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The brain represents sensory variables in the coordinated activity of neural
populations, in which tuning curves of single neurons define the geometry of the
population code*. Whether the same coding principle holds for dynamic cognitive
variables remains unknown because internal cognitive processes unfold with a unique

time course on single trials observed only in the irregular spiking of heterogeneous

neural populations®

8 Here we show the existence of such a population code for the

dynamics of choice formation in the primate premotor cortex. We developed an
approachto simultaneously infer population dynamics and tuning functions of single
neurons to the population state. Applied to spike data recorded during decision-
making, our model revealed that populations of neurons encoded the same dynamic
variable predicting choices, and heterogeneous firing rates resulted from the diverse
tuning of single neurons to this decision variable. The inferred dynamics indicated

an attractor mechanism for decision computation. Our results reveal a unifying
geometric principle for neural encoding of sensory and dynamic cognitive variables.

Tuning curves of single neurons for sensory variables determine the
geometry of the population code?. This coding principle was estab-
lished by mapping out changes intrial-averaged firing rates of neurons
in response to varying parameters of sensory stimuli*°. For exam-
ple, the orientation of a visual stimulus is a one-dimensional circular
variable encoded in the primary visual cortex, where neural popula-
tion responses organize on a ring mirroring the encoded variable*'°
(Fig.1a). The orientation tuning curves of single neurons jointly define
the embedding shape of this ring in the population state space, that
is, the geometry of the population code! (Fig.1a, Extended DataFig. 1a
and Supplementary Note 1.1).

However, whether the same geometric coding principle holds for
dynamic cognitive variables is unknown. Internal cognitive processes
(for example, decision-making or attention) are not directly observ-
able and unfold with aunique time course onsingle trialsin sparse and
irregular spiking of neural populations®®, Thus, dynamic cognitive
computations cannot be revealed by averaging neural responses over
repeated trials. Moreover, individual neurons in association brain areas
show diverse temporal response profiles during cognitive tasks" %, and
the widespread assumptionis that this heterogeneity reflects complex
dynamics involved in cognition'®”, implying that neural encoding of
dynamic cognitive variables follows a fundamentally different principle
than for sensory variables (Extended Data Fig. 1b and Supplementary
Notel.l).

Contrary to this view, we hypothesized that the complexity arises
fromthe same coding principle asin sensory areas: the neural popula-
tion dynamics encode simple cognitive variables, whereas individual
neurons have diverse tuning to the cognitive variable, similar to neu-
ral tuning curves for sensory stimuli (Fig. 1b, Extended Data Fig. 1c

and Supplementary Note 1.1). To test our hypothesis, we developed a
computational approach to simultaneously infer neural population
dynamics onsingle trials and non-linear tuning functions of individual
neurons to the unobserved population state. Two crucial technical
advances within this approach make testing our hypothesis possi-
ble. First, we performed non-parametric inference over a continuous
space of models to discover equations governing population dynam-
ics directly from data'®*, unlike previous methods that tested a small
discrete set of models*?*#, without guarantees that any of these a priori
chosen models faithfully reflect neural dynamics®. Second, the infer-
ence of non-linear tuning functions allows us to reconcile the diversity
of single-neuron responses with the population-level encoding of a
low-dimensional cognitive variable. By contrast, previous methods
assume arigid monotonicrelationship between firing rates of all neu-
rons and latent states and thus capture population dynamics with more
latent dimensions, which may not directly correspond to the encoded
cognitive variable”?.

We applied our approach to neural population activity recorded
from the primate dorsal premotor cortex (PMd) during perceptual
decision-making", a cognitive computation described by a decision
variable reflecting the dynamics of choice formation on single trials**%,
The neural representation of the decision variable remains unknown
as its unique trajectories on single trials are not observable**, and
decision-related responses of cortical neurons are complex and het-
erogeneous®?°, Our hypothesis states that neural population dynam-
ics encode a one-dimensional decision variable, and heterogeneous
neural responses arise from diverse tuning of single neurons to this
decision variable (Fig. 1b). Using our computational approach, we pro-
vide three lines of evidence for our hypothesis: in dynamics of single
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Fig.1|Neural population codes forsensory and cognitive variables.

a, Orientation of avisual stimulusis aone-dimensional circular variable a (top
left). Single neuronsin the primary visual cortex encode the orientation of a
stimulus with bell-shaped tuning curves, which describe the trial-averaged
firingrate of aneuron asafunction of the stimulus orientation (top right).
Inthe populationstate space, these neural responses formaring mirroring
theencoded variable (bottom; the dots denote trial-averaged population
responses to different stimulus orientations indicated by colour, with the
scatter illustrating estimation noise due to a finite number of trials; the line
indicates theidealized noise-free ring manifold encoding the stimulus
orientation). b, We hypothesize that the same geometric coding principle
holds for dynamic cognitive variables. Specifically, adecision variable x(¢) is
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neurons, neural population dynamics and their correspondence with
animal choices.

Neural recordings during decision-making

We analysed spiking activity recorded with linear multi-electrode
arrays from the PMd of two monkeys performing a decision-making
task (Fig. 2a). The monkeys discriminated the dominant colourina
static checkerboard stimulus composed of red and green squares and
reported their choice by touching the correspondingleft or right target
when ready (a reaction-time task). We varied the stimulus difficulty
across trials by changing the proportion of the same-coloured squares
inthe checkerboard and grouped trials into four stimulus conditions
according to the response side indicated by the stimulus (left versus
right) and stimulus difficulty (easy versus hard; Fig. 2a; see Methods,
‘Behaviour and electrophysiology’).

Many single neurons in our recordings had decision-related res-
ponses with trial-averaged firing rates separating according to the
chosen side (Fig. 2b). Although some neurons showed canonical fir-
ing rates ramping up or down with aslope dependent on the stimulus
difficulty, most neurons exhibited heterogeneous temporal response
profiles (Fig.2b), seemingly incompatible with our hypothesis that all
these neurons encode the same dynamic decision variable.

Flexible inference framework

To test our hypothesis, we developed a flexible modelling framework
that dissociates the dynamics and geometry of neural representa-
tions and enables estimating both simultaneously in data (Fig. 2c; see
Methods, ‘Flexibleinference framework’). We modelled neural activity
onsingle trials as arising from a dynamic latent variable x(¢). Each neu-
ronihasaunique tuning functionf;(x) to this latent variable, analogous
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aone-dimensional variable representing the dynamics of choice formation on
single trials (top left; trajectories coloured by the final choice). Single neurons
may encode the decision variable with diverse tuning functions, which describe
theinstantaneous firing rate of aneuron onsingle trials as a function of

the decision variable value (top right). During decision formation, neural
populationresponses evolve along aone-dimensional manifold encoding the
decision variable, whichisembedded in a high-dimensional neural population
state space (bottom; noisy linesillustrate stochastic trajectories of the decision
variable on two example trials coloured by choice, and the solid line indicates
theidealized noise-free decision manifold). The tuning curves of all neurons
jointly define the embedding shape of the decision manifold in the population
state space, thatis, the geometry of the neural population code for choice.

Neuron 1

to tuning curves of single neurons to sensory stimuli (Fig. 1a). The tun-
ing functions of all neuronsjointly define the geometry of trajectories
traced by neural activity through the population state space on sin-
gle trials (Fig. 1b, Extended Data Fig. 1c and Supplementary Note 1.1).
The dynamics of the latent variable x(¢) along these trajectories are
governed by a general non-linear dynamical system equation™":

d‘D‘X) + JIDE). )

Here @(x) is a potential function that defines deterministic forces
inthe latent dynamical system, and £(¢) is a Gaussian white noise with
magnitude D that accounts for stochasticity of latent trajectories. Our
modelling framework can generate data with identical dynamics but
different geometry, or vice versa (Extended Data Fig. 2), dissociating the
dynamics of the latent variable x(¢) from the geometry of its representa-
tionwithin the population state space. By contrast, trial-averaged firing
rates conflate the dynamics and geometry of neural representations;
hence, the geometry of the trial-averaged population activity does not
uniquely define dynamics on single trials**° (Extended Data Fig. 3).

To model decision-related activity, x(¢,) was sampled from the
distribution p,(x) of initial states at the beginning of each trial, and the
trial terminated when x(t) reached one of the decision boundaries in
the latent space” (Fig. 2c). We modelled spikes of each neuronias an
inhomogeneous Poisson process with the instantaneous firing rate
A(t) =f(x(£)) that depends on the current latent state x(¢) via the tuning
function f(x) (Fig. 2c). In our model, @(x), p,(x) and tuning functions

fi(x) of allneurons are continuous functions that can take any non-linear

shapes, enabling flexible discovery of both the low-dimensional latent
dynamics and the non-linear geometry of single-trial trajectoriesin the
population state space.

We simultaneously inferred the functions @(x), p,(x), f,(x) and the
noise magnitude D from spike data by maximizing the model likelihood
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Fig.2|Recording and modelling spiking activity during decision-making.
a, Monkeys discriminated the dominant colour inastatic checkerboard
stimulus composed of red and greensquares and reported their choice by
touchingthe corresponding target (left). While monkeys performed the task,
werecorded spikingactivity with 16 channel multi-electrode arrays from

the PMd (right). Trial conditions varied by the response side indicated by the
stimulus (left versus right) and stimulus difficulty (easy versus hard; bottom
middle). Theillustrations of the monkey, checkerboard, electrode array and
brainwere adapted fromref. 11, Springer Nature Limited. b, Trial-averaged firing
rates of four example neurons sorted by the chosen side and stimulus difficulty.
Although some neurons showed canonical ramping responses (top row), other
neurons showed heterogeneous temporal response profiles (bottom row).
Theerrorbarsares.e.m.over trials. ¢, Aframework for simultaneous inference

(Supplementary Fig. 1and Supplementary Methods 2; see Methods,
‘Flexible inference framework’). Our modelling framework accurately
identified ground-truth dynamics in synthetic data (Supplementary
Figs.1-5) and we further validated its accuracy in experimental data
with the ground truth established through optogenetic perturbations™
(Extended Data Fig. 4 and Supplementary Note 1.2).

Decision dynamics in single neurons
First, we examined decision-related dynamics of single neurons by
fitting a separate model to spikes of each neuron (n =128 for monkey
T and n = 88 for monkey O; see Methods, ‘Selection of units for the
analysis’) in each stimulus condition. The inferred tuning functions f(x),
initial state distribution p,(x) and Dwere similar across conditions and
only the potential shapes were different (Extended Data Figs.5and 6).
Stimulus independence of p,(x) is expected as stimulus informationis
not available before stimulus onset. The stability of tuning functions
fix) indicates that stimulus affects only the dynamics of the decision
variable but not the geometry of its representation in neural activity.
Totest for theinvariance of tuning functions, we performed shared
optimization in which we fitted the model to all available trials and
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of neural population dynamics and tuning functions of single neurons to the
latent population state, which jointly define the non-linear geometry of neural
representationsin the population state space. We modelled neural population
dynamics withthelatent dynamical systeminequation (1), in which the
deterministic flow field arises from a potential @(x) (bottom left) and
stochasticity is driven by a Gaussian white noise. On each trial, the latent
trajectoryx(t) starts at theinitial state x(¢,) (middle left; black dot) sampled
from the probability density p,(x) (top left). The trial ends when the trajectory
reaches one of the decisionboundaries corresponding to the leftand right
choice (middleleft; red and green dashed lines). The observed spikes (right)
of each neuron follow aninhomogeneous Poisson process with time-varying
firingrate that depends on the latent variable x(¢) via neuron-specific tuning
functions f;(x) (middle right).

restricted f(x), po(x) and Dto be the same and only allowed the poten-
tial @(x) to differ across stimulus conditions. If tuning differed across
conditions, the model with shared tuning functions would fit worse
than the model with separate tuning functions in each condition. The
likelihood was only slightly lower for the model with shared than sep-
arate tuning functions (Extended Data Fig. 7a;10g(Zhared/ Zeparate);
median (Q1-Q3) -6.10 (-17.45t01.96), n =36 for monkey T; -18.60
(-31.27 to -6.58), n =16 for monkey O) and within the range
obtained on synthetic data from the ground-truth model with shared
tuning functions (Extended Data Fig. 7a;10g(-Zhared/ Zeparate)s Median
(Q1-Q3)1.33(-8.75t0 3.68), n = 6 for the shared ground-truth model).
Furthermore, the inferred tuning functions were similar between
shared and separate models, as indicated by a high value of their cor-
relation coefficient (Extended Data Fig. 7b; median (Q1-Q3)
0.91 (0.81-0.93), n =36 for monkey T; 0.94 (0.91-0.95), n =16 for
monkey O), confirming that tuning functions are consistent across
stimulus conditions.

We therefore used shared optimizationin further analyses, because
itmaximally leverages available data to produce more accurate infer-
ence (Supplementary Figs. 2-4). The model fit converged for most
neurons (117 out of 128 neurons (91%) for monkey T and 67 out of 88
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Fig.3|Decisiondynamicsinsingle neurons. a, The log-likelihood ratio of the
single-neuron model relative to the peristimulus time histogram (PSTH) across
neurons (n =117 formonkey T and n = 67 for monkey O). b, Spike-time variation
explained by the single-neuron model (top; n =111 for monkey T and n = 50 for
monkey O). The residual spike-time variation unexplained by the model (y axis)
correlates withtheindependently estimated point process variability (x axis;
bottom; n =64 for monkey T and n =27 for monkey O). ¢, Spiking activity (top;
40 exampletrials) and trial-averaged firing rates (bottom; PSTH) sorted by the
chosenside and stimulus difficulty for an example neuron. The coloured dots
mark spikes, and black dots indicate reaction time. The error barsares.e.m.
over trials. The time window used for model fitting starts at 120 ms after the
stimulus onset (vertical dashed line) and extends until the reaction time on

neurons (76%) for monkey O), which were used in further analyses
(Methods, ‘Outcomes of model fitting’).

Our model produced significantly higher likelihood than the
trial-averaged firing rate computed for each chosen side and stimulus
difficulty (Fig. 3a;10g( Znogel/ -Zosti) median (Q1-Q3) 21.2(7.27-48.5),
P<107, n=117 for monkey T; 9.39 (1.73-25.6), P=1.3 x 1075, n = 67 for
monkey O, Wilcoxon signed-rank test; see Methods, ‘Evaluating model
performance’). Thisresultindicates that single-trial firing rates deviate
considerably fromtheir trial average, and our model successfully cap-
tured this variation. Furthermore, our model explained a substantial
fraction of the total variation in spike times on single trials (Fig. 3b;
coefficient of determination R%; median (Q1-Q3) 0.28 (0.17-0.38) for
monkey T; 0.20 (0.13-0.28) for monkey O; see Methods, ‘Spike-
time R?). Theoretically, the R*value cannot reach 1 because our model
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eachtrial. d, Potentials discovered from spikes of the example neuronin ¢ show
asinglebarrier (marked by triangles) in all stimulus conditions (middle and
bottom). Theinferred initial state distribution p,(x) shared across conditions
(top) peaks near the top of the linear slope of the potential (dashed vertical
lines). e, Theinferred tuning function shared across stimulus conditions for the
neuroninc.Theerrorbarsind,eares.d. over 10 bootstrap samples. f-h, Same
asc-eforanother example neuron. i, The distribution across neurons of

the potential slope at the maximum of p,(x) for four stimulus conditions
(***P<107'°, n =184, Wilcoxon signed-rank test). Inthe boxplots (a,b,i), the
centrelinesindicate medians, the boxes span the 25-75th percentiles, the
whiskers extend to the nearest of 1.5 x the interquartile range or the most
extreme data point, and outliers beyond the whiskers are shown as dots.

predicts single-trial firing rates, leaving the point process variability
unexplained. However, if the firing rate prediction is correct on each
trial, we expect the point process variability to match the residual
spike-time variation unexplained by the model. The point process
variability estimated withanindependent method* correlated tightly
with theresidual variation unexplained by our model (Fig.3b; r= 0.80,
P<107, n=64formonkey T; r=0.73, P=1.4 x 107, n=27 for monkey
O, Pearson correlation coefficient), indicating that our model
accounted for nearly all explainable variance in firing rates on single
trials.

Our model revealed that despite heterogeneous trial-averaged
responses, single neurons showed remarkably consistent dynamics
onsingle trials (Fig. 3c-h and Extended DataFig. 8), which provides the
firstline of evidence for our hypothesis. In all stimulus conditions, the



inferred potentials displayed the same features: a nearly linear slope
towards the decision boundary corresponding to the correct choice
and a single potential barrier separating it from the boundary corre-
spondingtotheincorrect choice (Fig.3d,g). The inferred distribution
ofinitial states p,(x) was narrow and centred near the top of the linear
slope, indicating that latent trajectories evolve smoothly towards the
correct choice but have to overcome the potential barrier towards the
incorrect choice (Fig.3d,g). The potential shapes were highly consistent
across neurons, as indicated by a high value of their correlation coef-
ficientin each condition (0.86 + 0.16 for monkey T, and 0.88 + 0.14 for
monkey O, mean + s.d. across neurons and conditions; see Methods,
‘Outcomes of model fitting’). For easy stimulus conditions, the poten-
tials had a higher barrier and steeper slope than for hard conditions
(Fig.3d,g,i; easy versus hard; P<107°, n =184 for left stimulus; P<107%,
n=184forright stimulus, Wilcoxon signed-rank test), predicting more
latent trajectories reaching the correct choice boundary and faster
reaction times, consistent with the behaviour of animals. The hetero-
geneous trial-averaged responses (Fig. 3¢,f) resulted from different
shapes of the inferred tuning functions (Fig. 3e,h).

These results reject the idea that decision-related dynamics differ
across neurons?’, which would correspond to diverse shapes of the
potential @(x). Instead, we found that the overwhelming majority of
single neurons follow the same dynamics described by asingle-barrier
potential and diverse tuning functions account for the heterogeneity
of their trial-averaged firing rates.

Decision dynamics in neural populations

Single neurons showed the same dynamics, and next we examined how
these dynamics were organized in the population. One possibility is that
allneurons follow the same trajectory x(t) on each trial, indicating that
the entire population encodes the same latent dynamical variable as
we hypothesized (Fig.1b). Alternatively, individual neurons may follow
distinct trajectories onsingle trials eveniftheir dynamics are described
by the same potential,in which case different neurons canbe at different
latent states at the same time, for example, evolving towards opposite
choice boundaries on the same trial*. To test these possibilities, we fit-
ted our model to spikes of neural populations recorded simultaneously
in the same session (15 populations for each monkey; see Methods,
‘Selection of units for the analysis’). The population model assumes
that all neurons share the same latent variable x(¢) (Fig. 2c) and hence
haslessfreedomto explain neural responses than single-neuron models
fitted to spikes of each neuron separately. If single-trial dynamics are
not shared across all neurons, the population model would fit worse
than single-neuron models.

The shared population model fit converged for most sessions (11 out
of 15 sessions (73%) for monkey T and 13 out of 15 sessions (87%) for
monkey O), which were used in further analyses (see Methods, ‘Out-
comes of modelfitting’). The likelihood was not significantly different
between population models fitted with shared and separate tuning
functions (Extended Data Fig. 7¢;108(Zhared/ Zeparate) Median (Q1-Q3)
13.5(-35.6 t072.7), P=0.58, n =11 for monkey T; —4.6 (-18.8 t0 18.8),
P=0.95, n=14 for monkey O, Wilcoxon signed-rank test), reinforcing
theinvariance of tuning functions. We therefore used the shared pop-
ulation modelin further analyses.

We compared the performance of the population and single-
neuron modelsin three ways. First, the population model had simi-
lar or higher likelihood than the single-neuron model (Fig. 4a;
10g( L oputation/ Lingleneuron Median (Q1-Q3) 190.4 (91.8-290.3),
P=0.001,n=11formonkeyT; 4.0 (-35.6t09.4), P=0.74,n =13 for mon-
key O, Wilcoxon signed-rank test; see Methods, ‘Evaluating model
performance’). Second, the population and single-neuron models
explained asimilar fraction of the total variation in spike times on sin-
gle trials (R?, median (Q1-Q3); population 0.25 (0.15-0.38), single
neuron0.27(0.19-0.37), P=0.11,n =80 for monkey T; population 0.15

(0.09-0.30), single neuron 0.19 (0.09-0.26), P= 0.015, n = 32 for mon-
key O, Wilcoxon signed-rank test). Finally, we used the most stringent
leave-one-neuron-out validation, inwhich we predicted activity of one
neuron from the latent variable x(¢) inferred from spikes of all other
neurons in the population (see Methods, ‘Evaluating model perfor-
mance’). Thelog-likelihood was higher for the population modelin the
leave-one-neuron-out validation than for the neuron’s own trial-
averaged firing rate (Fig. 4a; log(.4 ono/ -%stw); median (Q1-Q3) 48.9
(24.5-88.6), P<107°, n =89 for monkey T; 6.5 (-3.4 t0 11.9), P= 0.07,
n=>59formonkey O, Wilcoxon signed-rank test). Together, these results
show that the population model explained neural activity as well as or
better than the single-neuron model, supporting our hypothesis that
the entire population encodes the same latent dynamical variable on
single trials.

As the population model predicted spikes as accurately as single-
neuronmodels, it unsurprisingly revealed dynamics and geometry con-
sistent with single-neuron results (Fig.4b-d and Supplementary Fig. 6).
The inferred tuning functions were similar between the population
and single-neuron models, asindicated by a high value of their correla-
tion coefficient (0.89 + 0.12, n = 85for monkey T; 0.89 + 0.15,n = 46 for
monkey O, mean *s.d. across neurons). For all stimulus conditions, the
potential had asingle barrier (Fig. 4c), and heterogeneous single-neuron
responses (Fig. 4b) were captured in non-linear tuning functions
(Fig. 4d). The potential shapes were highly consistent across all popu-
lations, as indicated by a high value of their correlation coefficient in
each condition (0.93 + 0.09 for monkey T and 0.88 + 0.14 for monkey O,
mean + s.d. across populations and conditions; see Methods, ‘Out-
comes of modelfitting’). Moreover, the model likelihood significantly
decreased whenreplacing the tuning functions, potentials or both with
linear approximations (Extended DataFig.9), emphasizing that neural
responses have non-linear dynamics and non-linear geometry. The con-
sistency of potential shapes and the high fit quality for the population
model provide the second line of evidence for our overall hypothesis.

Predicting choice from latent dynamics

Finally, we tested how the dynamic variable encoded by PMd popula-
tions related to the decision-making behaviour. Our unsupervised
models of neural dynamics are fitted without access to the choices of
the animal. A correspondence between theinferred latent trajectories
and those choices would indicate that the identified dynamics reflect
single-trial decision formation.

We used our models to predict the choices of animals from neu-
ral activity. On each trial, we decoded the latent trajectory x(¢) from
spikes and predicted the choice as the boundary to which this trajectory
converged at thereaction time (see Methods, ‘Predicting choice from
neural activity’). Both single-neuron and population models predicted
the choices of animals significantly above chance (Fig. 4e; balanced
accuracy, median (Q1-Q3); single-neuron model 68.7% (61.0-79.8%),
P<107°, n =85, population model 89.9% (83.4-96.4%), P=0.001,n =11
for monkey T; single-neuron model 59.2% (55.7-63.6%), P<107°, n =46,
population model 73.2% (64.9-78.6%), P=2 x 10™*,n =13 for monkey O,
Wilcoxon signed-rank test).

Foracomparison, we trained alogistic regression decoder to predict
the choices of animals from a vector of spike counts on single trials
measured in overlapping 75-ms bins with a 10-ms step (see Methods,
‘Predicting choice from neural activity’). Despite the decoder being
directly supervised to predict the choice, our unsupervised models
predicted choices with higher accuracy than the decoder (Fig. 4e;
single-neuron decoder versus model P=1.2 x 1078, n =85, population
decoder versus model P=0.014, n =11 for monkey T; single-neuron
decoder versus model P=0.019, n =46, population decoder versus
model P=0.001, n=13for monkey O, Wilcoxon signed-rank test), sug-
gesting that the latent variable inferred by our models is the dynamic
decisionvariable. Moreover, the population model predicted choices
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Fig.4|Decisiondynamicsinneural populations. a, The log-likelihood ratio
ofthe population model relative to the single-neuron model for all populations
(top; P=0.001, n=11for monkey T;and P=0.74, n =13 for monkey O, Wilcoxon
signed-ranktest). The log-likelihood ratio of the population modelin the leave-
one-neuron-out (LONO) validation relative to PSTH across neurons (bottom;

P <107 n=89 formonkey T;and P= 0.07, n = 59 for monkey O, Wilcoxon
signed-ranktest). b, Trial-averaged firing rates (PSTHs) sorted by the chosen
side and stimulus difficulty for 14 neurons recorded simultaneously onan
examplesession. The error barsares.e.m. over trials. ¢, Potentials governing
the population dynamics discovered from spikes of the populationinbshowa
single barrier (marked by triangles) inall conditions (middle and bottom). The
inferred p,(x) shared across conditions (top) peaks near the top of the linear
potential slope (vertical dashedlines).d, Theinferred tuning functions shared

with higher accuracy than the single-neuron model (Fig. 4e; P=1.1x10™*
for monkey T and P =4 x 107 for monkey O, Mann-Whitney U-test),
reinforcing that the decision variable is encoded on the population
level. These results provide the third and final line of evidence for our
overall hypothesis.
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Latent state, x

across conditions for the populationinb. The errorbarsinc,dares.d. over 10
bootstrap samples. e, The balanced accuracy of predicting monkey’s choice
using the single-neuron models (orange), population models (light green), and
alogisticregression decoder trained on single-neuron (red) and population
(dark green) activity across neurons (for single-neuron models versus decoder;
P=1.2x107%,n=85formonkey T,and P=0.019, n = 46 for monkey O) and across
populations (for population models versus decoder; P= 0.014, n = 11 for monkey
T,and P=0.001, n =13 for monkey O, Wilcoxon signed-rank test). *P < 0.05,
**P<0.0land***P<0.001.Inthe boxplots (a,e), the centre lines indicate
medians, the boxes span the 25-75th percentiles, the whiskers extend to the
nearest of 1.5 x the interquartile range or the most extreme data point, and
outliers beyond the whiskers are shown as dots.

In summary, we found that heterogeneous neural populations in
the PMd encode the same dynamic decision variable with diverse tun-
ing functions, which define the geometry of the population code for
choice. This discovery reveals a unifying geometric principle for neural
encoding of sensory and dynamic cognitive variables.
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Fig.5|Mechanism for decision computation. a, The spiking network model
of decision-making™ consists of two excitatory neural pools (£,and £,) and an
inhibitory neural pool (/) that mediates winner-take-all dynamics. b, The
mean-field network dynamics reduce to a two-dimensional flow field**. Two
stable fixed-pointattractorsrepresent two choices (red and greencircles),
separated by asaddle point (blue cross). The separatrix (blue line) divides the
basins of the choice attractors. At the trial start, the networkisinitialized ina
symmetric low-activity state (black dot). Two example trajectories are shown
for correct (green) and error (red) trials. a.u., arbitrary units. ¢, Potentials
discovered by fitting spikes generated by the attractor network show asingle
barrier (marked by triangles) in all stimulus conditions (middle and bottom),
similar to the PMd data. The inferred initial state distribution p,(x) shared
across conditions (top) peaks near thetop of the linear potential slope

Mechanism for decision computation

We discovered that both single-neuron and population activity in the
PMd are described by the same dynamics — a potential with a single
barrier — qualitatively distinct from the stepping and ramping hypoth-
eses proposed previously*'*? (Supplementary Fig. 5). This potential
landscape indicates an attractor mechanism for decision-making,
with the potential barrier separating choice-specific attractors®>*>,

We therefore used the classical spiking network model of
decision-making® to establish a mechanistic interpretation of the
one-dimensional decision variable and dynamics identified by our
model in the PMd. In this network®, two pools of excitatory neurons
receiveinputs supporting the left and right choices, and a pool of inhibi-
tory neurons mediates winner-take-all dynamics, such that only one
excitatory pool elevates the firing rate on each trial, signalling the

‘3\ 2>
-150 0»\\ 03 o\

(vertical dashed lines).d, The inferred tuning functions of two example neurons
fromeachexcitatory pool. Theerrorbarsinc,dares.d.over10 bootstrap
samples.e, The decision manifold defined by the tuning functionsin the spiking
network model. f, The decision manifold defined by the tuning functions
ofallPMd neurons projected on the first three principal components (PCs).

g, Recurrent network model with rank-two connectivity /=M x Q" designed
toreplicate the classical attractor dynamics. h, The flow field governing the
mean-field variables z, and z, in the rank-two network matches the classical
mean-field attractor dynamics. i, Firing rates of example units in the rank-two
network on theleft (red) and right (green) choice trials. j, Tuning functions
tothedecision variablex of the example unitsini. k, The decision manifold
defined by the tuning functions of all unitsin the rank-two network projected on
thefirstthree PCs.

choice of the network (Fig. 5a). The mechanism of decision computa-
tioninthis network canbe understood using amean-field approxima-
tion thatreduces the network to atwo-dimensional dynamical systemin
which the activity of two excitatory pools are the dynamic variables***,
In this dynamical system, two stable attractors represent two choice
alternatives separated by asaddle point (Fig. 5b). The stable manifold
of the saddle is the separatrix that divides the attractor basins.

The attractor network predicted the same dynamics as uncovered
by our modelinthe PMd. At the trial start, theinitial network state falls
within the basin of the attractor corresponding to the correct choice.
Oncorrecttrials, the trajectory of the network follows the flow field to
reach the correct-choice attractor. By contrast, on error trials, noise
drives the trajectory across the separatrix into the incorrect-choice
attractor, pushing against the flow field and thus overcoming a poten-
tial barrier. To verify this theory, we fitted our population model to
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spiking activity generated by simulating the attractor network (see
Methods, ‘Spiking network model’). From the network spiking activity,
the population model inferred potentials with a single barrier in each
stimulus condition similar to the potentials discovered from the PMd
data (Fig. 5c compared with Figs. 3d,g and 4c).

Theattractor network also provided a mechanistic interpretation for
the decision variable xand tuning functionsf(x) in our model. Oneach
trial, network trajectories start at a symmetric low-activity state and
follow nearly one-dimensional stereotypic paths toreach either of two
choiceattractors (Fig. 5b). When varying stimulus difficulty, the shape
of these one-dimensional trajectories remains nearly invariant, with
only the speed and direction of dynamics along these paths changing,
consistent with our findings in the PMd data. These one-dimensional
trajectories traced by the network can be parametrized by a single
latent variable, corresponding to the decision variable xin our model
(Supplementary Note1.3). The firing rate of neuron i at any point x along
the one-dimensional trajectory is given by the tuning function fi(x).
Thus, the decisionvariable inour model parametrizes one-dimensional
trajectories arising during decision-making and tuning functions cap-
ture the geometry of these trajectories in the population state space.

We compared the representational geometry of the decision variable
between the two-pool attractor network and PMd data. In the two-pool
attractor network, the tuning functionsinferred by our model were iden-
tical for all neurons within each excitatory pool (Fig. 5d), as expected
forhomogeneous pools. As excitatory neurons have only two types of
tuning functions, their responses naturally form a manifold that spans
two linear dimensions (Supplementary Note1.3). We can directly visual-
ize this manifold by plotting the two types of tuning functions against
each other (Fig. 5e). The manifold shape corresponds to the paths that
network trajectories take from theinitial state to the choice attractors
(Fig. 5e comapred withFig. 5b), reinforcing the link between tuning func-
tionsand geometry of trajectories arising during decision-making. As
PMd neurons had heterogeneous tuning functions, the PMd manifold
spanned many linear dimensions. To visualize the decision manifoldin
the PMd, we projected all tuning functions inferred in 24-well-fitted ses-
sions onto thefirst three principal components, which explained 56.0%,
26.8%and 5.2% of the variance, respectively. The PMd manifold revealed
two diverging branches encoding choice, with a higher-dimensional
geometry thanin the two-pool attractor network (Fig. 5f).

The complex geometry of the PMd decision manifold can arise from
adistributed attractor mechanism, as intuitively explained in low-rank
recurrent networks®** (Extended Data Fig.10). The rank-k connectiv-
ity defines k mean-field variables z; (i =1, ...k) that govern population
dynamics, generating low-dimensional trajectories in the space of
synaptic currents. The firing rate is a non-linear function of the synaptic
current, resulting in high-dimensional geometry of trajectories inthe
firing-rate space. Toillustrate this mechanism, we designed a rank-two
recurrent network that replicates the classical attractor dynamics with
distributed connectivity® (Fig. 5g; see Methods, ‘Low-rank network
model’). The flow field governing the mean-field variables z; and z,
matchesthatinthe classical mean-field attractor network, generating
similar trajectories parametrized by a one-dimensional decision vari-
ablex (Fig.5h).Inthefiring rate space, single units have heterogeneous
response profiles (Fig. 5i) and diverse non-linear tuning to the deci-
sion variable x (Fig. 5j), with high-dimensional population geometry
of the decision manifold (Fig. 5k), as in our PMd data. This example
shows that recurrent networks can generate identical dynamics with
distinct population geometry (Fig. 5e,k), mechanistically grounding
our computational approach for discovering dynamics and geometry
directly from data.

Discussion

We identified the population code for choice in the primate premotor
cortex, in which heterogeneous single-neuron activity arises from
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diverse tuning to adynamicdecision variable encodedin the evolving
populationstate. Our work extends the framework of neural population
geometry"?1%* to transient representations that unfold stochastically
onsingle trials, revealing a unifying geometric principle for the encod-
ing of sensory and dynamic cognitive variables.

This discovery was enabled by two technical advances within our
computational approach. First, our modelling framework dissociates
the dynamics and geometry of neural representations on single trials
and enables identifying both simultaneously in data. Previous models
did not allow for simultaneous inference of non-linear tuning func-
tions and a non-linear latent dynamical system*2%22327454¢ requiring
more latent dimensions and complex dynamics to capture non-linear
population geometry (Supplementary Note 1.4). Second, our frame-
work belongs to a new class of flexible and interpretable models**,
whereas most existing methods trade off flexibility for interpretability
orviceversa.Onthe onehand, interpretable models oftenrely onrigid
parametric assumptions that do not permit discovering dynamical laws
beyond their a priori constraints®?***%%5! (Supplementary Note 1.4).
On the other hand, flexible high-dimensional recurrent neural net-
works can approximate any dynamics, but do not yield interpretable
low-dimensional flow fields*%. Recurrent neural networks are typically
interpreted by linearizing their dynamics around fixed points'****, pro-
viding merely local linear approximations of the dynamics. By contrast,
ourapproach derives alow-dimensional non-linear dynamical system
model of neural computations™ directly from spike data, avoiding
inductive biases of intermediate approximation schemes®.

These technical innovations enabled us to test a hypothesis that
heterogeneous responses of single neurons result from their diverse
tuning toadecision variable encoded in single-trial population dynam-
ics. Although decision-making has beenlong hypothesized to arise from
attractor®**, drift diffusion®® or stepping dynamics®>***?, no conclusive
evidence has emerged thus far to arbitrate among these alternatives
indata. Forexample, attemptsto arbitrate between drift diffusion and
stepping dynamics concluded that equal fractions of neurons show
each type of dynamics?, indicating that dynamics are not shared across
the entire population. However, all these classic hypotheses postulate
monotonically ramping trial-averaged firing rates and fail to account
for heterogeneous responses of cortical neurons (Fig. 2b). By contrast,
we showed thatindividual neurons follow the same dynamics onsingle
trials shared across the population, suggesting that previous models
may have reached the opposite conclusion due to their inflexible map-
ping of latent states to firing rates**°. Moreover, our model reveals
that behavioural errors arise from deviant dynamics on a manifold
with stable geometry, despite distinct geometries of trial-averaged
trajectories for correctand error trials (Supplementary Fig. 7 and Sup-
plementary Note 1.5).

We found that PMd neurons have non-linear tuning to the decision
variable, contrary to the common assumption that firing rates encode
the decision variable linearly® or monotonically***%. Linear tuning
implies that trial-averaged firing rates ramp up or down monotoni-
cally, inconsistent with temporal response profiles of many neurons. In
addition, linear models have often found that the axis encoding choice
in the population state space rotates over time within a trial*>**. The
rotating choice axes are parsimoniously explained as piecewise linear
approximations of the non-linear geometry of the choice manifold
that we discovered. Non-linear encoding of cognitive variables may be
ubiquitous, as neurons in the hippocampal formation encode space
and other abstract variables with non-monotonic tuning functions®~.

We found attractor dynamics in the PMd with high-dimensional
geometry of choice representation. Low-rank recurrent networks
can generate identical dynamics with distinct population geometry*
(Fig. 5), thus dissociating population dynamics and geometry. Our
modelling framework identifies dynamics and geometry of neural
representations withoutimposing aninductive bias towards a specific
circuit mechanismthat generated them. Such statistical descriptions



reveal principles of neural coding and computation and allow for
quantitative comparisons between distinct mechanistic models and
experimental data®s,
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Methods

Behaviour and electrophysiology

We analysed an experimental dataset previously described™*. Two male
monkeys (T and O, Macaca mulatta, 6 and 9 years of age) were used in
the experiments. Experimental procedures were in accordance with
the US National Institutes of Health (NIH) Guide for the Care and Use of
Laboratory Animals, the Society for Neuroscience Guidelines and Poli-
cies, and Stanford University Animal Care and Use Committee (8856).

The monkeys were trained to discriminate the dominant colourina
static checkerboard stimulus composed of red and green squares and
reporttheir choice by touchingthe corresponding target. At the start
of each trial, amonkey touched a central target and fixated on a cross
abovethe central target. After ashort holding period (300-485 ms), red
and green targets appeared on theleftand right sides of the screen. The
colours of each side were randomized on each trial. After another short
holding period (400-1,000 ms), the checkerboard stimulus appeared
on the screen at the fixation cross and the monkey had to move its
handto the target matching the dominant colour inthe checkerboard.
Monkeys were free to respond when ready. Monkeys were rewarded
for the correct choices and received longer inter-trial delays for the
incorrect choices. Hand position was monitored by taping aninfrared
reflective bead to the index or middle fingers of each hand and used
for measurement of speed and to estimate reaction time®®. We used a
real-time system combining xPC Target (v5.3) from MATLABR2012b to
control task timing and state transitions. This system communicated
with a separate computer running Psychtoolbox (v3.0.9) on MATLAB
R2012b for stimulus display.

The difficulty of the task was parameterized by an unsigned stimulus
coherence expressed as the absolute difference between the number of
red (R) and green (G) squares normalized by the total number of squares
IR-GJ|/(R+G).We used a15 x15 checkerboard, which led to a total of
225 squares. The task was performed with seven different unsigned
coherencelevels formonkey T and eight levels for monkey O. For each
stimulus condition, our analysis required at least a small fraction of
incorrect choices so thatthe neural activity fully explored the decision
manifold. Therefore, we only analysed the four most difficult stimulus
conditions for each monkey, which had sufficient number of error tri-
als. To obtain sufficient data for the model fitting and validation, we
merged these four stimulus conditions into two groups combining
two easier conditions into one group and two harder conditions into
another group. We refer to these two groups as easy and hard stimulus
difficulties. AsPMd neurons are selective for the chosen side but not for
colour", we further divided the trials according to the side indicated by
the stimulus (left or right) for each stimulus difficulty (easy or hard),
resulting in four analysed conditions in total.

We used the cerebus system (Blackrock Microsystems) and the Cen-
tral software (v6.0) to record neural activity in the PMd with a linear
multi-contact electrode (U-probe) with 16 channels. After rigorous
online sortingin Central, we used offline spike sorting through acom-
bination of MATLAB (MatClust v1.7.0.0) and Plexon offline sorter (v3) to
identify single neurons and multi-units. The average yield was approxi-
mately 16 and approximately 9 neurons per session for monkey T and
monkey O, respectively, which primarily were well-isolated single units.

Selection of units for the analyses

After spike sorting and quality control, we had 546 and 450 single neu-
rons and multi-units recorded from monkeys T and O, respectively.
From this dataset, we selected units for our analyses based on three
criteria: (1) trial-averaged firing rate traces sorted by the chosen side
(left versus right) reach 15 Hz for at least one reach direction at any
time between stimulus onset and median reaction time; (2) the total
number of trials across all conditionsis atleast 560; and (3) selectivity
index for the chosensideis greater than 0.6 for monkey T and 0.55 for
monkey O. The first two criteria ensure that a unit yields a sufficiently

large number of spikes for model fitting®, and the third criterion selects
for units with decision-related activity.

For the first criterion, we used trial-averaged firing rate traces
aligned to stimulus onset (PSTH) sorted by the chosen side, obtained
by averaging over trials the spike counts measured in 75-ms bins slid-
ing at 10-ms steps. For the third criterion, we measured the spike
count of each neuron on each trial in a (0.2-0.35 s) window aligned
to stimulus onset. Selectivity index was defined as the area under
the receiver operating characteristic curve for discriminating left
versus right chosen side based on the spike counts. Selectivity index
ranges between 0.5 (no choice selectivity) and 1. For each monkey, we
imposed aselectivity index threshold at the median across all neurons
(0.6 formonkey Tand 0.55 for monkey O), leading to selecting half of
allneuronsin each monkey. This criterionimplies that analysed neu-
rons had overalllower choice selectivity in monkey O thanin monkey
T, because choice selectivity was generally lower for neurons from
monkey O in our dataset.

For monkey T and monkey O, 128 and 88 units, respectively, passed
allthreeselection criteria and were used in single-neuron analyses. The
majority were well-isolated single neurons (127 out of 128 units (99%)
for monkey T, and 76 out of 88 (86%) for monkey O), and the rest were
multi-units. For population analyses, we included sessions that had at
least 3 of the selected single units recorded simultaneously, yielding
15 populations for each monkey.

On each trial, we analysed PMd activity from 120 ms after stimulus
onset (the appearance of acheckerboard stimulus on the screen) until
thereactiontime (the hand leaving the central target), which was esti-
mated at the first time after checkerboard onset when speed of the
hand was above 10% of the maximum speed for that trial. The delay
of 120 ms was chosen to account for the lag in PMd response to the
stimulus. We verified that the model fitting results were the same for
a80-120-ms range of delays.

Flexible inference framework

Weimplemented our computational framework as a Python package
NeuralFlow, which is publicly available online®. We modelled latent
neural dynamics x(¢) as a stochastic non-linear dynamical system
defined by the Langevin equation® (equation (1)) on the domain
xe€[-1;1].Inthisequation, the potential @(x) givesrise to adetermin-
istic force flow field F(x) = ~d®(x)/dx. As in one dimension, there are
no rotational forces and any force results from the gradient of a poten-
tial, representing the flow field via potential does not restrict our
model. In practice, we directly optimized the force F(x) and then
computed @(x) from the force for visualization. The term £(¢) is a
white Gaussian noise (£(t)) =0, (€(¢)&(¢)) = 6(¢ - t’) with the mag-
nitude D.Inequation (1), we scaled the potential with D, which makes
the equilibrium probability density of the Langevin dynamics invar-
iant to the noise magnitude. This parametrization is equivalent to
measuring the potential heightin units of D and does not restrict the
space of dynamical systems spanned by our models. We scaled all
potentials by D after fitting for visualization and comparisons across
conditions, neurons and populations. At the start of each trial, the
initial latent state x, is sampled from a distribution with probability
density py(x).

We modelled spikes of each neuron as aninhomogeneous Poisson
process withinstantaneousfiringrate A(¢) = f(x(¢)) that depends on the
current latent state via a neuron-specific tuning function f(x). In pop-
ulation models, all neurons follow the same latent dynamics x(¢) and
each neuron i has a unique tuning function fi(x) (i =1...M, where M is
the number of neuronsinthe population). In this case, the population
dynamics x(¢) are shared by all neurons, and the tuning functions f;(x)
jointly define the non-linear embedding of these dynamics into the
neural population state space. Thus, the model was specified by a
set of continuous functions: the potential @(x), the initial state distribu-
tion py(x), a collection of tuning functions {f;(x)} and a scalar noise



magnitude D. We inferred all model components 8 = {®(x), p,(x),
{ £}, D} from spike data )Xt).

The spike data consisted of multiple trials )J(¢) = {Y, ()} (k=1,2...K,
where Kisthe number of trials), and the time argumentin Y,(¢) indicates
thatthe dataare asequence of event times oneach trial. Forindepend-
ent trials, the total data likelihood is a product of likelihoods of indi-
vidual trials

K
logZ[N(0)16]= Y logZ1Y,(2)|6]. (2)

k=1

Therefore, here we consider data for a single trial Y,(¢) and omit the
trial index to simplify notation. For each trial, Y(t) = {yo, Y1, -« , Y0 V&
is amarked point process, that is, a sequence of discrete observation
events. Each observationisapairy; = (¢, i), where;is the time of event

Jandi;is the type of this event. The first and last events mark the trial
starttime t,andtrialend timet;, and the Nremainingevents (j=1,...N)
are the spike observations where ¢; is the time of jth spike and i; is the
index of the neuron that emitted this spike (i€ {1, ...M}, where Mis the
number of simultaneously fitted neurons). The events are ordered
according to their times.

We fitted the model by maximizing the data log-likelihood
log.#[)/(t)|6] over the space of continuous functions™®* (Supplemen-
tary Methods 2.1). The likelihood for each trial is a conditional prob-
ability density of observing the data Y(¢) given the model O marginalized
over all possible latent trajectories:

21 @161= [ Do) P, Y()16). 3)

Here P(X(t), Y(£)|0) is a joint probability density of observing
the spike data Y(¢) and a continuous latent trajectory X(¢) given the
model 6, and the path integral is performed over all possible latent
trajectories. We omit the conditioning on fin subsequent expressions
for the probability densities of the data and latent states to simplify
notation.

We derived the likelihood functional for non-stationary latent
Langevin dynamics as previously described®. In brief, in a reaction-
time decision-making task, a participant reports the choice as soon as
the neural trajectory reaches a decision boundary for the first time.
Thus, trials have variable durations defined by the neural dynamics
itself,and the latent trajectory always terminates at one of the decision
boundaries atthe trialend. Accordingly, the likelihood calculation must
integrate over all latent paths that terminate at one of the boundaries
at the trial end time t; and do not reach aboundary at earlier times.
Two components in our framework account for the statistics of
latent trajectoriesin this case. First, the absorbing boundary conditions
ensure thatlatent trajectories reachingaboundary before the trialend
do not contribute to the likelihood. Second, the absorption operator
p(Alx,,) enforces that the likelihood includes only trajectories termi-
nating on the boundaries at the trial end time. Without the absorption
operator, the likelihood includes all trajectories that terminate any-
whereinthelatent space and do not reach the domain boundaries before
the trial end. Omitting either of these componentsresultsinincorrect
inference, in which erroneous features arise in the dynamics due to
non-stationary data distribution®.

Here we provide abrief exposition of the likelihood calculation. The
detailed mathematical derivation and extensive numerical testing of
the non-parametricinference of non-stationary latent Langevin dynam-
ics have been presented in our previous work®. In this study, we have
introduced non-parametric inference of tuning functions f;(x) simul-
taneously with latent dynamics, as described below. To compute the
pathintegralinequation (3), we consider adiscretized latent trajectory
X(0) =) Xy, oo X X¢ 3, Whichiis a discrete set of points along a con-
tinuous path X(t) ateach of the observationtimes {t,, t,, ..., ty, t. Once
we calculate the joint probability density P(X(¢), Y(¢)) of the discretized

trajectory and data, we can obtain the datalikelihood by marginaliza-
tion over all discretized latent trajectories:

J"X[ J“X[ dx;,..dx, PIX(D), V(). @

We do not bin spikes but process data spike by spike in continuous
time. Accordingly, the calculation of the joint probability density
P(X(¢), Y(t)) must account for the spikes observed at times Y(¢) = {t} and
also for the absence of spike observations during interspike intervals
(ISIs; t;.,, ). Using the Markov property of the latent Langevin dynamics
in equation (1) and conditional independence of spike observations,
the joint probability density P(X(¢), Y(¢)) can be factorized™:

=

X[O X[N

N
P(X(¢), Y () :p(xro) ” p(,vjlxtj)p(xtjlxtj,l) P(erlsz)p(Aler)- Q)
Jj=1

Here the terms p()9 |xtj) represent the probability density of obser-
ved spikes, and the terms p(xtj|xtj71) represent the transition probabil-
ity density of latent states that accounts for the absence of spike
observations during ISls. Each term p(yjlxtj)dt is the probability of
observing a spike from neuron i; within infinitesimal d¢ of time ¢;
given the latent state Xy hence p(yj|xtj) =jl?j (th) by the definition of
the instantaneous Poisson firing rate. p(x[j|xtj71)is the transition
probability density from X, 10X, during the time interval between
the adjacent spike observations, which also accounts for the absence
of spikes during each ISlin the data. This transition probability density
decayswithtime atarate given by the Poissonfiring rate of all neurons,
because it becomes less likely to observe no spikes for longer time
intervals. px;,) is the probability density of the initial latent state.
Finally, the term p(Alx,,) represents the absorption operator, which
ensures that only trajectories terminating at one of the domain
boundaries at time ¢, contribute to the likelihood®.

The discretized latent trajectory X (¢) = {x; , X;,, . - -, X, X;, } is obtai-
ned by marginalizing the continuous trajectory X(t) over all latent
paths connecting x,, and X, during each ISI. These marginalizations
are implicit in the transition probability densities p(xtj|xtj71) inequa-
tion (5). The transition probability density p(x, |x,, )accountsforthe

J 1
driftand diffusionin the latent space and also for the absence of spikes
during eachinterval between adjacent spike observations. This prob-
ability density satisfies amodified Fokker-Planck equation, whichwe
derived previously®:

2 M

i d N
Dy FR+D, 5= Zl £ ) |pte, ) ==Fp(x, ).  (6)

op(x,t) _
or

Here F(x) = - @’(x) isthe deterministic potential force, and the term
- Z{Zlﬁ (x)leads to the probability decay due to spikes emitted by any
neuronsin the population, such thatp(xtj|xtj_1) includes only trajecto-
ries consistent with no spikes emitted between ¢;; and ¢;. The solution
of this equation p(x, t;) = p(x, tj_l)exp(—’):t - (t;— t;_p) propagates the
latent probability density forwards in time during each ISI. To model
the reaction time task, we solved equation (6) with absorbing bound-
ary conditions, which ensure that trajectories reaching a boundary
before the trial end do not contribute to the likelihood®. In addition,
the absorption operator p(A|x,,) in equation (5) enforces that the like-
lihoodincludes only trajectories terminating on the boundaries at the
trial end time ¢,*° (Supplementary Methods 2.1). Together, these two
conditions ensure that the likelihood includes only trajectories
thatreach one of theboundaries for the first time at the trial end time.

To fit the model to data, we derived analytical expressions for the
gradients of the model likelihood with respect to each of the model
components (Supplementary Methods 2.2). We computed functional
derivatives of the likelihood with respect to latent dynamics as previ-
ously described®. In this study, we computed functional derivatives
of the likelihood with respect to tuning functions (Supplementary
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Methods 2.2). Instead of directly updating the functions @(x), p,(x)
andfi(x) we, respectively, update the force F(x) = - @’(x)and auxiliary
functions

Fo(x) = py()/py(x), R =f] ()/f (0. 7

The potential @(x) is obtained from F(x) via

D(x) = —j: F(s)ds+C, 8)

where we fixed the integration constant Cto satisfyj"j1 exp[-®(x)]ldx=1.
As Cisanarbitrary integration constant, a specific choice of Cwas not
important as long as it was the same for all models. The initial state
distribution p,(x) was obtained from the auxiliary function Fy(x) in
equation (7) via

exp(j"j Fo(s)ds)
[yexp ([ Fyfs)ds)ds

py(x) = )

The change of variable from p,(x) to F,(x) allowed us to perform an
unconstrained optimization of F,(x), whereas equation (9) ensures
that p,(x) satisfies the normalization condition for a probability density
f_l Po(x)dx=1,p,(x) > 0.Finally, the tuning function f,(x) was obtained
from the auxiliary function F(x) in equation (7) via

X

f)= C,-epr_l E(s)ds], (10)
where C;=f(-1) is the firing rate at the left domain boundary. This
change of variable allowed us to perform an unconstrained optimiza-
tion of Fi(x), whereas equation (10) ensures the non-negativity of the
firingratefi(x) > 0. We enforced the positiveness of the noise magnitude
Dby rectifyingits value after each update D = max(D, 0), and the same
for each constant C,.

We derived analytical expressions for the variational derivatives of
the likelihood with respect to each continuous function defining the
model 6.7/6F(x), 6.7 /6Fy(x), 6. /6F(x) and the derivatives of the
likelihood with respect to scalar parameters 0.#°/0D and 0.#/0C;
(Supplementary Methods 2.2). We evaluated these analytical expres-
sions numerically for the iterative optimization. To compute the like-
lihood and its gradients numerically, we used a discrete basis in which
all continuous functions, such as F(x), are represented by vectors, and
the transition, emission and absorption operators are represented by
matrices™" (Supplementary Methods 2.1). Thus, equation (5) was
evaluated as a chain of matrix-vector multiplications.

Optimization with ADAM algorithm

We fitted the model by minimizing the negative log-likelihood
-log.Z[)(t)|6] using ADAM algorithm®? with custom modifications
(Supplementary Methods 2.3). The standard ADAM update scales the
gradient of each scalar parameter inversely with the running average
ofthe squared magnitudes of its current and past gradients, computed
separately for each parameter. As we optimized over continuous func-
tions F(x), Fo(x) and {F,(x)}, we scaled their gradients by the running
average of the gradient’s squared L2-norm defined as||v||, = ¥, v;>. We
used the following ADAM hyperparameters: a = 0.05 for single neurons,
a=0.01-0.05 for populations, 8,= 0.9, 8,=0.99,¢ =10 for bothsingle
neurons and populations (the definitions of hyperparameters are in
Supplementary Methods 2.3). We tuned these hyperparameters on
synthetic data with known ground truth. For the scalar parameters D
and all {C}, we combined ADAM updates with line searches using the
L-BFGS-Balgorithm (L-BFGS-B method fromthe scipy.optimize.minimize
toolbox). As aline search is computationally expensive, we performed
only 30 line searches spaced logarithmically over the 5,000 epochs
range, such that most line searches are concentrated at early epochs.

We combined ADAM with mini-batch descent randomly splitting
the trials from each condition into 20 batches on each epoch. When
we performed shared optimization, we fitted the model to all available
trials restricting Fy(x), {F;(x)} and D to be the same and only allowing
the potential force F(x) to differ across stimulus conditions. In this
case, we performed ADAM updates on all batches pooled across four
stimulus conditions (80 batches total) inrandom order oneach epoch.
We updated the force F((x) that defines the potential in condition /only
onbatches fromthis condition, and we updated all shared components
Fo(x), {F{(x)}, D, {C} on every batch.

We accelerated the optimization algorithm on graphics process-
ing units (GPUs) using cupy library®®. GPU implementation provides
a5-10-fold acceleration over the CPU implementation with the exact
factor depending on the spatial resolution of the discrete basis. The
5-10-fold GPU acceleration can only be provided by scientific-grade
GPUs (for example, Tesla V100) that have sufficient number of
double-precision streaming multiprocessors.

Model selection

ADAM optimization produces a series of models across epochs, and
we needed a model selection procedure for choosing the optimal
model. On early epochs, the fitted models miss some true features of
the dynamics due to underfitting, whereas on late epochs, the fitted
models develop spurious features due to overfitting to noise in the data.
The optimal model is discovered on some intermediate epochs. The
standard approach for selecting the optimal modelis based on optimiz-
ing the ability of the model to predict new data (that is, generalization
performance), for example, using likelihood of held-out validation data
asamodelselection metric®*. However, optimizing generalization per-
formance cannot reliably identify true features and avoid spurious fea-
tureswhen applied to flexible models'®*, which generalize well despite
overfitting®®. We developed an alternative approach for modelselection
based ondirectly comparing features of the same complexity discovered
from different data samples'®" (Supplementary Methods 2.4). As true
features are the same, whereas noise is different across data samples,
the consistency of features inferred from different data samples can
separate the true features from noise, and model selection based on
feature consistency can reliably identify the correct features'®”,

To compare features discovered from different data samples, we
need a metric for feature complexity M. We defined feature complex-
ity as the negative entropy of latent trajectories generated by the
model®* M =-S[®(x), D, p,(x); @ (x), DX, pf(x)]. The trajectory
entropy? is a functional defined as a negative Kullback-Leibler diver-
gencebetween the distributions of trajectories in the model of interest
{®(x), D, po(x)} and the distribution of trajectories in the reference
model {@*(x), D¥, p£(x)}. The reference model is a free diffusionina
constant potential (@%(x) = const) with the same diffusion coefficient
D asinthe model of interest. We derived the analytical expression for
the trajectory entropy for non-stationary Langevin dynamics™:

S| (), D, py(0); @"(x), D, pf(x) |
Po) D¢

ple) 4Jdo

(11)

=~ dxp, (oI de [ dxFp(x, o).

We chose theinitial distribution pOR (x)forthereference model tobe
uniform. We derived an expression for efficient numerical evaluation
of equation (11) taking the integral over time analytically’® (Supple-
mentary Methods 2.4). Qualitatively, feature complexity reflects the
structure of the potential @(x): potentials with more structure have
higher feature complexity. The reference model with constant poten-
tial has zero feature complexity. During model fitting, the feature
complexity consistently grows throughout the optimization epochs®.

We compared models discovered from two non-intersecting halves
of the data D; and D, to evaluate the consistency of their features



(Supplementary Fig. 1). We performed the ADAM optimization
independently on each data split to obtain two series of models
0,=1®,, Dy, py ,(0)}and 0, = {®7, D2, p2, (x)} (wheren=1,2...5,000is
the epoch number) fitted on D, and D,, respectively. We measured
feature complexity of these models, M}, and M2, and quantified the
consistency of features of the same complexity between models fitted
on different data splits. We quantified the consistency of features
between two models by evaluating Jensen-Shannon divergence (D)
between their time-dependent probability densities over the latent
space’ (Supplementary Methods 2.4). At low and moderate feature
complexity, the models contain true features of the dynamics in the
data and their features agree between data splits reflected in low Dy
values. At high feature complexity, the models overfit to noise and
contain spurious features that do not replicate between data splits,
resultinginlarge Dys values. To find the optimal feature complexity, we
set the threshold Djg .= 0.0015 and selected M* as the maximum
feature complexity for which Djs < Dyg iy This procedure returned
two models of roughly the same feature complexity that represent the
consistent features of dynamics across datasplits. The threshold Djg ¢pyes
sets the tolerance for mismatch between models and choosing higher
Djs tnres Fesultsin greater discrepancy between models obtained from
two datasplits. We set Dg ... = 0.0015based on fitting synthetic data
with known ground truth; at this threshold value, the selected models
reliably matched the ground-truth model.

We splitalltrialsin halves by assigning even trails to D;and odd trials
toD,.Inthe experiment, stimulus conditions were sampled randomly
on each trial. Therefore, the time difference between two adjacent
trials of the same condition varies broadly, limiting possible temporal
correlations between D; and D,.

Uncertainty quantification

We quantified the estimation uncertainty for fitted models using a
bootstrap method®. To obtain confidence bounds for the inferred
model, we generated ten bootstrap samples by sampling trials ran-
domly with replacement from the set of all trials. To ensure that the
two data samples D; and D, used for model selection do not overlap,
we first randomly split all trials into two equal non-overlapping groups,
and then sampled trials randomly with replacement from each group
togenerate D;and D,. For shared optimization, we resampled the trials
separately for each stimulus condition. For each bootstrap sample, we
refitted the model and performed model selection using our feature
consistency method. We then obtained the confidence bounds for the
inferred potential, p,(x) distribution, and tuning functions by comput-
ingapointwise standard deviation across 20 models produced by the
modelselection on two datasplits fromeach of 10 bootstrap samples.

Outcomes of model fitting

When fitting our model to spikes of single neurons and populations and
performing model selection, we observed three possible outcomes:
overfitting, underfitting and good fit.

Inrare cases (0 out of 128 single neurons (0%) and 1 out of 15 popula-
tions (6.7%) for monkey T; and 1 out of 88 single neurons (1%) and 1 out
of15 populations (6.7%) for monkey O), the model selection produced
amodel that showed signs of overfitting (Supplementary Fig. 8). We
detected overfitting as models with unrealistically high firing rates in
the tuning function (hundreds of Hz), disproportionally high noise
magnitude (intherange of D - 3-5, compared with D ~ 0.2-0.6 inregu-
lar fits) compensated by deep wells in the potential (overall depth of
the potential of approximately 20, compared with approximately 2 in
regular fits). These models produced severely underestimated reaction
times (reaction time of approximately 10 ms in the model, compared
with approximately 500 ms in the data) and did not predict choice of
the monkey. This type of overfitting cannot be detected with standard
validation approaches®, for example, these models had similar likeli-
hood on training and validation data.

Some selected models showed signs of underfitting in one of two
types. In the first type (10 out of 128 single neurons (7.8%) and 2 out
of 15 populations (13%) for monkey T; and 11 out of 88 single neurons
(12.5%) and 1 out of 15 populations (6.7%) for monkey O), the potentials
had thelinear slope tilted towards the same boundary in all stimulus
conditions, thatis, the model had no decision signal (Supplementary
Fig.9a,b). Inthe second type (1 out of 128 single neurons (0.8%) and 1
out of 15 populations (6.7%) for monkey T; and 9 out of 88 single neu-
rons (10%) and 0 out of 15 populations (0%) for monkey O), the poten-
tials obtained from two data halves D;and D, had thelinear slope tilted
towards the opposite boundaries in at least one stimulus condition
(Supplementary Fig. 9c-e). This disagreement about the correct
choice side resulted in Dis values rising high early in the optimization,
leading to the selection of amodel with low feature complexity before
all consistent features had been discovered. These both types of under-
fitting probably arise when a model cannot detect a weak decision
signal and mainly fits the condition-independent trend in neural
activity.

Allremaining models were considered a good fit and were used in
further analyses. In these models, we quantified the potential shape
by counting the number of barriers inthe potential. Abarrier isapoten-
tial maximum where the force, which is the negative derivative of the
potential F(x) = -d®(x)/dx, changes the sign from negative to positive.
We also classified a potential minimum next toaboundary asabarrier,
because the trajectory must get to the top of the potential toreach the
boundary. At a potential minimum, the force changes the sign from
positive to negative. We therefore counted the number of sign changes
fromnegative to positive and vice versain the force F(x) ineach stimu-
lus condition. We used two force functions F'(x) and F*(x) produced by
the model selection on two data splits D, and D, (bootstrap samples
were not used in this analysis). We counted asign change to occur within
alocal region if both F'(x) and F*(x) were negative for ten consecutive
grid points to the left and positive for ten consecutive grid points to
the right of that region, or vice versa. We only counted sign changes
that were at least 30 grid points away from the domain boundaries.

The overwhelming majority of models had asingle-barrier potential
inall four stimulus conditions (102 out of 117 single neurons (87%) and
9 out of 11 populations (82%) for monkey T; and 66 out of 67 single
neurons (98.5%) and 13 out of 13 populations (100%) for monkey O;
Figs.3e,hand 4d, Extended Data Fig. 8 and Supplementary Fig. 6). Some
models had a monotonic potential (no barrier) in at least 1 stimulus
condition and a single-barrier potential in the remaining conditions
(9 out of 117 single neurons (8%) and 1 out of 11 populations (9%) for
monkey T; and O out of 67 single neurons (0%) and O out of 13 popula-
tions (0%) for monkey O). The remaining models had a second small
barrierinatleast1stimulus conditionand asingle-barrier potentialin
the remaining conditions (6 out of 117 single neurons (5%) and 1 out of
11 populations (9%) for monkey T; and 1 out of 67 single neurons (1.5%)
and 0 out of 13 populations (0%) for monkey O). The second barrier
was typically shallow and located near the incorrect-choice bound-
ary, where the estimation uncertainty is higher due to lower sampling
probability of this region in the data.

We also analysed the potential shapein models that showed the first
type of underfitting with no decision signal. These models had feature
complexity similar to good fits, suggesting that the model selection
identified similar featuresin the dynamics. The fit, however, captured
only the condition-independent dynamics and missed the weak deci-
sion signal. These models can still inform us about the mechanism
of decision-making. For example, in the two-pool attractor network
model®, inhibitory neurons do not have choice selectivity but they
still reflect the attractor dynamics with a barrier separating correct
and incorrect choices. Many of the models with no decision signal
had a single-barrier potential (5 out of 10 single neurons (50%) and O
outof 2 populations (0%) for monkey T; and 11 out of 11 single neurons
(100%) and 1 out of 1 populations (100%) for monkey O), which further



Article

supports our finding that the dynamics described by a single-barrier
potential were prevalent in our PMd data.

When analysing spike-time variation explained by our models on
single trials (Fig. 3b), for each neuron, we included only stimulus con-
ditions that had at least 600 spikes across all trials. This restriction
was necessary for an accurate estimation of the spike-time variation
explained by the model, which was computed on raw spike times with-
out binning or smoothing. For single-neuron models, this restriction
produced111and 50 single neurons for monkey T and monkey O, respec-
tively (Fig. 3b). For population models, this restriction produced 80
and 32 single neurons for monkey T and monkey O, respectively, which
were part of the well-fitted populations. The comparison between the
residual spike-time variation unexplained by single-neuron models
and the point process variation estimated by theindependent method
was performed for 64 neurons from monkey T and 27 neurons from
monkey O, which had sufficiently high firing rate for the independent
method to produce a reliable estimate®. For behaviour prediction
(Fig. 4e), we additionally only included conditions that had at least
five incorrect choices in both training and validation datasets, which
did not change the number of analysed populations. This condition
was necessary for the baseline comparison, which required training
alogistic regression decoder for choice prediction. In this analysis,
we used all well-fitted population models and the single-neuron
models for the exact same set of neurons that were part of the used
populations.

Spike-time R?

To quantify how well our models fitted spiking activity on single trials,
we designed ametric specifically for measuring the fraction of the total
variationin spike times on single trials explained by amodel. We used
the standard coefficient of determination R? defined as the proportion
ofthetotal variationin the datathatis predicted by a statistical model:

2
CVre51dual
Cvtotal

R*=1- (12)

Here CV2,, is the total variation in the data, and CVZ g, is the
residual variation unexplained by the model. As we modelled single-trial
dynamics, our metric quantified the variationin spike times onsingle
trials. We quantified the total variation in the data CV%, using the
squared coefficient of variation of ISls, which is the ratio of the ISI
variance to the squared mean ISI®®. Then, CVZy,, is the residual
variation in ISIs unexplained by the model. As our model predicts the
firing rate on single trials but notindividual spikes, the residual varia-
tion is the variation in spike times after accounting for the firing rate
variation predicted by the model.

To compute theresidual variationinISIs, we used the time rescaling
theorem for doubly stochastic point processes®. For adoubly stochas-
tic point process, the total variation in spike times arises from two
sources: the variability of the instantaneous firing rate A(t) and the
variability of the point process generating spikes from this firing rate.
Thetimerescaling theorem states that we can eliminate thefiringrate
variation by mapping the spike times from the real time ¢ to the opera-
tional time ¢’ viasqueezing or stretchmg the timelocally in proportion
tothe cumulativefiringrate: ¢’ = A(t) = I A(s)ds. Accordingly, we used
amodeltopredicttheinstantaneous ﬂrlng rate A(¢) ofaneurononeach
trial, map spikes to the operational time using this predicted firing rate
A(t), and compute the residual IS variation CVZ ., as the squared
coefficient of variation of rescaled ISls in the operational time. If the
firing rate is predicted correctly on each trial, then the variation of
rescaled ISls in the operational time reflects only the point process
variability. For example, rescaling spike times generated by aninho-
mogeneous Poisson process using the ground-truth firing rate yields
ahomogeneous Poisson process with the firing rate of 1 Hz. The total
variation CVZ, was calculated using the raw ISs in the real time.

To compute the residual spike-time variation CV2,;4,,, We predicted
theinstantaneous firing rate A(¢) with our model on each trial. First, we
used the Viterbi algorithm to predict the most probable latent path
X (t)giventhe observed data ¥(t). We generalized the max-sum Viterbi
algorithm with backtracking to our case of continuous-space
continuous-time latent dynamical system (Supplementary Meth-
o0ds2.5). Then, from the most probable latent path X (£), we computed
the instantaneous firing rate for a neuron i using its tunmg function
At) f(X(t)) Finally, we rescaled spike times via¢; = j A(t)det (where
t,isthe trial start timeand ¢, ---, ty are the original splke times) using
the trapezoidal rule to approximate the time integral and compute
CV2qua Of rescaled ISIs.

Theadvantage of the R metricis thatits valueis directly interpretable
as the fraction of the total variation in the data explained by a model.
Specifically, R? = O results from the baseline prediction of a firing rate
thatis constant within and across trials. Positive R? values indicate that
apredictionisbetter than this baseline, and negative R* values indicate
that a prediction is worse than the baseline. For a doubly stochastic
point process, the value of our R* metric can never reach 1, because our
models predict firing rates on single trials but not individual spikes,
hence leaving the point process variability unexplained.

We used the unexplained residual variation in spike times to compare
the performance of our model to the ceiling performance expected if
the modelwas correct (Fig. 3b). If the firing rate prediction was correct
on each ttrial, then the residual variation CVZ g, would match exac-
tly the expected point process variation CVI§p of rescaled ISIsin the
operational time. For aninhomogeneous Poisson process, the expected
cvgp of ISIs in the operational time equals one®’. However, the spiking
of neurons across many brain regions deviates significantly from the
Poisson irregularity. In particular, most neurons in the parietal and
premotor cortical areas spike more regularly than expected for an
inhomogeneous Poisson process’’2. Therefore, we used an independ-
ent method based on doubly stochastic renewal point processes to
estimate the point process variability cvgp for each neuron®. This
method does not require knowledge of the firing rate dynamics on
single trials and assumes only that the firing rate evolves smoothly in
time. Thus, CV,§p is the expected residual variation in rescaled ISls if
the firing rate prediction was correct on each trial. The tight corre-
spondence between CV7.q,, and CVZ, indicates that the model
accounts for nearly all explainable firing-rate variationin the dataclose
to the ceiling performance.

Theindependent method for estimating the point process variability
based on doubly stochastic renewal point processes has been derived
and extensively tested in aseparate publication®. In brief, for adoubly
stochastic renewal point process, the variance Var(N;) of spike count N;
measured intime bins of size Tcanbe partitioned into two components:
the firing rate and the point process variation®:

Var(N;) =Var(AT) + %(1—4;2) +@E [N, ]+ O(T Y. (13)

Here ¢ is a parameter that controls the point process variability
defined as CV? of ISIs in the operational time, and A(¢) is the instanta-
neous firing rate that is assumed to be approximately constant within
asingle bin. To estimate ¢ from data, we applied equation (13) to spike
counts measured intwo bin sizes Tand 2Tto yield two equations, which
can be solved to obtain a quadratic equation for ¢**

%((pz -1)- (4 E[N;]1- E[N,7 D¢ +4 Var(N;) —Var (N,7)=0. (14)

Here the spike-count mean and variance for each bin size E[N;], E[N,/],
Var(N;) and Var(N,;) are measured directly from the spike data, and ¢
isthe only unknown variable. Thus, we solved equation (14) to estimate
o= CV » from data and compared this ¢ to the residual spike-time
varlance unexplalned by our model CVZ g, (Fig. 3b).



Evaluating model performance
We evaluated model performance using multiple metrics: spike-time
variance explained (R%), model likelihood relative to several baselines,
and behavioural choice prediction. We performed all these analyses
withinacross-validationframework using the same twonon-overlapping
data splits D;and D, as used for the model selection. For example, we
used the model fitted on the dataset D, to predict the instantaneous
firing rate and compute R* of each neuron on the dataset D,, and vice
versa. We analysed each stimulus condition separately and averaged
R?across conditions. We report R? averaged over the two data splits.
The same cross-validation framework was used for allmodel likelihood
comparisons and choice prediction analyses.

We compared the likelihoods of single-neuron and population mod-
elsagainst each other and several baselines to determine which model
components are essential for capturing spiking activity on single trials.

Single-neuron model versus PSTH. As a benchmark, we compared
the performance of our single-neuron model against the baseline based
onthetrial-averaged firingrate (PSTH; Fig.3a). The PSTH predicts the
instantaneous firing rate A(¢) on each trial using the trial-averaged fir-
ing rate traces sorted by the chosen side and stimulus difficulty. We
computed the trial-averaged firing rates for the left and right choice
trials in a 75-ms window sliding in 10-ms steps on the dataset D;, and
used them as a prediction of the instantaneous firing rates for the left
andright choice trials on the dataset D,, and vice versa. Thus, the base-
line PSTH prediction (but not our model) uses the information about
the choice of the animal on both the training and the validation trials.

We compared the likelihood of the single-neuron model with the
PSTH ikelihood (Fig. 3a). Thelikelihood was computed for the observed
spiketimes{¢,, t,, ..., ty} of asingle neuron during the time interval [¢,; ¢]
on each trial. The PSTH likelihood for the observed spike sequence
is given by the standard likelihood of an inhomogeneous Poisson
process”:

F N
%STH=exp[—J"; A(t)dt] [11@. (15)
i=1

where we take theinstantaneous firing rate A(¢) to be the PSTH for each
chosen side and stimulus difficulty. We computed the integral over
time in equation (15) using the trapezoidal rule.

Unlike PSTH, the full likelihood of our model on each trial (equa-
tion (3)) is ajoint probability density of the observed spikes {¢,, ¢,, ..., ty}
and alatent trajectory reaching a decision boundary for the first time
at the trial end time ¢, (the reaction time), marginalized over all pos-
sible latent trajectories. Therefore, for comparison with PSTH, we
needed to compute the model likelihood .#;, 4 Of spike times only,
excluding the probability of the reaction time ¢,. To obtain this likeli-
hood, we normalized the full model likelihood equation (3) by the
likelihood %, ofthelatent trajectory reaching aboundary for the first
timeattime ¢

Zimodel= LY (0)10)/ Z... (16)

This normalized likelihood %4, is the probability density of the
observed spikes only, marginalized over all latent trajectories consist-
ent with the reaction time ¢.. In other words, .%;, 4. is a probability
density that the observed spikes were generated from any latent trajec-
tory that reaches aboundary for the first time at time ¢,. Thus, %,,4el
isthelikelihood of the observed spikes {¢,, t,, ..., ty} only andis directly
comparable with the PSTH likelihood %¢ry;. We computed the likeli-
hood f,fanalogouslyto the fullmodellikelihood, but using only {¢,, ¢}
observations. Specifically, we evolved the latent probability density
p(x,,|x,,) from the trial start ¢, to end time ¢, by solving the Fokker-
Planck equation (equation (6)) with the drift and diffusion terms but

without the term - Z}i’lﬁ (x) for the probability decay due to spike
emissions (that is, the standard Fokker-Planck equation).

Single-neuron model versus shuffled control. We performed a per-
mutation test to estimate the baseline for the explained variation R?
inspike times on single trials. For all single-neuron models that pro-
vided a good fit, we inferred the latent trajectories on validation
trials using the Viterbi algorithm and predicted single-trial firing
rates of each neuron from these latent trajectories using their tuning
functions. We then computed the explained spike-time variation R?
on shuffled trials: we used the firing rate predicted on one trial to
compute R*for spikes on another randomly chosen trial. The ex-
plained spike-time variation was much lower for randomly shuffled
trials than the original data (shuffled R?, median (Q1-Q3); -0.10 (-0.24
to —-0.04), P<107"°, n =101 for monkey T; -0.02 (-0.15 to 0.01),
P <107 n=35for monkey O, Wilcoxon signed-rank test). The nega-
tive R?valuesindicate that the shuffled prediction performed worse
than predicting a constant firing rate, which corresponds to
CV2 1= CVZ44uaand R? = 0. The shuffled prediction was also signifi-
cantly worse than the prediction based on PSTH. This result confirms
that our models explain the spike times on single trials significantly
better than the permutation baseline and PSTH, which shows again
that our model successfully captured variable firing-rate dynamics
onsingle trials.

Single-neuron versus population model. We compared the likeli-
hoods of the single-neuronand population models (Fig. 4a). The single-
neuron model predicts spikes of each neuron independently of other
neuronsinthe population. Accordingly, the single-neuron model like-
lihood of spikes from all M neuronsin the populationis aproduct of M
single-neuron model likelihoods for each neuron. However, a product
of the full likelihood for M single neurons accounts M times for the
probability that the latent trajectory reaches a boundary for the first
time at time ¢, whereas the population-model likelihood accounts for
this probability only once. Therefore, we used the normalized model
likelihood .#,,4 (€quation (16)) when comparing single-neuron and
population models. %, ,4is the likelihood of spike data only, margin-
alized over all latent trajectories consistent with the reaction time ¢,
on each trial, and, therefore, directly comparable between single-
neuron and population models.

LONO validation versus PSTH. We compared the likelihood of the
population model in leave-one-neuron-out (LONO) validation with
the PSTH likelihood based on the neuron’s own trial-averaged firing
rate (Fig.4a). For each neuron , the likelihood was computed for the
observed spike times V() = {(¢;, k)} during the time interval [¢,; ;] on
each trial, where index j is restricted to spike times of neuron k. We
computed the PSTH likelihood for each neuron using equation (15)
with the instantaneous firing rate A(¢) given by the neuron’s own
PSTH for each chosen side and stimulus difficulty. We computed the
LONO likelihood .4 gy also using equation (15), but with the instan-
taneous firing rate A(¢t) of neuron k predicted by the population
model from spikes of all other neurons in the population on each
validation trial. Specifically, we used spikes of M —1neurons in the
population excluding spikes of neuron k: Y,,,(¢) = {(¢;, i)}, where ¢;is
thetime of jth spike and i;is the index of the neuron that emitted this
spike (i; # k). We applied the Viterbialgorithmto ¥,,,(¢) to predict the
most probable latent trajectory )?(YM_I(t)) oneachtrial. Wethencom-
pute theinstantaneous firing rate for neuron k using its tuning func-
tion A =f (X(Yy,-1(6))), which provides a prediction of the firing rate
of neuron k at times ¢;when other neurons in the population spiked.
We then interpolated A with cubic splines to obtain the firing rate
prediction A(¢t) at times when neuron k spiked and substituteditinto
equation (15) to compute the likelihood, approximating the integral
with the trapezoidal rule.
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Predicting choice from neural activity

We used our models to predict the choice of an animal from neural
activity. We performed a cross-validation procedure with the same two
non-overlapping data splits D;and D, as used for the model selection.
We used the models fitted on the dataset D, to predict the choice of the
animal on the dataset D,, and vice versa, and reported the average accu-
racy over the two data splits. We applied the Viterbi algorithm to neural
activity on validation trials to predict the most probable latent path
X(¢). By the design of the Viterbi algorithm with absorbing boundary
conditions, the trajectory must terminate at one of the domain bound-
aries, therefore we predicted choice as the value of x(¢,) at the trial end.

As abaseline for the comparison with our models, we also predicted
the choice of the animal with alogistic regression decoder using the
same two datasplits for the decoder training and validation. As aninput
tothe decoder, we have provided a vector of spike counts measuredin
75-msbinsslidingin10-ms steps on single trials. We truncated each trial
at 0.5 safter stimulus onset resulting in a42-dimensional input vector
forsingle neurons and 42 x Mdimensional input vector for populations,
where Mis the number of neurons in the population. We normalized
the inputs to have zero mean and unit variance across trials for each
condition in each time bin.

Our dataareimbalanced as monkeys make more correct choices than
errors, especially on easy trials. We therefore report balanced accuracy
for both our models and the linear decoder (Fig. 4e). The balanced
accuracyisthe average between true-positive and true-negative rates.

The accuracy of choice prediction did not change when replacing the
tuning functions and potentials with linear approximations (Extended
DataFig.9b), showing that the accuracy of choice prediction does not
uniquely identify single-trial dynamics.

Spiking network model

We simulated a spiking recurrent neural network model of decision-
making withthe same parameters asinref. 33 using the Python package
Brian 2 (ref. 74). We only changed the value of the N-methyl-D-aspartate
(NMDA) conductance for inhibitory neurons from gyyps = 0.13 nS to
Swwoa = 0.128 nS to match the reaction times of the spiking network to
the experimental data. We simulated four stimulus conditions based
onthe stimulus difficulty (easy versus hard) and side (left versus right)
for comparison with our PMd data. We set the stimulus coherence
parameter ¢ =17.5% for easy-stimulus and ¢ = 7.5% for hard-stimulus
conditions and generated approximately 3,200 trials of data per
condition. The reaction time was defined on each trial as time when
one of the population firing rates (smoothed with a moving average
over a200-ms time window) crosses the threshold of 30 Hz. We fitted
our population model to the responses of two neurons from each of
the two selective excitatory pools (that is, four simultaneous neural
responsesintotal). We performed the same shared optimization across
four conditions as for the PMd data using the same hyperparameters
for optimization and model selection. To obtain the decision mani-
fold for the network model (Fig. 5e), we plotted the inferred tuning
functions of two neurons from different excitatory pools against each
other, because tuning functions of all neurons from the same pool
areidentical.

We used the mean-field approximation to reduce the dynamics of
the network to a two-dimensional dynamical system model with the
same parameters as for the spiking network>*. The mean-field dynamics
aredescribed by two variables s; (i = {1, 2}) representing activations of
NMDA conductance for two excitatory neural pools:

s',-=—$+(1—s,-)yf(l,-)r (17)

where y=0.641and 7,=100 ms. The firing rate r; of neural pool i is a
function of the total synaptic current /**:

al-b

1= = - expl=dai- )1’

(18)

witha=270 HznA™, b =108 Hz,d = 0.154 s. The synapticinput to neural
pooliincludes recurrent and external stimulus currents:
Ii:.lnsi +./125j+lstim,i+lbg' (19)

The effective connection weights are /; =0.2609 nA and J,, =
—0.0497 nA. The background current is /,, = 0.3260 nA. The stimulus
currentis i, « ,=0.0208 - (1+¢) nA, with the stimulus coherence
cel[-1,1].

To find the stable and unstable fixed points on the phase plane, we
numerically found zeros of the flow field R (s;, s,) of the two-variable
mean:field model in equation (17). We numerically solved the equa-
tion R (s;, ,) = Ostarting from a few different initial conditions using
MATLAB fsolve function. To find the stable and unstahle manifolds of

the saddle, we followed the pathalong—R (s, s,)and R (s;, s,), respec-
tively, starting the trajectory near the saddle point.

Low-rank network model

Toillustrate how diverse tuning to the decision variable arises from the
interplay betweenrecurrent connectivity and firing-rate non-linearity,
we designed arank-tworecurrent neural network (RNN) that replicates
the classical attractor dynamics with distributed connectivity. The
network dynamics are governed by the equations:
y=-y+[jy+bl. (20)
Here vector y € R"represents synaptic activation variables y,0f RNN
units (i=1, ...N), and vector b € R" represents the constant input b, to
each unit. The recurrent connectivity matrix J € RV has rank two,
such that/=M- Q" is an outer product of matrices M € RV*? and
Q" e R¥". The rectified linear activation function [-], models the
firing-rate non-linearity of single neurons. The firing rate of neuron i
isr,=[h;+b],, where h;= Z')’zljyyj is the recurrent input to neuron i,

and (h; + b;) is the total synaptic input current to neuron i.
The dynamics of this rank-two RNN are governed by two-dimensional
mean-field variables z= Q"y, which follow the equations:
2=-z+Q [Mz+b],. (21)
We designed the connectivity matrices® M and Q" so that the
two-dimensional flow field in equation (21) replicates the flow field
of the classical mean-field attractor network in equation (17) for
zero stimulus coherence c = 0. We chose the elements of M to be
m; ;= cos(2mi/N) and m; , = sin(2mi/N), and sampled the elements of
the input vector b randomly from a uniform distribution on [-0.06
to 0.06]. Next, by equating the RNN flow field in equation (21) to the

target flow field R (z) in equation (17) we obtained

QIMz+b],=R (2) +z. (22)

Thisrelationship defines alinear regression problem for determin-
ing the elements of the matrix Q". Accordingly, we uniformly sampled
Kpoints z* (k=1, ...K) from the state space [0, 1] x [0, 1] and evaluated
the terms in equation (22) at these points to obtain matrix A € RV*¥
with columns a, = [Mz¥+b], and matrix B € R¥X with columns
b, = R (z¥) + zX We then found Q"by solving Q"A = Busing ridge regres-
sion with aregularization parameter 1= 0.01.

We present results foran RNN with N=500 units (Fig. 5and Extended
Data Fig.10). We simulated the RNN trajectories for the left and right
choicesby initializing the RNN near the low-activity baseline state with
aslight biastowards the corresponding attractor. We chose the initial
conditions z(0) = (0.12,0.106) for the left choice and z(0) = (0.106, 0.12)



for theright choice, and computed the correspondinginitial conditions
foryas y(0) = (Q")"z(0), where(Q")"is a pseudoinverse of Q". We para-
metrized the resulting trajectories with a decision variable x e [-1,1],
where-1and1correspondtotheleftand right choice attractors, respec-
tively, and O corresponds to the symmetric initial state. We defined x
toincrease linearly with the cumulative arc length along the trajecto-
ries, such that x grows at a uniform rate along the trajectory length.
Thetuning curve of each neuronis defined by its firing rate along these
trajectories as a function of the decision variable x.

Statistics and reproducibility

The sample sizes used in this study are consistent with standard prac-
ticesinsystems neuroscience involving non-human primates®#'>?, Data
were collected from two macaque monkeys (75 sessions for monkey
T and 66 sessions for monkey O), providing a robust number of ses-
sions per animal. No statistical methods were used to predetermine
samplesize. All key findings were replicated in both monkeys. No ran-
domization or blinding was performed because there was only one
experimental group. Investigators were not blinded to the identity of
the animal during data collection. Trial types were assigned randomly
by thetask control software. All statistical tests were two-sided unless
otherwise noted.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The neural recording data are available on Figshare (https://doi.org/
10.6084/m9.figshare.29052116.v1 (ref. 59)). The synthetic data usedin
this study can be reproduced using the source code.

Code availability

Thesource codeto reproduce the results of this study is available asthe
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neuralflow (ref. 75)) and archived on Zenodo® (https://doi.org/10.5281/
zenodo.15426288).
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Extended DataFig.1|The duality between neural tuning and population
geometry. a, Time-averaged responses of Nneurons to K stimuliforman Nx K
neural response matrix (top). The columns of this matrix are pointsin the neural
populationstate space, where each axis correspondsto the firingrate of one
neuronand each pointrepresents astimulus (middle, purple pointindicates the
ith column, whichis the population response pattern for stimulus i). Population
geometryreferstothearrangementofthese pointsinthe populationstate
space. The rows of the same neural response matrix define the tuning curves
ofindividual neurons to the stimuli (lower panel, orange curve indicates the jth
row, whichis the tuning curve of neurony). b, Time-varying neural activity
during cognitive tasksis often described by an Nx Tx K tensor containing
trial-averaged responses of Nneurons at Ttime points during the trial across
Ktask conditions (top). Each N x Tsub-matrix of this tensorisatrial-averaged
populationtrajectoryinthe corresponding task condition (middle). Each row
of this sub-matrixis the trial-averaged firing rate of one neuron over time (lower
left). Traditionally, selectivity (tuning) of aneuron hasbeen characterized as
thedependence of its trial-averaged firing rate on the external task variable
(task condition) at aspecific timein the trial (orange squares in the top panel),
asillustrated for neuronjat two different times (lower right, t;mint shading, ¢,
pink shading). Since single neurons have complex temporal response profiles,
their selectivity for external variables often changes over time. For example, a
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neuronmay show higher firing rate in one condition early in the trial but shift
its preference to the other condition toward the trial end (lower right). Thus,
tuning/selectivity for external task variables lacks temporal consistency and
hasnodualrelationship with neural population trajectories. ¢, Rather than
selectivity for external task variables, we consider neural tuning to internally
generated dynamic variables thatimplement cognitive computations. The
dynamic variables evolve with distinct time courses on single trials (top right).
Tuning functions describe how firing rate of aneuron depends on the value of
the dynamicvariable,independent of timein the trial or task condition (top
left). These tuning functions uniquely specify the representational geometry
ofthe dynamic variablein the population state space, precisely as they do for
sensory stimuli (cf. panel a). Forexample, the value of the decision variable at
any giventimeis encoded by the position of populationactivity alongaone-
dimensional manifold in the population state space (middle left). The
population trajectories traverse this manifold as they evolve toward one or
another choice on eachtrial. The shape of these population trajectoriesis
uniquely specified by tuning functions of single neurons to the decision
variable (lower panel), with the exact same dual relationship between neural
tuning and population geometry as for sensory stimuli. The dynamics of the
decisionvariable describe how population activity progresses along this
manifold onsingle trials (middleright).
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Extended DataFig.2|Our modeling framework dissociates dynamics

and geometry of neural representations onsingle trials. Our modeling
framework can generate data with identical dynamics but different geometry,
orviceversa, thusdissociating the dynamics of the latent variable x(¢) from the
geometry of itsrepresentationin the neural population state space. Synthetic
datagenerated by our model with the latent dynamics defined by: a,b, asingle-
barrier potential; c,d, atwo-barrier potential (first column). For each latent
dynamics, we generate spike data for one example neuron usingeither linear
(a,c) or nonlinear non-monotonic (b,d) tuning functions (second column),
which define the encoding geometry of the latent variable in the firing rate

space. These qualitative differencesin the dynamics and geometry of neural
responses are conflatedinthe trial-averaged firing-rate traces (third column,
PSTH).PSTHiscomputed over1,000 trials sorted by choice, whichis defined
astheboundary towhich thelatent trajectory converged on each trial. PSTH
isshown until the meanreactiontime, error barsares.e.mover trials. The
different dynamics and geometry are also difficult to discernin stochastic
spike trains (fourth column, spikes are shown for 20 example trials colored

by choice). Inall simulations, the initial state distribution p,(x) is anarrow
Gaussian centered atx=0. The noise magnitudeis D=0.2(a,b) and D=0.5(c,d).
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Extended DataFig. 3| Trial-averaged responses conflate dynamics and
geometry of neural representations. a, We generated spikes from our model
forone example neuronin two conditions, which had different dynamics (left;
red - condition 1, steep potential; pink - condition 2, shallow potential) but the
same tuning functionin both conditions (center). For these synthetic data, we
computed trial-averaged firingrate (PSTH, right) in each condition sorted by
choice (defined as theboundary to which the latent trajectory converged on
eachtrial; red - right choice, green - left choice). On the right-choice trials, the
trial-averaged firing rates are distinctin two conditions (c.f. red and pink PSTH
traces), despite single-trial firing rates evolve along the same path defined by
the condition-invariant tuning function. These differencesin the PSTH result
fromdifferentspeed of neural dynamicsin two conditions. In condition 2, the
trajectoriesx(t) evolve slower towards the right boundary thanin condition1
(duetoshallower potential), hence single-trial firing rates increase slower.
Accordingly, atafixed time after the trial start, the firing rate reaches alower
valueonaverageincondition2thanin conditionl. Thus, differences in dynamics

between conditions appear as differencesin the trial-averaged firing rate
traces.b, Very similar trial-averaged responses (right) can also arise from the
model, in which the dynamics are the same in two conditions (left) but the
tuning functionis different between conditions (center; blue - condition1;
light blue - condition 2). In this case, PSTH differences between conditions
ontheright-choice trials result from different single-trial firing rates defined
by the different tuning functionin each condition, while the dynamics are
condition-invariant. Thus, trial-averaged responses conflate the dynamics and
geometry of neural representations, as similar trial-averaged responses can
arise fromdifferencesin the dynamics (panela) or tuning functions (panel b)
between conditions. The same picture applies to all neuronsin the population,
which entails that the geometry of the trial-averaged population activity does
notuniquely define amodel of single-trial neural population dynamics. Inall
simulations, the initial state distribution py(x) isa narrow Gaussian with the
centerindicated by adashed greyline. The noise magnitudeis D=0.27.
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Extended DataFig. 4| Validation of theinference framework inexperimental
data. a, Potential governing single-trial population dynamicsin the anterior
lateral motor cortex (ALM) of mice during the delay period of adelayed-response
auditory discrimination task® (lower panel). The potential, shared between left
andright stimulus conditions, was discovered from spikes of 6 simultaneously
recorded ALM neurons. The potential shapereveals three discrete attractor
wells separated by barriers. Theinferred initial state distribution p,(x) peaks
near the leftattractor ontheleft stimulus trials (red) and near therightattractor
ontherightstimulus trials (green), while also carrying substantial weight near
the middle attractor (upper panel).b, The inferred tuning functions shared
across stimulus conditions for 6 neurons from the populationin panela.
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Errorbarsinpanelsa,b ares.t.d.over10 bootstrap samples. ¢, Latent trajectories
x(t)decoded with the fitted model from the population spiking activity on each
correct (upper row) and error trial (lower row) for left (left column) and right
stimulus (right column). Black triangles mark the latent state at the end of the
delay period on each trial. Histograms to the right of each panel show the
distribution of latent states at the end of the delay period across trials.d, Same
as panel cfor latent trajectories x(t) decoded from the population spiking
activity on photoinhibition trials using the model fitted to unperturbed trials.
Bilateral photoinhibitionstarted at the delay period onset and was deployed
for 600 ms, followed by a400 ms ramping down of inhibition (blue strip). See
Supplementary Note1.2 foradetailed description of the analysis.
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Extended DataFig. 5|Inferred tuning functions were similar across
stimulus conditions for an example PMd neuron. a, Inferred potentials
(left), po(x) distributions (middle left), tuning functions (middle right) and
noise magnitudes (right) obtained on two data halves D, and D, for the model
fitted separately to the left-hard condition trials. The optimal fit was selected
using our model selection method based on feature consistency. b, Same as
panel afor theright-hard condition. The slope of the inferred potential points
towards the opposite boundary thanin the left-hard condition, while the
inferred tuning functionislargely the same. c,Same as panel afor the left-easy
condition. Theinferred tuning functionis the same asin the hard conditionsin
theleft part of the domain, where the dynamics evolve towards the correct
choice, but the tuning functionisinferredless accuratelyintherightside
ofthe domain (grey highlight) due to very smallnumber of rightward choices

Latent state, *

Latent state, =

(error trials) in the left-easy stimulus condition. d, Same as panel c for the right-
easy condition. The tuning functionisinferred less accurately in the left side of
the domain (grey highlight) due to very small number of left choices (error trials)
intheright-easy condition. This effectis also observed onsynthetic datafrom
the ground-truth model that has the same tuning functionin all conditions
(Extended DataFig. 6). e, Shared optimization across all four stimulus conditions,
inwhich tuning functions, p,(x), and noise magnitude arerestricted tobe the
same and only the potential @(x) can vary across stimulus conditions. The shared
optimization enables more accurate inference of tuning functions, because it
learnsasingle tuning function across four conditions so that the number of
leftward and rightward choices are approximately balanced in the data, and

the dynamics equally explore both sides of the decision manifold.
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Extended DataFig. 6 | Shared optimization enables more accurate
inferenceinsynthetic data. We generated synthetic datafrom the ground-
truth model (shownwith black dashed linesin all subplots) in which tuning
functions, p(x) and D were the same in all conditions. We matched the ground-
truth model to the fitted shared model of one experimental neuron and used
the same number of trials asin the experimental data. a, Inferred potentials
(left), po(x) distributions (middle left), tuning functions (middle right) and
noise magnitudes (right) obtained from the synthetic data on two data halves
D, and D, by fitting the model separately to the left-hard condition trials.

b, Same as panel afor the right-hard condition. The slope of theinferred potential
points towards the opposite boundary thanin the left-hard condition, while the
inferred tuning functionislargely the same. c,Same as panel afor the left-easy
condition. Theinferred tuning functionis the sameasin the hard conditionsin

Latent state, &

Latent state, =

theleft part of the domain, where the dynamics evolve towards the correct
choice, but the tuning functionisinferredlessaccuratelyin theright side of
thedomain (grey highlight) due to very small number of rightward choices
(errortrials) in the left-easy stimulus condition. The same effect is observed
inthe experimental data (c.f. Extended DataFig.5).d, Same as panel c for the
right-easy condition. e, Shared optimization across all four stimulus conditions,
inwhich tuning functions, p,(x), and noise magnitude are restricted tobe the
same and only the potential @(x) can vary across stimulus conditions. The
shared optimization enables more accurate inference of tuning functions,
becauseitlearns asingle tuning function across four conditions so that the
number of leftward and rightward choices are approximately balanced in the
data, and the dynamics equally explore both sides of the decision manifold.
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Extended DataFig.7 | Tuning functions werelargely consistent across
stimulus conditionsin PMd data. a, The log-likelihood ratio of the single-
neuron model fitted with shared tuning functions, initial state distribution
Po(x), and noise magnitude D across stimulus conditions relative to the model
fitted with separate tuning functions, py(x), and Din each condition. This
analysis was performed for a subset of single neurons (monkey T: 36 neurons
from 3 sessions, monkey O:16 neurons from 3 sessions). We expect the separate
model to have the same or higher likelihood compared to the shared model,
because the shared modelis aspecial case of the separate model. The likelihood
was only slightly lower for the shared than separate model (I0g(-%hared/ Zeparate)r
median [Q1, Q3]; monkey T: -6.10 [-17.45,1.96], n=36; monkey O: -18.60 [-31.27,
-6.58],n=16), which suggests that the tuning functions were similar across
conditions. Asareference, we generated synthetic spike data for 6 single
neurons from the ground-truth model in which the tuning functions, p,(x)

and Dwere the sameinall conditions, and then fitted these data with the shared
and separate models. We matched the ground-truth model of each synthetic
neuronto thefitted shared model of one experimental neuron used in this
analysis (4 neurons from monkey T, 2 neurons from monkey O). We also
matched the number of fitted trials to the experimental data for each synthetic
neuron. Therange of thelog-likelihood ratio for the shared ground-truth model
(108(Zhared! Zieparare) median[Ql, Q3];1.33[-8.75,3.68], n = 6) was similar to
thatobtained from the experimental data, supporting the conclusion that
tuning functions were similar across conditions. b, To quantify the similarity

Single neurons Populations

of tuning functionsinferred by the separate single-neuron modelineach
condition, we computed their average Pearson correlation coefficient with the
tuning functioninferred by the shared model for each neuron. High values of
the correlation coefficientindicate that theinferred tuning functions were
largely consistent across stimulus conditions (median [Q1, Q3]; monkey T: 0.91
[0.81,0.93], n=36; monkey 0:0.94[0.91,0.95], n=16). Comparable values of
the correlation coefficient were obtained for the shared ground-truth model
(median[Ql, Q3];0.95[0.91,0.98],n=6). The distribution of the correlation
coefficientis shown for the same set of experimental and synthetic neurons as
inpanela.c, Thelog-likelihood ratio of the population model fitted with shared
tuning functions, py(x), and D relative to the population model fitted with
separate tuning functions, p,(x), and Din each condition, for all successfully
converged shared population fits (monkey T:11 populations; monkey O: 14
populations). One outlier with alarge positive value1344.4 isclamped at the
value 120 (open orange circle) for better visibility. The log-likelihood ratio was
notsignificantly differentbetween the shared and separate population models
(10g(Znared/ Zieparate» Median [Q1, Q3]; monkey T:13.5[-35.6,72.7], p=0.58,
n=11;monkey O: -4.6[-18.8,18.8], p=0.95, n=14, Wilcoxon signed-rank test),
providing strong support for the invariance of tuning functions across
conditions. Inallbox plots, center lines indicate medians; boxes span the 25th
to 75th percentiles; whiskers extend to the nearest of 1.5 x the interquartile
range or the most extreme data point; outliers beyond the whiskers are shown
asdots.
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single PMd neuron. Time window used for model fitting starts at 120 ms after
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Extended DataFig.9|PMdresponseshavenonlinear dynamicsand
nonlinear geometry. a, Thelog-likelihood ratio of the fitted population model
relative to the population models inwhich the potential, tuning functions or
bothwere approximated by abest-fitting analytical function: quadratic
approximation of the potential (orange), linear approximation of the potential
(red), linear approximation of all tuning functions (light purple), and linear
approximation of both the potential and all tuning functions (purple). The
log-likelihood ratiois positive for all sessions, indicating that replacing the
potential and/or tuning functions with their polynomial approximation
significantly reduces modellikelihood (log(Zoge/ Zapprox)» Median [QL, Q3]
monkey T: quadratic potential 11.7[7.9, 21.4], p=0.002, linear potential 96.2
[59.2,153.8],p=0.001, linear tuning functions 426.7 [386.2,697.6],p=0.001,
linear potential and linear tuning functions 573.0[460.9,799.2], p=0.001,
n=11; monkey O: quadratic potential 9.7 [8.0,15.0], p=2-107*, linear potential
58.8[36.1,86.5],p=2-107* linear tuning functions 85.3[44.1,197.9],p=2-10"*,
linear potential and linear tuning functions 154.5[106.3,348.1],p=2-107%,
n=13, Wilcoxonsigned-rank test). Approximating the potential with a quadratic
function produced only slightly lower likelihood than for the original fitted
model, consistent with the observation that the discovered potential shapes
were approximately parabolic. b, The distribution of balanced accuracy for
predicting the monkey’s choice using the fitted population model (blue,
median[Q1, Q3]; monkey T: 89.9[80.6, 95.7]; monkey 0:73.2[64.9, 76.5]), and

Monkey T

Monkey O

population models inwhich the potential, tuning functions or both were
approximated by a best-fitting polynomial: quadratic approximation of the
potential (orange, monkey T:90.9[80.6,95.7]; monkey 0:72.5[65.5,77.4]), linear
approximation of the potential (red, monkey T:85.9[77.7,95.8]; monkey O: 67.7
[62.7,76.1]), linear approximation of all tuning functions (light purple, monkey T:
91.7[78.8,95.7]; monkey 0:75.3[65.9,78.9]), and linear approximation of both
the potential and all tuning functions (purple, monkey T: 90.0[73.7,96.0];
monkey 0: 67.0[63.5,76.7]). The distributions do not differ significantly
between the fitted model and its approximations, except for slightly reduced
accuracyinthelinear potentialand tuning model for monkey T, and in the linear
potential model for monkey O (monkey T: quadratic potential p=0.09, linear
potential p=0.26, linear tuning functions p=0.17, linear potential and linear
tuning functions p=0.047, n=11; monkey O: quadratic potential p=0.34, linear
potential p=0.03, linear tuning functions p=0.15, linear potential and linear
tuning functions p=0.24, n=13, Wilcoxon signed-rank test). Thus, many
qualitatively distinct models of single-trial neural dynamics and geometry
canpredictthebinary choice nearly equally well, showing that the accuracy of
choice predictionaloneis not sufficient to determine what single-trial dynamics
are consistent with neural responses in PMd. In all box plots, center lines
indicate medians; boxes spanthe 25th to 75th percentiles; whiskers extend to
thenearest of 1.5 x the interquartile range or the most extreme data point;
outliers beyond the whiskers are shown as dots.
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Extended DataFig.10 | Mechanism underlying diverse tuningto the
decisionvariableinrank-tworecurrent network. a, The rank-tworecurrent
connectivity matrix/=M- Q' is an outer product of matrices M € R"?and

Q" e R¥N where Nis the number of units in the network. On each time step,
synaptic activation variables y are updated by filtering through the recurrent
connectivity/(equation (20) in Methods). The action of/canbe decomposedin
two steps: first, Q" projects y onto two-dimensional mean-field variables z, then
Membeds zinto N-dimensional space of recurrent synaptic inputs h=Jytoall
units. Accordingly, the dynamics within the space of synapticinput currents i
are confined to atwo-dimensional linear subspace spanned by the columns
of M. The dynamics within this subspace are governed by the variables z,
which follow equation (21) in Methods. The firing rate r;of each unitiisa
rectified linear (ReLU) function of the total synapticinput h;+ b, this unit
receives:r;=[h; + b;],. The firing-rates rdrive the update of the synaptic
activation variablesyonthe nexttime step. The firing-rate nonlinearity
bendsthenetwork’s trajectories into additional dimensions, leading to higher
dimensionality and distinct geometry of trajectoriesin the firing rate spacer
compared to the synapticinputspace h. The synapticinput h;to unitiisaone-

dimensional projection of the two-dimensional variables z, defined by the
corresponding elements m; and m;, of the matrix M (red arrows). Thus, firing
rateof each unitarises as aone-dimensional projection of the variables z,
passed through ReLU nonlinearity. b, The dynamicsinzspacereplicate the
classicalmean-field attractor network®*, with trajectories converging to the
left (red) orright (green) choice attractors (same network asin Fig. 5g-kin the
main text). The one-dimensional decision variable x € [-1,1] parametrizes these
trajectories, suchthatx=-1andx=1correspondto theleft and right choice
attractors, respectively,and x=0 corresponds to the symmetricinitial state at
thetrial start.Recurrentinput ;to eachunitiis aone-dimensional projection of
these trajectories onto the direction Z =(m;, m;,). Arrows show the projection
vectors ?,- for theexample unitsin Fig. 5iin the main text. ¢, Firingrater;isa
threshold-linear function of the total synapticinput current h;+ b, which is
shown for the example unitsin panel bwith the corresponding color. The firing-
ratenonlinearity rectifies negative inputs (gray shading) to zero. The diversity
of projection vectors ?i, combined with the firing-rate nonlinearity, generates
heterogeneous nonlinear tuning functions across units (the corresponding
tuning functions are shownin Fig. 5j in the main text).
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