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Symmetry, gauge freedoms, and the interpretability of sequence-function relationships
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Quantitative models that describe how biological sequences encode functional activities are ubiquitous in
modern biology. One important aspect of these models is that they commonly exhibit gauge freedoms, i.e.,
directions in parameter space that do not affect model predictions. In physics, gauge freedoms arise when
physical theories are formulated in ways that respect fundamental symmetries. However, the connections that
gauge freedoms in models of sequence-function relationships have to the symmetries of sequence space have yet
to be systematically studied. In this work we study the gauge freedoms of models that respect a specific symmetry
of sequence space: the group of position-specific character permutations. We find that gauge freedoms arise when
model parameters transform under redundant irreducible matrix representations of this group. Based on this
finding, we describe an “embedding distillation” procedure that enables both analytic calculation of the number
of independent gauge freedoms and efficient computation of a sparse basis for the space of gauge freedoms. We
also study how parameter transformation behavior affects parameter interpretability. We find that in many (and
possibly all) nontrivial models, the ability to interpret individual model parameters as quantifying intrinsic allelic
effects requires that gauge freedoms be present. This finding establishes an incompatibility between two distinct
notions of parameter interpretability. Our work thus advances the understanding of symmetries, gauge freedoms,
and parameter interpretability in models of sequence-function relationships.
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I. INTRODUCTION

Understanding the quantitative nature of sequence-
function relationships is a major goal of modern biology
[1]. To study a sequence-function relationship of interest,
researchers often propose a mathematical model, fit the pa-
rameters of the model to data, then biologically interpret the
resulting parameter values. This interpretation step is compli-
cated, however, by gauge freedoms—directions in parameter
space along which model parameters can be changed without
altering model predictions. When gauge freedoms are present
in a model, the values of individual model parameters cannot
be meaningfully interpreted without additional constraints. In
standard Potts models of proteins, for example, the values
of the parameters representing interactions between amino
acids cannot be directly interpreted as quantifying interaction
strength. This is because gauge freedoms make it possible to
change any specific coupling parameter of interest without
affecting model predictions by also making appropriate com-
pensatory changes to other model parameters [2–6].

Researchers who study sequence-function relationships us-
ing quantitative models routinely encounter gauge freedoms.
In practice, one of two methods is used to overcome the
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difficulties that gauge freedoms present. One method, called
“gauge fixing,” removes gauge freedoms by introducing ad-
ditional constraints on model parameters [2–17]. Another
method limits the mathematical models that one uses to
models that do not have any gauge freedoms in the first
place [18–23]. Despite being frequently encountered in the
course of research, the gauge freedoms present in models
of sequence-function relationships have received only limited
attention (e.g., Refs. [2,4–6,12,24]). In particular, the math-
ematical properties of these gauge freedoms have yet to be
systematically studied.

In physics, by contrast, gauge freedoms are well recog-
nized as a topic of fundamental importance [25]. Gauge
freedoms arise when a physical theory is expressed in a
form that manifestly respects fundamental symmetries. For
example, the classical theory of electricity and magnetism
(E&M) is invariant to Lorentz transformations, i.e., relativistic
changes in an observer’s velocity [26]. Lorentz invariance is
obscured, however, when the equations of E&M are expressed
directly in terms of electric and magnetic fields. To express
these equations in a form that is manifestly Lorentz invariant,
one must instead formulate them in terms of an electromag-
netic four-potential. Doing this introduces gauge freedoms
because the four-potential, unlike electric and magnetic fields,
is neither directly measurable nor uniquely determined by
the configuration of a physical system [27]. Nevertheless,
working with the four-potential simplifies the equations of
E&M and can aid in both their solution and their physical
interpretation.

Motivated by the connection between gauge freedoms and
symmetries in physics, we asked whether gauge freedoms in
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models of sequence-function relationships have a connection
to the symmetries of sequence space, i.e., the possible ways
of transforming the space of sequences without altering the
Hamming distances between sequences. In this work we study
the gauge freedoms of linear models that are equivariant under
a specific symmetry group of sequence space—the group of
position-specific character permutations (PSCP). Here “lin-
ear models” are models that can be expressed as a sum of
sequence features, each multiplied by a corresponding pa-
rameter; “PSCP” encompasses transformations that permute
the identities of the individual characters (e.g., DNA bases or
protein amino acids) at one sequence position, as well as trans-
formations built from combinations of such permutations; and
“equivariant” describes models for which linear transforma-
tions of the model parameters are able to compensate for
the effects of PSCP transformations of sequences. Equivari-
ant linear models include many of the most commonly used
models in the literature, such as models with pairwise and/or
higher-order interactions.

Using techniques from the theory of matrix representations
of the symmetric group [28], we find that the gauge freedoms
of these linear equivariant models arise when model parame-
ters transform under redundant irreducible representations of
PSCP. Based on this finding, we introduce an “embedding
distillation” procedure that, for any linear equivariant model,
facilitates both analytical and computational analyses of the
vector space of gauge freedoms. We also study the connection
between parameter interpretability and model transformation
behavior. We find that in many (and possibly all) nontrivial
models, the ability to interpret model parameters as quanti-
fying the intrinsic effects of alleles requires that the model
have gauge freedoms. This finding shows that models having
gauge freedoms can have important advantages over models
that have no gauge freedoms.

A companion paper [29] reports specific gauge-fixing
strategies that can be applied to an important subset of the
linear equivariant models, one that includes the most com-
monly used models of sequence-function relationships. It also
describes specific ways of using these gauge-fixing strategies
to assist in the development and biological interpretation of
such models.

II. BACKGROUND

We now establish definitions and notation used under Re-
sults. We also review basic results regarding gauge freedoms
in mathematical models of sequence-function relationships.
Our companion paper [29] provides an expanded discussion
of these results together with corresponding proofs.

A. Sequence-function relationships

Let A denote an alphabet comprising α distinct char-
acters, let S denote the set of αL sequences of length L
built from these characters, and let sl ∈ A denote the char-
acter at position l in any sequence s ∈ S . A real-valued
model of a sequence-function relationship, f (s; �θ ), is de-
fined to be a function that maps each sequence s to a real
number. The vector �θ denotes the parameters of the model
and is assumed to comprise M real numbers. For technical

reasons it is sometimes useful to consider complex-valued
models of sequence-function relationships, which are defined
analogously.

B. Linear models

Linear models of sequence-function relationships are lin-
ear in �θ and thus have the form

f (s; �θ ) = �θ ��x(s) =
M∑

i=1

θixi(s), (1)

for all s ∈ S . Here �x(·) is an M-dimensional vector of se-
quence features, and each feature xi(·) is a function that maps
S to R. We refer to the space RM in which �x and �θ live as
feature space [30].

An example of a linear model is the pairwise one-hot
model, which has the form

f ohe
pair = θ0x0 +

∑
l

∑
c

θ c
l xc

l +
∑
l<l ′

∑
c,c′

θ cc′
ll ′ xcc′

ll ′ , (2)

where the arguments of both the model and features have been
kept implicit. In Eq. (2), l, l ′ ∈ {1, . . . , L} index the positions
within each sequence, and c, c′ ∈ A index the possible char-
acters at these positions. We use the superscript “ohe” here
and in what follows to indicate mathematical objects (such as
embeddings, models, and representations) that are based on
one-hot embeddings. Pairwise one-hot models, in particular,
make use of the pairwise one-hot embedding �x ohe

pair (s), the ele-
ments of which represent three types of features: the constant
feature, x0(s), which equals one for every sequence s; additive
one-hot features, xc

l (s), which equal one if sl = c and equal
zero otherwise; and pairwise one-hot features, xcc′

ll ′ (s), which
equal one if both sl = c and sl ′ = c′, and equal zero otherwise.

C. Gauge freedoms

Gauge freedoms are transformations of model parameters
that do not affect model predictions. Formally, a gauge free-
dom is any vector �g ∈ RM that satisfies

f (s; �θ ) = f (s; �θ + �g) for all s ∈ S. (3)

For linear sequence-function relationships the set of gauge
freedoms, denoted by G, forms a vector space in RM . It is
readily shown that G is the orthogonal complement of the
space spanned by sequence embeddings [29]. In what follows,
we use γ to represent the dimension of G, i.e., the number of
(independent) gauge freedoms.

Gauge freedoms arise from linear dependencies among
sequence features. By inspection we see that f ohe

pair has

M ohe
pair = 1 + αL +

(
L

2

)
α2 (4)

parameters. However, it turns out that the space spanned by
the corresponding embedding �x ohe

pair has only 1 + (α − 1)L +(L
2

)
(α − 1)2 dimensions. This difference reflects the presence

of L + (L
2

)
(2α − 1) constraints on the features, namely x0 =∑

c′ xc′
l for all positions l (yielding 1 constraint per posi-

tion) and xc
l = ∑

c′ xcc′
ll ′ , xc′

l ′ = ∑
c xcc′

ll ′ for all pairs of positions

023005-2



SYMMETRY, GAUGE FREEDOMS, AND THE … PHYSICAL REVIEW RESEARCH 7, 023005 (2025)

l < l ′ and all choices of character c or c′ (yielding 2α − 1
independent constraints per pair of positions). The model f ohe

pair
therefore has

γ ohe
pair = L +

(
L

2

)
(2α − 1) (5)

gauge freedoms. See our companion paper [29] for more de-
tails, as well as Refs. [2,4,6,10] for earlier treatments of gauge
freedoms in the pairwise one-hot model.

D. Fixing the gauge

Fixing the gauge is the process of removing gauge free-
doms by restricting �θ to a subset � of parameter space called
“the gauge.” For example, the commonly used “zero-sum
gauge” [4,6] for the pairwise one-hot model is the subspace
of parameter space in which the additive parameters at ev-
ery position sum to zero when marginalized over characters
(
∑

c θ c
l = 0 for every l) and the pairwise parameters at all

pairs of positions sum to zero when marginalized over the
characters at either position (

∑
c θ cc′

ll ′ = 0 and
∑

c′ θ cc′
ll ′ = 0 for

every l, l ′, c, c′).
Linear gauges are choices of � that are vector spaces. The

zero-sum gauge is one such linear gauge. A useful property
of linear gauges is that gauge-fixing can be accomplished
through linear projection. Specifically, for any linear gauge �,
there exists a projection matrix P that projects each parameter
vector �θ ∈ RM onto an equivalent parameter vector �θfixed ∈ �

via �θfixed = P �θ . Our companion paper describes a parametric
family of linear gauges (including an explicit formula for
the corresponding projection matrices) that includes as spe-
cial cases many of the most commonly used gauges in the
literature [29].

III. RESULTS

We begin this section by formally defining the group of
PSCP transformations, as well as the notion of model equiv-
ariance under this group. We then illustrate, for two example
pairwise-interaction models, how transformation behavior un-
der PSCP impacts both gauge freedoms and a specific type
of parameter interpretability, namely the ability to assign
intrinsic effects to individual alleles. Next we formally inves-
tigate this relationship more generally using methods from the
theory of group representations [28]. In doing so, we establish
an “embedding distillation” procedure that, for any equivari-
ant model, enables analytic calculation of the number of gauge
freedoms. We also establish an algorithm that enables the
efficient computation of a sparse basis for the space of gauge
freedoms. We conclude by revisiting the issue of parameter
interpretability in light of these results.

A. Position-specific character permutations (PSCP)

Different transformations of sequence space impact models
of sequence-function relationships in different ways. Here
we focus on PSCP transformations. These transformations of
sequence space form a mathematical group, which we denote
by HPSCP. The action of a transformation h ∈ HPSCP on a
sequence s ∈ S is written hs. HPSCP is a symmetry group
of sequence space in that its transformations preserve the

A B

C

(b)

A

B

C

(c)

(a)

FIG. 1. Transformation behavior of two single-position embed-
dings. (a) Two possible embeddings of the characters at position
l of a sequence built from the three-character alphabet A =
{A, B, C}: the three-dimensional one-hot embedding �x ohe

l and the
two-dimensional simplex embedding �x sim

l . The elements of �x ohe
l are

the three one-hot sequence features xA
l , xB

l , and xC
l . The two el-

ements of �x sim
l are denoted x1

l and x2
l . (b) The three-dimensional

embedding �x ohe for each possible character at position l . (c) The two-
dimensional embedding �x sim

l for each possible character at position l .
Pink arrows in panels (b) and (c) indicate the transformation of each
embedding vector induced by permuting the characters A and C.

Hamming distances between sequences. There are other sym-
metry groups of sequence space as well, but we ultimately find
that these symmetry groups do not have the same connections
to gauge freedoms that HPSCP does [discussed below and in
Supplemental Material (SM) Sec. 7].

B. Equivariance

We also focus on equivariant linear models of sequence-
function relationships. These are models for which both
embeddings and parameters transform linearly under HPSCP.
The specific sets of matrices that encode these linear trans-
formations are called “representations” [28]. In general, a
representation R of a group H is a function that maps each
h ∈ H to a matrix R(h) in a way that preserves the multi-
plicative structure of H , i.e., R(h1h2) = R(h1)R(h2) for any
two group elements h1, h2 ∈ H . The degree of the repre-
sentation R (denoted deg R) is the dimension of the vector
space on which R acts. Two different examples of rep-
resentations for the same group are described below [see
Eqs. (8) and (11)] and illustrated in Fig. 1.

Formally, we say that an embedding �x is equivariant in H
if and only if there is a representation R of H such that

�x(hs) = R(h) �x(s) (6)

for all h ∈ H and all s ∈ S . We also say that a model is equiv-
ariant if and only if it has an equivariant embedding. For an
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equivariant model whose embedding transforms as in Eq. (6),
the transformation of S by any h ∈ H can be compensated for
by the transformation of �θ by R(h)−1�, in the sense that

f (s; �θ ) = f (hs; R(h)−1� �θ ) (7)

for every s ∈ S and every �θ ∈ RM (see SM Sec. 3.2). Al-
though linear models of sequence-function relationships can
be equivariant in a variety of symmetry groups H , we use the
term “equivariant” to specifically refer to equivariance under
HPSCP unless otherwise noted.

C. One-hot models

The most commonly used equivariant models are based
on single-position one-hot embeddings. Such models are
arguably the most intuitive, as their features are built from
the indicator functions for single-position alleles (e.g., the
nucleotides in a DNA sequence or the amino acids in a protein
sequence). We denote the single-position one-hot embedding
for position l as �x ohe

l and define it to be a binary vector of
dimension α with features xc1

l , . . . , xcα

l , where c1, . . . , cα is an
ordering of the characters in A. For example, Fig. 1(a) shows
�x ohe

l for the three-character alphabet A = {A, B, C}.
The embedding �x ohe

l transforms under what is known as
a “permutation representation” [28]. We denote this repre-
sentation as R ohe

l . For example, consider the transformation
hA↔C that exchanges characters A and C at every position in a
sequence. The effect of this transformation on �x ohe

l [Fig. 1(b)]
is equivalent to multiplying �x ohe

l by the matrix

R ohe
l (hA↔C) =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦. (8)

This and all other matrices in the representation R ohe
l are

permutation matrices, in that all matrix elements are 0 or 1,
and each row and column contains a single 1. Consequently,
multiplying a vector by one of these matrices changes the
order of the elements in that vector but does not change the
overall set values that those elements take. We refer to �x ohe

l
and other embeddings that transform under permutation rep-
resentations as permutation embeddings; their corresponding
models are called permutation models.

The embeddings of many different models can be built
by taking direct sums of Kronecker products of �x ohe

l . For
example, the pairwise one-hot model of Eq. (2) is based on
the embedding

�x ohe
pair = �x triv ⊕

{⊕
l

�x ohe
l

}
⊕

{⊕
l<l ′

�x ohe
ll ′

}
, (9)

where �x triv denotes the trivial embedding (defined to be the
one-dimensional vector [1] for all sequences) and the Kro-
necker product

�x ohe
ll ′ = �x ohe

l ⊗ �x ohe
l ′ (10)

yields an α2-dimensional embedding having elements
xcc′

ll ′ (s) = xc
l (s) xc′

l ′ (s) for all s ∈ S and all characters c, c′ ∈ A.
The direct sums in Eq. (9) yield �x ohe

pair by stacking the compo-
nent embeddings on top of one another in the resulting column

vector. Note that because �x ohe
l is a permutation embedding, so

is �x ohe
pair. In fact, any embedding constructed from a direct sum

of Kronecker products of �x ohe
l is a permutation embedding.

We call this class of models the “generalized one-hot models.”
How a single-position embedding transforms has important

consequences for how the parameters of models constructed
from that embedding are interpreted. For the pairwise one-
hot model, the fact that �x ohe

l transforms under a permutation
representation implies that both �x ohe

pair and �θ ohe
pair transform under

permutation representations as well. A consequence of this
is that the individual parameters in �θ ohe

pair can be interpreted
as quantifying the intrinsic effects of individual alleles. For
example, the transformation hA↔C induces a permutation of
parameters that exchanges θA

l ↔ θC
l at all positions l , ex-

changes θAA
ll ′ ↔ θCC

ll ′ at all pairs of positions l < l ′, and so on.
Model parameters therefore track their corresponding alleles:
θA

l tracks sequences that have A at position l , θAA
ll ′ tracks

sequences that have AA at positions l and l ′, etc.
The fact that �x ohe

l transforms under a permutation repre-
sentation also means that the features therein are not linearly
independent. For example, the three embedding vectors in
Fig. 1(b) lie within a two-dimensional affine subspace de-
fined by the constraint xA

l + xB
l + xC

l = 1. As we will see,
a consequence of such constraints is that embeddings (like
�x ohe

pair) that are built from direct sums of Kronecker products
of single-position one-hot embeddings will yield models that
have gauge freedoms. So although the parameters of general-
ized one-hot models can be interpreted as quantifying intrinsic
allelic effects, the numerical values of individual parameters
cannot generally be interpreted in the absence of gauge-fixing
constraints.

D. Simplex models

Simplex embeddings mathematically represent alleles in a
more compact but less intuitive way than the one-hot embed-
dings discussed above. Single-position simplex embeddings
encode the α characters of A using zero-centered vectors
of dimension α − 1 and thus have fewer dimensions than
corresponding alleles. Simplex embeddings can be defined
in multiple ways that differ from one another by similarity
transformations, i.e., change-of-basis transformations. Here
we adopt a particularly convenient definition: we define
�x sim

l (s) to be an α − 1-dimensional vector, the ith element
of which is xci

l (s) if sl 	= cα and −1 if sl = cα . We use
the superscript “sim” here and in what follows to indicate
mathematical objects that are based on simplex embeddings.
Figures 1(a) and 1(c) illustrate �x sim

l for the three-character al-
phabet. Unlike �x ohe

l , �x sim
l transforms under a non-permutation

representation, that we denote as R sim
l . For example, the effect

of hA↔C on �x sim
l is equivalent to multiplication by the matrix

R sim
l (hA↔C) =

[−1 0
−1 1

]
. (11)

As with one-hot embeddings, the embeddings of many dif-
ferent models can be built from direct sums of direct products
of �x sim

l . For example, a simplex embedding analogous to �x ohe
pair
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can be constructed as

�x sim
pair = �x triv ⊕

{⊕
l

�x sim
l

}
⊕

{⊕
l<l ′

�x sim
l ⊗ �x sim

l ′

}
. (12)

The corresponding pairwise simplex model has the form

f sim
pair = θ0x0 +

∑
l

α−1∑
i=1

θ i
l x

i
l +

∑
l<l ′

α−1∑
i, j=1

θ
i j
ll ′x

i j
ll ′ , (13)

where xi
l denotes the ith element of �x ohe

l and xi j
ll ′ (s) =

xi
l (s)x j

l ′ (s) for all s ∈ S . We use �θ sim
pair to denote the parameters

of this model. Note that individual parameters are indexed
using numerical superscripts ranging from 1 to α − 1, rather
than by characters in A.

Pairwise simplex models describe the same sequence-
function relationships that pairwise one-hot models do, i.e.,
given a set of parameters for one of these models, there exists
a corresponding set of parameters for the other model that
yields the same predictions over all sequences. However, be-
cause �x sim

l has lower dimension than �x ohe
l , �θ sim

pair contains fewer

parameters than �θ ohe
pair . Inspection of Eq. (12) shows that the

number of parameters in �θ ohe
pair is in fact

dim �x sim
pair = 1 + (α − 1)L +

(
L

2

)
(α − 1)2. (14)

This reduction in the number of parameters entirely eliminates
gauge freedoms, as can be seen from

γ ohe
pair = dim �x ohe

pair − dim �x sim
pair. (15)

The lack of gauge freedoms in f sim
pair is one example of the

fact that, as we will see, models defined using (nonredundant)
simplex embeddings do not have gauge freedoms. In fact,
multiple groups [19,21,22] have argued for the use of simplex
models, rather than one-hot models, based on simplex models
not having gauge freedoms.

We argue, however, that the parameters of simplex models
are fundamentally more difficult to interpret as allelic effects
than are the parameters of one-hot models. Because �x sim

l does
not transform under a permutation representation, neither does
�x sim

pair and neither does �θ sim
pair . In the case of the three-character

alphabet, one sees from Eq. (12) that hA↔C induces a trans-
formation of model parameters that maps θ1

l → −θ1
l , θ2

l →
−θ1

l + θ2
l , θ22

ll ′ → θ11
ll ′ − θ12

ll ′ − θ21
ll ′ + θ22

ll ′ , and so on. The fact
that these parameters change in ways described by nontrivial
linear combinations means that individual parameters cannot
be interpreted as quantifying individual allelic effects.

E. Maschke decomposition

We now use methods from the theory of group rep-
resentations to formally investigate the general connection
between model transformation behavior and gauge freedoms.
Maschke’s theorem, a foundational result in representation
theory, states that every matrix representation of a finite group
is equivalent to a direct sum of irreducible matrix repre-
sentations. Here the term “equivalent” means that there is a
similarity transformation (i.e., a change of basis) that maps
one representation to another; we use the symbol � to denote

equivalence in what follows. The term “irreducible” means
that the representation has no proper invariant subspace. Con-
sider for example R ohe

l , the representation that describes how
�x ohe

l transforms under HPSCP. The group HPSCP is isomorphic
to the symmetric group (i.e., the group of permutations), the
representations of which are well understood [28]. In this
context, R ohe

l is called the “defining representation” and is
well known to be reducicble. Specifically, R ohe

l has two proper
invariant subspaces. One subspace has dimension 1 and is
spanned by the vector [1 1 · · · 1]�. The other subspace has
dimension α − 1 and consists of the set of α-dimensional
vectors whose elements sum to zero. The first of these sub-
spaces transforms under the “trivial representation”, which
is simply the 1×1 matrix [1] and which we denote by R triv.
The other subspace transforms (after an appropriate change of
coordinates) under the representation R sim

l . R sim
l is called the

“standard representation” and is well known to be irreducible.
The Maschke decomposition of R ohe

l is therefore given by

R ohe
l � R triv ⊕ R sim

l , (16)

where the direct sum on the right-hand side yields a block
diagonal matrix created from R triv and R sim

l .
Equivalently, we can think of Maschke decomposition

in terms of embeddings. Thinking in terms of embeddings
can be helpful for deriving the specific invertible matrix
that performs the similarity transformation needed to ex-
press a Maschke decomposition as an equality instead of an
equivalence. When multiplied by an appropriate similarity
transformation matrix T, �x ohe

l can be expressed as a direct
sum of the trivial embedding �x triv (which is simply the one-
dimensional vector [1]) and the simplex embedding �x sim

l , i.e.,

T �x ohe
l (s) = �x triv(s) ⊕ �x sim

l (s), (17)

for all sequences s. This allows us to express the equivalence
relation in Eq. (16) as an equality, as it implies that

T R ohe
l (h)T −1 = R triv(h) ⊕ R sim

l (h) (18)

for all group elements h. Based on the definition of the em-
beddings �x ohe

l and �x sim
l above, one can readily show that the

similarity transformation matrix T is given by

T =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1 1
1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

⎤
⎥⎥⎥⎥⎦. (19)

This matrix T will be used later when defining an algorithm
for distilling general equivariant embeddings.

F. Decomposition of equivariant embeddings

Maschke’s theorem implies that any representation R of
HPSCP can be expressed as

R �
K⊕

k=1

QkRk, (20)

where the Rk are distinct irreducible representations of HPSCP

and each Qk is a natural number that denotes the multiplicity
of Rk in the direct sum. R is thus equivalent to a block-
diagonal representation formed by placing Qk copies of each
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Rk along the diagonal and setting all other matrix elements to
zero [see Fig. 2(b)]. One consequence of Eq. (20) is that any
embedding �x that transforms under R can be decomposed as

�x �
K⊕

k=1

Qk⊕
q=1

�xkq, (21)

where each �xkq is an embedding that transforms under Rk . In
what follows, we say that embeddings like �xkq are irreducible
because they transform under irreducible representations. We
also assume that all �xkq are nonzero, but this assumption can
be removed without fundamentally changing our results; see
SM Sec. 5.2 for details. The Maschke decompositions of R
and �x are illustrated in Figs. 2(a) and 2(b).

G. Distillation of equivariant embeddings

We now describe an “embedding distillation” procedure
that connects the Maschke decomposition of �x to the gauge
freedoms of the corresponding model. In SM Sec. 5.1 we
prove the following:

Theorem 1. Any two nonzero sequence embeddings that
transform under the same irreducible representation of HPSCP

are equal up to a constant of proportionality.
Using Theorem 1 we find that there is a similarity transfor-

mation matrix Tdecom such that

Tdecom �x =
K⊕

k=1

Qk �xk, (22)

where, for each k, �xk denotes any one of the irreducible
embeddings �xkq in Eq. (21) and Qk denotes the multiplicity
of each term in the direct sum. Next we perform a similar-
ity transformation (described by a matrix Tthin) that “thins
out” the embedding by setting all except one copy of each
�xk to zero. Finally, we perform a similarity transformation
(described a matrix Tsort) that “sorts” the remaining nonzero
embeddings, arranging them in series at the top of the re-
sulting embedding vector. We thus find that applying the
cumulative similarity transformation given by

Tdist = Tsort Tthin Tdecom (23)

to the embedding �x yields

Tdist �x = �x dist ⊕ �0γ , (24)

where �0γ is a γ -dimensional vector of zeros and

�x dist =
K⊕

k=1

�xk (25)

is a “distilled embedding.” When applied to the representation
R, this distillation procedure yields

Tdist R T −1
dist = �R dist ⊕ �R redun, (26)

where the “distilled representation,” R dist = ⊕K
k=1 Rk , com-

prises one copy of each Rk present in Eq. (20), and where the
redundant representation, R redun = ⊕K

k=1(Qk − 1)Rk , sweeps
up the remaining copies of each Rk . The final distilled versions
of R and �x are illustrated in Fig. 2(c). Explicit formulas for
constructing Tdecom, Tthin, and Tdist are given in SM Sec. 8.

(b)

(c)

(a)

decompose representation
using Maschke’s Theorem

distill embedding
using Theorem 1

full rank 
by 

Theorem 2

number of
gauge

freedoms

FIG. 2. Embedding distillation. (a) Given an M-dimensional em-
bedding �x that is equivariant under HPSCP, let R be the representation
that describes how �x transforms. (b) By Maschke’s theorem, R can be
decomposed into a direct sum of irreducible representations, Rk (k ∈
{1, . . . , K}), each of which occurs with multiplicity Qk [Eq. (20)].
Similarly, �x can be decomposed into a direct sum of irreducible em-
beddings �xkq (q ∈ {1, . . . , Qk}), where each �xkq transforms under Rk

[Eq. (21)]. (c) By Theorem 1, an additional similarity transformation
can be performed that, for each value of k, zeros out all but one �xkq

and sorts the remaining embeddings; each remaining �xkq is denoted
by �xk . Consequently, �x decomposes into a direct sum of a distilled
embedding �x dist and a zero vector �0γ having some dimension γ

[Eq. (24)]. �x dist is given by the direct sum of all �xk [Eq. (25)] and
is full rank by Theorem 2. The distilled representation R dist describes
how �x dist transforms and is given by a direct sum of one copy of each
Rk . The redundant representation R redun operates on �0γ and comprises
the Qk − 1 remaining copies of each Rk . The resulting number of
gauge freedoms is γ [see Eq. (28)].
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H. Identification of gauge freedoms in equivariant models

To identify the gauge freedoms of an equivariant model,
we use the fact that �x dist [defined in Eq. (25)] is full rank. This
is a consequence of the following theorem, which is proven in
SM Sec. 3.4:

Theorem 2. For each k ∈ {1, . . . , K}, let �xk be a nonzero
embedding that transforms under an irreducible representa-
tion Rk of the group HPSCP. Then the direct sum of all �xk is full
rank if and only if all Rk are pairwise inequivalent.

Because �x dist is full rank, �g��x(s) = 0 for all s ∈ S if and
only if

�g = T �
dist[�0M−γ ⊕ �gγ ], (27)

where Tdist is the distillation matrix in Eq. (23) and �gγ is
any vector in Rγ . The space of gauge transformations G is
therefore given by the set of vectors �g that have the form in
Eq. (27). In particular, the number of gauge freedoms is seen
to be

γ = dim �x − dim �x dist = deg R redun. (28)

We thus see that the number of gauge freedoms of an equiv-
ariant linear model is equal to the sum of the degrees of all
the redundant irreducible representations under which that
model’s embedding (or, equivalently, that model’s parameter
vector) transforms.

I. Identification of all equivariant models

The mathematical structure of a group defines the models
that transform equivariantly under that group. In the case
of HPSCP, the relatively simple group structure allows the
straightforward identification of all inequivalent distilled em-
beddings and thus the identification of all equivariant linear
models.

HPSCP can be written as a direct product of simpler groups:

HPSCP = H1 × · · · × HL, (29)

where each Hl denotes the group of character permutations
at sequence position l . Each irreducible representation Rk of
HPSCP can therefore be expressed as the Kronecker product

Rk �
L⊗

l=1

Rk
l , (30)

where each Rk
l is an irreducible representation of Hl (see The-

orem 1.11.3 of Ref. [28]). An embedding �xk that transforms
under Rk will therefore have the form

�xk �
L⊗

l=1

�xk
l , (31)

where �xk
l is an irreducible embedding that transforms under

Hl . In SM Sec. 4.3 we show that Hl supports only two inequiv-
alent irreducible embeddings (regardless of alphabet size):
�x triv and �x sim

l . Each �xk
l must therefore be equivalent to one

of these two embeddings. Ignoring the factors of �x triv because
they do not impact Kronecker products, Eq. (31) becomes

�xk �
⊗
l∈Bk

�x sim
l , (32)

where Bk is a subset of the positions {1, . . . , L}. There are 2L

possible choices for each subset Bk , and thus 2L inequivalent
irreducible embeddings �xk . Since each �xk can appear at most
once on the left-hand side of Eq. (25), there are 22L

inequiva-
lent distilled embeddings �x dist .

For each choice of �x dist there are an infinite number of pos-
sible choices for Tdist and γ that can be used to define �x [via
Eq. (24)]. The number of possible equivariant embeddings
�x, and thus the number of equivariant models f , is therefore
infinite. However, all models corresponding to a specific �x dist

have the same expressivity, i.e., the set of sequence-function
relationships that each model describes (considered over all
possible values of model parameters) is the same. We there-
fore consider these models to be equivalent and conclude that
there are a total of 22L

inequivalent equivariant linear models
on sequences of length L.

J. Analytical analysis of generalized one-hot models

We now use the embedding distillation procedure to com-
pute the number of gauge freedoms of all generalized one-hot
models. This derivation is based on the Maschke decomposi-
tion �x ohe

l � �x triv ⊕ �x sim
l from Eq. (17).

We first demonstrate this calculation on the pairwise one-
hot model. Plugging the decomposition of �x ohe

l into the
definition for �x ohe

pair in Eq. (9), then expanding the Kronecker
products and grouping like terms, we find that

�x ohe
pair �

[
1 + L +

(
L

2

)]
�x triv⊕

×
{⊕

l

L �x sim
l

}
⊕

{⊕
l<l ′

�x sim
l ⊗ �x sim

l ′

}
, (33)

where the scalar coefficients correspond to the Qk in Eq. (22).
We derive the corresponding distilled embedding by replac-
ing each of these coefficients with 1. Doing so reveals the
distillation of �x ohe

pair to be �x sim
pair. The result for γ ohe

pair in Eq. (5)
is therefore just a manifestation of Eq. (28).

We now extend this approach to all generalized one-
hot models. The embedding �xgoh of any generalized one-hot
model can be written as

�xgoh =
J⊕

j=1

⊗
l∈Aj

�x ohe
l . (34)

where A1, . . . , AJ denote J (not necessarily distinct) sets of
positions. Because the dimension of �x ohe

l is α, the number of
corresponding model parameters is

Mgoh = dim �xgoh =
J∑

j=1

α|Aj |. (35)

Decomposing �x ohe
l in terms of �x triv and �x sim

l , expanding each
Kronecker product, then grouping the resulting terms, we find
that

�x dist
goh =

K⊕
k=1

⊗
l∈Bk

�x sim
l , (36)
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TABLE I. Analytical results for various generalized one-hot models, computed using Eqs. (35) and (38). See SM Sec. 6 for derivations of
these results. K-adjacent models assume K � 1. ‡Only includes interactions among adjacent positions.

Model Interaction Number of Number of
type orders parameters (Mgoh) gauge freedoms (γgoh)

Constant 0 1 0
Additive 0, 1 1 + Lα L

Pairwise 0, 1, 2 1 + Lα + (L
2

)
α2 L + (L

2

)
(2α − 1)

Nearest-neighbor 0, 1, 2‡ 1 + Lα + (L − 1)α2 L + (L − 1)(2α − 1)

All-order 0, 1, . . . , L (α + 1)L (α + 1)L − αL

All-adjacent 0, 1, 2‡, . . . , L‡ 1 + α

(α−1)2 [αL+1 − (L + 1)α + L] 1 + α

(α−1)2 [2αL − αL−1 − (L + 1)α + L]

K-order K
(L

K

)
αK

(L
K

)
αK − ∑K

k=0

(L
k

)
(α − 1)k

Hierarchical K-order 0, 1, . . . , K
∑K

k=0

(L
k

)
αk

∑K
k=0

(L
k

)
[αk − (α − 1)k]

K-adjacent‡ K‡ (L − K + 1)αK (L − K )αK−1

Hierarchical K-adjacent‡ 0, 1, 2‡, . . . , K‡ 1 + ∑K
k=1(L − k + 1)αk (L − K )αK−1 + 1 + ∑K−1

k=1 (L − k + 1)αk

where B1, . . . , BK denote the distinct subsets of positions
that occur among all the Aj . Because the dimension of �x sim

l
is α − 1,

dim �x dist
goh =

K∑
k=1

(α − 1)|Bk |. (37)

The number of gauge freedoms of the generalized one-hot
model having embedding �xgoh is therefore given by

γgoh =
J∑

j=1

α|Aj | −
K∑

k=1

(α − 1)|Bk |. (38)

Table I reports the number of gauge freedoms calculated in
this manner for a variety of generalized one-hot models (il-
lustrated in Fig. 3). SM Sec. 6 provides expanded descriptions
for each generalized one-hot model, as well as detailed deriva-
tions of the results in Table I.

A result of this analysis is that all generalized one-hot
models have gauge freedoms, save models for which the direct
sum in Eq. (34) includes only one term. To see this, observe
that Eq. (22) gives

dim �xgoh =
K∑

k=1

Qk (α − 1)|Bk |, (39)

where each multiplicity value Qk is equal to the num-
ber of sets Aj that contain Bk . Using this together with
Eq. (36) and Eq. (28) gives

γgoh =
K∑

k=1

(Qk − 1)(α − 1)|Bk |. (40)

We thus find that γgoh = 0 if and only if none of the Qk are
greater than 1. But since the empty set is a subset of every Aj ,
it will always be among the Bk , and the corresponding mul-
tiplicity value will be Qk = J . Gauge freedoms are therefore
present in all generalized one-hot models for which J � 2.
Conversely, γgoh = 0 when J = 1 because all Bk occur with
multiplicity Qk = 1. Gauge freedoms are therefore absent in
all generalized one-hot models for which J = 1.

K. Computational analysis of generalized one-hot models

Embedding distillation also allows one to efficiently com-
pute a sparse basis for the space of gauge freedoms Ggoh of
any generalized one-hot model. Equation (27) reveals that
Ggoh is spanned by the last γgoh row vectors of Tdist . One can
therefore compute a basis for Ggoh by computing Tdist . This is
notable because computing Tdist only requires keeping track
of the similarity transformations needed to express �xgoh in the
distilled form shown in Eq. (24). This computation is far less
demanding than computing a basis for Ggoh using Gaussian
elimination or singular value decomposition when (as is often
the case) the number of possible sequences is far greater than
the number of model parameters.

In Eq. (23) we described how to construct Tdist from a prod-
uct of three matrices: Tdecom, Tthin, and Tsort. Explicit formulas
for computing these matrices, as well as their inverses, are
provided in SM Sec. 8. For these formulas we observe that
each matrix, as well as its inverse, is sparse in the large L limit
when the maximal order of interaction described by the model
is fixed. The resulting distillation matrix Tdist is therefore also
sparse, as is its inverse. It also turns out that every nonzero
element of Tdist is +1 or −1. Taking the last γgoh rows of
Tdist thus provides a basis for Ggoh consisting of sparse vectors
whose only nonzero elements are +1 and −1. Having sparse
matrices for Tdist and T −1

dist also allows us to compute a sparse
gauge-fixing projection matrix P; see SM Sec. 8 for details.
Figure 4 illustrates the actions of Tdecom, Tthin, and Tsort on an
example embedding vector for the all-order interaction model
corresponding to L = 3 and α = 3. Figure 4 also illustrates
the corresponding distillation matrix Tdist.

L. Other symmetry groups

The proof of Theorem 1 in SM Sec. 5.1, and thus our em-
bedding distillation procedure, applies only to the symmetry
group HPSCP. There are other symmetry groups of sequence
space besides HPSCP, however, and it is worth asking whether
Theorem 1, and thus Eqs. (24)–(28), hold for those groups
as well.

One symmetry group is the group of global character per-
mutations, HGCP. This group comprises transformations that
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K-order

K-adjacent

(b)

(a)

additive

+

pairwise 

+ +

+ +

nearest-neighbor 

all-order

+ + + + +

all-adjacent

+ + + + +

constant

allelic orbit

sequence position

FIG. 3. Structure of generalized one-hot models analyzed in Table I for sequences of length L = 5. Open circles represent sequence
positions. Closed circles represent allelic orbits, i.e., sets of sequence features that are closed under the action of HPSCP. Edges indicate position
indices shared by the features in each allelic orbit. (a) Structure of constant, additive, pairwise, nearest-neighbor, all-order, and all-adjacent
models. (b) Structure of K-order models and K-adjacent models for various interaction orders K .

apply the same permutation to characters at every position in a
sequence. Another is the group of position permutations, HPP.
This group comprises transformations that permute the posi-
tions in a sequence without otherwise changing the characters
therein. SM Sec. 7.1 shows that Theorem 1 does not hold
for either HGCP or HPP. Consequently, one cannot compute
distilled embeddings using the irreducible representations of
either group.

A third symmetry group is HHam, which describes com-
binations of position permutations and position-specific
character permutations. HHam is the largest symmetry group
that preserves Hamming distances [31] and includes HPSCP,
HPP, and HGCP as subgroups. Theorem 1 does hold for HHam

due the fact that HPSCP is a subgroup (see SM Sec. 7.2).

However, the set of models that are equivariant under HHam

is a subset of the models that are equivariant under HPSCP and
the irreducible representations of HHam are more complex than
those of HPSCP. HPSCP is therefore more useful than HHam for
analyzing gauge freedoms.

M. Transformation behavior and parameter interpretability

We now return to the connection between parameter trans-
formation behavior and parameter interpretability. Our above
discussion of pairwise models suggested that the ability to
interpret individual parameters as quantifying intrinsic allelic
effects required the presence of gauge freedoms. We now

023005-9



POSFAI, MCCANDLISH, AND KINNEY PHYSICAL REVIEW RESEARCH 7, 023005 (2025)

basis 
for

(a) (b) (c) (d) (e)

FIG. 4. Embedding distillation for an example generalized one-hot model. (a) Embedding �xgoh of the L = 3 sequence s = ABC for an
all-order one-hot model based on the alphabet A = {A, B, C}. This embedding has degree Mgoh = 64. (b) Result of multiplication by the
decomposition matrix Tdecom. (c) Result of subsequent multiplication by the thinning matrix Tthin. (d) Result of subsequent multiplication by
the sorting matrix Tsort , which yields �x dist ⊕ �0γgoh with γgoh = 37 being the number of gauge freedoms. In (b)–(d), dots indicate �x triv, dashes
indicate zero vectors, and numbers indicate the positions l contributing to each component. (e) Distillation matrix Tdist that implements the
full distillation procedure in (a)–(d). The last γgoh rows of Tdist provide a sparse basis for the gauge space, Ggoh. In (a)–(e), vector and matrix
elements are colored according to their numerical values: blue represents +1, yellow represents −1, and gray represents 0.

formalize this observation and conjecture an extension to all
linear equivariant models.

Mathematically, we define a generalized allele a to be any
subset of S , and say that any sequence s ∈ S has allele a if
s ∈ a. The corresponding “allelic feature” xa is defined to
be the indicator function on S for whether a sequence has
allele a. An “allelic model” is defined to be a linear sequence-
function relationship in which every feature is an allelic
feature. In the context of an allelic model, the parameter θa

that multiplies xa is said to be an “allelic effect.” The param-
eters of a linear model can therefore be interpreted as allelic
effects if and only if every one of the corresponding features
is an indicator function for membership in some subset of S .

For an allelic model to have parameters that describe intrin-
sic allelic effects, the model must be a “permutation model,”
i.e., the features and parameters of the model must transform
under a permutation representation of HPSCP. Requiring an
allelic model to be a permutation model puts strong con-
straints on which sets of alleles it can describe. Because HPSCP

permutes sequences, it also permutes alleles. Given a specific
allele a, we call the set of alleles created by the action of HPSCP

on a an “allelic orbit.” It is readily seen that, for an allelic
model to be a permutation model, the set of alleles it describes
must consist of some number J of complete allelic orbits.

All allelic models that comprise J � 2 allelic orbits have
gauge freedoms. To see this, observe that the features in each
orbit transform among themselves according to a permutation

representation. The features of the full model will therefore
transform under a direct sum of J permutation representations.
Because every permutation representation contains the trivial
representation in its Maschke decomposition, the decomposi-
tion of the full model’s representation will contain at least J
copies of the trivial representation. The model will therefore
have at least J − 1 gauge freedoms, though additional gauge
freedoms can be present as well.

This result is reflected in our above analytic analysis of
generalized one-hot models. All generalized one-hot models
are allelic permutation models (though the converse is not
true; see SM Sec. 9.1), and each allelic orbit of a generalized
one-hot model corresponds to a position set Aj in Eq. (34).
The lower-bound on the number of gauge freedoms identified
here recapitulates the finding above that generalized one-hot
models have no gauge freedoms if and only if J = 1.

An allelic permutation model that does not have gauge
freedoms must therefore comprise only one allelic orbit. An
example of a model with only one allelic orbit is a one-hot
model of length L = 1, e.g., a model describing the effect
of only one nucleotide position in a DNA sequence or one
amino acid position in a protein sequence. Are single-orbit
allelic models useful in practice? We argue that the answer is
essentially no. In SM Sec. 9.1 we show that single-orbit gen-
eralized one-hot models cannot describe co-occurring alleles.
We regard such models as trivial because the entire reason
for quantitatively modeling sequence-function relationships
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is to deconvolve the influence of co-occurring alleles. There
are single-orbit allelic permutation models that describe
co-occurring alleles, but all the examples of these we have
analyzed either have gauge freedoms or are mathematically
equivalent to generalized one-hot models (see SM Sec. 9.1).
Moreover, among models whose embeddings are built from
direct sums of Kronecker products of single-position embed-
dings, the generalized one-hot models have the fewest gauge
freedoms (see SM Sec. 9.2). Based on these findings, we
conjecture that all nontrivial allelic permutation models (i.e.,
all models whose parameters describe intrinsic allelic effects)
have gauge freedoms.

IV. DISCUSSION

Motivated by the connection between gauge freedoms and
symmetries in physics, we investigated the relationship be-
tween gauge freedoms and symmetries in quantitative models
of sequence-function relationships. We found that, for linear
models that are equivariant under HPSCP (i.e., the group of
PSCP transformations), gauge freedoms arise due to model
parameters transforming under redundant irreducible matrix
representations. From a conceptual standpoint, this result
links the gauge freedoms of models of sequence-function
relationships to the transformation behavior of these models
under a specific symmetry group of sequence space. From a
practical standpoint, this result facilitates the analytic calcula-
tion of the number of independent gauge freedoms in a large
class of commonly used models. It also enables an embedding
distillation algorithm that can efficiently compute a sparse
basis for the space of gauge freedoms. This latter capability
may prove to be useful particularly when studying models
with very large numbers of parameters. Such models are
increasingly common, as massively parallel reporter assays,
deep mutational scanning experiments, and other multiplex
assays of variant effect can now readily measure the activities
of hundreds of thousands of sequences in a single experiment
(e.g., Refs. [32,33]).

We also investigated the link between parameter trans-
formation behavior and parameter interpretability. In doing
so we identified an incompatibility between two different
notions of parameter interpretability. In linear models that
are equivariant under HPSCP, the ability to interpret in-
dividual parameters as quantifying intrinsic allelic effects
requires that these parameters transform under a permutation
representation of HPSCP. But in many (and possibly in all)
nontrivial models, this requirement is incompatible with the
ability to interpret the values of individual parameters in the
absence of gauge-fixing constraints. Consequently, models
that have gauge freedoms can have advantages over equally
expressive models that do not have gauge freedoms.

It should be noted that there are indeed useful models that
do not have gauge freedoms. One such class of models are the
“wild-type” one-hot models, the features of which are limited
to those describing mutations away from a specific sequence
of interest (e.g., Refs. [33,34]). Note that wild-type models
differ in an important way from one-hot models expressed in
the wild-type gauge (described in Ref. [29]): the latter models
have specific parameters set to zero, whereas the former mod-
els lack these parameters entirely. The parameters of wild-type

models have a close connection to the quantities that one
can actually experimentally measure, i.e., activity differences
between alleles. However, these parameters do not transform
under a permutation representation of HPSCP and so do not
quantify intrinsic allelic effects. Indeed, wild-type models are
quite close in spirit to the representation of E&M explicitly
in terms of electric and magnetic fields: while these fields
are the directly measurable manifestation of E&M, they trans-
form in complicated ways under changes in observer velocity
and so do not provide the theoretical clarity–the intrinsic
description of E&M–that the electromagnetic four-potential
does.

Another class of useful models that do not have gauge
freedoms are models whose features represent sequence-
dependent physical properties, such as the chemical properties
of amino acids [35,36] or the physical shape of the DNA dou-
ble helix [37,38]. These models are not equivariant, however,
as their parameters describe the effects of physical properties
of alleles, not the effects of alleles themselves. Notably, both
classes of model reflect inductive biases that break HPSCP

symmetry.
In classical field theories like E&M, there are specific

symmetries that are well-established by experiment and that
any mathematical formulation of the theory must be consistent
with. This does not, however, mean that the equations of the
theory must transform in a simple way under those symme-
tries. Mathematically formulating physical theories so that
the equations themselves manifestly respect the symmetries
of the theory generally requires overparameterizing the equa-
tions, thereby introducing gauge freedoms. Physicists often
find it worthwhile to do this, as having fundamental symme-
tries be manifestly reflected in one’s equations can greatly
facilitate the interpretation and application of those equations.
Solving such equations, however, requires fixing the gauge—
introducing additional constraints that make the solution of
the equations unique.

Unlike in physics, there is no experimentally established
requirement that models of sequence-function relationships
be equivariant under any symmetries of sequence space. The
specific mathematical form one uses for such models is sub-
jective, and different models are commonly used in different
contexts. Citing the ambiguities caused by gauge freedoms,
some have argued for restricting one’s choice of model to
those that have no gauge freedoms. Nevertheless, models that
have gauge freedoms are still common in the literature. We
suggest that a major reason for this may be that researchers
often prefer to use models that manifestly reflect symmetries
of sequence space, and therefore have parameters that are
interpretable as intrinsic allelic effects. As we showed, these
criteria often (and possibly in all nontrivial cases) require
the use of overparameterized models. In this way, the origin
of gauge freedoms in models of sequence-function relation-
ships does mirror the origin of gauge freedoms in physical
theories.

There is still much to understand about the relationship
between models of sequence-function relationships, the sym-
metries of these models, and how these models can be
biologically interpreted. This paper and its companion [29]
have only addressed gauge freedoms and symmetries in linear
models. Some work has explored the gauge freedoms and
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symmetries of nonlinear models of sequence-function rela-
tionships [39,40], but important questions remain. The sloppy
modes [41,42] present in these models are also important
to understand, and to our knowledge these have yet to be
systematically investigated. Addressing these problems is be-
coming increasingly urgent due to the expanding interest in
interpretable quantitative models of sequence-function rela-
tionships (e.g., Ref. [43]).

See Supplemental Material [47] for full derivations of
the mathematical results presented above. Python code
implementing the embedding distillation algorithm de-
scribed the section “Computational analysis of general-
ized one-hot models” and used for generating Fig. 4 is
available at [48].
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