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The central nervous system (CNS) integrates intrinsic molec-
ular cues with sensory experience to shape synaptic connec-
tivity between neurons. Once established, these emergent
neural circuits remain plastic into adulthood to facilitate
behavioral adaptations to changes in the sensory landscape.
While sensory experience has been recognized as a major
contributor to synaptic wiring since the foundational work of
Hubel and Wiesel in the mid-1900s, the field has only recently
begun to uncover the roles of nonneuronal cells, or glia, in
experience-dependent aspects of synaptic refinement and
remodeling. Herein, we review recent work demonstrating that
many glial cell types—including invertebrate glia, astrocytes,
microglia, and oligodendrocyte-lineage cells—participate in
the experience-dependent remodeling of neural circuits across
the lifespan.
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Introduction

Neural circuits emerge developmentally through in-
teractions between patterning cues intrinsic to the brain
and sensory experiences originating from the external
environment. Initially, intrinsic factors, such as Hebbian
plasticity driven by intrinsically generated neural activ-
ity [1,2], axon guidance molecules [3], and evolving
transcriptional programs [4] govern circuit formation by
inducing synapse assembly. These newly assembled,
immature circuits then undergo early postnatal phases
of heightened plasticity (so-called crizical or sensitive pe-
riods) in which they are further refined in response to

sensory experience via the concurrent strengthening of
some and elimination of other synapses [5,6]. Beyond
circuit development, experience can also remodel syn-
apses in the adult brain, for example during learning and
memory [7,8]. Thus, sensory experience plays powerful
roles in establishing, maintaining, and reorganizing
synaptic connectivity during development and in
the adult.

While several mechanisms through which neurons cell
autonomously adapt their connectivity in response to
experience have been described [9,10], emerging evi-
dence suggests that nonneuronal brain cells, or glia, also
contribute to experience-dependent adaptations in
synaptic connectivity (Figure 1). In this review, we
discuss the roles of glia in experience-dependent circuit
plasticity, highlighting evidence that different types of
glia can engage similar mechanisms to remodel synapses
in response to experience, but that individual glial cell
types are specialized to remodel distinct circuits in an
age-, brain region-, and stimulus-dependent manner.

Overview of the diversity of glial cell types
across organisms and systems

In combination with neurons, a diversity of glial cell
types contribute to the organization of neural circuits in
invertebrate and vertebrate systems [11—13]. For
instance, the Drosophila (fruit fly) and C. Elegans (nem-
atode worm) nervous systems include numerous types
of glia which play overlapping roles in supporting neural
circuits through neurotransmitter signaling [14,15],
stabilizing dendritic arbors [16], and promoting synap-
togenesis [17—19]. Additionally, invertebrate glia engulf
neuronal material to remodel circuits in the nervous
system. In Drosophila, for instance, astrocyte-like glia
engulf axonal and synaptic material during meta-
morphosis [20]. Additionally, Drosophila ensheathing glia
are implicated in the experience-dependent removal of
axonal and synaptic material [21—24] (see below).
Vertebrates similarly contain a variety of glial cell types
that perform many of the same functions identified for
invertebrate glia, including oligodendroglia, microglia,
and astrocytes. Astrocytes are a critical component of
the tripartite synapse [25] where they actively buffer
neurotransmitter levels during synaptic transmission
[26—28]. Oligodendrocyte-lineage cells, ranging from
oligodendrocyte precursor cells (OPCs) to mature
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Roles of glia in experience-dependent synaptic remodeling and plasticity. Microglia, astrocytes, oligodendrocyte precursor cells (OPCs), and
invertebrate glia participate in the refinement and remodeling of synapses in response to sensory experience in the developing and adult brain. Glial-
mediated synaptic remodeling occurs through synaptic phagocytosis, cytokine-dependent changes in synaptic structure, and extracellular matrix (ECM)

modification.

oligodendrocytes, myelinate CNS axon fibers. In
contrast to astrocytes and oligodendroglia, microglia are
brain-resident macrophages derived from myeloid pro-
genitors in the yolk sac. Llong recognized as immune-

competent protectors of the brain, microglia also play
important roles in neural circuit development, plasticity,
and function [29]. In summary, glia take diverse forms
and possess a wide range of functions that facilitate
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brain physiology, many of which are shared across glial
cell types.

Mechanisms of glial-mediated experience-
dependent synaptic refinement,

remodeling, and plasticity

Part I: Synaptic phagocytosis

Phagocytosis of synapses during development

The phagocytic engulfment of synapses is a well-
documented mechanism through which glia in both
vertebrates [30—33] and invertebrates [34—37] modu-
late circuits. While most studies on this topic have
focused on early developmental phases that precede the
onset of sensory experience, more recent efforts have
uncovered roles for glia in experience-dependent phases
of synaptic refinement. For example, in C. FElegans
(nematode worm), glia engulf the receptive endings of
thermosensitive neurons in response to elevated tem-
peratures in a phosphatidyl serine- and integrin-
dependent manner, which is required for normal ther-
motaxis behavior (a form of taxis, which is the direc-
tional movement of an organism in response to a
stimulus) [38]. Similarly, work on Drosophila (fruit fly)
also suggests that glia are required for sensory
experience-dependent synapse elimination during crit-
ical periods of development in larval and young adult
flies [39,40]. Following emergence from the pupal case,
flies experience a burst of sensory input that facilitates
circuit refinement and plasticity [41,42]. Exposure of
newly emerged flies to the odorant ethyl butyrate
caused the loss of a subset of olfactory sensory neuron
synapses in the adult antennal lobe [43]. Using a variety
of genetic manipulations, biosensors, and electrophysi-
ology, four independent studies collectively demon-
strated that this process required the glial engulfment of
synapses via the phagocytic receptor Draper (mamma-
lian homolog MEGF10) in ensheathing glia [21—23,44].
Thus, glia mediate experience-dependent phases of
circuit development in invertebrate systems through
the phagocytic engulfment of synapses.

While studies in invertebrates have been informative,
the majority of what is known about synaptic remodeling
by glia has been garnered from studies in mammals,
especially mice. The ability of astrocytes and microglia
to refine developing neural circuits via synaptic phago-
cytosis was initially uncovered in the hippocampus and
in the dorsal lateral geniculate nucleus (dLGN) of the
thalamus, a retinorecipient region that undergoes circuit
refinement during early life [30—32,45]. Initial work
implicated first microglia and then astrocytes in the
phagocytosis of retinal inputs to the dLGN in response
to intrinsically generated activity prior to the onset of
visual experience at eye-opening (around postnatal day
[P]14) through distinct molecular pathways, with
microglia relying upon the classical complement cascade
(CCC) and astrocytes requiring Megf1l0 and Mertk
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[30,32]. In this context, both astrocyte- and microglia-
mediated engulfment was dependent upon presynap-
tic retinal wave activity generated prior to the onset of
visual experience. Strikingly, however, while microglia
contain large amounts of synaptic material early on, they
contained very little synaptic material during sensory-
dependent refinement which occurs around the third
week of postnatal life in the visual system of the mouse
[46]. This result suggests that the engulfment of syn-
apses by microglia, though important for the earliest
postnatal stages of circuit maturation, may not be the
primary mechanism through which experience shapes
circuits in the mouse visual system (although microglia
contribute to experience-dependent refinement in the
dLGN through other mechanisms as described below).

Consistent with this early observation, functional studies
suggest that microglia may be dispensable for a well-
studied type of developmental visual experience-
dependent synaptic remodeling termed ocular domi-
nance plasticity (ODP). During ODP, animals are
subjected to monocular deprivation (i.e. occlusion of
visual input to a single eye) resulting in a robust
restructuring of the circuitry in the visual cortex (V1)
[47]. Global genetic loss of complement component 1q
(C1q) or the fractalkine receptor (Cx3crl), the two pri-
mary pathways through which microglia remodel synap-
ses in other regions, did not impair ODP [48—50], nor
did the depletion of microglia beginning at eye-opening
[51]. However, in seeming contradiction to this, mice
globally lacking the purinergic receptor P2ry12, which is
highly enriched in microglia, exhibited reduced micro-
glial synaptic engulfment and ODP in V1 [52]. Similarly,
a study by Ma et al., 2020 revealed elevated neural ac-
tivity, increased dendritic spine density, reduced spine
elimination, and deficits in ODP in V1 following micro-
glial depletion [53]. Though it is difficult to determine
the reasons for this discrepancy, it should be noted that
the degree to which microglia were depleted was
different between these conflicting studies, with Brown
et al., 2024 achieving near 100% depletion and Ma et al.,
2020 depleting microglia by 78%. Why reduced vs com-
plete ablation of microglia would result in different out-
comes remains unclear; however, one idea is that the
incomplete loss of microglia may lead to the surviving
microglia becoming unhealthy and releasing inflamma-
tory factors which may impact the function of nearby
neurons, resulting in disrupted ODP. That said, partial
loss of microglia in aging mice was shown to have bene-
ficial effects on animal behavior while enhancing long-
term potentiation in CAl of the hippocampus, implying
these cells reserve brain region-, age-, and/or stimulus-
specific pathways for their functions [54]. In support of
this hypothesis, early work investigating the role of visual
experience on microglia—synapse interactions revealed
that microglia increase the number of synaptic contacts
and engulfment following light re-exposure after dark-
rearing [55]. These studies imply that microglia may be
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capable of responding to visual experience to shape
experience-dependent plasticity in V1. Overall, the roles
of microglia in experience-dependent circuit remodeling
in the visual cortex remain controversial, and studies
employing more precise manipulations of microglia
beyond cellular depletion and global knockout (KO) mice
will be necessary to address this discrepancy.

On the other hand, both astrocytes and oligodendrocyte
precursor cells (OPCs) are promising candidates to
regulate experience-dependent visual circuit plasticity
via synapse engulfment. For example, astrocytes have
been shown to engage c-Mer proto-oncogene tyrosine
kinase (Mertk) signaling to engulf synapses in visual
cortex during ODP [56]. In addition, recent work from
the Cheadle lab showed that OPCs can also directly
eliminate synapses in the visual cortex through phago-
cytosis, and that they elevate this function in response to
experience during development in V1 [33]. Intriguingly,
depletion of microglia dampened the ability of OPCs to
engulf synapses, suggesting a role for glial—glial crosstalk
in this process. Altogether, these results suggest that
microglia are specialized to prune synapses during early
development (P0-P5) in the mouse visual system prior to
the onset of visual input, while astrocytes and OPCs may
be more important for experience-dependent visual
plasticity later on (P20-P30).

While their roles in the visual cortex are still under
investigation, microglia are necessary for refining so-
matosensory circuits in response to tactile sensation. In
particular, microglia enhance their engulfment of thala-
mocortical synapses in somatosensory cortex (S1) in
response to sensory deprivation caused by the unilateral
trimming or cauterization of whiskers around P4 — P5
[57]. This function of microglia required the ADAM10
metalloprotease-dependent cleavage of fractalkine
(Cx3cl1), and signaling between the cleaved fractalkine
fragment and the microglial cell-surface fractalkine re-
ceptor. Conversely, the classical complement cascade
(CCCQC), which is required for the pruning of synapses by
microglia in the dLGN , was dispensable for refinement
in S1, confirming that microglia can engage different
molecular machinery to prune synapses depending upon
the brain region, circuit, or age analyzed [57]. This study
demonstrated that microglia play a major role in medi-
ating sensory-dependent synapse remodeling in the so-
matosensory system of the mouse.

Phagocytosis of synapses by glia promotes experience-
dependent remodeling in adult circuits

Although considerable effort has been applied to
investigate the roles of glial phagocytosis during devel-
opment, studies on glial engulfment in the healthy adult
are comparatively sparse. Recently, glial engulfment has
been implicated in cue-mediated hippocampal learning
and memory in adult mice. In a contextual fear

conditioning (CFC) behavioral paradigm, Wang et al.
[58] reported increased glial phagocytosis of pre- and
postsynaptic material from CFC engram cells by
microglia via the complement pathway in a process that
was required for extinguishing fear responses to previ-
ously presented environmental triggers. In addition to
microglia, astrocytes have also recently been proposed to
promote experience-dependent changes in synaptic
connectivity in the adult hippocampus downstream of
environmental enrichment (EE), a multi-sensory stim-
ulation paradigm. Exposure of adult mice to EE drove an
increase in Megf10-dependent astrocytic engulfment of
excitatory synapses compared to mice reared in standard
housing [59]. In this context, astrocytic but not micro-
glial engulfment was observed, again highlighting that
different environmental stimuli can impact glial cell
types differently. Altogether, these studies indicate that
glia can respond to sensory experience via the phago-
cytic engulfment of synapses through cell-type-
specific mechanisms.

Part Il: Non-phagocytic induction of remodeling and
plasticity by glia

Induction of structural plasticity via glial-mediated
cytokine signaling

While glial cells can have profound effects on circuit or-
ganization through the direct phagocytic removal of syn-
apses, they can also exert nonphagocytic control over
synaptic connectivity [60,61]. Of particular relevance, the
microglia-to-neuron tumor necrosis factor-like weak
inducer of apoptosis (TWEAK)-fibroblast growth factor-
inducible 14 (Fn14) cytokine signaling pathway plays an
important role in sensory-dependent synaptic refinement
in the developing visual system. Upon acute light stimu-
lation, excitatory thalamocortical neurons in the devel-
oping mouse dLLGN induce the expression of the pro-
inflammatory cytokine receptor Fnl4, a tumor necrosis
factor (TNF) receptor superfamily member. Concur-
rently, microglia within the same brain region upregulate
the expression of TWEAK, the cytokine ligand of Fn14, in
response to visual stimulation. Loss-of-function experi-
ments demonstrated that TWEAK-Fn14 signaling from
microglia to neurons mediates the sensory experience-
dependent refinement of the retinogeniculate circuit by
driving the structural disassembly of synapses in the
absence of phagocytosis [62,63]. While this seminal work
was performed in the developing visual system, TWEAK-
Fn14 signaling has since been shown to be a potent
inducer of long-term depression (ILI'D) at adult hippo-
campal synapses [64], and the pathway has been shown to
mediate memory and sleep in adult mice [65]. While
"TWEAK-Fn14 signaling is required for normal experience-
dependent synaptic refinement and remodeling, other
cytokines from both the tumor necrosis factor family and
the interleukin family are also potent mediators of the
strengthening, potentiation, and depression of synapses
(recently reviewed elsewhere [66]).
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Extracellular matrix remodeling to promote circuit
plasticity

Apart from their influence on synapses through the
release of signaling molecules like cytokines, glial cells
can also influence the stability of circuits by modifying
the ECM. ECM glycoproteins, such as chondroitin sul-
fate glycoproteins (CSPGs) which promote the forma-
tion of specialized extracellular matrix (ECM)
structures called perineuronal nets (PNNs), are a major
component of the tripartite synapse [67] and are
thought to limit synaptic plasticity and to close critical
periods [68—70]. While glia can contribute to the for-
mation of PNNs [71], microglia have also been shown to
clear PNNs and other ECM proteins via signaling be-
tween the neuronally expressed cytokine I11.-33 and the
IL-33r receptor in microglia [72,73] in response to EE in
the hippocampus and neocortex [74,75]. In addition to
phagocytosing ECM, microglia, along with astrocytes
and OL lineage cells, express and release matrix
metalloproteases (MMPs) which in turn act to degrade
ECM components, providing another example by which
glia can induce synaptic plasticity through mechanisms
that are distinct from synapse engulfment [71,76].

As with microglia, we are also establishing a deeper
understanding of how astrocytes can modify the devel-
opment of the ECM to promote synaptic remodeling
and plasticity. Unlike microglia, astrocytes are thought
to promote ECM development in the visual cortex. In
particular, astrocytic expression of the gap junction
coupler Connexin-30 was required for MMP9 expres-
sion, and decreasing the expression of connexin-30 was
sufficient to reduce maturation of the ECM and to
dampen ODP plasticity [77,78]. Therefore, while it
seems that microglia may promote plasticity through the
engulfment of ECM material, astrocytes, rather, pro-
mote the formation and maintenance of ECM by
downregulating MMPs and allowing the visual circuit
to crystalize.

Closing thoughts

Although neuron-intrinsic mechanisms underlying
experience-dependent synapse refinement, remodeling,
and plasticity have been under investigation for decades,
the roles of glia in these processes are only now
becoming a major topic of study within the neuroscience
field. Although the mechanisms through which glia
detect and respond to cues from the external environ-
ment remain to be fully elucidated, these cells have
been shown to mediate experience-dependent changes
in synaptic connectivity by phagocytosing synapses and
by eliciting changes in synaptic structure and dynamics
via cytokine signaling and the modification of the ECM.
An emerging theme is that different populations of glia
can engage generally similar mechanisms to remodel
synapses (such as phagocytosis or cytokine release), but
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that different cell classes are specialized to sculpt cir-
cuits in response to experience depending upon the age,
brain region, and pattern of stimulation applied. One
possible reason that different cell types mediate circuit
remodeling dependent upon age is that glial cell types
are established and mature at different rates, with yolk
sac-derived microglia infiltrating the brain  utero then
maturing during early postnatal ages, while astrocytes
arise from radial glial cells and mature later [79,80]. On
the other hand, OPCs are born in three successive waves
that arise prenatally then postnatally, but the majority of
OPCs that persist across the lifespan arise from the
postnatally generated wave [81,82]. This idea is in line
with the observation that microglia are active regulators
of synapses in the visual and somatosensory systems
around the first week of life but have not been consis-
tently shown to mediate circuit refinement in adoles-
cents or adults in either system. Similarly, glial cell types
might be differentially sensitive to distinct types of
neural activity based upon the spatiotemporal dynamics
of their interactions with neurons. Finally, different
types of glia engage distinct molecular pathways to
remodel synapses, thus molecular complementarity with
neurons in a given brain region could influence which
glia are best poised to remodel their synapses. Over the
next few years, defining the ways in which glia operate as
intermediaries between environmental stimuli and
neural physiology across timeframes, brain regions, and
ages should lead to important new insights into how
experience shapes the brain.
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