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Abstract

INTRODUCTION: Trans-synaptic connectome-based spread is a shared mechanism

behind different tauopathic conditions, but they exhibit divergent spatiotemporal

progression. One explanation is that conditions may incur directional biases in tau

transmission along fiber tracts.

METHODS:We examined this hypothesis using tau data from 11 distinct mouse mod-

els across four experimental studies. For this purpose, we extended a network-based

spreadmodel by incorporating net directionality along the connectome.

RESULTS:Retrograde bias better predicted tau progression than anterograde bias, but

our best-fitting biophysical models incorporate the mixed effects of both retrograde-

and anterograde-directed spread, with notable tau-strain-specific differences. There

was a nontrivial association between directionality bias and tau aggressiveness, with

more virulent strains exhibiting less retrograde character.

DISCUSSION: Our study implicates directional bias in tau transmission along fiber

tracts as a general feature of tauopathy spread and a strong candidate for explaining

for the diversity of spatiotemporal tau progression between conditions.
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Highlights

∙ Connectome-based spread is a feature underpinning tauopathic diseases, including

Alzheimer’s

∙ Elevenmousemodels of tauopathy across four studies were explored

∙ Mathematical models of retrograde and nondirectional spread performed better

than anterograde

∙ Different mousemodels of tauopathy exhibited distinct spread biases

∙ Retrograde-biased spread tended to be associated with less aggressive tau strains
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1 BACKGROUND

It is well known that the spatiotemporal pattern of Alzheimer’s disease

(AD) pathology development is characterized by stereotyped progres-

sion. Braak & Braak were the first to describe the staging of hallmark

neurofibrillary tangles (NFTs) of misfolded tau protein: these are first

detected in the entorhinal cortex (EC) and locus coeruleus (LC), fol-

lowed by limbic areas and then neocortical areaswhile sparing primary

sensorimotor cortices.1 One key causal mechanism behind this charac-

teristic spreading pattern is that hyperphosphorylated tau undergoes

intercellular spread following axonal transport and trans-synaptic

transmission.2–5

However, key aspects of the transmission process remain unknown,

especially whether axonal tau travels bidirectionally or preferentially

in either in the same direction (anterograde) or in the reverse direc-

tion (retrograde)with respect to theneuron’s polarity. Similarly, it is not

known whether the trans-synaptic transmission occurs from post- to

pre-synapse, post- to pre-synapse, or some mixture of the two. Much

phenomenological evidence and descriptive studies are now available

to support both anterograde and retrograde transmission,6,7 but these

studies do not allow inference of the net directional bias in those

cases where it may be of mixed anterograde and retrograde character.

Most importantly, current methods are unable to tie directional bias

to more fundamental processes in the aggregation and transmission of

tau along axons, whichmay be required to explain howdifferent strains

of tau exhibit such strikingly different spatial patterns over time.

The purpose of this study is to assess whole-brain and unbiased

statistical support for net directionality gleaned from integrated large-

scale meta-analysis of all available tauopathic data measured in our

chosen model system: transgenic mouse models of AD tauopathy. We

hope to move beyond current evidence that has understandably come

from descriptive, hypothesis-driven mechanistic experimental bench

or animal studies. These studies, based on selected brain structures or

selected tau conformers or strains, are difficult to generalize and fre-

quently produce conflicting results. Instead we aim for “big picture”

and generalizable statistical evidence that together supports the emer-

gence of directional bias in tau transmission. We achieve these goals

by analyzing histological tau data from four individual studies compris-

ing 11 experimental conditions, all of which use P301S-tau-expressing

mice expressingmice.8–11

We approached this task in two distinct ways. First, through

graph theoretical techniques, we found that empirical data cannot be

explained without introducing directionality of transmission. Second,

we used novel mathematical models of tau network spread, which

enabled us to explore directional bias in the context of other key

pathological processes, such as accumulation of tau. We extended a

previous mathematical network spread model of pathology spread

along anatomical connectivity, which have been shown to successfully

recapitulate the spatiotemporal regional volumetric loss in patients’

brains by both our group12–15 and others.16–18

The specific mechanistic model we employed is an extension of the

recently published NexIS model of pathology spread14 which incorpo-

rates directionally biased transmission. We call this model NexIS:dir.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional (e.g., PubMed) sources and meeting

abstracts and presentations. Spatiotemporal progres-

sion of tau being different between mouse models and

human subjects is noted, with several publications not-

ing directionally biased spread in vivo, which have been

appropriately cited.

2. Interpretation: Our findings led to an integrated hypoth-

esis describing spread differences in tauopathy being

related to directional spread bias along the structural

connectome.

3. Future directions: Themanuscript proposes a framework

for the generation of new hypotheses and the conduct

of additional studies. Examples include further under-

standing: (a) the role of gene expression and cell types in

spreading, especially within the context of directionally

biased spread; (b) validating these findings experimen-

tally by exploring the directional bias of specific strains

more directly; and (c) applying these methods to clinical

data, using directed connectomes as they are developed.

The model was simulated on the mesoscale connectome of the mouse,

utilizing the Allen Mouse Brain Connectivity Atlas (AMBCA), which

not only provides connection strengths between region-pairs but also

the polarity of those connections.19 This model-based method has the

advantage of not depending on transmission along a single projec-

tion, but incorporates directional transmission across the entire brain

network.

As we show below, this approach allowed us to clearly demonstrate

that retrograde spread bias is a characteristic and necessary feature of

tau progression in many experimental models. Further, net directional

bias has a dramatic effect on the spatial patterns of tau deposition over

time. Our study, therefore, has the potential to explain strain-specific

differences in spatial patterns of tau deposition.

2 METHODS

2.1 Datasets

The data in the present study for creating the mouse connectivity

network come from the AMBCA. This connectome was derived using

viral tracing and coregistered to the Common Coordinate Framework

(CCF)19; in total, therewere 426 regions spanning both hemispheres in

the connectome used in this study (Figure 1C). While there are multi-

ple ways to quantify the amount of connectivity between regions, we

chose to use total connectivity, rather than normalizing by volume. For

all modeling analyses, the connectomewasmin-max normalized across
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F IGURE 1 Tau exhibits a network-level directional preference. (A, B) Schematics showing the etiology of directional spread bias at the
microscopic and network levels. (A) Inside of axons, pathological tau canmigrate by passive diffusion or through energy-dependent directed
transport either in the anterograde (parallel to axon polarity) or retrograde (antiparallel to axon polarity) directions. (B) At a network level, this
manifests as an directionally biased flow along the directed connectome. By convention, cij indicates a connection originating in region i and
terminating in region j; therefore, a net flow from i to j along cij would be considered to be anterograde-biased. (C) The AllenMouse Brain
Connectome Atlas (AMBCA)19 visualized as a heatmap. (D) Scatterplots showing the associations between the regional end-timepoint (9MPI)
pathology in the IbaStrInj10 experiment (see Table S1) and the average connectivity from (left) and (right) seeded regions CP andMOp. Tau shows a
highly significant association with incoming but not outgoing connectivity. (E) Violin plots showing the associations between tau pathology across
all studies and time points and three pairs of region-level graphmetrics; from right to left: outgoing and incoming connectivity to seed, out- and
in-degree, and the first eigenvectors (v1) of Lret and Lant (see theMethods section). One-sample t-statistics were calculated for eachmetric and
two-sample t-statistics were calculated for eachmetric pair. All t-statistics were highly significant. (F) Glass brain visualizations of end-timepoint
IbaStrInj pathology and connectivity from (top) and to (bottom) seed regions (orange spheres). The low association between outgoing seed
connectivity is in part driven by strong contralateral telencephalic and ipsilateral hindbrain projections (red boxes), which do not exhibit significant
tau pathology. By contrast, the seeded regions predominantly receive connectivity from ipsilateral forebrain regions, which do exhibit pronounced
tau pathology (blue box). CP, caudoputamen;MPI, months post injection;MOp, primarymotor cortex. * – p< 0.05; ** – p< 0.01; *** – p< 0.001.
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all region-pairs. By convention, this 426× 426 connectivitymatrix,C, is

oriented such that each entry cij corresponds to the connectivity from

region i to region j.

Regional tau pathology data came from several studies that had to

satisfy several criteria: (1) quantification or semi-quantification was

based on immunohistochemistry (IHC); (2) the mice had to have a

P301S taumutant background to avoid conflating background endoge-

nous tau protein type with other analyses; (3) at least 40 brain regions

had to be quantified; (4) at least three timepoints had to be quanti-

fied.We summarize the key features of the 11mousemodels (spanning

four studies: 8–11) in Table S1. Further information about each dataset

or study used in the present article can be found in their respective

publications.

For data derived from Boluda et al., Iba et al., and Kaufman et al.,

regional tau burden were manually extracted from heat map figures

displaying semi-quantified pathology regions.8,10,11 Data from Hur-

tado et al. represent disease staging per region, more than quantified

or semi-quantified regional pathology, but were derived from a sup-

plementary data table.9 Using the AIBS mouse reference atlas as

an anatomic reference, we manually coregistered these regional tau

values into the CCF space of the AMBCA on a per-study basis.

2.2 NDM and NexIS

The original Network Diffusion Model (NDM) developed by Raj et al.

posits that the rate of change in tau concentration in a given region

is proportional to the tau concentration differences between all other

regions with which it shares a connection.13 For a two-region system,

the rate of change in tau in region 1 is given by:

dx1
dt

= 𝛽c12 (x2 − x1) , (1)

where xi is the tau concentration in region i, β is a global spread rate

parameter, and cij is the connectivity density between regions i and j.

WhenC is symmetric, cij = cji and this equation represents a graphdiffu-

sion process. This can be generalized across all regions using the graph

Laplacian, L, of C:

dx
dt

= −𝛽Lx, (2)

where L=D−C andD is the diagonal degreematrix ofC. Equation 2 is a

set of ordinary, linear differential equations and has an explicit solution

given by:

x (t) = e−𝛽Lt x (0) , (3)

The NexIS:global model proposed by Anand et al. extends this

framework to account for the local accumulation of tau over time:

dx
dt

= (−𝛽L + 𝛼I) x, (4)

x (t) = e(−𝛽L+𝛼I)t x (0) , (5)

where L is defined as above and I is the identity matrix. Here accu-

mulation is parameterized by the accumulation rate α ≥ 0. The above

equation, therefore, models an exponential growth of pathology as a

function of local tau concentration; the non-negativity constraint is jus-

tified by the fact that all 11 studies exhibit an increase in overall tau

burden over time. In this study, we require the accumulation rate to

be the same everywhere in the brain – assuming no region-intrinsic

effects – hence, α is a global rate parameter.

2.3 NexIS:dir

The above framework was proposed and implemented for symmetric

connectomes only; that is, when cij ≡ cji. This is particularly appropriate

for network modeling of human pathology, since human connectomes

are obtained using diffusion tensor imaging (DTI), which is unable to

distinguish the polarity of white matter tracts in the brain. However,

the AMBCA is fully directed; therefore, it need not be assumed that

flows along connection cij are equivalent to those along cji. Here, we

define two extreme cases for NexIS:dir: (1) purely retrograde spread,

where positive flow from region j to region i occurs along cij; (2) purely

anterograde spread,wherepositive flow fromregion j to region ioccurs

along cji. Mathematically, the two-region retrograde case is given by:

dx1
dt

= 𝛽c12 (x2 − x1) + 𝛼x1, (6)

and the two-region anterograde case is given by:

dx1
dt

= 𝛽c21 (x2 − x1) + 𝛼x1, (7)

As above, these generalize across the network using the graph

Laplacian (Equation 4); however, the form of the Laplacian differs

between these two cases:

Lret = Dcol (C) − C, (8)

Lant = Drow (C) − CT = Dcol
(
CT

)
− CT, (9)

whereDrow andDcol are the row and column degree operators, respec-

tively. Drow (C) produces a matrix where each diagonal entry is the

outgoing degree of C and Dcol (C) produces a matrix where each

diagonal entry is the incoming degree of C.

With NexIS:dir, we propose that directionally biased spread need

not be entirely aligned in the anterograde or retrograde directions

as in Equations 8 and 9. To accomplish this, we first define a new

directionally weighted connectome, Cs, as follows:

Cs = sC − (1 − s)CT, (10)

Here, s is a proportionality constantweighting the contributions ofC

and CT to the flows on the network and is bounded between 0 and 1. It

is clear by inspection thatC1 =C andC0 =CT. The directional Laplacian,

then, is simply:

Ls = Dcol (Cs) − Cs. (11)
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Again, L1 = Lret and L0 = Lant. Finally, the full NexIS:dir model is given

by:

dx
dt

= (−𝛽Ls + 𝛼I) x, (12)

x (t) = e(−𝛽Ls+𝛼I)t x (0) . (13)

We note one other special case of NexIS:dir: the case when s = 0.5.

C0.5 = 0.5(C + CT); therefore, c0.5,i j = 0.5(cij+cji) = c0.5, ji and C0.5 is sym-

metric. Therefore, we define the nondirectional Laplacian Lnd = L0.5,

which is equivalent to the NexIS:global case (Equation 4).

We use NexIS:fit-s, NexIS:ret, NexIS:ant, and NexIS:nd throughout

this study, where these are distinguished by the forms of the Laplacian

that they use in Equation 12 (Ls, Lret, Lant, and Lnd, respectively).

2.4 Parameter fitting

We fit all parameters of the NexIS:dir model using MATLAB’s fmincon

nonlinear optimization algorithm for each study individually. We uti-

lized two different fitting schemes: (1) longitudinal fitting, where all

available timepoints were fit simultaneously; and (2) per-timepoint fit-

ting, where α was first fixed to its longitudinally fit value and then the

remaining parameterswere fit to each timepoint individually. There is a

latent parameter, γ, representing the proportionality constant relating
amount of tau injected into seeded regions and the tau density as quan-

tified by IHC; this scale factor varies by experimental condition and is

necessary for making any fit of α meaningful. It also prevents the fit-

ting ofα in a per-timepoint fashion, as there is an identifiability problem

between α and γwhen fitting only one timepoint from seed. Therefore,

for per-timepoint fitting, γwas also fixed alongside α.
The regional data space differs from the regional connectome space

(i.e., the CCF) and between studies; notably, not all regions of the CCF

werequantified in any given study.We, therefore, simulated the spread

of pathology on the CCF atlas, producing 426 × number-of-timepoint

matrices of NexIS:dir predictions. To optimize the parameters for a

given mouse model, we first coregistered these predictions into that

model’s specific data space and then assessed the cost function based

on concordance correlation coefficient, as previously described.12

2.5 Statistical analysis

All statistical analysis involved performing standard linear regres-

sions, Pearson’s correlation, and t-tests using built-in MATLAB func-

tions. p-Values were subjected to the Bonferroni correction where

appropriate.

2.6 Visualization

All analysis figures were produced using MATLAB plotting functions.

The glass brain visualizations were generated using an in-house tool

called Brainframe (see Code Availability section).

2.7 Code and data availability

The data and code for these analyses and figures can be found in the

NexIS repository (https://github.com/Raj-Lab-UCSF/Nexis). The glass

brain visualizations were generated using an in-house tool, Brainframe

(https://github.com/Raj-Lab-UCSF/Brainframe). The AIBS mouse ref-

erence atlas was used as an anatomic reference in this study for the

purpose of coregistration of regional tau values into the CCF space.

This resource canbe freely obtained from theirwebsite (https://mouse.

brain-map.org/static/atlas).

3 RESULTS

3.1 Analysis of directed connectivity graph
indicates retrograde preference of tau migration

Previous network modeling has demonstrated that connectivity with

afflicted regions drives subsequent spatiotemporal tau progression,

but was limited to undirected connectomes.13–17,20 This mimics a dif-

fusion process whereby the direction of tau spread between region

pairs is dictated only by the concentration difference between them.

However, migration of tau along axonal projections is known to have

both diffusive and active transport components,21 where molecular

motors traffic cellular cargoes, including tau, asymmetrically between

the soma and the axon terminal (Figure S1A). At a network level,

this manifests as a directionality bias, with tau preferentially migrating

in the anterograde (from presynaptic to postsynaptic regions, follow-

ing the polarity of the projections) or retrograde (against the polarity

of the projections) (Figure S1B). Exploring directionality requires the

use of a directed connectome, which has been previously determined

using viral tracing methods in wild-type mice by the Allen Institute for

Brain Science (AIBS)19; here, we use a 426-region, bilateral version of

the Allen Mouse Brain Connectome Atlas (AMBCA) (Figure S1C). This

makes mouse models of tauopathy an ideal substrate for exploring the

question of directional bias in tau spread. For this study, we utilized

11 distinct mouse models, whose descriptions can be found in Table

S1). Of particular note is that 10 of 11 studies had the same genetic

background (PS19); therefore, any differences between studies’ tau

pathology can be attributed to differences in seeding location and the

molecular properties of the tau strain injected.

We first explored directional bias in a model-free way. Figure 1D

shows the associations between end-timepoint tau pathology for the

“IbaStrInj” mouse model,10 which was quantified at 9 months post

injection (MPI), and the connectivity from (left panel) and to (right

panel) the seeded regions (in this case, the caudoputamen [CP] and

primary motor cortex). We observed a strongly statistically signifi-

cant association with respect to incoming connectivity to the seeded

regions (Pearson’s R = 0.33, p < 0.001), but not outgoing connectivity

(R = 0.06, n.s.). Because preferential spread along incoming connec-

tions indicates that tau is migrating from postsynaptic to presynaptic

regions, these results suggest that the IbaStrInj mouse model exhibits

a net retrograde directionality bias.
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We found that this appears to be a general feature ofmouse tauopa-

thy for the11modelsweexplored, albeitwith significant heterogeneity

between studies and timepoints, as assessed by three different sets

of graph metrics: connectivity from/to seed, out- and in-degree, and

the first eigenvectors of the retrograde and anterograde Laplacian

matrices (Lret and Lant, respectively; see also the Methods section)

(Figure 1E). In graph theory the first eigenvector of the directional

Laplacian is considered a “network sink” of directionally biased spread.

While thedistributionsofRvalueswereall significantly above0byone-

sample t-test following Fisher’s R-to-z transformation (all p< 0.01), we

found statistically significant differences within each pair of metrics.

Specifically, associations with tau pathology were greater for incoming

rather than outgoing connectivity with seeded regions; for out-degree

rather than in-degree; and for v1 of Lret rather than v1 of Lant (all

p < 0.001 by two-sample t-test). Examining differences in associations

with v1 is particularly instructive, as this is the eigenmode of L that

should be most associated with tau spread over slow time scales. Lret
and Lant were constructed such that an outflux of tau from region i to

region j occurs along connections cji (retrograde) and cij (anterograde),

respectively (see the Methods section). Therefore, the fact that v1 of

Lret has a significantly stronger associationwith tau pathology suggests

that retrograde-biased spread dominates.

To examine these effects qualitatively, we returned to the end-

timepoint pathology of the IbaStrInj mouse model and utilized a glass

brain visualization of regional tau densities alongside the top 10% of

connections from and to seeded regions (Figure 1F). At early stages,

there is a net outflux of tau from seeded regions into connected

regions. If that outflux tends to occur along outgoing connections (i.e.,

cij, where i is a seeded region), then spread is anterograde-biased; the

reverse is true for retrograde. For IbaStrInj, we observed that many of

the strongest projections from the primarymotor cortex (MOp, orange

sphere) terminate in the contralateral telencephelon and ipsilateral

hindbrain (top panel, red boxes), where this mouse model exhibits low

pathology, as well as ipsilateral telencephalic regions, where pathology

is higher. By contrast, incoming connectivity to both theMOp andCP is

largely ipsilateral and originates in forebrain regions that exhibit high

tau density (Figure 1F, bottom panel, blue box). Because these results

indicate a preferential outflux from seed along projections cji rather

than cij, these results suggest that there is a retrograde rather than

anterograde preference inmouse tauopathy.

3.2 NexIS:dir modeling of tau pathology in
IbaStrInj demonstrates moderately but not wholly
retrograde spread

To model the spread of tau more directly, we extended the previ-

ously explored NexIS model12 into NexIS:dir, designed for directed

connectomes, and introduces a new directionality bias parameter s

that weights the spread along Lret versus Lant, with s = 1 indicating

purely retrograde spread, s = 0 indicating purely anterograde spread,

and s = 0.5 indicating nondirectional spread, which is equivalent to

spread along the symmetrized connectome Csym = 0.5(C + CT) (see the

Methods section). The other parameters in the model are: α, the net

aggregation or clearance rate of tau, and β, its rate of diffusion into

the connectome, that is, spread rate. We postulated that, while spread

maybenet retrograde (Figure1D–F), thebestmodel of tauprogression

would require capturing intermediate directionality biases through s.

Figure 2 shows glass brain representations of IbaStrInj pathology at

1, 3, and 9 MPI as well as the predictions of four different NexIS:dir

models: (1) NexIS:fit-s, where s was fit alongside the accumulation (α)
and spread (β) parameters; (2) NexIS:ret, where s was fixed to 1; (3)

NexIS:ant, where s was fixed to 0; and (4) NexIS:nd, where s was fixed

to 0.5. All model parameters were optimized utilizing all timepoints

together (see the Methods section). We observed that the rapid dis-

semination of tau between 0 and 1MPI in thismousemodelwas poorly

captured by all four models. However, by the last quantified timepoint,

NexIS:fit-s captured the highest number of relevant features in tau

spread relative to all othermodels. According to thismodel, spreadwas

predominantly, but not completely, retrograde, with an optimal s value

(sopt) of 0.78. Each of the other models where s was fixed underper-

formed in different ways. NexIS:ant, the worst model, could not fit the

spread process at all and predicted that tau pathology remained in the

seeded regions. NexIS:ret did capture the spread of tau to lateral neo-

cortical regions observed in thismousemodel, but showed little spread

elsewhere. NexIS:nd was able to accurately predict the spread of tau

to neocortical and forebrain subcortical regions; however, it overpre-

dicted pathology in the ipsilateral and contralateral CP as well as the

midbrain. NexIS:fit-s demonstrated a net decrease in pathology in the

CP as well as spreading throughout lateral forebrain regions, with an

excellent overall fit across all timepoints (R = 0.56, p < 0.001). There-

fore, we conclude that, in order to truly predict the spatiotemporal

deposition of tau in IbaStrInj, we require the precise quantification of

the proportion of directionality bias through s.

3.3 NexIS:dir demonstrates that intermediate
retrograde bias is the best overall model of tau
spread across all studies

We extended the above analysis for IbaStrInj across all 11 mouse

tauopathy models to explore if there were any trends in directionality

bias. Figure 3A shows R-t curves for the four NexIS:dir models, where

each colored line represents the association between end-timepoint

pathology (dashed black lines; see Figure S1 for illustrations of the

observed end-timepoint tau pathology for all 11 models) and each

model’s predicted distributions across the relevant time range.Wealso

display the optimal s parameters and R values for the NexIS:fit-s mod-

els (see also Table S1).While NexIS:nd and NexIS:fit-s often performed

equivalently well, as exhibited by sopt ≈ 0.5, NexIS:ret also exhibited

goodagreement and invariably outperformedNexIS:ant. As in Figure2,

all parameters were fit longitudinally for this analysis.

To delve into the performance in more detail, we obtained overall

R values as well as R values at each quantified time point for all four
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TOROK ET AL. 7 of 13

F IGURE 2 NexIS:dir models of IbaStrInj. Glass brain representations of the seed regions (CP andMOp) for the IbaStrInj experiment, visualized
as spheres, and space-filling visualizations of regional tau pathology at the three quantified time points (t= 1, 3, and 9MPI). The top row shows the
observed tau distributions, with the predictions from four different NexIS:dir models shown below; in order from top to bottom: NexIS:fit-s (fitted
s= 0.78), NexIS:ret (Ret.; s= 1), NexIS:ant (Ant.; s= 0), and NexIS:nd (N.D.; s= 0.5).While all models fail to capture the diffuse spreading of tau in
IbaStrInj mice at oneMPI, only by fitting the directionality bias parameter, s, does themodel capture the distribution of tau at the last time point.
There is also a clear divergence inmodeled pathology by nineMPI for different directionality biases, starting from a common seed (t= 0). Fit
s= 0.78 indicates mixed but retrograde-biased spread. Amy, amygdala; CP, caudoputamen; Cer, cerebellum; Hip, hippocampus; Hyp,
hypothalamus; Med, medulla; Mid, midbrain; MOp, primarymotor cortex; Neo, neocortex; Olf, olfactory; Pal, pallidum; Str, striatum; Sub, cortical
subplate; Tha, thalamus.

models, where parameters were longitudinally fit as above (Figure 3B).

Overall, whileNexIS:fit-s is always the superiormodel given that it opti-

mizes the s parameter, NexIS:nd is most frequently the second-best

model across studies. NexIS:ret, however, outperforms it for IbaStrInj

and BoludaDSAD, and as well as at certain timepoints for other stud-

ies (e.g., Hurtado).NexIS:ant is unequivocally the least predictivemodel

across all studies. Bootstrapping analysis where we fit NexIS:fit-s to

random 80%-subsets of regions showed that these results lack bias

(Figure S2). We also assessed overall directional bias using two met-

rics: (1) overall∆Rdir (i.e., the differencebetweenRret andRant per study,

which are plotted as blue and purple squares in Figure 3B, respec-

tively); and (2) sopt, the optimal s value for NexIS:fit-s. Both metrics

were statistically significantly retrograde by one-sample t-test, with

∆Rdir being highly statistically significant (Figure 3C).

We also examined an alternative fitting scheme, where we fit the

β (spread rate) and s parameters at each timepoint individually after

fixing α to its longitudinally fit value. This choice was motivated by

the fact that α, as the global accumulation parameter, captures the

increase in overall pathology burden and is best determined using

all timepoints together (see the Methods section). Model perfor-

mance generally followed those obtained using longitudinal fitting,

with some subtle differences (Figure 3D). For instance, NexIS:ret

exhibited a higher mean R across timepoints for the Hurtado study

than NexIS:nd, and NexIS:ant exceeded NexIS:ret performance for

BoludaCBD. However, as with the longitudinally assessed bias metrics

shown in Figure 3C, per-timepoint ∆Rdir and sopt also showed a highly

statistically significant retrograde tendency (Figure 3E). Therefore,

NexIS:dir conclusively demonstrated that mouse tauopathy models
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8 of 13 TOROK ET AL.

F IGURE 3 NexIS:dir model performance across all mouse experiments. (A) Plots of Pearson’s correlation (R) values between the predicted tau
pathology using the four types of NexIS:dir models over time, and the observed tau pathology at the last quantified time point for each of the 11
experiments (dotted vertical lines). (B) Per-timepoint (triangles) and overall (squares) R values for each of the four NexIS:dir models (NexIS:fit-s,
NexIS:ret, NexIS:ant, and NexIS:nd) with respect to the observed tau distributions of each of the 11mouse experiments, where eachmodel’s
parameters were fit longitudinally.While NexIS:ret andNexIS:ndmodels often perform comparably well to NexIS:fit-s, NexIS:ant is always the
worst-performingmodel overall. (C) Boxplots of∆Rdir (Rret −Rant; left) and fitted s values (right) across experiments, assessed for longitudinally fit
models. Bothmetrics show an overall net retrograde spread bias. (D) Per-timepoint (triangles) andmean across time (squares) R values for each of
the four NexIS:dir models (NexIS:fit-s, NexIS:ret, NexIS:ant, and NexIS:nd) with respect to the observed tau distributions of each of the 11mouse
experiments, where eachmodel’s parameters were fit to each timepoint individually. Similar toB, NexIS:ant generally performsworse than all
other models. (E) Boxplots of∆Rdir (left) and fitted s values (right) across experiments, assessed for per-timepoint fit models. As inC, bothmetrics
show an overall net retrograde spread bias. * – p< 0.05; ** – p< 0.01; *** – p< 0.001.
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(A) (B)

(C) (D)

F IGURE 4 Inter-relationships betweenNexIS:dir parameters. (A) Scatterplot of fitted s values versus spread rate parameter (β) values in the
NexIS:fit-s model across all time points and experiments. Both parameters were fit individually per timepoint. There is a modest but statistically
significant negative association between s and β (p< 0.05). (B) Scatterplot of fitted s values versus accumulation rate parameter (α) values in the
NexIS:fit-s model across all time points and experiments. As in (A), the s parameter was fit individually per timepoint, while αwas fit longitudinally
and fixed across timepoints (see theMethods section). There is a moderately statistically significant association between s and α (p< 0.01). (C).
Scatterplot of α values versus β values in the NexIS:fit-s model across all time points and experiments. The parameters were fit as in (A) and (B).
There is amoderately statistically significant association between α and β (p< 0.01). (D). Proposedmodel for the inter-relationships between these
parameters. Overall tau pathogenicity (i.e., its overall aggressiveness) as reflected by the fitted NDMmodel’s higher accumulation parameter 𝛼 and
higher spread parameter 𝛽, is also associated with a transition from retrograde-biased to nondirectional spreading of tau along the connectome.

appear to have a net retrograde as opposed to anterograde character,

with variation between individual studies.

3.4 Spread rate, accumulation rate, and
directional bias are mutually interdependent

Lastly, we postulated that the optimal values of three key NexIS:dir

parameters (α, β, and s) may be correlated to each other. Figure 4A–C

shows the linear regression between the per-timepoint fit values of

each pair of parameters. Notably, swas negatively correlatedwith both

β (R2 = 0.10, p < 0.05) and α (R2 = 0.17, p < 0.01) (Figure 4A and B,

respectively). It appears that spread and accumulation rates are

inversely related to directional spread bias; therefore, more aggressive

tau strains aremore likely to travel nondirectionally (Figure 4B). Of the

threepairs of parameters,α and β actually showed the strongest overall
correlation (Figure 4C, with an R2 value of 0.24 (p< 0.01).

Let us denote the overall aggressiveness of tau as its pathogenic-

ity. Given that parameter 𝛽 captures how aggressively tau spreads

and 𝛼 denotes how aggressively it accumulates, we may speculatively

infer from the above findings that tau pathogenicity induces more

aggressive proteinopathy but less retrograde transmission (Figure 4D).

We also found that there was no temporal shift in the s parameter

when fit per-timepoint (Figure S3). Therefore, we conclude that only

strain identity, and to some extent seeding location, contributes to net

directionality.

The implications of these findings are explored in the Discussion

section.

4 DISCUSSION

While prior studies have firmly established the predominance

of trans-synaptic spread mechanisms in driving spatiotemporal
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pathology development in AD,2–4,8,10,13,15,22,23 the present research

explores whether the direction of trans-synaptic tau spread might

be superior to non-directional spread, and whether directional bias

depends on tau strain, injection site, injectate type, and genetic back-

ground. We used both statistical and mathematical modeling tools to

interrogate the emergence of net directional bias in tau transmission

across 11 transgenic mouse datasets.

4.1 Summary of key results

Our analyses revealed several previously unknown and striking find-

ings. First, there is a distinct role of the polarity of axonal projections

from the seeding site in where and how rapidly tau propagates into the

brain, with strong statistical evidence that favors its retrograde rather

than anterograde transmission. When we applied our directional net-

workmodel to assess this effect on thewhole brain, we found a notable

net retrograde bias in network-based transmission of tau across all

tauopathy studies, with anterograde-biased spread models exhibit-

ing poor performance. Second, we observed a wide variance between

individual mouse models in terms of their respective spread biases,

with some exhibiting net retrograde spread and others no spread bias,

thus suggesting that retrograde bias is conformation- and seeding-

site-dependent. Third, extrapolating theNexIS:dirmathematicalmodel

over the whole brain network led to divergent spatiotemporal tau pro-

gression patterns that exhibited excellent agreement across all mouse

models’ observed tau patterns. Therefore, the diverse spatiotempo-

ral presentation of tauopathic conditions24–27 might arise partly due

to differential directional biases during trans-synaptic spread. Fourth,

we found an unexpected interdependence of the NexIS:dir parame-

ters across studies, with tau spread rate and accumulation rate being

positively associated with each other and negatively associated with

directional bias, leading us to propose a strain-specific model of mouse

tauopathy (Figure 4D).

4.2 Potential mechanisms for net retrograde bias
in tau propagation

The results of our statistical (Figure 1) and mathematical-modeling-

based (Figures 2 and 3) analyses provide critical quantitative support

for the possibility that a directional difference in the spread of tau

pathology may be operative in vivo, or that this may have widespread

consequences on the eventual pattern of progression within the brain.

Most in vivo and in vitro studies indicate at least a bidirectional trans-

mission of tau.5,6,10,28 Further, Iba et al.10 demonstrated the classic

spread of preformed tau fibrils in P301S mouse model, and found

that hippocampal seeding yields spread into entorhinal cortex (EC) and

nearby cortices, raising the possibility that hippocampal efferentswere

involved. While these descriptive studies point to the plausibility of

directional bias, here we present quantitative evidence across numer-

ous experimental conditions that there is a notable, strain-specific

retrograde bias in tau spreading. If confirmed by future bench stud-

ies, this finding may have the potential to alter howwe think about tau

pathology progression.

Weadvance several potentialmechanisms thatmay lead to this bias,

building upon the hypothetical “molecular nexopathy” framework of

degenerative diseases.25 First, retrograde bias in tau pathology spread

maybe caused by progressive breakdownof the axon-somabarrier due

to repeated exposure to hyperphosphorylated tau, leading to retro-

grade missorting of tau from axon to soma and dendrites.29 Because

neuronal signaling and axon structural integrity become progressively

degraded over the course of degenerative diseases,29 anterograde

transynaptic transport likely becomes less frequent and more diffi-

cult. This would amount to a selection pressure toward misfolded

tau strains that are more readily able to cross the synapse from

dendritic bouton to axon terminal, thereby potentially leading to a ret-

rograde bias across conditions. Aberrant tau conformations are also

known to dysregulate energy-dependent transport of kinesin-1,30–33

which leads to tau missorting over time and may underpin directional

bias. This intriguing possibility has been explored mathematically in a

two-neuron system,34 but further exploration of the implications of

transport breakdown and network directional bias is required to draw

firm conclusions.

Retrograde transmission of tau might also be mediated by amyloid-

β (Aβ), which is known to induce early missorting of tau from axons to

dendrites.35–38 Intracerebral Aβ injections in P301L transgenic mice

exacerbated hyperphosphorylation of tau and NFT formation, not at

somatosensory cortical and hippocampcal injection sites, but rather

in the retrogradely-connected basolateral amygdala.39 This suggests

that Aβ-induced damage to terminals or axons projecting to the injec-

tion site caused NFT formation in presynaptic cell bodies. While we

lacked sufficient data to explore whether Aβ influences directionality
in mouse tauopathy models, the fact that primary tauopathies (such

as frontolobartemporal dementia, FTLD) and secondary tauopathies

(such as AD) exhibit different etiologies suggests that Aβ may influ-

ence how tau spreads on the network. These explanations need

not be mutually exclusive: Aβ-induced retrograde tau transmission

should appear earlier in the disease course than retrograde spread

caused by the breakdown of the axon-soma barrier, as amyloidopa-

thy has been repeatedly shown to precede or co-occur with tauopathy

in AD.37,40,41

4.3 Directionality bias is strain-specific

It is well known that tau tangle structures within disease condition

are often consistent, while they can vary considerably between dis-

ease condition.24 For example, when tau pathology from a human

AD patient is injected into a mouse, the structure of tangle aggre-

gates in the mice mirrors that of the patient24; furthermore, comorbid

Aβ/tau mouse models can reproduce Braak staging of tauopathy in the

absence of a seed.9 We found that net directional bias appears to be

dependent on tau strain in a study-specific manner (Figure 3). While

the optimal directionality bias parameter values in theNexIS:fit-smod-

els (sopt) were on average retrograde across studies and timepoints, we
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note that there is significant variation between them (Figure 3C and E;

Table S1).

We chose these studies in part because they all shared a P301S

tau mutation, 10 of the 11 mouse models had a PS19 genetic back-

ground (the last, Hurtado, was a PS19/PDAPP bigenic mouse model),

disentangling the effects of different tau strains from injection sites

is more challenging. We posit that tau strain is the predominant fac-

tor here rather than seeding site based on several pieces of evidence.

First, IbaHippInj and IbaStrInj, which were both obtained from the

same study,10 differ only in seeding locations and exhibit similar ret-

rograde biases by sopt (Table S1). Additionally, the six experiments from

Kaufman et al. were all seeded in PS19 mice in the left CA1 region of

the hippocampus and, therefore, only differ in their injectates11 (Table

S1). These all exhibit marked differences in how tau pathology evolves

over time (Figure S1), and while most are predominantly nondirec-

tional, DS9 exhibits retrograde character (sopt =0.64).While these data

are merely suggestive, strain specificity has been noted elsewhere as

a general feature underlying the diversity of tauopathic diseases,42 as

well as differences in gross tangle structure between tauopathies, as

diverse as Pick’s disease, progressive supranuclear palsy, corticobasal

degeneration, and others.24

What differences in these properties may explain such a difference

in their preferred direction of trans-synaptic spread? Pathological tau

species can bypass or move through the axon-soma barrier, which in

the normal state limits retrograde misplacement of tau into somato-

dendritic compartment, on an isoform or strain specific basis.43 Thus,

it could be that certain misfolded tau strains are more readily able

to break through the barrier than others. We also found that spread

and accumulation rates are inversely related to directional spread bias;

therefore, more aggressive tau strains are more likely to travel nondi-

rectionally (Figure 4B). These observations could be explained by the

known dysregulation of axonal transport by tau.30–33 The observa-

tion that retrograde bias is inversely related to both how aggressively

tau spreads (captured by parameter 𝛽) as well as accumulates (via

parameter 𝛼) leads us to propose a speculative strain-specific model

of mouse tauopathy (Figure 4D), whereby tau pathogenicity (i.e., more

aggressive proteinopathy) is accompanied by less retrograde transmis-

sion. However, the exact mechanistic interactions involved in these

processes require further modeling and experimental studies.

4.4 Implications

The finding that the directional bias is dependent on conformation

of tau has two potential implications. First, AD heterogeneity, both

in terms of disease aggressiveness44 and patterns of tau deposition

(e.g., limbic-predominant vs. hippocampal-sparing variants),45 may be

explained by the interplay between aggregation rate, spread rate, and

tendency toward retrograde-biased spread. Second, it may also help

explain why there is such a diversity of spatial patterning between

tauopathies more broadly. These lines of reasoning are based on the

observation that directional bias may lead to different areas where

tau eventually accumulates, which may in turn lead to differential

selective regional vulnerability of different tauopathies. Already, clin-

ical studies confirm that the two disease hallmarks, regional tau

pathology and neurodegeneration, exhibit divergent spatiotemporal

development patterns between conditions, pertaining to their 3R and

4R tau isoforms46 and sites of tau hyperphosphorylation,47 as are

the brain regions showing early disease vulnerability.48,49 Other tauo-

pathic conditions can manifest early pathology in the orbitofrontal

cortex (OFC), the amygdala (AMY), nucleus accumbens (NAcc), and

caudate nucleus (CN).49,50 Furthermore, recent clinical evidence has

identified AD-specific phosphoepitopes of tau,26,27,51 suggesting that

amyloid comorbidity in AD may influence the ways in which tau is

posttranslationally modified, which in turn leads to distinct patterns of

neurodegeneration relative to primary tauopathies. Tying these effects

to underlying changes in directional bias would constitute a highly par-

simonious and unifyingmechanistic explanation. Future studies in both

experimental and simulation systems should interrogate the sources of

diversity among different neurodegenerative pathologies.

ACKNOWLEDGMENTS

We acknowledge the Allen Institute for Brain Science and in particular

their mouse reference and connectivity atlas toolboxes and research

teams. Without their exemplary contributions to neuroscience and

neuroanatomy, the present work would not be possible. We also

acknowledge Pedro D. Maia of the University of Texas at Arlington,

who was instrumental in the development of the NexIS model. This

research was supported by the following grants from the National

Institute on Aging: RF1AG062196, R56AG064873, R01AG072753,

R01AG087302, R21AG087921.

CONFLICT OF INTEREST STATEMENT

The authors declare no competing financial interests. Author disclo-

sures are available in the supporting information.

CONSENT STATEMENT

No consent was necessary for this study.

ORCID

Justin Torok https://orcid.org/0000-0002-1866-4003

REFERENCES

1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related

changes. Acta Neuropathol. 1991;82:239-259.
2. AhmedZ, Cooper J,Murray TK, et al. A novel in vivomodel of tau prop-

agation with rapid and progressive neurofibrillary tangle pathology:

thepatternof spread is determinedbyconnectivity, not proximity.Acta
Neuropathol. 2014;127:667-683.

3. Clavaguera F, Bolmont T, Crowther RA, et al. Transmission and

spreading of tauopathy in transgenic mouse brain. Nat Cell Biol.
2009;11(7):909-913.

4. Holmes BB, Furman JL, Mahan TE, et al. Proteopathic tau seeding

predicts tauopathy in vivo. ProcNatl Acad Sci. 2014;111:E4376-E4385.
5. Tai HC,WangBY, Serrano-PozoA, FroschMP, Spires-Jones TL, Hyman

BT. Frequent and symmetric deposition of misfolded tau oligomers

within presynaptic and postsynaptic terminals in Alzheimer’s disease.

Acta Neuropathol Commun. 2014;2:146.

 15525279, 2025, 5, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.70092 by T

est, W
iley O

nline L
ibrary on [22/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-1866-4003
https://orcid.org/0000-0002-1866-4003


12 of 13 TOROK ET AL.

6. Wu JW, Herman M, Liu L, et al. Small misfolded tau species are

internalized via bulk endocytosis and anterogradely and retrogradely

transported in neurons. J Biol Chem. 2013;288:1856-1870.
7. Langer Horvat L, Španić Popovački E, Babić Leko M, et al. Antero-
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