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Background
Worldwide, nearly 800,000 deaths from liver cancer 
were reported in 2022, mostly from hepatocellular car-
cinoma (HCC) which accounts for 70% of liver cancers 
(Bray et al. 2024). Recent advances in curative treatments 
include liver resection, transplantation, and locoregional 
therapies for early HCC, and for advanced HCC, newer 
combinations of molecular-targeted agents (MTA) with 
immune checkpoint blockade (Suzuki et al. 2024). Yet, 
the 5-year survival remains dismal at 15–20%, which 
underscores the critical need for improved early detec-
tion and risk stratification for HCC.

Major risk factors for HCC include chronic viral hep-
atitis (HBV and HCV), alcohol use, diabetes, obesity, 
metabolic dysfunction-associated steatotic liver disease/
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Abstract
Hepatocellular carcinoma (HCC) is the third major cause of cancer death worldwide, with more than a doubling 
of incidence over the past two decades in the United States. Yet, the survival rate remains less than 20%, often 
due to late diagnosis at advanced stages. Current HCC screening approaches are serum alpha-fetoprotein (AFP) 
testing and ultrasound (US) of cirrhotic patients. However, these remain suboptimal, particularly in the setting of 
underlying obesity and metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), 
which are also rising in incidence. Therefore, there is an urgent need for novel biomarkers that can stratify risk 
and predict early diagnosis of HCC, which is curable. Advances in liver cancer biology, multi-omics technologies, 
artificial intelligence, and precision algorithms have facilitated the development of promising candidates, with 
several emerging from completed phase 2 and 3 clinical trials. This review highlights the performance of these 
novel biomarkers and algorithms from a mechanistic perspective and provides new insight into how pathological 
processes can be detected through blood-based biomarkers. Through human studies compiled with animal 
models and mechanistic insight in pathways such as the TGF-β pathway, the biological progression from chronic 
liver disease to cirrhosis and HCC can be delineated. This integrated approach with new biomarkers merit further 
validation to refine HCC screening and improve early detection and risk stratification.

Keywords Liver cancer, Cirrhosis, Biomarker, Early diagnosis, Risk stratify

New insights into biomarkers and risk 
stratification to predict hepatocellular cancer
Katrina Li1, Brandon Mathew1, Ethan Saldanha1, Puja Ghosh1, Adrian R. Krainer2, Srinivasan Dasarathy3, Hai Huang4, 
Xiyan Xiang1* and Lopa Mishra1,5*

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10020-025-01194-6&domain=pdf&date_stamp=2025-4-23


Page 2 of 17Li et al. Molecular Medicine          (2025) 31:152 

steatohepatitis (MASLD/MASH) (Konyn et al. 2021; Cho 
et al. 2023; Qiu et al. 2024), and hereditary disorders such 
as hemochromatosis (Atkins et al. 2020). These condi-
tions can lead to progressive liver injury characterized 
by inflammation, necrosis, and regeneration (cirrhosis) 
(Alberts et al. 2022; Barton et al. 2018; Flemming et al. 
2021). Current HCC screening guidelines primarily rec-
ommend AFP testing and ultrasound (US) for high-risk 
patients with chronic HBV infection and/or cirrhosis 
(Fig. 1). Studies have shown that the combination of AFP 
and US significantly enhances sensitivity for the detec-
tion of early-stage HCC (Tzartzeva et al. 2018). Although 
biannual screening using US plus AFP has shown prom-
ise in HBV patients (Zhang et al. 2004), reducing HCC 
mortality in this group by 37%, its limitations are com-
pounded by the widespread use of antiviral therapies 

and the rising prevalence of obesity and MASLD/MASH 
(Esfeh et al. 2020), for whom screening guidelines are less 
well-defined.

Challenges in identifying robust markers that stratify 
risk and predict HCC include molecular heterogene-
ity, multiple etiologies, and diverse pathology (Fig.  2). 
The development of chromosomal instability with pro-
gressive accumulation of genetic and epigenetic altera-
tions is best understood from large-scale multi-genomic 
human studies paired with animal models and mechanis-
tic insight into HCC. The human Cancer Genome Atlas 
(TCGA) characterization of multiple cancer types as well 
as 363 HCC cases (Chen et al. 2018; Cancer Genome 
Atlas Research Network 2017; Korkut et al. 2018; Liu 
et al. 2018; Malta et al. 2018) has given new insight into 
frequent mutational analyses in multiple pathways. For 

Fig. 2 Integrated approaches for functional biomarker studies in HCC that capture ongoing biology in the liver: TGF-β pathway

 

Fig. 1 High risk populations and current clinical approaches for HCC surveillance
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example, the characterization of 363 HCC cases includes 
WNT signaling (44%), p53 (31%) and Telomerase (TERT 
promoter mutations in 44%), CDKN2A silencing in 53% 
as well as broader genomic alterations in the TGF-β sig-
naling (43%). Moreover, PI3K, Myc, and Met signaling 
pathways, among others, play an important role and are 
described in greater detail in this review, together with 
animal models.

This review explores recent advances in non-invasive 
biomarkers for HCC diagnosis from the past five years, 
focusing on circulating biomarkers (proteins, DNA, 
and RNA), the gut microbiome, and imaging markers. 
We highlight biologically functional markers, identified 
through an integrated approach with animal models, that 
can stratify HCC risk by reflecting ongoing liver pathol-
ogy, progression from fatty liver disease to cirrhosis, and 
ultimately, to cancer. The ideal biomarker should have a 
sensitivity above 85% and specificity above 95% for risk 
stratification of disease for cancer (Passaro et al. 2024). 
Here, we emphasize the incorporation of these functional 
biomarkers with diagnostic algorithms. By examining 
recent phase 2–3 clinical trials, we address their poten-
tial to stratify risk, improve early HCC detection, and 
improve patient outcomes.

Protein biomarkers development with phase 3 evaluation 
and more
Alpha-fetoprotein (AFP) is a glycoprotein implicated 
in multiple aspects of HCC progression, including roles 
in hepatocyte proliferation, invasion, metastasis, apop-
tosis, and immune evasion (Chen et al. 2020; H. I. Kim 
et al. 2022b). A meta-analysis of 41 studies revealed a 
suboptimal performance for AFP in detecting early-
stage HCC (overall sensitivity 49%, specificity 88%) (Sin-
gal et al. 2022), while the combinational use of US with 
AFP improved the sensitivity (74%) but decreased the 
specificity (83.9%). AFP levels alone are elevated in only 
two-thirds of HCC patients, and false positives occur 
frequently in individuals with other liver conditions, 
limiting AFP’s standalone utility (Y. T. Lee et al. 2021b). 
Temporal measurements with progression of disease may 
enhance early detection accuracy compared to single 
measurements (Philips et al. 2021). Additionally, HCC 
patients with MASLD typically had lower AFP levels 
compared to those with viral HCCs (Than et al. 2017). 
Given the modest standalone performance of AFP (sensi-
tivity ranging from ~ 30–50% in phase 3 studies), further 
studies are required to validate its combined use with 
novel biomarkers across diverse populations to enhance 
early-stage detection and risk stratification.

AFP-L3, lens culinaris agglutinin-reactive fraction 
of AFP, a liver-specific variant of AFP, differentiates 
increases in AFP from HCCs as opposed to benign liver 
disease (Lee et al. 2021a ) and is potentially useful in cases 

with intermediate AFP levels (20–200 ng/mL) (Sterling et 
al. 2007). In patients with cirrhosis, comparable diagnos-
tic sensitivity for HCC were observed between AFP-L3 
and AFP in two American and one European prospective 
phase 3 studies (Beudeker et al. 2023; Singal et al. 2022b; 
Tayob et al. 2023) (Table 1). The improved sensitivity of 
AFP-L3 over AFP (46.6% vs. 34.5%) observed in a Latin 
American cohort of patients with cirrhosis suggests its 
potential for enhanced HCC detection in this population, 
though further validation is warranted (Beudeker et al. 
2023) (Table 1). A meta-analysis of six studies (n = 2447) 
found that AFP-L3 has high specificity (92%) but low sen-
sitivity (34%) for early HCC diagnosis (Zhou et al. 2021). 
Thus, AFP-L3 may be more useful for ruling out HCC in 
patients with elevated AFP than for early HCC detection.

Des-γ-carboxy prothrombin (DCP), also known as 
Prothrombin Induced by Vitamin K Absence (PIVKA-II), 
which is significantly elevated in serum of HCC patients 
(Liebman et al. 1984), has been widely used in Japan and 
China for HCC diagnosis and surveillance (Kim et al. 
2023). Autocrine/paracrine secretion of DCP has been 
implicated in promoting HCC proliferation and angio-
genesis through activation of the JAK/STAT3 and PLCγ/
MAPK signaling pathways (Fujikawa et al. 2007; Suzuki 
et al. 2005). In phase 2 and 3 studies of cirrhotic patients, 
DCP exhibited lower sensitivity for HCC detection com-
pared to both AFP and AFP-L3 (DCP sensitivity: from 
17.6% to 36.2; AFP and AFP-L3 sensitivities: from the 
30.4–50%) (Beudeker et al. 2023; El-Serag et al. 2025; 
Singal et al. 2022b; Tayob et al. 2023) (Table  1). More-
over, diagnostic performance of DCP varies significantly 
depending on the etiology of liver disease, demonstrating 
higher sensitivity but lower specificity in patients with 
viral infections (Hadi et al. 2022; Marrero et al. 2009; 
Piratvisuth et al. 2023). AFP-L3% with AFP and DCP 
utilized in GALAD assays enhance HCC detection rates 
(Chen et al. 2020; Singal et al. 2022b; Tayob et al. 2023) 
(Table 3).

Protein biomarkers with phase 2 evaluation studies
Osteopontin (OPN), a secreted extracellular matrix 
protein, that interacts with Integrins, functions as a 
Th1 cytokine, is involved in tissue remodeling (Lund et 
al. 2009) and intricately linked to the JAK2/STAT3 and 
PI3K/Akt signaling pathways in HCC, contributing to 
tumor growth, invasion, and metastasis (Desert et al. 
2022; Wu et al. 2022; Yu et al. 2018). Studies also found 
that increased secretion of OPN contributed to promot-
ing the synthesis of collagen-I in hepatic stellate cells via 
inducing HMGB1 (Arriazu et al. 2017), which is involved 
in chronic liver disease (Song et al. 2021). Increased 
plasma OPN results are similar to AFP (Abu El Makarem 
et al. 2011; Jang et al. 2016; Simão et al. 2015). A recent 
Chinese cohort study with 105 cases of chronic hepatitis, 
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Biomarker Study type, No. of 
subjects, and Biomarker 
development phase

Sensi-
tivity 
(%)

Speci-
ficity 
(%)

Cut-off AUROC Ref. Notes*

AFP Prospective (n = 2331), 
phase 3

38.4 90 8.6 ng/mL 0.72 PMID: 38899967
El-Serag et al., 2024

Cirrhosis any etiology, 
HCC

AFP Prospective (n = 534), phase 
3

34.6–
38.2

90 10.8–11.2 ng/mL 0.71–0.78 PMID: 35124267
Tayob et al. 2023

Cirrhosis any etiology, 
HCC

AFP Prospective (n = 397), transi-
tion from phase 2 to 3

50 90 17.4 ng/mL 0.77 PMID: 34618932
Singal et al. 2022b

Cirrhosis any etiology, 
HCC

AFP Prospective (n = 1084), 
phase 2

42.4 94.9 20 ng/mL 0.844 PMID: 37938100
Piratvisuth et al. 2023

Chronic liver disease 
(> 77% viral etiology), 
HCC

AFP Retro/prospective (n = 437), 
phase 2

43 98 20 ng/mL 0.81 PMID: 32889146
Chalasani et al. 2021

Liver disease any etiology 
(> 87.4 cirrhosis) and HCC

AFP Prospective (n = 163), phase 
2

75 93.5 14.2 ng/mL 0.869 PMID: 36013482
Hadi et al. 2022

Non-cirrhosis and cirrho-
sis with etiology (HBV/
HCV/MASH), HCC

AFP Prospective (n = 1120), 
phase 2

44.8 76.1 20 ng/mL 0.692 PMID: 31358576
Cai et al. 2019

HBV, cirrhosis and HCC

AFP Prospective (n = 288), phase 
3

29.2 87.4 20 ng/mL 0.59 PMID: 37708457
Beudeker et al. 2023

European cirrhosis and 
HCC

AFP Prospective (n = 284), phase 
3

34.5 92.4 20 ng/mL 0.66 PMID: 37708457
Beudeker et al. 2023

Latin America cirrhosis 
and HCC

AFP-L3 Prospective (n = 2331), 
phase 3

37.6 90 7.5% 0.61 PMID: 38899967
El-Serag et al., 2024

Cirrhosis any etiology, 
HCC

AFP-L3 Prospective (n = 534), phase 
3

34.6–
41.2

90 8.3–8.4% 0.64–0.81 PMID: 35124267
Tayob et al. 2023

Cirrhosis any etiology, 
HCC

AFP-L3 Prospective (n = 397), transi-
tion from phase 2 to 3

46.2 90 11.9% 0.80 PMID: 34618932
Singal et al. 2022b

Cirrhosis any etiology, 
HCC

AFP-L3 Prospective (n = 288), phase 
3

30.4 81.1 10% 0.56 PMID: 37708457
Beudeker et al. 2023

European cirrhosis and 
HCC

AFP-L3 Prospective (n = 284), phase 
3

46.6 91.7 10% 0.69 PMID: 37708457
Beudeker et al. 2023

Latin America cirrhosis 
and HCC

AFP-L3 Retro/prospective (n = 437), 
phase 2

56 93 10% 0.81 PMID: 32889146
Chalasani et al. 2021

Liver disease any etiology 
(> 87.4 cirrhosis) and HCC

DCP Prospective (n = 2331), 
phase 3

30.4 90 2.91 ng/mL 0.75 PMID: 38899967
El-Serag et al., 2024

Cirrhosis any etiology, 
HCC

DCP Prospective (n = 534), phase 
3

17.6–
23.1

90 1.4–1.5 ng/mL 0.68–0.72 PMID: 35124267
Tayob et al. 2023

Cirrhosis any etiology, 
HCC

DCP Prospective (n = 288), phase 
3

26.7 87.4 7.5 ng/mL 0.57 PMID: 37708457
Beudeker et al. 2023

European cirrhosis and 
HCC

DCP Prospective (n = 284), phase 
3

36.2 97.4 7.5 ng/mL 0.65 PMID: 37708457
Beudeker et al. 2023

Latin America cirrhosis 
and HCC

DCP Prospective (n = 397), transi-
tion from phase 2 to 3

34.6 90 5.9 ng/mL 0.70 PMID: 34618932
Singal et al. 2022b

Cirrhosis any etiology, 
HCC

DCP Prospective (n = 1084), 
phase 2

61.3 88.7 20 ng/mL 0.772 PMID: 37938100
Piratvisuth et al. 2023

Chronic liver disease 
(> 77% viral etiology), 
HCC

DCP Retro/prospective (n = 437), 
phase 2

39 93 7.5 ng/mL 0.83 PMID: 32889146
Chalasani et al. 2021

Liver disease any etiology 
(> 87.4 cirrhosis) and HCC

DCP Prospective (n = 163), phase 
2

90 82.1 36.7 mAU/mL 0.905 PMID: 36013482
Hadi et al. 2022

Non-cirrhosis and cirrho-
sis with etiology (HBV/
HCV/MASH), HCC

DCP Retrospective (n = 186), 
phase 2

72 71 7 ng/mL 0.715 PMID: 38994169
He et al. 2024

Healthy control and AFP-
negative HCC

OPN Retrospective (n = 322), 
phase 2

79.2 79.6 - 0.85 PMID: 32043608
Zhu et al. 2020

Chronic hepatitis, cir-
rhosis, and HCC

MDK Meta-analysis of 9 studies 87 86 0.5 ng/mL 0.95 PMID: 31600291
Zhang et al. 2019

HCC

Table 1 Biomarkers
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116 of liver cirrhosis, and 101 of HCC showed that serum 
OPN analyses gave a better AUROC of 0.851 (79.2% 
sensitivity and 79.6% specificity) compared with AFP 
(AUROC of 0.683) or DKK1 (AUROC of 0.639) (Zhu et 
al. 2020) (Table 1). In AFP-negative samples, serum OPN 
also performed well with an AUROC of 0.838.

Midkine (MDK), a heparin-binding growth factor, 
activates multiple key pathways such as MAPK, WNT, 
and TGF-β, leading to increased cancer proliferation, 
angiogenesis, and metastasis (Du et al. 2022; Sun et al. 
2017). A meta-analysis of 9 studies showed that MDK 
displayed diagnostic efficacy for HCC with a cutoff value 
of 0.5 ng/mL: an AUROC of 0.95, sensitivity 87%, and 
specificity 86%) (Zhang et al. 2019) (Table  1). Another 
systematic meta-analysis of 17 studies further confirmed 
that MDK showed better performance in diagnosing 
early-stage HCC than AFP: AUROC, 0.89 vs. 0.52, sen-
sitivity, 84% vs. 44%, specificity, 82% vs. 85% (Lu et al. 
2020) (Table  1). Also, MDK showed promising perfor-
mance in AFP negative HCC: an AUROC of 0.91, sensi-
tivity 89%, and specificity 84%. A recent study validated 
the functional role of circulating MDK in promoting liver 
carcinogenesis via activating PI3K/AKT/mTOR signaling 
(Du et al. 2022), indicating that MDK is a promising bio-
marker that deserves further validation.

Dickkopf-1 (DKK1) promotes liver cancer invasion 
and metastasis via β-catenin/MMP7 signaling (Chen et al. 
2013). DKK1 genetic deletion impairs HCC cell invasion, 
proliferation, and tumor development (Seo et al. 2021). 
Furthermore, analysis of tissue microarray data suggests 
that DKK1 may serve as a new prognostic predictor for 
HCC patients, particularly for those with normal AFP 
levels and those in the early stages of the disease (Yu et 
al. 2009). In a large-scale multicenter study (n = 1284), 
serum DKK1 levels were significantly elevated in patients 
with HCC compared to those with cirrhosis or chronic 
HBV infection(Shen et al. 2012), which displayed com-
plementary diagnostic potential with AFP. For early-stage 
HCC, DKK1 demonstrated superior diagnostic accuracy 

(AUROC 0.85 vs. 0.658 for AFP), with higher sensitivity 
(70.9% vs. 54.4%) and specificity (84.7% vs. 69.3%). Com-
bining DKK1 and AFP further improved performance, 
achieving 84.9% sensitivity and 77.4% specificity. Simi-
larly, two independent cohorts (n = 90 and n = 80) demon-
strated that combination of serum DKK1 and AFP may 
enhance HCV related HCC diagnostic accuracy (Eldeeb 
et al. 2020; Fouad et al. 2016). Furthermore, studies have 
revealed DKK1 promoter hypermethylation in liver tissue 
from HCV-infected patients with chronic liver disease 
and cirrhosis preceding HCC development (Umer et al. 
2014). Taken together, these studies suggest that DKK1 as 
a potent inhibitor of WNT pathway may serve as a valu-
able biomarker for early detection of virus-induced HCC.

Golgi protein-73 (GP73) is a type II Golgi transmem-
brane protein found significantly elevated in hepatocytes 
affected by chronic liver diseases and HCC (Gatselis et al. 
2020), which acts as a driver oncogene, initiating intra- 
and intercellular signaling cascades such as JAK2/STAT3 
and ER stress that enhance the angiogenesis and aggres-
siveness and reshape the tumor microenvironment of 
HCC (Chen et al. 2015; Wei et al. 2019; Ye et al. 2024). 
Cleavage releases GP73 and renders it a potentially useful 
serum biomarker (Gatselis et al. 2020). Given its unique 
expression in liver tissue from HCC patients, targeting 
GP73 could provide a strategy to inhibit angiogenesis 
with reduced off-target effects, as well as a tool for HCC 
detection. GP73 shows high specificity for HCC and may 
offer additional diagnostic value, particularly for AFP-
negative patients (75.6% sensitivity, 93% specificity) (He 
et al. 2024; Zhang et al. 2023). Unfortunately, a 36-study 
meta-analysis revealed moderate diagnostic accuracy for 
GP73 in cirrhotic patients possibly because of increased 
GP73 levels in both cirrhotic and HCC patients (Zhang 
et al. 2023).

Glypican 3 (GPC-3), a member of the heparan sul-
fate proteoglycan family, is another oncofetal protein 
found elevated in hepatocellular carcinoma cells and 
serum small extracellular vesicles (Sun et al. 2023). GPC3 

Biomarker Study type, No. of 
subjects, and Biomarker 
development phase

Sensi-
tivity 
(%)

Speci-
ficity 
(%)

Cut-off AUROC Ref. Notes*

MDK Meta-analysis of 17 studies 84 82 - 0.89 PMID: 32039435
Lu et al. 2020

HCC

GP73 Retrospective (n = 186), 
phase 2

75.6 93 103 ng/mL 0.843 PMID: 38994169
He et al. 2024

Healthy control and AFP-
negative HCC

GPC3 Retrospective (n = 344), 
phase 2

80 85 0.0414 ng/mL 0.88 PMID:32087138
Liu et al. 2020

Healthy control and HCC

TGF-β1 Prospective 53.1% 98.9% 50 ug/ g-1 
creatinine

0.730 PMID: 9166938
Tsai et al. 1997

Cirrhosis (74.4% viral 
etiology), HCC

SCCA-IgM Prospective 89% 50% 130 AU/mL 0.63 PMID:24635038
Pozzan et al. 2014

Cirrhosis, healthy control, 
and HCC

*Notes refer to the main groups included in the studies, specifically detailing the composition of the control groups

Table 1 (continued) 
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signals through WNT members and extracellular signal-
regulated kinase (ERK) pathways (Castillo et al. 2016). Its 
value may lie in AFP-negative HCC patientswhereGPC-3 
displays a sensitivity of 54.6% and a specificity of 76% 
among AFP-negative patients (AFP < 400ug/L) was 
observed (Li et al. 2013) (Table 1). Combining AFP and 
GPC3 improved the sensitivity to 88.1%, but the specific-
ity decreased to 82.7% (Liu et al. 2020), potentially as a 
combination providing the most useful predictors tested 
so far.

Angiopoietin-2 (ANG2), associated with tumor 
angiogenesis (Tanaka et al. 1999, 2002), has been shown 
to outperform AFP in predicting overall survival (OS) 
in HCC (Llovet et al. 2012). ANG2-blocking antibodies 
inhibit tumor angiogenesis and metastasis in mice, sug-
gesting its potential role in future therapeutic targeting 
(Saharinen et al. 2017). Ang-2 levels are associated with 
advanced HCC, cases with acute renal injury and higher 
mortality in decompensated cirrhosis, and liver function 
indicators such as high MELD and Child-Pugh scores, as 
well as associated with tumor aggressiveness (Ao et al. 
2021; Choi et al. 2021).

Viral antigens HBV antigens, such as HBcrAg, repre-
sent promising markers due to their direct involvement in 
liver pathology and carcinogenesis. HBcrAg levels, which 
are unaffected by nucleotide analog treatment, provide 
a reliable indicator of viral replication and intrahepatic 
activity. Higher HBcrAg levels correlate with increased 
HCC risk, identifying patients with an inactive virus but 
elevated HCC risk (Chang et al. 2022). In a study with 
2666 patients with chronic HBV infection, HBcrAg levels 
higher than 10KU/ml positively correlated with increased 
HCC incidence (Tseng et al. 2019).
Squamous Cell Carcinoma Antigen (SCCA) and 
SCCA-IgM complexes have also emerged as potential 
markers, with SCCA-IgM showing greater sensitivity 
and specificity in prognosticating HCC response to ther-
apy. Studies suggest lower SCCA-IgM levels in patients 
responsive to locoregional therapies, supportive of its 
diagnostic relevance (Guarino et al. 2017; Pozzan et al. 
2014).

DNA/RNA biomarkers
In a recent case-control cohort study with diverse eti-
ologies (n = 558) (Campani et al. 2024), whole-exome 
sequencing analysis demonstrated that plasma circu-
lating tumor DNA (ctDNA) mutation rates in patients 
with active HCC were significantly higher (40.2%), 
compared to that of chronic liver disease control group 
(1.8%). Consistent with the genomic analysis of liver 
tissues from TCGA HCC cohort (Cancer Genome 
Atlas Research Network 2017), the top 5 highest muta-
tions occur in TERT promoter (27.5%), TP53 (21.3%), 

CTNNB1 (13.1%), PIK3CA (0.2%), and NFE2L2 (0.2%), 
suggesting these ctDNA mutations may serve as prom-
ising non-invasive markers for HCC diagnosis. Another 
study (n = 609) reported that urine ctDNA biomarkers 
(TP53, RASSF1a, and GSTP1) combined with serum 
AFP significantly increased the sensitivity for early-stage 
HCC detection from 62 to 92% (BCLC stage 0, Kim et al. 
2022a).

Global 5-hydroxymethylcytosines (5hmC) contents 
were significantly decreased in liver tissues from patients 
with early-stage HCC (Liu et al. 2019), which was asso-
ciated with HBV infection and decreased translocation 
enzyme activity. As potential effective epigenomic bio-
markers, a 32-gene panel that captures 5hmc signature in 
cell free DNA (cfDNA) significantly discerned early-stage 
HCC from non-HCC (AUROC of 0.884) and from a high-
risk group with chronic hepatitis B virus infection or liver 
cirrhosis (AUROC of 0.846) in a cohort of 1204 HCC 
patients and 1350 controls (chronic liver disease and 
healthy individuals) (Cai et al. 2019) (Table  3). Another 
independent study (n = 262) (Cai et al. 2021) expanding 
the panel to 64-gene 5hmC signatures in cfDNA further 
increased the performance for HCC diagnosis (AUROC 
of 0.93). These studies supported that 5hmC markers 
could serve as a noninvasive tool for early-stage HCC 
detection among high-risk subjects.

The better performance of plasma methylated DNA 
markers (MDMs) for HCC diagnosis (Kisiel et al. 2019) 
has been validated in a phase 2 study (n = 244, AUROC 
0.96, sensitivity 95%, specificity 92%), which captures 
6-marker changes (HOXA1, EMX1, AK055957, ECE1, 
PFKP, and CLEC11A normalized by B3GALT6). Recently, 
in a clinical trial study (NCT03628651), a multiple-target 
blood-based panel (Chalasani et al. 2021) that combines 
4 methylated DNA markers (HOXA1, EMX1, TSPYL5, 
and B3GALT6) and 2 protein markers (AFP and AFP-L3) 
outperformed the GALAD score for early-stage diagnosis 
(AUROC: 0.88 vs. 0.81; sensitivity: 74% vs. 60%, specific-
ity: 90% vs. 86%) (Table 3). The performance of this panel 
was comparable in patients with virus or non-virus etiol-
ogies, and with or without cirrhosis. Moreover, validation 
of the multi-target panel (HOXA1, TSPYL5, plus AFP 
and sex) (Chalasani et al. 2022) Using an independent 
cohort of 156 HCC cases and 245 controls, the multiple 
target panel that combines methylated DNA markers and 
protein markers displayed similar performance (AUROC 
0.86, sensitivity 72%, specificity 88%) for early-stage 
HCC diagnosis. These data implied that the multiple 
target panel may significantly improve early-stage HCC 
diagnosis.

Several studies highlight circulating microRNAs 
(miRNA) and exosomal miRNAs could serve as non-
invasive biomarkers for HCC surveillance. A serum miR-
NAs panel that includes six targets (miR-21, miR-221, 
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miR-801, miR-1246, miR-26a, and miR-122) displayed 
clinical value for the early diagnosis of HCC (AUROC 
of 0.95) (Zhang et al. 2025). More recently, exosomal 
miRNAs (miR-10b-5p, miR-221-3p, miR-223-3p, miR-
21-5p) may effectively distinguish HCC patients from 
CH/LC control with AUROC of 0.86, sensitivity of 74%, 
and specificity of 86% (Ghosh et al. 2020). Another inde-
pendent study reported a similar performance of a panel 
including five circulating exosomal miRNAs (miR19-
3p, miR16-5p, miR30d-5p, miR-451a, miR-223-3p) with 
AUROC of 0.85, for distinguishing HCC with non-virus 
etiology and non-HCC control (Boonkaew et al. 2023).

Molecular pathways with new insight from animal models
In an ideal situation, a single simple model that replicates 
the spectrum of HCC from cirrhosis should provide rapid 
new insight into biologically relevant markers that could 
stratify risk for HCC. These new insights can be provided 
from animal models. While no single animal model repli-
cates HCC progression, commonly used preclinical mod-
els for HCC include cell lines, organoids, patient-derived 
xenografts, scaffold-based models, those induced by che-
motoxic agents, special diets, genetic modifications, and 
tumor cell transplantation (He et al. 2015; Zabransky et 
al. 2023). c-MYC which is overexpressed in up to 70% of 
viral and alcohol-related human HCCs (Schlaeger et al. 
2008) lends itself as a strong GEM model, in which dual 
(albumin-driven) AEG-1 and Myc overexpression- mice 
develop aggressive HCCs and lung metastases (Srivas-
tava et al. 2015). GEM models expressing an activated 
form of β-catenin, the downstream effector of the Wnt 
pathway, or harboring a liver-specific Apc knockout (KO) 
showed hepatomegaly or HCC after a long latency (Col-
not et al. 2004). In liver-specific p53 KO model through 
Cre–Lox recombination, the AlfpCre+Trp53Δ2–10/Δ2–10 
mice develop liver cancer in 14 months (Katz et al. 2012). 
A liver-specific Setd2 depletion model, finding that Setd2 
deficiency is sufficient to trigger spontaneous HCC for-
mation (Li et al. 2021). c-MET levels are raised in 20–48% 
of human HCC samples and represents a potentially 
therapeutic target (Adebayo Michael et al. 2019; Tao et 
al. 2017; Venepalli and Goff 2013; You et al. 2011). With 
Pten expression being reduced in up to 50% and activated 
mutant forms of PIK3CA in 4% of hepatocellular tumors, 
liver-specific knockout of Pten in mice develop steato-
sis and late-onset liver cancer (Horie et al. 2004). Those 
models provide new insight into biologically relevant bio-
markers for HCC.

Proteins reflecting liver pathophysiology: findings on TGF-
β pathway modulation
Animal models combined with analyses of human 
genomics could ideally provide the most relevant bio-
logically functional biomarkers (Dhanasekaran et al. 

2025). For instance, a genomic, epigenomic, and tran-
scriptomic landscape of 44 TGF-β pathway genes and 50 
downstream target genes of the pathway in 9,125 patients 
across all 33 TCGA PanCancer Atlas tumor types (Kor-
kut et al. 2018) revealed that 40% of the cancers carry 
TGF-β-Smad pathway gene alterations with a common 
transcription signature; the genomic alterations affect 
expression of metastatic and epidermal-mesenchymal-
transition (EMT) genes; the pathway is most frequently 
aberrant in Liver and GI cancers, which exhibited 113 
of the 176 hotspot mutations identified in the overall 
cohort.

In cancer, the TGF-β pathway plays apparently con-
tradictory roles, either suppressing (early) or (later) 
promoting tumor growth. Mouse models of hepatocel-
lular cancers indicate a primarily an early tumor-sup-
pressive role (Chen et al. 2016; David et al. 2016; Katz 
et al. 2016). Examples include mouse models of HCC 
with haploinsufficiency of Tgfbr2, Tgfb, and intercrosses 
between Smad3/4 with the adaptor Sptbn1 (Tgfbr2-/-, 
Smad4+/-Sptbn1+/- and Smad3+/-Sptbn1+/-  on a C57BL/6 
background) (Biswas et al. 2004; Gough et al. 2021a; 
Gu et al. 2020; Z. Wang et al. 2021b). More recently, we 
have uncovered obesity-driven HCC in our mouse mod-
els with disruption of TGF-β signaling and loss of alde-
hyde dehydrogenase 2 (Aldh2) (Rao et al., 2021; Yang et 
al. 2024). ALDH2 detoxifies cells of lipid end products-
reactive aldehydes such as 4-HNE that accumulate with 
a high-fat diet, and the Aldh2-/-Sptbn1+/- mice provided 
new insight into the role of obesity in promoting HCC 
(Yang et al. 2024).

Taking this further, elevated TGF-β1 levels in human 
HCC tissue are associated with poor prognosis and 
immune suppression, marking it as a potential target 
for immunotherapy (Gough et al. 2021; Jin et al. 2022). 
Both plasma and urine TGF-β1 levels are higher in 
patients with HCC than in those with cirrhosis, display 
comparable diagnostic ability as AFP to discriminate 
HCC from cirrhosis (Song et al. 2002; Tsai et al. 1997). 
TGFBR2 is a transmembrane protein that plays a crucial 
role in regulating TGF-β signaling, which is closely asso-
ciated with the progression of liver cirrhosis and HCC. 
Reduced TGFBR2 levels have been observed in liver tis-
sue from HCV-HCC compared with HCV-related cirrho-
sis patients and healthy subjects, which were significantly 
correlated with aggressive features of HCC (Abu El-Mak-
arem et al. 2022). A multi-cohort study demonstrated a 
significant reduction in serum TGFBR2 levels in HCCs 
compared to cirrhotic liver tissues (Zaidi et al. 2022). 
Also, circRNA-TGFBR2 has been observed to promote 
HCC progression via regulating autophagy (Wang et al. 
2023), implying a role in risk stratification of HCC. Thus, 
additional studies are necessary to investigate the poten-
tial biomarker value of circulating TGFBR2 in HCC.
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Myostatin (MSTN, or GDF8) is a member of the 
transforming growth factor beta (TGF-β) superfamily 
and may prove to be a promising biologically relevant 
marker, in part from its role as an autocrine inhibitor 
of muscle growth, contributing to muscle wasting in 
patients with sarcopenia, which are major issues in cir-
rhosis and HCC. Sarcopenia is prevalent in up to 40% of 
cirrhotic patients, particularly with alcoholic liver disease 
or Child-Pugh class C, linked to a high risk of mortality 
(Cui et al. 2023; Tantai et al. 2022). Recent studies have 
identified a causal relationship between sarcopenia and 
increasing risk of HCC in European populations (Cao et 
al. 2024), implying that MSTN, the primary mediator of 
sarcopenia, is a promising biomarker candidate for HCC 
risk stratification. Consistent with this, a multicenter 
prospective study found a two-fold increase in serum 
myostatin levels significantly predicted a higher risk of 
HCC development in patients with alcoholic cirrho-
sis (Kim et al. 2020). However, lower MSTN levels were 
observed in patients with acute decompensation and 
acute-on-chronic liver failure (ACLF) (Ruiz-Margáin et 
al. 2023). Therefore, multiple timepoint assays or longi-
tudinal studies are necessary for predicting HCC risk and 
stratifying the value of MSTN.

IL-6 is a proinflammatory cytokine that is significantly 
elevated in both liver tissue and serum of patients with 
HCC (Kao et al. 2015), specifically in progressive sarco-
penia and advanced HCC stage (Choi et al. 2020; Myo-
jin et al., 2022). A systematic meta-analysis of 18 studies 
demonstrated higher IL-6 levels in HCC patients com-
pared with hepatitis and cirrhosis patients and healthy 
controls (Shakiba et al. 2018). Serum high mobility group 
box 1 protein (HMGB1) is a proinflammatory molecule 
that induces inflammatory cytokine production of TNF-α 
and IL-6 (Chen et al. 2022; Tripathi et al. 2019). Elevated 
HMGB1 levels in HCC liver tissue (Liu et al. 2012), are 
associated with poor prognosis HCC. High mobility 
group box 2 (HMGB2), closely related to HMGB1 is over-
expressed in HCC cells (Kwon et al. 2010; Lu et al. 2023), 
via activating signaling pathways such as ERK, PI3K/
AKT, and Wnt/β-catenin. HMGB2 is involved in stellate 
cell activation, and serum HMGB2 levels are increased 
in patients with liver fibrosis and cirrhosis (Huang et al. 
2023). Elevated HMGB2 is associated with poor prog-
nosis of HCC patients. Collagen type I α1 (COL1A1) is 
often overexpressed in cancers, influencing cell prolif-
eration, metastasis, apoptosis, and cisplatin resistance, 
with high levels linked to poor patient prognosis (Li et 
al. 2022). COL1A1 is implicated in epithelial-to-mesen-
chymal transition (EMT) and stemness in HCC (Ding 
et al. 2024; Ma et al. 2019). COL1A1 levels are higher in 
HBV-positive cirrhosis and HCC (Mohamed et al. 2021), 
reflecting a potential for risk stratification of HCC risk in 
Hepatitis B virus infected patients.

Gut Microbiome
The liver-gut axis plays a crucial role in liver disease 
progression and carcinogenesis. Recent studies indicate 
that specific gut bacteria such as Bacteroides, Streptococ-
cus, and Veillonella are enriched in patients with HCC, 
especially in non-viral HCC, and may serve as potential 
biomarkers (Jinato et al. 2024) (Table  2). The presence 
of viable bacteria within liver tissue further indicates the 
contributive roles of the gut microbiome in HCC patho-
physiology, potentially opening new avenues for non-
invasive diagnosis and therapeutic intervention (Huang 
et al. 2022). Circulating microbial signatures are another 
emerging subject in the cancer field and are thought to be 
partially derived directly from the gut via bacterial trans-
location (You et al. 2022). Similarly, oral Cyanobacteria 
may be independently associated with HCC risk, possi-
bly via direct impact on the tumor-promoting effects of 
microcystins and other hepatotoxins and their disrup-
tive influence on lipid metabolism. A 2021 study identi-
fied oral Cyanobacteria as an independent risk factor for 
HCC through bacterial 16 S rRNA sequences in oral sam-
ples from 90 HCC cases and 90 controls -part of a larger 
U.S. case-control study of HCC among patients diag-
nosed from 2011 to 2016 (Hernandez et al. 2022; Song et 
al. 2023) (Table 2). Elevated levels of gut bacteria such as 
Dialister, Veillonella, and Eubacterium, along with their 
associated metabolites, have been linked to early HCC 
recurrence (Zheng et al. 2023). Furthermore, increased 
abundance of Veillonella has shown potential for differ-
entiating HCC from cirrhosis (Lapidot et al. 2020). We 
have observed altered microbiomes in our mouse models 
with disruption of TGF-β signaling that develop spon-
taneous HCC and other gastrointestinal cancers (Gu et 
al. 2020; Z. Wang et al. 2021b). Interestingly, our group 
and others have observed that these mutant mice do 
not develop cancers in a germ-free environment (Gu et 
al. 2020; Maggio-Price et al. 2006). As a novel potential 
diagnostic tool for HCC, even though the performance of 
gut microbiome is currently limited in scale and lacking 
extensive sample validation, the predictive model using 
gut microbiome together with AFP demonstrated better 
accuracy (AUROC: 0.9811 vs. 0.8505) (Yang et al. 2023), 
suggesting its potential complementary effect to the 
serum testable markers. Future studies should provide 
new insights into the role of the microbiome in the set-
ting of altered mutational profiles in HCC.

Diagnostic algorithms
GALAD score
The GALAD score was developed in 2015 and incorpo-
rates Gender, Age, and three biomarkers: AFP, AFP-L3%, 
and DCP to improve the detection of HCC, specifically 
in patients with chronic liver disease. In phase 2 studies, 
the GALAD score shows promising results (Table 3). In 
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a cohort of patients with chronic liver disease (n = 1084), 
primarily viral in etiology, the score achieved a high sen-
sitivity of 71.8%, specificity of 90%, and an AUROC of 
0.907, underscoring its effectiveness in this group (Pirat-
visuth et al. 2023). A second phase 2 retro/prospective 
study with 437 patients demonstrated an AUROC of 0.87, 
further supporting the diagnostic utility of the GALAD 
score in a population with a high prevalence of cirrho-
sis (Chalasani et al. 2021). In a large, phase 3 prospec-
tive cohort (n = 2331) with cirrhosis of any etiology, the 
GALAD score exhibited a sensitivity of 40% and specific-
ity of 90%, with an AUROC of 0.76 (El-Serag et al., 2024). 
A prospective transition study between phase 2 and 
phase 3 with a cohort of 397 cirrhotic patients showed 
the advantage of longitudinal assessments of GALAD 
over single-timepoint scores for HCC diagnosis, with 
AUROCs of 0.83 and 0.78, respectively, further under-
scoring the added benefit of longitudinal monitoring 
(Singal et al. 2022b). While AFP-L3 has been found con-
tributed negligibly in GALAD (Hou et al. 2025; Johnson 
et al. 2014), two phase 2 prospective studies (n = 1006 and 
n = 1142) found that the GAAD score (combining sex, 
age, AFP, DCP) performed as sensitive (90% and 93.7%) 
and specific (85.3% and 83.1%) as the GALAD algorithm 
(sensitivity 93%, specificity 83.3%) in differentiating HCC 
from chronic liver disease (Hou et al. 2025; Piratvisuth et 
al. 2023).

Doylestown algorithm
The Doylestown algorithm incorporates AFP and other 
laboratory markers (age, gender, alkaline phosphatase 
and alanine aminotransferase levels) and has demon-
strated enhanced specificity and sensitivity over AFP 
alone (Mehta et al. 2018; Wang et al. 2016) (Table  3), 
especially at early detection time points. Further devel-
opment may enhance its utility, particularly in racial and 
ethnic minority populations where HCC disparities per-
sist. In a prospective study involving 120 patients with 
cirrhosis of various etiologies, the Doylestown algorithm 
achieved a sensitivity of 50% and a specificity of 90%, with 
an AUROC of 0.98 (Mehta et al. 2018) (Table  3). This 
high AUROC suggests that the Doylestown algorithm 
may outperform traditional single biomarker approaches, 
particularly in early HCC detection, where sensitivity and 
specificity are critical.

Hepatocellular carcinoma early detection screening
Hepatocellular Carcinoma Early Detection Screening 
(HES) is a screening technique that combines AFP with 
age alanine aminotransferase and platelets. HES has been 
evaluated across multiple cohorts to assess its diagnostic 
effectiveness in detecting HCC among patients with cir-
rhosis (Table 3). In a phase 2–3 transition study involving 
397 patients with cirrhosis of varying etiologies, the HES 
score demonstrated a sensitivity of 34.6% with a speci-
ficity of 90%, yielding an AUROC of 0.71, highlighting 
its moderate diagnostic accuracy in this group (Singal et 

Table 2 Microbiome
Biomarkers Samples Sample Size Findings Diagnosis/Prognosis Potential Reference
Gut Microbiome Fecal 16 healthy controls, 33 patients with 

viral-HCC (17 and 16 cases with 
hepatitis B virus (HBV) and hepatitis 
C virus (HCV) infection, respective-
ly), and 18 patients with NBNC-HCC

Bacteroides, Streptococcus, 
Ruminococcus gnavus group, 
Veillonella, and Erysipelatoclos-
tridium ↑
Romboutsia, UCG-002, Lachno-
spiraceae NK4A-136, Eubacteri-
um hallii group, Lachnospiraceae 
ND-3007 group, Erysipelotricha-
ceae UCG-003, and Bilophila ↓

Identify a gut microbiota signa-
ture in differentiating between 
viral-related HCC (Viral-HCC) and 
non-hepatitis B-, non-hepatitis 
C-related HCC (NBNC-HCC)

PMID: 
38183473
Jinato et 
al. 2024

Gut Microbiome Fecal 124 patients diagnosed with HBV-
associated HCC and 82 HBV‐related 
hepatitis, and 86 healthy volunteers

Dialister, Veillonella, Eubacterium 
coprostanoligenes group, and 
Lactobacillus genus ↑
Bacteroides ↓

TNM, AST, Veillonella, and Strep-
tococcus pneumoniae used in a 
model for the prognosis/early 
recurrence of HBV induced HCC, 
AUROC: 0.78

PMID: 
37778742
Zheng et 
al. 2023

Gut Microbiome Fecal 30 HCC-cirrhosis patients, 38 cir-
rhotic patients without HCC, and 
27 age- and body mass index [BMI]-
matched healthy volunteers

Veillonella and Scardovia ↑
Lachnospira, Ruminococcus, and 
Butyricicoccus ↓

Demonstrates the potential of 
fecal microbes as tools for non-
invasive diagnosis or microbi-
ome-oriented interventions in 
HCC-cirrhosis

PMID: 
32546668
Lapidot et 
al. 2020

Oral 
Microbiome

oral 90 HCC cases and 90 controls with 
oral samples obtained from a larger 
population-based case-control 
study of 673 patients with HCC and 
1,166 controls

Cyanobacteria positively associ-
ated with HCC

Novel evidence that oral Cyano-
bacteria may be an independent 
risk factor for HCC

PMID: 
34697061
Hernan-
dez et al. 
2022

↑: Upregulated in HCC/Early Recurrence ↓: Downregulated in HCC/No Early Recurrence/ Healthy Controls

Sequencing method used for the above studies: 16 S rRNA sequencing
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al. 2022). In a larger phase 3 cohort of 534 patients, the 
HES score showed improved sensitivity, ranging from 
36.7 to 41.2%, with a consistently high specificity of 90% 
and AUROC values between 0.76 and 0.82, indicating 
enhanced performance in a broader population (Tayob et 
al. 2023).

The updated HES v2.0, which incorporates AFP-L3 and 
DCP in addition to the original HES components, was 
evaluated in a large phase 3 prospective cohort of 2,331 
patients with cirrhosis. This newer version showed an 
increased sensitivity of 47.2% while maintaining the spec-
ificity at 90% and achieving an AUROC of 0.77 (El-Serag 
et al., 2024). These results suggest that HES v2 provides 
a modest improvement over the original HES score in 
detecting HCC, especially in more extensive and diverse 
patient populations with cirrhosis, potentially enhancing 
its utility in clinical practice for early HCC detection.

Imaging markers
MRI
Magnetic Resonance Imaging (MRI) is highly effective 
for detecting hepatocellular carcinoma (HCC). A meta-
analysis of 15 studies involving 2,807 patients showed 
that MRI demonstrated high diagnostic accuracy with 
a pooled per-patient sensitivity of 86% and specificity 
of 94%, while per-lesion sensitivity was 77%. This diag-
nostic performance was consistent across different MRI 
protocols, both with and without contrast enhance-
ment, and was superior to ultrasound, which had a sen-
sitivity of 53% (Gupta et al. 2021). Similar findings were 
reported from another study involving 22 studies and 
1685 patients, mentioning that multi-sequence non-
contrast MRI (NC-MRI) achieved a pooled per-patient 
sensitivity of 86.8% and specificity of 90.3%. NC-MRI also 
maintained high sensitivity for detecting smaller lesions 
(< 2  cm) at 77.1%, compared to 88.5% for lesions > 2  cm 
(Chan et al. 2022). The application of deep learning to 
interpret MRI images is rapidly advancing, achieving 

Table 3 Biomarker panel and algorithms
Biomarker 
panel

Study type, No. of subjects, 
and Biomarker develop-
ment phase

Sensitiv-
ity (%)

Speci-
ficity 
(%)

Cut-off AUROC Ref. Notes*

GALAD Prospective (n = 534), phase 3 30.0-32.4 90 (-0.03)-0 0.75–0.79 PMID: 35124267
Tayob et al. 2023

Cirrhosis any etiology, 
HCC

GAAD (combing 
age, sex, AFP, 
DCP)

Prospective (n = 1084), phase 2 71.8 90 2.57 0.907 PMID: 37938100
Piratvisuth et al. 2023

Chronic liver disease 
(> 77% viral etiology), 
HCC

GALAD,
Single-timepoint

Prospective (n = 397), transi-
tion from phase 2 to 3

53.8 90 -0.33 0.78 PMID: 34618932
Singal et al. 2022b

Cirrhosis any etiology, 
HCC

GALAD,
longitudinal

Prospective (n = 397), transi-
tion from phase 2 to 3

69.2 90 -0.33 0.83 PMID: 34618932
Singal et al. 2022b

Cirrhosis any etiology, 
HCC

GALAD Prospective (n = 288), phase 3 65.8 71.7 -0.63 0.69 PMID: 37708457
Beudeker et al. 2023

European cirrhosis and 
HCC

GALAD Prospective (n = 284), phase 3 69.8 82.9 -0.63 0.76 PMID: 37708457
Beudeker et al. 2023

Latin America cirrhosis 
and HCC

GALAD Prospective (n = 2331), phase 3 40 90 -0.38 0.76 PMID: 38899967
El-Serag et al., 2024

Cirrhosis any etiology, 
HCC

GALAD Retro/prospective (n = 437), 
phase 2

72 86 -0.63 0.87 PMID: 32889146
Chalasani et al. 2021

Liver disease any etiology 
(> 87.4 cirrhosis) and HCC

Doylestown Prospective (n = 120) 50 90 0.5 0.98 PMID: 30169533
Mehta et al. 2018

Cirrhosis with any 
etiology

HES Prospective (n = 397), transi-
tion from phase 2 to 3

34.6 90 10.05 0.71 PMID: 34618932
Singal et al. 2022b

Cirrhosis any etiology, 
HCC

HES Prospective (n = 534), phase 3 36.7–41.2 90 7.94–8.03 0.76–0.82 PMID: 35124267
Tayob et al. 2023

Cirrhosis any etiology, 
HCC

HES V2.0 Prospective (n = 2331), phase 3 47.2 90 1.27 0.77 PMID: 38899967
El-Serag et al., 2024

Cirrhosis any etiology, 
HCC

5hmc markers 
(wd-score)

Prospective (n = 1120), phase 2 82.7 67.4 27.9 0.846 PMID: 31358576
Cai et al. 2019

HBV, cirrhosis and HCC

Multi-target 
panel (methyl-
ated DNA plus 
protein)

Retro/prospective (n = 437), 
phase 2

80 90 67 0.92 PMID: 32889146
Chalasani et al. 2021

Liver disease any etiology 
(> 87.4 cirrhosis) and HCC

*Notes refer to the main groups included in the studies, specifically detailing the composition of the control groups
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high diagnostic performance and potentially aiding less 
experienced radiologists in early HCC detection.

Vibration-controlled transient elastography (VCTE)
Liver stiffness measurement (LSM) by vibration-con-
trolled transient elastography (VCTE, FibroScan) which 
is a non-invasive diagnostic biomarker of liver fibro-
sis, is a promising method for HCC risk stratification 
in cirrhosis. Recently, a retrospective study (n = 1850) 
reported that the HCC risk in HCV cirrhotic patients 
after a sustained virological response (SVR) was posi-
tively correlated with the increase of LSM, especially for 
those patients with LSM above 10 kPa (John et al. 2024). 
Another Swedish multi-center cohort study (n = 14414) 
further supported that increased LSM was significantly 
associated with increased HCC risk for patients with 
cirrhosis and chronic liver diseases across different eti-
ologies (Hegmar et al. 2024). An LSM-based machine 
learning algorithm displayed superior performance for 
stratifying 5-year HCC risk among patients with chronic 
liver disease (AUROC of 0.89), which was separately vali-
dated in the Hong Kong (n = 2732) and Europe (n = 2384) 
cohorts, and was significantly better than other exist-
ing HCC risk scores such as aMAP score, Toronto HCC 
risk index, and 7 hepatitis B-related risk scores (Lin et al. 
2024).

AI-enhanced imaging and biomarker integration
Artificial intelligence (AI)-enhanced CT scans improve 
diagnostic accuracy, achieving sensitivities up to 89.4% 
in complex cases. AI-assisted imaging holds the poten-
tial for automated HCC detection, particularly for early-
stage disease, thus supporting more timely and accurate 
diagnosis. A deep-learning AI system trained on CT 
images from 7,512 patients, validated and achieved an 
area under the receiver-operating characteristic curve 
(AUROC) of 0.887 and 0.883 for the internal and external 
test sets, respectively. The AI system demonstrated high 
accuracy (81.0% for the internal test set and 81.3% for the 
external test set) and high sensitivity (78.4% for the inter-
nal test set and 89.4% for the external test set) (Wang et 
al. 2021a ).

AI-based analysis has also refined our tissue-based 
assessment of TGFBR2 in cirrhotic versus HCC tis-
sue samples, demonstrating reduced TGFBR2 levels as 
a promising biomarker for HCC detection (Zaidi et al. 
2022). Our AI-enhanced model improved accuracy (sen-
sitivity of 0.7, specificity of 0.54) and revealed a reduction 
in TGFBR2 in HCC compared to cirrhotic tissue, high-
lighting its potential as a diagnostic tool.

Cost-effectiveness of biomarker-based screening
Several studies and models suggest HCC surveil-
lance using magnetic resonance imaging (MRI) and/

or ultrasound is cost-effective in patients with compen-
sated cirrhosis (Goossens et al. 2017; Nahon et al. 2022), 
particularly when considering quality-adjusted life years 
(QALY) gained. Latest cost-effectiveness analysis sup-
ports the potential viability of future biomarker-based 
HCC screening (Singal et al. 2024). Both ultrasound/AFP 
and biomarker-based screening strategies are cost-effec-
tive compared to no screening at a willingness-to-pay 
threshold of $150,000/QALY. However, biomarker-based 
screening demonstrated a lower incremental cost-effec-
tiveness ratio and has been favored in a greater pro-
portion of simulations. Sensitivity analyses reveal that 
screening adherence, costs, and sensitivity for early-stage 
HCC detection influenced the cost-effectiveness of the 
evaluated strategies. The cost of screening per quality-
adjusted life years decreases with increasing HCC risk, 
making it crucial to accurately stratify patients and con-
sider factors like etiology and disease stage when making 
screening decisions.

Limitations in current research
Several methodological challenges exist across HCC bio-
marker studies. Many studies rely on derivation samples 
without independent validation, leading to optimistic 
AUROC estimates that may not generalize to broader 
populations. Additionally, multi-center studies often 
fail to account for center effects, which can introduce 
confounding variables. Model calibration and handling 
of outliers are also inconsistently reported, potentially 
skewing diagnostic accuracy. Combinatorial strategies 
for the surveillance and diagnosis of HCC, exemplified 
by the GALAD and HES algorithms, which incorpo-
rate AFP alongside additional biomarkers, have shown 
considerable promise following rigorous phase 3 pro-
spective validations. Nonetheless, the multitude of vari-
ables—including protein markers, clinical characteristics, 
and varied analytical methodologies—can lead to the 
development of predictive models that may demon-
strate comparable performance metrics but differ signifi-
cantly in their applicability across distinct geographical 
regions, etiological contexts, and stages of disease. While 
the GALAD and HES biomarker panel demonstrate 
improved HCC detection sensitivity in patients with 
chronic liver disease (Piratvisuth et al. 2023; Chalasani et 
al. 2021), their performance (sensitivity, specificity, and 
AUROC) decreases substantially in high-risk cirrhotic 
cohorts (Tayob et al. 2023; EI-Serag et al., 2024; Beude-
ker et al. 2023), implying the need for further refinement 
and validation in specific high-risk populations. Further-
more, ongoing biomarker studies under phase 3 face sim-
ilar challenges, such as incomplete cohort data, potential 
selection bias during sample acquisition, and limitations 
in sample sizes for both discovery and validation cohorts. 
The inherent heterogeneity of HCC, encompassing a 
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wide range of underlying etiologies and risk factors, 
further complicates the quest for a single, universally 
applicable biomarker. This complexity highlights the 
imperative for a comprehensive approach to HCC diag-
nosis and monitoring, one that integrates a variety of bio-
markers, particularly those with biological relevance, and 
clinical data to enhance the specificity and sensitivity of 
detection across diverse patient populations. Adherence 
to rigorous epidemiological standards, such as STROBE 
guidelines, could improve the reliability and applicability 
of future research. It should be noted that the final effec-
tiveness of those potential HCC surveillance strategy will 
be further challenged as the US-based screening when 
applicated in resources-limited settings (Parikh et al. 
2023), such as lacking experienced health providers, var-
ied image visualization and biomarker test performance, 
and with patients lacking up-to-date knowledge and low 
adherence.

Conclusions
The landscape of HCC biomarkers is evolving, driven 
by advances in molecular biology, genomics, and AI-
enhanced imaging. While traditional biomarkers like 
AFP and DCP remain valuable, new candidates from 
the fields of circulating DNA, the gut microbiome, and 
diagnostic algorithms hold the promise of improved sen-
sitivity and specificity. The molecular heterogeneity and 
complex signaling pathways underlying HCC present 
both challenges and opportunities in biomarker develop-
ment. Advances in research in pathways such as the TGF-
β members, together with animal models, have provided 
valuable insights into HCC pathogenesis, paving the way 
for biological biomarker strategies (Fig. 2). Our ongoing 
work in serum proteomics, informed by TGF-β pathway 
components, provides a new foundation for novel pre-
dictive models that enhance risk stratification of HCC 
patients. Integrating multi-modal data encompassing 
proteomic and imaging biomarkers with established clin-
ical parameters, coupled with advanced AI-driven ana-
lytical approaches, offers a promising avenue for refining 
risk stratification algorithms and ultimately improving 
patient outcomes. Future research efforts should priori-
tize the validation of these biomarkers across large-scale 
prospective studies assessing their diagnostic perfor-
mance in cohorts with diverse populations and etiologies. 
Ultimately, these findings should be translated into preci-
sion HCC surveillance and therapeutic strategies tailored 
to individual risk profiles. Robust collaborations across 
institutions and industries will be critical to advancing 
these biomarkers from the bench to the clinic.
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