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Abstract

To understand biological intelligence we need to map neuronal networks in vertebrate brains. Mapping mesoscale
neural circuitry is done using injections of tracers that label groups of neurons whose axons project to different
brain regions. Since many neurons are labeled, it is difficult to follow individual axons. Previous approaches
have instead quantified the regional projections using the total label intensity within a region. However, such
a quantification is not biologically meaningful. We propose a new approach better connected to the underlying
neurons by skeletonizing labeled axon fragments and then estimating a volumetric length density. Our approach uses
a combination of deep nets and the Discrete Morse (DM) technique from computational topology. This technique
takes into account nonlocal connectivity information and therefore provides noise-robustness. We demonstrate
the utility and scalability of the approach on whole-brain tracer injected data. We also define and illustrate an
information theoretic measure that quantifies the additional information obtained, compared to the skeletonized
tracer injection fragments, when individual axon morphologies are available. Our approach is the first application
of the DM technique to computational neuroanatomy. It can help bridge between single-axon skeletons and tracer
injections, two important data types in mapping neural networks in vertebrates.

1 Summary

Neuroscientific data analysis has traditionally involved methods for statistical signal and image processing, drawing
on linear algebra and stochastic process theory. However, digitized neuroanatomical datasets containing labeled neu-
rons, either individually or in groups labeled by tracer injections, do not fit into this classical framework. The tree-like
shapes of neurons cannot be adequately described as points in a vector space (e.g., the subtraction of two neuronal
shapes is not a meaningful operation). There is therefore a need for new approaches, which has become more pressing
given the growth in whole-brain datasets in which axons and dendrites are labeled via sparsely labeled neurons or
tracer injections.

Methods from computational topology and geometry are naturally suited to the analysis of neuronal shapes. In
this paper, we introduce methods from Discrete Morse Theory to skeletonize neuronal processes or process fragments
from tracer-injected brain image data, leading to a summarization of the neuronal projections based on the volumet-
ric line density of such skeletonized processes in space. This contrasts with previous approaches in which the neuronal
projections are quantified by counting fluorescently labeled voxels. Such a procedure is difficult to connect to the
underlying biology, except in a qualitative manner. In contrast, our skeletonization process allows us to carry our a
biologically more meaningful quantification, in terms of the length-density of the neuronal process fragments in given
regions of space. The total length of axons is biologically more meaningful than the label density as it can provide
information about the number of presynaptic sites on the axons in different brain compartments[1]. The total length
of all axons emanating from the injection site in a given brain compartment or across the whole brain can be obtained
by interpolating and integrating the volumetric line density sampled in a series of optical planes, as is normally the
case for whole-brain light microscopic imaging of tracer injections. This also provides a way to relate the tracer injec-
tion data quantitatively to single axon reconstructions, which are increasingly available in some vertebrate animals,
particularly in the laboratory mouse.
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The proposed algorithmic procedure for neuron skeletonization includes an initial process detection step [2], which
applied to a projection region of a tracer-injected brain image volume produces a likelihood map of the neural pro-
cesses or process fagments. This is effectively a normalization and preprocessing step. This first step is followed by
extraction of the process skeletons from the density field using the Discrete Morse technique, in which the 1-unstable
manifold of the likelihood function, which connects the local maxima through intervening saddle points, is extracted
using persistent homology as a noise-control method. This structure, which is part of the Morse skeleton of the like-
lihood function, could be intuitively interpreted as tracing a path through a mountainous landscape by connecting
the tops of adjacent hills connected by tall ridges.

After suitable corrections to the raw skeletons designed to take into account the underlying biological structure
of the data, we find that this procedure leads to an effective skeletonization of neuronal process fragments, in tracer
injected whole brain microscopic image data, as long as they are not too dense. This then permits the direct quantifi-
cation of the lengths of the process fragments which is suitable for further summarization of the tracer injections. We
apply the method to high-resolution brain image data of tracer-injection labeled neurons collected using two different
microscopic techniques, demonstrating better performance than a baseline algorithm using non-topological methods
(significant improvement in precision, and significant speedup in proofreading).
The extracted process skeletons are then passed to a summarization stage, where the length density of the fragments
is quantified in the two-dimensional image plane. This provides a bridge between single neuron skeletons and tracer
injection data. Single neuron skeletons are increasingly available, mapped to a common atlas coordinate space. Such
single neuron skeletons could be virtually sliced into thin sections corresponding to the optical sections obtained in
the microscopic imaging of tracer injection data, and the length density of the fragments thus obtained can be quan-
tified in the two-dimensional plane of section. This gives rise to a length density as a function of space, which could
directly be compared with the length density obtained from the tracer-injection labeled fragments. We illustrate this
procedure through an example. Further, availability of the voxelixed line-density for the tracer injection data, allows
us to compute an information theoretic measure of how much extra information is provided by single neuron recon-
structions over tracer injections in a brain region, which should help clarify the relation between the tracer injection
labeled groups of neurons and the constitutent individual neurons.

The DM method can trace a neuronal process fragment through regions of low intensity as it utilizes the global
topological structure present in the data. Persistent homology based simplification of the Morse skeleton allows the
method to deal with noise in the data in an adaptive manner, by considering local differences in intensities rather
than absolute intensity values. Additionally, the DM approach is theoretically principled and conceptually clean,
minimizing multiple ad-hoc hand-engineered steps. On the other hand, there is a significant computational overhead
to the topological data analysis approach, however we are able to mitigate the speed issues by using parallelized
implementations of the Discrete Morse algorithm.

2 Background

Topological Data Analysis and Discrete Morse Theory: Topological data analysis (TDA) methods have been
applied across domains to analyze complex high-dimensional datasets [3]. The benefit of TDA methods is to study
the structure that depends on the connectivity properties of the data independent of specific metrical and geomet-
rical properties. TDA use a variety of approaches to characterize the topological structure underlying the data in
question[4–8]. Some of the relevant computational tools (in particular persistent homology [9]) have been applied to
multiple subject domains [10–14], including neuroscience [15–17].

The subarea of TDA pertinent to the present work is a persistence-guided Discrete Morse theory-based compu-
tational framework for reconstructing hidden graphs from observed data. Discrete Morse theory has been utilized
to capture hidden structure in 2D or 3D volumetric data [18–20]. The extraction of hidden graphs was formulated
in [21], and the framework was simplified and theoretical guarantees provided in [22]. Morse theory based methods
are sensitive to the global topology of the data in contrast with methods sensitive only to local structure. Thus, for
example, the underlying graph skeleton of a noisy measurement of a scalar field can be traced through regions of
weak signal. Morse theory in its original form applies to continuous functions on manifolds. Discrete Morse theory
[23] is a discretized and combinatorial computational framework inspired by Morse theory, suitable for algorithmic
implementation on digitized data. Persistent homology is used to separate signal from noise and remove potentially
noise-related structure from the graph. The pertinent TDA tools have previously been applied to the reconstruction
of hidden road networks from noisy GPS trajectories and satellite images [24, 25]. Here we adapt and extend this
approach to develop a computational methodology suitable for computational neuroanatomy and to address neuro-
scientific problems.

In this manuscript we introduce a data analysis framework entitled DM-skeleton that uses TDA and the Discrete
Morse approach to skeletonize groups of neurons labelled by tracer injections. For tracer injection skeletonization,
DM-skeleton provides a conceptually new route to the analysis and quantification of mesoscale projection data, and
shows robust performance.

Tracer Injection Skeletonization: In tracer injected brain image volumes, thousands of neurons with somata
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Fig. 1 |Workflow and sample outputs for the DM-Skeleton pipeline. Workflow for 2D Skeletonization (from sparse
neuronal label to individual skeleton extraction) and Summarization of the Detected Labels (from dense neuronal
label to injection summarization) with sample outputs for each step.

or terminals co-localized in a brain compartment are collectively labeled using the tracer injection, and the individ-
ual neurons cannot generally be skeletonized. Conventionally, brain-wide connectivity information is summarized in
the form of regional connectivity matrices [26]. Such a representation loses connection with the axonal morphology of
individual neurons and is difficult to interpret in more microscopic terms. Here we introduce a new approach to the
analysis of tracer injection data, by skeletonizing axon fragments labeled by the tracer injections using discrete morse
method. This permits us to quantify the local length density of the labeled axons, which can then be further related
to the length density of underlying single axons. To the best of our knowledge, this is a new approach to concep-
tualizing tracer-injection data, and could provide a biologically better-grounded approach to the study of mesoscale
connectivity mapping using tracer injections. One important advantage of the tree-skeletonization approach is that
one can then estimate the total length of all the neurons labeled by the tracer injection. While we do not expect that
estimates based on sampled fragments to be as precise as one would get by actually tracing whole axons, single axon
tracings are expensive and time intensive to obtain, and simulations have shown that there is reasonable correlation
between projected length fragments with actual axon lengths[1]. Therefore we believe that a careful skeletonization of
axon fragments from tracer injections and subsequent estimation of length densities is methodology worth developing.

The DM pipeline for summarizing multiple-neuron tracer injection datasets has multiple steps. First, the
raw image stack is preprocessed to detect neuronal processes as a likelihood map, which we do using a previ-
ously introduced method combining deep networks and topological data analysis[2]. Then a variant of the Discrete
Morse algorithm[22, 24] is used to produce a graph skeleton containing all potential axon fragments. As a noise
reduction step, a persistent homology based simplification step is carried out next. The denoised graph is next
further processed to extract a minimal spanning tree taking into account the biological prior knowledge that
axons have tree-like topology. We provide the resulting pipeline as a computational package that takes images
as inputs and produces a DM-skeleton data structure consisting of the detected axon fragments as output (see
https://data.brainarchitectureproject.org/pages/skeletonization for code and data).

3 Results

Method overview. The workflow of the proposed DM-skeleton (DM-Skeleton) method is shown in Fig. 1. The
workflow has three main steps, namely preprocessing, skeletonization, and simplification (see the Methods section
1.3.)

DM-Skeleton takes 2D scalar images as input. In Step 1, the DM++ algorithm[2] is applied as a normalization
step, generating a likelihood image. The likelihood image, which is interpreted as a normalized label density field ρ,
is used as a Morse function which serves as an input to the next stage. The goal of the next step is to capture center-
lines passing through (relatively) high likelihood regions using the 1-unstable manifold of the density function (see
Fig. 2 for an explanatory graphic).

In Step 2, a persistence-guided discrete Morse-based framework [22, 24] is applied to ρ, producing as an output the
Morse ’graph skeleton’ G. The 1-unstable manifold connects peaks through saddles, thus bridging through low-density
regions along the labeled axon fragments (e.g., gaps and weak signals along the Y-junction in Fig. 2a). Finally, in Step
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(a) (b)

(c) (d)

Fig. 2 | Illustration and basic concepts used for Discrete Morse theory based graph skeletonization algorithm. (a).
An input raw image (top left) is first converted to a likelihood image (left bottom). Treating the likelihood map as
a density function (the corresponding terrain is show on the right), extract the 1-unstable manifold of this function,
which is a one dimensional branched structure that traces paths following the gradients in the density, connecting
peaks through intervening saddle points. (b) An example of A 2D Morse function together with the Morse skeleton
(white dashed curves): pink points are local maxima, yellow points are saddles, while blue points are local minima.
The Morse skeleton is the collection of the so-called 1-unstable manifolds (integral paths of gradient descent dynamics
connecting saddles to maxima / mountain peaks). (c) Persistence is used to remove small or noise peaks as a denoising
step. An example of persistence pairs on a simple 1D function f : R → R, represented by the so-called persistent
barcodes given by the lifetimes of features as the function value is smoothly increased, shown as the vertical green
segments on the right. In particular, given f , as we gradually increase f -function values, topological features (in this
case connected components) first appear (are ’born’) at local minima, and disappear (’die’) at local maxima. Each
persistence pair (i.e. (b, d)) indicates the birth and death of some feature (i.e. born at f(b) and killed at f(d)). This
gives rise to a interval (f(b), f(d)) (shown as vertical bars) forming the so-called persistence barcode w.r.t.f (on the
right). The ’persistence’ of the feature (b, d) is defined to be the difference in function values |f(d)− f(b)| which can
be considered as a measure of stability, i.e. how “long” the feature persists / lives. In the persistence barcode, the
persistence of a feature (b, d) is defined to be the length of the corresponding persistent bar. In the function plots,
persistence pairings are marked by green dotted curves. The function g in (d) can be viewed as a noisy perturbation
of function f . The function f has 2 prominent features (persistence pairs), while the perturbed version g also has
additional “smaller” features with lower persistence (corresponding to very short persistent bars in the right).

3, the Morse graph skeleton G is further processed to extract axon fragments. First, false positives are suppressed by
intersecting with a binary mask created by appropriately thresholding the likelihood to remove very low probability
regions. The maximal spanning trees of the resulting graph fragments are then extracted. As noted above, the tree
fragments occasionally have easily identified spurious side-branches (”hair”). We remove such short side branches
using a simple ”Haircut” algorithm; more details in Methods section 1.3.3).

To illustrate the proposed technique on real data and to compare with a baseline algorithm, we processed digitized
microscopic images of two brain volumes, corresponding to two tracer-injected brains with tracer injections placed at
nearby locations, imaged with two different microscopy methods, namely Whole Slide Microscopy using fluorescent
imaging (WSI) [27], and Serial Two Photon microscopy (STP) [28–30]. As a baseline algorithm we used the function
bwskel() from MATLAB that uses the medial axis transform, which is a standard approach to skeletonization of
similar shapes. This function attempts to provide a topology-preserving thinning of the object o be skeletonized, and
therefore provides a reasonable baseline comparison of our topologically motivated Morse-theory based skeletonization
method. Likelihood images corresponding to the detection of axon fragments in these brain images, obtained using
the DM + + technique which we have previously described[2], were binarized using OTSU -based threshold. This
binarized likelihood image was skeletonized using the bwskel() function from the MATLAB Image Processing Toolbox.
Comparisons of the DM-skel output and baseline bwskel output on the same input images can be seen in Fig.3 and
Fig.4 respectively for the WSI and STP imaged brains.

Fig.3 shows images from the WSI data set whereas Fig.4 shows images from the STP data set. In both figures,
columns (a) and (c) show tiles showing tracer-labeled axon fragments from the WSI data set, with selected zoomed-in
regions shown in columns (b) and (d). The top row shows the original fluorescent imaging data, the second row the
results of the proposed method (DM-skel), and the third row the results of the baseline method (bwskel).
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Fig. 3 |Axon skeletonization for fluorescent Whole Slide Image (WSI) data. Columns (a),(c) show image
tiles and columns (b),(d) show zoom ins. Top row shows the original images, the middle row the results of DM-skeleton,
and the bottom row the baseline skeletonization results using the MATLAB function bswkel. Axon fragments are
seen in the original image as groups of lines of enhanced intensity. Results of visual-manual annotations for errors are
also shown. True-positives are in cyan, false-positives are in yellow and false-negatives are in magenta. The results
show better continuity and detection of the fragments by the DM-skeleton method over the baseline method.

From visual inspection, we can see that the baseline method bwskel (shown in the third rows of the respective
figures) can produce spurious features, can fail to distinguish between two nearby axons, and can fail to maintain
continuity of axons through low-intensity signal regions. In each case, we manually annotated the corresponding
tiles to mark false positives and false negatives as judged by a human observer. In the second and third rows of
each respective figure, the true-positives are shown marked in cyan, false-positives are marked in yellow and false-
negatives are marked in magenta. These examples visually illustrate that our proposed algorithm outperforms the
baseline method in preserving the connectivity of the neurites and respecting their underlying tree structures. The
baseline algorithm starts from a binarized likelihood and is consequently unable to skeletonize faint signals (see further
zoomed-in regions (columns (b),(d)) in Figs. 3 and 4). In contrast, DM-skeleton utilizes the analog likelihood image
for Morse-based skeletonization and is able to better preserve the continuity of the axon fragments.
We would like to note that our approach to analyzing tracer injection data is not conceptually tied to using the
Discrete Morse algorithm for skeletonization of the shape, and other approaches to skeletonization could also be then
used as input to the subsequent summarization step. We have found in our work that the DM based skeletonization
approach produced good quality results for our application and outperformed a standard baseline, however if better
skeletonization methods for this type of data become available in the future, the overall proposed workflow and
approach to the analysis of such data types would still apply, while swapping out the DM module for skeletonization.

These visual observations are quantified in Table 1 and show that the proposed technique outperforms the baseline
method. For the WSI data set, the F1 score is 0.97 for DM-skeleton (0.6 for bwskel) and the IOU score 0.94 for
DM-skeleton (0.55 for bwskel) showing sufficiently high quality suitable for the desired scientific application of the
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Fig. 4 |Results of STP (serial two-photon images) neuron skeletonization. Columns (a),(c) show image tiles
and columns (b),(d) show zoom ins. Top row shows the original images, the middle row the results of DM-skeleton,
and the bottom row the baseline results using bswkel. Axon fragments are seen in the original image as groups of
lines of enhanced intensity. Results of visual-manual annotations for errors are also shown. True-positives are in cyan,
false-positives are in yellow and false-negatives are in magenta. The results show better continuity and detection of
the fragments by the DM-skeleton method over the baseline method.

Precision Recall F1-score IOU

Proposed 0.94 0.99 0.97 0.94
DM2D

MATLAB 0.87 0.60 0.71 0.55
bwskel()

(a) Table for comparison of techniques in the WSI
dataset.

Precision Recall F1-score IOU

Proposed 0.92 0.96 0.94 0.89
DM2D

MATLAB 0.90 0.59 0.72 0.56
bwskel()

(b) Table for comparison of techniques in the STP
dataset.

Table 1: The two tables shown below give the metrics for comparison of the proposed technique, DM2D with the
baseline method, MATLAB bwskel(). The metrics are calculated based on the true-positive, false-positive, and
false-negative pixels in the detected image, corresponding to the manually annotated Ground-Truth image.

technique. The scores for the STP data set are only slightly lower (see 1.4 for further details). Note that in application
of the methodology to whole brain data sets we encountered some spatially distinct compartments of overall poor
performance due to tissue processing issues or imaging artifacts (folded sections and vasculature at the base of the
brain for the WSI image data, and artifactually saturated islands of voxels at edges or the brain). These artifacts
were visible in low resolution versions of the images, and the corresponding tissue regions were masked out. Also, the
injection regions showed label saturation with individual axons not visible separately, as can be expected due to the
dense labeling of processes and cells within the injection region. The injection regions were separately detected using
a signal threshold and were excluded from the analysis.
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Fig. 5 | 3D summarization of Skeletonized Data. Columns (a),(b),(c),(d) show the line densities of the skele-
tons in the RAF space. (a) shows the density curated single neurons of the Mouselight-ION dataset. (b) shows the
density of the line-fragments detected by DM2D for the WSI dataset. (c) shows the density of the line-fragments
detected by DM2D for the STP dataset. (d) shows a comparison of the densities as depicted in (a)-(c). (e)Whole neu-
rons and fragments are shown from three different datasets, reconstructed in the space of a BAP-RAF atlas framework,
all with injections in the Prelimbic area of the brain, to illustrate the relationship between single neuron reconstruc-
tions and tracer-labeled sets of axon fragments. The two Nissl-stained sections, one coronal and one sagittal are shown
from the BAP-RAF mouse atlas together with atlas coordinate markings. Red fragments were reconstructed from a
fluorescent WSI dataset and green fragments were reconstructed from an STP dataset, automatically annotated using
the proposed algorithm. Only subset are shown to preserve visualization ability. Black lines with cyan, magenta, and
yellow outlines show three example reconstructed neurons. A histogram of ”surprise indices” of the set of 70 neurons
is shown in the inset.(f) shows a graph showing the total lengths of the axon fragments from the tracer injected
data sets as well as the lengths of the 70 single axons contained in 12 brain compartments, where the compartments
were chosen by rank ordering the total length from the WSI injection in all brain compartments. The regions shown
are (CP:Caudoputamen; ACB:Nucleus accumbens; STR:Striatum; OT:Olfactory tubercle; SI:Substantia innominata;
HY:Hypothalamus; OLF:Olfactory Areas; fa:corpus callosum, anterior forceps; PAL:Pallidum; AON:Anterior olfac-
tory nucleus; aco:anterior commissure, olfactory limb; BST:Bed nuclei of the stria terminalis) (g) shows a histogram
of the surprise indices of the 70 individually reconstructed neurons when compared to the WSI dataset. (h) shows
that the surprise index is negatively correlated with the log of the total length of the axons but this correlation is not
very tight.
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To visualize the results in the context of the whole mouse brain, we mapped the skeletonized axon fragments to
the Brain Architecture Project mouse brain Reference Atlas Framework[31] for regional projection strength analysis.

Summarization of detected axon fragments. The output of the skeletonization step consists of tree-like
graph fragments, corresponding to fragments of the underlying neurons projected onto the sectioning planes. This
directly leads to the estimation of an areal density of the line fragments, with units of length per area (we use µ2/mm).
To convert into a volumetric density of length per unit volume one needs to divide by an estimated thickness of
the physical or optical section from which these fragments are obtained. In case of the WSI image data, the brain
was sectioned in the coronal plane with 20µ section thickness, with alternating Nissl and Fluorescent Sections. We
estimated the optical section thickness to be the full width at half maximumum of the Point Spread Function of the
microscope (see Supplementary Sec. S.2) as 1.5µm. Assuming an average axonal diameter of 0.5µm, we assume that
any fragment detected in the image plane represents an axon fragment of the same length within a slab of thickness of
2.5µm. More sophisticated stereological corrections are possible for estimating the actual length of the axon fragment
by assuming a distribution of orientations, but for the present purposes we keep to this crude estimate as a first
approximation. Since no attempt has been made in the past to make the sort of length fragment estimation that
we are performing, so that our work can be regarded as a first step. If another optical plane thickness estimate is
used, it will multiply our volumetric line density estimates by a constant factor. Similarly, while we make no attempt
to account for the variation in orientation of the fibers with respect to the sectioning plane, assuming an angular
distribution of the fragments could give rise to an additional multiplicative factor. An overall multiplicative factor
from either source will not affect the estimates of the relative distribution of lengths across compartments. We note
that good correlation with the actual axon length has been obtained in simulations using simple projections of the
axonal fragments onto sectioning planes[1].
An in plane estimate of the volumetric line density is then obtained by dividing the planar line density estimate (with
units of length per unit area) by 2.5µm. The WSI images are spaced 40µ apart, so we further interpolate our line
density estimate across the intervening 40/2.5 − 1 = 15 optical sections to obtain a densely and uniformly sampled
volumetric line density estimate across the brain, in the form of a volumetric line density associated with each spatial
voxel. The interpolation effectively amounts to multiplication by a factor given by the ratio of the section spacing to
the effective thickness of the optical plane.
The section images were mapped into a standardized reference atlas space (BAP-RAF) [31], and missing images
interpolated, in order to obtain uniformly sampled volumetric densities in the BAP-RAF space (See Fig. 5(b) for 3D
visualization of the volumetric line density data). Mappings were computed using our previously develoned Generative
Diffeomorphic Mapping (GDM) framework for multimodal brain atlas mapping[32, 33]. Briefly, in this approach a
target dataset (a series of 2D slices or a 3D volume) of a given contrast is generated using a sequence of transformations
of the underlying reference brain, and parameters characterizing these transformations are optimized [34, 35] to
minimize a discrepancy between the transformed reference brain and the target brain. These transformations are
then applied to the coordinates of the points in each skeletonized fragment in order to map that fragment into the
reference space for purposes of visualization as well as quantification. The transformations are also applied to the 2D
volumetric line density images to map them into the 3D RAF space.

A similar approach was utilized for the STP data[36], where the sections are sampled optically at 50µm spacing
without any missing images. The same method was applied to interpolate the line density data from the optical
sectioning plane to intermediate non-sampled planes, and to subsequently to obtain volumetric line densities (See Fig.
5(c) for 3D visualization of Data). The FWHM was estimated for STP as as 2µm and the axon diameter as 0.5µm,
giving a total optical thickness of 3µm.

In addition to the tracer injection data, we used a curated set of 70 single-neurons with somata in the Prelimbic
area of cortex (PL) composed of 69 neurons drawn from from https://neuroxiv.org/, data originally collected in [37],
and one neuron from the Mouselight data set[38]. These single neurons were then mapped to the BAP-RAF atlas
and voxelized line densities for the collection of the 70 axons were computed (Fig. 5(c)) for comparison with the line
densities derived from the tracer injection data.

A 3D visualization of the summarized density of the three datasets, is shown in Fig. 5(d), where green, red
and blue represents the single axon, WSI and STP datasets respectively. The Fig. 5(e) shows 2D cutaway slices in
reference planes showing the projections of the sampled neurons and line fragments mapped to the BAP-RAF atlas.
The results shows a significant overlap of our detected fragments with the ION dataset. In the 20µm BAP-RAF
atlas, we estimated the total line-lengths in different brain compartments by integrating the voxelized densities. We
assumed (50/3 − 1 ∼ 15) missing sections per imaged section for STP brain, since the inter optical-section spacing
is 50µm, and (40/2.5 − 1 = 15) missing sections per imaged section for WSI brain, where the inter-optical section
spacing is 40µm. We plot the logarithm of line-lengths in meters for 12 compartments in the left hemisphere of the
brain in Fig. 5(f). The compartments were chosen so that the total line length

A measure of ”surprise” of single neurons over tracer injections. Since tracer injections label a group
of neurons with varying morphologies, individual axon reconstructions provide additional information not directly
available from the tracer injection. Our density estimates allow a quantification of this additional information. We
introduce an information theoretic ”surprise” measure that quantifies the additional information provided by an axon
reconstruction over a tracer injection using the relative entropy between the voxelized line density of a single axon
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and the voxelized line density of the tracer injection fragments.
The ”surprise” measure is defined as follows: let the line densities of the axon fragments for a tracer injection,
normalized by the total length, be given by pi in i = 1..n voxels. Due to normalization, pi’s are non-negative numbers
which sum to 1, i.e. Σipi = 1, and can be interpreted as a probability density function. Note that a similar definition
may be made at a compartment level, and also for retrogradely labeled somata from a retrograde tracer injection,
which we will not explicitly write out here but which are simple generalizations. The numbers pi may be interpreted
as probabilities of receiving a projection in the respective voxels or compartments for neurons with somata in the
injection compartment.
The projections are composed of individual neurons, each of which project to the same set of voxels, but any individual
neuron or neuronal type will not in general have non-zero density in each tracer-injection voxel. Consider a set of
m single neurons composing the tracer injection. For each of these neurons we empirically define a neuron-specific
projection density qij where j = 1..m by dividing the length of the neuron contained in the ith voxel, by the total
length of the neuron, with Σiqij = 1. Without loss of generality we assume that the voxels are equal in size. When
considering unequally sized regions or voxels, one would compute a density in the region then normalize that density.
i.e. q is a left stochastic matrix.
The ”surprise” Sj for neuron j, as compared to the tracer injection pi, is then defined to be the relative entropy of
the two distributions (the Kullback-Leibler divergence):

Sj =
∑
i

qij log2(qij/pi) (1)

.
Fig. 5(g) shows a histogram of Sj for the set of 70 curated neurons with somata in PL as compared to the cell-type

nonspecific tracer injection in PL. For this analysis we used a voxel size of 100µm. It is to be noted, that the analysis
was possible due to the mapping of all data sets to a common coordinate system provided by the reference atlas.
To gain an intuitive understanding of the surprise measure it is useful to consider some limiting cases. It is easy
to prove that the most ”surprising” morphological cell type given an average projection pattern pi would satisfy
qij = δik where k = argmini pi. This corresponds to a single-neuron that projects only to the voxel k with the
weakest projection pk, and has the corresponding surprise Smax = − ln(min pi). If all the pi were equal for i = 1..n
then Smax = log2(n), however in general the projection densities will vary across voxels. Generally, we expect that
the surprise would be larger for localized axons. This trend is indeed borne out in the scatter plot shown in Fig. 5(h),
where a negative correlation is seen between the length of the axons and the surprise index, however this correlation
is not very tight, since the tracer does not have uniform projection density in all voxels.
On the other hand, the least surprising cell type is one that has the same projection pattern as pi, i.e. qij = pi,
and for this type the surprise is zero. Such a neuron could be considered ”typical” in a probabilistic sense, given the
tracer injection based projection density.
Fig. 5(e) shows three single neurons and the corresponding surprise indices. The estimation of the surprise measure
has one technical subtlety - the measure assumes that the single neurons are constituents of the tracer injected
neuron set, and thus only have nonzero density where the tracer injection density is nonzero. In practice however the
single neurons cannot be traced in the same brain as the tracer injection, so due to statistical estimation issues, it
may be the case that a voxel with nonzero density for a single axon has zero density from the tracer. To address this
issue, we interpolated the estimated tracer injection density to the small number of voxels where the tracer injection
did not produce any fragments, but the single axon did. To perform this interpolation we used the weighted Nearest
Neighbour interpolation technique [39], which has been proven to be statistically consistent and therefore can be
expected to have reasonable estimation performance.

It is to be noted that since we start with 2D image data, the axon fragments are projected onto a 2D plane.
Since the axons are not always parallel to the imaging plane, this leads to an underestimate of the axon lengths.
Therefore, the estimates obtained in our study should be regarded as a lower bound to the true biological axon
lengths. This can be rectified by utilizing 3D volumetric imaging data at high resolution, with a 3D skeletonization
step replacing the 2D skeletonization step. However, our current approach bring us closer to the biological reality
of the underlying axons in comparison with the previous approach using only the fluorescent intensities of voxels.
Moreover, in current studies involving tracer injections, the plane of section is consistent across experimental brain
data sets, so that the axon fragment densities can be meaningfully interpreted as the projected axon length densities
onto the corresponding sectioning planes (usually the coronal plane).

4 Discussion

In this manuscript we have introduced the usage of Discrete Morse techniques for the analysis of neuroanatomical
data pertaining to brain circuit mapping, utilizing injections of tracer substances to label groups of axons projecting
out of the injection site. This Topological Data Analysis approach has the advantage of being able to utilize non-
local connectivity properties of the data, which led to robust performance in our application, by tracing labeled axon
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fragments through regions of low label intensity in noisy images.
We developed an approach (DM-skeleton) to the skeletonization of labeled axons in 2D microscopic image data

using the Discrete Morse method combined with previously developed deep net methods utilizing TDA to provide
likelihood maps from original image data. The relevant algorithms were codified into a computational pipeline which
we provide in this manuscript together with data examples (see https://data.brainarchitectureproject.org/pages/sk
eletonizationcode packages). DM-skeleton showed good performance (F1 scores of 0.94 and 0.97 respectively on STP
and WSI data) compared to a baseline skeletonization technique (bwskel() from MATLAB). We expect that the 2D
skeletonization pipeline we provide will be applicable to other image data sets as well that contain line-like or tree-
like objects.

We further introduced a new method for summarizing tracer injection data. The 2D fragments obtained from the
DM-skeleton pipeline applied to tracer-injected brain image data were used to compute areal line densities (with units
of length per unit area), which were then converted into a 3D volumetric density of length per unit volume by dividing
by an appropriate optical section thickness as well as interpolation to account for missing optical sections. This
provides a biologically meaningful quantification of the tracer injection data, in contrast with previous quantification
using total fluorescent intensity or by counting fluorescently labeled voxels. Since the skeletonization step vectorizes
high resolution microscopic image data, it also leads to very significant data compression while retaining biologically
meaningful information and without loss of spatial resolution.

Topological Data Analysis methods are known to be computationally expensive compared with other methods. In
our application the computational bottleneck comes from the persistence-guided discrete Morse-based framework. The
computation of persistence pairings can have a worst-case time complexity of O(n3) (although it is usually significantly
faster in practice), where n is the number of cells that make up the input cell complex, which in our case corresponds
to the number of pixels in the image tile input to the pipeline. To address this bottleneck, we utilized the DIPHA
package [40] to compute persistence pairings. This is a distributed algorithm providing a significant speedup compared
to centralized persistence algorithms. Further code optimizations over our current implementation are possible and
run-time could be further reduced in future work. The current pipeline of DM2D which takes the likelihood produced
by DM++ overlayed with the binary mask takes ∼ 150 seconds for a STP brain section (∼ 11K × 8K pixels), while
it takes ∼ 200 seconds for a WSI section (∼ 22K × 18K pixels). The post-processing step (in MTALAB) to convert
the detected skeletons to vectorized GeoJSONs for web display takes ∼ 3 − 5 minutes per section. These estimates
were made on an Intel Xeon Dual-CPU Quad-GPU (NVIDIA RTX 2080TI) machine with 512 GB of RAM.
Despite the higher computational complexity, the conceptual elegance and theoretical transparency, performance
improvement in detection of fragments, significant reduction in human proof-reading times and incorporation of prior
biological structure are arguments in favor of the approach proposed here.

References

[1] Rubio-Teves, M. et al. Benchmarking of tools for axon length measurement in individually-labeled projection
neurons. PLoS Computational Biology 17, e1009051 (2021).

[2] Banerjee, S. et al. Semantic segmentation of microscopic neuroanatomical data by combining topological priors
with encoder–decoder deep networks. Nature machine intelligence 2, 585–594 (2020).

[3] Dey, T. K. & Wang, Y. Computational topology for data analysis (Cambridge University Press, 2022).

[4] Edelsbrunner, H. & Harer, J. Computational Topology : an Introduction (American Mathematical Society, 2010).

[5] Carlsson, G. Topology and data. Bull. Amer. Math. Soc. 46, 255–308 (2009).

[6] Chazal, F. & Michel, B. An introduction to Topological Data Analysis: fundamental and practical aspects for
data scientists. CORR (2017).

[7] Lum, P. Y. et al. Extracting insights from the shape of complex data using topology. Scientific Reports 3 (2013).

[8] Tierny, J. Topological Data Analysis for Scientific Visualization (Springer, 2018).

[9] Edelsbrunner, Letscher & Zomorodian. Topological persistence and simplification. Discrete & Computational
Geometry 28, 511–533 (2002).

[10] Buchet, M., Hiraoka, Y. & Obayashi, I. Persistent Homology and Materials Informatics, 75–95 (Springer
Singapore, Singapore, 2018).

[11] Singh, G. et al. Topological analysis of population activity in visual cortex. Journal of vision 8, 11 (2008).

10

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2025. ; https://doi.org/10.1101/2025.05.12.653477doi: bioRxiv preprint 

https://data.brainarchitectureproject.org/pages/skeletonization
https://data.brainarchitectureproject.org/pages/skeletonization
https://doi.org/10.1101/2025.05.12.653477
http://creativecommons.org/licenses/by-nd/4.0/


[12] Platt, D. E., Basu, S., Zalloua, P. A. & Parida, L. Characterizing redescriptions using persistent homology to
isolate genetic pathways contributing to pathogenesis. BMC Systems Biology 10, S10 (2016).
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Data and code availability

The WSI data is from the Brain Architecture Project, whereas the STP data was collected as a part of the Brain
Initiative Cell Census Network. The images can be viewed online from: https://data.brainarchitectureproject.org/pa
ges/skeletonization. The single neuron data sets are available from https://neuroxiv.org/ and from the Mouselight
neuron browser at https://ml-neuronbrowser.janelia.org/. Processed projection summary of STP & WSI data, the
code and documentation are available at https://data.brainarchitectureproject.org/pages/skeletonization.
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Methods

1.1 Data Collection.

Tract tracing is the gold standard for studying mesoscale axonal projections in vertebrate brains. Each anterograde
tracer injection can label hundreds to thousands of neurons. The fluorescent label from the tracer fills the axons,
showing the neuronal projection pattern across the whole brain.

The Serial Two-Photon (STP) dataset presented in this paper was collected as a part of Brain Initiative Cell
Census Network [29]. Cre-dependent transgenic mouse lines were crossed with IslFlp reporter lines. Flp-dependent
AAV tracers were utilized to reveal cell type-specific axon connection [30]. Each brain was prepared and imaged using
STP tomography [41] with 1µm × 1µm in-plane resolution, and sectioned coronally every 50 µm. Two channels of
16-bit data were collected, where Channel 1 collected the autofluorescence and Channel 2 collected the fluorescent
tracer information. Only Channel 2 data were used in the subsequent analysis. One STP dataset was involved in the
development and demonstration of methods in this paper (available from: ftp://download.brainimagelibrary.org:
8811/biccn/huang/connectivity/anterograde/190322 JH HK0126 PlexinD1LSLflp PL male processed/). The Data
presented in this paper includes a dataset with injection in prelimbic region of the brain. The visualization of the
STP dataset used in the paper can be viewed from https://data.brainarchitectureproject.org/pages/skeletonization.

The fluorescent Whole-slide Imaging (WSI) dataset presented in this paper was collected as a part of Mouse
Brain Architecture (MBA) project, where fluorescent tracers were injected into the same brain. C57BL/6J mice
were acquired from Jackson Laboratories (stock 000664) under IRB protocol #498813-28 according to proto-
cols approved by the Animal Care and Use Committee at Cold Spring Harbor Laboratory. Two tracer injections
were placed in the right hemisphere of each mouse, both anterograde (AAV2/1.CAG.tdTomato.WPRE/SV40,
AAV2.1CB7.CI.EGFP.WPRE.RBG). Approximately 2.3nl of virus was injected using a Nanoject II injection sys-
tem before a 4 week incubation period. All samples were histologically processed using methods previously described
[27, 42, 43]. The brain was fixed, embedded in freezing agent, and serially cut at 20µm using the tape-transfer
method to minimize tissue distortion [42, 43]. All slides were scanned by a Nanozoomer 2.0HT with a 20x objec-
tive (0.46µ m in-plane resolution) and saved in an uncompressed RAW format. Image cropping, conversion and
compression to per section JPEG-2000 files were performed. Alternating sections were imaged with either widefield
imaging after Nissl staining or fluorescent imaging at 0.46µm× 0.46µm in-plane resolution. All images were recorded
with 3 (RGB) channels with 12-bit data in each channel. For the purposes of this manuscript, we only use the
AAV2/1.CAG.tdTomato.WPRE/SV40 injection in the prelimbic area of the brain. The microscopic images of the
WSI dataset used in the paper can be viewed from https://data.brainarchitectureproject.org/pages/skeletonization.

1.2 Data pre-processing.

The WSI dataset was registered in 3D using Nissl sections. Fluorescent sections were subsequently cross-registered
to the adjacent Nissl sections and formed a 3D volume [33]. Both the STP and WSI datasets were first processed
with fluorescent labeled axon signal detection [2]. The original images comprosed 1µm× 1µm pixels for STP Coronal
sections spacing was 50µm for STP and 40µm for WSI.

The STP dataset was first processed with a combined TDA and deep net based method [2] for the detection of
the tracers. The network, termed as DM++, takes in whole STP sections and divides them into 512 × 512 pixel
tiles. These tiles are passed through a TDA stage based on Discrete Morse [44] and a CNN stage for determining
the topological and axonal priors, respectively. The topological priors capture the faint connectivity which is used to
boost the performance of the CNN in a supervised Siamese network using the dual priors that comprise the DM++
framework. The final output likelihood map is converted into a binary mask for the neuronal processes using an
optimal empirically determined threshold. This captures most of the processes in the tiles, which are then stitched
back together to form a mask for an entire reference section of the brain.
The preliminary outputs of process detection were manually verified for the entire brain by a histotechnologist using
MATLAB. Briefly, the preliminary outputs consisting of detected signal were masked with the original brain section
image and error corrected using a MATLAB-based pixel annotation tool (refer Section 1.5 for further details). The
filled processes were identified as those having a brighter intensity compared to the background. The proofread brain
from the previous step was annotated in the format of binary images. The images were further downsampled to the
desired resolution by summing pixels appropriately.

1.3 DM-Skeleton

This section provides details for the DM-Skeleton pipeline corresponding to the workflow in Fig. 1.

1.3.1 Step 1: Pre-processing

Each image volume is loaded as an image stack, and converted into a density field ρ : K → R defined on the 2D-cubical
complex grid K, where each vertex corresponds to a pixel in the input image and has a density value. For whole-brain
tracer injection STP and PMD data, a significant portion of the raw images is background (see the example in Fig.
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1). Hence we first applied the learning-based process-detection module [2] to remove the background and segment
the foreground consisting of labeled processes. See the previous section for more details. The resulting foreground is
segmented and binary-masked. We further apply a Gaussian filter to smooth the values across the domain.

1.3.2 Step 2: Skeletonization.

The Discrete Morse graph reconstruction algorithm [22, 24] takes a density field as input and outputs a graph skeleton
capturing center-lines passing through relatively high density regions. In our case, the input density field ρ : K → R
is defined at vertices of a 2D-cubical complex K of the domain, which is a collection of squares (2-cells), their edges
(1-cells), and vertices (0-cells), forming a planar structure. In all subsequent operations, only the 2-skeleton of this
2D-cubical complex K is needed, that is, we assume K consists of vertices, edges, and squares.
To explain the main idea, consider first the smooth case where we have a smooth function ρ : Ω → R over the domain
Ω. Consider the terrain of the density function values plotted over the domain (Fig. 2) where the terrain of a function
defined on R2 is given. The underlying graph skeleton of ρ can be captured by the paths connecting the peaks on the
mountain ridges through the intervening saddle points (Fig. 2a). These paths form the so-called 1-unstable manifold in
Morse theory, and are defined by the integral lines “connecting” saddle points to local maxima (Fig. 2b). An integral
line is a curve in the domain where at any point on it, its tangent vector coincides with the gradient of the density
field. Integral lines are thus intuitively flow lines, following the steepest descending direction of the density fields.
Inside the algorithm, roughly speaking, ridges (as defined by pairs of (saddle, maximum)) are associated with certain
persistence values, as quantified by the so-called persistent homology [9]. The persistence values can be interpreted as
importance scores. This makes it possible to filter out ridges of ”low importance”, which are assumed to be associated
with noise, from the final output by providing the algorithm with a persistence threshold. An example of simplification
for a very simple 1D function is shown in Fig. 2c and 2d.
For the input to our algorithm, we have a density field ρ : K → R defined at vertices of a 2D-cubical complex K of the
domain Ω (a 2D region). Following [22], discrete Morse theory [23] is used to capture the mountain ridges mentioned
above, combined with the persistence algorithm to measure importance. See Supplementary Materials for a short
tutorial on the DM-algorithm. To improve the efficiency of the algorithm, we modified the algorithm of [22] so that
it works directly with 2D-cubical complexes and also uses DIPHA [40] to compute persistence pairs in a distributed
manner.
These mountain ridges cover the axonal branches as locally, points in the image along these branches tend to have
relatively higher density (signal strength) than off the branches. The global nature of the 1-stable manifolds makes
the output skeleton robust to small gaps in signal, and effective at capturing junctions; see e.g., Fig. 2a, where the
global nature of 1-manifolds connects through low-density region around the Y-junction.
In ideal circumstances, we would find a persistence threshold that would remove all of the noise and only keep the
ridges that make up the true neuron tree. However, because of the noisy nature of biological data and also the Discrete
Morse graph reconstruction algorithm will not necessarily output a tree, we cannot take the algorithm’s output as
a final output. Instead, we first run the algorithm with a low persistence threshold such that we do not remove any
ridges that would be part of an ideal output. Then we simplify the Morse graph skeleton in the next step.

1.3.3 Step 3: Simplification using a ”Haircut” step.

The output of the above persistence-guided Morse-based framework is a geometric graph G, also referred to as the
Morse graph skeleton. The morse graph G has a set of trees in them for each connected component in the likelihood
image. These trees provide a good initial estimate of the skeletons. However, the likelihood images produced from
the convolution-based framework of Process Detection [2], have a few false detects. We use the binary threshold on
likelihood image, from the DM++ algorithm to mask out most of the false detects to obtain a modified graph G′.
The modified morse graph G′ also can have several small side branches, originating in paths connecting the real signal
to nearby noise maxima. These small branches (∼ 10 pixels) are characterized by path from the branch points on
the graph (degree-2 nodes) to the endpoints on the graph (degree-1 nodes) that change direction at most once. G′ is
pruned of these paths using this Haircut mechanism to produce a simplified Morse Graph Gs.

1.3.4 Summarization of the length of the Tracer Fragments

Spatial mappings (i.e. a 3D displacement vector at each voxel) were computed between our atlas and each target
dataset using our generative diffeomorphic mapping framework previously developed and validated in human [32]
and in mouse [33]. In this framework a target dataset is generated from a sequence of transformations of the atlas
dataset. This sequence includes a diffeomorphism computed within the Large Deformation Diffeomorphic Metric
Mapping framework [34] encoding changes in shape; a 12 parameter affine transformation encoding changes in scale,
orientation, and position; a sequence of 3 parameter 2D rigid transforms (one per slice, only when a 2D serial section
dataset is used); and a polynomial change of contrast to account for multimodality data. To account for missing tissue
or artifacts, our procedure includes an Expectation Maximization algorithm [45] to compute the posterior probability
that a given voxel in our target is good quality. Parameters characterizing these transforms are jointly optimized
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in a maximum a posteriori framework. Those characterizing the diffeomorphism are updated using Hilbert gradient
descent [34], those characterizing the affine and rigid transforms are updated using Riemannian gradient descent
[35], and those characterizing the contrast differences are updated by solving a weighted least squares problem. Once
computed, each fragment was transformed into the coordinates of our atlas by applying the inverse transformation to
each vertex, and leaving the edges (connectivity information) unchanged. A density with units of fragment length per
unit volume was computed by assigning each line segment in 2D to the pixel where its center lay, and incrementing
the density value at this pixel by the length of the line segment divided by the area of the 2D voxel (starting from
0), giving units of length per unit area. This was further divided by the optical thickness of the section to give units
of length per unit volume as described in the main text.

1.3.5 Additional features.

The simplified Morse Graph Gs was divided into skeletal-fragments for vectorization. For each connected component
(>) in the detected image, a graph was constructed. The graph consisted of branchpoints, Bp (nodes with degree
> 2) and endpoints, Ep (nodes with degree 1), collectively called as Critical Points Cp. Each skeletal fragment
consists of path between any pair of connected Cp’s. Using a modified Depth-First Search, we walk through all the
edges of the graph, to produce these Skeletal fragments. These fragments are vectorized as line-strings, with their
length also recorded. The vectorized line strings are converted to geojsons, for display on the web (visit https:
//data.brainarchitectureproject.org/pages/skeletonization for more details).

1.4 Evaluation metrics: Precision, Recall and F1-score for evaluating results.

For skeletonized data, a set of manually annotated sample tiles were provided as ground truth. The precision and
recall metrics calculated for evaluating skeletonization results depend on True Positives (TP), False Positives (FP)
and False Negatives (FN). TP is calculated as the each pixel belonging to the detected image which is within a ceratin
radius Dr of the ground truth (GT) pixel (Dr = 5 for WSI data; Dr = 3 for STP data, empirically determined),
where a GT pixel can contribute only once to the calculation to the metric. This prevents two neighboring lines from
contributing to a single GT pixel. Pixels along a line do not necessarily exclusively contribute to the TP. All the
pixels in the evaluated image which are not in the TP set and not in the GT set, are considered as FP, while all
pixels in the GT set which are not in the TP set and not in the detected pixel set, are considered as FN. The second
and third rows of the Figs. 3 and 4 shows the TP in cyan, FP in yellow and FN in magenta. For the second row, the
evaluated image is the skeletonized image by our proposed method, DM2D, and the third row shows the detected
image by the baseline technique, bwskel() from MATLAB.
Precision and recall are then routinely computed as:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

The F1-score is the harmonic mean of precision and recall, i.e.,

F1 =
2 · Precision ·Recall

Precision+Recall
(4)

The parameter IOU -score was calculated as binary classification metric,

IOU =
TP

FP + FP + FN
(5)

1.5 Manual Annotation Tool.

The DM2D algorithm generally produced good detects, in almost all the regions except the injection regions in the
brain, where performance is disrupted by image saturation effects. There are also a few easily identifiable regions
of false detects around the edges of the brain tissue, and the blood vessels, where it the autofluorescence signal not
originating from neuronal processes leads to false detects. These regions were manually corrected. The injection region
was manually demarcated and eliminated form the skeletons. We used an in-house Matlab-based Annotation tool.
To generate the GT image, we manually added the line-strings corresponding to the missed detects on the image.
For removal of the systemic errors and the Injection region, we use a polygon-based deletion tool, as shown in the
Extended Fig. 1, where every pixel within the polygon is deleted.
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Extended Fig. 1 |Manual Annotation Tool. The MATLAB-tool used for generation of ground-truth, injection
region removal, and correction of systematic errors at blood vessels and the brain outline. Column (a) shows a
zoomed in portion of the contrast enhanced original image with the detected annotations overlayed in cyan, column
(b) shows the annotator marking the missed neuron fragment in green, column (c) shows the annotator marking the
false-positives using an arbitrary polygon, and the column (d) shows the result of the annotation after the correction
corresponding to the images in column (a). Each column shows an example of WSI image annotation in the top row,
while the STP annotation is shown in the bottom image.
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