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The dynamics and geometry of choice in  
the premotor cortex

Mikhail Genkin1, Krishna V. Shenoy2,3, Chandramouli Chandrasekaran4,5,6,7 & 
Tatiana A. Engel1,8 ✉

The brain represents sensory variables in the coordinated activity of neural 
populations, in which tuning curves of single neurons define the geometry of the 
population code1,2. Whether the same coding principle holds for dynamic cognitive 
variables remains unknown because internal cognitive processes unfold with a unique 
time course on single trials observed only in the irregular spiking of heterogeneous 
neural populations3–8. Here we show the existence of such a population code for the 
dynamics of choice formation in the primate premotor cortex. We developed an 
approach to simultaneously infer population dynamics and tuning functions of single 
neurons to the population state. Applied to spike data recorded during decision-
making, our model revealed that populations of neurons encoded the same dynamic 
variable predicting choices, and heterogeneous firing rates resulted from the diverse 
tuning of single neurons to this decision variable. The inferred dynamics indicated  
an attractor mechanism for decision computation. Our results reveal a unifying 
geometric principle for neural encoding of sensory and dynamic cognitive variables.

Tuning curves of single neurons for sensory variables determine the 
geometry of the population code1,2. This coding principle was estab-
lished by mapping out changes in trial-averaged firing rates of neurons 
in response to varying parameters of sensory stimuli1,2,9. For exam-
ple, the orientation of a visual stimulus is a one-dimensional circular 
variable encoded in the primary visual cortex, where neural popula-
tion responses organize on a ring mirroring the encoded variable2,10 
(Fig. 1a). The orientation tuning curves of single neurons jointly define 
the embedding shape of this ring in the population state space, that 
is, the geometry of the population code1 (Fig. 1a, Extended Data Fig. 1a 
and Supplementary Note 1.1).

However, whether the same geometric coding principle holds for 
dynamic cognitive variables is unknown. Internal cognitive processes 
(for example, decision-making or attention) are not directly observ-
able and unfold with a unique time course on single trials in sparse and 
irregular spiking of neural populations3–8. Thus, dynamic cognitive 
computations cannot be revealed by averaging neural responses over 
repeated trials. Moreover, individual neurons in association brain areas 
show diverse temporal response profiles during cognitive tasks11–15, and 
the widespread assumption is that this heterogeneity reflects complex 
dynamics involved in cognition16,17, implying that neural encoding of 
dynamic cognitive variables follows a fundamentally different principle 
than for sensory variables (Extended Data Fig. 1b and Supplementary 
Note 1.1).

Contrary to this view, we hypothesized that the complexity arises 
from the same coding principle as in sensory areas: the neural popula-
tion dynamics encode simple cognitive variables, whereas individual 
neurons have diverse tuning to the cognitive variable, similar to neu-
ral tuning curves for sensory stimuli (Fig. 1b, Extended Data Fig. 1c 

and Supplementary Note 1.1). To test our hypothesis, we developed a 
computational approach to simultaneously infer neural population 
dynamics on single trials and non-linear tuning functions of individual 
neurons to the unobserved population state. Two crucial technical 
advances within this approach make testing our hypothesis possi-
ble. First, we performed non-parametric inference over a continuous 
space of models to discover equations governing population dynam-
ics directly from data18,19, unlike previous methods that tested a small 
discrete set of models4,20,21, without guarantees that any of these a priori 
chosen models faithfully reflect neural dynamics22. Second, the infer-
ence of non-linear tuning functions allows us to reconcile the diversity 
of single-neuron responses with the population-level encoding of a 
low-dimensional cognitive variable. By contrast, previous methods 
assume a rigid monotonic relationship between firing rates of all neu-
rons and latent states and thus capture population dynamics with more 
latent dimensions, which may not directly correspond to the encoded 
cognitive variable23–27.

We applied our approach to neural population activity recorded 
from the primate dorsal premotor cortex (PMd) during perceptual 
decision-making11, a cognitive computation described by a decision 
variable reflecting the dynamics of choice formation on single trials28,29. 
The neural representation of the decision variable remains unknown 
as its unique trajectories on single trials are not observable3,4, and 
decision-related responses of cortical neurons are complex and het-
erogeneous8,11,20. Our hypothesis states that neural population dynam-
ics encode a one-dimensional decision variable, and heterogeneous 
neural responses arise from diverse tuning of single neurons to this 
decision variable (Fig. 1b). Using our computational approach, we pro-
vide three lines of evidence for our hypothesis: in dynamics of single 
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neurons, neural population dynamics and their correspondence with 
animal choices.

Neural recordings during decision-making
We analysed spiking activity recorded with linear multi-electrode 
arrays from the PMd of two monkeys performing a decision-making 
task11 (Fig. 2a). The monkeys discriminated the dominant colour in a 
static checkerboard stimulus composed of red and green squares and 
reported their choice by touching the corresponding left or right target 
when ready (a reaction-time task). We varied the stimulus difficulty 
across trials by changing the proportion of the same-coloured squares 
in the checkerboard and grouped trials into four stimulus conditions 
according to the response side indicated by the stimulus (left versus 
right) and stimulus difficulty (easy versus hard; Fig. 2a; see Methods, 
‘Behaviour and electrophysiology’).

Many single neurons in our recordings had decision-related res
ponses with trial-averaged firing rates separating according to the 
chosen side (Fig. 2b). Although some neurons showed canonical fir-
ing rates ramping up or down with a slope dependent on the stimulus 
difficulty, most neurons exhibited heterogeneous temporal response 
profiles (Fig. 2b), seemingly incompatible with our hypothesis that all 
these neurons encode the same dynamic decision variable.

Flexible inference framework
To test our hypothesis, we developed a flexible modelling framework 
that dissociates the dynamics and geometry of neural representa-
tions and enables estimating both simultaneously in data (Fig. 2c; see  
Methods, ‘Flexible inference framework’). We modelled neural activity 
on single trials as arising from a dynamic latent variable x(t). Each neu-
ron i has a unique tuning function fi(x) to this latent variable, analogous 

to tuning curves of single neurons to sensory stimuli (Fig. 1a). The tun-
ing functions of all neurons jointly define the geometry of trajectories 
traced by neural activity through the population state space on sin-
gle trials (Fig. 1b, Extended Data Fig. 1c and Supplementary Note 1.1).  
The dynamics of the latent variable x(t) along these trajectories are 
governed by a general non-linear dynamical system equation18,19:

x D
Φ x

x
D ξ t˙ = −

d ( )
d

+ 2 ( ). (1)

Here Φ(x) is a potential function that defines deterministic forces 
in the latent dynamical system, and ξ(t) is a Gaussian white noise with 
magnitude D that accounts for stochasticity of latent trajectories. Our 
modelling framework can generate data with identical dynamics but 
different geometry, or vice versa (Extended Data Fig. 2), dissociating the 
dynamics of the latent variable x(t) from the geometry of its representa-
tion within the population state space. By contrast, trial-averaged firing 
rates conflate the dynamics and geometry of neural representations; 
hence, the geometry of the trial-averaged population activity does not 
uniquely define dynamics on single trials4,30 (Extended Data Fig. 3).

To model decision-related activity, x(t0) was sampled from the  
distribution p0(x) of initial states at the beginning of each trial, and the 
trial terminated when x(t) reached one of the decision boundaries in 
the latent space19 (Fig. 2c). We modelled spikes of each neuron i as an 
inhomogeneous Poisson process with the instantaneous firing rate 
λ(t) = fi(x(t)) that depends on the current latent state x(t) via the tuning 
function fi(x) (Fig. 2c). In our model, Φ(x), p0(x) and tuning functions 
fi(x) of all neurons are continuous functions that can take any non-linear 
shapes, enabling flexible discovery of both the low-dimensional latent 
dynamics and the non-linear geometry of single-trial trajectories in the 
population state space.

We simultaneously inferred the functions Φ(x), p0(x), fi(x) and the 
noise magnitude D from spike data by maximizing the model likelihood 
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Fig. 1 | Neural population codes for sensory and cognitive variables.  
a, Orientation of a visual stimulus is a one-dimensional circular variable α (top 
left). Single neurons in the primary visual cortex encode the orientation of a 
stimulus with bell-shaped tuning curves, which describe the trial-averaged 
firing rate of a neuron as a function of the stimulus orientation (top right).  
In the population state space, these neural responses form a ring mirroring  
the encoded variable (bottom; the dots denote trial-averaged population 
responses to different stimulus orientations indicated by colour, with the 
scatter illustrating estimation noise due to a finite number of trials; the line 
indicates the idealized noise-free ring manifold encoding the stimulus 
orientation). b, We hypothesize that the same geometric coding principle 
holds for dynamic cognitive variables. Specifically, a decision variable x(t) is  

a one-dimensional variable representing the dynamics of choice formation on 
single trials (top left; trajectories coloured by the final choice). Single neurons 
may encode the decision variable with diverse tuning functions, which describe 
the instantaneous firing rate of a neuron on single trials as a function of  
the decision variable value (top right). During decision formation, neural 
population responses evolve along a one-dimensional manifold encoding the 
decision variable, which is embedded in a high-dimensional neural population 
state space (bottom; noisy lines illustrate stochastic trajectories of the decision 
variable on two example trials coloured by choice, and the solid line indicates 
the idealized noise-free decision manifold). The tuning curves of all neurons 
jointly define the embedding shape of the decision manifold in the population 
state space, that is, the geometry of the neural population code for choice.



Nature  |  www.nature.com  |  3

(Supplementary Fig. 1 and Supplementary Methods 2; see Methods, 
‘Flexible inference framework’). Our modelling framework accurately 
identified ground-truth dynamics in synthetic data (Supplementary 
Figs. 1–5) and we further validated its accuracy in experimental data 
with the ground truth established through optogenetic perturbations31 
(Extended Data Fig. 4 and Supplementary Note 1.2).

Decision dynamics in single neurons
First, we examined decision-related dynamics of single neurons by 
fitting a separate model to spikes of each neuron (n = 128 for monkey 
T and n = 88 for monkey O; see Methods, ‘Selection of units for the 
analysis’) in each stimulus condition. The inferred tuning functions fi(x), 
initial state distribution p0(x) and D were similar across conditions and 
only the potential shapes were different (Extended Data Figs. 5 and 6). 
Stimulus independence of p0(x) is expected as stimulus information is 
not available before stimulus onset. The stability of tuning functions 
fi(x) indicates that stimulus affects only the dynamics of the decision 
variable but not the geometry of its representation in neural activity.

To test for the invariance of tuning functions, we performed shared 
optimization in which we fitted the model to all available trials and 

restricted fi(x), p0(x) and D to be the same and only allowed the poten-
tial Φ(x) to differ across stimulus conditions. If tuning differed across 
conditions, the model with shared tuning functions would fit worse 
than the model with separate tuning functions in each condition. The 
likelihood was only slightly lower for the model with shared than sep-
arate tuning functions (Extended Data Fig. 7a; L Llog( / )shared separate ; 
median (Q1–Q3) −6.10 (−17.45 to 1.96), n = 36 for monkey T; −18.60 
(−31.27 to −6.58), n = 16 for monkey O) and within the range 
obtained on synthetic data from the ground-truth model with shared 
tuning functions (Extended Data Fig. 7a; log( / )shared separateL L ; median 
(Q1–Q3) 1.33 (−8.75 to 3.68), n = 6 for the shared ground-truth model). 
Furthermore, the inferred tuning functions were similar between 
shared and separate models, as indicated by a high value of their cor-
relation coefficient (Extended Data Fig.  7b; median (Q1–Q3)  
0.91 (0.81–0.93), n = 36 for monkey T; 0.94 (0.91–0.95), n = 16 for  
monkey O), confirming that tuning functions are consistent across 
stimulus conditions.

We therefore used shared optimization in further analyses, because 
it maximally leverages available data to produce more accurate infer-
ence (Supplementary Figs. 2–4). The model fit converged for most 
neurons (117 out of 128 neurons (91%) for monkey T and 67 out of 88 
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Fig. 2 | Recording and modelling spiking activity during decision-making. 
a, Monkeys discriminated the dominant colour in a static checkerboard 
stimulus composed of red and green squares and reported their choice by 
touching the corresponding target (left). While monkeys performed the task, 
we recorded spiking activity with 16 channel multi-electrode arrays from  
the PMd (right). Trial conditions varied by the response side indicated by the 
stimulus (left versus right) and stimulus difficulty (easy versus hard; bottom 
middle). The illustrations of the monkey, checkerboard, electrode array and 
brain were adapted from ref. 11, Springer Nature Limited. b, Trial-averaged firing 
rates of four example neurons sorted by the chosen side and stimulus difficulty. 
Although some neurons showed canonical ramping responses (top row), other 
neurons showed heterogeneous temporal response profiles (bottom row).  
The error bars are s.e.m. over trials. c, A framework for simultaneous inference 

of neural population dynamics and tuning functions of single neurons to the 
latent population state, which jointly define the non-linear geometry of neural 
representations in the population state space. We modelled neural population 
dynamics with the latent dynamical system in equation (1), in which the 
deterministic flow field arises from a potential Φ(x) (bottom left) and 
stochasticity is driven by a Gaussian white noise. On each trial, the latent 
trajectory x(t) starts at the initial state x(t0) (middle left; black dot) sampled 
from the probability density p0(x) (top left). The trial ends when the trajectory 
reaches one of the decision boundaries corresponding to the left and right 
choice (middle left; red and green dashed lines). The observed spikes (right)  
of each neuron follow an inhomogeneous Poisson process with time-varying 
firing rate that depends on the latent variable x(t) via neuron-specific tuning 
functions fi(x) (middle right).
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neurons (76%) for monkey O), which were used in further analyses 
(Methods, ‘Outcomes of model fitting’).

Our model produced significantly higher likelihood than the 
trial-averaged firing rate computed for each chosen side and stimulus 
difficulty (Fig. 3a; L Llog( / )model PSTH , median (Q1–Q3) 21.2 (7.27–48.5), 
P < 10−10, n = 117 for monkey T; 9.39 (1.73–25.6), P = 1.3 × 10−6, n = 67 for 
monkey O, Wilcoxon signed-rank test; see Methods, ‘Evaluating model 
performance’). This result indicates that single-trial firing rates deviate 
considerably from their trial average, and our model successfully cap-
tured this variation. Furthermore, our model explained a substantial 
fraction of the total variation in spike times on single trials (Fig. 3b; 
coefficient of determination R2; median (Q1–Q3) 0.28 (0.17–0.38) for 
monkey T; 0.20 (0.13–0.28) for monkey O; see Methods, ‘Spike- 
time R2’). Theoretically, the R2 value cannot reach 1 because our model 

predicts single-trial firing rates, leaving the point process variability 
unexplained. However, if the firing rate prediction is correct on each 
trial, we expect the point process variability to match the residual 
spike-time variation unexplained by the model. The point process 
variability estimated with an independent method32 correlated tightly 
with the residual variation unexplained by our model (Fig. 3b; r = 0.80, 
P < 10−10, n = 64 for monkey T; r = 0.73, P = 1.4 × 10−5, n = 27 for monkey 
O, Pearson correlation coefficient), indicating that our model 
accounted for nearly all explainable variance in firing rates on single 
trials.

Our model revealed that despite heterogeneous trial-averaged 
responses, single neurons showed remarkably consistent dynamics 
on single trials (Fig. 3c–h and Extended Data Fig. 8), which provides the 
first line of evidence for our hypothesis. In all stimulus conditions, the 
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Fig. 3 | Decision dynamics in single neurons. a, The log-likelihood ratio of the 
single-neuron model relative to the peristimulus time histogram (PSTH) across 
neurons (n = 117 for monkey T and n = 67 for monkey O). b, Spike-time variation 
explained by the single-neuron model (top; n = 111 for monkey T and n = 50 for 
monkey O). The residual spike-time variation unexplained by the model (y axis) 
correlates with the independently estimated point process variability (x axis; 
bottom; n = 64 for monkey T and n = 27 for monkey O). c, Spiking activity (top; 
40 example trials) and trial-averaged firing rates (bottom; PSTH) sorted by the 
chosen side and stimulus difficulty for an example neuron. The coloured dots 
mark spikes, and black dots indicate reaction time. The error bars are s.e.m. 
over trials. The time window used for model fitting starts at 120 ms after the 
stimulus onset (vertical dashed line) and extends until the reaction time on 

each trial. d, Potentials discovered from spikes of the example neuron in c show 
a single barrier (marked by triangles) in all stimulus conditions (middle and 
bottom). The inferred initial state distribution p0(x) shared across conditions 
(top) peaks near the top of the linear slope of the potential (dashed vertical 
lines). e, The inferred tuning function shared across stimulus conditions for the 
neuron in c. The error bars in d,e are s.d. over 10 bootstrap samples. f–h, Same 
as c–e for another example neuron. i, The distribution across neurons of  
the potential slope at the maximum of p0(x) for four stimulus conditions 
(***P < 10−10, n = 184, Wilcoxon signed-rank test). In the boxplots (a,b,i), the 
centre lines indicate medians, the boxes span the 25–75th percentiles, the 
whiskers extend to the nearest of 1.5 × the interquartile range or the most 
extreme data point, and outliers beyond the whiskers are shown as dots.
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inferred potentials displayed the same features: a nearly linear slope 
towards the decision boundary corresponding to the correct choice 
and a single potential barrier separating it from the boundary corre-
sponding to the incorrect choice (Fig. 3d,g). The inferred distribution 
of initial states p0(x) was narrow and centred near the top of the linear 
slope, indicating that latent trajectories evolve smoothly towards the 
correct choice but have to overcome the potential barrier towards the 
incorrect choice (Fig. 3d,g). The potential shapes were highly consistent 
across neurons, as indicated by a high value of their correlation coef-
ficient in each condition (0.86 ± 0.16 for monkey T, and 0.88 ± 0.14 for  
monkey O, mean ± s.d. across neurons and conditions; see Methods, 
‘Outcomes of model fitting’). For easy stimulus conditions, the poten-
tials had a higher barrier and steeper slope than for hard conditions 
(Fig. 3d,g,i; easy versus hard; P < 10−10, n = 184 for left stimulus; P < 10−10, 
n = 184 for right stimulus, Wilcoxon signed-rank test), predicting more 
latent trajectories reaching the correct choice boundary and faster 
reaction times, consistent with the behaviour of animals. The hetero-
geneous trial-averaged responses (Fig. 3c,f) resulted from different 
shapes of the inferred tuning functions (Fig. 3e,h).

These results reject the idea that decision-related dynamics differ 
across neurons20, which would correspond to diverse shapes of the 
potential Φ(x). Instead, we found that the overwhelming majority of 
single neurons follow the same dynamics described by a single-barrier 
potential and diverse tuning functions account for the heterogeneity 
of their trial-averaged firing rates.

Decision dynamics in neural populations
Single neurons showed the same dynamics, and next we examined how 
these dynamics were organized in the population. One possibility is that 
all neurons follow the same trajectory x(t) on each trial, indicating that 
the entire population encodes the same latent dynamical variable as 
we hypothesized (Fig. 1b). Alternatively, individual neurons may follow 
distinct trajectories on single trials even if their dynamics are described 
by the same potential, in which case different neurons can be at different 
latent states at the same time, for example, evolving towards opposite 
choice boundaries on the same trial4. To test these possibilities, we fit-
ted our model to spikes of neural populations recorded simultaneously 
in the same session (15 populations for each monkey; see Methods, 
‘Selection of units for the analysis’). The population model assumes 
that all neurons share the same latent variable x(t) (Fig. 2c) and hence 
has less freedom to explain neural responses than single-neuron models 
fitted to spikes of each neuron separately. If single-trial dynamics are 
not shared across all neurons, the population model would fit worse 
than single-neuron models.

The shared population model fit converged for most sessions (11 out 
of 15 sessions (73%) for monkey T and 13 out of 15 sessions (87%) for 
monkey O), which were used in further analyses (see Methods, ‘Out-
comes of model fitting’). The likelihood was not significantly different 
between population models fitted with shared and separate tuning 
functions (Extended Data Fig. 7c; L Llog( / )shared separate ; median (Q1–Q3) 
13.5 (−35.6 to 72.7), P = 0.58, n = 11 for monkey T; −4.6 (−18.8 to 18.8), 
P = 0.95, n = 14 for monkey O, Wilcoxon signed-rank test), reinforcing 
the invariance of tuning functions. We therefore used the shared pop-
ulation model in further analyses.

We compared the performance of the population and single- 
neuron models in three ways. First, the population model had simi
lar or higher likelihood than the single-neuron model (Fig.  4a;  
log( / )population singleneuronL L ; median (Q1–Q3) 190.4 (91.8–290.3), 
P = 0.001, n = 11 for monkey T; 4.0 (−35.6 to 9.4), P = 0.74, n = 13 for mon-
key O, Wilcoxon signed-rank test; see Methods, ‘Evaluating model 
performance’). Second, the population and single-neuron models 
explained a similar fraction of the total variation in spike times on sin-
gle trials (R2, median (Q1–Q3); population 0.25 (0.15–0.38), single 
neuron 0.27 (0.19–0.37), P = 0.11, n = 80 for monkey T; population 0.15 

(0.09–0.30), single neuron 0.19 (0.09–0.26), P = 0.015, n = 32 for mon-
key O, Wilcoxon signed-rank test). Finally, we used the most stringent 
leave-one-neuron-out validation, in which we predicted activity of one 
neuron from the latent variable x(t) inferred from spikes of all other 
neurons in the population (see Methods, ‘Evaluating model perfor-
mance’). The log-likelihood was higher for the population model in the 
leave-one-neuron-out validation than for the neuron’s own trial- 
averaged firing rate (Fig. 4a; L Llog( / )LONO PSTH ; median (Q1–Q3) 48.9 
(24.5–88.6), P < 10−10, n = 89 for monkey T; 6.5 (−3.4 to 11.9), P = 0.07, 
n = 59 for monkey O, Wilcoxon signed-rank test). Together, these results 
show that the population model explained neural activity as well as or 
better than the single-neuron model, supporting our hypothesis that 
the entire population encodes the same latent dynamical variable on  
single trials.

As the population model predicted spikes as accurately as single- 
neuron models, it unsurprisingly revealed dynamics and geometry con-
sistent with single-neuron results (Fig. 4b–d and Supplementary Fig. 6). 
The inferred tuning functions were similar between the population 
and single-neuron models, as indicated by a high value of their correla-
tion coefficient (0.89 ± 0.12, n = 85 for monkey T; 0.89 ± 0.15, n = 46 for 
monkey O, mean ± s.d. across neurons). For all stimulus conditions, the 
potential had a single barrier (Fig. 4c), and heterogeneous single-neuron 
responses (Fig. 4b) were captured in non-linear tuning functions 
(Fig. 4d). The potential shapes were highly consistent across all popu-
lations, as indicated by a high value of their correlation coefficient in 
each condition (0.93 ± 0.09 for monkey T and 0.88 ± 0.14 for monkey O,  
mean ± s.d. across populations and conditions; see Methods, ‘Out-
comes of model fitting’). Moreover, the model likelihood significantly 
decreased when replacing the tuning functions, potentials or both with 
linear approximations (Extended Data Fig. 9), emphasizing that neural 
responses have non-linear dynamics and non-linear geometry. The con-
sistency of potential shapes and the high fit quality for the population 
model provide the second line of evidence for our overall hypothesis.

Predicting choice from latent dynamics
Finally, we tested how the dynamic variable encoded by PMd popula-
tions related to the decision-making behaviour. Our unsupervised 
models of neural dynamics are fitted without access to the choices of 
the animal. A correspondence between the inferred latent trajectories 
and those choices would indicate that the identified dynamics reflect 
single-trial decision formation.

We used our models to predict the choices of animals from neu-
ral activity. On each trial, we decoded the latent trajectory x(t) from 
spikes and predicted the choice as the boundary to which this trajectory 
converged at the reaction time (see Methods, ‘Predicting choice from 
neural activity’). Both single-neuron and population models predicted 
the choices of animals significantly above chance (Fig. 4e; balanced 
accuracy, median (Q1–Q3); single-neuron model 68.7% (61.0–79.8%), 
P < 10−10, n = 85, population model 89.9% (83.4–96.4%), P = 0.001, n = 11 
for monkey T; single-neuron model 59.2% (55.7–63.6%), P < 10−10, n = 46, 
population model 73.2% (64.9–78.6%), P = 2 × 10−4, n = 13 for monkey O, 
Wilcoxon signed-rank test).

For a comparison, we trained a logistic regression decoder to predict 
the choices of animals from a vector of spike counts on single trials 
measured in overlapping 75-ms bins with a 10-ms step (see Methods, 
‘Predicting choice from neural activity’). Despite the decoder being 
directly supervised to predict the choice, our unsupervised models 
predicted choices with higher accuracy than the decoder (Fig. 4e; 
single-neuron decoder versus model P = 1.2 × 10−8, n = 85, population 
decoder versus model P = 0.014, n = 11 for monkey T; single-neuron 
decoder versus model P = 0.019, n = 46, population decoder versus 
model P = 0.001, n = 13 for monkey O, Wilcoxon signed-rank test), sug-
gesting that the latent variable inferred by our models is the dynamic 
decision variable. Moreover, the population model predicted choices 
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with higher accuracy than the single-neuron model (Fig. 4e; P = 1.1 × 10−4 
for monkey T and P = 4 × 10−5 for monkey O, Mann–Whitney U-test), 
reinforcing that the decision variable is encoded on the population 
level. These results provide the third and final line of evidence for our 
overall hypothesis.

In summary, we found that heterogeneous neural populations in 
the PMd encode the same dynamic decision variable with diverse tun-
ing functions, which define the geometry of the population code for 
choice. This discovery reveals a unifying geometric principle for neural 
encoding of sensory and dynamic cognitive variables.
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Mechanism for decision computation
We discovered that both single-neuron and population activity in the 
PMd are described by the same dynamics — a potential with a single 
barrier — qualitatively distinct from the stepping and ramping hypoth-
eses proposed previously4,19–21 (Supplementary Fig. 5). This potential 
landscape indicates an attractor mechanism for decision-making, 
with the potential barrier separating choice-specific attractors31,33–37.

We therefore used the classical spiking network model of 
decision-making33 to establish a mechanistic interpretation of the 
one-dimensional decision variable and dynamics identified by our 
model in the PMd. In this network33, two pools of excitatory neurons 
receive inputs supporting the left and right choices, and a pool of inhibi-
tory neurons mediates winner-take-all dynamics, such that only one 
excitatory pool elevates the firing rate on each trial, signalling the 

choice of the network (Fig. 5a). The mechanism of decision computa-
tion in this network can be understood using a mean-field approxima-
tion that reduces the network to a two-dimensional dynamical system in 
which the activity of two excitatory pools are the dynamic variables34,38. 
In this dynamical system, two stable attractors represent two choice 
alternatives separated by a saddle point (Fig. 5b). The stable manifold 
of the saddle is the separatrix that divides the attractor basins.

The attractor network predicted the same dynamics as uncovered 
by our model in the PMd. At the trial start, the initial network state falls 
within the basin of the attractor corresponding to the correct choice. 
On correct trials, the trajectory of the network follows the flow field to 
reach the correct-choice attractor. By contrast, on error trials, noise 
drives the trajectory across the separatrix into the incorrect-choice 
attractor, pushing against the flow field and thus overcoming a poten-
tial barrier. To verify this theory, we fitted our population model to 
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spiking activity generated by simulating the attractor network (see 
Methods, ‘Spiking network model’). From the network spiking activity, 
the population model inferred potentials with a single barrier in each 
stimulus condition similar to the potentials discovered from the PMd 
data (Fig. 5c compared with Figs. 3d,g and 4c).

The attractor network also provided a mechanistic interpretation for 
the decision variable x and tuning functions fi(x) in our model. On each 
trial, network trajectories start at a symmetric low-activity state and 
follow nearly one-dimensional stereotypic paths to reach either of two 
choice attractors (Fig. 5b). When varying stimulus difficulty, the shape 
of these one-dimensional trajectories remains nearly invariant, with 
only the speed and direction of dynamics along these paths changing, 
consistent with our findings in the PMd data. These one-dimensional 
trajectories traced by the network can be parametrized by a single 
latent variable, corresponding to the decision variable x in our model 
(Supplementary Note 1.3). The firing rate of neuron i at any point x along 
the one-dimensional trajectory is given by the tuning function fi(x). 
Thus, the decision variable in our model parametrizes one-dimensional 
trajectories arising during decision-making and tuning functions cap-
ture the geometry of these trajectories in the population state space.

We compared the representational geometry of the decision variable 
between the two-pool attractor network and PMd data. In the two-pool 
attractor network, the tuning functions inferred by our model were iden-
tical for all neurons within each excitatory pool (Fig. 5d), as expected 
for homogeneous pools. As excitatory neurons have only two types of 
tuning functions, their responses naturally form a manifold that spans 
two linear dimensions (Supplementary Note 1.3). We can directly visual-
ize this manifold by plotting the two types of tuning functions against 
each other (Fig. 5e). The manifold shape corresponds to the paths that 
network trajectories take from the initial state to the choice attractors 
(Fig. 5e comapred with Fig. 5b), reinforcing the link between tuning func-
tions and geometry of trajectories arising during decision-making. As 
PMd neurons had heterogeneous tuning functions, the PMd manifold 
spanned many linear dimensions. To visualize the decision manifold in 
the PMd, we projected all tuning functions inferred in 24-well-fitted ses-
sions onto the first three principal components, which explained 56.0%, 
26.8% and 5.2% of the variance, respectively. The PMd manifold revealed 
two diverging branches encoding choice, with a higher-dimensional 
geometry than in the two-pool attractor network (Fig. 5f).

The complex geometry of the PMd decision manifold can arise from 
a distributed attractor mechanism, as intuitively explained in low-rank 
recurrent networks39–43 (Extended Data Fig. 10). The rank-k connectiv-
ity defines k mean-field variables zi (i = 1, …k) that govern population 
dynamics, generating low-dimensional trajectories in the space of 
synaptic currents. The firing rate is a non-linear function of the synaptic 
current, resulting in high-dimensional geometry of trajectories in the 
firing-rate space. To illustrate this mechanism, we designed a rank-two 
recurrent network that replicates the classical attractor dynamics with 
distributed connectivity39 (Fig. 5g; see Methods, ‘Low-rank network 
model’). The flow field governing the mean-field variables z1 and z2 
matches that in the classical mean-field attractor network, generating 
similar trajectories parametrized by a one-dimensional decision vari-
able x (Fig. 5h). In the firing rate space, single units have heterogeneous 
response profiles (Fig. 5i) and diverse non-linear tuning to the deci-
sion variable x (Fig. 5j), with high-dimensional population geometry 
of the decision manifold (Fig. 5k), as in our PMd data. This example 
shows that recurrent networks can generate identical dynamics with 
distinct population geometry (Fig. 5e,k), mechanistically grounding 
our computational approach for discovering dynamics and geometry 
directly from data.

Discussion
We identified the population code for choice in the primate premotor 
cortex, in which heterogeneous single-neuron activity arises from 

diverse tuning to a dynamic decision variable encoded in the evolving 
population state. Our work extends the framework of neural population 
geometry1,2,10,44 to transient representations that unfold stochastically 
on single trials, revealing a unifying geometric principle for the encod-
ing of sensory and dynamic cognitive variables.

This discovery was enabled by two technical advances within our 
computational approach. First, our modelling framework dissociates 
the dynamics and geometry of neural representations on single trials 
and enables identifying both simultaneously in data. Previous models 
did not allow for simultaneous inference of non-linear tuning func-
tions and a non-linear latent dynamical system4,20,21,23–27,45,46, requiring 
more latent dimensions and complex dynamics to capture non-linear 
population geometry (Supplementary Note 1.4). Second, our frame-
work belongs to a new class of flexible and interpretable models47–49, 
whereas most existing methods trade off flexibility for interpretability 
or vice versa. On the one hand, interpretable models often rely on rigid 
parametric assumptions that do not permit discovering dynamical laws 
beyond their a priori constraints6,23,24,50,51 (Supplementary Note 1.4). 
On the other hand, flexible high-dimensional recurrent neural net-
works can approximate any dynamics, but do not yield interpretable 
low-dimensional flow fields25–27. Recurrent neural networks are typically 
interpreted by linearizing their dynamics around fixed points12,36,52, pro-
viding merely local linear approximations of the dynamics. By contrast, 
our approach derives a low-dimensional non-linear dynamical system 
model of neural computations16 directly from spike data, avoiding 
inductive biases of intermediate approximation schemes53.

These technical innovations enabled us to test a hypothesis that 
heterogeneous responses of single neurons result from their diverse 
tuning to a decision variable encoded in single-trial population dynam-
ics. Although decision-making has been long hypothesized to arise from 
attractor33,34, drift diffusion28 or stepping dynamics3,4,20,21, no conclusive 
evidence has emerged thus far to arbitrate among these alternatives 
in data. For example, attempts to arbitrate between drift diffusion and 
stepping dynamics concluded that equal fractions of neurons show 
each type of dynamics20, indicating that dynamics are not shared across 
the entire population. However, all these classic hypotheses postulate 
monotonically ramping trial-averaged firing rates and fail to account 
for heterogeneous responses of cortical neurons (Fig. 2b). By contrast, 
we showed that individual neurons follow the same dynamics on single 
trials shared across the population, suggesting that previous models 
may have reached the opposite conclusion due to their inflexible map-
ping of latent states to firing rates4,20. Moreover, our model reveals 
that behavioural errors arise from deviant dynamics on a manifold 
with stable geometry, despite distinct geometries of trial-averaged 
trajectories for correct and error trials (Supplementary Fig. 7 and Sup-
plementary Note 1.5).

We found that PMd neurons have non-linear tuning to the decision 
variable, contrary to the common assumption that firing rates encode 
the decision variable linearly8 or monotonically4,20,21. Linear tuning 
implies that trial-averaged firing rates ramp up or down monotoni-
cally, inconsistent with temporal response profiles of many neurons. In 
addition, linear models have often found that the axis encoding choice 
in the population state space rotates over time within a trial50,54. The 
rotating choice axes are parsimoniously explained as piecewise linear 
approximations of the non-linear geometry of the choice manifold 
that we discovered. Non-linear encoding of cognitive variables may be 
ubiquitous, as neurons in the hippocampal formation encode space 
and other abstract variables with non-monotonic tuning functions55–57.

We found attractor dynamics in the PMd with high-dimensional 
geometry of choice representation. Low-rank recurrent networks 
can generate identical dynamics with distinct population geometry43 
(Fig. 5), thus dissociating population dynamics and geometry. Our 
modelling framework identifies dynamics and geometry of neural 
representations without imposing an inductive bias towards a specific 
circuit mechanism that generated them. Such statistical descriptions 
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reveal principles of neural coding and computation and allow for 
quantitative comparisons between distinct mechanistic models and 
experimental data58.
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Methods

Behaviour and electrophysiology
We analysed an experimental dataset previously described11,59. Two male 
monkeys (T and O, Macaca mulatta, 6 and 9 years of age) were used in 
the experiments. Experimental procedures were in accordance with 
the US National Institutes of Health (NIH) Guide for the Care and Use of 
Laboratory Animals, the Society for Neuroscience Guidelines and Poli-
cies, and Stanford University Animal Care and Use Committee (8856).

The monkeys were trained to discriminate the dominant colour in a 
static checkerboard stimulus composed of red and green squares and 
report their choice by touching the corresponding target. At the start 
of each trial, a monkey touched a central target and fixated on a cross 
above the central target. After a short holding period (300–485 ms), red 
and green targets appeared on the left and right sides of the screen. The 
colours of each side were randomized on each trial. After another short 
holding period (400–1,000 ms), the checkerboard stimulus appeared 
on the screen at the fixation cross and the monkey had to move its 
hand to the target matching the dominant colour in the checkerboard. 
Monkeys were free to respond when ready. Monkeys were rewarded 
for the correct choices and received longer inter-trial delays for the 
incorrect choices. Hand position was monitored by taping an infrared 
reflective bead to the index or middle fingers of each hand and used 
for measurement of speed and to estimate reaction time60. We used a 
real-time system combining xPC Target (v5.3) from MATLAB R2012b to 
control task timing and state transitions. This system communicated 
with a separate computer running Psychtoolbox (v3.0.9) on MATLAB 
R2012b for stimulus display.

The difficulty of the task was parameterized by an unsigned stimulus 
coherence expressed as the absolute difference between the number of 
red (R) and green (G) squares normalized by the total number of squares 
∣R − G∣/(R + G). We used a 15 × 15 checkerboard, which led to a total of 
225 squares. The task was performed with seven different unsigned 
coherence levels for monkey T and eight levels for monkey O. For each 
stimulus condition, our analysis required at least a small fraction of 
incorrect choices so that the neural activity fully explored the decision 
manifold. Therefore, we only analysed the four most difficult stimulus 
conditions for each monkey, which had sufficient number of error tri-
als. To obtain sufficient data for the model fitting and validation, we 
merged these four stimulus conditions into two groups combining 
two easier conditions into one group and two harder conditions into 
another group. We refer to these two groups as easy and hard stimulus 
difficulties. As PMd neurons are selective for the chosen side but not for 
colour11, we further divided the trials according to the side indicated by 
the stimulus (left or right) for each stimulus difficulty (easy or hard), 
resulting in four analysed conditions in total.

We used the cerebus system (Blackrock Microsystems) and the Cen-
tral software (v6.0) to record neural activity in the PMd with a linear 
multi-contact electrode (U-probe) with 16 channels. After rigorous 
online sorting in Central, we used offline spike sorting through a com-
bination of MATLAB (MatClust v1.7.0.0) and Plexon offline sorter (v3) to 
identify single neurons and multi-units. The average yield was approxi-
mately 16 and approximately 9 neurons per session for monkey T and 
monkey O, respectively, which primarily were well-isolated single units.

Selection of units for the analyses
After spike sorting and quality control, we had 546 and 450 single neu-
rons and multi-units recorded from monkeys T and O, respectively. 
From this dataset, we selected units for our analyses based on three 
criteria: (1) trial-averaged firing rate traces sorted by the chosen side 
(left versus right) reach 15 Hz for at least one reach direction at any 
time between stimulus onset and median reaction time; (2) the total 
number of trials across all conditions is at least 560; and (3) selectivity 
index for the chosen side is greater than 0.6 for monkey T and 0.55 for 
monkey O. The first two criteria ensure that a unit yields a sufficiently 

large number of spikes for model fitting18, and the third criterion selects 
for units with decision-related activity.

For the first criterion, we used trial-averaged firing rate traces 
aligned to stimulus onset (PSTH) sorted by the chosen side, obtained 
by averaging over trials the spike counts measured in 75-ms bins slid-
ing at 10-ms steps. For the third criterion, we measured the spike 
count of each neuron on each trial in a (0.2–0.35 s) window aligned 
to stimulus onset. Selectivity index was defined as the area under 
the receiver operating characteristic curve for discriminating left 
versus right chosen side based on the spike counts. Selectivity index 
ranges between 0.5 (no choice selectivity) and 1. For each monkey, we 
imposed a selectivity index threshold at the median across all neurons 
(0.6 for monkey T and 0.55 for monkey O), leading to selecting half of 
all neurons in each monkey. This criterion implies that analysed neu-
rons had overall lower choice selectivity in monkey O than in monkey 
T, because choice selectivity was generally lower for neurons from 
monkey O in our dataset.

For monkey T and monkey O, 128 and 88 units, respectively, passed 
all three selection criteria and were used in single-neuron analyses. The 
majority were well-isolated single neurons (127 out of 128 units (99%) 
for monkey T, and 76 out of 88 (86%) for monkey O), and the rest were 
multi-units. For population analyses, we included sessions that had at 
least 3 of the selected single units recorded simultaneously, yielding 
15 populations for each monkey.

On each trial, we analysed PMd activity from 120 ms after stimulus 
onset (the appearance of a checkerboard stimulus on the screen) until 
the reaction time (the hand leaving the central target), which was esti-
mated at the first time after checkerboard onset when speed of the 
hand was above 10% of the maximum speed for that trial. The delay 
of 120 ms was chosen to account for the lag in PMd response to the 
stimulus. We verified that the model fitting results were the same for 
a 80–120-ms range of delays.

Flexible inference framework
We implemented our computational framework as a Python package 
NeuralFlow, which is publicly available online61. We modelled latent 
neural dynamics x(t) as a stochastic non-linear dynamical system 
defined by the Langevin equation19 (equation (1)) on the domain 
x ∈ [−1; 1]. In this equation, the potential Φ(x) gives rise to a determin-
istic force flow field F(x) = −dΦ(x)/dx. As in one dimension, there are 
no rotational forces and any force results from the gradient of a poten-
tial, representing the flow field via potential does not restrict our 
model. In practice, we directly optimized the force F(x) and then 
computed Φ(x) from the force for visualization. The term ξ(t) is a 
white Gaussian noise ξ t ξ t ξ t δ t t� ( )� = 0, � ( ) ( ′)� = ( − ′) with the mag
nitude D. In equation (1), we scaled the potential with D, which makes 
the equilibrium probability density of the Langevin dynamics invar-
iant to the noise magnitude. This parametrization is equivalent to 
measuring the potential height in units of D and does not restrict the 
space of dynamical systems spanned by our models. We scaled all 
potentials by D after fitting for visualization and comparisons across 
conditions, neurons and populations. At the start of each trial, the 
initial latent state x0 is sampled from a distribution with probability 
density p0(x).

We modelled spikes of each neuron as an inhomogeneous Poisson 
process with instantaneous firing rate λ(t) = f(x(t)) that depends on the 
current latent state via a neuron-specific tuning function f(x). In pop-
ulation models, all neurons follow the same latent dynamics x(t) and 
each neuron i has a unique tuning function fi(x) (i = 1…M, where M is 
the number of neurons in the population). In this case, the population 
dynamics x(t) are shared by all neurons, and the tuning functions fi(x) 
jointly define the non-linear embedding of these dynamics into the 
neural population state space. Thus, the model was specified by a  
set of continuous functions: the potential Φ(x), the initial state distribu
tion p0(x), a collection of tuning functions {fi(x)} and a scalar noise 



magnitude D. We inferred all model components θ = {Φ(x), p0(x), 
{ fi(x)}, D} from spike data Y t( ).

The spike data consisted of multiple trials t Y t( ) = { ( )}kY  (k = 1, 2…K, 
where K is the number of trials), and the time argument in Yk(t) indicates 
that the data are a sequence of event times on each trial. For independ-
ent trials, the total data likelihood is a product of likelihoods of indi-
vidual trials

L L∣ ∣Y ∑t θ Y t θlog [ ( ) ] = log [ ( ) ]. (2)
k

K

k
=1

Therefore, here we consider data for a single trial Yk(t) and omit the 
trial index to simplify notation. For each trial, Y(t) = { y0, y1, … , yN, yE} 
is a marked point process, that is, a sequence of discrete observation 
events. Each observation is a pair yj = (tj, ij), where tj is the time of event 
j and ij is the type of this event. The first and last events mark the trial 
start time t0 and trial end time tE, and the N remaining events (j = 1, …N) 
are the spike observations where tj is the time of jth spike and ij is the 
index of the neuron that emitted this spike (ij ∈ {1, …M}, where M is the 
number of simultaneously fitted neurons). The events are ordered 
according to their times.

We fitted the model by maximizing the data log-likelihood 
L Y ∣t θlog [ ( ) ] over the space of continuous functions18,19 (Supplemen-

tary Methods 2.1). The likelihood for each trial is a conditional prob-
ability density of observing the data Y(t) given the model θ marginalized 
over all possible latent trajectories:

DX XL ∫Y t θ t P t Y t θ[ ( ) ] = ( ) ( ( ), ( ) ). (3)∣ ∣

Here XP t Y t θ( ( ), ( ) )  is a joint probability density of observing  
the spike data Y(t) and a continuous latent trajectory t( )X  given the 
model θ, and the path integral is performed over all possible latent 
trajectories. We omit the conditioning on θ in subsequent expressions 
for the probability densities of the data and latent states to simplify 
notation.

We derived the likelihood functional for non-stationary latent  
Langevin dynamics as previously described19. In brief, in a reaction- 
time decision-making task, a participant reports the choice as soon as 
the neural trajectory reaches a decision boundary for the first time. 
Thus, trials have variable durations defined by the neural dynamics 
itself, and the latent trajectory always terminates at one of the decision 
boundaries at the trial end. Accordingly, the likelihood calculation must 
integrate over all latent paths that terminate at one of the boundaries 
at the trial end time tE and do not reach a boundary at earlier times.  
Two components in our framework account for the statistics of  
latent trajectories in this case. First, the absorbing boundary conditions 
ensure that latent trajectories reaching a boundary before the trial end 
do not contribute to the likelihood. Second, the absorption operator 

∣p A x( )t E
 enforces that the likelihood includes only trajectories termi

nating on the boundaries at the trial end time. Without the absorption 
operator, the likelihood includes all trajectories that terminate any-
where in the latent space and do not reach the domain boundaries before 
the trial end. Omitting either of these components results in incorrect 
inference, in which erroneous features arise in the dynamics due to 
non-stationary data distribution19.

Here we provide a brief exposition of the likelihood calculation. The 
detailed mathematical derivation and extensive numerical testing of 
the non-parametric inference of non-stationary latent Langevin dynam-
ics have been presented in our previous work19. In this study, we have 
introduced non-parametric inference of tuning functions fi(x) simul-
taneously with latent dynamics, as described below. To compute the 
path integral in equation (3), we consider a discretized latent trajectory 
X t x x x x( ) = { , , …, , }t t t tN E0 1

, which is a discrete set of points along a con-
tinuous path t( )X  at each of the observation times {t0, t1, …, tN, tE}. Once 
we calculate the joint probability density P(X(t), Y(t)) of the discretized 

trajectory and data, we can obtain the data likelihood by marginaliza-
tion over all discretized latent trajectories:

∫ ∫ ∫ ∫ x x P X t Y t= … d …d ( ( ), ( )). (4)
x x x x

t t
t t tN tE

E
0 1

0
L

We do not bin spikes but process data spike by spike in continuous 
time. Accordingly, the calculation of the joint probability density 
P(X(t), Y(t)) must account for the spikes observed at times Y(t) = {tj} and 
also for the absence of spike observations during interspike intervals 
(ISIs; tj−1, tj). Using the Markov property of the latent Langevin dynamics 
in equation (1) and conditional independence of spike observations, 
the joint probability density P(X(t), Y(t)) can be factorized19:









∣ ∣ ∣ ∣∏P X t Y t p x p y x p x x p x x p A x( ( ), ( )) = ( ) ( ) ( ) ( ) ( ). (5)t

j

N

j t t t t t t
=1

j j j E N E0 −1

Here the terms ∣p y x( )j t j
 represent the probability density of obser

ved spikes, and the terms p x x( )t tj j−1
∣  represent the transition probabil-

ity density of latent states that accounts for the absence of spike 
observations during ISIs. Each term p y x t( | )dj t j

 is the probability of 
observing a spike from neuron ij within infinitesimal dt of time tj  
given the latent state xt j

, hence p y x f x( ) = ( )j t i tj j j
∣  by the definition of  

the instantaneous Poisson firing rate. ∣p x x( )t tj j−1
 is the transition 

probability density from xt j−1
 to xt j

 during the time interval between 
the adjacent spike observations, which also accounts for the absence 
of spikes during each ISI in the data. This transition probability density 
decays with time at a rate given by the Poisson firing rate of all neurons, 
because it becomes less likely to observe no spikes for longer time 
intervals. p x( )t 0

 is the probability density of the initial latent state. 
Finally, the term ∣p A x( )t E

 represents the absorption operator, which 
ensures that only trajectories terminating at one of the domain  
boundaries at time tE contribute to the likelihood19.

The discretized latent trajectory X t x x x x( ) = { , , . . . , , }t t t tN E0 1
 is obtai

ned by marginalizing the continuous trajectory X t( ) over all latent 
paths connecting xt j−1

 and xt j
 during each ISI. These marginalizations 

are implicit in the transition probability densities ∣p x x( )t tj j−1
 in equa-

tion (5). The transition probability density ∣p x x( )t tj j−1
 accounts for the 

drift and diffusion in the latent space and also for the absence of spikes 
during each interval between adjacent spike observations. This prob-
ability density satisfies a modified Fokker–Planck equation, which we 
derived previously19:

∑p x t
t

D
x

F x D
x

f x p x t p x t
∂ ( , )

∂
= −

∂
∂

( ) +
∂

∂
− ( ) ( , ) ≡ − ( , ). (6)

i

M

i

2

2
=1











̂

Here F x Φ x( ) = − ′( ) is the deterministic potential force, and the term 
f x− ∑ ( )i

M
i=1  leads to the probability decay due to spikes emitted by any 

neurons in the population, such that ∣p x x( )t tj j−1
 includes only trajecto-

ries consistent with no spikes emitted between tj−1 and tj. The solution 
of this equation p x t p x t t t( , ) = ( , )exp(− ⋅ ( − ))j j j j−1 −1̂  propagates the 
latent probability density forwards in time during each ISI. To model 
the reaction time task, we solved equation (6) with absorbing bound-
ary conditions, which ensure that trajectories reaching a boundary 
before the trial end do not contribute to the likelihood19. In addition, 
the absorption operator ∣p A x( )t E

 in equation (5) enforces that the like-
lihood includes only trajectories terminating on the boundaries at the 
trial end time tE

19 (Supplementary Methods 2.1). Together, these two 
conditions ensure that the likelihood includes only trajectories  
that reach one of the boundaries for the first time at the trial end time.

To fit the model to data, we derived analytical expressions for the 
gradients of the model likelihood with respect to each of the model 
components (Supplementary Methods 2.2). We computed functional 
derivatives of the likelihood with respect to latent dynamics as previ-
ously described19. In this study, we computed functional derivatives 
of the likelihood with respect to tuning functions (Supplementary 
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Methods 2.2). Instead of directly updating the functions Φ(x), p0(x) 
and fi(x) we, respectively, update the force F x Φ x( ) = − ′( ) and auxiliary 
functions

F x p x p x F x f x f x( ) ≡ ′( )/ ( ), ( ) ≡ ′ ( )/ ( ). (7)i i i0 0 0

The potential Φ(x) is obtained from F(x) via

∫Φ x F s s C( ) = − ( )d + , (8)
x

−1

where we fixed the integration constant C to satisfy ∫ Φ x xexp[ − ( )]d = 1
−1

1
. 

As C is an arbitrary integration constant, a specific choice of C was not 
important as long as it was the same for all models. The initial state 
distribution p0(x) was obtained from the auxiliary function F0(x) in 
equation (7) via

( )
( )∫

∫ ∫
p x

F s s

F s s s
( ) =

exp ( )d

exp ( )d d ′
. (9)

x

s0
−1 0

−1

1

−1

′
0

The change of variable from p0(x) to F0(x) allowed us to perform an 
unconstrained optimization of F0(x), whereas equation (9) ensures 
that p0(x) satisfies the normalization condition for a probability density 
∫ p x x( )d = 1

−1

1

0
, p0(x) ⩾ 0. Finally, the tuning function fi(x) was obtained 

from the auxiliary function Fi(x) in equation (7) via

∫f x C F s s( ) = exp ( )d , (10)i i

x

i
−1

 






where Ci = fi(−1) is the firing rate at the left domain boundary. This 
change of variable allowed us to perform an unconstrained optimiza-
tion of Fi(x), whereas equation (10) ensures the non-negativity of the 
firing rate fi(x) ⩾ 0. We enforced the positiveness of the noise magnitude 
D by rectifying its value after each update D D= max( , 0), and the same 
for each constant Ci .

We derived analytical expressions for the variational derivatives of 
the likelihood with respect to each continuous function defining the 
model δ δF x/ ( )L , δ δF x/ ( )0L , Lδ δF x/ ( )i  and the derivatives of the  
likelihood with respect to scalar parameters L D∂ /∂  and C∂ /∂ iL   
(Supplementary Methods 2.2). We evaluated these analytical expres-
sions numerically for the iterative optimization. To compute the like-
lihood and its gradients numerically, we used a discrete basis in which 
all continuous functions, such as F(x), are represented by vectors, and 
the transition, emission and absorption operators are represented by 
matrices18,19 (Supplementary Methods 2.1). Thus, equation (5) was 
evaluated as a chain of matrix–vector multiplications.

Optimization with ADAM algorithm
We fitted the model by minimizing the negative log-likelihood 

L Y t θ−log [ ( ) ]  using ADAM algorithm62 with custom modifications 
(Supplementary Methods 2.3). The standard ADAM update scales the 
gradient of each scalar parameter inversely with the running average 
of the squared magnitudes of its current and past gradients, computed 
separately for each parameter. As we optimized over continuous func-
tions F(x), F0(x) and {Fi(x)}, we scaled their gradients by the running 
average of the gradient’s squared L2-norm defined as ∥ ∥v v= ∑i i2

2. We 
used the following ADAM hyperparameters: α = 0.05 for single neurons, 
α = 0.01–0.05 for populations, β1 = 0.9, β2 = 0.99, ϵ = 10−8 for both single 
neurons and populations (the definitions of hyperparameters are in 
Supplementary Methods 2.3). We tuned these hyperparameters on 
synthetic data with known ground truth. For the scalar parameters D 
and all {Ci}, we combined ADAM updates with line searches using the 
L-BFGS-B algorithm (L-BFGS-B method from the scipy.optimize.minimize 
toolbox). As a line search is computationally expensive, we performed 
only 30 line searches spaced logarithmically over the 5,000 epochs 
range, such that most line searches are concentrated at early epochs.

We combined ADAM with mini-batch descent randomly splitting 
the trials from each condition into 20 batches on each epoch. When 
we performed shared optimization, we fitted the model to all available 
trials restricting F0(x), {Fi(x)} and D to be the same and only allowing 
the potential force F(x) to differ across stimulus conditions. In this 
case, we performed ADAM updates on all batches pooled across four 
stimulus conditions (80 batches total) in random order on each epoch. 
We updated the force Fl(x) that defines the potential in condition l only 
on batches from this condition, and we updated all shared components 
F0(x), {Fi(x)}, D, {Ci} on every batch.

We accelerated the optimization algorithm on graphics process-
ing units (GPUs) using cupy library63. GPU implementation provides 
a 5–10-fold acceleration over the CPU implementation with the exact 
factor depending on the spatial resolution of the discrete basis. The 
5–10-fold GPU acceleration can only be provided by scientific-grade 
GPUs (for example, Tesla V100) that have sufficient number of 
double-precision streaming multiprocessors.

Model selection
ADAM optimization produces a series of models across epochs, and 
we needed a model selection procedure for choosing the optimal 
model. On early epochs, the fitted models miss some true features of 
the dynamics due to underfitting, whereas on late epochs, the fitted 
models develop spurious features due to overfitting to noise in the data. 
The optimal model is discovered on some intermediate epochs. The 
standard approach for selecting the optimal model is based on optimiz-
ing the ability of the model to predict new data (that is, generalization 
performance), for example, using likelihood of held-out validation data 
as a model selection metric64. However, optimizing generalization per-
formance cannot reliably identify true features and avoid spurious fea-
tures when applied to flexible models18,65, which generalize well despite 
overfitting66. We developed an alternative approach for model selection 
based on directly comparing features of the same complexity discovered 
from different data samples18,19 (Supplementary Methods 2.4). As true 
features are the same, whereas noise is different across data samples, 
the consistency of features inferred from different data samples can 
separate the true features from noise, and model selection based on 
feature consistency can reliably identify the correct features18,19.

To compare features discovered from different data samples, we 
need a metric for feature complexity M. We defined feature complex-
ity as the negative entropy of latent trajectories generated by the 
model18,19 M S Φ x D p x Φ x D p x= − [ ( ), , ( ); ( ), , ( )]R R R

0 0 . The trajectory 
entropy67 is a functional defined as a negative Kullback–Leibler diver-
gence between the distributions of trajectories in the model of interest 
{Φ(x), D, p0(x)} and the distribution of trajectories in the reference 
model Φ x D p x{ ( ), , ( )}R R R

0 . The reference model is a free diffusion in a 
constant potential (Φ x( ) = constR ) with the same diffusion coefficient 
D as in the model of interest. We derived the analytical expression for 
the trajectory entropy for non-stationary Langevin dynamics19:

∫ ∫ ∫
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xp x
p x

p x
D
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−
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We chose the initial distribution p x( )R
0  for the reference model to be 

uniform. We derived an expression for efficient numerical evaluation 
of equation (11) taking the integral over time analytically19 (Supple-
mentary Methods 2.4). Qualitatively, feature complexity reflects the 
structure of the potential Φ(x): potentials with more structure have 
higher feature complexity. The reference model with constant poten-
tial has zero feature complexity. During model fitting, the feature 
complexity consistently grows throughout the optimization epochs19.

We compared models discovered from two non-intersecting halves 
of the data 1D  and 2D  to evaluate the consistency of their features  



(Supplementary Fig.  1). We performed the ADAM optimization  
independently on each data split to obtain two series of models 
θ Φ D p x= { , , ( )}n n n n

1 1 1
0,
1  and θ Φ D p x= { , , ( )}n n n n

2 2 2
0,
2  (where n = 1, 2…5,000 is 

the epoch number) fitted on D1 and D2, respectively. We measured 
feature complexity of these models, Mn

1  and n
2M , and quantified the 

consistency of features of the same complexity between models fitted 
on different data splits. We quantified the consistency of features 
between two models by evaluating Jensen–Shannon divergence (DJS) 
between their time-dependent probability densities over the latent 
space19 (Supplementary Methods 2.4). At low and moderate feature 
complexity, the models contain true features of the dynamics in the 
data and their features agree between data splits reflected in low DJS 
values. At high feature complexity, the models overfit to noise and 
contain spurious features that do not replicate between data splits, 
resulting in large DJS values. To find the optimal feature complexity, we 
set the threshold D = 0.0015JS,thres  and selected *M  as the maximum 
feature complexity for which D D≤JS JS,thres. This procedure returned 
two models of roughly the same feature complexity that represent the 
consistent features of dynamics across data splits. The threshold DJS,thres 
sets the tolerance for mismatch between models and choosing higher 
DJS,thres results in greater discrepancy between models obtained from 
two data splits. We set D = 0.0015JS,thres  based on fitting synthetic data 
with known ground truth; at this threshold value, the selected models 
reliably matched the ground-truth model.

We split all trials in halves by assigning even trails to 1D  and odd trials 
to 2D . In the experiment, stimulus conditions were sampled randomly 
on each trial. Therefore, the time difference between two adjacent 
trials of the same condition varies broadly, limiting possible temporal 
correlations between D1 and 2D .

Uncertainty quantification
We quantified the estimation uncertainty for fitted models using a 
bootstrap method19. To obtain confidence bounds for the inferred 
model, we generated ten bootstrap samples by sampling trials ran-
domly with replacement from the set of all trials. To ensure that the 
two data samples D1 and D2 used for model selection do not overlap, 
we first randomly split all trials into two equal non-overlapping groups, 
and then sampled trials randomly with replacement from each group 
to generate 1D  and 2D . For shared optimization, we resampled the trials 
separately for each stimulus condition. For each bootstrap sample, we 
refitted the model and performed model selection using our feature 
consistency method. We then obtained the confidence bounds for the 
inferred potential, p0(x) distribution, and tuning functions by comput-
ing a pointwise standard deviation across 20 models produced by the 
model selection on two data splits from each of 10 bootstrap samples.

Outcomes of model fitting
When fitting our model to spikes of single neurons and populations and 
performing model selection, we observed three possible outcomes: 
overfitting, underfitting and good fit.

In rare cases (0 out of 128 single neurons (0%) and 1 out of 15 popula-
tions (6.7%) for monkey T; and 1 out of 88 single neurons (1%) and 1 out 
of 15 populations (6.7%) for monkey O), the model selection produced 
a model that showed signs of overfitting (Supplementary Fig. 8). We 
detected overfitting as models with unrealistically high firing rates in 
the tuning function (hundreds of Hz), disproportionally high noise 
magnitude (in the range of D ~ 3–5, compared with D ~ 0.2–0.6 in regu-
lar fits) compensated by deep wells in the potential (overall depth of 
the potential of approximately 20, compared with approximately 2 in 
regular fits). These models produced severely underestimated reaction 
times (reaction time of approximately 10 ms in the model, compared 
with approximately 500 ms in the data) and did not predict choice of 
the monkey. This type of overfitting cannot be detected with standard 
validation approaches18, for example, these models had similar likeli-
hood on training and validation data.

Some selected models showed signs of underfitting in one of two 
types. In the first type (10 out of 128 single neurons (7.8%) and 2 out 
of 15 populations (13%) for monkey T; and 11 out of 88 single neurons 
(12.5%) and 1 out of 15 populations (6.7%) for monkey O), the potentials 
had the linear slope tilted towards the same boundary in all stimulus 
conditions, that is, the model had no decision signal (Supplementary 
Fig. 9a,b). In the second type (1 out of 128 single neurons (0.8%) and 1 
out of 15 populations (6.7%) for monkey T; and 9 out of 88 single neu-
rons (10%) and 0 out of 15 populations (0%) for monkey O), the poten-
tials obtained from two data halves D1 and 2D  had the linear slope tilted 
towards the opposite boundaries in at least one stimulus condition 
(Supplementary Fig. 9c–e). This disagreement about the correct 
choice side resulted in DJS values rising high early in the optimization, 
leading to the selection of a model with low feature complexity before 
all consistent features had been discovered. These both types of under-
fitting probably arise when a model cannot detect a weak decision 
signal and mainly fits the condition-independent trend in neural  
activity.

All remaining models were considered a good fit and were used in 
further analyses. In these models, we quantified the potential shape 
by counting the number of barriers in the potential. A barrier is a poten-
tial maximum where the force, which is the negative derivative of the 
potential F(x) = −dΦ(x)/dx, changes the sign from negative to positive. 
We also classified a potential minimum next to a boundary as a barrier, 
because the trajectory must get to the top of the potential to reach the 
boundary. At a potential minimum, the force changes the sign from 
positive to negative. We therefore counted the number of sign changes 
from negative to positive and vice versa in the force F(x) in each stimu-
lus condition. We used two force functions F1(x) and F2(x) produced by 
the model selection on two data splits 1D  and 2D  (bootstrap samples 
were not used in this analysis). We counted a sign change to occur within 
a local region if both F1(x) and F2(x) were negative for ten consecutive 
grid points to the left and positive for ten consecutive grid points to 
the right of that region, or vice versa. We only counted sign changes 
that were at least 30 grid points away from the domain boundaries.

The overwhelming majority of models had a single-barrier potential 
in all four stimulus conditions (102 out of 117 single neurons (87%) and 
9 out of 11 populations (82%) for monkey T; and 66 out of 67 single 
neurons (98.5%) and 13 out of 13 populations (100%) for monkey O; 
Figs. 3e,h and 4d, Extended Data Fig. 8 and Supplementary Fig. 6). Some 
models had a monotonic potential (no barrier) in at least 1 stimulus 
condition and a single-barrier potential in the remaining conditions 
(9 out of 117 single neurons (8%) and 1 out of 11 populations (9%) for 
monkey T; and 0 out of 67 single neurons (0%) and 0 out of 13 popula-
tions (0%) for monkey O). The remaining models had a second small 
barrier in at least 1 stimulus condition and a single-barrier potential in 
the remaining conditions (6 out of 117 single neurons (5%) and 1 out of 
11 populations (9%) for monkey T; and 1 out of 67 single neurons (1.5%) 
and 0 out of 13 populations (0%) for monkey O). The second barrier 
was typically shallow and located near the incorrect-choice bound-
ary, where the estimation uncertainty is higher due to lower sampling 
probability of this region in the data.

We also analysed the potential shape in models that showed the first 
type of underfitting with no decision signal. These models had feature 
complexity similar to good fits, suggesting that the model selection 
identified similar features in the dynamics. The fit, however, captured 
only the condition-independent dynamics and missed the weak deci-
sion signal. These models can still inform us about the mechanism 
of decision-making. For example, in the two-pool attractor network 
model33, inhibitory neurons do not have choice selectivity but they 
still reflect the attractor dynamics with a barrier separating correct 
and incorrect choices. Many of the models with no decision signal 
had a single-barrier potential (5 out of 10 single neurons (50%) and 0 
out of 2 populations (0%) for monkey T; and 11 out of 11 single neurons 
(100%) and 1 out of 1 populations (100%) for monkey O), which further 
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supports our finding that the dynamics described by a single-barrier 
potential were prevalent in our PMd data.

When analysing spike-time variation explained by our models on 
single trials (Fig. 3b), for each neuron, we included only stimulus con-
ditions that had at least 600 spikes across all trials. This restriction 
was necessary for an accurate estimation of the spike-time variation 
explained by the model, which was computed on raw spike times with-
out binning or smoothing. For single-neuron models, this restriction 
produced 111 and 50 single neurons for monkey T and monkey O, respec-
tively (Fig. 3b). For population models, this restriction produced 80 
and 32 single neurons for monkey T and monkey O, respectively, which 
were part of the well-fitted populations. The comparison between the 
residual spike-time variation unexplained by single-neuron models 
and the point process variation estimated by the independent method 
was performed for 64 neurons from monkey T and 27 neurons from 
monkey O, which had sufficiently high firing rate for the independent 
method to produce a reliable estimate32. For behaviour prediction 
(Fig. 4e), we additionally only included conditions that had at least 
five incorrect choices in both training and validation datasets, which 
did not change the number of analysed populations. This condition 
was necessary for the baseline comparison, which required training 
a logistic regression decoder for choice prediction. In this analysis, 
we used all well-fitted population models and the single-neuron 
models for the exact same set of neurons that were part of the used  
populations.

Spike-time R2

To quantify how well our models fitted spiking activity on single trials, 
we designed a metric specifically for measuring the fraction of the total 
variation in spike times on single trials explained by a model. We used 
the standard coefficient of determination R2 defined as the proportion 
of the total variation in the data that is predicted by a statistical model:

R = 1 −
CV

CV
. (12)2 residual

2

total
2

Here CVtotal
2  is the total variation in the data, and CVresidual

2  is the 
residual variation unexplained by the model. As we modelled single-trial 
dynamics, our metric quantified the variation in spike times on single 
trials. We quantified the total variation in the data CVtotal

2  using the 
squared coefficient of variation of ISIs, which is the ratio of the ISI 
variance to the squared mean ISI68. Then, CVresidual

2  is the residual 
variation in ISIs unexplained by the model. As our model predicts the 
firing rate on single trials but not individual spikes, the residual varia-
tion is the variation in spike times after accounting for the firing rate 
variation predicted by the model.

To compute the residual variation in ISIs, we used the time rescaling 
theorem for doubly stochastic point processes69. For a doubly stochas-
tic point process, the total variation in spike times arises from two 
sources: the variability of the instantaneous firing rate λ(t) and the 
variability of the point process generating spikes from this firing rate. 
The time rescaling theorem states that we can eliminate the firing rate 
variation by mapping the spike times from the real time t to the opera-
tional time t ′ via squeezing or stretching the time locally in proportion 
to the cumulative firing rate: ∫t t λ s s′ = Λ( ) = ( )d

t

0
. Accordingly, we used 

a model to predict the instantaneous firing rate λ(t) of a neuron on each 
trial, map spikes to the operational time using this predicted firing rate 
λ(t), and compute the residual ISI variation CVresidual

2  as the squared 
coefficient of variation of rescaled ISIs in the operational time. If the 
firing rate is predicted correctly on each trial, then the variation of 
rescaled ISIs in the operational time reflects only the point process 
variability. For example, rescaling spike times generated by an inho-
mogeneous Poisson process using the ground-truth firing rate yields 
a homogeneous Poisson process with the firing rate of 1 Hz. The total 
variation CVtotal

2  was calculated using the raw ISIs in the real time.

To compute the residual spike-time variation CVresidual
2 , we predicted 

the instantaneous firing rate λ(t) with our model on each trial. First, we 
used the Viterbi algorithm to predict the most probable latent path 

̂X t( ) given the observed data Y(t). We generalized the max-sum Viterbi 
algorithm with backtracking70 to our case of continuous-space 
continuous-time latent dynamical system (Supplementary Meth-
ods 2.5). Then, from the most probable latent path X t( )̂ , we computed 
the instantaneous firing rate for a neuron i using its tuning function 

̂λ t f X t( ) = ( ( ))i . Finally, we rescaled spike times via ∫t λ t t′ = ( )di t

ti

0
 (where 

t0 is the trial start time and t1, … , tN are the original spike times) using 
the trapezoidal rule to approximate the time integral and compute 
CVresidual

2  of rescaled ISIs.
The advantage of the R2 metric is that its value is directly interpretable 

as the fraction of the total variation in the data explained by a model. 
Specifically, R2 = 0 results from the baseline prediction of a firing rate 
that is constant within and across trials. Positive R2 values indicate that 
a prediction is better than this baseline, and negative R2 values indicate 
that a prediction is worse than the baseline. For a doubly stochastic 
point process, the value of our R2 metric can never reach 1, because our 
models predict firing rates on single trials but not individual spikes, 
hence leaving the point process variability unexplained.

We used the unexplained residual variation in spike times to compare 
the performance of our model to the ceiling performance expected if 
the model was correct (Fig. 3b). If the firing rate prediction was correct 
on each trial, then the residual variation CVresidual

2  would match exac
tly the expected point process variation CVpp

2  of rescaled ISIs in the 
operational time. For an inhomogeneous Poisson process, the expected 
CVpp

2  of ISIs in the operational time equals one69. However, the spiking 
of neurons across many brain regions deviates significantly from the 
Poisson irregularity. In particular, most neurons in the parietal and 
premotor cortical areas spike more regularly than expected for an 
inhomogeneous Poisson process71,72. Therefore, we used an independ-
ent method based on doubly stochastic renewal point processes to 
estimate the point process variability CVpp

2  for each neuron32. This 
method does not require knowledge of the firing rate dynamics on 
single trials and assumes only that the firing rate evolves smoothly in 
time. Thus, CVpp

2  is the expected residual variation in rescaled ISIs if 
the firing rate prediction was correct on each trial. The tight corre-
spondence between CVresidual

2  and CVpp
2  indicates that the model 

accounts for nearly all explainable firing-rate variation in the data close 
to the ceiling performance.

The independent method for estimating the point process variability 
based on doubly stochastic renewal point processes has been derived 
and extensively tested in a separate publication32. In brief, for a doubly 
stochastic renewal point process, the variance Var(NT) of spike count NT 
measured in time bins of size T can be partitioned into two components: 
the firing rate and the point process variation32:

N λT ϕ ϕ N TVar( ) = Var( ) +
1
6

(1 − ) + E [ ] + ( ). (13)T T
2 −1O

Here ϕ is a parameter that controls the point process variability 
defined as CV2 of ISIs in the operational time, and λ(t) is the instanta-
neous firing rate that is assumed to be approximately constant within 
a single bin. To estimate ϕ from data, we applied equation (13) to spike 
counts measured in two bin sizes T and 2T to yield two equations, which 
can be solved to obtain a quadratic equation for ϕ32:

ϕ N N ϕ N N
1
2

( − 1) − (4 E [ ] − E [ ]) + 4 Var( ) − Var ( ) = 0. (14)T T T T
2

2 2

Here the spike-count mean and variance for each bin size E[NT], E[N2T], 
Var(NT) and Var(N2T) are measured directly from the spike data, and ϕ 
is the only unknown variable. Thus, we solved equation (14) to estimate 
ϕ = CVpp

2  from data and compared this ϕ to the residual spike-time 
variance unexplained by our model CVresidual

2  (Fig. 3b).



Evaluating model performance
We evaluated model performance using multiple metrics: spike-time 
variance explained (R2), model likelihood relative to several baselines, 
and behavioural choice prediction. We performed all these analyses 
within a cross-validation framework using the same two non-overlapping 
data splits 1D  and 2D  as used for the model selection. For example, we 
used the model fitted on the dataset 1D  to predict the instantaneous 
firing rate and compute R2 of each neuron on the dataset 2D , and vice 
versa. We analysed each stimulus condition separately and averaged 
R2 across conditions. We report R2 averaged over the two data splits. 
The same cross-validation framework was used for all model likelihood 
comparisons and choice prediction analyses.

We compared the likelihoods of single-neuron and population mod-
els against each other and several baselines to determine which model 
components are essential for capturing spiking activity on single trials.

Single-neuron model versus PSTH. As a benchmark, we compared 
the performance of our single-neuron model against the baseline based 
on the trial-averaged firing rate (PSTH; Fig. 3a). The PSTH predicts the 
instantaneous firing rate λ(t) on each trial using the trial-averaged fir-
ing rate traces sorted by the chosen side and stimulus difficulty. We 
computed the trial-averaged firing rates for the left and right choice 
trials in a 75-ms window sliding in 10-ms steps on the dataset D1, and 
used them as a prediction of the instantaneous firing rates for the left 
and right choice trials on the dataset 2D , and vice versa. Thus, the base-
line PSTH prediction (but not our model) uses the information about 
the choice of the animal on both the training and the validation trials.

We compared the likelihood of the single-neuron model with the 
PSTH likelihood (Fig. 3a). The likelihood was computed for the observed 
spike times {t1, t2, … , tN} of a single neuron during the time interval [t0; tE] 
on each trial. The PSTH likelihood for the observed spike sequence 
is given by the standard likelihood of an inhomogeneous Poisson  
process73:







L ∫ ∏λ t t λ t= exp − ( )d ( ), (15)

t

i

N

iPSTH
0 =1

E

where we take the instantaneous firing rate λ(t) to be the PSTH for each 
chosen side and stimulus difficulty. We computed the integral over 
time in equation (15) using the trapezoidal rule.

Unlike PSTH, the full likelihood of our model on each trial (equa-
tion (3)) is a joint probability density of the observed spikes {t1, t2, … , tN} 
and a latent trajectory reaching a decision boundary for the first time 
at the trial end time tE (the reaction time), marginalized over all pos-
sible latent trajectories. Therefore, for comparison with PSTH, we 
needed to compute the model likelihood modelL  of spike times only, 
excluding the probability of the reaction time tE. To obtain this likeli-
hood, we normalized the full model likelihood equation (3) by the 
likelihood Lt E

 of the latent trajectory reaching a boundary for the first 
time at time tE:

Y t θ= [ ( ) ]/ . (16)tmodel E
L L L

This normalized likelihood modelL  is the probability density of the 
observed spikes only, marginalized over all latent trajectories consist-
ent with the reaction time tE. In other words, modelL  is a probability 
density that the observed spikes were generated from any latent trajec-
tory that reaches a boundary for the first time at time tE. Thus, modelL  
is the likelihood of the observed spikes {t1, t2, … , tN} only and is directly 
comparable with the PSTH likelihood PSTHL . We computed the likeli-
hood t E

L  analogously to the full model likelihood, but using only {t0, tE} 
observations. Specifically, we evolved the latent probability density 

∣p x x( )t tE 0
 from the trial start t0 to end time tE by solving the Fokker–

Planck equation (equation (6)) with the drift and diffusion terms but 

without the term f x− ∑ ( )i
M

i=1  for the probability decay due to spike  
emissions (that is, the standard Fokker–Planck equation).

Single-neuron model versus shuffled control. We performed a per-
mutation test to estimate the baseline for the explained variation R2 
in spike times on single trials. For all single-neuron models that pro-
vided a good fit, we inferred the latent trajectories on validation 
trials using the Viterbi algorithm and predicted single-trial firing 
rates of each neuron from these latent trajectories using their tuning 
functions. We then computed the explained spike-time variation R2 
on shuffled trials: we used the firing rate predicted on one trial to 
compute R2 for spikes on another randomly chosen trial. The ex-
plained spike-time variation was much lower for randomly shuffled 
trials than the original data (shuffled R2, median (Q1–Q3); −0.10 (−0.24 
to −0.04), P < 10−10, n = 101 for monkey T; −0.02 (−0.15 to 0.01), 
P < 10−10, n = 35 for monkey O, Wilcoxon signed-rank test). The nega-
tive R2 values indicate that the shuffled prediction performed worse 
than predicting a constant firing rate, which corresponds to 
CV = CVtotal

2
residual
2  and R2 = 0. The shuffled prediction was also signifi-

cantly worse than the prediction based on PSTH. This result confirms 
that our models explain the spike times on single trials significantly 
better than the permutation baseline and PSTH, which shows again 
that our model successfully captured variable firing-rate dynamics 
on single trials.

Single-neuron versus population model. We compared the likeli-
hoods of the single-neuron and population models (Fig. 4a). The single-
neuron model predicts spikes of each neuron independently of other 
neurons in the population. Accordingly, the single-neuron model like-
lihood of spikes from all M neurons in the population is a product of M 
single-neuron model likelihoods for each neuron. However, a product 
of the full likelihood for M single neurons accounts M times for the 
probability that the latent trajectory reaches a boundary for the first 
time at time tE, whereas the population-model likelihood accounts for 
this probability only once. Therefore, we used the normalized model 
likelihood Lmodel (equation (16)) when comparing single-neuron and 
population models. Lmodel is the likelihood of spike data only, margin-
alized over all latent trajectories consistent with the reaction time tE 
on each trial, and, therefore, directly comparable between single-
neuron and population models.

LONO validation versus PSTH. We compared the likelihood of the 
population model in leave-one-neuron-out (LONO) validation with 
the PSTH likelihood based on the neuron’s own trial-averaged firing 
rate (Fig. 4a). For each neuron k, the likelihood was computed for the 
observed spike times Yk(t) = {(tj, k)} during the time interval [t0; tE] on 
each trial, where index j is restricted to spike times of neuron k. We 
computed the PSTH likelihood for each neuron using equation (15) 
with the instantaneous firing rate λ(t) given by the neuron’s own  
PSTH for each chosen side and stimulus difficulty. We computed the 
LONO likelihood LLONO also using equation (15), but with the instan-
taneous firing rate λ(t) of neuron k predicted by the population 
model from spikes of all other neurons in the population on each 
validation trial. Specifically, we used spikes of M − 1 neurons in the 
population excluding spikes of neuron k: YM−1(t) = {(tj, ij)}, where tj is 
the time of jth spike and ij is the index of the neuron that emitted this 
spike (ij ≠ k). We applied the Viterbi algorithm to YM−1(t) to predict the 
most probable latent trajectory ̂X Y t( ( ))M −1  on each trial. We then com-
pute the instantaneous firing rate for neuron k using its tuning func-
tion ̂ ̂λ f X Y t= ( ( ( )))k M −1 , which provides a prediction of the firing rate 
of neuron k at times tj when other neurons in the population spiked. 
We then interpolated λ  ̂with cubic splines to obtain the firing rate 
prediction λ(t) at times when neuron k spiked and substituted it into 
equation (15) to compute the likelihood, approximating the integral 
with the trapezoidal rule.
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Predicting choice from neural activity
We used our models to predict the choice of an animal from neural 
activity. We performed a cross-validation procedure with the same two 
non-overlapping data splits D1 and D2 as used for the model selection. 
We used the models fitted on the dataset 1D  to predict the choice of the 
animal on the dataset D2, and vice versa, and reported the average accu-
racy over the two data splits. We applied the Viterbi algorithm to neural 
activity on validation trials to predict the most probable latent path 

̂X t( ). By the design of the Viterbi algorithm with absorbing boundary 
conditions, the trajectory must terminate at one of the domain bound-
aries, therefore we predicted choice as the value of x(tE) at the trial end.

As a baseline for the comparison with our models, we also predicted 
the choice of the animal with a logistic regression decoder using the 
same two data splits for the decoder training and validation. As an input 
to the decoder, we have provided a vector of spike counts measured in 
75-ms bins sliding in 10-ms steps on single trials. We truncated each trial 
at 0.5 s after stimulus onset resulting in a 42-dimensional input vector 
for single neurons and 42 × M dimensional input vector for populations, 
where M is the number of neurons in the population. We normalized 
the inputs to have zero mean and unit variance across trials for each 
condition in each time bin.

Our data are imbalanced as monkeys make more correct choices than 
errors, especially on easy trials. We therefore report balanced accuracy 
for both our models and the linear decoder (Fig. 4e). The balanced 
accuracy is the average between true-positive and true-negative rates.

The accuracy of choice prediction did not change when replacing the 
tuning functions and potentials with linear approximations (Extended 
Data Fig. 9b), showing that the accuracy of choice prediction does not 
uniquely identify single-trial dynamics.

Spiking network model
We simulated a spiking recurrent neural network model of decision- 
making with the same parameters as in ref. 33 using the Python package 
Brian 2 (ref. 74). We only changed the value of the N-methyl-d-aspartate 
(NMDA) conductance for inhibitory neurons from gNMDA = 0.13 nS to 
gNMDA = 0.128 nS to match the reaction times of the spiking network to 
the experimental data. We simulated four stimulus conditions based 
on the stimulus difficulty (easy versus hard) and side (left versus right) 
for comparison with our PMd data. We set the stimulus coherence 
parameter c = 17.5% for easy-stimulus and c = 7.5% for hard-stimulus 
conditions and generated approximately 3,200 trials of data per 
condition. The reaction time was defined on each trial as time when 
one of the population firing rates (smoothed with a moving average 
over a 200-ms time window) crosses the threshold of 30 Hz. We fitted 
our population model to the responses of two neurons from each of 
the two selective excitatory pools (that is, four simultaneous neural 
responses in total). We performed the same shared optimization across 
four conditions as for the PMd data using the same hyperparameters 
for optimization and model selection. To obtain the decision mani-
fold for the network model (Fig. 5e), we plotted the inferred tuning 
functions of two neurons from different excitatory pools against each 
other, because tuning functions of all neurons from the same pool  
are identical.

We used the mean-field approximation to reduce the dynamics of 
the network to a two-dimensional dynamical system model with the 
same parameters as for the spiking network34. The mean-field dynamics 
are described by two variables si (i = {1, 2}) representing activations of 
NMDA conductance for two excitatory neural pools:

s
s
τ

s γf I˙ = − + (1 − ) ( ), (17)i
i

s
i i

where γ = 0.641 and τs = 100 ms. The firing rate ri of neural pool i is a 
function of the total synaptic current Ii

34:

r f I
aI b

d aI b
= ( ) =

−
1 − exp[− ( − )]

, (18)

with a = 270 Hz nA−1, b = 108 Hz, d = 0.154 s. The synaptic input to neural 
pool i includes recurrent and external stimulus currents:

I J s J s I I= + + + . (19)i i j i11 12 stim, bg

The effective connection weights are J11 = 0.2609 nA and J12 =  
−0.0497 nA. The background current is Ibg = 0.3260 nA. The stimulus 
current is I c= 0.0208 ⋅ (1 ± )stim,{1,2}  nA, with the stimulus coherence 
c ∈ [−1, 1].

To find the stable and unstable fixed points on the phase plane, we 
numerically found zeros of the flow field 

→
R s s( , )1 2  of the two-variable 

mean-field model in equation (17). We numerically solved the equa
tion 

→
R s s( , ) = 01 2  starting from a few different initial conditions using  

MATLAB fsolve function. To find the stable and unstable manifolds of 
the saddle, we followed the path along 

→
R s s− ( , )1 2  and 

→
R s s( , )1 2 , respec-

tively, starting the trajectory near the saddle point.

Low-rank network model
To illustrate how diverse tuning to the decision variable arises from the 
interplay between recurrent connectivity and firing-rate non-linearity, 
we designed a rank-two recurrent neural network (RNN) that replicates 
the classical attractor dynamics with distributed connectivity. The 
network dynamics are governed by the equations:

y y Jy b˙ = − + [ + ] . (20)+

Here vector y ∈ NR  represents synaptic activation variables yi of RNN 
units (i = 1, …N), and vector Rb ∈ N represents the constant input bi to 
each unit. The recurrent connectivity matrix J ∈ N N×R  has rank two, 
such that J = M ⋅ QT is an outer product of matrices M ∈ N ×2R  and 
Q ∈T N2×R . The rectified linear activation function [⋅]+ models the 
firing-rate non-linearity of single neurons. The firing rate of neuron i 
is r h b= [ + ]i i i +, where h J y= ∑i j

N
ij j=1  is the recurrent input to neuron i,  

and (hi + bi) is the total synaptic input current to neuron i.
The dynamics of this rank-two RNN are governed by two-dimensional 

mean-field variables z = QTy, which follow the equations:

z z Q Mz b˙ = − + [ + ] . (21)T
+

We designed the connectivity matrices39 M and QT so that the 
two-dimensional flow field in equation (21) replicates the flow field  
of the classical mean-field attractor network in equation (17) for  
zero stimulus coherence c = 0. We chose the elements of M to be 
m πi N= cos(2 / )i,1  and m πi N= sin(2 / )i,2 , and sampled the elements of 
the input vector b randomly from a uniform distribution on [−0.06 
to 0.06]. Next, by equating the RNN flow field in equation (21) to the 

target flow field 
→
R z( ) in equation (17) we obtained

→
Q Mz b R z z[ + ] = ( ) + . (22)T

+

This relationship defines a linear regression problem for determin-
ing the elements of the matrix QT. Accordingly, we uniformly sampled 
K points zk (k = 1, …K) from the state space [0, 1] × [0, 1] and evaluated 
the terms in equation (22) at these points to obtain matrix RA ∈ N K×  
with columns a Mz b= [ + ]k

k
+  and matrix RB ∈ K2×  with columns 

→
b R z z= ( ) +k

k k. We then found QT by solving QTA = B using ridge regres-
sion with a regularization parameter λ = 0.01.

We present results for an RNN with N = 500 units (Fig. 5 and Extended 
Data Fig. 10). We simulated the RNN trajectories for the left and right 
choices by initializing the RNN near the low-activity baseline state with 
a slight bias towards the corresponding attractor. We chose the initial 
conditions z(0) = (0.12, 0.106) for the left choice and z(0) = (0.106, 0.12) 



for the right choice, and computed the corresponding initial conditions 
for y as y Q z(0) = ( ) (0)T + , where Q( )T + is a pseudoinverse of QT. We para-
metrized the resulting trajectories with a decision variable x ∈ [−1, 1], 
where −1 and 1 correspond to the left and right choice attractors, respec-
tively, and 0 corresponds to the symmetric initial state. We defined x 
to increase linearly with the cumulative arc length along the trajecto-
ries, such that x grows at a uniform rate along the trajectory length. 
The tuning curve of each neuron is defined by its firing rate along these 
trajectories as a function of the decision variable x.

Statistics and reproducibility
The sample sizes used in this study are consistent with standard prac-
tices in systems neuroscience involving non-human primates6,8,12,29. Data 
were collected from two macaque monkeys (75 sessions for monkey 
T and 66 sessions for monkey O), providing a robust number of ses-
sions per animal. No statistical methods were used to predetermine 
sample size. All key findings were replicated in both monkeys. No ran-
domization or blinding was performed because there was only one 
experimental group. Investigators were not blinded to the identity of 
the animal during data collection. Trial types were assigned randomly 
by the task control software. All statistical tests were two-sided unless 
otherwise noted.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The neural recording data are available on Figshare (https://doi.org/ 
10.6084/m9.figshare.29052116.v1 (ref. 59)). The synthetic data used in 
this study can be reproduced using the source code.
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The source code to reproduce the results of this study is available as the 
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neuralflow (ref. 75)) and archived on Zenodo61 (https://doi.org/10.5281/
zenodo.15426288).
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Extended Data Fig. 1 | The duality between neural tuning and population 
geometry. a, Time-averaged responses of N neurons to K stimuli form an N × K 
neural response matrix (top). The columns of this matrix are points in the neural 
population state space, where each axis corresponds to the firing rate of one 
neuron and each point represents a stimulus (middle, purple point indicates the 
ith column, which is the population response pattern for stimulus i). Population 
geometry refers to the arrangement of these points in the population state 
space. The rows of the same neural response matrix define the tuning curves  
of individual neurons to the stimuli (lower panel, orange curve indicates the jth 
row, which is the tuning curve of neuron j). b, Time-varying neural activity 
during cognitive tasks is often described by an N × T × K tensor containing 
trial-averaged responses of N neurons at T time points during the trial across  
K task conditions (top). Each N × T sub-matrix of this tensor is a trial-averaged 
population trajectory in the corresponding task condition (middle). Each row 
of this sub-matrix is the trial-averaged firing rate of one neuron over time (lower 
left). Traditionally, selectivity (tuning) of a neuron has been characterized as 
the dependence of its trial-averaged firing rate on the external task variable 
(task condition) at a specific time in the trial (orange squares in the top panel), 
as illustrated for neuron j at two different times (lower right, ti mint shading, tT 
pink shading). Since single neurons have complex temporal response profiles, 
their selectivity for external variables often changes over time. For example, a 

neuron may show higher firing rate in one condition early in the trial but shift  
its preference to the other condition toward the trial end (lower right). Thus, 
tuning/selectivity for external task variables lacks temporal consistency and 
has no dual relationship with neural population trajectories. c, Rather than 
selectivity for external task variables, we consider neural tuning to internally 
generated dynamic variables that implement cognitive computations. The 
dynamic variables evolve with distinct time courses on single trials (top right). 
Tuning functions describe how firing rate of a neuron depends on the value of 
the dynamic variable, independent of time in the trial or task condition (top 
left). These tuning functions uniquely specify the representational geometry  
of the dynamic variable in the population state space, precisely as they do for 
sensory stimuli (cf. panel a). For example, the value of the decision variable at 
any given time is encoded by the position of population activity along a one-
dimensional manifold in the population state space (middle left). The 
population trajectories traverse this manifold as they evolve toward one or 
another choice on each trial. The shape of these population trajectories is 
uniquely specified by tuning functions of single neurons to the decision 
variable (lower panel), with the exact same dual relationship between neural 
tuning and population geometry as for sensory stimuli. The dynamics of the 
decision variable describe how population activity progresses along this 
manifold on single trials (middle right).



Extended Data Fig. 2 | Our modeling framework dissociates dynamics  
and geometry of neural representations on single trials. Our modeling 
framework can generate data with identical dynamics but different geometry, 
or vice versa, thus dissociating the dynamics of the latent variable x(t) from the 
geometry of its representation in the neural population state space. Synthetic 
data generated by our model with the latent dynamics defined by: a,b, a single-
barrier potential; c,d, a two-barrier potential (first column). For each latent 
dynamics, we generate spike data for one example neuron using either linear 
(a,c) or nonlinear non-monotonic (b,d) tuning functions (second column), 
which define the encoding geometry of the latent variable in the firing rate 

space. These qualitative differences in the dynamics and geometry of neural 
responses are conflated in the trial-averaged firing-rate traces (third column, 
PSTH). PSTH is computed over 1,000 trials sorted by choice, which is defined  
as the boundary to which the latent trajectory converged on each trial. PSTH  
is shown until the mean reaction time, error bars are s.e.m over trials. The 
different dynamics and geometry are also difficult to discern in stochastic 
spike trains (fourth column, spikes are shown for 20 example trials colored  
by choice). In all simulations, the initial state distribution p0(x) is a narrow 
Gaussian centered at x = 0. The noise magnitude is D = 0.2 (a,b) and D = 0.5 (c,d).
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Extended Data Fig. 3 | Trial-averaged responses conflate dynamics and 
geometry of neural representations. a, We generated spikes from our model 
for one example neuron in two conditions, which had different dynamics (left; 
red – condition 1, steep potential; pink – condition 2, shallow potential) but the 
same tuning function in both conditions (center). For these synthetic data, we 
computed trial-averaged firing rate (PSTH, right) in each condition sorted by 
choice (defined as the boundary to which the latent trajectory converged on 
each trial; red – right choice, green – left choice). On the right-choice trials, the 
trial-averaged firing rates are distinct in two conditions (c.f. red and pink PSTH 
traces), despite single-trial firing rates evolve along the same path defined by 
the condition-invariant tuning function. These differences in the PSTH result 
from different speed of neural dynamics in two conditions. In condition 2, the 
trajectories x(t) evolve slower towards the right boundary than in condition 1 
(due to shallower potential), hence single-trial firing rates increase slower. 
Accordingly, at a fixed time after the trial start, the firing rate reaches a lower 
value on average in condition 2 than in condition 1. Thus, differences in dynamics 

between conditions appear as differences in the trial-averaged firing rate 
traces. b, Very similar trial-averaged responses (right) can also arise from the 
model, in which the dynamics are the same in two conditions (left) but the 
tuning function is different between conditions (center; blue – condition 1; 
light blue – condition 2). In this case, PSTH differences between conditions  
on the right-choice trials result from different single-trial firing rates defined 
by the different tuning function in each condition, while the dynamics are 
condition-invariant. Thus, trial-averaged responses conflate the dynamics and 
geometry of neural representations, as similar trial-averaged responses can 
arise from differences in the dynamics (panel a) or tuning functions (panel b) 
between conditions. The same picture applies to all neurons in the population, 
which entails that the geometry of the trial-averaged population activity does 
not uniquely define a model of single-trial neural population dynamics. In all 
simulations, the initial state distribution p0(x) is a narrow Gaussian with the 
center indicated by a dashed grey line. The noise magnitude is D = 0.27.



Extended Data Fig. 4 | Validation of the inference framework in experimental 
data. a, Potential governing single-trial population dynamics in the anterior 
lateral motor cortex (ALM) of mice during the delay period of a delayed-response 
auditory discrimination task31 (lower panel). The potential, shared between left 
and right stimulus conditions, was discovered from spikes of 6 simultaneously 
recorded ALM neurons. The potential shape reveals three discrete attractor 
wells separated by barriers. The inferred initial state distribution p0(x) peaks 
near the left attractor on the left stimulus trials (red) and near the right attractor 
on the right stimulus trials (green), while also carrying substantial weight near 
the middle attractor (upper panel). b, The inferred tuning functions shared 
across stimulus conditions for 6 neurons from the population in panel a.  

Error bars in panels a,b are s.t.d. over 10 bootstrap samples. c, Latent trajectories 
x(t) decoded with the fitted model from the population spiking activity on each 
correct (upper row) and error trial (lower row) for left (left column) and right 
stimulus (right column). Black triangles mark the latent state at the end of the 
delay period on each trial. Histograms to the right of each panel show the 
distribution of latent states at the end of the delay period across trials. d, Same 
as panel c for latent trajectories x(t) decoded from the population spiking 
activity on photoinhibition trials using the model fitted to unperturbed trials. 
Bilateral photoinhibition started at the delay period onset and was deployed 
for 600 ms, followed by a 400 ms ramping down of inhibition (blue strip). See 
Supplementary Note 1.2 for a detailed description of the analysis.
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Extended Data Fig. 5 | Inferred tuning functions were similar across 
stimulus conditions for an example PMd neuron. a, Inferred potentials  
(left), p0(x) distributions (middle left), tuning functions (middle right) and 
noise magnitudes (right) obtained on two data halves D1 and 2D  for the model 
fitted separately to the left-hard condition trials. The optimal fit was selected 
using our model selection method based on feature consistency. b, Same as 
panel a for the right-hard condition. The slope of the inferred potential points 
towards the opposite boundary than in the left-hard condition, while the 
inferred tuning function is largely the same. c, Same as panel a for the left-easy 
condition. The inferred tuning function is the same as in the hard conditions in 
the left part of the domain, where the dynamics evolve towards the correct 
choice, but the tuning function is inferred less accurately in the right side  
of the domain (grey highlight) due to very small number of rightward choices 

(error trials) in the left-easy stimulus condition. d, Same as panel c for the right-
easy condition. The tuning function is inferred less accurately in the left side of  
the domain (grey highlight) due to very small number of left choices (error trials) 
in the right-easy condition. This effect is also observed on synthetic data from 
the ground-truth model that has the same tuning function in all conditions 
(Extended Data Fig. 6). e, Shared optimization across all four stimulus conditions, 
in which tuning functions, p0(x), and noise magnitude are restricted to be the 
same and only the potential Φ(x) can vary across stimulus conditions. The shared 
optimization enables more accurate inference of tuning functions, because it 
learns a single tuning function across four conditions so that the number of 
leftward and rightward choices are approximately balanced in the data, and  
the dynamics equally explore both sides of the decision manifold.



Extended Data Fig. 6 | Shared optimization enables more accurate 
inference in synthetic data. We generated synthetic data from the ground- 
truth model (shown with black dashed lines in all subplots) in which tuning 
functions, p0(x) and D were the same in all conditions. We matched the ground- 
truth model to the fitted shared model of one experimental neuron and used 
the same number of trials as in the experimental data. a, Inferred potentials 
(left), p0(x) distributions (middle left), tuning functions (middle right) and 
noise magnitudes (right) obtained from the synthetic data on two data halves 

1D  and D2 by fitting the model separately to the left-hard condition trials.  
b, Same as panel a for the right-hard condition. The slope of the inferred potential 
points towards the opposite boundary than in the left-hard condition, while the 
inferred tuning function is largely the same. c, Same as panel a for the left-easy 
condition. The inferred tuning function is the same as in the hard conditions in 

the left part of the domain, where the dynamics evolve towards the correct 
choice, but the tuning function is inferred less accurately in the right side of  
the domain (grey highlight) due to very small number of rightward choices 
(error trials) in the left-easy stimulus condition. The same effect is observed  
in the experimental data (c.f. Extended Data Fig. 5). d, Same as panel c for the 
right-easy condition. e, Shared optimization across all four stimulus conditions, 
in which tuning functions, p0(x), and noise magnitude are restricted to be the 
same and only the potential Φ(x) can vary across stimulus conditions. The 
shared optimization enables more accurate inference of tuning functions, 
because it learns a single tuning function across four conditions so that the 
number of leftward and rightward choices are approximately balanced in the 
data, and the dynamics equally explore both sides of the decision manifold.
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Extended Data Fig. 7 | Tuning functions were largely consistent across 
stimulus conditions in PMd data. a, The log-likelihood ratio of the single-
neuron model fitted with shared tuning functions, initial state distribution 
p0(x), and noise magnitude D across stimulus conditions relative to the model 
fitted with separate tuning functions, p0(x), and D in each condition. This 
analysis was performed for a subset of single neurons (monkey T: 36 neurons 
from 3 sessions, monkey O: 16 neurons from 3 sessions). We expect the separate 
model to have the same or higher likelihood compared to the shared model, 
because the shared model is a special case of the separate model. The likelihood 
was only slightly lower for the shared than separate model ( L Llog( / )shared separate , 
median [Q1, Q3]; monkey T: −6.10 [−17.45, 1.96], n = 36; monkey O: −18.60 [−31.27, 
−6.58], n = 16), which suggests that the tuning functions were similar across 
conditions. As a reference, we generated synthetic spike data for 6 single 
neurons from the ground-truth model in which the tuning functions, p0(x)  
and D were the same in all conditions, and then fitted these data with the shared 
and separate models. We matched the ground-truth model of each synthetic 
neuron to the fitted shared model of one experimental neuron used in this 
analysis (4 neurons from monkey T, 2 neurons from monkey O). We also 
matched the number of fitted trials to the experimental data for each synthetic 
neuron. The range of the log-likelihood ratio for the shared ground-truth model 
( L Llog( / )shared separate , median [Q1, Q3]; 1.33 [−8.75, 3.68], n = 6) was similar to 
that obtained from the experimental data, supporting the conclusion that 
tuning functions were similar across conditions. b, To quantify the similarity  

of tuning functions inferred by the separate single-neuron model in each 
condition, we computed their average Pearson correlation coefficient with the 
tuning function inferred by the shared model for each neuron. High values of 
the correlation coefficient indicate that the inferred tuning functions were 
largely consistent across stimulus conditions (median [Q1, Q3]; monkey T: 0.91 
[0.81, 0.93], n = 36; monkey O: 0.94 [0.91, 0.95], n = 16). Comparable values of  
the correlation coefficient were obtained for the shared ground-truth model 
(median [Q1, Q3]; 0.95 [0.91, 0.98], n = 6). The distribution of the correlation 
coefficient is shown for the same set of experimental and synthetic neurons as 
in panel a. c, The log-likelihood ratio of the population model fitted with shared 
tuning functions, p0(x), and D relative to the population model fitted with 
separate tuning functions, p0(x), and D in each condition, for all successfully 
converged shared population fits (monkey T: 11 populations; monkey O: 14 
populations). One outlier with a large positive value 1344.4 is clamped at the 
value 120 (open orange circle) for better visibility. The log-likelihood ratio was 
not significantly different between the shared and separate population models 
( L Llog( / )shared separate , median [Q1, Q3]; monkey T: 13.5 [−35.6, 72.7], p = 0.58, 
n = 11; monkey O: −4.6 [−18.8, 18.8], p = 0.95, n = 14, Wilcoxon signed-rank test), 
providing strong support for the invariance of tuning functions across 
conditions. In all box plots, center lines indicate medians; boxes span the 25th 
to 75th percentiles; whiskers extend to the nearest of 1.5 × the interquartile 
range or the most extreme data point; outliers beyond the whiskers are shown 
as dots.



Extended Data Fig. 8 | The inferred models with a single-barrier potential 
for additional example single neurons in PMd. a, Trial-averaged firing rates 
sorted by the chosen side and stimulus difficulty (left, error bars are s.e.m. over 
trials), the inferred potentials for four stimulus conditions (middle left), p0(x) 
distribution shared across conditions (middle right), and tuning functions 
shared across conditions (right) inferred on two data halves 1D  and D2 for a 
single PMd neuron. Time window used for model fitting starts at 120 ms after 

the stimulus onset (gray shading) and extends until the reaction time on  
each trial. b-e, Same as panel a for four other example neurons. Despite 
heterogeneous profiles of the trial-averaged firing rates, all models show  
the same dynamics described by a single-barrier potential and narrow zero-
centered p0(x) distribution. The response heterogeneity results from diverse 
tuning functions to the latent variable x.
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Extended Data Fig. 9 | PMd responses have nonlinear dynamics and 
nonlinear geometry. a, The log-likelihood ratio of the fitted population model 
relative to the population models in which the potential, tuning functions or 
both were approximated by a best-fitting analytical function: quadratic 
approximation of the potential (orange), linear approximation of the potential 
(red), linear approximation of all tuning functions (light purple), and linear 
approximation of both the potential and all tuning functions (purple). The  
log-likelihood ratio is positive for all sessions, indicating that replacing the 
potential and/or tuning functions with their polynomial approximation 
significantly reduces model likelihood (log( / )model approxL L , median [Q1, Q3]; 
monkey T: quadratic potential 11.7 [7.9, 21.4], p = 0.002, linear potential 96.2 
[59.2, 153.8], p = 0.001, linear tuning functions 426.7 [386.2, 697.6], p = 0.001, 
linear potential and linear tuning functions 573.0 [460.9, 799.2], p = 0.001, 
n = 11; monkey O: quadratic potential 9.7 [8.0, 15.0], p = 2 ⋅ 10−4, linear potential 
58.8 [36.1, 86.5], p = 2 ⋅ 10−4, linear tuning functions 85.3 [44.1, 197.9], p = 2 ⋅ 10−4, 
linear potential and linear tuning functions 154.5 [106.3, 348.1], p = 2 ⋅ 10−4, 
n = 13, Wilcoxon signed-rank test). Approximating the potential with a quadratic 
function produced only slightly lower likelihood than for the original fitted 
model, consistent with the observation that the discovered potential shapes 
were approximately parabolic. b, The distribution of balanced accuracy for 
predicting the monkey’s choice using the fitted population model (blue, 
median [Q1, Q3]; monkey T: 89.9 [80.6, 95.7]; monkey O: 73.2 [64.9, 76.5]), and 

population models in which the potential, tuning functions or both were 
approximated by a best-fitting polynomial: quadratic approximation of the 
potential (orange, monkey T: 90.9 [80.6, 95.7]; monkey O: 72.5 [65.5, 77.4]), linear 
approximation of the potential (red, monkey T: 85.9 [77.7, 95.8]; monkey O: 67.7 
[62.7, 76.1]), linear approximation of all tuning functions (light purple, monkey T: 
91.7 [78.8, 95.7]; monkey O: 75.3 [65.9, 78.9]), and linear approximation of both 
the potential and all tuning functions (purple, monkey T: 90.0 [73.7, 96.0]; 
monkey O: 67.0 [63.5, 76.7]). The distributions do not differ significantly 
between the fitted model and its approximations, except for slightly reduced 
accuracy in the linear potential and tuning model for monkey T, and in the linear 
potential model for monkey O (monkey T: quadratic potential p = 0.09, linear 
potential p = 0.26, linear tuning functions p = 0.17, linear potential and linear 
tuning functions p = 0.047, n = 11; monkey O: quadratic potential p = 0.34, linear 
potential p = 0.03, linear tuning functions p = 0.15, linear potential and linear 
tuning functions p = 0.24, n = 13, Wilcoxon signed-rank test). Thus, many 
qualitatively distinct models of single-trial neural dynamics and geometry  
can predict the binary choice nearly equally well, showing that the accuracy of 
choice prediction alone is not sufficient to determine what single-trial dynamics 
are consistent with neural responses in PMd. In all box plots, center lines 
indicate medians; boxes span the 25th to 75th percentiles; whiskers extend to 
the nearest of 1.5 × the interquartile range or the most extreme data point; 
outliers beyond the whiskers are shown as dots.



Extended Data Fig. 10 | Mechanism underlying diverse tuning to the 
decision variable in rank-two recurrent network. a, The rank-two recurrent 
connectivity matrix J = M ⋅ QT is an outer product of matrices M ∈ N×2R  and 

RQ ∈T N2× , where N is the number of units in the network. On each time step, 
synaptic activation variables y are updated by filtering through the recurrent 
connectivity J (equation (20) in Methods). The action of J can be decomposed in 
two steps: first, QT projects y onto two-dimensional mean-field variables z, then 
M embeds z into N-dimensional space of recurrent synaptic inputs h = Jy to all 
units. Accordingly, the dynamics within the space of synaptic input currents h 
are confined to a two-dimensional linear subspace spanned by the columns  
of M. The dynamics within this subspace are governed by the variables z,  
which follow equation (21) in Methods. The firing rate ri of each unit i is a 
rectified linear (ReLU) function of the total synaptic input hi + bi this unit 
receives: r h b= [ + ]i i i +. The firing-rates r drive the update of the synaptic 
activation variables y on the next time step. The firing-rate nonlinearity 
bends the network’s trajectories into additional dimensions, leading to higher 
dimensionality and distinct geometry of trajectories in the firing rate space r 
compared to the synaptic input space h. The synaptic input hi to unit i is a one-

dimensional projection of the two-dimensional variables z, defined by the 
corresponding elements mi1 and mi2 of the matrix M (red arrows). Thus, firing 
rate of each unit arises as a one-dimensional projection of the variables z, 
passed through ReLU nonlinearity. b, The dynamics in z space replicate the 
classical mean-field attractor network34, with trajectories converging to the 
left (red) or right (green) choice attractors (same network as in Fig. 5g–k in the 
main text). The one-dimensional decision variable x ∈ [−1, 1] parametrizes these 
trajectories, such that x = −1 and x = 1 correspond to the left and right choice 
attractors, respectively, and x = 0 corresponds to the symmetric initial state at 
the trial start. Recurrent input hi to each unit i is a one-dimensional projection of 
these trajectories onto the direction →e m m= ( , )i i i1 2 . Arrows show the projection 
vectors →ei  for the example units in Fig. 5i in the main text. c, Firing rate ri is a 
threshold-linear function of the total synaptic input current hi + bi, which is 
shown for the example units in panel b with the corresponding color. The firing-
rate nonlinearity rectifies negative inputs (gray shading) to zero. The diversity 
of projection vectors →ei , combined with the firing-rate nonlinearity, generates 
heterogeneous nonlinear tuning functions across units (the corresponding 
tuning functions are shown in Fig. 5j in the main text).
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