering protein function or gene expression—and are most likely to 
accumulate and remain hidden in buffered molecular contexts, such 
as redundancy within gene families and gene regulatory networks11. 
The accumulation of cryptic alleles in buffered contexts may be a 
major source of genomic variation shaping network architecture and 
trajectories of phenotypic evolution. Under this hypothesis, epistatic 
interactions between previously cryptic alleles may result in the sud-
den appearance of phenotypic variation in previously invariant traits, 
facilitating both within-species adaptation and macroevolutionary 
transitions11–13.

Demonstrating the contribution of cryptic variation to trait evolu-
tion is challenging. Genetic dissection of trait variation is typically 
confined to single species or a few closely related ones, in which only 
narrow ranges of phenotypic diversity can be assessed. Moreover, 
most dissections of natural trait variation expose only major effect 
variants, as is also true for developmental genetics in model systems, 
leaving the influence of cryptic alleles on natural populations and gene 
regulatory networks largely unexplored1,14. Importantly, background 
dependencies—probably stemming in part from cryptic alleles—are 
common in evolutionary and developmental genetics15–18. Yet, despite 
these clues, efforts to systematically dissect cryptic variation and its 
role in phenotypic evolution remain hampered by the complex and 
often poorly characterized structure and redundancy of gene regu-
latory networks, limited allelic diversity and restricted phenotypic 
resolution in most systems.

Genome editing in model systems with complex developmental pro-
grams offers a powerful approach to examine cryptic variation. Beyond 
applications in medicine and agriculture, genome editing enables 
the engineering of customized mutations and allelic series with wide 
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ranges of phenotypic effects in isogenic backgrounds19. This enables 
deep exploration of gene function and interactions among different 
classes of mutations, including cis-regulatory variants and paralogue 
duplications and losses that influence dosage but are often cryptic20–23. 
While pairwise interactions are often detectable, how diverse allelic 
variants interact across larger regulatory and developmental networks 
remains unexplored. Here we use genome editing in tomato (Solanum 
lycopersicum) to examine cryptic variation in a genetic network.

Natural variation in the architectures of plant reproductive branching 
systems (inflorescences) within the Solanaceae family, particularly in 
the Solanum genus, exemplifies how evolutionary processes gener-
ate morphological diversity24,25 (Fig. 1a). Cryptic variation may shape 
such trait diversity, such as by limiting possible phenotypic states, 
making tomato an ideal system to test this hypothesis within a con-
trolled genetic framework. Many tomato mutants—often involving 
cryptic genetic interactions—mirror natural variation across the family, 
offering a platform to systematically dissect how cryptic variation can 
influence inflorescence architecture26. We identified epistasis between 
cryptic natural coding and cis-regulatory variants in two MADS-box 
transcription factor genes of the SEPALLATA (SEP) clade, which have 
conserved roles in inflorescence development27,28 (Fig. 1b). Interactions 
between mutations in the SEP gene JOINTLESS2 (J2), originating from 
the wild species Solanum cheesmaniae, and a natural cis-regulatory 
variant in its paralogue ENHANCER OF JOINTLESS2 (EJ2), result in highly 
branched inflorescences through classical redundancy epistasis27. 
While individual mutations in each paralogue are cryptic on inflores-
cence branching, different combinations of homozygous and het-
erozygous genotypes produce varying degrees of branching effects, 
reflecting a dose-dependent epistatic relationship (Fig. 1b). Notably, 
while EJ2 is conserved across the Solanaceae, J2 is absent in many species 
and cultivated genotypes (Supplementary Fig. 1), making these species 
sensitive to changes in inflorescence architecture from variations in 
EJ2 dosage4. The J2–EJ2 paralogue relationship offers a system to study 
how epistatic interactions between cryptic alleles in a regulatory net-
work influence trait evolvability. However, realizing this potential first 
requires identifying additional network components.

Cryptic variants of the MADS-box gene EJ2
To examine whether natural variation in the epistatic relationship 
between J2 and EJ2 could further contribute to inflorescence archi-
tecture diversity, we mined tomato pan-genome data for variation in 
the EJ2 promoter5,6. Through overlap with open chromatin in tomato 
reproductive meristems and predicted transcription-factor-binding 
sites (TFBSs)29 (Fig. 1c), we filtered 629 candidate variants of greater 
than 5 bp (Supplementary Table 1 and Supplementary Fig. 2) down to 
two small deletions with nearby single-nucleotide variants (SNVs) that 
coincided with a cluster of three TFBSs located 6 kb upstream of EJ2 
(Fig. 1c,d and Supplementary Table 2). These variants were found only 
in the wild species Solanum habrochaites and Solanum pennellii, which 
produce weakly branched inflorescences (Fig. 1d,e).

Tomato introgression lines carrying wild-species chromosomal 
segments with these EJ2 variants in isogenic backgrounds (LA3925, 
designated EJ2Sh; and IL3-4, designated EJ2Sp) rarely exhibit branching 
(Fig. 1d,e). However, branching increased with the addition of the j2 
mutation. EJ2Sh j2 plants exhibited a subtle but significant increase 
in branching compared with the EJ2Sh genotype (Fig. 1d), and EJ2Sp j2 
plants produced an average of five branches per inflorescence (Fig. 1e 
and Supplementary Tables 3 and 4). As introgression lines have large 
chromosomal segments carrying additional variants, we used CRISPR 
to test whether branching specifically resulted from TFBS disruption 
by attempting to create similar deletions in the j2 mutant background. 
Owing to the absence of Cas9 gRNA target sites in the 25 bp region, we 
first used the more permissive Cas9 SpRY variant, which recognizes an 
expanded protospacer-adjacent motif30,31. This approach, which used 

three gRNAs and catalytically active and dead versions of Cas9 fused 
to an adenine base editor, produced three alleles, each with a single 
SNV within one TFBS. As none of these single-nucleotide changes led 
to branching (Supplementary Fig. 2a,b and Supplementary Tables 5 
and 6), we targeted a 153 bp target region flanking the TFBSs using four 
conventional Cas9 gRNAs. We recovered seven EJ2 promoter (EJ2pro) 
alleles (Fig. 2a): five with small indels and SNVs, often at the gRNA tar-
get sites, and two with overlapping ~100 bp deletions spanning the 
entire interval. Notably, none of these alleles exhibited branching in 
the functional J2 background, but all caused branching in the mutant 
j2 background, displaying a continuous range of effects (Fig. 2b and 
Supplementary Tables 7 and 8). Moreover, none of these genotypes 
exhibited the pleiotropic phenotypes observed in loss of function 
double mutants, such as enlarged sepals or altered fruit shape27 (Sup-
plementary Fig. 3 and Supplementary Tables 9–12). We targeted two 
additional promoter regions with open chromatin or sequence con-
servation located 1.6 kb and 2.1 kb upstream. Four deletion alleles of 
varying sizes were generated in each region, but only those affect-
ing the second region, including an approximately 3.3 kb deletion, 
produced mild branching (1–5 branches on average; Supplementary 
Fig. 2 and Supplementary Tables 13–16). These findings indicate that 
several promoter segments regulate EJ2, and the TFBSs disrupted in 
EJ2Sh and EJ2Sp, together with nearby sites removed in our engineered 
alleles, act collectively to positively regulate EJ2 expression and control 
inflorescence development.

PLT paralogues regulate EJ2 and branching
Our finding that multiple cis-regulatory cryptic alleles caused branch-
ing, partly due to the disruption of the TFBSs affected by two natural 
alleles, prompted us to investigate whether the transcription factors 
predicted to bind to these sites directly regulate EJ2 expression and 
inflorescence architecture. Both the S. habrochaites and S. pennel-
lii EJ2 cis-regulatory alleles are predicted to disrupt binding sites for 
the DOMAIN OF UNKNOWN FUNCTION (DOF) and the PLETHORA 
(PLT) transcription factor families. Members of these families have 
been implicated in meristem development in Arabidopsis thaliana 
(PLT)32 and flowering in tomato (DOF)33. Using our tomato inflorescence 
development expression atlas34, we searched for DOF and PLT genes 
expressed during key developmental stages. Among the 34 DOF genes 
in tomato, SlDOF9 emerged as a primary candidate (Supplementary 
Fig. 4), because engineered mutants of this gene develop more flow-
ers on inflorescences with weak branching33. However, our CRISPR 
mutants exhibited a substantial change in leaf shape but did not show 
branching, either alone or in the j2 background (Supplementary Fig. 4 
and Supplementary Tables 17 and 18).

We next focused on two closely related PLT paralogues (SlPLT3 and 
SlPLT7; hereafter, PLT3 and PLT7), expressed in meristems during and 
after floral transition, similar to J2 and EJ2 (Fig. 3a). These tomato PLT 
paralogues are orthologues of A. thaliana AtPLT3 and AtPLT7, but arose 
from independent duplications (Fig. 3b and Extended Data Fig. 1). In 
Arabidopsis, AtPLT3 and AtPLT7 function in meristem maturation as 
well as floral organ identity and growth35. We tested whether the PLT 
proteins bind to the EJ2 promoter and activate its expression by per-
forming a heterologous dual-luciferase assay in tobacco (Nicotiana 
benthamiana) leaves. Although the full-length coding sequence of 
PLT7 could not be cloned or synthesized, PLT3 strongly activated the 
intact EJ2 promoter but not the EJ2pro8, EJ2pro-Sh and EJ2pro-Sp alleles, which 
have mutated PLT-binding sites (Fig. 3c and Supplementary Tables 19 
and 20). For normalization, we included ETHYLENE RESPONSIVE12 
(ERF12) as a non-binding control, a transcription factor that is expressed 
in meristems with a single DNA-binding domain that is structurally 
similar to those in PLTs.

We mutated both PLT paralogues using CRISPR–Cas9. plt7 single 
mutants appeared like the wild type (WT), whereas plt3 mutants 
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produced inflorescences with few branches. However, double mutants 
exhibited extreme meristem overproliferation and branching. These 
mutant alleles also displayed dose-dependent redundancy: plt3/+ plt7 
genotypes showed weak branching, whereas plt3 plt7/+ genotypes 

exhibited moderate branching (Fig. 3d,e and Supplementary Tables 21 
and 22). The binding assays, combined with the quantitative effects of 
the plt mutant genotypes and the intermediate branching observed in 
all EJ2pro j2 genotypes, suggest that the PLTs transcriptionally regulate 
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Fig. 1 | Natural cis-regulatory variants of the SEP gene EJ2. a, The increased 
complexity of inflorescences of Solanum species. b, The dose-dependent 
redundancy relationship among the SEP paralogues EJ2 and J2 in controlling 
tomato inflorescence architecture. Inset: proliferated ej2 j2 meristem. Scale 
bar, 1 cm. c, A 6 kb region upstream of the EJ2 transcription start site showing 
open chromatin (blue), conserved non-coding sequences (CNSs, dark blue), 
predicted TFBSs (orange) and pan-genome variants (light orange). d, The 
cis-regulatory region of S. lycopersicum and S. habrochaites EJ2 with one DOF and 
two PLT TFBSs. The overlapping DOF–PLT site is disrupted by a 10 bp deletion in 
S. habrochaites. Quantification of inflorescence branching for the three indicated 
genotypes (middle) is followed by representative images of S. habrochaites, the 

EJ2-containing introgression line (LA3925, EJ2Sh) and EJ2Sh in the j2 background 
(EJ2Sh j2; right). e, The cis-regulatory region of S. pennellii, showing disruption 
of all three TFBSs by an 8 bp deletion and linked SNVs, quantification of 
inflorescence branching for the three indicated genotypes (middle) and 
representative images of S. pennelli, the EJ2-containing introgression line  
(IL3-4, EJ2Sp) and EJ2Sp in the j2 background (EJ2Sp j2; right). For d and e, the dashed 
red lines indicate deleted sequences; the blue text shows deletion sizes and 
SNVs. The area of grey circles shows the number of inflorescences quantified. 
Data are mean ± s.d. n values represent the total number of inflorescences.  
P values were calculated using two-sided Dunnett’s compare with control test. 
The red arrowheads in b, d and e mark branch points. Scale bar, 1 cm.
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EJ2 and probably other genes involved in inflorescence development. 
This aligns with the presence of PLT-binding sites in the cis-regulatory 
regions of J2 (Supplementary Table 23).

To further characterize the functional relationships between the 
PLT and SEP paralogues, we profiled and compared gene expression 
in proliferating meristems from the two double mutants. A principal 
component analysis (PCA) of the top 200 maturation marker genes 
from WT meristem stages34 revealed that both double mutants clus-
ter closest to the floral meristem maturation stage and also with the 
anantha (an) mutant, which overproliferates floral meristems due 
to a mutation in the orthologue of the Arabidopsis UNUSUAL FLORAL 
ORGANS gene (Fig. 3f). The expression data also showed that J2 and 
EJ2 have very low expression in plt3 plt7 meristems, whereas both PLT 
paralogues remain expressed in j2 ej2 meristems, supporting regula-
tion of these SEP genes by the PLTs (Fig. 3g).

A PLT–SEP genotype–phenotype map
Our genetic and molecular analyses identified key components of an 
inflorescence regulatory network comprising two duplicated tran-
scription factor pairs with dose-dependent epistatic interactions. We 
generated multiple alleles for these factors in a shared isogenic back-
ground, including both promoter regulatory site alleles and strong 
coding alleles, all of which are cryptic individually. This genetic resource 
enabled us to systematically explore the phenotypic space and quantify 
the functional output arising from variations within a simple, rapidly 

evolving network involving the interactions among PLT3 and PLT7, and 
their downstream targets, J2 and EJ2 (Fig. 4a).

To examine the genotype–phenotype map of this tomato inflores-
cence regulatory network, including the interplay between cryptic 
dosage effects and paralogous epistatic relationships, we selected 
six EJ2pro j2 lines spanning a range of branching effects and crossed 
them with plt3 plt7/+ plants to generate six F2 segregating populations 
(Fig. 4b and Methods). These populations provided 216 genotypic 
combinations, enabling an in-depth phenotypic and statistical analysis 
of branching effects from single, double and higher-order mutants, as 
well as dosage effects from heterozygosity (Fig. 4c). Across four field 
seasons in two environments, we quantified a total of 35,606 inflores-
cences (Supplementary Table 24). Preliminary analyses indicated that 
there was a greater variance in the number of branching events per 
inflorescence both within plants and within genotypes than would be 
expected if branching events were Poisson distributed (Supplementary 
Fig. 5a,b). Consequently, we treated branching events as overdispersed 
count data in all subsequent analyses, which provided a significantly 
improved fit relative to a Poisson error model (likelihood ratio test for 
negative binomial versus Poisson, P < 10−16; Methods). For illustration, 
data from a single population and field season are shown in Fig. 4c, with 
the full dataset available in Supplementary Table 24.

Using the data from this large set of crosses, we sought to determine 
how mutations within this genetic network combine to determine the 
mean number of branching events per inflorescence for any given geno-
type. We began by comparing a model in which mutations at different 
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loci combine additively versus a model where mutations at different loci 
combine multiplicatively (with both models accounting for dominance 
interactions within each locus). The model with multiplicative effects fit 
substantially better (59.40% deviance explained by an additive model 
with a log link versus 46.05% deviance explained by an additive model 
with an identity link; Supplementary Fig. 5c,d), suggesting an overall ten-
dency for mutations at different loci to interact multiplicatively in this 
system. Using this multiplicative model as a baseline, we then fit a more 

complex model to determine whether epistatic interactions between 
loci are also present. We found that a pairwise interaction model that 
included these epistatic interactions significantly outperformed the 
multiplicative model (83.11% deviance explained; likelihood ratio test, 
P < 10−16) and achieved greater predictive performance for held-out 
seasons and genotypes (Supplementary Fig. 6; average leave-one-out 
cross-validated R2 on held-out seasons was 0.89 for the pairwise model 
compared to 0.70 for the multiplicative model). This pairwise model 
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detected pervasive epistasis across loci, with 43 out of 80 epistatic terms 
showing P values of below 0.05 (Supplementary Table 25). Among the 
most notable of these interactions were strong, super-multiplicative, 
synergistic interactions between plt3 and plt7 as well as between the 
EJ2pro alleles and j2, such that combining mutations within a para-
logue pair often results in a mean number of branching events sev-
eral fold (threefold to ninefold) in excess of what would be expected  
when multiplying the effects of the individual mutations (Table 1).

While we observed strong positive interactions within paralogue 
pairs, consistent with our previous observation regarding at least par-
tial redundancy, we also inferred many negative interactions between 
non-paralogous pairs (11 out of 14 additive-by-additive epistatic terms 
between non-paralogous pairs were negative and showed P values of 
below 0.05; Supplementary Table 25). To better understand the struc-
ture of the genotype–phenotype relationship implied by these negative 
interactions, we first calculated maximum-likelihood estimates for the 
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average number of branching events per inflorescence across the 470 
genotype–season combinations in our dataset. We then plotted how 
the log-transformed phenotypes conferred by different combinations 
of j2 and EJ2pro mutations are transformed when placed on different plt3 
and plt7 mutant backgrounds as compared to a WT PLT3 and PLT7 back-
ground. Under a multiplicative model of interaction across paralogue 
pairs, these quantities are expected to be linearly related with a slope of 
exactly one and an intercept that varies with the strength of the genetic 
perturbation at the PLT3 and PLT7 loci. Notably, although we observed 
that the relationship between backgrounds is always linear, the slope of 
this linear relationship was not constant, but decreased as mutations 
accumulated at the PLT3 and PLT7 loci (Fig. 4d and Extended Data Fig. 2). 
We observed the same pattern when analysing the phenotypes resulting 
from plt3 and plt7 mutant combinations across different j2 and EJ2pro8 
backgrounds, with slopes decreasing as the strength of the EJ2 J2 per-
turbations increased (Fig. 4e). Importantly, this pattern was consistent 
across all six EJ2pro alleles (Extended Data Fig. 2) and remained robust 
across other methods of estimating average phenotype (Extended 
Data Fig. 3). Collectively, these analyses suggest a very simple form of 
genetic interaction between the paralogue pairs, whereby mutations 
in one paralogue pair linearly re-scale the effects of mutations in the 
other. As the slope of the linear relationship reduces almost to zero in 
highly mutated genetic backgrounds, the negative interaction coef-
ficients between the paralogue pairs reflect a systematic pattern of 
masking interactions between non-paralogous mutations, whereby 
the effects of mutations in one pair are diminished when the other 
pair is highly mutated.

Modelling hierarchical epistasis
This mode of genetic interaction, in which each mutation systemati-
cally re-scales the effects of other mutations, is a defining feature of a 
classic theoretical model of epistasis known as the multilinear model36. 
To simultaneously capture the supermultiplicative synergistic inter-
actions within paralogue pairs together with the systematic masking 
interactions between paralogue pairs, we fit an additional model that 
we call the hierarchical epistasis model because it treats this multilinear 
interaction between paralogue pairs as an additional layer of epistasis. 
In this model, similar to the pairwise model, we allowed an arbitrary 
pattern of dominance and epistasis within each paralogue pair, but the 
predictions based on the coefficients for each pair of paralogues are 
combined according to a multilinear interaction. Crucially, because, 
for a multilinear interaction, mutations in one of the pairs of paralogues 
simply rescale the effects of mutations in the other pair, this multilinear 
interaction between paralogue pairs uses only a single parameter to 
describe the extent to which mutations in one paralogue pair mask 
the effects of mutations in the other pair, in contrast to our more tra-
ditional pairwise interaction model that uses 42 parameters to describe 

interactions between the paralogue pairs (that is, additive-by-additive, 
dominance-by-dominance and additive-by-dominance parameters for 
each of the 14 non-paralogous pairs of mutations). Finally, after the 
within-paralogue pair interactions are combined across paralogue pairs 
using a multilinear interaction, the results are transformed once more 
using an exponential function (that is, we again use a log link, identical 
to that used for the pairwise model; additional technical details on the 
hierarchical epistasis model are provided in the Methods and Extended 
Data Fig. 4a). We applied this hierarchical epistasis model to our data 
and found that it recapitulated the observed phenotypic measurements 
nearly as well as the full pairwise model (82.14% deviance explained; 
Fig. 4f), and maintained high predictive power for held-out data from 
complete seasons and unobserved genotypes (Supplementary Fig. 6; 
average leave-one-season-out cross-validated R2 = 0.89), despite the 
substantially reduced number of parameters. Using the Akaike infor-
mation criterion (AIC) to compare the two models37,38, we found that 
the hierarchical model is roughly 18,358 times more likely than the 
pairwise model (AIChiearchical − AICpairwise = −19.64).

To provide a more intuitive understanding of the behaviour of this 
hierarchical model, it is useful to visualize the combination of inter-
action between paralogue pairs and the exponential mapping as a 
response surface39 that depicts the predicted phenotype of a combi-
nation of mutations across both paralogue pairs as a function of the 
phenotypes conferred when mutating each paralogue pair separately 
(Fig. 4g and Extended Data Fig. 4b). In this response surface, the phe-
notypes conferred by within-pair mutations are shown on a log scale so 
that the effects of mutations that combine according to the multiplica-
tive expectation would add along each axis. However, consistent with 
the pairwise model, interactions within each paralogue pair show a 
strong pattern of synergy (Fig. 4h (left); see Extended Data Fig. 4c for all 
other within-paralogue pair interactions), such that double mutants are 
substantially further displaced along each axis than would be expected 
from the individual effects of the single mutants (Fig. 4g; multiplica-
tive expectation is shown by grey dots). The key difference from the 
pairwise model is that the interactions between paralogue pairs, instead 
of being represented by numerous between-pair interaction terms, 
are given by a surface (Fig. 4g) of which the shape is controlled by a 
single parameter that determines the overall strength of the interaction 
between the paralogue pairs, and that has horizontal and vertical tran-
sects that are exponential due to the final exponentiation (Extended 
Data Fig. 4c). In particular, we see that, as the phenotypic effect of one 
paralogue pair increases, the corresponding transect for mutations 
in the other pair becomes progressively flatter, reflecting diminish-
ing phenotypic contributions from additional mutations (Extended 
Data Fig. 4d). While this masking effect is modest for mutations with 
moderate phenotypic impacts (for example, the 11.24-fold effect of a 
homozygous plt3 mutation in a WT background is reduced to 6.18-fold 
in a j2 background; Fig. 4h (top right)), it becomes far more pronounced 

Fig. 4 | A hierarchical model of genetic interactions explains PLT–SEP 
inflorescence genotype–phenotype map. a, Simplified architecture of the 
PLT3/7–EJ2/J2 genetic and molecular network. The arrows represent positive 
regulation. The solid arrows are supported by genetic and molecular evidence. 
The dashed arrows are supported by annotated binding sites. b, Six F2 
populations with different EJ2pro alleles were phenotyped across multiple 
seasons and environments, yielding observations of per-inflorescence 
branching events for 216 different genotypes. c, Representative data for 
inflorescence branching from a single season of one of six populations, on a 
log(1 + x) scale. The area of grey circles represents the number of inflorescences. 
Data are mean ± s.d. n values represent the total number of observations. 
Genotypes are represented as WT (white), mutant (black) or heterozygous 
(grey). d,e, Maximum-likelihood estimates (MLEs) of the mean number of 
branching events for combinations of mutations in EJ2 and J2 (d) or PLT3 and 
PLT7 (e) versus the WT across different genetic backgrounds of mutations in 

PLT3 and PLT7 (d) or EJ2pro8 and J2 loci (e). The black dashed lines represent the 
total least-squares regression lines. n = 10 inflorescences per plant; further 
details are provided in the Methods. f, Comparison of the predicted number of 
branching events by the hierarchical model and the MLE for each genotype–
season combination. The error bars represent 95% confidence intervals. 
Genotype–season combinations with 95% confidence intervals wider than a 
thousand-fold range are not shown (d–f). g, Representation of the inferred 
hierarchical epistasis model. The surface shows how phenotypes resulting 
from perturbing each paralogue pair in the WT background are combined to 
determine the average phenotype of genotypes with mutations in both pairs. 
The grey dots represent the multiplicative expectation for the designated 
within-paralogue mutant combinations. h, Predicted branching events under 
the hierarchical model in specific genotypes as a function of their mutational 
distance to the WT. The grey dots indicate the multiplicative expectation.



8 | Nature | www.nature.com

Article

in highly mutated backgrounds (for example, adding plt3 plt7/+ to a WT 
EJ2 J2 background has an 81.30-fold effect, but only a 2.49-fold effect in 
the EJ2pro8 j2 background Fig. 4h (bottom right)). Overall, these results 
show how synergy within gene families can result in an opening of 
phenotypic space in which previously cryptic mutations have strong 
effects, but also show how this expansion of phenotypic space begins 
to close as accumulated mutations in one part of a genetic network 
increasingly mask the effect of mutations in other parts.

Discussion
Here we used natural and engineered cryptic cis-regulatory variation 
to identify and functionally dissect transcription factor regulators of 
tomato inflorescence development in a four-gene regulatory network. 
Engineering additional cryptic cis-regulatory alleles with continuous 
epistatic effects and densely sampling thousands of inflorescences from 
hundreds of combinatorial genotypes enabled us to resolve the genetic 
architecture and genotype–phenotype map of this network. Mutations 
within this network tended to interact multiplicatively, but with even 
stronger positive synergistic (that is, super-multiplicative) interactions 
within paralogous gene pairs, consistent with frequent redundancy 
between paralogues40,41. Notably, we detected dose-dependent masking 
interactions acting simultaneously between paralogue pairs, whereby 
mutations in one pair systematically shrink the effects of mutations 
in the other pair.

Pan-genome sequencing within and across taxa provides a rich 
resource for understanding how genetic networks are wired. Here, 
genetic variation in S. habrochaites and S. pennellii suggested the PLTs as 
candidate regulators of inflorescence morphology in tomato. However, 
pan-genome sequencing has also revealed extensive and diverse forms 
of variation of which the molecular, developmental and evolution-
ary significance remains unclear. Widespread structural variation in 
cis-regulatory regions and the frequent duplication and loss of both 
small and large genomic regions drive quantitative expression vari-
ance and gene dosage21,42,43. The dynamic emergence, divergence and 
turnover of paralogous genes can alter the architectures and buffering 
of regulatory networks, therefore perturbing component dosage and 
potentiating phenotypic change from canalized states when cryptic 
variants in paralogues converge.

Our detailed dissection of genetic architecture revealed how the 
PLT–SEP network can shift from a canalized state to one poised to 
release both subtle and substantial phenotypic change. We inferred a 
hierarchical structure of genetic interactions: classical synergistic inter-
actions within paralogue pairs combine through a multilinear interac-
tion between the two paralogue pairs and then are transformed once 

more by an exponential mapping to determine average branches per 
inflorescence. While our phenomenological modelling is by its nature 
insufficient to reveal the precise molecular and cellular mechanisms 
underlying these interactions, we note that each step in our concatena-
tion of simple models is mechanistically plausible, whereby in particular 
the partial redundancy within paralogue pairs feeds into a regulatory 
network that requires both PLT paralogues and SEP genes for proper 
functioning, and gene action in the context of growing cell populations 
within a developing meristem provides a plausible basis for the overall 
tendency of mutations to act multiplicatively. Our finding of a multi-
linear interaction between the two paralogue pairs is notable because, 
although the multilinear model has been explored theoretically36,44,45 
and is often used to estimate how directional selection changes additive 
genetic variance46,47, it has received limited empirical support for cap-
turing real-world patterns of epistasis46,48. Nonetheless, the multilinear 
model can be viewed as a continuous relaxation of Boolean (binary on 
or off) gene regulatory models49, accommodating a spectrum of allelic 
strengths and dosage effects rather than treating gene expression as a 
binary. We therefore hypothesize that synergistic interactions within 
gene families, combined through multilinear interactions that reflect 
the structure and functional logic of gene regulatory networks, are 
probably a common genetic architecture governing how phenotypic 
space is simultaneously expanded and constrained.

Notably, the PLT–SEP genetic network has accumulated extensive 
genetic variation both within tomato and between Solanaceae spe-
cies. J2 is a relatively recent duplication missing in many Solanaceae4,28 
(Supplementary Fig. 1). Although the PLT paralogues are broadly 
retained, their redundancy relationships have probably diverged and 
vary between genotypes and species. By contrast, in the Brassicaceae, 
while PLT3 and PLT7 orthologues are conserved, J2 and EJ2 MADS-box 
paralogues are absent. Notably, Arabidopsis plt mutants do not have 
altered inflorescence architecture and branching is constrained across 
species in the family50. The architecture of PLT–SEP regulatory networks 
in the Solanaceae may allow cryptic variation to accumulate more 
readily than in the Brassicaceae in which the J2/EJ2 subclade is miss-
ing, thereby enhancing evolvability of Solanaceae branching. Testing 
this hypothesis will require broader identification of causal variation 
across species in these families. Critically, as we show (Figs. 1 and 3), this 
approach can test specific hypotheses while revealing additional com-
ponents of conserved and diverged gene regulatory networks. More 
broadly, the principles identified here—whereby varying paralogue 
redundancy relationships and presence-absence variation shape trait 
evolvability through genetic interactions that follow the multilinear 
model—probably extend across regulatory networks underlying other 
developmental and physiological programs, influencing the evolution-
ary trajectories of many traits.

Finally, a key aspect of our study was engineered genetic variation 
that densely sampled genotypic and phenotypic space in a controlled 
isogenic background. This approach provided the resolution needed to 
define the character and quantitative form of gene action and epistasis, 
represented as a surface illustrating how phenotypic effects from muta-
tions within a paralogue family combine when incorporating mutations 
across gene families (Fig. 4g). Detailed mapping of genetic interactions 
in this way could help to reconcile the observation of widespread epista-
sis in model organisms with the challenge of detecting epistatic effects 
from allelic variation in natural populations15–18,51,52. Placing natural 
alleles and their combinations onto similar surfaces could reveal how 
interactions among standing variants push populations into regions 
of genotypic space in which phenotypic variation is either amplified, 
suppressed or both. Beyond evolutionary insights, this framework 
has practical implications in crop engineering53,54. Understanding how 
distinct genetic combinations, along with the specific forms of epistasis 
they engender, can yield similar phenotypic outcomes may inform 
targeted editing strategies to predictably ‘tune’ epistatic interactions. 
By shifting populations or individuals to advantageous positions on the 

Table 1 | Estimates of synergistic epistasis

Genotype Fold change in excess of 
multiplicative expectation

95% confidence 
interval

P

plt3/+ plt7 3.29 2.64–4.10 1.44 × 10−26

plt3 plt7/+ 3.27 2.65–4.04 2.95 × 10−28

EJ2pro3 j2 6.81 4.21–11.03 5.16 × 10−15

EJ2pro4 j2 9.32 5.25–16.57 2.74 × 10−14

EJ2pro1 j2 7.05 5.21–9.55 9.91 × 10−37

EJ2pro7 j2 16.97 8.14–35.38 4.16 × 10−14

EJ2pro8 j2 5.95 4.42–8.03 1.13 × 10−31

EJ2pro6 j2 6.49 4.56–9.23 3.10 × 10−25

Estimates of fold change are shown relative to the expectation under the multiplicative model 
for combinations of perturbations within each paralogue pair under the pairwise interaction 
model. P values calculated using two-sided z-tests for the specified contrasts were estimated 
after fitting a pairwise interaction model with negative binomial likelihood using statsmodels55. 
The full set of estimated parameters is provided in Supplementary Table 21.
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genotype–phenotype surface, such strategies could minimize undesir-
able pleiotropic effects and circumvent genetic constraints imposed 
by natural alleles in both complex breeding populations and elite geno-
types. Realizing these opportunities will hinge on future research that 
encompasses larger networks of interacting genes, emphasizing how 
taxon-specific complements of paralogous genes and their variants 
shape network architecture—and hierarchical epistasis—across broader 
evolutionary clades.
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Methods

Motif enrichment and variant discovery
FIMO motif enrichment was performed on the sequence of open 
chromatin regions in the tomato meristem upstream of SlEJ2 using 
the A. thaliana non-redundant motif database curated at Plant TFDB 
(P < 0.00001 and q < 0.01)56. The same regions were used to search for 
insertion–deletion (indel) variants called previously from the tomato 
pangenome5. Indels overlapping with annotated motifs were confirmed 
to not exist in linkage with previously reported EJ2 variants (ej2w, sb3) 
by PCR and then used for subsequent experiments27,57 (see the ‘Plant 
materials’ section below; Supplementary Table 1).

Plant materials
Seeds of WT S. lycopersicum (cultivar M82, LA3475), S. habrochaites 
(LA1777) and S. pennellii (LA0716) were from our stocks. Introgression 
line IL3-4 (S. pennellii chromosome 3 introgressed into M82, LA4046) 
was obtained from the Tomato Genome Resource Center (Department 
of Plant Sciences, University of California at Davis) and the variant was 
validated by PCR amplification and Sanger sequencing58 (a list of all of 
the primers used in this study is provided in Supplementary Table 27). 
Two overlapping S. habrochaites chromosome 3 introgression lines 
LA3925 and LA3926, introgressed into tomato cultivar TA209, were 
obtained from the Tomato Genome Resource Center (Department 
of Plant Sciences, University of California at Davis)59. After valida-
tion by PCR amplification and Sanger sequencing, only LA3925 con-
tained the ShEJ2pro-3 variant of interest, so LA3926 was used as a control 
for crosses between M82 and the introgressed region in the TA209  
background. Mutants j2-TE ej2w and j2 ej2 were from our stocks, as 
previously described27.

Genome editing
CRISPR–Cas9 mutagenesis and generation of transgenic tomato plants 
were performed according to our standard protocol60. In brief, gRNAs 
were designed using Geneious Prime (https://www.geneious.com/) 
(a list of the gRNAs used in this study is provided in Supplementary 
Table 27). For Cas9 multiplex editing, the Golden Gate cloning sys-
tem was used to assemble the binary vector containing the Cas9 and 
the specific gRNAs60,61. For SpRY editing, vectors were constructed 
through a modular Gateway assembly, as described previously (Inv-
itrogen)62. The final binary vectors were then transformed into the 
tomato cultivar M82 by Agrobacterium tumefaciens-mediated trans-
formation through tissue culture63. First-generation transgenic plants 
(T0) were genotyped with specific primers surrounding the target 
sites (a list of all of the primers used in this study is provided in Sup-
plementary Table 27). To purify alleles from potential spontaneous 
mutations or CRISPR–Cas9 off-target effects after plant transforma-
tion, all T0 transgenic lines were backcrossed (BC1) to parental WT 
plants. BC1 populations were then screened by PCR and kanamycin 
herbicide susceptibility for plants lacking the Cas9 transgene, PCR 
products of the targeted regions were Sanger sequenced to confirm 
inheritance of alleles and allele-specific genotyping assays were 
designed for genotyping in subsequent generations. Selected BC1 
plants were self-fertilized to generate F2 populations, and these seg-
regating populations were used to validate the phenotypic effects 
of each allele by co-segregation. F2 or F3 homozygous mutant plants 
were then used for subsequent crossing and quantitative phenotypic  
analyses.

Growth conditions and phenotyping
Seeds were directly sown in soil in 96-cell plastic flats and grown to 
4-week-old seedlings in the greenhouse. The seedlings were then trans-
planted to 4 l pots in the greenhouse for crossing and bulking purposes 
or directly to the fields at Cold Spring Harbor Laboratory, New York or 
at The University of Florida Gulf Coast Research and Education Center. 

Greenhouse conditions are long-day (16 h light, 26–28 °C followed 
by 8 h dark, 18–20 °C; 40–60% relative humidity) with natural light 
supplemented with artificial light from high-pressure sodium bulbs 
(~250 μmol m−2 s−1). Plants in the fields were grown under drip irrigation 
and standard fertilizer regimes, and were used for quantifications of 
inflorescence branching, fruit shape and sepal length.

To quantify inflorescence branching, inflorescences were counted in 
order of emergence in two rounds, approximately 60 days after sowing 
and 75 days after sowing. When available, four primary inflorescences 
and six axillary inflorescences were counted per plant. 60 or fewer 
branches were counted, if branching exceeded 60, too many to count 
(TMTC) was recorded and the number of branching events was treated 
as 60 for downstream analysis. Proliferated meristem in the place of 
inflorescence was indicated in the data as proliferated. Occasionally, 
inflorescences would fail to develop into countable structures, possibly 
due to stress, in which case, inhibited was recorded.

To quantify fruit shape, ten fruits were collected at the mature green 
stage, cut in transverse sections and scanned on a single plane. The ratio 
of maximum height to width, fruit shape index I, was determined from 
scanned images using Tomato Analyzer64. To quantify sepal length, ten 
closed mature floral buds of similar developmental stage (1–2 days 
before anthesis, that is, before flower opening) per genotype were 
collected, length of sepals and petals were manually measured and 
the sepal/petal ratio was calculated27.

Phylogenetic trees
J2/EJ2 phylogeny was adapted from a previous study4. Putative ortho-
logues of SlPLT3/7 and AtPLT3/7 were identified using NCBI BLASTP 
against proteomes of species selected for taxonomic breadth, rep-
resenting asterids, rosids, early eudicots and monocots. Retrieved 
protein sequences were aligned using MAFFT (v.7.505) using the 
default parameters. An HMM profile was constructed from the align-
ment using hmmbuild in HMMER (v.3.3.2) and used to search com-
bined species proteomes with hmmsearch (E < 1 × 10−5) to identify 
additional homologs. All hits were extracted, aligned with MAFFT 
and manually trimmed when necessary. A maximum-likelihood phy-
logenetic tree was inferred using IQ-TREE (v.2.2.2) with automatic 
model selection (-m MFP) and 1,000 ultrafast bootstrap replicates 
(-bb 1000). The resulting tree was rooted using XP_042461702.1_ 
Zofficinale as an outgroup. Bootstrap support values were used to mod-
ulate branch thickness in the visualization: branches with support >90 
were plotted thickest, those between 75–90 were medium and those 
<75 remained thin. The tree was visualized in R using the ape package  
(v.5.8-1).

RNA extraction and Illumina sequencing
Inflorescence meristems were collected from n = 4 plants at 8 weeks old 
under stereoscope magnification. Tissue was frozen, ground with beads 
and RNA was extracted using TRIzol (Invitrogen) and the Direct-zol 
RNA Miniprep kit with on-column DNA digestion (Zymo Research). 
RNA was quantified using the Qubit fluorimeter RNA HS assay kit  
(Invitrogen). The samples were treated with the Ribo-Zero rRNA 
removal kit (Epicenter) and the libraries prepared with the TruSeq V2 
RNA-seq prep kit (Illumina).

RNA-seq analysis
Published RNA-sequencing (RNA-seq) data of WT M82, ej2, j2 and anan-
tha mutant meristems were downloaded from Sequence Read Archive 
(SRA) PRJNA376115 and PRJNA343677 (refs. 24,34). Reads were trimmed 
with Trimmomatic (ILLUMINACLIP:TruSeq2-PE.fa:2:30:10:1:FALSE 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) and aligned 
to the cDNA annotation of the reference genome sequence of tomato 
(SL4.0) using STAR (v.2.6.1.d)65. Normalization and quantification of 
individual transcript expression was done in R by calculating tran-
scripts per million (TPM). Differential expression was calculated in 
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R by DESeq2 time course analysis with LRT and the top 200 most dif-
ferentially expressed genes (log2[FC]) across WT meristem maturation 
were used for PCA of all meristem samples using Python scikit-learn 
PCA.transform66.

Dual-luciferase assay
A Gateway-compatible dual-luciferase reporter vector (pSZ106) was 
assembled using the MoClo GoldenGate assembly system61,67. In brief, 
a Gateway AttR4-AttL1R cassette (Invitrogen) was cloned upstream 
of a 46 bp minimal 35S promoter driving the Firefly luciferase cod-
ing sequence (pICSL80001, pL0_fLUC-I (CDS1)) with a nopaline syn-
thetase terminator (pICH41421)61,67. A cauliflower mosaic virus 35S 
promoter (pICH51266) was cloned upstream of the coding sequence of  
Renilla luciferase (pSB123, pL0_rLUC-I (CDS1), Addgene) with a nopa-
line synthetase terminator (pICH41421)67. Both luciferase expression 
cassettes were cloned into the pICSL4723 binary vector backbone 
with an NPTII selection cassette. SlEJ2pro-3, ShEJ2pro-3 and SpEJ2pro-3 
alleles were cloned into pDONR P4-P1r and introduced into pSZ106 
by Gateway cloning (Invitrogen). SlERF12 (Solyc02g077840), SlPLT380 
(Solyc05g051380) and SlPLT710-short (Solyc11g010710) were cloned 
into pDONR207 and introduced into pEAQ-HT-DEST3 by Gateway  
cloning (Invitrogen).

All binary expression vectors were transformed into A. tumefa-
ciens and cultured at 28 °C overnight in selective media. Overnight 
cultures were diluted and grown at 28 °C to an optical density at 
600 nm (OD600) of 1 a.u., centrifuged and washed into inductive 
medium (10 mM MES pH 5.7, 10 mM MgCl2, 100 μM 3′,5′-dimethyoxy-
4′-hydroxyacetophenone) at OD600 1 a.u. Bacteria was induced for 3 h 
lying horizontally at the bench, then equal volumes of promoter and TF 
medium were combined and co-infiltrated into young fully expanded 
leaves of 4 week old N. benthamiana plants grown in long days (16 h–8 h 
light–dark, 22 °C; 40–60% relative humidity). Plants were returned to 
the growth chamber and 100 mg tissue was collected and frozen for 
measurement 3 days after infiltration.

Luciferase activity was measured using the Dual Luciferase Reporter 
Assay System kit (Promega) as described previously68. In brief, tissue 
was homogenized in the Spex Sample Prep 2010 Geno/Grinder (Cole 
Parmer) and 10 mg of tissue powder was mixed with 100 μl of passive 
lysis buffer (Promega). Cellular debris was pelleted at 7,500g for 1 min 
and the supernatant was diluted 40× in passive lysis buffer and 15 μl of 
sample was transferred to three replicate wells of a white flat-bottom 
Costar 96-well plate (Corning). The assay was measured using a  
GloMax 96 microplate luminometer, and 75 μl per well of luciferase 
assay reagent and Stop & Glo reagent was added and measured step-
wise (Promega).

Statistics and reproducibility
All phenotyping and molecular experiments were repeated in at least 
three seasons with similar results. Transcriptomics was performed 
once with biological replication. For Fig. 4e,f, n = 10 inflorescences per 
plant and the number of biologically independent plants per genotype– 
season combination varies, with quartiles at 2, 5 and 9 plants (source 
data are provided in Supplementary Table 24).

Segregating populations
BC1 inbred plants of the genotype EJ2pro j2 were crossed to BC1 inbred 
plants of the genotype plt3 plt7/+ and genotyped in the F1 generation 
by allele-specific PCR to determine the presence of all desired alleles. 
Segregating F2 seed was sown in the greenhouse in populations of either 
192 or 384 plants, tissue was collected for DNA extraction and plants 
were transplanted without previous genotyping over the course of four 
seasons, two in fields at Cold Spring Harbor Laboratory, New York and 
two at The University of Florida Gulf Coast Research and Education 
Center. The genotypes of plants were confirmed after phenotyping 
by allele-specific PCR assays.

Linear regression models
Phenotypic data were summarized at the plant level for quantitative 
modelling, with abnormal inflorescences marked as proliferated or 
inhibited excluded from further analysis. For each plant i, we con-
sider the total number of branching events across all inflorescences yi  
and the number of inflorescences ti. The total number of branching 
events yi was modelled as being either Poisson or negative binomially 
distributed with exposure ti.

( )y t f μ x~ Poisson × ( ( ))i i i
−1

( )y t f μ x α~ Negative Binomial × ( ( )), ,i i i
−1

where f represents a link function and μ(xi) represents the phenotypic 
mean of the genotype xi of plant i and α is the overdispersion parameter. 
Var(yi) = μ(xi) + αμ(xi)

2 so α reflects the additional variance relative to 
the expectation under a Poisson model. Under an additive model, the 
expected mean μadd(x) of any given genotype x is given by:
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A basis for pairwise interaction models was built by extending the 
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components69. Under a pairwise model, the expected mean is given by:

∑μ x μ x θ s x s x θ s x s x

θ s x s x θ s x s x

( ) = ( ) + ( ) ( ) + ( ) ( )

+ ( ) ( ) + ( ) ( ).

i i
l m

l m
a a

l
a

i m
a

i l m
a d

l
a

i m
d

i

l m
d a

l
d

i m
a

i l m
d d

l
d

i m
d

i

pw add
,

,
,

,
,

,
,

,
,

Models were defined and fit using the statsmodels55 Python pack-
age using Poisson and negative binomial likelihoods with the identity 
(f(x) = x) and log link functions (f(x) = log x). Genotype–season MLEs for 
the number of branching events were obtained by defining a dummy 
variable for each genotype–season combination that took a value of 
1 for plants of that genotype and 0 otherwise, while assuming that 
all genotypes share the overdispersion parameter for the negative 
binomial likelihood function representing plant-to-plant variability 
that is jointly estimated with the genotype–season means. Confidence 
intervals for the MLEs were derived using statsmodels with a log-link 
between model parameters (genotype estimates) and the average 
number of branching events.

Hierarchical model
Data were modelled with a negative binomial likelihood function as 
explained in the ‘Linear regression models’ section. In this hierarchical 
model, each paralogue pair has an effect that is modelled separately 
through a complete pairwise interaction model into φPLT and φSEP, 
parametrized by the phenotypic effect between any genotype g (com-
bination of WT, heterozygous or homozygous mutants) and the WT 
θg

PLT and θg
SEP at the PLTs or SEP pair of loci, respectively:

∑φ x θ s x( ) = ( ),i
g

g g iPLT
≠WT

PLT PLT

∑φ x θ s x( ) = ( ),i
g

g g iSEP
≠WT

SEP SEP
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where s x( )g i

PLT  and s x( )g i
PLT  take value 1 if the genotype at the PLT or SEP 

loci match g and 0 otherwise. Note that φPLT takes a different value for 
every possible combination of mutations in PLT3 and PLT7 and φSEP 
takes a different value for every possible combination of mutations in 
EJ2 and J2, so that inferring the values for φPLT and φSEP is equivalent to 
allowing a full set of additive, dominance and pairwise interactions 
within each of PLT3/PLT7 and EJ2/J2. These two pairwise models are 
then combined through a multilinear function into the log-transformed 
average expected number of branching events μ(xi), given by

μ x θ φ x φ x θ φ x φ x( ) = + ( ) + ( ) − ( ) ( ),i i i i ihierarchical WT PLT SEP Int PLT SEP

where θWT is the WT log-transformed expected branching events, φPLT 
controls the log effect of the relevant combination of mutations in 
PLT3 and PLT7 when placed in a WT EJ2 J2 background, φSEP controls 
the log effect of the relevant combination of mutations in EJ2 and J2 
combinations in a WT PLT3 PLT7 background and θInt represents the 
masking interaction between the two phenotypes36. Finally, as in the 
standard linear models from the previous section, the observed number 
of branching events yi for a plant i with genotype xi and ti inflorescences 
is drawn from a negative binomial distribution with overdispersion 
parameter α:

y t e α~ Negative Binomial( × , ).i i
μ x( )ihierarchical

In summary, the hierarchical model is equivalent to fitting pair-
wise interactions within paralogue pairs, then combining the within 
pair effects through a multilinear interaction across pairs, and then 
transforming the result through an exponential function. Extended 
Data Fig. 4a shows a graphical representation of the complete model. 
This model was coded in PyTorch70 and the maximum-likelihood solu-
tion was found running the Adam optimizer for 10,000 iterations and 
checking for convergence. Extended Data Fig. 4c shows the inferred 
model including all the EJ2pro alleles and illustrates how the different 
layers of the hierarchical model are applied and combined together 
to predict the expected number of branching events for a given  
genotype.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the 
Article and its Supplementary Information. RNA-seq data generated 
in this study are available at the Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/) under accession GSE289537, and pre-
viously published RNA-seq data are available at the SRA under Bio-
Projects PRJNA376115 and PRJNA343677. The tomato pangenome 
is available at the SRA under BioProject PRJNA557253. The A. thali-
ana non-redundant motif database used is available online (https:// 
planttfdb.gao-lab.org/index.php?sp=Ath). The raw data with the 
number of branching events for each plant and inflorescence are pro-
vided in Supplementary Tables 3, 5, 7, 13, 15, 17, 21 and 24. All unique 
biological materials used in this Article are available for distribution  
on request.

Code availability
Code to reproduce the statistical analysis, quantitative modelling and 
the derived figures is available at GitHub and Zenodo71 (https://github.
com/cmarti/tomato_branching/tree/master, https://doi.org/10.5281/
zenodo.15552523).
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Extended Data Fig. 1 | Phylogenetic tree of PLT3/PLT7. Phylogenetic tree  
of PLT3 and PLT7 proteins from species selected for taxonomic breadth, 
representing asterids, rosids, early eudicots, and monocots, see Methods  

for details. Branch thickness reflects bootstrap support: thin lines indicate 
support <75, medium lines 75–90, and thick lines >90. Scale bar represents 
number of amino acid substitutions per site.
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Extended Data Fig. 2 | Mutations in one paralog pair linearly re-scale the 
effects of mutations in the other paralog pair. Scatterplots representing  
the expected number of branching events. Every dot represents a possible 
combination of mutations in PLT3 and PLT7 (first 6 columns) or EJ2 and J2  
(last column) in a specific season. The value plotted on the y-axis corresponds 
to the phenotype conferred by the given combinations of mutations either in 
the designated background at EJ2 and J2 (first 6 columns) or the designated 
background at PLT3 and PLT7 (last column); x-axis values are given by the 

phenotype of each set of mutations in the wild-type background. Dots represent 
the Maximum Likelihood Estimate (MLE) of the expected number of branching 
events for genotypes in specific seasons, as estimated under a negative binomial 
model. Error bars represent the 95% confidence interval for the MLEs. Total 
least squares regression lines for the log MLEs are represented with black 
dashed lines. Genotype-season combinations with a 95% confidence interval 
wider than a thousand-fold range are not shown.



Extended Data Fig. 3 | Linear rescaling of mutational effects observed 
between paralog pairs is robust under an alternative method for estimating 
genotype-season means. Scatterplots representing the sample average number 
of branching events. Every dot represents a possible combination of mutations 
in PLT3 and PLT7 (first 6 columns) or EJ2 and J2 (last column) in a specific season. 
The value plotted on the y-axis corresponds to the sample average phenotype 

conferred by the given combinations of mutations either in the designated 
background at EJ2 and J2 (first 6 columns) or the designated background at PLT3 
and PLT7 (last column); x-axis values are given by the sample average of each set 
of mutations in the wild-type background. Total least squares regression lines 
for the log sample means are represented with black dashed lines. Genotype- 
season combinations in which no branching was observed are not shown.
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d Epistatic masking of synergistic interactions

Hierarchical epistasis model
Interactions within each paralog pair 

Multilinear interaction between paralog pairs 

Likelihood function with log-link (multiplicative effects)
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Understanding synergy and masking under the 
inferred hierarchical model. (a) Graphical representation of the hierarchical 
epistasis model. Equations on the right show the mathematical transformations 
applied at each layer. See Methods for details and an explanation of the 
mathematical notation. (b) Different views of the two-dimensional surface 
representing the expected number of branching events as a function of the 
mean branching events conferred by placing the combination of mutations  
in each paralog pair in the wild-type background of the other pair. Points 
represent the independent maximum likelihood estimates (MLEs) for the 
expected number of branching events for the measured genotype-season 
combinations. Error bars represent the 95% confidence interval for the  
MLEs. n = 10 inflorescences per plant; see Methods for details. (c) Complete 
representation of the inferred hierarchical model of gene interaction. Left and 
bottom panels represent the estimated number of branching events for each 
paralog pair combination in the wild-type background of the other pair as a 
function of the Hamming distance to the wild-type genotype. Different EJ2pro 
alleles show phenotypic effects of different magnitude but all interact with J2 in 

a similar way. The phenotype for any genotype is obtained by combining the 
independent effect of the mutations in each pair of paralogs through the two-
dimensional surface in the middle panel. This heatmap represents the inferred 
multilinear function that quantitatively characterizes epistatic masking between 
PLT and MADS genes. White dashed lines represent isophenotypic lines, this is, 
combinations of background phenotypic effects that result in the same number 
of branching events when combined. Note that the function is linear across any 
horizontal or vertical transect, as illustrated by the constant distance between 
isophenotypic lines across any transect. Deviation from a slope of -1 in the shape 
of the isophenotypic lines, which are scale-independent, indicates the presence 
of an epistatic interaction between the two pairs of paralogs. Note that distance 
between isophenotypic lines increases in highly mutated backgrounds, 
indicating that a larger perturbation is required to achieve the same phenotypic 
outcome. (d) Estimated number of branching events for all EJ2pro8 J2 combinations 
across genetic backgrounds with an increasing number of mutations in PLT3 
and PLT7 illustrates how the synergistic interactions between EJ2pro8 and j2 
become masked as PLT3 and PLT7 become increasingly mutated.
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