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G E N E T I C S

Massive experimental quantification allows 
interpretable deep learning of protein aggregation
Mike Thompson1, Mariano Martín2, Trinidad Sanmartín Olmo2, Chandana Rajesh3, Peter K. Koo3, 
Benedetta Bolognesi2*, Ben Lehner1,4,5,6*

Protein aggregation is a pathological hallmark of more than 50 human diseases and a major problem for biotech-
nology. Methods have been proposed to predict aggregation from sequence, but these have been trained and 
evaluated on small and biased experimental datasets. Here we directly address this data shortage by experimen-
tally quantifying the aggregation of >100,000 protein sequences. This unprecedented dataset reveals the limited 
performance of existing computational methods and allows us to train CANYA, a convolution-attention hybrid 
neural network that accurately predicts aggregation from sequence. We adapt genomic neural network interpret-
ability analyses to reveal CANYA’s decision-making process and learned grammar. Our results illustrate the power 
of massive experimental analysis of random sequence-spaces and provide an interpretable and robust neural 
network model to predict aggregation.

INTRODUCTION
Specific insoluble protein aggregates in the form of amyloid fibrils 
characterize more than 50 clinical conditions affecting more than half 
a billion people (Fig. 1A) (1). These include common neurodegenera-
tive disorders and the most frequent forms of dementia. Nonetheless, 
amyloids are present in all kingdoms of life and can have functional 
roles, including in humans (2). Protein aggregation is also a major 
problem in biotechnology, for example, in the production of enzymes, 
antibodies and other protein therapeutics (3). The importance of 
amyloids across biological functions and diseases has spurred mas-
sive research efforts, yet the determinants and mechanisms of their 
formation remain quite poorly understood (4, 5).

Recent advances in cryogenic electron microscopy have allowed 
the atomic structures of many mature amyloid fibrils to be deter-
mined (6). Amyloids share a cross-β structure wherein hydrogen-
bonded β strands are perpendicularly stacked along the fibril axis, 
creating β sheets that face each other and are parallel to the fibril axis 
(4, 7, 8). Amyloid fibrils of human proteins typically have hydropho-
bic cores, and hydrophobicity and β strand propensity form the ba-
sis of many computational methods to predict amyloid propensity 
from sequence (9–15). However, other amyloids, for example yeast 
prions, have very different sequence composition, hinting at a richer 
diversity of amyloid-forming sequences (16, 17).

In contrast to the remarkable advances in the structural charac-
terization of mature fibrils, the process of amyloid formation is 
much less understood. Time-resolved structure determination has 
been used to study the in vitro assembly of amyloids, revealing a 
notable diversity of intermediate structures appearing and disap-
pearing as fibrillation proceeds (18, 19). However, how this pro-
cess initiates and why it only occurs for some sequences under 

physiological conditions remains unclear. Mature amyloid fibrils are 
very stable and are likely to be the thermodynamically favored state 
at high protein concentration for many proteins (20, 21). There is, 
however, a very high energy barrier to amyloid nucleation for most 
proteins, i.e., the process is under kinetic control (Fig. 1B) (21). The 
kinetic control of amyloid nucleation is, therefore, the key problem 
to understand: What are the sequence-level determinants that cause 
some peptides to nucleate amyloid formation on timescales relevant 
to biology?

We believe that our ability to understand and predict amyloid 
formation is currently data-limited. To date, computational meth-
ods to predict aggregation have been trained and benchmarked on 
very small and biased experimental datasets. For example, several of 
these methods are trained on datasets that can be trivially explained 
by hydrophobicity or sequence length alone (fig. S1 and table S1), mak-
ing it unlikely that they have learned representations of aggregation 
that generalize across the diversity of sequence space (12–15, 22–25). 
More explicitly, even for a peptide composed of just 20 amino acids 
there are 2020 (>1026) different sequences that this peptide can real-
ize. Such a large sequence space is unlikely to have been accurately 
modeled by methods trained on tens or a few hundred sequences.

To directly address this data gap, we have developed a massively 
parallel selection assay that allows the aggregation of thousands of 
different proteins to be tested and quantified in a single experiment 
(26, 27). This has allowed us to quantify the change in aggregation 
rates for all possible substitutions, insertions, and deletions in the 
amyloid-β peptide that aggregates as a hallmark of Alzheimer’s dis-
ease. The resulting measurements agree very well with in vitro nu-
cleation kinetic rate constants (26, 27). However, these datasets are 
limited to testing the effects of small changes to a single sequence, 
hindering utility for general-purpose model building.

Here, we apply this approach at a much larger scale and quantify 
the aggregation of >100,000 peptides with completely random se-
quences. We use the resulting massive dataset to evaluate existing 
aggregation prediction methods and find that unlike their perfor-
mance on previous, potentially biased datasets, they are only mod-
erately predictive across a much wider sequence space. We therefore 
use the data to train CANYA, a convolution-attention hybrid neural 
network. This fast model dramatically outperforms existing predictors 
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of protein aggregation when tested on >10,000 additional sequences, 
demonstrating the power of massive experimental sequence-space 
exploration. Subsequent post hoc explainable artificial intelligence 
(xAI) analyses provide mechanistic insights into CANYA’s decision-
making process and learned grammar. CANYA provides a robust 
and interpretable neural network model for understanding and 
predicting amyloid-forming proteins. More generally, our results 
not only provide a very large and well-calibrated dataset to train 
and evaluate models beyond CANYA, but they also demonstrate 
the utility of massive experimental analysis of random protein se-
quence spaces.

RESULTS
Massively parallel quantification of the aggregation of 
>100,000 sequences
To better understand the sequence determinants of peptide aggre-
gation, we used an in-cell selection assay to quantify the rate of ag-
gregation of more than a hundred thousand peptides with fully 
random sequences. We generated four libraries (NNK1 to 4) of ran-
dom 20 amino acid peptides using NNK degenerate codons (where 
N = A/C/G/T and K = G/T) and expressing them as fusions to the 
nucleation domain of Sup35 (Sup35N), a yeast prion–forming pro-
tein that allows fitness-based selection for amyloid aggregation 
(Fig. 1C) (26–28). Briefly, fusion sequences that nucleate amyloids 

sequester Sup35, resulting in translational readthrough of a prema-
ture stop codon in the ade1 gene so that cells containing those 
sequences can grow in medium lacking adenine. Enrichment or 
depletion of each sequence after selection is quantified by deep 
sequencing, with, at least for amyloid-β variants, enrichment scores 
linearly related to the log of in vitro amyloid nucleation rates 
(26, 27, 29).

Each library was selected independently, and sequencing was 
used to quantify the relative enrichment (“aggregation score”) for 
each genotype in the library. Sequences in the first three experi-
ments made up our training and testing sets (NNK1–3, N = ~111,000; 
Fig. 1D and data files S1 and S2), corresponding to about a 1/1021 
fraction of the possible sequence space (2020), while sequences 
from the fourth experiment (NNK4, N = ~7000) were used as a 
held-out test dataset. After data processing and quality control, 
the vast majority of sequences had an aggregation score of 0. Con-
sequently, we classified sequences with an aggregation score sig-
nificantly greater than 0 [one-sided Z test, false discovery rate 
(FDR)–adjusted P value ≤0.05] as aggregators (n = 21,936) and 
all other sequences as non-aggregators (n = 88,470) (Fig. 1E). These 
aggregation scores are reproducible, as measured by an additional 
selection experiment on a designed library (replication library) 
requantifying the aggregation of 400 sequences sampled across all 
four libraries (Pearson correlation range 0.506 to 0.797; Fig. 1F 
and fig. S2).

A B

C

D E F

Fig. 1. Quantifying the aggregation of >100,000 random peptides. (A) Examples of amyloids in human diseases. (B) The amyloid state is thermodynamically favorable 
but requires overcoming a kinetic barrier. (C) Experimental design. (D) While we explore more than 110,000 sequences, our dataset is a tiny sample of the possible se-
quence space. (E) The assayed aggregation scores of sequences labeled “aggregators” and “non-aggregators” in our experiment. (F) An example of a follow-up replication 
experiment using a synthesized library (NNK3; see fig. S2 for others; data file S3). AA, amino acid.

D
ow

nloaded from
 https://w

w
w

.science.org at C
old Spring H

arbor L
aboratory on M

ay 01, 2025



Thompson et al., Sci. Adv. 11, eadt5111 (2025)     30 April 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A rt  i c l e

3 of 16

Aggregating sequences span a large sequence space and are 
poorly predicted by existing computational methods
After classifying sequences as aggregators and non-aggregators, we 
sought to characterize each class through amino acid composition 
(Fig. 2A), physicochemical properties (Fig. 2B), and current amy-
loid prediction tools (Fig. 2C). First, we examined the differences in 
amino acid frequency between aggregating and non-aggregating 
sequences. Differences in frequencies were generally modest; how-
ever, we observed statistically significant differences owing to the 
large sample size of our data. When looking at composition inde-
pendent of position, aggregators had higher frequencies of cysteine 
(difference in frequency 0.012, P < 2 × 10−16), asparagine (0.009, 
P <  2 × 10−16), and isoleucine (0.005, P <  2 × 10−16), and lower 
frequencies of arginine (−0.010, P <  2 × 10−16), leucine (−0.008, 
P < 2 × 10−16), and lysine (−0.006, P < 2 × 10−16; Fig. 2A, see table S2 
for full differences). Moreover, both aggregators and non-aggregators 
covered the β sheet propensity and hydrophobicity spaces of the 
human proteome and known amyloid sequences, and aggregators 
had slightly higher values of both than non-aggregators on average 
(difference in means of hydrophobicity = 0.130, β sheet propensi-
ty  =  0.012, both two-way t test P values <2 × 10−16; Fig. 2B). 

Considering position-specific composition, differences were again 
modest, ranging from a difference in frequency from −0.06 to 0.03 
(Fig. 2D). Subsequently, we grouped amino acids by their physico-
chemical properties to check for broader, position-specific differences 
between the two sequence classes (Fig. 2E). Toward the N terminus 
of the random sequence (i.e., closer to Sup35N), aggregators were 
significantly enriched (chi-squared test) for aliphatic residues (min. 
P value = 1.54 × 10−13, position 2 difference = 0.033), and signifi-
cantly depleted for positive (min. P value = 1.57 × 10−25, position 9 
difference = −0.032) and negative residues (min. P value = 3.14 × 
10−11, position 2 difference = −0.016). The differences in charge waned 
toward the C terminus (min. P value above position 15 =  1.03 × 
10−3, position 20 charged difference = 0.011), however, and fre-
quency differences in aliphatic residues changed such that aggrega-
tors were significantly depleted for aliphatic residues relative to 
non-aggregators (min. P value =  5.77 × 10−39, position 19 differ-
ence = −0.058). Several groupings showed other position-sensitive 
differences, such as an enrichment of aromatic residues toward 
the C terminus in aggregators (min. P value = 5.09 × 10−6, posi-
tion 19 difference = 0.015), an enrichment of varying strength for 
polar residues in aggregators (P value = 5.57 × 10−8 position 1 

A B
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D

Fig. 2. Aggregation is poorly predicted by existing models and subtly related to amino acid composition. (A) The percent composition of residues grouped by their 
physicochemical properties in aggregators and non-aggregators. (B) The hydrophobicity and β sheet propensity of assayed sequences relative to known human amyloids 
(table S3) and the human proteome. (C) The predictive power (AUROC ±95% CI) of previous amyloid predictors on the random sequences. (D and E) The position-specific 
differences in amino acid frequencies across aggregating and non-aggregating sequences. Asterisks indicate marginal P value (chi-square test) lower than 0.05 “*”; lower 
than 0.01 “**”; lower than 0.001 “***.”
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difference = 0.023, P value = 9.41 × 10−7 position 17 difference = 
0.020), and the enrichment of cysteines away from the ends of 
the random construct (min. P value = 1.11 × 10−28, position 10 
difference = 0.023).

Despite statistical significance, we highlight that differences in 
sequence space are subtle. In other words, the collection of slight 
variation in amino acid frequencies offers minimal insight or de-
finitive conclusions around the overall properties or characteristics 
determining aggregation in our experiment. To attempt to elucidate 
characteristics that separate the sequence classes and consequently 
learn important axes of variability, we turned to dimensionality re-
duction techniques. In addition to manually examining differences 
within the first several dimensions, we also used the scores in lower-
dimensional space as features in a logistic multiple regression task to 
distinguish aggregators from non-aggregators. Using principal compo-
nents analysis (PCA), we observed no clear separation between aggre-
gators and non-aggregators whether we used amino acid composition 
alone {cumulative variance explained from the top 10 principal 
components (PCs)s = 54.7%, area under receiver operating charac-
teristic curve (AUROC) using all 10 PC scores = 0.601, 95% confidence 
interval (CI) = [0.596, 0.607]; fig. S3}, or maintained positionality of 
the amino acids when fitting the model (cumulative variance explained 
from the top 10 PCs = 3.1%, AUROC = 0.564, 95% CI =  [0.559, 
0.570]; fig. S3). This modest separation between classes of sequences 
was consistent even when using nonlinear embedding techniques 
(first 10 Uniform Manifold Approximation and Projections AUROC = 
0.580, 95% CI [0.575, 0.586]), or adding amino acid propensities to 
the dimensionality reduction tools (first 10 PCs AUROC = 0.614, 
95% CI [0.608, 0.619]; fig. S3).

As dimensionality reduction methods were unable to distinguish 
the classes of sequences, we next explored whether separation is 
possible using existing amyloid predictors. Beyond hydrophobicity 
indices, several of these methods include structural information 
(30) or model biophysical mechanisms (12), potentially enabling 
them to capture more complex features of aggregation. We applied 
several state-of-the-art amyloid prediction algorithms to our data and 
found that the methods either failed to generalize to our data or had 
only modest predictive power (Fig. 2C, CamSol, highest AUROC = 
0.598, 95% CI [0.593, 0.603]). We posit that, since many of these 
tools have been trained on very small sets of known amyloids or 
moderate numbers of short hexamer sequences, their applicability 
to our experimental data may be limited. To understand where the 
methods underperformed, we examined the scores from the highest 
performing methods [CamSol (13) and TANGO (12)] and found 
that non-aggregating sequences with a high-predicted aggregation 
score had higher hydrophobicity (two-sided t test P value <2 × 10−16) 
than all other non-aggregating sequences (table S4). We also found 
that low-predicted aggregators had higher presence of positive (two-
sided t test P value <2 × 10−16) and negative (P value <2 × 10−16) 
residues than all other aggregators (table S5).

CANYA: A hybrid neural-network that accurately predicts 
amyloid aggregation
Given that previous approaches failed to accurately predict aggrega-
tion status within our dataset, we built our own model to capture the 
sequence-aggregation score landscape. Concretely, we developed a 
hybrid neural network that we term CANYA (for Convolution Atten-
tion Network for amYloid Aggregation). Although a neural network 
may seem inherently less interpretable than simpler models, as we 

explain below, the architecture of CANYA is not only simple but also 
biologically motivated. CANYA builds off the observation that known 
amyloids are composed of interacting short sequences, such as stacked 
β sheets, and treats this information as an inductive bias for the 
model—first, the sequences are passed through a convolutional lay-
er that finds “motifs,” then these motifs are passed through an atten-
tion layer to learn positional effects of motifs and to encourage these 
motifs to interact with each other (Fig. 3A). Moreover, we set the 
filter lengths of the convolutional layer based on the distribution of 
secondary structure lengths in 80 known amyloid fibril structures 
[WALTZ-DB (31); fig. S5]. Though—to our knowledge—this class 
of models may be less commonly used with proteins, convolution-
attention hybrid models have been used in genomics and found to 
serve as a sound inductive bias for finding motifs and their interac-
tions (32, 33).

We trained CANYA 100 times on more than 100,000 synthetic 
sequences and their respective aggregation status to learn the 
sequence-aggregation landscape. Unlike massive, computationally 
intensive neural networks, CANYA comprises only three layers 
(spanning 17,491 parameters) and requires less than an hour to train 
on a basic, modern CPU. Despite this simplicity and having only 
observed a small fraction of the possible sequence space, CANYA 
substantially improved the prediction of aggregation status of held-
out test sequences (average AUROC = 0.710, 0.650, 0.769 across 
NNK experiments 1 to 3 respectively; Fig. 3, B and C) over previous 
methods (max. AUROC CamSol, NNK1 = 0.617, NNK2 = 0.537, 
and NNK3 = 0.673). We also note that the predictive accuracy of 
CANYA was significantly higher than simpler linear models trained 
on the same dataset with amino acid composition or counts alone 
(fig. S6).

To understand the differences in performance across methods, 
we examined the sequence scores between the next best performing 
method (CamSol) and CANYA. We found that the largest discrepan-
cies for non-aggregating sequences occurred in hydrophobic sequences 
with tryptophans, and in cysteine- or asparagine-rich sequences 
with few aliphatic residues in the case of aggregating sequences 
(tables S4 and S5). Our results not only highlight the utility of ex-
ploring a vast sequence space but also suggest that CANYA is able to 
contextualize physicochemical properties within sequences (e.g., 
among hydrophobic sequences, CANYA adjusts its score in the 
presence of bulky or disruptive residues).

Crucially, we developed CANYA with the goal of interpreting the 
grammar of aggregation rather than maximizing predictive power. To 
select a model amenable to uncovering this learned grammar, we scored 
each trained instance of CANYA using a recently developed interpret-
ability metric (34). Briefly, this metric examines the enrichment of mo-
tifs used when training the model and compares them to the set of all 
equal-length (k = 3) kmers in the training sequences (Methods). Strong 
enrichment (i.e., divergence from the background training sequences) 
indicates that a model may yield clearer resolution in downstream inter-
pretability analyses. Though the area under the precision-recall curve 
(AUPR) of test sequences was more consistent than AUROC across 
experiments (average AUPR NNK1 = 0.434, NNK2 = 0.452, and 
NNK3 = 0.415; Fig. 3C), we did not find a correlation between pre-
dictive performance and this interpretability metric (correlation of 
average AUPR and interpretability score r = −0.059, P value = 0.6847; 
Fig. 3D). We therefore chose the trained model with the highest inter-
pretability score, conditional on the fact that it scored better than the 
median-performant model (of 100 training runs; Methods).
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Evaluation on >7000 additional sequences
To further evaluate the performance of CANYA and to compare it to 
that of previous methods, we quantified the aggregation of an addition-
al ~7000 random sequences (Fig. 4A). We emphasize that the sequence 
spaces spanned by the training and these test sequences are effec-
tively independent (~105 and ~103 samples from a >1022 sequence 
landscape). CANYA remained highly accurate on the 7000 unseen 
sequences (AUROC CANYA = 0.809, 95% CI [0.798, 0.821; Fig. 4B 
and PROC in fig. S7). Moreover, CANYA substantially outperforms 
all tested previous methods (12–15, 23, 35). The next best performing 
method was Aggrescan (AUROC = 0.707 95% CI [0.694, 0.719]), 
followed by TANGO (AUROC = 0.680 [0.667, 0.693]) and CamSol 
(AUROC = 0.679 [0.665, 0.693]). Neither AmyPred nor PLAAC pro-
duced significantly accurate predictors on the validation dataset, which 
may be indicative of overfitting on their respective training datasets—
we used a simple hydrophobicity score as a baseline predictor, which 
scored AUROC = 0.593 (95% CI [0.579, 0.607]).

CANYA predicts known amyloids and aggregating sequences
After establishing that CANYA can accurately predict the experimen-
tal aggregation status from primary sequence, we sought to understand 
whether the aggregation function learned by CANYA is applicable 
to different contexts or sequences with different lengths. We first con-
sidered 1400 hexapeptides from WALTZ-DB, the previously largest 
dataset of amyloidogenic and non-amyloidogenic sequences (31). 
Strikingly, however, on these six-amino acid peptides, no method 
significantly outperformed hydrophobicity for classifying aggregating 
from non-aggregating sequences (AUROC = 0.813 05% CI [0.791, 
0.836]) (Fig. 5). The hydrophobicity distributions of amyloid and non-
amyloid hexamers in WALTZ-DB are indeed very distinct (table S1), 
suggesting biases in this dataset or that hydrophobicity dominates the 
aggregation potential of such very short peptides. This cautions against 
the use of such short sequences for model training and evaluation.

We next considered the Curated Protein Aggregation Database 
(CPAD) (36). Although CPAD contains more than 2000 sequences, 

A

B C D

Fig. 3. CANYA. (A) CANYA is a three-layer neural network with 17,491 parameters. The model contains 100 filters, a single attention head with key length 6, a dense layer 
with 64 nodes, and finally a sigmoid output layer. (B to D) Evaluation metrics across the top 50 performing (of 100) model fits of CANYA. (B) The AUROC for held-out testing 
sequences. (C) The AUPR for held-out testing sequences. (D) The interpretability score (KL divergence; Methods) calculated on all held-out test sequences plotted against 
the mean AUPR across experiments. See fig. S4 for results on all 100 model fits.
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we limited our evaluation here to the 479 sequences with length >10 
amino acids [median length 16 (Q1 length = 10 and Q3 length = 22], 
comprising 304 amyloid-forming sequences and 175 non-aggregating 
sequences (table S1). Several of the previous methods (including 
TANGO, CamSol, and Aggrescan) were directly trained on sequences 
within CPAD, violating the ability to evaluate their out-of-sample 
predictive performance on this dataset. Despite this, CANYA per-
formed similarly as well as these methods on CPAD (AUROC = 
0.801, 95% CI [0.757, 0.843], AUPR = 0.849, 95% CI [0.808, 0.884]) 
(Fig. 5).

Last, we evaluated whether each method could identify amy-
loidogenic regions of each protein in the AmyPro dataset. Specifi-
cally, we evaluated whether methods were capable of distinguishing 
an amyloidogenic region from a non-amyloidogenic region in the 
absence of any contextual region (Methods), for which we term the 
task “Context-Free AmyPro.” CANYA significantly outperformed 
all previous approaches (AUROC = 0.782, 95% CI [0.732, 0.832]; 
Fig. 5) and was the only method to significantly outperform hydro-
phobicity on this task (AUROC = 0.671, 95% CI [0.611, 0.731]).

In summary, CANYA’s performance is state of the art and consis-
tent across diverse prediction tasks and protein sizes. We also again 
emphasize that by modeling motifs and their interactions, CANYA 

is significantly more accurate than simpler linear models that are 
trained over the same NNK training set (fig. S6).

CANYA learns physicochemical aggregation motifs
We next performed a series of interpretability analyses to under-
stand how CANYA assigns its aggregation score and to elucidate 
difficult-to-see patterns that differentiate the aggregators and non-
aggregators in the training data. First, to visualize physicochemical 
motifs learned by the model, we constructed position-weight matri-
ces (PWMs) using kmers that activated a given filter at least 75% 
of the maximum-activating kmer (Methods). We selected a filter 
length of 3 as this is the mode length of secondary structures in 
structurally resolved amyloids (Methods and fig. S5). Motifs showed 
clear physicochemical preferences (Fig. 6). For example, many mo-
tifs capture blocks of hydrophobicity (clusters 3 and 5), polarity 
(clusters 1 and 4), or charge (clusters 6 to 8). Some motifs showed 
heterogeneity or position-preferential effects, such as polar residues 
being surrounded by hydrophobic (clusters 2) or aromatic residues 
(clusters 3; Fig. 6).

We next turned to a post hoc interpretability method named 
Global Importance Analysis (GIA) to learn the effect of each motif 
(37). Briefly, GIA learns effect sizes by embedding a motif of interest 
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of datasets (Methods and table S1) as well as performance reported as AUPR (fig. S7).
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in a set of background sequences and then comparing the difference 
in the model’s predicted aggregation propensity between these back-
ground sequences with and without the embedded motif (Fig. 7A). 
The effects learned by CANYA recapitulated previously known amy-
loid biology—hydrophobic motifs strongly increased a given sequence’s 
propensity to aggregate, and charged, proline-containing motifs 
lowered sequences’ propensity to aggregate (Fig. 6) (38–40). Motifs 

containing residues enriched in yeast prions (Q/N) typically increased 
amyloid propensity (motifs of clusters 1, 3, and 4), as did motifs en-
riched in cysteine (cluster 1) or aromatic residues (cluster 5; Fig. 6). 
CANYA could also uncover motifs for which specific residues had 
effect sizes in both directions. For example, tryptophan-containing 
motifs led to a negative effect when the tryptophan was surrounded 
by charged residues (cluster 9; Fig. 6), or a positive effect in the 
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0.597 0.094 0.427 0.136 0.144 0.226 0.15 0.161 0.131 0.091
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0.005 0.354 0.113 0.122 0.126 0.142 0.11 0.037
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Fig. 6. CANYA finds physicochemical aggregation motifs. The motifs found by CANYA, clustered by their physicochemical properties and GIA effect sizes, and then 
sorted on the basis of their effect size magnitude. Translucency represents the ratio of cluster effect size compared to the strongest cluster (Methods). The enrichment (in 
AUROC) of motif cluster presence in secondary structures of resolved amyloids in UniProt (Methods and fig. S8). The dashed lines represent an AUROC of 0.50, and asterisks 
represent structures for which the enrichment was significantly higher than both 0.50 and the second most-enriched structure.
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context of hydrophobic, polar, or other aromatics (clusters 1 and 5; 
Fig. 6). Notably, CANYA also distinguished hydrophobic, charged 
motifs with positive effect size—when the charged residue was sur-
rounded by the hydrophobic residues (weaker motifs of clusters 2, 3, 
and 5; Fig. 6)—and negative effect size when the charged residue 
was on the outside of the motif (clusters 10, 8). These motifs further 
suggest that the model captures previously uncharted areas of the 
amyloid sequence space.

We next clustered the motifs using their amino acid similarity 
to generate a more concise representation of what the model has 
learned and to reduce the dimensionality of in silico analyses to 
extract further information learned by CANYA. To do so, we first 
generated BLOcks SUbstitution Matrix (BLOSUM) scores (which 
capture a similarity of amino acids based on evolutionary diver-
gence) for each motif and then performed affinity clustering on the 
BLOSUM scores to derive a candidate set of clusters (Methods) (41). 
We verified that this approach results in a sound set of clusters by 
rerunning GIA using the clusters as the feature of interest and 

confirming that the learned effect size for a cluster was consistent 
with the motifs of which it is composed (Methods and table S6). We 
were left with 11 clusters on which to perform downstream in silico 
experiments, effectively reducing the number of experiments by at 
minimum one order of magnitude (from 100 filters).

Physicochemical motif activation in known 
amyloid structures
We examined whether the motif clusters found by CANYA showed 
propensity for secondary structures in known amyloid fibril struc-
tures [from the Structural analysis of Amyloid Polymorphs (StAmP) 
database (42)]. We included in our comparison full-length resolved 
structures of amyloid fibrils for 114 Protein Data Bank (PDB) en-
tries comprising amyloid structures of 23 proteins (table S7). Here, 
we used the activation energy of a cluster across positions to predict 
whether or not the corresponding position was in a β strand, other 
structured region (coil), or unresolved (disordered, see Methods). 
The AUROC from this task serves as a metric of whether high 

A B

C D

Fig. 7. In silico experiments reveal CANYA’s learned aggregation grammar. (A) An example of an experiment using GiA, an explainability tool to extract 
importance (effect sizes) of features in a model. Briefly, model predictions for a background set of sequences are compared to predictions on the same set of sequences 
with a feature (motif ) embedded in them. (B) The distribution of effects from adding one to four copies of a cluster- motif to sequences. Points represent importance. 
(C) interaction importance from adding motifs from two clusters to sequences. Warmer colors indicate higher cAnYA score than from marginally adding the motifs 
(and their effects) separately to sequences, whereas cooler colors represent a cAnYA score lower than expected from adding marginal motif effects. “X” indicates 
effects that were not sig-nificantly different from 0. (D) The position- dependence of motif effects. Plotted is the percent change of a position- specific effect relative to 
the motif’s global, position- averaged effect.
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activation (high matching score) of a motif is associated with a specific 
structural element. Clusters with high hydrophobicity and positive 
effect size were most strongly associated with activating in β strands 
(Fig. 6 and fig. S9, max. AUROC = 0.669, 95% CI [0.659, 0.680], cluster 
3), whereas the strongest enrichment among negative-importance clus-
ters was observed in disordered regions (max. AUROC = 0.645, 95% CI 
[0.634, 0.657], cluster 6). While clusters with motifs of hydrophobic 
residues were expected to be enriched in strands, among aromatic 
residues, we observed no significant enrichment (cluster 5, highest 
AUROC = coil, 0.530 [0.517, 0.541]); among negative charged resi-
dues, disorder (cluster 7, AUROC = 0.610 [0.598, 0.622]); and 
among other hydrophobic, aromatic, or polar residues, strands 
(max. AUROC cluster 3, above).

Motif position dependence
Treating the motif clusters as input for GIA, we performed an addi-
tional set of experiments to evaluate whether CANYA has learned 
positional information of motif effects and whether motif effects are 
additive (Fig. 7A). To learn positional information for each cluster 
of motifs, we ran an experiment in which we calculated the GIA 
effect of the cluster at every position of the construct, and compared it 
to the global, position-averaged effect of the cluster. These compari-
sons revealed that CANYA was also able to learn position-relevant 
information across each cluster of motifs (Fig. 7D). Regardless of 
the direction of their effects, motifs showed their strongest effect 
size within the first half of the construct and their weakest effect 
at the C terminus of the construct (Fig. 7D). The range of percent 
change was most drastic for clusters with a negative charge (cluster 
6% change in effect from −79.52%, 95% CI [−80.94, −78.11] to 
46.05% 95% CI [42.71, 49.31]; Fig. 7D) and weakest for clusters 
enriched in cysteines (−49.03% [49.66, −48.39] to 23.38% [21.84, 
24.76] % change).

All positive effect clusters showed a dampened effect at the 
N terminus of the construct (minimum % change cluster 5 position 
1 −24.33 [−27.31, −21.47]). Clusters 2, 3, 4, and 5 had their stron-
gest increase of effect size at either position 7 or 8 (maximum change 
cluster 3 position 7 36.76% [34.33, 39.18]), whereas cluster 1 not 
only had a less substantial maximum change in effect size, but this 
change occurred in the center of the construct (position 10% change 
23.39 [21.84, 24.76]).

Conversely, the negative-importance clusters generally had 
strengthened effects toward the N terminus, where the peptides are 
fused to Sup35N. Unlike other clusters, clusters 10 and 11 did not 
have their most dampened effect at the final position in the con-
struct (position 18, note that the motifs are of length 3), but rather at 
position 17, perhaps because of their hydrophobic content. Cluster 11, 
which contains proline in the context of hydrophobic and polar resi-
dues, had the greatest increase in effect size closest to the N terminus 
(45.50% increase, 95% CI [41.70, 49.24]). Consistent with negative 
charges in the C terminus of some amyloid-forming peptides reduc-
ing fibril formation (43), cluster 7 showed a substantially less dis-
ruptive effect the closer it moved to the C terminus (minimum effect 
size position 18 −0.067 [−0.064, −0.07] compared to maximum ef-
fect size position 6 = −0.293 [−0.290, −0.300]). Cluster 9, the only 
cluster rich in tryptophan, showed very stable effects next to the 
N terminus before becoming its most aggregation-disruptive at posi-
tion 9. We note that this insight was uniquely found using our inter-
pretability methodology with CANYA, as examining amino acid 
enrichment differences between aggregators and non-aggregators 

would suggest increased effects of tryptophan closer to the N termi-
nus (Fig. 2D).

All motifs followed a trend of dampened effects toward the C ter-
minus of the construct. Many motifs also contained hydrophobic resi-
dues, and as enrichment of hydrophobicity toward the C terminus 
may affect the degradation rate of the sequence (44–46), we performed 
a follow-up experiment to determine whether these positional effects 
may have been biased simply because of different expression levels in 
sequences with hydrophobic C termini. In the experiment, we selected 
aggregators and non-aggregators with hydrophobic C termini and 
found that in selective conditions only requiring expression of Sup35N, 
both groups grew, suggesting that they are well expressed (fig. S10).

Motif interactions
To next learn whether the effects of motifs were additive, we ran an 
experiment where we embedded motifs in a cluster in nonoverlap-
ping positions between one and four times. Simple additive effects 
explained nearly all of the variance observed in model predictions 
(average R2 between multiplicity and importance = 0.99; Fig. 7B). 
However, some clusters showed evidence of heteroskedasticity (i.e., 
increased variance of effect as a function of increased motif counts) 
in their importance values, which may indicate minor epistatic or 
background-specific grammars.

Accordingly, we used GIA to perform an experiment similar to the 
one determining additivity of motifs; however, we focused on the case 
in which there are only two motifs, and the embedded motifs are se-
lected from different clusters (Methods). This enables us to learn how 
interactions between clusters affect aggregation scores. Every cluster 
showed at least eight statistically significant interactions [P value of 
paired, two-way t test <0.05/(11*11 tests); Fig. 7C; Methods], suggest-
ing the importance of modeling sequence context in the prediction of 
aggregation status. Nonetheless, cluster interaction effects were modest 
(ranging from −0.051 to 0.067) compared to cluster main effects 
(−0.140 to 1.06). All clusters exhibited a self-enhancing effect in which 
their interaction importance was significantly higher than the impor-
tance from additively combining each marginal effect (maximum 
importance cluster 2, 0.067, minimum cluster 9 0.003). Positive effect 
motifs interacted with positive motifs to increase aggregation propen-
sity beyond expected from marginal presence of either motif, and nega-
tive effect motifs interacted with other negative effect motifs reducing 
the expected disrupting effect from marginal presence of both motifs 
(i.e., with both motifs, the sequence is more likely to aggregate than 
expected). Contrastingly to positive effect motifs, this perhaps suggests 
that negative effect motifs follow a diminishing returns-type phenom-
enon. Nonetheless, clusters 3 and 11 were the exception of two motifs of 
opposite signs interacting positively (importance 0.0035, P value <2 × 
10−16). Despite similar physicochemical properties, clusters 2 and 3 dis-
played different interaction effects. Cluster 3, with a preference for 
aromatic over hydrophobic residues, had its strongest interaction 
with cluster 4 (0.064, compared to cluster 2-cluster 4 0.039), while the 
top interaction for cluster 2 was with itself. The strongest negative 
interaction occurred between the cysteine-rich cluster 1 and cluster 8, 
containing positive and negative charged residues among polar resi-
dues (importance −0.051, P value <2 × 10−16).

DISCUSSION
Amyloid protein aggregation is a hallmark of many human diseases 
and a major problem in biotechnology. However, relatively few protein 
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sequences are known to aggregate under physiological conditions, 
and this shortage of data likely limits our ability to understand, pre-
dict, engineer, and prevent the formation of amyloid fibrils.

Here, we have directly addressed this data shortage by quantify-
ing aggregation at an unprecedented scale (100,000 random sequences) 
and used the data to evaluate the performance of existing computa-
tional models. Finding the performance of these methods to be lim-
ited, we then used the data to train CANYA, a fast and interpretable 
deep learning model of amyloid aggregation. Evaluation on an ad-
ditional independent 7000 sequences confirmed the performance of 
CANYA on predicting aggregation from sequence.

Using random sequences allowed us to test the aggregation of 
sequences very different to the small number of known amyloids 
and to provide a principled evaluation of existing amyloid predictors 
(12–15, 23) over both our own and existing datasets (23, 31, 36, 47), 
serving as a guideline for the community. The performance of CANYA 
and its consistency across evaluation tasks suggests that CANYA 
does indeed learn an accurate approximation of the sequence-
aggregation landscape, despite only training on random, synthetic 
peptides. The performance of previous methods compared to that of 
hydrophobicity scales suggests that the use of limited dataset sizes 
and short peptides has limited the amount of additional aggregation-
relevant information these approaches could learn. Perhaps a com-
position of only a few amino acids (e.g., hexapeptides) is too short to 
learn position-specific or motif-interactive effects, as there is little to 
no additional context on which to model these effects. Hence, hydro-
phobicity explains the majority of variance of aggregation rates in 
these shorter sequences. This underscores the importance of using 
longer sequences and high-throughput assays to profile previously 
unexplored regions of the sequence-aggregation landscape.

CANYA has an inherently interpretable model whose architecture 
is inspired by biology. We also adapted state-of-the-art xAI techniques 
from genomic neural networks to the protein space (33, 34, 37, 48). 
This not only reveals insights into the decision-making process of 
our model but also illustrates how xAI techniques developed for 
genomic neural networks can provide intelligible information from 
neural networks that model protein function.

Interpretability analyses identified “physicochemical motifs” that 
underlie CANYA’s decision-making process, including aggregation-
promoting motifs enriched in β strands of known amyloid struc-
tures and aggregation-preventing motifs enriched in disordered 
regions of known amyloids. The effects of these physicochemical 
motifs combined mostly additively, with only subtle motif-motif in-
teractions, suggesting a modest role for long-range epistasis or con-
text specificity in the process of amyloid aggregation. However, the 
physicochemical motifs did have position-specific effects, and these 
warrant additional investigation in future experimental work.

A potential limitation of our strategy is that we only tested the 
aggregation of sequences of 20 amino acids and in one particular 
context. Primarily, our learned motifs and their effects are approxi-
mations learned from the context of our experimental assay, in which 
Sup35 is appended at the N terminus. There likely remains additional 
predictive power to be harvested by experimentally testing at scale, 
as well as modeling longer sequences and consequently longer-
range interactions. Moreover, we note that Sup35N is a disordered 
protein, likely leaving the 20-residue construct exposed. In contrast, 
amyloidogenic sequences are often buried in the interior of folded 
proteins and aggregation additionally requires destabilization of the 
native state. Nonetheless, we found through several evaluations that 

the information learned by modeling the length-20 constructs from 
our experimental assay can accurately predict aggregation-prone 
regions across a variety of protein lengths and contexts.

An additional consideration is CANYA’s architecture. We limited 
our neural network architecture to a relatively simple class of models 
as our focus was on interpretability. Recent literature suggests 
that leveraging protein embeddings—in lieu of one-hot encoding 
sequences—may boost our predictive power (49–56), although 
such an approach will likely pose difficulties when performing post 
hoc xAI experiments as done here (57). Further, our model com-
prises a modest 17,000 parameters and leverages sparsity despite 
having more than 100,000 sequences on which to learn. Many 
models of protein structure use much more complex architec-
tures, with both substantially larger numbers of layers and param-
eters (49, 54, 56, 58–60). Future investigations may build off of the 
work presented here by generating longer sequences or exploring 
more complex architectures.

The pairing of massive-scale experimental data generation using 
random sequences with interpretable models has led to insights into 
genomic regulatory functions (61). However, to the best of our 
knowledge, it has been little used in the space of proteins to probe 
mechanisms beyond short motifs. We believe that the approach 
deserves wider adoption, whenever sequences are functional at suf-
ficient frequencies to allow their identification in practical library 
sizes. For example, in future work, it will be interesting to quantify 
at scale how the sequences of peptides alter their cellular concentra-
tion and to what extent this contributes to other molecular pheno-
types such as aggregation propensity. Systematic large datasets such 
as the one presented here can be reused to train and evaluate addi-
tional models, and the predictions and outputs of these models can 
loop back into additional large-scale experimental explorations of 
sequence space.

METHODS
Plasmid library construction
Libraries of random sequences (NNK1–4) were synthesized by 
Integrated DNA Technologies (IDT) as ultramers of 20 NNK co-
dons (60 nucleotides, nt). A library containing 400 sequences se-
lected from the previous four random libraries was synthesized as 
an oligopool by IDT for validation and replication (data files S3 and 
S4). In both cases, sequences were flanked by constant regions of 25 
nt upstream and 21 nt downstream for cloning. The NNK ultramers 
and the replication oligo pool were extended in a one-cycle polymerase 
chain reaction (PCR) (Q5 high-fidelity DNA polymerase, NEB) with 
primers TSO_2 and TSO_65 (data file S5). The resulting products were 
treated with 2 μl per tube of ExoSAP (ExoSAP-IT, Applied Biosystems) 
for 30  min at 37°C and 20  min at 80°C and purified through a 
MinElute column (Qiagen). In parallel, the PCUP1-Sup35N plasmid 
was linearized by PCR (Q5 high-fidelity DNA polymerase, NEB; 
primers TSO_3 and TSO_4; data file S5). The products were purified 
from a 1% agarose gel (QIAquick Gel Extraction Kit, Qiagen) and 
ligated by Gibson with 3 hours of incubation at 50°C followed by dialy-
sis for 3 hours on a membrane filter (MF-Millipore 0.025 μm mem-
brane, Merck) and vacuum concentration. The resulting (NNK1–4) 
libraries were transformed into 10-beta Electrocompetent Escherichia 
coli (NEB), by electroporation with 2.0 kV, 200 ohm, 25 μF (Bio-Rad 
GenePulser machine). The cells were recovered in super optimal 
broth with catabolite repression (SOC) medium for 30 min and 
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grown overnight in 50 ml of LB ampicillin medium. A small amount 
of cells was also plated on LB ampicillin plates to assess transforma-
tion efficiency. Total transformants were estimated (data file S6), 
and 50 ml of overnight culture were harvested to purify each library 
with a midi prep (Plasmid MIDI Kit, Qiagen). Libraries NNK1 to 4 
were bottlenecked to ~1 million transformants, while for the repli-
cation library, we estimated 625,000 transformants.

Large-scale yeast transformation of random libraries
Saccharomyces cerevisiae GT409 [psi-pin-] (MATα ade1–14 his3 
leu2–3,112 lys2 trp1 ura3–52) provided by the Chernoff laboratory 
was used in all experiments in this study (28). Yeast cells were trans-
formed with the above plasmid library midi preps. After an over-
night pregrowth culture in 25 ml of yeast peptone dextrose adenine 
(YPDA) medium at 30°C, the cells were diluted to optical density 
at 600 nm (OD600) = 0.3 in 175 ml of YPDA and incubated at 30°C 
200 rpm for ~4 hours. When the cells reached the exponential phase, 
they were harvested, washed with Milli-Q, and resuspended in sor-
bitol mixture [100 mM LiOAc, 10 mM tris (pH 8), 1 mM EDTA, and 
1 M sorbitol]. After a 30-min incubation at room temperature (RT), 
4 μg of plasmid library and 175 μl of ssDNA (UltraPure, Thermo 
Fisher Scientific) were added to the cells. Polyethylene glycol (PEG) 
mixture [100 mM LiOAc, 10 mM tris (pH 8), 1 mM EDTA (pH 8), 
and 40% PEG3350] was also added and cells were incubated for 30 
min at RT and heat-shocked for 15 min at 42°C in a water bath. The 
cells were harvested, washed, resuspended in 250 ml of recovery 
medium [YPD, sorbitol 0.5 M, and adenine (70 mg/liter)], and incu-
bated for 1.5 hours at 30°C 200 rpm. After recovery, the cells were 
resuspended in 350 ml of synthetic complete medium lacking uracil 
(SC-URA) and allowed to grow for 50 hours. Transformation effi-
ciency was calculated for each of the four transformations by plating 
an aliquot of cells in SC-URA plates (data file S6). Two days after 
transformation, the culture was diluted to OD600 = 0.08 in 500 ml 
SC-URA medium and grown until exponential phase. At this stage, 
the cells were harvested and stored at −80°C in 25% glycerol. In 
yeast, libraries NNK1–4 were bottlenecked to 0.5 to 1 million trans-
formants (data file S6).

Small-scale yeast transformation of replication library
Yeast cells were transformed with the library containing 400 se-
quences in three biological replicates. An individual colony was grown 
overnight in 3 ml of YPDA medium at 30°C and 4g. Cells were di-
luted in 60 ml to OD600 = 0.25 and grown for 4 to 5 hours. When 
cells reached the exponential phase (OD ~ 0.7 to 0.8), the cells were 
harvested at 400g for 5 min, washed with Milli-Q, and resuspended 
in 1 ml of YTB [100 mM LiOAc, 10 mM tris (pH 8.0), and 1 mM 
EDTA]. They were harvested again and resuspended in 72 μl of YTB.  
One hundred nanograms of plasmid library was added to the cells, 
together with 8 μl of salmon sperm DNA (UltraPure, Thermo Fisher 
Scientific) previously boiled, 60 μl of dimethyl sulfoxide (Merck), 
and 500 μl of YTB-PEG [100 mM LiOAc, 10 mM tris (pH 8.0), 1 mM 
EDTA, and 40% PEG 3350]. The cells were incubated at RT for 
30 min at 4g. Heat shock was performed at 42°C for 14 min in a 
thermo block. Last, the cells were harvested and resuspended in 
50 ml of SC-URA medium, allowing them to grow for 50 hours at 
30°C and 4g. A small amount of cells was also plated in plasmid selec-
tion medium to assess transformation efficiency. We estimated 70,000 
transformants per replicate (data file S6). Two days after transforma-
tion, the culture was diluted to OD600 = 0.08 in 500 ml of SC−URA 

medium and grown until exponential phase. At this stage, the cells 
were harvested and stored at −80°C in 25% glycerol.

Selection experiments
Cells were thawed from −80°C in 50 ml of plasmid selection medi-
um at OD = 0.05 and grown until exponential for 15 hours. At this 
stage, the cells were harvested and resuspended in 300 ml of protein 
induction medium (SC-URA, 2% glucose, and 100 μM Cu2SO4) at 
OD = 0.1. After 24 hours, 250 ml of input pellets were collected, and 
cells were plated on synthetic complete medium lacking uracil and 
adenine(SC-ADE-URA) in 145-cm2 plates (Nunc, Thermo Fisher 
Scientific). The plates were incubated at 30°C for 7 days. Last, the 
colonies were scraped off the plates with phosphate-buffered saline 
1× and harvested by centrifugation to collect the output pellets. 
Both input and output pellets were stored at −20°C before DNA 
extraction. For each random library experiment, one input sample 
and three technical replicates of the output pellet were processed for 
sequencing. Selection experiments for the replication library were 
instead performed in three biological replicates, following the same 
steps as above. Three input and three output samples were processed 
for sequencing.

Spot dilution assays
GT409 [psi-pin-] and GT159 [psi-PIN+] (28) were transformed with 
plasmids expressing SupN fused to eight sequences with different 
aggregation propensity. For measuring growth in selective conditions, 
yeast cells expressing individual variants were grown overnight in 
plasmid selection medium (SC-URA 2% glucose). They were then 
diluted to OD 0.1 in protein induction medium (SC-URA 2% glu-
cose 100 μM Cu2SO4) and grown for 24 hours. Twenty millions cells 
(OD ~ 1) were used as the starting concentration (dilution 1:1), and 
serial dilutions 1:10 were carried out to reach a 1:10,000 dilution. 
Three microliters of each dilution was plated on SC-URA (control) 
and SC-ADE-URA (selection) plates and allowed to grow for 7 days 
at 30°C before pictures were taken with a GelDoc XR (Bio-Rad).

DNA extraction and sequencing library preparation
Input and output pellets were thawed and resuspended in 1.5 ml of 
extraction buffer [2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM 
tris (pH 8), and 1 mM EDTA (pH 8)] and underwent two cycles of 
freezing and thawing in an ethanol-dry ice bath (10 min) and at 
62°C (10 min). Samples were then vortexed together with 1.5 ml of 
phenol:chloroform:isoamyl 25:24:1 and 1.5 g of glass beads (Sigma-
Aldrich). The aqueous phase was recovered by centrifugation and 
mixed again with 1.5 ml of phenol:chloroform:isoamyl 25:24:1. DNA 
precipitation was performed by adding 1:10 V of 3 M NaOAc and 
2.2 V of 100% cold ethanol to the aqueous phase and incubating the 
samples at −20°C for 1 hour. After a centrifugation step, pellets were 
dried overnight at RT. The pellets were resuspended in 900 μl of 
resuspension buffer [10 mM tris (pH 8) and 1 mM EDTA (pH 8)] 
and treated with 7.5 ml ribonuclease A (Thermo Fisher Scientific) 
for 30 min at 37°C. The DNA was finally purified using 30 μl of silica 
beads (QIAEX II Gel Extraction Kit, Qiagen), washed, and eluted in 
22 μl of elution buffer. Plasmid concentrations were measured by 
quantitative PCR with SYBR green (Merck) and primers annealing 
to the origin of replication site of the PCUP1-Sup35N plasmid at 
58°C for 40 cycles (TSO_05 and TSO_06; data file S5). The library 
for high-throughput sequencing was prepared in a two-step PCR 
(Q5 high-fidelity DNA polymerase, NEB). In PCR1, 160 million 
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plasmid molecules were amplified for 15 cycles at 68°C with frame-
shifted primers with homology to Illumina sequencing primers 
(primers TSO_7 to TSO_20; data file S5). The products were puri-
fied with ExoSAP treatment (Affymetrix) and by column purifica-
tion (MinElute PCR Purification Kit, Qiagen). They were then 
amplified for 10 cycles in PCR2 with Illumina-indexed primers 
(primers TSO_21 to TSO_54; data file S5). The library was se-
quenced by 150–base pair paired-end sequencing in an Illumina 
NextSeq500 sequencer at the CRG Genomics core facility. See data 
file S7 for read counts and distributions across NNK experiments.

Sequence data preprocessing
We processed each of the four NNK experiments separately using 
DiMSum (62). Briefly, DiMSum comprises an end-to-end pipeline for 
processing deep mutational scanning datasets from raw reads to mea-
sured sequences and their associated assay scores (plus errors). 
DiMSum was run with the following parameters: cutadaptMin-
Length = “60”; cutadaptErrorRate = “0.2”; vsearchMinQual = “30”; 
vsearchMaxee = “0.5”; startStage = “0”; fitnessMinInputCountA-
ny = “0”; maxSubstitutions = “20”; mixedSubstitutions = “TRUE”; 
experimentDesignPairDuplicates = “TRUE.” We then removed se-
quences with fewer than 100 reads in the input sequencing experiment. 
Next, we centered the fitness estimates (aggregation scores) of each da-
taset individually by adding or subtracting the corresponding mode fit-
ness of the non-aggregating sequences. After centering each sequence, 
we next labeled sequences as “aggregators” (or “non-aggregators”) by 
transforming their fitness estimate to a z score composed of the fitness 
estimate scaled by the DiMSum error and performing a one-sided hy-
pothesis test to check whether the standardized score was significantly 
larger than 0. We treated sequences whose P values after FDR adjust-
ment were ≤ 0.05 as aggregators and the remaining sequences as 
non-aggregators. A proportion of sequences with >100 input reads 
produced no reads after the selection experiments, thus leading to 
NA scores from DiMSum. We labeled these sequences as non-
aggregators. If a sequence contained a stop codon, we used only the 
component of the sequence preceding the stop for model training. 
For cases in which this resulted in duplicate sequences (e.g., 
FN*VILRDEGHGSYGFDNNN and FN*FVVMHTCIMVVFCLGDI 
are both mapped to “FN”), we summarized the truncated sequence by 
taking its mean aggregation score or mode aggregation status across 
observations. If a given truncated sequence had an equal number of 
aggregator and non-aggregator status observations, we discarded this 
truncated sequence. As a result, we classified >35,000 sequences 
for libraries NNK1 to 3 (35,456; 37,578; 38,893 respectively) and 
7040 for NNK4.

The architecture of CANYA
CANYA is a biologically motivated hybrid-neural network designed 
to find motifs and their interactions. More concretely, the architec-
ture of CANYA is inspired by recent work that suggests that stacked 
convolution and attention layers serve as a reasonable inductive bias 
for motif and motif-interaction discovery. The hyperparameters of 
CANYA were influenced by summary statistics of interacting second-
ary structure elements in amyloids within the PDB (fig. S5). Summarily, 
we chose the simplest architecture of our model such that it is expres-
sive, interpretable, and principled in biological knowledge.

CANYA takes as input an amino acid sequence of length limit up 
to 20 residues, and outputs a score related to the sequence’s propen-
sity to form amyloids. Before passing the sequence to the input layer, 

we first one-hot encode it, allowing only the 20 canonical amino 
acids. As we use filters of length 3 (see below for justification; fig. 
S5), we pad the sequence with two 0s both up- and downstream the 
sequence. Finally, if this padded sequence is not of length 24, we add 
a mask with values of −1 downstream the sequence until it reaches 
length 24. The input length restrictions of CANYA arise from the 
fact that a given sequence in the assay is (up to) length 20 and is pad-
ded with two 0 s on each side. Explicitly, the training data of CANYA 
look as follows

when there is no masking or stop codons, and as follows if so

where the number of −1 values is the required quantity such that the 
sequence is length 24.

The input layer of CANYA correspondingly accepts a matrix of 
size 24 × 20 representing a one-hot encoded, padded, and poten-
tially masked peptide sequence. The output layer is a single unit with 
sigmoid activation. The hidden layers of CANYA are:

1) Convolution (100 filters, size 3, stride 1, exponential activation).
2) Self-attention (1 attention head, key-length 6).
3) Fully connected layer [64 units, Rectified Linear Unit (ReLU) 

activation].
We selected an exponential activation function for the convolu-

tional layer as this type of activation is generally more robust for 
motif discovery (63). We chose filters of length 3 as this was the 
mode length of β sheets in amyloid sequences with resolved struc-
tures in UniProt (fig. S5). We use dropout with probability 0.1 after 
the convolution and attention layers and 0.4 after the fully connect-
ed layer. We use an elastic net regularization (with value 0.01) when 
learning the weights between the attention and fully connected lay-
ers. Lastly, to encourage the model to learn positional information, 
we do not perform pooling after the convolution layer, and we in-
clude positional encodings before taking the softmax in the atten-
tion layer. We trained CANYA for 100 epochs using the Adam 
optimizer with default values and the binary Kullbeck-Leibler (KL) 
divergence as a loss function. We limited the learning rate of the 
model during training by monitoring the validation area under 
precision-recall curve, decaying at a factor of 0.2 with patience 4, 
and performed early stopping by monitoring the validation area 
under precision-recall curve with patience 10. For sequences with 
length greater than 20, we collect the CANYA score at every over-
lapping length-20 window of the sequence and then use its median 
CANYA score as its final score. We note that other methods may 
report the minimum score, or 0, (perhaps under the logic that 
aggregation-forming propensity is limited by a sequence’s most 
aggregation-disrupting region). Consequently, we performed an 
experiment where we varied this summarizing function (including 
the maximum, mean, and minimum) and show that this function 
may affect performance (fig. S11). Nonetheless, the relationship of 
length and aggregation-forming propensity is nontrivial, for which 
we suggest using the median as the summarizing function, owing to 
its stability.

Compilation of external datasets
We first collected 6-mers from the WALTZ-DB dataset (31). Here, 
we assigned all sequences whose “Classification” field was “amyloid” 
as a 1, and all other sequences as 0. We next collected the aggregating 

00[one-hot encoded random sequence]00

00[one-hot encoded random sequence]00[−1]
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peptides from the CPAD repository (36). We used sequences from 
the “Peptide” field, filtering for sequences of at least length 10 and 
for sequences that did not contain a space in their sequences. We 
assigned sequences with “Classification” field amyloid a 1, and all 
other sequences 0. The final external dataset we used was from the 
AmyPro database (47). All sequences in the AmyPro dataset were 
amyloids, and so we sought to evaluate methods’ abilities to distin-
guish the amyloidogenic region from the non-amyloidogenic regions 
of the sequences. First, we collected all sequences from the “regions” 
field in the dataset. Next, we removed each of these “region” sequences 
from the main peptide sequence and concatenated the remaining 
two portions of the main sequence together, comprising a set of 
positive sequences (labeled 1) from the “regions” field and negative 
sequences (labeled 0) from the remaining peptide sequences. Finally, 
we constructed our negative sequences by breaking the concate-
nated sequences into subsequences of length equal to their correspond-
ing amyloidogenic (positive) sequences. This led to a substantial 
case-control imbalance, for which we sampled from the non-
amyloidogenic sequences a number of negative samples equal to the 
number of positive samples. While this task evaluates unnatural se-
quences, it evaluates the ability of each method to distinguish amy-
loid cores from non-amyloid cores. We list descriptive summary 
statistics (e.g., length, sample sizes, and hydrophobicity) in table S1.

Aggregation predictors
Aggregation predictors or physicochemical scales [Tango (12), 
Amypred (23), Camsol (13), PLAAC (14), and Aggrescan (15)] were 
used to calculate a score for each sequence. When appropriate, indi-
vidual residue-level scores were summed to obtain a single score per 
sequence. CamSol, Amypred, and Aggrescan were run with the 
default parameters. PLAAC was run using a core of length 6 and 
weightings from input sequences. Tango was run with pH 7.2, no 
protection of termini, ionic strength = 0.1, and T = 298 K (25°C). 
Some of the predictors present sequence-length limitations: Amypred 
runs only for sequences longer than 10 amino acids, CamSol for 
sequences longer than 6 amino acids, and Aggrescan cannot be run 
for sequences longer than 2004 amino acids. We note that several of 
these methods (including TANGO, CamSol, and Aggrescan) were 
directly trained on sequences within CPAD and other datasets 
presented in the manuscript, violating the ability to evaluate their 
out-of-sample predictive performance on these datasets. This com-
plication is exacerbated by several methods (e.g., TANGO and 
CamSol) also being ensemble methods (or extensions) that leverage 
several algorithms for prediction—it is not trivial to account for, or 
remove, these previously seen sequences, as any sequence that was 
used for training the main algorithm or their antecedent ensemble 
methods is not out-of-sample.

Selecting a model for interpretability analyses
We trained CANYA with random weight initialization 100 times 
and recorded for each fitted model the area under the receiver-
operating characteristic curve (AUROC) of the test data, area under 
the precision-recall AUPR of the test data, and interpretability score 
adapted from a recently developed approach for interpretability 
analyses of genomic neural networks (34). Briefly, Majdandzic et al. 
propose an approach to quantify the consistency of the attribution 
maps of a trained model by comparing the entire set of kmers in the 
training sequences to the set of kmers in [adjusted (48)] attributed 
positions in the training sequences. These two distributions of 

kmers—in the case of CANYA, 3-mers—are compared using the KL 
divergence, where a higher KL divergence suggests greater amena-
bility to downstream interpretability analyses. To calculate an inter-
pretability score for each trained instance of CANYA, we used this 
same approach, but rather than using kmers of nucleotides, we used 
kmers from the input amino acids. As we saw that the test AUPR 
was more consistent across experiments, we used a models’ mean 
AUPR across experiments and interpretability score as model selec-
tion criteria. More rigorously, we selected the model with the high-
est interpretability score, conditional on the fact that its mean AUPR 
across datasets was greater than the median of these mean scores 
across model training instances.

Visualization of filters (motifs)
Notably, the use of random sequences in amino acid space poses 
difficulties for observing a typical, lexicographic motif, and con-
sequently, observing convergence toward a lexicographic motif in 
first-layer convolutional filters. We elaborate as follows: Using a 
filter length of 3, there is a 1 in 8000 (203) chance of observing a 
given kmer. Ideally, for the model to learn a stable feature, this 
kmer must not only exist in a sizable proportion of sequences, but 
its effect must also not be masked out by surrounding contextual 
information. Even if we were to ignore contextual information, 
this motif would need to occur independently multiple times, an 
event whose probability quickly converges to 0. Consequently, we 
are much stricter than previous approaches when generating a 
PWM for a given filter. For interpretability’s sake, we limit the 
kmers comprising a PWM for a filter to the minimum of either 
the 10 most-activating kmers of a filter, or the collection of kmers 
whose activation is at least 75% of the maximum-activating kmer. 
Summarily, a filter is both visualized and represented numeri-
cally by its PWM composed of at most the top 10 strongest acti-
vating kmers.

Motif clustering
Following the above logic, CANYA must learn physicochemical 
properties of amino acids and understand how these properties 
interact among each other when constructing its features at the 
convolution layer. Moreover, these physicochemical 3-mers, or 
motifs, may often capture redundant physicochemical informa-
tion, but independent sequences—for example, two different mo-
tifs capturing hydrophobicity, may separately comprise sequences 
of “IVF” or “ALM.” To further improve interpretability and to re-
duce the dimensionality of downstream experiments leveraging 
the learned motifs of CANYA, we performed clustering on the 
PWM matrices. More concretely, we calculated BLOSUM scores 
for each filter by taking the dot product between its PWM and 
BLOSUM score matrix (41). We next performed affinity propaga-
tion on these calculated motif BLOSUM scores to cluster the mo-
tifs. Affinity propagation found 11 clusters of motifs. However, 
after performing GIA experiments (37), we found seven discrep-
ancies when evaluating whether a given motif had the same effect 
size (importance score) direction compared to the effect size of 
the motif with the greatest absolute effect within the cluster. As 
our goal was to interpret model decisions and physicochemical 
clusters, we removed these seven filters from their corresponding 
clusters so that each cluster contained only filters with the same 
effect size direction. We show the original and changed cluster 
assignments in fig. S7.
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GIA experiments
To learn the effect of motif presence on CANYA’s decision-making, 
we turned to GIA in silico experiments (37). Briefly, GIA is a post 
hoc interpretability method applied to genomic neural networks 
that enables users to learn importance scores (i.e., effect sizes) of a 
given sequence feature on a model’s output score. The importance 
score is derived from taking the average difference in model score 
between a set of background sequences, and this same set of back-
ground sequences but with a functional element, such as a motif, 
placed in the background sequence (sequence length is maintained, 
i.e., a window of the sequence is replaced by the functional element). 
For all experiments, we limited our analyses to 25,000 randomly se-
lected, full-length (length-20 and absent of stop codons) training 
sequences that were confidently predicted by CANYA. We defined 
“confidently predicted” as aggregators with CANYA score above 0.3 
and non-aggregators with CANYA score below 0.2 (see fig. S12 for 
prediction score distributions). Finally, we emphasize that owing to 
the random nature of our experiment, the training sequences serve 
as a valid set of background sequences for GIA as they span an ex-
tremely wide range of contexts.

In the first set of GIA experiments, we sought to characterize the 
importance score of each filter individually. To do so, we first ran-
domly selected 25,000 sequences from the training set, comprising 
sequences from across all three experiments. Next, for a given filter, 
we collected the activation energy of each kmer used to represent 
the PWM and used the ratio of the activation energy of each kmer 
to the activation energy of the kmer with the maximum activation 
energy in this PWM to generate kmer sampling probabilities. For 
each sequence, we randomly sampled one kmer using this normal-
ized ratio as the kmer’s sampling probability and embedded this kmer 
into the sequence. Afterward, we calculated for all 25,000 background 
sequences and all 25,000 modified sequences the CANYA aggrega-
tion score before applying the softmax function. We calculated each 
filter’s importance score as the mean paired difference in scores be-
tween the 25,000 background and modified sequences.

After clustering the learned motifs, we next wished to validate 
whether the clusters could be used to simplify further interpretabil-
ity analyses by reducing the scale of in silico experiments performed. 
To do so, we conducted a GIA experiment within each cluster to 
determine a cluster-level importance score. The experiment follows 
the same logic as the original, filter-level GIA experiment, only that 
we first randomly selected a filter within a cluster before sampling a 
kmer from its PWM. The filters were randomly selected according 
to the ratio of their absolute GIA importance score to the maximum 
absolute GIA importance score across filters of the corresponding 
cluster. Indeed, cluster-level scores recapitulated the scores of the 
motifs from which they were composed (table S6). We therefore 
performed all following GIA analysis at the cluster level, using this 
filter-first, kmer-second sampling scheme.

We next performed an experiment to evaluate the additivity of 
motif clusters on aggregation propensity. Here, we collected 25,000 
background sequences from the training dataset and then embed-
ded into these background sequences 1 to 4 kmers in nonoverlap-
ping positions where each of the 4 kmers was sampled using the 
filter-first, kmer-second sampling scheme. Each sequential kmer 
addition (from kmers 2 to 4) was embedded in the sequence such 
that the sequence with antecedent kmer multiplicity maintained the 
kmer(s) at its (their) original embedded position(s). We calculated 
the cluster importance score for a given multiplicity by taking the mean 

difference in prediction score between the sequences with the injected 
kmer(s) and their corresponding background sequences—in other 
words, each importance score is generated by taking the mean dif-
ference between 25,000 background sequences and 25,000 modified 
background sequences with either 1, 2, 3, or 4 embedded kmers.

To evaluate whether CANYA learned position-specific impor-
tance of motifs, we performed an additional GIA experiment in 
which we systematically embedded a motif cluster at each position 
of a random sequence. In these experiments, we performed a single 
GIA experiment with 25,000 background sequences and 25,000 modi-
fied sequences for each position from positions 1 to 18 so that the 
entire 3-mer could be contained within the sequence.

In a final GIA experiment, we characterized interaction effects 
between motif clusters. For a given motif cluster pair, we sampled a 
kmer (as mentioned above) from each cluster as well as a corre-
sponding position randomly from positions 1 to 18 in which to em-
bed each kmer. We evaluated the CANYA score for the background 
sequence, the background sequence with the kmer from the first 
cluster at the first sampled position, the background sequence with 
the kmer from the second cluster at the second sampled position, 
and the background sequence with both kmers at both positions. 
We called the interaction importance as the result of subtracting the 
sum of CANYA predictions of the sequences with each marginal 
kmer embedding from the sum of the CANYA predictions of the 
background sequence and sequence with both motifs. The final im-
portance was calculated as the mean interaction importance across 
25,000 sequences.

Secondary structure enrichment scoring of motifs
To examine whether certain motifs were characteristically similar 
to sequences found in specific secondary elements of amyloids, we 
examined activation energies of filters across secondary structure 
elements in a set of amyloids with resolved structures in the PDB.  
Concretely, we collected 114 entries from the StAmP dataset (42) and 
then downloaded their structural information from the PDB (see ta-
ble S7 for entries and corresponding proteins). Next, we passed all 
sequences through CANYA and extracted their filter activation ener-
gies (i.e., output from the convolution layer). At each position, we 
summarized a cluster’s activation energies as the maximum activa-
tion energy across filters within a cluster, generating a vector of maxi-
mum activation energies for each cluster. Next, we encoded each 
secondary structure (coil, β strand, or disorder) as a binary vector 
where 1 indicated positions in the corresponding secondary struc-
ture, and 0 indicated otherwise. We collected this set of secondary 
structure vectors and activation energy vectors for all sequences and 
then concatenated them across sequences. Last, we generated second-
ary structure enrichment scores by calculating the AUROC between 
a given secondary structure element and cluster activation energy 
across all sequences.

Supplementary Materials
The PDF file includes:
Figs. S1 to S12
Legends for data files S1 to S7
Legends for tables S1 to S7

Other Supplementary Material for this manuscript includes the following:
Data files S1 to S7
Tables S1 to S7
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