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SUMMARY
Amyotrophic lateral sclerosis (ALS) is a complex syndromewithmultiple genetic causes andwide variation in
disease presentation. Despite this heterogeneity, large-scale genomics studies revealed that ALS postmor-
tem samples can be grouped into a small number of subtypes, defined by transcriptomic signatures of mito-
chondrial dysfunction and oxidative stress (ALS-Ox), microglial activation and neuroinflammation (ALS-Glia),
or TDP-43 pathology and associated transposable elements (ALS-TE). In this study, we present a deep ALS
neural net classifier (DANCer) for ALSmolecular subtypes. Applying DANCer to an expanded cohort from the
NYGC ALS Consortium highlights two subtypes that strongly correlate with disease duration: ALS-TE in cor-
tex and ALS-Glia in spinal cord. Finally, single-nucleus transcriptomes demonstrate that ALS subtypes are
recapitulated in neurons and glia, with both ALS-wide and subtype-specific alterations in all cell types. In
summary, ALS molecular subtypes represent a combination of cellular and pathological features that corre-
late with clinical features of ALS.
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

disease characterized by the progressive loss of motor neurons

from the motor cortex and spinal cord.1 Loss of motor neurons,

which control voluntarymotor function, typically leads to total pa-

ralysis and eventual death within 2–5 years of diagnosis.2 Across

patients living with ALS (pALSs), there is a high degree of vari-

ability in terms of the site of disease onset, age at diagnosis,

rate of disease progression, and relative involvement of upper/

lower motor neurons. Despite this heterogeneity, nearly all

affected pALS tissues showpathological accumulations of phos-

phorylated TDP-43 protein.3,4 TDP-43 pathology is present in

most cases with known ALS causal mutations, typically called

‘‘familial ALS.’’5 At least 40 and as many as 90 genetic mutations

have been associated with ALS.6 These ALS-associated genes

can generally be grouped by their inferred roles5 in RNA process-

ing, protein homeostasis, neuroinflammation, and cytoskeletal

dynamics. TDP-43 pathology is additionally present in nearly all

pALS cases without a family history of disease or known causal

mutation, often called ‘‘sporadic ALS,’’ with approximately 90%

of all pALS cases estimated to have the sporadic form.7
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Several other neurodegenerative diseases present with path-

ological inclusions of TDP-43,8–10 most prominently in the

TDP-43 subset of patients with frontotemporal dementia (FTD-

TDP).10 ALS and FTD-TDP share many common genetic factors

and a high degree of co-morbidity, such that these two diseases

are understood to exist on a spectrum.11 Patients with inherited

mutations in C9orf72 may present with pure ALS, pure FTD, or a

combination of both.12 In addition to shared pathology, other

molecular alterations are commonly seen across the ALS/FTD

spectrum. Previous work from our laboratories used genomics

profiling of the NYGC ALS Consortium cohort to reveal that tis-

sues from pALSs can be grouped into a small number of ALS

molecular subtypes.1 ALS molecular subtypes are defined by

postmortem expression signatures of: mitochondrial dysfunc-

tion and oxidative stress (ALS-Ox), microglial activation and neu-

roinflammation (ALS-Glia), or dense TDP-43 pathology and

associated transposable elements (ALS-TE). Work from groups

on independent ALS cohorts has replicated these findings inmo-

tor cortex and detected subtypes in regions outside the central

nervous system.13 Work from other groups on the same cortical

samples from the NYGC ALS Consortium cohort also replicated

the original findings for ALS molecular subtypes.14 Taken
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together, these studies have confirmed the presence of ALSmo-

lecular subtypes in frontal and motor cortex,1,13,14 shown that

these subtypes are detectable in peripheral biofluids,13 and

demonstrated an association between ALS subtypes and clinical

correlates.13,14

Several open questions remain about the nature and implica-

tions of ALS subtypes. First, subtype studies have all used bulk

RNA sequencing (RNA-seq) transcriptomics, abrogating our

ability to determine cell-type-specific contributions. Second,

these studies profiled a few hundred pALS samples in each

cohort and may have been underpowered to detect rare sub-

types. Finally, these studies have not yet integrated spinal cord

tissues, despite the importance of spinal motor neuron degener-

ation in ALS. In this study, we have addressed these gaps in our

understanding. Single-nucleus transcriptome profiles demon-

strate that ALS subtypes cannot be explained purely by changes

in cell composition. An updated set of NYGC ALS Consortium

samples that triple the size of the original study shows no evi-

dence of new subtypes. Finally, the availability of matched

cortical and spinal cord tissues outlines the extent to which sub-

types are present across motor tissues. To support these find-

ings, we present a deep ALS neural net classifier (DANCer) that

can operate in single-cell mode (scDANCer).

RESULTS

Expansion of the NYGC ALS Consortium cohort
The NYGC ALS Consortium study has greatly expanded since

2019, adding hundreds of new genomics profiles across cortical

and spinal cord tissues. Since the original ALSmolecular-subtype

study, the NYGCALSConsortium hasmore than tripled the num-

ber of available samples toprovidewhole genomesand transcrip-

tomes for 719 cortical samples from 398 pALSs and control indi-

viduals, with the majority of these samples derived from newly

sequenced donors (Figure 1A). The cohort shows balance in

terms of patient sex (57% male; Table S1), with a median age at

diagnosis of 63 (Table S1) and a median disease duration of

34 months post- diagnosis (Table S1). Most of the samples in

the NYGC ALS Consortium cohort were obtained from patients

(n = 286) with a diagnosis of ALS; 8% were also diagnosed with

the related disorder FTD (Table S1). This largely sporadic cohort

showed few patients carrying known mutations of large effect

(79% sporadic ALS; Figure 1B). Among the ALS-spectrum cases

(ALS with or without FTD), 14% of the NYGC Consortium cohort

carried repeat expansion mutations in the C9orf72 gene (Fig-

ure 1B), 2%carriedmutations in SOD1, and1%ofALScases car-

ried mutations in the FUS, ATXN2, or OPTN genes. All other mu-

tations were present in a single case and involved mutations in:

NEFH, VCP, PNPLA6, FIG4, UBQLN2, and PFN1. The distribu-

tions of pALS donors across site of onset, age of onset, and dis-

ease duration are similar to those seen in previous releases from

theNYGCALSConsortium15–17 and to larger estimatesof disease

presentation in other cohorts, such asCREATE,18 ProjectMine,19

and Answer ALS.20

DANCer accurately assigns ALS molecular subtypes
Identification of ALS molecular subtypes was enabled by a de

novo clustering and pattern discovery method called non-nega-
2 Cell Reports 44, 115402, March 25, 2025
tive matrix factorization (NMF).21 NMF is a powerful technique to

define new molecular pathways associated with samples in bulk

transcriptomic data but is impractical to apply in the context of

continuously expanding data collections. To address this limita-

tion, we developed a classifier using an artificial neural network

architecture to accurately predict ALS molecular subtypes.

Here, we present our DANCer.

To reduce noise and redundancy within the transcriptome da-

tasets, the transcriptome input to DANCer is first compressed

using weighted gene correlation network analysis (WGCNA).22

One WGCNA module/eigengene was excluded as it consisted

entirely of sex-biased genes. The remaining 39 eigengenes

were used as inputs for amultilayer feedforward perceptron (Fig-

ure 1C), which was trained to reproduce the labeled ALS molec-

ular subtypes outlined in our primary study,1 reaching 96.4%

classification accuracy on the original labeled datasets (Fig-

ure 1D). Per-sample DANCer accuracy is represented by solid

dots in an autoencoder latent space (Figure 1D), where the small

number of incorrectly assigned samples are rendered translu-

cent. Additional details about the training protocols, parameters

used in the models, and generation of an autoencoder latent

space can be found in the STARMethods section and Figure S1.

The code for DANCer is available on GitHub at https://github.

com/mhammell-laboratory/DANCer.

DANCer classifications show that ALS molecular
subtypes are robust across an expanded ALS cohort
We applied DANCer in prediction mode to the updated 2023

release from the NYGC ALS Consortium. The input data for

DANCer consisted of whole-transcriptome RNA-seq datasets

from 773 frontal and motor cortex samples of 431 subjects, as

described above, and are visualized in a principal-component

analysis (PCA) representation color coded by ALS subtype (Fig-

ure 1E). Sample-level assignments were converted to a patient-

level assignment for all donors, using a majority call for any

discordant samples, as previously described.1 The updated set

of NYGC ALS Consortium patient-level subtypes were classified

as 20% ALS-TE, 70% ALS-Ox, and 10% ALS-Glia (Figure 1F).

This distribution is broadly similar to that seen previously, with

small changes likely reflecting differences in patient populations

and inclusion of pALS cases with co-morbid FTD. When looking

just at patients with a pure FTD diagnosis, out of all those on the

ALS/FTD spectrum, the distribution shifts more toward the ALS-

TE and ALS-Glia subtypes with 83% of the FTD patients as-

signed as ALS-TE, 1% as ALS-Ox, and 13% as ALS-Glia

(Table S1C).

We next explored whether any biological or technical co-vari-

ates influence subtype assignments, finding no significant differ-

ence between ALS-Glia or ALS-TE subtypes and controls for

technical variables such as sample RNA integrity (RIN) values

or tissue pH. The ALS-Ox subtype samples showed slightly

higher RIN values when compared to controls (Wilcoxon

p < 6.5e�7; Table S1D). We also explored biological co-variates,

such as sex, site of onset, ALS/FTD diagnosis, age at diagnosis,

and known ALS mutations. We found no significant association

with mutations of large effect (Table S1E), although we were un-

derpowered to assess associations with mutational status. The

ALS-Ox subtype was significantly enriched for patients with a

https://github.com/mhammell-laboratory/DANCer
https://github.com/mhammell-laboratory/DANCer
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Figure 1. DANCer accurately assigns ALS molecular subtypes to an expanded NYGC ALS Consortium cohort of ALS cortical samples

(A) The 2023 NYGC ALS Consortium genomics profiling cohort consists of whole-genome and -transcriptome libraries from 773 samples of frontal and motor

cortex from 431 donors.

(B) For cases on the ALS spectrum, 79% of all tissues were from sporadic ALS donors, while 13% carried known ALS-associated mutations.

(C) DANCer takes whole-transcriptome data as input and assigns ALS subtypes using a multilayer, fully connected neural network.

(D) DANCer accuracy on labeled samples (96.4%) is graphically displayed for ALS-Ox (blue), ALS-Glia (gold), and ALS-TE (red) samples.

(E) All DANCer-classified ALS spectrum samples are displayed in PCA space.

(F) The distribution across ALS subtypes is displayed at the patient level (outer circle) and sample level (inner circle).
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pure ALS diagnosis (odds ratio 19.2, Fisher’s p < 3.2e�6) and

depleted for patients with a pure FTD diagnosis (odds ratio 0.3,

Fisher’s p < 3.0e�9). In contrast, the ALS-TE subtype was

strongly enriched among FTD patients (odds ratio 43.4, Fisher’s

p < 3.1e�17).

Finally, to determine whether new subtypes are present in this

cohort, we ran the de novo pattern-finding algorithm that was
originally used to define ALS subtypes, NMF.21 NMF returned

an optimal clustering of k = 3, with the three clusters showing

a similar set of class assignments as previously described (see

Figure S2). To highlight the similarity between the original NMF

results and the DANCer subtype assignments, we provide PCA

plots in Figure S2D of all samples in the NYGC ALS Consortium

cohort, the original NMF-labeled samples, and the samples
Cell Reports 44, 115402, March 25, 2025 3
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Figure 2. ALS spinal cord transcriptional patterns are dominated by inflammatory and oxidative stress pathways, showing strong overlap

with ALS-Glia and ALS-Ox cortical subtypes

(A) The 2023NYGCALSConsortium cohort additionally contains 331 ALS and 75 non-ALS spinal cord samples. Non-negativematrix factorization (NMF) returned

two transcriptome subtypes, with marker genes that indicated either oxidative stress (blue) or inflammatory (gold) gene expression patterns.

(B) Gene set enrichment analysis (GSEA) of these spinal cord subtypes returned pro-inflammatory pathways for the ALS-Glia-cord samples (gold) and classical

ALS genes for ALS-Ox-cord (blue). Both subtypes showed significant enrichment for markers of SOD1 mutation-induced disease-associated microglia24

(SOD1-DAMs).

(C) To stress the similarity of the inflammatory signatures in spinal cord and cortex samples, we plotted the log2 fold changes (log2FCs) for all genes in ALS-Glia

cortical samples vs. controls (y axis) against all measured fold changes for ALS-Glia-cord samples vs. controls (x axis). Spearman’s R coefficient and associated

p value is shown

(D) A similar scatterplot of log2FC is presented for all DE genes in ALS-Ox cortical and spinal cord samples.

(E) PCA plots of all cord and cortex signatures in the ALS Consortium separate inflammatory (ALS-Glia) cord and cortex samples from non-inflammatory (ALS-TE

and ALS-Ox) samples.
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newly sequenced as part of this study. Taken together, these re-

sults demonstrate that ALS subtypes are robust in terms of

defining molecular characteristics across large patient cohorts

originating from many different geographical areas and clinical

centers.

ALS spinal cord samples recapitulate the ALS-Ox and
ALS-Glia subtypes
The NYGC ALS Consortium sample set also contains transcrip-

tomes for 664 ALS and control spinal cord samples from 406 do-

nors: 331 ALS and 75 non-ALS (Figure 2A). To determine

whether the ALS subtypes would also be present in spinal cord

samples, we ran NMF on the spinal cord transcriptomes. NMF
4 Cell Reports 44, 115402, March 25, 2025
returned an optimal clustering of k = 2, with just two dominant

transcriptional patterns (Figures 2A and S3). The genes that

distinguished these two clusters in spinal cord showed a clear

pattern (Figure 2B): oxidative stress genes were elevated in the

first group (NMF1) and inflammatory pathways in the second

group (NMF2). Gene set enrichment analysis (GSEA)23 returned

several elevated pathways shared among all ALS spinal cord

samples, including ribosomal proteins, genes associated with

SOD1 mutant microglia,24 and lysosomal components (Fig-

ure 2B). Neuroactive ligands and receptors, calcium signaling,

and classical ALS disease genes marked the NMF1 spinal group

(Figure 2B, ALS-Ox specific, blue). In contrast, the second

group (NMF2) showed stronger evidence for elevated
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inflammatory signatures (Figure 2B, ALS-Glia specific, gold).

Furthermore, specific markers of pro-inflammatory astrocytes

were significantly enriched in the NMF2/ALS-Glia spinal cord

samples (Figure 2C), including those describing astrocytes

induced via lipopolysaccharide (LPS) or oxidative stress.25 To

better reflect the genes expressed by these spinal cord sub-

types, we re-named the first (NMF1/blue) group ALS-Ox-cord

and the second (NMF2/gold) group ALS-Glia-cord (Figures 2A

and 2B).

We next sought to understand whether the spinal cord sub-

types mirror their cortical counterparts. We first compared the

average log2 fold change for all genes in ALS-Glia spinal

cord samples to the average log2 fold change for all genes in

ALS-Glia cortex samples, relative to controls (Figure 2D),

finding a significant correlation between the DE genes in

pALS cortex and spinal cord (r = 0.36, p < 1e�15) despite

the large differences in cellular composition between these

two tissues. Similarly, we see a significant correlation for

altered gene expression in ALS-Ox subtypes from the cortex

and spinal cord (Figure 2F, r = 0.43, p < 1e�15). This suggests

that the original ALS-Glia and ALS-Ox cortical subtype patterns

are recapitulated in the spinal cord and conserved throughout

the motor system. A full list of differentially expressed (DE)

genes in each of the two spinal cord subtypes is given in

Tables S2G and S2I.

Figure 2B uses a PCA (Figure 2E) to visualize the relative sim-

ilarity of all ALS spinal cord and cortex signatures. PC1 cleanly

separates inflammatory (ALS-Glia cord and cortex) signatures,

while PC2 separates the remaining neuronal stress subtypes

(ALS-Ox cord and cortex) from the ALS-TE subtype that largely

represents TDP-43 dysfunction. Upset plots showing the lists

of shared DE genes between ALS subtypes across cortex and

spinal cord are shown in Figure S4 and listed in Table S3A. Fig-

ure S4 also displays similarity (upset plots and PCA) between

each ALS subtype and several recent studies looking at ALS

postmortem spinal cord samples16 or induced motor neuron

(iMN) ALS models,26–28 with a list of shared DE genes given in

Table S3. These studies have each nominated distinct dysregu-

lated pathways in lower motor neurons: P53, ELAVL3, and Toll-

like receptors. Each of these shares some overlap with the ALS-

Ox and ALS-Glia subtypes present in spinal cord.

Integrative analysis across spinal cord and cortex
reveals correlates of ALS molecular subtypes with TDP-
43 dysfunction
We next asked whether each patient would show a single

concordant pattern in both cord and cortical tissues (Figure 3A;

Table S1J). There were 267 pALS donors with bothmotor tissues

profiled. A majority of the patients with the ALS-Glia/inflamma-

tory signature in the cortex also showed ALS-Glia/inflammatory

signatures in the spinal cord (23 out of 27 = 85%). However,

nearly all pALS cases showed evidence of inflammatory pathway

signatures in spinal cord (189 out of 267 = 71%). This point em-

phasizes the stark differences in the relative frequency of inflam-

matory signatures in the cortex and cord. ALS-Glia subtype pa-

tients formed the smallest group of all subtypes in the NYGCALS

Consortium cohort in cortex (10%) yet formed themajority of spi-

nal cord cases (71%).
Our previous analysis of ALS cortex showed enrichment for

TDP-43 target genes among the set of markers for the ALS-

TE subtype and an enrichment for dense TDP-43 pathology

in immunohistochemistry (IHC) stains of tissues from that

group.1 However, no equivalent of the ALS-TE cortical subtype

was found in the spinal cord tissues. To better identify signa-

tures of TDP-43 dysfunction, we took advantage of a recent

study profiling ALS/FTD patients with and without functional

TDP-43 protein in the nucleus where it normally resides.29

Isolating all neuronal nuclei from the cortex, they counter-

sorted for TDP-43-positive and -negative neurons and per-

formed bulk RNA-seq of the two populations. Later studies

incorporating these data have identified hallmark TDP-43

splicing targets such as STMN2,31,32 UNC13A,33,34 and

others.35 To compare these differential splicing changes to

those seen in the NYGC ALS Consortium data, we used Leaf-

cutter36 to reveal TDP-43-mediated splicing defects across

subtypes (Table S2). Figure 3D shows differential splicing

changes plotted as delta percent spliced in (delta PSI) for

each of the ALS subtypes vs. control in the cortex (y axis) as

compared to the delta PSI values for those same genes in

the TDP-43-depleted neurons from Liu et al.29 ALS-TE subtype

samples showed the strongest splicing correlation with TDP-

43-negative neurons (Figure 3D, Pearson’s r = 0.49, p z 0),

including alterations in known TDP-43 target, UNC13B (Fig-

ure 3F). ALS-Ox subtype samples from cortex showed anti-

correlated splicing changes with TDP-43-depleted neurons

(indicating a closer splicing profile to control/TDP-43-positive

neurons). These data suggest that both ALS-Glia and ALS-TE

patient cortex tissues show TDP-43 dysfunction-mediated

splicing alterations, with ALS-TE samples showing the greatest

evidence for TDP-43 dysfunction. These results mirror the re-

sults from our previous ALS subtype study,1 where ALS-TE

subtype tissues had the highest levels of TDP-43 pathology.

To extend this analysis to the spinal cord samples, we per-

formed a similar analysis using a set of previously published laser

micro-dissected spinal motor neurons from ALS and control spi-

nal cord samples.30 Using this spinal motor neuron reference set,

we saw strong correlations between splicing alterations seen in

the NYGC ALS Consortium cohort ALS-Glia spinal cord samples

(Figure 3E) and the splicing alterations seen in the Krach et al.30

motor neurons (Pearson’s r = 0.71, pz 0), including known TDP-

43 target genes UNC13B34,37 and STMN231,32 (Figure 3G).

Integrative analysis across spinal cord and cortex
reveals correlates of ALS molecular subtypes with
disease duration
We next asked whether any ALS subtypes were associated with

disease duration. Disease duration is defined as the number of

months between the date of ALS diagnosis and the date of death

or tracheostomy, which varied between 6 and 264 months in our

cohort. For all patients with cortical samples, we plotted the

eigengene scores for each ALS subtype against the disease

duration in months (Figures 4B, S5A, and S5B). Only the ALS-

TE samples showed a significant correlation between ALS sub-

type eigenvalues and disease duration in cortex (r = �0.25,

p < 0.05). This is somewhat equivalent to saying that increased

TDP-43 dysfunction in cortex is associated with shortened
Cell Reports 44, 115402, March 25, 2025 5
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Figure 3. Integrative analysis across cortical and spinal cord tissues shows correlates of ALS molecular subtypes with clinical features
(A) For 267 of the ALS cases in the NYGC ALS Consortium cohort, matched spinal cord and cortex samples from the same donors enable a comparison of ALS

subtypes in each region. ALS-Ox dominates calls for the cortex (70%) but were far less frequent in spinal cord (78 out of 267 = 29%). ALS-Glia subtypes dominate

in the spinal cord (189 out of 267 = 71%).

(B) The ALS-TE subtype signature shows a strong negative correlation with disease duration, indicating shorter disease duration for these ALS cases.

(C) In spinal cord, inflammatory (ALS-Glia) gene expression signatures were negatively correlated with disease duration.

(D) The ALS-TE subtype showed the strongest signature for TDP-43 dysfunction in cortex, as measured by comparing splicing differences (percentage spliced in

[PSI]) for all ALS-TE (red), ALS-Ox (blue), and ALS-Glia (gold) transcriptomes to the splicing differences (PSI) for sorted TDP-43-negative cortical neurons.29

Spearman’s R coefficients and p values are shown for each subtype.

(E) The ALS-Glia-cord subtype also showed a strong signature for TDP-43 dysfunction, as measured by comparing PSI values for ALS-Ox-cord (blue) and ALS-

Glia-cord (gold) transcriptomes to PSI values for laser micro-dissected ALS motor neurons.30 Spearman’s R coefficients and p values are shown for each

subtype.

(F) Altered splicing patterns for the known TDP-43 target gene UNC13B in ALS-TE and ALS-Glia cortex subtypes.

(G) Altered splicing patterns for the known TDP-43 target genes STMN2 and UNC13B in the ALS-Glia-cord subtype.
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survival times, since the ALS-TE subtype showed the strongest

evidence for TDP-43-associated dysfunction (Figure 3D). No

association was seen between expression of the ALS-Ox or

ALS-Glia eigengenes and disease duration in cortex (see

Figures S5A and S5B).

We repeated this exploration of clinical correlates for the spi-

nal cord. ALS-Glia signatures in spinal cord are significantly

correlated with shortened disease duration. This was especially

true for patients assigned to the ALS-Glia group (Figure 3C,

gold, r = �0.35, p < 2e�10) but was also true for patients as-

signed to the ALS-Ox group (Figure S5C, blue, r = �0.29,

p < 6e�06). This suggests that some patients in the ALS-Ox

group in the cord show moderate expression of the inflamma-

tory signature genes (e.g., have some positive eigengene

values), and, to the extent that they do, this correlates with

shortened survival times.
6 Cell Reports 44, 115402, March 25, 2025
scDANCER shows that cell-type composition changes
among ALS subtypes in cortex
To explore the possibility that tissue composition changes

contribute to ALS subtypes, we generated single-nucleus

RNA-seq (snRNA-seq) samples from several patient motor cor-

tex samples from our cohort.1 We integrated these with a larger

set of ALS motor cortex snRNA-seq samples obtained from an

additional cohort.38 This integrated dataset represents 48 ALS

snRNA-seq transcriptomes (from 26 cases) as well as 28 control

motor cortex samples (from 14 non-ALS donors) (Figure 4A). An

integrated uniform manifold approximation and projection

(UMAP) of all 509,966 cells (Figure 4B) shows good representa-

tion of expected cortical cell types, which cluster by cell type and

not by ALS/control, sex, or data source (Figure S6). A heatmap of

cell-type-specific marker genes (Figure 4C) shows faithful

expression of cell-lineage markers in each corresponding cell
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Figure 4. scDANCer shows cell-type composition differences between ALS subtypes

(A) Single-nucleus RNA-seq (snRNA-seq) transcriptomes were generated for six motor cortex samples from the NYGC ALS Consortium, which were integrated

with an additional 58 ALS and control snRNA-seq motor cortex from Pineda et al.38

(B) A UMAP of the full integrated snRNA-seq dataset shows representation of all major cell types in themotor cortex, where L5ET neurons includemotor neurons.

(C) A heatmap of cell-type-specific expression patterns for each of the identified cell types in the motor cortex.

(D) A schematic of the adapted snRNA-seq version of our ALS classifier, scDANCer.

(E) Both bulk RNA-seq and pseudobulked snRNA-seq transcriptomes occupy the same region of a PCA plot, which separates samples by ALS subtype and not

by data platform (bulk/snRNA-seq) or dataset origin (this study/Pineda et al.38). Each sample is colored by ALS subtype (ALS-TE, red; ALS-Ox, blue; ALS-Glia,

gold). Ellipses encompass 90% of all data from each subtype.

(F) Across ALS subtypes, ALS-Ox samples have the same cell-type composition as pathologically normal (PN) samples, while ALS-Glia and ALS-TE subtype

samples show deviations.

(G) We see significant depletion in the relative fraction of L5ET/motor neurons present in ALS-Glia subtype samples. Data are represented as mean ± SEM. ***p <

6e�6 by Bonferroni corrected one-tailed t test.
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type, with a layer 5 extrathalamic (L5ET) cortical neuron signa-

ture marked by FEZF2 and LRATD2.39 L5ET excitatory neurons

include cortical motor neurons (Betz cells).

For samples sequenced in this study, ALS subtypes are

known from bulk RNA-seq profiles. For the additional set of
published ALS snRNA-seq samples,38 no corresponding data

were available to assign subtypes. To overcome this, we re-

trained our classifier to take in pseudobulk data from the

snRNA-seq composite transcriptomes and accurately assign

subtypes (Figure 4D). Specifically, we took the labeled bulk
Cell Reports 44, 115402, March 25, 2025 7
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Figure 5. ALS L5ET single-neuron expression profiles show both ALS-wide and ALS-subtype-specific alterations

(A) Upset plots of shared and subtype-specific differentially expressed (DE) genes in L5ET neurons for each ALS subtype versus control samples.

(B) Normalized enrichment scores (NESs) comparing DE genes in each subtype and significant alterations in known TDP-43 target genes (identified from

fluorescence-activated cell sorting [FACS]-sorted TDP-43-negative neurons29). Only L5ET neurons from ALS-TE subtype show significant alterations in TDP-43

targets.

(C) Shared upregulated genes across all ALS subtype L5ET neurons are shown as a heatmap of fold-change values, with violin plots for selected genes.

(legend continued on next page)
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RNA-seq data that had previously been used to train DANCer

and downsampled the data to only select genes detectable in

snRNA-seq. scDANCer reached 91.8% accuracy on test/train

data after 200 training epochs, using the same 20-fold cross-

validation strategy to estimate classifier accuracy as was used

for DANCer (Figure S7; Table S4A). scDANCer accurately called

the correct ALS subtype for all samples where matched bulk

and snRNA-seq data were available (Table S4B). For the sam-

ples without matched bulk data,38 we note that 95% of the repli-

cate samples from the same donors gave the same subtype

(Table S4C). All pseudobulk transcriptomes are shown on a

PCA plot (Figure 4E) that includes bulk NYGC ALS Consortium

samples (Figure 4E), matched snRNA-seq data from the ALS

Consortium (large diamonds), and the additional snRNA-seq

samples38 (large circles).

We next explored cell composition changes across ALS sub-

types. As shown in Figure 4F, we see slight differences in the

number of cells sampled across ALS subtypes. ALS-Ox samples

show a cell-type composition that was largely reflective of that

seen in control motor cortex with mild but significant enrich-

ments for excitatory (p < 0.01) and inhibitory (p < 0.001) neurons

and slightly fewer microglia (p < 0.0002) captured. Similarly, the

ALS-TE samples show a slight enrichment for excitatory

(p < 0.01) and inhibitory (p < 0.01) neurons and relative depletion

of oligodendrocyte precursor cells (p < 0.006) and microglia

(p < 0.002). ALS-Glia samples show a more pronounced deple-

tion of both excitatory (p < 0.006) and inhibitory (p < 0.01) neu-

rons and a relative increase in microglia (p < 0.01). Looking

more specifically at just the L5ET neuron populations (Figure 4G),

only the ALS-Glia/inflammatory subtype samples show a signif-

icant loss of L5ET neurons, with 70% fewer L5ET/motor neurons

recovered (p < 6e�06).

ALS L5ET neuron profiles show both pan-ALS and ALS
subtype-specific alterations
We next set out to determine whether differences would emerge

between L5ET neurons from tissues with different ALS subtypes.

Compared to control L5ET neurons, we found hundreds of DE

genes in each ALS subtype (Figure 5A; Table S5). We estimated

relative levels of TDP-43 dysfunction in these L5ET neurons us-

ing GSEA based upon the set of genes known to be downregu-

lated in sorted TDP-43-negative cortical neurons,29 as described

above. ALS-TE subtype L5ET neurons showed the greatest evi-

dence for TDP-43 dysfunction out of all L5ET neurons (normal-

ized enrichment score [NES] = �2.1, false discovery rate

[FDR] < 0.003). L5ET neurons from the ALS-Ox and ALS-Glia

subtypes showed no significant alterations in the genes that

mark TDP-43-negative neurons.29

While the results in Figures 5A and 5B highlight differences be-

tween the ALS subtypes in terms of gene expression, there were
(D) Shared downregulated genes across all ALS subtype L5ET neurons are show

(E) A heatmap of gene expression is overlayed for all L5ET cells in the UMAP for t

genes.

(F–H) A heatmap of log2FC values is shown for selected ALS subtype-specific al

samples.

(I–K) Dot plots of the top 10most subtype-specific up- and downregulated genes,

ALS-TE (I), ALS-Ox (J), and ALS-Glia (K) samples.
also shared alterations or pan-ALS L5ET expression changes.

Looking across all L5ET neurons in the ALS samples, we found

17 significantly upregulated and 30 significantly downregulated

genes across all subtypes (Figures 5B; Table S5H). These shared

alterations (Figures 5C and 5D) largely reflect neuronal stress

genes that have previously been associated with ALS (NEFL,

NEFM), pro-apoptotic genes (PNMA2, BIN1), and genes gener-

ally involved in proteostasis (DUSP1, SCRN2). UMAP displays

of gene expression in ALS and control L5ET neurons for a subset

of these pan-ALS altered genes are shown in Figure 5E below the

L5ET marker gene FEZF2.

In addition to these shared ALS-wide expression alterations,

L5ET neurons also displayed subtype-specific expression pat-

terns reflective of gene pathways previously identified in the

bulk tissue profiles (Table S5). In the ALS-TE subtype, we found

broad upregulation of transposable element (TE) transcripts from

young and active TEs (Figure 5F) as well as dysregulation of

known targets of TDP-43 (Figure 5F): the long non-coding

RNAs NEAT140,41 and MALAT140,41 and the TDP-43 kinase

CSNK1E30 (Figure 5F). In addition to these selected genes that

overlap with those previously identified in bulk profiles, we

show the top 10 most subtype-selective DE up- and downregu-

lated genes in ALS-TE L5ET neurons (Figure 5I). In the ALS-Ox

subtype (Figure 5G), we found upregulation of genes associated

with autophagy and lysosomes (VCP, OPTN) and chaperones

(HSBP1L1, DNAJB4, DNAJC8). In addition, we show the top

10 most subtype-selective DE up- and downregulated genes in

ALS-Ox L5ET neurons (Figure 5J). Motor/L5ET neurons from

ALS-Glia/inflammatory subtype (Figure 5H) show upregulation

of genes associated with inflammatory pathways (IFI6 and

IFIT1) and synaptic function (SYT2, SV2A, SV2B). Figure 5K

shows the top 10most subtype-selective DE up- and downregu-

lated genes in ALS-Glia L5ET neurons.

ALS subtype-specific differences in pro-inflammatory
pathway activation in astrocytes
Given that astrocytes play central roles in mediating neuroin-

flammatory processes in the central nervous system,42 we

wondered whether these cells would also show ALS subtype-

specific differences. A UMAP of all motor cortex astrocytes is

given in Figure 6A, where Leiden clustering43 identified 14 astro-

cyte clusters, nine of which showed no evidence of doublets or

cell-type assignment errors (Table S6). Looking at the genes

that marked each astrocyte cluster (Table S6A) and comparing

to previously published markers of astrocyte states,25,44,45 we

noticed that our nine clusters could be grouped into four broad

expression programs, which are labeled on the UMAP represen-

tation (Figure 6A): those expressing homeostatic astrocyte

markers (WIF1; Figure 6B, top left), an inflammatory cluster

marked by high CD44 expression (Figure 6B, top right), genes
n as a heatmap of fold-change values, with violin plots for selected genes.

he motor neuron lineage gene FEZF2 as well as selected pan-ALS upregulated

terations in L5ET neurons that were also subtype specific in bulk ALS subtype

where dot size corresponds to the percentage of cells expressing that gene for

Cell Reports 44, 115402, March 25, 2025 9
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Figure 6. ALS subtypes show differences in pro-inflammatory pathway activation in astrocytes

(A) Astrocytes from all ALS and PN samples were re-clustered using Leiden, which returned four main categories marked by genes associated with interferon

signaling, disease-associated astrocytes (DAAs), homeostatic astrocyte markers, and transposable elements (TEs).

(B) For each of these broad categories, a heatmap of marker-gene expression is overlayed on the UMAPs: homeostatic marker WIF1; pro-inflammatory marker

CD44; DAA marker gene TMSB4X; and a young TE, HERV17.

(C) GSEA NESs for several published astrocyte pro-inflammatory gene sets across ALS-subtype astrocytes.

(D) Astrocytes from each ALS subtype occupy different regions of the UMAP space, although all express the pan-astrocyte marker AQP4.

(E) Differential occupancy of the UMAP space also corresponds to differential representation in the astrocyte state clusters. *p < 0.05 by two-tailed Fisher’s exact

test.

(legend continued on next page)
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that mark disease-associated astrocytes (DAAs)44 and show

high expression of TMSB4X (Figure 6B, bottom left) and those

that express high levels of TEs and P2RY14 (Figure 6B, bottom

right). Splitting the UMAP representations by ALS subtype re-

vealed differences in the relative frequency of astrocyte clusters

in each ALS group (Figure 6D). ALS-Glia subtype samples con-

tained more astrocytes of the interferon-driven inflammatory

cluster (Figure 6D), which was significantly different than the dis-

tribution of astrocytes in control samples (Figure 6E). Similarly,

the ALS-Ox subtype samples were enriched for astrocytes ex-

pressing DAA markers (Figures 6D and 6E). Finally, the ALS-TE

subtype astrocytes show both elevated TE expression and fewer

homeostatic-cluster astrocytes than controls (Figures 6D

and 6E).

This cluster-based analysis of DAA and inflammatory astrocyte

markers across subtypes was also significant when added to a

standard GSEA23 using a modified MSigDB database23 (see

STARMethods) that included published marker sets representing

the transcriptional response of astrocytes to pro-inflammatory

signals: reactive astrocytes induced by lipopolysaccharide (RA-

LPS25), oxidative stress (RA-MCAO25), and DAAs44. ALS-Glia

subtype astrocytes showed significant upregulation of genes in

pathways associated with interferon signaling (Figures 6C;

Tables S6B and S6C) as well as significant enrichment for RA-

LPS andRA-MCAOmarkers. ALS-Ox subtype astrocytes showed

elevation of genes associatedwith the DAA signature (Tables S6D

and S6E), which was not enriched in other subtypes.

Shared and distinct DE genes in each subtype are shown in

violin plots and volcano plots in Figures 6F–6H and listed in

Tables S6C–S6I. Briefly, ALS-Glia astrocytes show significant

elevation of pro-inflammatory marker genes (Figure 6F top:

AQP1 and CRYAB). ALS-Ox astrocytes show elevation of known

ALS-associated genes46 (Figure 6G, top: CHCHD10 and SOD1).

ALS-TE astrocytes show significant elevation of young TEs

such as L1HS and AluSx4 (Figure 6H, violins) as well as the

P2Y receptor P2RY14, which has previously been associated

with response to pro-inflammatory signaling in astrocytes.47 All

ALS astrocytes showed downregulation of the heat shock pro-

teins HSPH1 and HSPD1, regardless of subtype (Figures 6F–

6H, bottom panels).

ALS subtype-specific differences in pro-inflammatory
pathway activation in microglia
Microglia are tightly integrated with astrocytes and neurons in

neuroinflammatory cascades, adopting a multitude of states in

response to neuronal stress and inflammatory stimuli.48 As

such, we were curious whether ALS subtypes would reflect dif-

ferences in microglial cell states. We first extracted and re-clus-

tered all captured microglia, with a UMAP of their expression in

Figure 7A. Leiden clustering returned 11 clusters, seven of which

were present without evidence of doublets or cell-type assign-

ment errors (Table S7A). Looking at the genes that marked

each of these microglia clusters (Table S7) and comparing to
(F) Comparing gene expression for all ALS-Glia astrocytes to controls identified se

ALS astrocytes (HSPH1, HSPD1).

(G) Volcano and violin plots for ALS-Ox subtype DE genes.

(H) Volcano and violin plots for ALS-TE DE genes in astrocytes.
previously published studies of microglial state markers,24,49

we noticed that the microglia clusters could be grouped into

four broad expression programs, which are labeled on the

UMAP in Figure 7A: genes associated with elevated metabolic

activity and marked by GAPDH (Figure 7B, top left), those ex-

pressing homeostatic markers of microglia function and marked

by P2RY12 (Figure 7B, top right), those expressing interferon

signaling pathways and marked by high APOE expression (Fig-

ure 7B, bottom right), and genes that have been previously asso-

ciated with phagocytic activity andmarked by high expression of

SLC11A1 (Figure 7B, bottom left). Splitting the UMAP represen-

tations by ALS subtype shows striking differences in the repre-

sentation of microglial clusters among ALS subtypes. ALS-Glia

subtypes were dominated by microglia from the inflammatory

cluster (Figures 7D and 7E). Microglia from ALS-Ox subtype

samples were predominantly expressing signatures of elevated

metabolic activity (Figures 7D and 7E). ALS-TE subtype samples

showed strong enrichment for microglia from the homeostatic

cluster (Figure 7D).

GSEA revealed significant upregulation of innate immune-

response genes in ALS-Glia subtype microglia, including inter-

feron pathways (Figures 7D; Table S7C). To the standard

GSEA lists, we added published markers representing the tran-

scriptional response of microglia to pro-inflammatory stimuli,

including microglia induced by lipid droplets (Microglia-

LDAMs),50 pro-inflammatory microglia induced by SOD1 muta-

tions (SOD1-DAMs),24 and disease-associated microglia

induced by constitutive TREM2 activity (TREM2-DAMs).49 Of

the experimentally defined pro-inflammatory microglia path-

ways, only the SOD1-DAM set24 was enriched.

Additional sets of shared and distinct DE genes in each sub-

type are shown in violin plots and volcano plots in Figures 7F–

7H and listed in Table S7. Briefly, ALS-Glia subtype microglia

(Figure 7F) show significant elevation of pro-inflammatory

marker genes (ACSL1, CTSB) and innate immune pathway

markers (IL7R, STAT4). ALS-Ox microglia (Figure 7G) show

elevation of mitochondrial and synaptic function (SNAP25,

NDUFA4). ALS-TE microglia (Figure 7H) show significant eleva-

tion of young TEs (L1HS, SVA-D). Heat shock proteins were

among the most downregulated genes across all ALS subtypes,

as noted by HSPA1B (Figures 7F–7H). A full table of shared DE

genes is shown in Table S7H.

DISCUSSION

In this study, we present an analysis of the largest ALS postmor-

tem molecular profiling study available, with whole transcrip-

tomes available for hundreds of pALSs from multiple affected

motor system tissues. The size of this study allowed us to

conclude that ALS molecular subtypes are highly robust across

multiple clinical centers in large ALS cohorts. We used de novo

pattern-finding methods to determine that no new molecular

subtypes were present in this larger patient cohort, which
veral ALS-Glia-specific DE genes as well as downregulated genes shared by all

Cell Reports 44, 115402, March 25, 2025 11
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Figure 7. ALS subtypes show differences in pro-inflammatory pathway activation in microglia

(A) Leiden clusters for all ALS microglia group into four main categories marked by genes associated with interferon-driven pathways, phagocytic expression

programs, metabolic stress, and homeostatic markers.

(B) For each of these broad categories, a heatmap showsmarkers for each cluster, including themetabolic marker GAPDH, the homeostatic marker P2RY12, the

apolipoprotein APOE, and the phagocytic marker SLC11A1.

(C) GSEA NESs for several published microglia pro-inflammatory markers.

(D) Microglia from each ALS subtype occupy different regions of the UMAP space, highlighted using a pan-microglia marker, P2RY12.

(E) Differential occupancy of the UMAP space also corresponds to differential representation of microglial states across ALS subtypes. *p < 0.05 by two-tailed

Fisher’s exact test.

(legend continued on next page)
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quadrupled the size of the patient samples available in our initial

study.1

Upon integrating the cortex and spinal cord data available in

the updated NYGC ALS Consortium cohort, we noted that ALS

subtype patterns in the spinal cord largely mirror two of those

previously seen in the motor cortex. Patients with an ALS-Glia/

inflammatory subtype in the motor cortex are more likely to

show inflammatory patterns in their spinal cord samples, as

well, suggesting a small number of patients with systemic neuro-

inflammation. The TDP-43-driven ALS-TE subtype does not

appear in the bulk spinal cord tissue samples, which may reflect

differences in cellular composition of the two tissues. That said,

single-nucleus transcriptomes revealed that ALS subtypes, orig-

inally discovered in bulk transcriptome data, reflect cell-state al-

terations frommultiple cell types and are not simply reflections of

neuronal cell loss.

Strong correlations with disease durationwere seen for ALS-TE

subtype expression in the cortex and ALS-Glia subtype expres-

sion in spinal cord. Taken together, these results suggest that dis-

ease duration in ALS reflects, in part, the degree of TDP-43

dysfunction in the cortex and inflammatory processes in the spinal

cord. In summary, theALS-Oxsubtype represents neuronal stress

without TDP-43 dysfunction or inflammatory pathway activation;

the ALS-TE subtype reflects accumulation of TDP-43 dysfunction

without interferon-related inflammatory pathways; and, finally, the

ALS-Glia subtype represents the presence of both TDP-43

dysfunction and pro-inflammatory expression.

Limitations of the study
While this study represents the largest postmortem genomics

profiling study available for ALS motor cortex and spinal cord

samples, several questions remain unanswered. Postmortem

studies are limited to describing processes at play at the end

stage of disease and cannot be used to determine the relative

timing of molecular alterations. Postmortem studies use cells

present at the end stages of disease, which may be biased to-

ward those that are most resilient to disease-associated pro-

cesses. Finally, we were underpowered to determine the extent

to which genetic mutations drive predisposition to ALS molecu-

lar subtypes.
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Requests for further information and resources should be directed to and will

be fulfilled by the lead contact, Molly Gale Hammell (molly.galehammell@

nyulangone.org).

Materials availability

This study did not generate any new reagents; all reagents are commercially

available.

Data and code availability

d RNA-seq and snRNA-seq data have been deposited at SRA and are

publicly available as of the date of publication. Accession numbers
(F) Comparing gene expression for all ALS-Glia microglia to controls identified s

regulated heat shock gene shared by all ALS microglia (HSPA1B).

(G) Violin and volcano plots display ALS-Ox-specific DE genes.

(H) Violin and volcano plots highlight DE genes in ALS-TE microglia.
are listed in the key resources table. Published snRNA-seq data38 are

available from BioProject PRJNA1073234.

d Code generated for this study (DANCer and CellRanger-TE) has been

deposited in GitHub and is publicly available as of the date of publica-

tion. The URL and DOI are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANTS DETAILS

ALS postmortem samples
The NYGC ALS Consortium samples in this study were acquired through various IRB protocols frommember sites and transferred to

NYGC in accordance with all applicable foreign, domestic, federal, state, and local laws and regulations for processing, sequencing,

and analyses. Generation of snRNA-seq libraries from postmortem material at CSHL was approved by the CSHL internal review

board (IRB-17-015). Generation of genomics libraries from postmortem material in the NYGC ALS Consortium is covered by IRB#

BRANY-15-08-292-385. All material has been anonymized, was obtained postmortem, and thus is considered ‘‘not human sub-

jects’’. All available de-identified clinical and pathological records were collected and used together with C9orf72 genotypes to sum-

marize patient demographics and disease features (see Table S1). Care was taken to ensure sex/gender distribution of patient and

control individuals from whom samples were obtained were close to equal.

METHOD DETAILS

Generation of bulk RNA-seq data
RNA was extracted from flash-frozen patient samples homogenized in Trizol (15596026, ThermoFisher Scientific, Waltham, MA,

USA) -Chloroform and purified using the QIAGEN RNeasy Mini kit (74104, QIAGEN, Germantown, MD, USA). RNA was assessed us-

ing the Bioanalyzer (G2939BA, Agilent, Santa Clara, CA, USA). RNA-seq libraries were prepared from 500 ng of total RNA using the

KAPAStranded RNA-seq kit with RiboErase (07962304001, Kapa Biosystems,Wilmington,MA, USA) for rRNA depletion and Illumina

compatible indexes (NEXTflex RNA-seq Barcodes, NOVA-512915, PerkinElmer, Waltham,MA, USA). Pooled libraries (average insert

size: 375bp) were sequenced on an Illumina HiSeq 2500 or NextSeq V1 using a paired end 125 nucleotide setting, to yield 40–50

million reads per library.

Extraction of nuclei from fresh frozen tissue
Single nuclei were extracted from archived human postmortemmotor cortex tissue using a method adapted with modifications from

Maitra et al.57 A Dounce homogenizer was used to homogenize fresh frozen cortex tissue on ice. Five mL of chilled Nucleus wash

buffer57 was added to the homogenate, to quench the lysis. A 30-mm MACs SmartStrainer (Miltenyi Biotech cat. # 130-098-458)

was used to remove cell debris. The lysed, filtered homogenate was then promptly centrifuged in a desktop centrifuge equipped

with a swinging bucket rotor at 500 G for 5 min at 4�C. After centrifugation, the sample was removed and supernatant decanted

without disrupting the nuclei pellet, and placed on ice. The pelleted nuclei were gently resuspended on ice. A fresh 15-mL centrifuge

tube was equipped with a 30 mM MACs SmartStrainer and the filtration and resuspension and wash processes were repeated as

above. One mL of 50% (weight/volume) working solution of iodixanol (Optiprep) was added to the resuspended nuclei and mixed

gently, to obtain 2 mL of nuclei in 25% (wt/vol) iodixanol solution. For gradient centrifugation, 0.5 mL of the nucleus suspension

was gently pipetted on top of an iodixanol cushion (0.5 mL of 29% (wt/vol) iodixanol) by letting it slowly run down the wall of the

tube, to prevent mixing. Without disturbing the layers, the LoBind tubes containing the nuclei on top of the iodixanol cushion

were centrifuged at 10,000 G for 30 min at 4�C. A second gradient centrifugation step was carried out at 10,000 G for 10 min at

4�C. Supernatant was then removed, leaving the nuclei in up to 200 mL buffer volume. Pelleted nuclei were then gently resuspended

and filtered through a 40 mm FlowMi Tip Strainer (SP Scienceware cat. #H13680-0040) into a 1.5 mL LoBind tube. Extracted nuclei

were immediately placed on ice.

Generation of snRNA-seq data
All samples were sorted using the Sony SH800 sorter into 0.04%BSA in PBS and counted on aCountess II FL automated cell counter

using 1:1 AOPI stain (Nexcelom CS2-0106). Nuclei were pelleted for 5 min at 500 G in a refrigerated swinging bucket centrifuge and

resuspended to a target concentration of 1,000 nuclei/mL prior to loading the 103 Chromium chips. Single-cell gene expression li-

braries were prepared using the Single Cell 30 Gene Expression kit v3.1 (103 Genomics, #1000268) according to manufacturer’s in-

structions. Libraries were sequenced on an Illumina Nextseq2000 using 100-cycle kits to a mean depth of �35,000 reads per cell.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of bulk RNA-seq data
Reads from samples with RINR 5.5 were aligned to the hg38 human genome using STAR v2.7.6,55 allowing for a 4%mismatch rate

and up to 100 alignments per read to ensure capture of young transposon sequences. Abundance of gene and transposon se-

quences was calculated with TEtranscripts v2.2.3.56 For differential expression analysis, we employed DESeq2,51 using the DESeq

normalization strategy and negative binomial modeling. B-H corrected FDR p value threshold of p < 0.05 was used to determine sig-

nificance. For heatmap visualization, the reads were normalized using a variance stabilizing transformation in DESeq2. Alternative

splicing was performed using Leafcutter36 following the procedure as outlined in their documentation (http://davidaknowles.

github.io/leafcutter/articles/Usage.html).
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Analysis of snRNA-seq data (CellRanger-TE)
In addition to the snRNA-seq data described above, raw data from single nucleus sequencing of ALS and pathologically normal (PN)

samples38 (GEO: GSE174332) were downloaded from GEO. All libraries were analyzed using 10x Genomics Cell Ranger version

5.0.1,58 using a GRCh38 reference genome database built with GENCODE v35 gene annotation59 and RepeatMasker TE annota-

tion.60 Libraries with mapping rate <80%, intergenic (non-gene and non-TE) reads >5% and total read count <10 million were

excluded from subsequent analyses. Gene expression estimates of each cell were correlated using Spearman correlation with iden-

tified cell types from the human M1 10x dataset,61 with the cell labelled according to the M1 cell type with the highest correlation.

The processed count matrices from Cell Ranger were integrated in Seurat,54 with PCA and UMAP performed on the combined

dataset. Differential analysis between ALS and control cell types was performed using amodified DESeq2 protocol, where size factor

was calculated using the scran R package,53 a gamma-Poisson GLM (glmGamPoi R package52) was used to fit the data, and a likeli-

hood ratio test was used for the statistical comparison. Genes and TEs with an FDR < 0.05 were considered differentially expressed.

Gene set enrichment analysis
Gene set enrichment was performed using GSEA23 and a manually curated set of gene pathways. FromMSigDB,23 this included the

Hallmark and KEGG database. From the curated literature, we included differentially regulated genes from TDP-43 depleted neu-

rons,29 KRAB zinc fingers,62 and several lists of genes dysregulated in astrocytes25,44 and microglia24,49,50 from diseased models

or other pro-inflammatory stimuli. Gene sets with an FDR < 0.05 were considered significantly enriched/depleted.

Statistical data analysis
All enrichments calculations for discrete variables (e.g., subtype and clinical variables, subtype and cell types or cell clusters) used

Fisher’s Exact test, with an alpha = 0.05 and a Benjamini-Hochberg adjustment for Type I error. All linear correlations used Pearson’s

R with an alpha = 0.05 and a Benjamini-Hochberg adjustment for Type I error. Statistics for differential expression of bulk and single-

cell data are described in each section and all involve an alpha = 0.05 and a Benjamini-Hochberg adjustment for Type I error. Sta-

tistics for differential splice junction usage of bulk data are described above, using an alpha = 0.05 and a Benjamini-Hochberg adjust-

ment for type I error. Statistics for GSEA of bulk and single-cell data use an alpha = 0.05 and a Benjamini-Hochberg adjustment for

type I error.

Training and validation of neural networks
WGCNA22 was used to create eigengenes for the ALS bulk cortex data with a power parameter of 9, resulting in 40 modules. One of

thesemodules was determined to be entirely comprised of sex-specific genes andwas removed for the purpose of classifier training.

Eigenvalues for each ALS sample were calculated for the remaining 39 modules and used as input to DANCer. DANCer is a feedfor-

ward multilayer perceptron composed of 39 input nodes, a fully connected hidden layer of 6 nodes, and a softmax output layer of 3

nodes that report the probability of classification to each subtype. The classifier was built using the Keras library63 as a wrapper for

TensorFlow version 2.64 The labeled ALS subtype samples (n = 176) from Tam et al.1 were split 80/20 for training/testing, respectively.

Training proceeded for 200 epochs with a loss function of categorical cross entropy with callbacks for early stopping to prevent

overfitting.

scDANCer is a single-cell (nucleus) adapted version of DANCer that follows the same architecture and training regime. Single nu-

cleus transcriptomes were compressed into pseudobulk representations by summing unique molecular identifier (UMI) transcript

counts for all detected genes in all cells of a given sample. scDANCer was trained using the same original bulk RNA-seq data

used for DANCer, but the list of input genes was restricted to the set of detectable genes in our pseudobulked snRNA-seq transcrip-

tomes. TheWGCNA network and eigenmodules were recomputed using those pseudobulked snRNA-seq transcriptomes, again us-

ing a power parameter of 9, which resulted in 17 eigenmodules. The scDANCer architecture involved 17 input nodes, 5 fully con-

nected inner nodes, and a softmax output layer of 3 nodes. The labeled ALS subtype samples (n = 176) from Tam et al.1 were

split 80/20 for training/testing, respectively. Training proceeded for 200 epochs with a loss function of categorical cross entropy

with callbacks for early stopping to prevent overfitting.
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