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Abstract

Pancreatic cancer is a notoriously deadly disease characterized by many
challenges in clinical management. Despite important advances in our un-
derstanding of pancreatic cancer progression and its underlying molecular
biology over the last decades, there is a long road ahead if we aim to meaning-
fully improve patient outcomes in this difficult disease. Treatment options
remain limited, and patient prognosis, although improving, remains bleak.
As we build toward the future, we propose a framework for targeting the
seven deadly hallmarks of pancreatic cancer in an effort to cure this disease.
The high mortality and aggressive nature of pancreatic cancer can be largely
ascribed to (#) diagnostic deficiencies, (4) chronic inflammation, (c) desmo-
plastic stroma, (d) early metastasis, (¢) KRAS signaling, (f) metabolism, and
(g) rapid deconditioning. Here, we outline the challenges presented by each
of these disease hallmarks and highlight ongoing research to tackle each one.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC; pancreatic cancer) is a notoriously deadly disease, and
it accounts for the vast majority of all pancreatic cancers each year. Despite constituting only 3.3 %
of cancer cases annually, pancreatic cancer is the third leading cause of cancer-related death in the
United States and one of a few cancers for which incidence is increasing (Siegel et al. 2024). The
strikingly high mortality in this disease can be attributed to several clinical features: characteristi-
cally late diagnosis, broad resistance to targeted and cytotoxic therapies, and aggressive metastasis.
Clinical symptoms preceding PDAC are often vague, and a vast majority of patients will be di-
agnosed with treatment-refractory systemic disease that is ineligible for surgical resection, still
considered the only potentially curative therapy. Together, these factors contribute to a 5-year
survival rate of only 13% (Siegel et al. 2024). Although this number demonstrates the significant
challenges that remain to improve patient outcomes, it also signifies the progress made in the past
two decades to bring the 5-year survival rate up from below 7%.

Thanks to significant efforts in the field, a detailed molecular understanding of PDAC pro-
gression has emerged. We understand the genetic drivers underlying both heritable and sporadic
pancreatic cancer, as well as core signaling pathways that are dysregulated in cancer progression
(Hayashi et al. 2021, Klein 2021). Although we have long understood that pancreatic cancer is
largely characterized by mutations in KRAS2, TP53, CDKN2A, and SMAD4 (Hayashi et al. 2021),
evolutionary analysis has revealed that KRAS mutations are common in early benign pancreatic
lesions such as pancreatic intraepithelial neoplasia (PanIN) and cystic intraductal papillary mu-
cinous neoplasms (Singhi & Wood 2021). Further, low-grade PanINs, the most common PDAC
precursor, are present almost universally in healthy adults (Carpenter et al. 2023, Singhi & Wood
2021); thus, the uncommon development of invasive cancer must require cooperation between
oncogenic mutations and environmental insults. Our deeper molecular understanding of PDAC
has also advanced the development of important preclinical tools, including genetically engineered
mouse models (GEMMs) (Westphalen & Olive 2012), patient-derived organoids (PDOs) (Boj
et al. 2015), and tissue explant culture models (Decker-Farrell et al. 2023). GEMM:s have facil-
itated a range of discoveries, from the role of the tumor stroma in disease progression to the
development of pancreatic cancer from diverse cells of origin, including nonductal acinar cells of
the pancreas (Westphalen & Olive 2012). Meanwhile, organoid and explant models better repre-
sent patient heterogeneity and allow the rapid interrogation of patient tumor biology both in vivo
and in vitro.

Despite advances in our understanding of pancreatic cancer progression and its underlying
molecular biology, there is still a long road ahead if we aim to meaningfully improve patient
outcomes in this challenging disease. Treatment options remain limited, and patient progno-
sis, although improving, remains bleak. As we build toward the future, we propose a framework
for targeting the seven deadly hallmarks of pancreatic cancer in an effort to cure this disease
(Figure 1). The high mortality and aggressive nature of pancreatic cancer can be largely as-
cribed to (#) diagnostic deficiencies, (») chronic inflammation, (¢) desmoplastic stroma, (d) early
metastasis, (¢) KRAS signaling, (f) metabolism, and (g) rapid deconditioning. Here, we outline the
challenges presented by each of these disease hallmarks and highlight ongoing research to tackle
each one.

ADDRESSING DIAGNOSTIC DEFICIENCIES

One of the toughest challenges in pancreatic cancer is our inability to diagnose disease before
it progresses to an advanced stage. There is currently no effective noninvasive method for early
PDAC diagnosis in the general population, and only ~15% of patients are diagnosed with local
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Figure 1

Seven deadly hallmarks of pancreatic cancer. The high mortality and aggressive nature of pancreatic cancer
[pancreatic ductal adenocarcinoma (PDAC)] can be largely ascribed to seven major features. In order to
improve patient prognosis and strive toward a cure for PDAC, we will need to overcome each of these
challenges. () Diagnostic deficiencies. There is currently no method for PDAC diagnosis in the general
population, leading to late-stage detection of systemic disease that is difficult to manage clinically.

(b) Chronic inflammation. Inflammation caused by PDAC risk factors fuels tumorigenesis and
immunosuppression and is therefore an important target for prevention and therapy. (¢) Desmoplastic
stroma. A prominent fibrotic reaction is a defining feature of PDAC that should be addressed to improve
therapy response and block tumor progression. (d) Early metastasis. Early and aggressive metastasis is a
significant cause of PDAC mortality; intercepting disease progression and metastatic spread could benefit
patients. (¢) KRAS signaling. Mutant KRAS is the central oncogenic driver of PDAC; new clinical KRAS
inhibitors have the potential to transform PDAC therapy and shift our focus to emerging resistance
mechanisms. (f) Metabolism. Dysregulated metabolism is crucial for PDAC cell fate and survival in the
harsh tumor environment and could provide important avenues for therapy. (g) Rapid deconditioning.
Late-stage diagnosis leads to rapid physiological decline in patients, emphasizing the importance of precision
medicine approaches to improve patient responses to therapy.

disease amenable to surgical resection (Siegel et al. 2024). These patients have much higher
survival rates, indicating that improved early-stage diagnosis could greatly benefit patients (Park
et al. 2021). However, diagnostic development has been hampered by low disease prevalence in
the general population. Lifetime PDAC risk is as low as ~1% (Park et al. 2021), meaning that
even a test with 99% accuracy would generate a large number of false positives and risk medical
overtreatment. To address this problem, it is necessary to define high-risk patient groups that
could benefit from screening. Recently, the Cancer of the Pancreas Screening Study (CAPS)
used familial history and/or cancer-associated genetic variants to identify high-risk patients for
enrollment in endoscopic ultrasound imaging-based surveillance; this resulted in earlier-stage
detection and improved survival, affirming the benefit of sophisticated screening modalities for
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high-risk groups (Dbouk et al. 2022, Goggins et al. 2020). Despite the success of this approach,
CAPS focuses on patients with the highest heritable PDAC risk. In the future, it will be crucial to
model risk based on combined genetic and nongenetic features to comprehensively identify pa-
tient groups at risk of sporadic PDAC that could benefit from screening. Patients with new-onset
diabetes (NOD) may be one such group. NOD can be a harbinger of cancer, and work is ongoing
to establish a prospective NOD cohort as a platform to develop biomarkers and surveillance
protocols (Maitra et al. 2018, Stoffel et al. 2023). In fact, it is becoming increasingly clear that
clinical signs such as hyperglycemia (Sharma et al. 2018) and unexplained weight loss (Babic
et al. 2023) can precede diagnosis by several years. In an effort to parse these clinical indicators,
machine learning has been used to develop models to predict PDAC risk based on hospital disease
codes over time (Placido et al. 2023). Although this type of strategy requires optimization, it could
be a promising route for risk assessment, especially if we incorporate quantitative clinical datasets.

In addition to refining risk stratification, research should continue to focus on designing nonin-
vasive, cost-effective, and specific tests that are reasonable to apply to more moderate-risk groups.
Currently, imaging remains the best diagnostic for PDAC; however, current imaging modalities
such as endoscopic ultrasound can be expensive and invasive and have limited ability to detect small
lesions. PanINs cannot be detected at all by current techniques, and although cystic precursors
may be visible, it is often unclear which cysts warrant intervention (Stoffel et al. 2023). Some efforts
have focused on training artificial intelligence to improve the sensitivity of current imaging modal-
ities (Cao et al. 2023); however, work to improve diagnostics largely aims to devise alternative
imaging strategies or identify biomarkers that could supplement or reduce the need for imaging
(England etal. 2016). In our own work, we have used an epitomics approach to generate antibodies
for immuno-imaging of pancreatic tumors (Oni et al. 2020a). Using membrane protein frac-
tions derived from PDOs, we immunized rats and generated tumor-specific CEACAMG6-reactive
monoclonal antibodies. When radio-labeled, these antibodies specifically detected pancreatic tu-
mors in transplant models. Although further evaluation is required, these results suggest that an
immuno-imaging strategy could have clinical utility in PDAC detection. Similar immuno-imaging
approaches have been developed to target tumor-enriched biomarkers including mesothelin,
mucins, and proteins bearing the glycoprotein CA19-9, although only CA19-9 imaging probes
have been investigated clinically (Gonzélez-Gémez et al. 2021, Lohrmann et al. 2019).

In parallel, putative PDAC biomarkers are being investigated in a wide range of biological
sources including blood, stool, saliva, and pancreatic and cystic fluid (Singhi & Wood 2021,
Stoffel et al. 2023, Trikudanathan et al. 2021). These biomarkers are in varying stages of clinical
development; however, CA19-9 remains the only biomarker with demonstrated clinical utility.
CA19-9 is approved for evaluating therapy response in PDAC, but it is not sufficient for cancer
detection (Stoffel et al. 2023). Nonetheless, CA19-9 may be an important benchmark and baseline
tool with which other biomarkers are combined. Indeed, it seems likely that a biomarker panel
rather than any singular marker will be required for an effective diagnostic test. Although clinical
results are forthcoming, several multiparameter blood-based tests are under evaluation. These
include two blood-based diagnostics: the IMMray PanCan-d test, an 8-plex antibody biomarker
test (Brand et al. 2022), and CancerSEEK (Cohen et al. 2018), a polymerase chain reaction-based
test to detect cancer-associated mutations in circulating tumor DNA (ctDNA). Detection strate-
gies based on the methylation signatures of ctDNA are also in development (Guler et al. 2020,
Liu et al. 2020); however, DNA-based methods face challenges in earlier disease, when DNA
shed by small lesions is low. Extracellular vesicles shed into the circulation are often abundant
and contain tumor-specific proteins that can be detected prior to the emergence of metastatic
disease (Hoshino et al. 2020); although the diagnostic utility of this approach requires clinical
development, it adds another putative biomarker to the growing arsenal. As we advance risk
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assessment in patients, these ever-improving tools may become an effective means of further
stratifying high-risk individuals for enrollment in surveillance, and they could help direct clinical
management of patients with precursors detected by imaging (Stoffel et al. 2023).

CHRONIC INFLAMMATION

As we have come to understand the environmental drivers of pancreatic cancer development, it
has become clear that these factors converge on a central feature: inflammation. Elevated PDAC
risk has been linked to pancreatitis, tobacco or alcohol consumption, diabetes, and obesity (Klein
2021, Stoffel et al. 2023); each of these risk factors is associated with chronic inflammation that
is posited to promote tumorigenesis (Stone & Beatty 2019). Among these, pancreatitis is perhaps
the most well characterized. Pancreatitis is most often modeled in mice by administering a syn-
thetic cholecystokinin (CCK) analog called cerulein that stimulates pancreatic enzyme secretion
and induces hallmarks of pancreatitis including reversible immune cell infiltration, metaplasia, and
fibrosis (Saloman et al. 2019). Using this model, researchers have shown that pancreatitis potenti-
ates Kras-driven tumorigenesis in adult acinar cells in mice (Friedlander et al. 2009, Guerra et al.
2007). Further studies in animal models have shown that tobacco use (Hermann et al. 2014, Wittel
et al. 2006), alcohol consumption (Asahina et al. 2020), obesity (Eibl & Rozengurt 2021, Philip
etal. 2013, Ruiz et al. 2023), and diabetes (Zhang et al. 2023) similarly induce local pancreatic in-
flammation that synergizes with mutant Kras (Kras™UT) to drive proliferation and acinar-to-ductal
metaplasia (ADM), fostering tumorigenesis. These results support a model in which convergent
oncogenic and inflammatory insults are required for, or at least facilitate, tumorigenesis. This
model is reinforced by the observation that low-grade KRAS-mutant PanINs are common in
healthy adults (Carpenter et al. 2023); contrasting with the low prevalence of PDAC, this suggests
that cooperation between mutant KRAS and environmental factors is required for tumorigenesis
in humans. As a common feature of environmental PDAC risk, inflammation is therefore an im-
portant target for PDAC prevention. In practice, the clinical evaluation of prevention strategies
is difficult and relies on effective selection of high-risk patients as outlined above. However, if
attained, a preventative intervention offers the benefit of cutting off nascent precancer before it
evolves greater complexity and resistance to therapy.

Efforts to identify mechanisms underlying inflammation-associated PDAC development have
found that diverse inflammatory risk factors can support tumorigenesis through the activation
of common effector pathways such as NF«B or STATS3, via cytokine signaling from infiltrat-
ing immune cells (Hausmann et al. 2014). Inflammation also convergently enables tumorigenesis
through the amplification of Ras signaling. As mentioned, Krus"UT alone does not appear suffi-
cient for PDAC initiation; however, inflammation in the context of Kruzs"UT boosts Ras activation
above a critical threshold required for dedifferentiation and transformation (Daniluk et al. 2012,
Eibl & Rozengurt 2021, Ji et al. 2009, Philip et al. 2013). Focusing specifically on models of
pancreatitis, a series of recent studies have also elegantly illustrated the role of epigenetic re-
programming in coordinating acinar cell response to inflammatory cues and Krzs mutation in
mice (Alonso-Curbelo et al. 2021, Burdziak et al. 2023, Del Poggetto et al. 2021). Cytokine sig-
nals produced during pancreatitis mediated shifts in chromatin accessibility that were maintained
in acinar cells over time, allowing them to access neoplasia-associated gene expression programs in
the context of KrasMUT. This work provides evidence that epigenetic dysregulation occurs early in
PDAC progression in concert with inflammation and may be an important axis to target ther-
apeutically. Toward developing an actionable target for pancreatitis, work in our own lab has
shown that inducible production of the glycan biomarker CA19-9 is sufficient to drive pancre-
atitis and tumorigenesis in mice via EGFR hyperactivation (Engle et al. 2019). Treatment with a
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CA19-9 antibody reduced pancreatitis, indicating that this strategy could serve as a novel ther-
apy for pancreatitis and possibly PDAC prevention. Whether both epigenetic dysregulation and
CA19-9 play a central role in PDAC arising in other inflammatory contexts such as obesity remains
to be seen. Indeed, there is evidence that tumorigenesis associated with metabolic syndrome is
somewhat mechanistically distinct and closely tied to endocrine signaling (Eibl & Rozengurt 2021,
Ruiz et al. 2023). Obesity-associated hyperinsulinemia can cause inflammation through insulin re-
ceptor signaling in acinar cells, ramping up enzyme production and pancreatic inflammation to
accelerate tumorigenesis (Zhang et al. 2023). Meanwhile, islet production of CCK can act lo-
cally on acinar cells to facilitate ADM (Chung et al. 2020); this effect could be reversed by caloric
restriction, but not anti-inflammatory treatment, prior to tumor development. These studies indi-
cate that correcting endocrine function may ameliorate obesity-associated tumorigenesis, perhaps
independent of inflammation in some cases, though the window for intervention may be limited
to early disease. It is important to note that metabolic syndrome is often associated with microbial
dysbiosis; given the emerging association between the microbiome and PDAC, the mechanistic
contribution of microbes to inflammation and cancer development will be an important avenue
for future exploration (Eibl & Rozengurt 2021, Ruiz et al. 2023).

While inflammation encourages early tumor development, tumor progression in turn drives an
associated unresolved inflammatory reaction as cancer cells continuously reshape the tumor mi-
croenvironment (TME) (Stone & Beatty 2019). Pancreatic tumors, driven at least in part by Krus
signaling (Kemp et al. 2023, Mahadevan et al. 2023), stimulate an influx of macrophages, myeloid
cells, neutrophils, and regulatory T cells (Tregs) that foster a protumorigenic immunosuppressive
environment that hinders response to immunotherapy (Stone & Beatty 2019). Important execu-
tors of the immune response including CD8 T cells, natural killer cells, and antigen-presenting
dendritic cells (DCs) exhibit signs of exhaustion and dysfunction within the tumor (Yousuf et al.
2023). Comprehensive spatial and single-cell analyses of PDAC tumors affirm that elevated in-
filtration of CD8 T cells relative to macrophages is associated with better survival in patients
(Liudahl et al. 2021, Yousuf et al. 2023); thus, strategies to ameliorate the immunosuppressive
landscape could benefit patients and possibly permit response to immunotherapy. To this end, a
number of clinical strategies have been employed to reduce the infiltration of immunosuppressive
M2-like tumor-associated macrophages (TAMs) or redirect their functional state (DeNardo &
Ruffell 2019). Most notably, agonists of the cell surface receptor CD40 have shown some activity
in PDAC, through both macrophages and DCs (Bear et al. 2020, Stone & Beatty 2019). Boosting
DC infiltration can also improve antigen-specific tumor control in GEMM:s (Hegde et al. 2020),
suggesting that sensitization to immunotherapy may require combination strategies to improve
both DC and CD8 T cell infiltration and their tumoral function, likely paired with reprogram-
ming of immunosuppressive macrophages. The challenges of overcoming immunosuppression
have been reviewed extensively (Bear et al. 2020), but the ambitious pursuit of these strategies
clinically may eventually allow PDAC patients to benefit from immunotherapy.

DESMOPLASTIC STROMA

Closely tied to inflammation, the desmoplastic stroma is another important feature of PDAC.
Pancreatic tumors are characterized by a dense fibrotic stroma that can compose over 90% of the
tumor volume, made up of a stiff extracellular matrix (ECM) as well as infiltrating immune cells
and fibroblasts. The rigid ECM, produced by cancer-associated fibroblasts (CAFs), deforms vas-
culature and impairs drug delivery, while stromal signals support drug resistance and metastasis.
For these reasons, the stroma was largely thought to have a tumor-supportive function, and abla-
tion of stromal CAFs was considered a therapeutic goal; however, the tumor—stroma relationship
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has proven to be more complex than initially anticipated (Caligiuri & Tuveson 2023, Hosein et al.
2020). We have proposed that CAFs can be broken down into three major subtypes with inde-
pendent functions and impact on tumor biology: myofibroblastic CAFs (myCAFs), inflammatory
CAFs (iCAFs), and antigen-presenting CAFs (apCAFs) (Caligiuri & Tuveson 2023, Elyada et al.
2019, Ohlund et al. 2017). myCAFs are enriched for the expression of activated smooth muscle
actin (aSMA) and collagens, and they are located proximal to tumor cells where they remodel
the ECM. iCAFs are located further from tumor cells, engaging in immune cell recruitment via
paracrine cytokine signals such as IL-6 (Caligiuri & Tuveson 2023, Elyada et al. 2019, Ohlund
et al. 2017). apCAFs express major histocompatibility complex II genes and similarly modulate
the immune TME, specifically driving the induction of immune-suppressive Tregs (Huang et al.
2022).

Although the functional relevance of CAF subtypes is only beginning to emerge, prior work
aimed at ablating CAF's via Hedgehog (Hh) inhibition provided initial insight into the complex-
ity of targeting the stroma. Hh signaling is enriched within aSMA+ myCAFs, and promising
preclinical results showed that Hh inhibitors depleted aSMA-+ CAFs and reduced fibrosis, im-
proving drug perfusion and chemosensitivity in mice (Olive et al. 2009). However, Hh inhibition
or genetic aSMA+ CAF depletion worsened metastasis, cachexia, and overall survival in GEMMs
in line with the clinical failure of Hh inhibitors (Hosein et al. 2020, Ozdemir et al. 2014, Rhim
et al. 2014). Subsequent work showed that aSMA+ myCAF depletion caused concurrent iCAF
expansion, driving immune suppression in mice (Steele et al. 2021). Compensatory iCAF expan-
sion may be explained by changes in TGFp signaling. A key driver of the myCAF state, TGFB
antagonizes IL-1-mediated iCAF activation (Biffi et al. 2019); thus, CAF TGF suppression by
Hh inhibitors may antagonize myCAF in support of iCAF fate. Together, these studies suggest
that effectual stromal therapies will need to address both desmoplastic and immunosuppressive
CAF functions. Although iCAF-specific Cre drivers have not yet been designed, broad genetic
ablation of CAFs using fibroblast activation protein, FAP+, alleviated immunosuppression, sensi-
tizing PDAC tumors to immunotherapy (Feig etal. 2013, Kraman etal. 2010). The iCAF-enriched
cytokine CXCL12 was found to drive T cell exclusion, nominating inhibitors of CXCL12 or its
cognate receptor, CXCR4, as putative targets for disrupting iCAF function and sensitizing to im-
munotherapy (Feig etal. 2013). As key regulators of the iCAF state, IL-1 and its effectors LIF, IL-6,
and JAK/STAT may also represent important targets for iCAF suppression (Biffi et al. 2019). In
the future, combining iCAF-targeted therapies with inhibitors aimed to interrupt protumorigenic
myCAF functions may be the path forward for remodeling the PDAC stroma to achieve clinical
benefit. apCAFs are proposed to arise from mesothelial cells, and treatment with a Mesothelin
(MSLN) antibody has been shown to reduce apCAFs, Tregs, and tumor burden in vivo (Huang
et al. 2022). MSLN is highly expressed by PDAC cells, so the apCAF-specific nature of these ef-
fects is unclear; nonetheless, they provide some evidence that cotargeting of apCAFs and tumor
cells with this approach could have antitumor efficacy.

An alternative paradigm for targeting the stroma is to identify subtype-agnostic protumori-
genic CAF functions to disrupt therapeutically. One emergent common protumorigenic CAF
function is the production of metabolites that support cancer cell survival in the nutrient-poor
TME (Auciello et al. 2019, Dalin et al. 2019, Dey et al. 2021, Encarnacién-Rosado & Kimmelman
2021, Murthy et al. 2024, Sousa et al. 2016). Subtype-independent production of acetate by CAFs
has been shown to orchestrate histone acetylation and epigenetic reprogramming in pancreatic
cancer cells, promoting their survival at low pH (Murthy et al. 2024). Pancreatic stellate cells
(PSCs), a known origin of PDAC CAFs, also support cancer cell proliferation in nutrient-limited
conditions through alanine production (Sousa et al. 2016). Conversely, CAF functions such as col-
lagen production can be metabolically constrained (Schwoérer et al. 2021). As this field continues
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to grow, metabolic CAF—tumor cross talk may reveal interesting new paths for intervention. An-
other subtype-agnostic paradigm for targeting the stroma is stromal reprogramming of activated
CAFs to a quiescent state. To this end, vitamin D receptor (VDR) has been implicated as a master
regulator of PSC activation and a putative target for CAF reprogramming. VDR activation
reduced fibrosis and improved chemosensitivity in mice (Sherman et al. 2014), leading to clinical
investigation of this strategy for the treatment of PDAC (Hosein et al. 2020). Direct targeting of
CAF-produced ECM may be another approach to tune the physical qualities of the stroma inde-
pendent of CAF biology; however, clinical targeting of ECM proteins has so far been unsuccessful
(Hosein et al. 2020). Like CAF targeting, ECM modulation can have complex and contradictory
effects on tumor biology. For example, recent preclinical studies targeting lysyl oxidase en-
zymes reduced collagen cross-linking and fibrosis but yielded opposing outcomes. Inhibition of
LOXL2 via monoclonal antibody treatment promoted tumor growth in orthotopic models (Jiang
et al. 2020), while a novel pan-lysyl oxidase inhibitor improved survival, chemosensitivity, and
metastatic burden in an autochthonous PDAC model (Chitty et al. 2023). Therefore, we still have
work to do to identify stromal therapeutic targets with clear-cut benefits for tumor inhibition.

EARLY METASTASIS

Another critical contributor to PDAC mortality and an important hallmark of the disease is
early metastasis. Evidence from GEMMs has shown that metastatic spread can occur as early
as the PanIN stage in disease progression, indicating dissemination that surprisingly preceded
the histological emergence of frank cancer (Rhim et al. 2012). Supporting this model of early
dissemination, a majority of patients who undergo tumor resection will have recurrence within
2 years, indicating that micrometastatic spread occurred in the case of apparently local disease
(Groot et al. 2018). Identifying the cause of aggressive metastasis is therefore critical to tackle
PDAC clinically. Interestingly, evolutionary analyses of matched primary and metastatic lesions
in patients revealed that metastasis is not largely driven by specific mutations (Hayashi et al.
2021, Makohon-Moore et al. 2017). Instead, metastases are characterized by large-scale epige-
netic reprogramming (McDonald et al. 2017, Roe et al. 2017), implicating nongenetic tumor
heterogeneity as an important driver of the phenotypic changes required for tumor cell invasion,
dissemination, and metastatic colonization. The phenotypic shift implicated in this metastatic cas-
cade is called epithelial-to-mesenchymal transition (EMT); EMT involves a loss of epithelial gene
expression and a morphological shift to a mesenchymal cell state associated with loss of cellular
polarity and enhanced invasive ability (Dongre & Weinberg 2018).

Through the study of EMT in cancer, it has become increasingly clear that tumor cells exist
on a spectrum between epithelial and mesenchymal phenotypic poles. Hybrid or partial EMT
states have been described and have been implicated in collective migration, organotropism, and
clonal metastatic propagation (Aiello et al. 2018, Dongre & Weinberg 2018, Reichert et al. 2018,
Simeonov et al. 2021). In human tumors, epithelial and mesenchymal states largely correspond to
classical and basal transcriptional PDAC subtypes, respectively (Bailey et al. 2016, Collisson et al.
2011, Moffitt et al. 2015); however, heterogeneity among human tumors is more complex. The
basal subtype overlaps with quasi-mesenchymal and squamous subtype classifications identified
by other groups, which, although somewhat distinct, share a poorer prognosis and enrichment for
EMT features relative to the classical subtype (Di Chiaro et al. 2024, Hayashi et al. 2020, Rashid
et al. 2020). Interestingly, recent work in GEMMs indicates that the basal and classical subtypes
correspond to ductal and acinar-derived tumors, respectively, suggesting a possible role for cel-
lular origin in determining subtype identity (Flowers et al. 2021). Adding further complexity, an
undifferentiated and therapy-enriched subtype characterized by a neural progenitor signature has
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also been identified in human tumors (Di Chiaro et al. 2024, Hwang et al. 2022). Although the
relationship between subtypes remains unclear, basal/mesenchymal and classical/epithelial fea-
tures can coexist within the same cell (Chan-Seng-Yue et al. 2020, Raghavan et al. 2021, Williams
et al. 2023), implying some conversion from one differentiation state to another. Supporting cell
state transition in disease progression, we used pseudotime analysis of single-cell RNA sequenc-
ing of mouse tumors to show that precancerous epithelialti" cells progress through a hybrid
state toward a mesenchymal fate (Tonelli et al. 2024). Epithelialfis" cells were enriched for the
expression of genes implicated in mucus secretion, including the transcription factor Spdef. Spdef
deletion impaired epithelial/classical tumor growth in vivo while upregulating basal/EMT pro-
grams, demonstrating that although Spdef may represent a classical subtype-specific dependency,
its targeting would likely lead to basal subtype tumor outgrowth (Tonelli et al. 2024). Genetic
ablation of classical subtype regulatory factors including Gaza6 has yielded similar results, driv-
ing basal/mesenchymal tumor differentiation and higher metastatic burden (Kloesch et al. 2022,
Lan et al. 2022). These results indicate that targeting of basal/mesenchymal cell fate will ulti-
mately be required to effectively treat PDAC and prevent metastasis. Several key regulators of
basal/mesenchymal cell fate have been identified (Adams et al. 2019, Andricovich et al. 2018,
Brunton et al. 2020, Du et al. 2021, Tu et al. 2021), including the tyrosine kinase Ax/. AXL is
enriched in mesenchymal tumor cells, and its global deletion or inhibition in mice promoted ep-
ithelial tumor differentiation and improved survival, chemosensitivity, and T cell infiltration while
reducing metastasis (Du et al. 2021, Zhang et al. 2022).

Although stepwise progression from epithelial to mesenchymal fate is a logical paradigm for
understanding PDAC progression, hybrid cancer cells may instead exhibit bidirectional plastic-
ity. In a recent single-cell analysis of mouse tumors, a transitional population of basal tumor cells
was identified; these cells exhibited bivalent chromatin accessibility at epithelial and mesenchymal
genes, poised for bipotent plasticity. Indeed, when the basal marker Lgr5 was used to lineage trace
tumor cells in vivo, Lgry+ cells gave rise to both classical and mesenchymal progeny (Pitter et al.
2022). These results suggest a model in which plastic transitional cells fuel tumor heterogeneity,
drawing parallels to the cancer stem cell (CSC) model in which stemlike cancer cells enriched
for developmental programs preferentially contribute to tumor heterogeneity, therapy resistance,
and metastasis. This model suggests that specific targeting of plastic cancer cells or CSCs may
be required to disrupt tumor progression and metastasis (Batlle & Clevers 2017). A model of
bipotent plasticity also begs the question, What extrinsic factors influence differentiation trajec-
tories? Spatial profiling has demonstrated that regional TME heterogeneity is associated with the
PDAC differentiation state in vivo (Di Chiaro et al. 2024, Griinwald et al. 2021). This is supported
by our own work showing that the differentiation state of isogenic PDOs can be determined by
TME context in intraductal versus parenchymal transplant models (Miyabayashi et al. 2020). In
organoid models, TGFp and interferon-y have been shown to push tumor cells toward a basal
or intermediate cell state, respectively, in vitro, further implying direct TME regulation of sub-
type identity (Raghavan et al. 2021). These studies open up many new questions for envisioning
therapy. Which cell states should be targeted therapeutically to impede metastasis? Further, if the
TME regulates malignant cell fates, will TME modulation be necessary to subvert the metastatic
cascade?

KRAS SIGNALING

Occurring in over 90% of PDAC, mutant KRAS is a requisite driver for pancreatic cancer. KRAS
is a small GTPase that is targeted for single—amino acid substitutions that lock the protein in the
GTP-bound conformation and drive constitutive activation of effectors such as the PI3K/AKT
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and RAF/MEK/ERK pathways (Singhal et al. 2024). In pancreatic cancer, studies using the in-
ducible iKras GEMM to extinguish Kras"UT activity have provided preclinical evidence that loss
of mutant KRAS activity is sufficient to drive tumor regression (Collins et al. 2012a,b; Ying et al.
2012). KRAS amplification has also been associated with invasive, basal PDAC (Chan-Seng-Yue
et al. 2020, Miyabayashi et al. 2020), further affirming the rationale for therapeutic targeting
of Ras. After years of KRAS being considered structurally undruggable, recent advances have
finally culminated in the design of KRAS inhibitors. The first of these to reach the clinic were
inhibitors targeting the KRAS“?C mutation, which is rare in PDAC but common in lung cancer.
Small molecules have since emerged to target the more PDAC-prevalent KRASG!?P mutation,
as well as pan-Ras activity (Singhal et al. 2024). Preclinical studies have established the efficacy of
these strategies in PDAC; both the KRASS!?P_gpecific inhibitor MRTX1133 (Kemp et al. 2023,
Mahadevan et al. 2023) and the pan-Ras inhibitor RMC-7977 (Wasko et al. 2024) demonstrated
potent antitumor activity in GEMMs. Nonetheless, mice eventually succumbed to disease, mir-
roring the results of KRASG!?C inhibitor clinical trials where overall response rates were modest
and patients exhibited acquired and intrinsic resistance (Singhal et al. 2024). Although clinical
trials are ongoing to evaluate KRASG!?P and pan-Ras inhibitors, outcomes are likely to be similar.
Therefore, while KRAS inhibitors have the potential to transform PDAC treatment, future
efforts will need to focus on identifying actionable dependencies in KRAS-independent relapsing
tumors.

While clinical assessment of KRAS inhibitors in PDAC is underway, studies in iKras mice
have provided some insight into predicted mechanisms of resistance to Kras%!?P inhibition. Tu-
mors emerging after Kras®?P ablation were poorly differentiated and relied on YAP1 (Kapoor
etal. 2014) and MYC (Genovese et al. 2017) signaling, as well as upregulation of metabolic path-
ways including oxidative phosphorylation (Viale et al. 2014) and micropinocytosis (Hou et al.
2021). Supporting MYC as a putative drug resistance mechanism, a CRISPR screen conducted in
combination with MRTX1133 found that disruption of MYC, SHP2, EGFR, and PI3K signaling
synergized with KRASG!?D inhibition (Hallin et al. 2022). Interestingly, studies in GEMMs have
shown that TME signals can also support tumor bypass of Krus%?P dependence. For example,
ERBB2/ERRB3 activation by CAF-produced NRG1 supported tumor growth after Kras"UT was
extinguished (Han et al. 2023). Kras%?P ablation also drove an influx of TAMs; TAM-produced
TGFB in turn supported the growth of Kras%'?P-independent tumors (Hou et al. 2020). Preclin-
ical studies using MRTX1133 similarly found that Kras%?P inhibition remodeled the immune
microenvironment (Kemp et al. 2023, Mahadevan et al. 2023) but promoted CD8 T cell infiltra-
tion, indicating a potential synergy between Kras%?P inhibition and immunotherapy that merits
turther exploration. Together, these indicate a broad range of pathways that may drive clinical
resistance to KRAS!?P inhibitors and a vast array of opportunities for combination therapy. One
further consideration for the utility of mutant-specific targeting of KRAS is the potential for wild-
type Ras activity to drive adaptive resistance. To identify potential direct regulators of wild-type
and mutant KRAS activity, we used a proximity ligation approach and found that the kinase RSK1
specifically interacted with membrane-bound KRASMVT  dependent on NF1 and SPRED2. When
KrasMUT was ablated, loss of membrane RSK1 led to derepression of wild-type Ras signaling, which
G12D jnhibition (Cheng et al.
2021). To this end, it will be interesting to see if pan-Ras inhibitors provide clinical benefit over

we hypothesize could act as a putative mediator of resistance to Kras

mutant-specific inhibitors by preventing bypass signaling from wild-type Ras. Although this ap-
proach may cause broader side effects, it may also restrict the resistance mechanisms available to
tumor cells. In preclinical studies, pancreatic tumors that regrew after treatment with RMC-7977
exhibited amplifications in MYC and sensitivity to YAP inhibition (Wasko et al. 2024), suggest-
ing that pan-Ras inhibition may select for specific alternative signaling pathways in lieu of bypass
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activation of RAS/MAPK signaling as has been observed in response to KRASS!?C inhibitors
(Singhal et al. 2024).

METABOLISM

Dysregulated metabolism has long been recognized as an important feature of cancer (Pavlova
et al. 2022), and PDAC is no exception. Mutant Kras drives extensive reprogramming of core
metabolic pathways including glucose and glutamine utilization, mitochondrial respiration, and
nutrient scavenging to fuel proliferation and manage oxidative stress (Commisso et al. 2013,
Denicola et al. 2011, Encarnacién-Rosado & Kimmelman 2021, Kamphorst et al. 2015, Son et al.
2013, Viale et al. 2014, Yang et al. 2011, Ying et al. 2012). To interrogate metabolic pathways active
in vivo, recent studies have used CRISPR screens to pinpoint functional metabolic dependencies
in mice (Biancur et al. 2021, Zhu et al. 2021). These studies found striking concordance between
metabolic dependencies in vitro and in vivo, affirming the use of in vitro systems for metabolic
profiling, while also revealing a unique dependency on heme biosynthesis in vivo (Biancur et al.
2021, Zhu et al. 2021). Dependence on heme synthesis was masked in vitro by compensatory
heme production in neighboring cells. The unmasking of this requirement in vivo highlights
the divergence in metabolic cross talk, perhaps complicated by the stroma, in vivo. However, in
general, the ability of metabolically diverse tumor cells to complement each other represents a
challenge for therapeutic targeting of cancer metabolism. As discussed, tumor-stroma metabolic
cross talk is increasingly recognized as contributing to tumor growth; similarly, we can speculate
as to whether complementary relationships exist among tumor cell types (Dey et al. 2021).
Metabolic heterogeneity within tumors is only beginning to be explored, and its implications
are not entirely clear. Basal and classical PDAC subtypes, for example, have been associated
with glycolytic or lipogenic metabolic profiles, respectively, and demonstrate subtype-specific
sensitivity to the inhibition of these pathways (Brunton et al. 2020, Daemen et al. 2015). It is
possible that understanding these phenotype-specific metabolic dependencies could guide the
clinical application of metabolic inhibitors. Conversely, metabolic heterogeneity may bolster the
tumor’s capacity for metabolic adaptation, compounding the effects of compensatory rewiring to
make clinical targeting of metabolism even more challenging (Biancur et al. 2017). Despite these
challenges, inhibitors targeting nutrient scavenging via autophagy have shown some activity when
combined with MEK/ERK inhibitors and remain under clinical investigation (Dey et al. 2021,
Encarnacién-Rosado & Kimmelman 2021). Interestingly, this is in line with studies demonstrat-
ing that cancer cells surviving KrasUT ablation are uniquely dependent on autophagy (Viale et al.
2014). As KRAS inhibitors reach the clinic, they may impose a bottleneck on metabolic plasticity;
thus, arising metabolic dependencies may become effective targets in drug-resistant tumors.
Metabolic context can also shape tumor heterogeneity by imposing selection pressures on
tumor cells. This can be seen in early tumorigenesis, where low oxygen or glucose conditions
can select for the emergence of specific oncogenic mutations (Yun et al. 2009). Tumor metabolic
conditions can also promote EMT, exerting selection pressure that favors metastasis. Glutamine
restriction, for example, can drive EM'T and ERK activation; activation of these programs confers
a survival benefit on glutamine-starved cells (Recouvreux et al. 2020) that could shape phenotypic
tumor evolution in the nutrient-poor TME. Metabolic by-products also regulate cell fate by di-
rectly modifying protein function. Isoprenoids, for example, are a by-product of the mevalonate
pathway required for Ras prenylation, membrane localization, and activity. In our own work, we
found that metastatic organoids uniquely depend on the upregulation of sterol O-acyltransferase
1 (SOAT1) to prevent negative feedback inhibition of the mevalonate pathway, enabling iso-
prenoid production and Ras prenylation (Oni et al. 2020b). Another important example of direct
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metabolic control of cell signaling is the metabolism of glucose to acetyl-coenzyme A (CoA).
Glucose-derived citrate can be used to produce acetyl-CoA via ATP-citrate lyase (ACLY). In turn,
acetyl-CoA is used to acetylate histones, a protein modification that modulates chromatin acces-
sibility and function. In PDAC, KrzsMUT increases the flux of glucose into acetyl-CoA, driving
ADM, tumorigenesis, and associated increases in global histone acetylation (Carrer et al. 2019).
Distant metastases have also been shown to upregulate glucose avidity, fueling global acetyla-
tion and epigenetic remodeling at large chromatin regions that encode tumorigenic programs
including EMT (Bechard et al. 2020, McDonald et al. 2017). This is a unique illustration of how
metabolic selection pressure for enhanced glucose uptake can in turn reprogram cell fate and pro-
mote metastasis, dependent on direct protein modification by a metabolic by-product. Although
the direct relationship between metabolism and epigenetic regulation has become more apparent
(Morris et al. 2019), there is likely much we do not yet understand regarding the role of metabo-
lites as signaling molecules. Within the heterogenous pancreatic TME, spatially irregular nutrient
availability could exert broad and unanticipated effects on cell fate and tumor evolution.

RAPID DECONDITIONING

The final hallmark of PDAC that we discuss is rapid deconditioning, or the rapid physiological de-
terioration that often accompanies a pancreatic cancer diagnosis. Late diagnosis means that PDAC
patients often present with advanced disease accompanied by physiological decline due to pancre-
atic exocrine insufficiency and malnutrition, weight loss, and a fat and muscle wasting syndrome
called cachexia (Grossberg et al. 2020). Cachexia in particular is extremely prevalent in PDAC,
and it is associated with worse outcomes in the context of both therapy and surgical resection
(Babic et al. 2019, Bachmann et al. 2008, Kays et al. 2018). Development of effective strategies to
prevent or treat cachexia could have important implications for quality of life, as well as tolerance
and response to therapy. Cachexia is a complex multifactorial syndrome that represents a conver-
gence of cancer-associated inflammation and metabolic dysfunction (Ferrer et al. 2023). Tumors
and the associated TME produce cytokines that promote adipose and muscle catabolism, mobiliz-
ing nutrients that are exploited by tumors. Tumor-associated signals also drive adipose browning,
which can worsen whole-body energy balance. Moreover, inflammatory mediators signal directly
to the central nervous system, which suppresses appetite and further exacerbates tissue catabolism.
Clinical trials are ongoing to test drugs that stimulate appetite or block cachexia-associated inflam-
matory signaling; however, no specific therapies have been approved to date (Ferrer et al. 2023).
In part, clinical trials to treat cachexia remain challenging as they typically involve the enrollment
of patients with >5% weight loss, representing late-stage progression of cachexia. In reality, tissue
wasting may precede diagnosis by up to 2 years (Babic et al. 2023), suggesting that strategies to
manage cachexia earlier are likely necessary.

In lieu of effective interventions for cachexia, rapid deconditioning constrains the time frame
in which patients can tolerate therapy. This warrants the development of precision medicine
approaches that empower clinicians to choose therapies wisely. To achieve this, some efforts
have focused on matching therapy to actionable genetic alterations. For example, patients with
BRCA1/2 mutations can benefit from DNA repair-targeting PARP inhibitors (Golan et al.
2019), and the rare population of patients exhibiting mismatch repair deficiency may benefit
from immunotherapy (Marabelle et al. 2020). A review of patients referred for genetic profiling
showed that of the ~25% of patients with actionable genetic alterations, those that received
matched therapy saw a survival benefit (Pishvaian et al. 2020). Nonetheless, the many patients
without actionable genetic mutations will require personalized therapy based on nongenetic
tumor features. The correlation of transcriptional PDAC subtype with chemosensitivity (Rashid
et al. 2020) suggests that RNA sequencing (RNA-seq) may be useful in directing personalized
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medicine. Indeed, recent work has leveraged RNA-seq to develop bioinformatic tests to predict
actionable signaling axes that may be targeted to disrupt patient-specific transcriptional states or
their master regulators (Mundi et al. 2023). In an effort to bypass a reliance on sequencing data,
we have instead leveraged PDOs to develop a rapid drug screening platform to directly predict
patient-specific therapy response within a clinically relevant time window. In a preclinical study,
we showed that rapid (~15 days) organoid establishment and screening was possible and that drug
sensitivity in organoids was predictive of patient response (Demyan et al. 2022, Tiriac et al. 2018).
We are now exploring the feasibility of this approach in the PASS-01 clinical trial (Knox et al.
2022). Another innovative strategy being pursued in the treatment of surgically resected patients
is a personalized messenger RNA (mRNA) vaccine. Custom designed based on patient-specific
neoantigens, mRNA vaccines were rapidly produced and administered after resection, where
they activated an immune response and delayed recurrence in ~50% of patients in a small trial
(Rojas et al. 2023). Though preliminary, this approach has the potential to improve survival in
surgery-eligible patients. These results also suggest that personalized immunotherapy in PDAC
may be possible, especially if we can identify patients capable of activating an immune response;
this may become increasingly relevant as KRAS inhibitors enter the clinic and potentially alleviate
immunosuppression (Kemp et al. 2023, Mahadevan et al. 2023).

CONCLUSIONS AND OPEN QUESTIONS

While each of the disease hallmarks outlined here represents an individual challenge that must
be addressed to work toward a cure for pancreatic cancer, we hope that we have highlighted the
many junctures at which these disease features are closely interconnected. While addressing di-
agnostic deficiencies will widen the net to capture a larger number of patients with early-stage
disease, the aggressive metastatic spread underlying tumor recurrence still necessitates the devel-
opment of strategies to block malignant disease progression or prevent tumorigenesis altogether.
As our understanding of tumors progression has evolved, it has become clear that heterogene-
ity among tumor cells and the TME is a central problem we will need to address to effectively
tackle this disease. Heterogeneity and plasticity among tumor cells are a source of resistance to
therapy and are closely tied to TME signaling and metabolic context in the tumor. In turn, di-
verse tumor phenotypes reciprocally shape the TME landscape, whose heterogeneity similarly
drives poor prognosis. Deeper bioinformatic exploration of spatial and single-cell tumor analyses
enables the systematic dissection of relevant axes of tumor—stroma communication, and future
biological exploration of these relationships may change the way we think about blocking tumor
progression. Perhaps we will be able to identify actionable signaling nodes that can destabilize
tumor-"TME networks by concomitantly regulating malignant cell fate and immunosuppression.
Furthermore, as metabolomic techniques continue to improve, we will begin to incorporate this
information into our understanding of tumor—TME networks and their regulation. As a final note,
the likely clinical adoption of KRAS inhibitors in the near future will surely represent a shift in
the pancreatic cancer landscape. Although we do not know the extent to which these inhibitors
will influence patient outcomes, the ability to disrupt this central oncogene will surely impact the
nature and trajectory of this disease. This represents an exciting time for PDAC research, as we
have the opportunity to begin the serious exploration of how to approach this critical hallmark in
patients for the first time.
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