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Multiplex assays of variant effect (MAVEs) allow the func-
tional characterization of an unprecedented number of se-
quence variants in both gene regulatory regions and protein
coding sequences. This has enabled the study of nearly com-
plete combinatorial libraries of mutational variants and re-
vealed the widespread influence of higher-order genetic interac-
tions that arise when multiple mutations are combined. How-
ever, the lack of appropriate tools for exploratory analysis
of this high-dimensional data limits our overall understand-
ing of the main qualitative properties of complex genotype-
phenotype maps. To fill this gap, we have developed gpmap-tools
(https://github.com/cmarti/gpmap-tools), a python library that
integrates Gaussian process models for inference, phenotypic
imputation, and error estimation from incomplete and noisy
MAVE data and collections of natural sequences, together with
methods for summarizing patterns of higher-order epistasis and
non-linear dimensionality reduction techniques that allow visu-
alization of genotype-phenotype maps containing up to millions
of genotypes. Here, we used gpmap-tools to study the genotype-
phenotype map of the Shine-Dalgarno sequence, a motif that
modulates binding of the 16S rRNA to the 5’ untranslated re-
gion (UTR) of mRNAs through base pair complementarity dur-
ing translation initiation in prokaryotes. We inferred full combi-
natorial landscapes containing 262,144 different sequences from
the sequences of 5,311 5°’UTRs in the E. coli genome and from
experimental MAVE data. Visualizations of the inferred land-
scapes were largely consistent with each other, and unveiled
a simple molecular mechanism underlying the highly epistatic
genotype-phenotype map of the Shine-Dalgarno sequence.

Gaussian process | genotype-phenotype map | fitness landscape
Correspondence: mccandlish@cshl.edu

Introduction

The genotype-phenotype map is a fundamental concept in ge-
netics and evolutionary biology, encapsulating the relation-
ship between sequence variation and its phenotypic outcome.
Understanding this relationship is crucial for evolution (1-8),
human genetic and infections disease as well as cancer (9-
11), and also for synthetic biology and protein engineering
(12-14) and plant and animal breeding (15-18). This task is
inherently challenging because the effects of mutations often
depend on the genetic background in which they occur due
to the presence of genetic interactions within and between
genes (19-22).

One approach to study empirical genotype-phenotype
maps is by constructing sequences of interest and evaluat-
ing their biological function experimentally. Historically, our

limited ability to engineer large number of genetic variants
and measure their phenotypes has constrained our knowl-
edge to phenotypic landscapes containing only a small num-
ber of genotypes (23-26). However, Multiplex Assays of
Variant Effects (MAVEs) have emerged as a powerful tool,
enabling the simultaneous measurement of molecular pheno-
types for vast libraries of genetic variants in a single exper-
iment (27, 28). These techniques have allowed quantifying
the biological functionality of a large fraction of possible se-
quences for short regulatory elements (29-36), at specific po-
sitions in RNAs (37-41) and proteins (21, 42-52), or for spe-
cific combinations of mutations across different genes (53).
The highly combinatorial nature of this data makes interpre-
tation challenging, often requiring specialized software pow-
ered by sophisticated latent variable models and neural net-
works to accurately fit the data and make phenotypic predic-
tions (54-58). Another promising family of approaches for
modeling complex sequence-function relationships are Gaus-
sian process models (59). Following this line of work, re-
cently developed Gaussian process models naturally incor-
porate genetic interactions of any order by specifying priors
that control the type and magnitude of genetic interactions,
and which allow inference of complete genotype-phenotype
maps from MAVE data, achieving state-of-the-art predictive
power (60, 61).

An alternative approach to study genotype-phenotype
maps is through collections of natural sequences. Because
natural selection often acts to preserve functionality, we can
assume that the probability of observing a sequence in na-
ture depends on how well it performs its function. Thus,
the probability distribution from which sequences with a
specific function are drawn can be viewed as a genotype-
phenotype map in which the phenotype is the probability
of observing a sequence. Independent site models, such as
Position-Weight Matrices, learn this probability distribution
over possible sequences by assuming that positions are in-
dependent (62), whereas pairwise interaction models, also
known as Potts models (63—66), relax this strong assumption
by allowing interactions between pairs of positions. These
models have been very successful in predicting structural
contacts in proteins (67), mutational effects (68), novel func-
tional proteins (69) and specific regulatory sequences, such
as the splice sites (70). A recently proposed bayesian non-
parametric model further generalizes these models by defin-
ing a prior distribution controlling the magnitude of local
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epistatic coefficients and inferring the complete probability
distribution over sequence spaces under that prior, opening
up the opportunity to study genotype-phenotype maps con-
taining high-order epistatic interactions from readily avail-
able collections of natural sequences (71).

Another important challenge is the interpretation of these
complex genotype-phenotype maps, particularly when the
number of possible genotypes is large. A way to de-
velop an intuitive understanding of complex datasets is
through data visualization tools. Various strategies to rep-
resent genotype-phenotype maps have been proposed. The
genotype-phenotype map has often been represented as a to-
pographic map, where genotypes are points in a 2D space
and the height represents the phenotype (1, 72). This concep-
tual representation is very intuitive and has provided us with
language to qualitatively describe genotype-phenotype maps
e.g. fitness peaks, valleys or plateaus. However, the space
of possible sequences is a discrete space, which is more re-
alistically represented as a Hamming graph, in which nodes
represent genotypes and edges represent single-point muta-
tions between them. For genotype-phenotype maps contain-
ing few genotypes, it often suffices to embed this graph in a
two dimensional space using the distance to a reference se-
quence and the phenotype as coordinates (1, 37, 41, 48, 73)
or specific embeddings of the Hamming graph (74) or sub-
graph induced by the set of highly functional sequences (44).
A different strategy is to construct a low-dimensional repre-
sentation that reflects the evolutionary dynamics induced by
the genotype-phenotype map of interest, for example by hav-
ing the distances between genotypes represent the expected
time to evolve between them for a population evolving under
selection for high phenotypic values (75). This is a very use-
ful property for visualizing genotype-phenotype maps, as sets
of functional sequences that are inaccessible to each other
(peaks) are represented far apart in the visualization, natu-
rally displaying the key genetic interactions separating them
(valleys). This technique has been effectively applied to un-
derstand the qualitative features of a number of genotype-
phenotype maps (60, 61, 71, 76, 77) and the constraints im-
posed by the structure of the genetic code in protein evolu-
tion (78). However, its broader applicability has been limited
by the lack of accessible software packages implementing it.

Here, we present gpmap-tools, a python library that
provides an integrated and accessible interface to methods
for inference and visualization of large complex genotype-
phenotype maps. Among other improved features, gpmap-
tools incorporates a new computational back-end in which
large matrices are represented as linear operators, enabling
efficient computation. This allows us to easily sample from
the prior distribution to simulate genotype-phenotype maps
with different types and amounts of epistasis and to do statis-
tical analysis of specific features of the genotype-phenotype
maps in the presence of missing data through computation of
the posterior distribution of arbitrary linear combinations of
phenotypes e.g. mutational effects and epistatic coefficients
across genetic backgrounds. Moreover, using the Laplace ap-
proximation, gpmap-tools, allows these same calculations to
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be conducted when using non-Gaussian likelihood functions,
such as when inferring genotype-phenotype maps from col-
lections of natural sequences. We also present a new pro-
jection operator that enables calculation of the variance ex-
plained by interactions between sets of sites in a complete
genotype-phenotype map, providing useful statistics to un-
derstand the patterns and complexity of genetic interactions
across different positions. In addition, gpmap-tools provides
an extended interface for visualizing genotype-phenotype
maps with different number of alleles per site, new function-
ality to investigate the sequence features that characterize dif-
ferent regions of the representation, tools for interactive visu-
alization, and accelerated rendering of plots containing up to
millions of genotypes.

We demonstrate the capabilities of gpmap-tools by in-
ferring the fitness landscape of the Shine-Dalgarno (SD) se-
quence from two different types of data: i) sequence diver-
sity across the 5° untranslated regions (UTRs) in bacterial
genomes and ii) MAVE data (31). The inferred landscapes
show a common structure consisting of peaks correspond-
ing to the 16S rRNA binding at different distances relative
to the start codon, with registers separated by 3 nucleotides
forming extended ridges of functional sequences due to the
quasi-repetitive nature of the canonical SD motif. Using this
knowledge about the qualitative properties of the genotype-
phentoype map, we fit a simplified mechanistic model whose
parameters have clear biophysical interpretations, allowing
us to disentangle the effects of mutations on binding at differ-
ent registers in vivo, while recapitulating the observed main
qualitative features.

Approach

Epistasis in genotype-phenotype maps. A genotype-
phenotype map is a function that assigns a phenotype, typ-
ically a scalar value, to every possible sequence of length ¢
on « alleles (where e.g. o = 4 for DNA and a = 20 for pro-
teins). The genotype-phenotype map can be represented by
an a-dimensional vector f containing the phenotype for ev-
ery genotype. gpmap-tools implements two different meth-
ods for measuring the amount and pattern of epistasis in a
genotype-phenotype map, one based on the typical size of lo-
cal epistatic interactions and the other based on the fraction
of variance explained by different subsets of sites.

Local epistatic coefficients. The traditional epistatic coeffi-
cient quantifies how much the effect of a mutation A — a
in one site changes in the presence of an additional mutation
B — b in an otherwise identical genetic background C:

€= (faBc — faBc) — (fabc — favc)- e}

The average squared epistatic coefficient €2 across all possi-
ble pairs of mutations and across all possible genetic back-
grounds C' provides a measure of the variability in mu-
tational effects between neighboring genotypes across the
whole genotype-phenotype map (60). This measure €2 can
be computed efficiently as a positive semi-definite quadratic
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form €2 = %fTA@)f, where s is the number of epistatic co-

efficients and A is a previously described sparse o x of

matrix (60). This statistic can also be generalized to ep2 =
Si FTAP) f for local epistatic coefficients of any order P to
characterize the typical size of local P-way epistatic interac-

tions in a mean square sense (71).

Variance components. Any genotype-phenotype map f can
be decomposed into the contribution of £+ 1 orthogonal sub-
spaces f = >, fr, where fj, represent a function contain-
ing epistatic interactions solely of order k. These orthogonal
components f; can be obtained by projecting the function
f into the k-th order subspace using the known orthogonal
projection matrix P, with entries given by the Krawtchauk
polynomials and can be used to compute the relative contri-
bution of the different orders of interactions to a genotype-
phenotype map f (61, 79-82). Moreover, here we show that
each k-th order subspace can be further decomposed into (,ﬁ)
smaller subspaces defined by the genetic interactions involv-
ing k specific sites. For instance, the 3rd order subspace can
be broken down into the relative contributions of interactions
among every possible combination of 3 sites. If we define U
to be a subset of £ sites and Py the projection matrix into the
subspace defined by that subset of sites U, we can express
the function as the sum of contributions of 2¢ components
(f =>_y Puf), where the Py are given by:

Pyzy)=a* [ =1 J] 1. @
peU peU
Tp=Yp TpFYp
These projection matrices allow us to identify, not only the
contribution of interactions of different order, but also which
sites and subsets of sites are involved in those interactions,
providing a finer-grained characterization of the sequence-
function relationship. We can aggregate these components in
different ways to compute other low dimensional summary
statistics, such as the total variance explained by epistatic in-
teractions of a specific order k, or across all orders & involv-
ing a site or a subset of sites (83, 84).

Gaussian process inference of genotype-phenotype
maps.

Interpretable priors. Gaussian process models are a class of
Bayesian models that place a multivariate Gaussian prior dis-
tribution over all possible functions and compute the pos-
terior distribution given observed data (85). In our case,
the prior distribution is a multivariate Gaussian distribution
given by p(f) = N(0, K), typically characterized by its co-
variance matrix K or precision matrix C, where the covari-
ance matrix K is most often defined through a kernel function
K (x;, ;) that returns the prior covariance between any pair
of sequences z;, ;. Our aim is to define prior distributions
for f with hyperparameters that have clear biological inter-
pretations in terms of the type and extent of epistasis included
in the prior. This not only allows us to better understand in-
ference and prediction under each of these priors but also to
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set the hyperparameters of these priors in a principled way
and to interpret their values when learned from data.

gpmap-tools implements two families of priors, one fam-
ily that is defined in terms of local epistatic coefficients and
a second that is defined in terms of variance components.
The first prior parametrizes the prior distribution through its
precision matrix C' = %A(P ) assigning a prior probability
to f depending on the average squared epistatic coefficient
of order P, i.e. logp(f) x —%fTCf (60, 71). This prior
implicitly leaves genetic interactions of order £ < P uncon-
strained, e.g. for P = 2 additive effects are not penalized,
and hence correspond to the use of an improper Gaussian
prior. This family of priors has a single hyperparameter
a that is inversely proportional to the expected squared lo-
cal epistatic coefficient under the prior. As a — 0, we as-
sign the same prior probability to every possible genotype-
phenotype map, so that the Maximum a Posteriori (MAP)
matches exactly the Maximum likelihood estimate. On the
other hand, as a — oo, we assign zero prior probability to
genotype-phenotype maps with non-zero P-epistatic coeffi-
cients, which is equivalent to fitting a model with epistatic in-
teractions up to order P —1 (71). The second family of priors
are the variance component priors, which are parametrized
by their covariance matrix K = Zi:o ApKp. Ithas (41
hyperparameters Ay that control the variance explained by
genetic interactions of order £ (86) and which equivalently
control the decay in the predictability of mutational effects
and epistatic coefficients in genetic backgrounds separated by
an increasing number of mutations (61). The formal relation-
ship between the two sets of priors is that the priors based on
the A(P) operators can be obtained as limits of the variance
component prior (61).

Posterior distributions. Given observations y for some set
of sequences x, we update the probability distribution of
plausible genotype-phenotype maps to be consistent with
these observations by computing the posterior distribution
p(f]y). Under a Gaussian likelihood with known sequence-
specific variance for the measurement error p(y|fz, D, 2) =
N(fz,D,2), where D2 is a diagonal matrix with the vari-
ance o2 associated to each measurement x along the diago-
nal, the posterior distribution for the phenotype f is also a
multivariate Gaussian, whose mean we write as f and whose
covariance matrix we write as .

Our approach for calculating f and X differs depending
on whether we are using the prior based on the mean squared
local epistatic coefficient or our variance component prior.
For the prior based on the mean squared local epistatic coef-
ficient, f is given by the solution of:

(C+XDXT)f=XD_y A3)

where X is a sparse matrix with X;; = 1 if sequence ¢ is the
j-th sequence in x and X;; = 0 otherwise. X is given by:

S=(C+XD}XT)™ 0))

(for derivation, see Supplementary Information). This for-
mulation is useful when the o x o precision or cost matrix
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C is sparse, as is the case here, since then Equation 3 can be
solved numerically using iterative methods. For the variance
component prior, since it is defined in terms of the covariance
matrix K, we can use the classical solution for Gaussian pro-
cesses (85):

F=KX (XTKXJrDaz)_ly o)

-1
S=K-KX(XTKX+Dp) X'K.  (©

The above solutions are completely general, in the sense
that they hold for arbitrary valid prior covariance of precision
matrices. However, as we will explain below, gpmap-tools
implements highly optimized versions of these calculations
that take advantage of the structure of sequence space and
our specific choices for C' and K.

Inference of genotype-phenotype maps with gpmap—
tools. gpmap-tools provides a number of methods to infer
complete genotype-phenotype maps using either phenotypic
measurements of specific genotypes (including the possible
user-provided error estimates for each sequence) or from col-
lections of known functional sequences even in the absence
of direct phenotypic measurements.

Minimum epistasis interpolation / local epistatic coefficient
priors. The minimum epistasis interpolation method was
originally proposed (60) in terms of finding the f, at un-
observed sequences z given the known f, at sequences x
by minimizing €2 over the complete genotype-phenotype
map and gpmap-tools provides a slight generalization to lo-
cal epistatic coefficients of any order P, (by minimizing
fTAWP) £y, Through use of the local epistatic coefficient
prior, gpmap-tools also allows Gaussian process regression
under the improper prior with precision matrix C' and the
presence of Gaussian measurement error given by D 2. Us-
ing this local epistatic coefficient prior, the value of the hyper-
parameter a controlling the magnitude of the local P-th order
epistatic coefficients is optimized via cross-validation. In ad-
dition to the point estimate f of the reconstructed genotype-
phenotype map, gpmap-tools can also provide uncertainty
quantification via the posterior covariance given in Equa-
tion 4.

Empirical variance component regression. Empirical vari-
ance component regression (VC regression), proposed
in (61), combines a Variance Component prior parameter-
ized by the variance Ay associated to interactions of every
order k with a Gaussian likelihood with known noise vari-
ance D_2 to compute the exact Gaussian posterior distribu-
tion over f using equations 5 and 6. The hyperparameters
Ak controlling the action of the prior are optimized through
kernel alignment, this is, by minimizing the squared distance
between the covariance under the prior and the empirical
distance-covariance function computed from the incomplete
data. This can be done very efficiently, because the prior cor-
relation between two sequences depends only on the Ham-
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ming distance, reducing it to a lower dimensional constrained
weighted least squares problem (61).

Sequence probability distribution estimation. gpmap-tools
also implements the SeqDEFT method (71) for estimating
probability distributions over sequence space. SeqDEFT
aims to infer the probability distribution 7 from which nat-
ural sequences are drawn. This problem is similar to the pre-
vious models if we consider the logm; as a phenotype asso-
ciated to sequence ¢. Data typically consists of the number
of times N; a given sequence ¢ was observed out of a total of
Np =), N; observations and can be naturally modeled by
a multinomial distribution parametrized by the probability ;
of observing every possible sequence i:

p(N|7) = Multinomial (N, ). ™

SeqDEFT parametrizes 7; = % and defines an im-
>,

proper prior distribution over the latent phenotype ¢ that

penalizes local epistatic coefficients of order P logp(¢)

— %¢T C'¢. As there is no analytical solution for the posterior

distribution under this non-Gaussian likelihood function

logp(6|N,)  —5 6TAD Y3 Nigu—Nr 3 e,
®

we resort to optimization methods to obtain the Maximum a
Posteriori (MAP) estimate ¢ = arg max g logp(p|N,a) given
a fixed value of the hyperparameter a. We use cross-
validation and one-dimensional grid search to characterize
how the log-likelihood in held-out data changes as a func-
tion of a and select the optimal value a*(71). In addition
to computing the MAP ngS under a*, gpmap-tools implements
the Laplace approximation (85) to the posterior distribution
of ¢ as a multivariate normal distribution with mean (;3 and
covariance matrix given by the inverse of the Hessian eval-
uated at the MAP ((VVylogp(¢|N,a)) ™! = (C+Dy) 7!,

where Dq; is the diagonal matrix with NTe*<£ down its main
diagonal).

Visualization of genotype-phenotype maps. Genotype-
phenotype maps are inherently high-dimensional objects, and
thus difficult to visualize in an intuitive manner. gpmap-
tools implements a previously proposed strategy for visualiz-
ing fitness landscapes (75) that computes embedding coordi-
nates for genotypes such that squared distances between pairs
of genotypes in the low-dimensional representation approxi-
mate the expected times to evolve from one to another under
selection for high phenotypic values. This layout highlights
regions of sequence space containing highly functional geno-
types that are nevertheless poorly accessible to each other
e.g. fitness peaks separated by valleys, or sets of sequences
where the intermediates are functional but the order of the
intervening mutations is highly constrained.

Evolutionary model. We assume a weak mutation model of
evolution in haploid populations, such that mutations are al-
ways fixed or lost before a new mutation arises (60, 71, 75).
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Under this model, the evolutionary rate Q(4,7) from geno-
type i to j depends on the mutation rate M (i,7) (which we
assume is taken from a time-reversible mutational model)
and the probability of fixation relative to a neutral muta-
tion (87, 88):

M(i,j )ISST{}J) if i and j are neighbors

Yk QLK) ifi=j ©®)
0 Otherwise,

Qi,j) =

where S(i,7) is the scaled selection coefficient for mutation
from ¢ to j. We can assume that this scaled selection coef-
ficient is proportional to the phenotypic differences between
the two genotypes (S(i,5) = ¢(f(j) — f(¢)), where the con-
stant ¢ can be interpreted as the scaled selection coefficient
(2Nes, for a Haploid Wright-Fisher population) associated
to a phenotypic difference of 1. Unless specifically studying
the role of mutational biases on evolution on empirical land-
scapes, we would typically assume that M (i,5) = 1 for any
i,J pair (i.e. measure time in units of the inverse mutation
rate), and focus on the evolutionary dynamics induced by the
structure of the genotype-phenotype map alone. This model
assigns a low but non-zero probability of fixation to delete-
rious mutations and has a unique stationary distribution 7 (%)
given by
) 7 (7)ecf ()

0= T .
where 7 (i) are the time-reversible neutral stationary fre-
quencies, which are uniform in absence of mutational biases.
The stationary distribution can be used to select a reason-
able value of c¢ for our evolutionary process. When repre-
senting a probability distribution, such as one inferred using
SeqDEFT, setting f(i) = log P(7) and ¢ = 1 will result in a
stochastic process in which the stationary distribution exactly
matches the estimated genotype probabilities, providing a
very natural representation of the landscape. When inferring
the genotype-phenotype map from MAVE data, ¢ can be ad-
justed so that the mean phenotype under the stationary distri-
bution aligns with realistic natural values e.g. the phenotype
associated to a wild-type or reference sequence(s). Alterna-
tively, a range of c values can be used to generate a family of
visualizations for a single genotype-phenotype map to reflect
the evolutionary impact of the genotype-phenotype map un-
der different assumptions concerning the relative strengths of
selection and drift.

Low-dimensional representation. The right eigenvectors ry,
of ) associated to the largest eigenvalues A (A =0 > g >
Az > ...) can be computed using iterative methods that lever-
age the sparse structure of ). When appropriately normal-
ized and re-scaled as uj = —- Tk the first few rp,

AT 'r‘;fD.,rrk i

for k£ > 2 can be used as embedding coordinates, resulting
in a low dimensional representation in which squared dis-
tances between genotypes optimally approximate the com-
mute times i.e. the sum of hitting times H(7,7) from 4 to
j and H(j,4) from j to 4, thus separating sets of functional
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genotypes that are largely inaccessible to each other for a
population evolving under selection for high phenotypic val-
ues:

> (uk(i) — ug(4)) ~

k=2

H(i,j)+H(j,i). (A1)

The eigenvalues Ay represent the rates at which the associ-
ated eigenvectors become less relevant for predicting evolu-
tionary outcomes with time. The associated relaxation times

~+— have units of expected number of substitutions and al-
low us to identify components that decay slower than ex-
pected under neutral evolution, where we note that if all mu-
tations occur at rate 1, the neutral relaxation time is given
by the reciprocal of the minimum number of alleles across
sites. Because uj captures the k — 1-th strongest barrier to
the movement of a population in sequence space, we refer to
uy, as diffusion axis k£ — 1.

Rendering and visualization. In addition to computing the
coordinates uy, gpmap-tools provides functionality at both
high and low levels to plot and render the visualizations
of genotype-phenotype maps using different backend plot-
ting libraries. This includes the standard plotting library in
python, matplotlib (89), for generating highly customized vi-
sualizations, but also an equivalent interface to generate in-
teractive 3D visualizations that display the sequence associ-
ated to each node of the graph by hovering the mouse over
them using plotly (90). Moreover, as rendering large num-
bers of points and lines becomes limiting in large datasets,
the gpmap-tools plotting library leverages the power of
datashader (91) for efficiently rendering plots containing
millions of different elements, achieving close to an order
of magnitude speed up for large genotype-phenotype maps
(Figure S1).

Efficient computation with gpmap-tools. We aim to
study genotype-phenotype maps with a number of genotypes
ranging from a few thousands up to millions. However, all
of the described methods require computing with unreason-
ably large matrices of size a’ x af. For instance, studying
a genotype-phenotype map for 9 nucleotides, a naive im-
plementation with need to build a 4% x 4° matrix requiring
512GB of memory using 64 bit floating point numbers and
over 100 billion operations to compute matrix-vector prod-
ucts. While some of the matrices are sparse e.g. AP and Q,
allowing efficient storage and computation (60, 71, 75), other
matrices e.g. Py and K, are dense.

gpmap-tools circumvents these challenges using two
strategies. First, we note that every matrix A with entries A;;
depending only on the Hamming distance between sequence
i and 7, such as AP) as well as the dense matrices Py, and
K., can be expressed as an /-order polynomial in the Lapla-
cian of the Hamming graph L (61). This enables efficient
computation of matrix-vector products Ab = Zf ¢ L'b by
multiplying the vector b by L up to £ times e.g. L?b = L(Lb)
and taking linear combinations of the results without explic-
itly building the possibly dense matrix A.
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Second, we note that many of the relevant matrices can
be obtained as ¢-Kronecker products of a x o matrices, such
as Py = ®f) P,. By using scipy’s (92) LinearOperators func-
tionality, we can leverage the mixed Kronecker matrix-vector
product property to efficiently compute e.g. Pyb without
constructing Py (see Supplementary Information). Rather
than calculating explicit inverse matrices, we can likewise
use these linear operators to find numerical solutions to ma-
trix equations using Conjugate Gradient (CG). By combining
multiple linear operators, we are able to compute the poste-
rior variance for a small number of sequences of interest or
the posterior covariance for any set of linear combinations
of phenotypic outcomes e.g. calculating posterior variance
for mutational effects in specific genetic backgrounds and
epistatic coefficients of any order, while limiting the number
of linear systems to solve with CG to the number of linear
combinations of interest.

Results

In this section, we illustrate the power of gpmap-tools to
study the genotype-phenotype map of the Shine-Dalgarno
(SD) sequence. The SD sequence is a motif located in
the 5’UTR of most prokaryotic mRNAs recognized by the
3’tail of the 16S rRNA through base pair complementarity
with a region known as the anti Shine-Dalgarno (aSD) se-
quence, promoting translation initiation (93). Understanding
how the SD sequence modulates protein translation in vivo
is key for optimizing protein production (94). Previous stud-
ies used existing sequence diversity (95) and MAVE experi-
ments (31, 32) to build models for this genotype-phenotype
map. However, these models cannot account for high-order
genetic interactions and provided limited understanding of
the structure of the genotype-phenotype map. Thus, gpmap-
tools offers a new opportunity to model and understand the
patterns of genetic interactions and the main qualitative fea-
tures that define this important regulatory sequence.

Inferring the probability distribution of the Shine-Dal-
garno sequence. Here, we use SeqDEFT to infer the se-
quence probability distribution for the SD sequence by using
the 5’untranslated regions (UTRs) across the whole E. coli
genome. We extracted the 5’UTR sequence from 5,311 an-
notated genes and aligned them with respect to the start
codon. Figure 1A shows site-specific allele frequencies for
up to 20bp upstream of the start codon. This shows only
a small bias towards increased G content between positions
-13 and -5. While this observation suggests the location
of the SD sequence relative to the start codon, the limited
expressivity of this site-independent model is likely insuffi-
cient to capture the genotype-phenotype map underlying the
sequence diversity of the SD sequence. Thus, we focused
on the genotype-phenotype map of this 9 nucleotide region.
Out of the total 4° = 262,144 possible sequences, we ob-
serve 3,690 unique sequences, most of them observed a sin-
gle time. Given that the number of sampled sequences is two
orders of magnitude smaller than the number of possible se-
quences, we expect many unobserved sequences to be func-
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Fig. 1. Inference of the probability distribution of the Shine-Dalgarno sequence. (A)
Sequence logo representing the site-specific allele frequencies of 5,311 5’UTRs in
the E. coli genome aligned with respect to the annotated start codon. The start
codon and the 9 nucleotide region 4 bases upstream are highlighted to emphasize
the region most relevant for translation initiation. (B) Log-likelihood computed in the
20% held-out sequences in 5-fold cross-validations of a series of SeqDEFT mod-
els (P=2) under varying values of the hyperparameter a. The horizontal dashed
lines represent the log-likelihood of the limiting case maximum entropy model, cor-
responding to the independent sites model shown in panel A (black) or the best Se-
qDEFT model (red). (C) Distribution of inferred sequence probabilities depending
on the number of times IN; they were present in the E. coli genome represented in
a logarithmic scale. Vertical black lines represent the empirical frequency N, /Np
corresponding to each INV; value.

tional and that sharing information across neighboring geno-
types through SeqDEFT’s prior distribution could alleviate
this limited amount of data. Figure 1B shows that the model
predicts much better the frequencies of held-out sequences
than either the site-independent model a = oo or the empir-
ical frequencies model a = 0, providing strong support for
the presence of epistatic interactions. We then computed the
MAP solution (using all available data) under the value a*
that maximized the likelihood for the held-out sequences and
compared the inferred probabilities with the observed fre-
quencies (Figure 1C). Sequences that appear more than 2-3
times in the genome are inferred to always be highly func-
tional. However, there is a wide range of variability for un-
observed sequences, ranging 4 orders of magnitude in their
estimated probabilities, many of them with larger probabili-
ties than some sequences that are observed once. The MAP
shows a €2 = 0.10, corresponding to a root mean square lo-
cal epistatic coefficient of 0.32, which is slightly less than
half of the size of the root mean squared mutational effect
(0.78). This indicates that making one mutation in the ge-
netic background will often substantially change the effects
of other mutations.

Inferring the genotype-phenotype map of the Shine—
Dalgarno sequence from MAVE. We next use data from a
previously published MAVE (31) measuring the expression
of a GFP reporter controlled by a library of sequences con-
taining nearly all 262,144 possible 9 nucleotide sequences
4 nucleotides upstream the start codon, as in our previous
analysis. We first run MEI to predict the phenotype for all
missing genotypes. The imputed genotype-phenotype map
had an €2 = 0.11. While this value is not directly comparable
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with the results of our SeqDEFT analysis because of the dif-
ference in measurement scale (log probability vs. log GFP),
we can again compare the root mean squared epistatic coeffi-
cient, which for MEI takes a value of 0.32, to the root mean
squared size of mutational effects, which for MEI is 0.33,
indicating that there is more epistasis in this dataset than in-
ferred by our SeqDEFT analysis. Overall the relatively large
amount of epistasis means that there is substantial variability
in the effects of mutations across neighboring genotypes.

To better capture this high degree of inferred epistasis,
we turned to VC regression, where the prior reflects the ob-
served predictability of mutational effects in the training data.
We found that the empirical phenotypic correlation between
pairs of sequences decayed quite quickly with the number of
mutations e.g. pairs of sequences separated by three muta-
tions only showed a correlation of 0.25 between their mea-
sured phenotypes (Figure 2A). We next estimated the vari-
ance component prior distribution that best matched the ob-
served distance correlation patterns and computed the vari-
ance explained by interactions of every possible order un-
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Fig. 2. VC regression analysis of the experimentally measured genotype-phenotype
map for the Shine-Dalgarno sequence in the dmsC gene context (31). (A) Empirical
distance-correlation function using the measured log(GFP) values in the experimen-
tally evaluated sequences. (B) Percentage of variance explained by interactions of
order k in the inferred VC regression prior. Grey lines represent the cumulative per-
centage of variance explained by interactions up to order k. (C) Two-dimensional
histogram showing the comparison of the measured log(GFP) and the MAP esti-
mate under the VC model in sequences used for model fitting. (D) Comparison of
the posterior distribution for held-out test sequences and the measured log(GFP)
values. Horizontal error bars represent posterior uncertainty represented as the
95% credible interval, whereas vertical error bars correspond to the 95% confi-
dence interval under each measurement’s variance. (E) Heatmap representing the
percentage of variance explained by interactions of order k involving each position
relative to the start codon. (F) Heatmap representing the percentage of variance
explained by interactions of orders 2 or greater involving pairs of positions relative
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der this prior (Figure 2B). The additive and pairwise compo-
nent explained only 57.6% of the overall variance, suggesting
an important influence of higher-order genetic interactions.
We then inferred the complete genotype-phenotype map un-
der this prior. These estimates recapitulated the experimen-
tal data extremely well (R? = 0.94, Figure 2C) and made
predictions almost as accurate in held-out test sequences
(R? = 0.87, Figure 2D). Importantly, our estimates of the un-
certainty of the phenotypic predictions are well calibrated, as
we find approximately the expected fraction of measurements
in the test set within posterior credible intervals (Figure S2C).
Comparing the predictive performance of MEI against VC
regression as a function of the number of sequences used for
training, we find that while the two models perform compa-
rably when the genotype-phenotype map is densely sampled,
and MEI performs better with extremely low sampling (likely
due to error in the estimation of variance components), over-
all VC regression exhibited substantially higher performance
across a wide range of training data densities (Figure S2A,B).

Position-specific contributions to epistasis. An impor-
tant advance in gpmap-tools is its ability to use the Py ma-
trices to evaluate the contribution of each site to genetic in-
teractions of different order. Figure 2E shows this analysis
for the MAP solution obtained using VC regression. We see
that while positions -6 and -5 have an overall weak influence
in the measured translational efficiency, sites -13 to -10 have
both strong additive and epistatic contributions, whereas sites
-9 to -7 influence the phenotype mostly through higher-order
epistatic interactions. Thus, we find that sites in the SD se-
quence have very heterogenous contributions to genetic in-
teractions of different orders, with some sites having stronger
additive and lower order epistatic interactions, whereas other
sites influence translation primarily via higher-order interac-
tions. To investigate the presence of communities of inter-
acting sites, we evaluated the variance explained by epistatic
interactions of any order involving each possible pair of sites
(Figure 2F). We found that all sites strongly interact with
neighboring sites up to a distance of 4 nucleotides, a pattern
that is compatible with communities of 4 consecutive sites
across the 9 nucleotide sequence.

Visualizing the probability distribution of the SD se-
quence. In order to understand the main qualitative prop-
erties of this highly epistatic genotype-phenotype map, we
generated a low dimensional representation using our visu-
alization technique. Figure 3A shows that the genotype-
phenotype maps consists of at least three largely isolated
peaks. These peaks correspond to the canonical SD mo-
tif AGGAG located at three consecutive positions relative to
the start codon, with a fourth central peak corresponding to
a shift of the canonical motif one additional base upstream
appearing along Diffusion axes 3 in a 3-dimensional repre-
sentation (Figure S3). This shows that not only the aSD se-
quence can bind at different distances from the start codon to
induce efficient translation initiation, consistent with the in-
teraction neighborhoods shown in Figure 2D, but also that it
is hard to evolve a sequence with a shifted SD motif by one or
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two positions through single point mutations without losing
translational efficiency. In contrast, sequences with an SD
motif shifted by three positions remain largely connected by
extended ridges of functional sequences, in which a second
binding site can evolve through a sequence of point muta-
tions paths without destroying the first. Specifically, within
each trinucleotide sequence around the central AGG common
to the two binding registers, mutations can accumulate in di-
verse orders, opening up many different evolutionary paths
only subject to the constraint of evolving a second SD mo-
tif before destroying the first one. Figure 3A highlights two
examples of such paths.

Comparing sequence probability across different
species. To investigate whether the structure of the
genotype-phenotype map is the same across distant species,
we performed the same analysis using 5’UTR sequences
from 4,328 annotated genes in the genome of the distant
B. subtilis. We first found that the AG bias marking the lo-
cation of the SD sequence in the 5’UTR is located about 2
bp further upstream from the start codon compared to its lo-
cation in E. coli (Figure S4A), as previously reported (95).
We then extracted the 9 nucleotides sequences 6 bp upstream
of the start codon and inferred the sequence probability dis-
tribution using SeqDEFT. The estimated log-probabilities
were highly correlated with those obtained from the E. coli
genome (Spearman r = 0.94, Figure S4B), but more impor-
tantly, the inferred genotype-phenotype map displayed the
same type of structure, with peaks corresponding to different
binding registers of the aSD sequence and extended ridges
connecting sets of sequences with overlapping binding se-
quences separated by 3 positions (Figure S4B). Overall, the
probability distributions of the SD sequences are quantita-
tively very similar across distant species and shows the same
main qualitative features.

Comparing sequence probability and functional mea-
surements. We next compared the genotype-phenotype
maps inferred based on observed genomic sequences with the
genotype-phenotype map obtained with MAVE data. First,
we directly compared the estimated sequence probability
across the E. coli genome with the inferred translational effi-
ciency from MAVE data (Figure 3B) for every possible se-
quence. We found a moderate non-linear relationship be-
tween these two independently inferred quantities (Spear-
man p = 0.55). Sequences with very low estimated proba-
bility (P < 10~%) consistently showed low translational ef-
ficiency (log(GFP) < 1.0), whereas sequences with high se-
quence probability (P > 10~%) had consistently higher but
variable translational efficiencies (mean=1.84, standard devi-
ation=0.63).

To investigate whether modest agreement is due to noise
in the estimates for individual sequences or to having in-
ferred qualitatively different genotype-phenotype maps, we
applied the visualization technique to the empirical genotype-
phenotype map inferred with VC regression (Figure 3C and
S5). Despite the much more skewed phenotypic distribution
of estimated translational efficiencies, this low dimensional
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representation has essentially the same structure with isolated
peaks corresponding to different distances of the SD motif
to the start codon and extended ridges connecting sequences
with SD motifs shifted by 3 positions separated along several
Diffusion axes (Figure 3C and S6). In addition to the pre-
vious structure, we identify an additional extended ridge of
functional sequences with sequences starting by GAG. This
subsequence, together with the upstream G from the fixed ge-
netic context in which the experiment was performed, forms
a functional binding site for the aSD sequence. In contrast,
the probability distribution of SD sequences was inferred
from genomic sequences with different flanking sequences
in which sequences starting with GAG, on average, are not
as functional. Thus, we can conclude that, despite showing
only a moderate quantitative agreement, the two inference
procedures using different types of data are able to recover
genotype-phenotype maps with the same qualitative features
and expected long-term evolutionary dynamics.

Evaluating the confidence of genetic interactions
and phenotypic predictions. Visualizations of the inferred
genotype-phenotype maps have enabled the identification of
their main qualitative features and the potential genetic in-
teractions underlying them, but they rely on a point estimate
of the genotype-phenotype map that does not take into ac-
count uncertainty. However, we can complement these anal-
yses by leveraging the uncertainty quantification capabilities
of our Gaussian process models as implemented in gpmap-
tools. For example, we can compute the posterior distribution
of the effects of specific mutations in different backgrounds
in order to evaluate the strength of evidence in the data sup-
porting different hypotheses suggested by the visualizations
of MAP estimates. As an illustration of this strategy, we first
validated the incompatibilities separating peaks by comput-
ing the posterior distribution for mutational effects in the two
backgrounds UUAAGGAGC and UAAGGAGCU, which
contain the same AGGAG motif shifted by one position (Fig-
ure 3D). Mutations affecting sites outside the SD motifs in
the two registers e.g. U-12A and C-5A, showed small and
similar effects in the two genetic backgrounds (Figure 3D). In
contrast, the three mutations that allow shifting the SD motif
one position upstream (A-10G, G-8A, A-7G) have strong ef-
fects with opposite signs in the two genetic contexts (Figure
3D). Importantly, the posterior distributions are concentrated
around the means, showing that the data strongly supports
that mutations needed to shift the SD motif by one position
are substantially deleterious in that context, creating the val-
leys that separate the main peaks of this genotype-phenotype
map.

We next evaluated the evidence supporting the existence
of the extended ridge of functional sequences that shifts
the SD motif by 3 positions. To do so, we computed the
posterior distribution at four specific genotypes that con-
tain the two binding registers, only one, or none. Whereas
AGGAGGUAA, UAAAGGAGG and AGGAGGAGG are
highly functional sequences, as they allow binding of the
aSD sequence at either or both positions, if the first three
nucleotides are mutated first as in UUAAGGUAA the first
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SD motif is destroyed before evolving the second one, result-
ing in low translational efficiency (Figure 3E). The posteriors
for these same genotypes and mutations from the B. subtilis
genome (Figure S4D,E) and from VC regression analysis on
MAVE data (Figure 3F,G) are largely concordant and allow
us to conclude that the evidence for this particular high fit-
ness ridge is stronger from the MAVE data than it is from the
E. coli or B. subtilis genomic sequence data.

A biophysical model recapitulates the qualitative
properties of empirical SD genotype-phenotype maps.
Despite inferring a highly epistatic genotype-phenotype map
from the experimental data, the visualization revealed that it
can be explained by a rather simple underlying mechanism
consisting on the ability of the aSD sequence to bind at dif-
ferent distances from the start codon. We hypothesize that
this mechanism alone explains both the existence of isolated
peaks and, together with the quasi-repetive nature of the aSD
sequence, the extended ridges. Moreover, despite our ability
to estimate mutational effects in different contexts, inference
of the actual binding preferences of the aSD from the data
is hindered by the convolution of the effects of mutations on
the binding at different registers. To tackle these issues, we fit
a simple mechanistic model, in which the measured protein
abundance is linearly dependent on the fraction of mRNA
bound by the aSD at thermodynamic equilibrium at different
positions p relative to the start codon, where the binding en-
ergy AG of the aSD is an additive function of the sequence
at that position x;, (see Methods).

We fit this biophysical model by maximum likelihood
(Figure S7A) to the MAVE dataset and achieved good pre-
dictive performance in both training (R? = 0.59, Figure S7B)
and held-out sequences (R? = 0.64, Figure S7C). Impor-
tantly, this model contains only 34 parameters that all have
clear biophysical interpretations e.g. in terms of mutational
effects on binding energies. The model also includes a pa-
rameter « that specifies the background fluorescence in ab-
sence of aSD binding to the 5’UTR, which we estimated as
& = 0.47. Likewise, the maximal protein abundance, ob-
tained when the mRNA is saturated with aSD, is estimated
to be 3.85. These estimates suggest that the equilibrium
occupancy of mRNA’s 5’UTR by aSD is low for most se-
quences, since the dataset has a median protein abundance
of 0.511 and a maximum of 3.12. Moreover, position spe-
cific binding energies AG), are lower (more stable) further
from the start codon (Figure 4A). This can be explained by
either SD:aSD complex being stabilized by other trans ele-
ments binding further from the start codon, or by the aSD
hindering the binding of Met-tRNA:AUG when located too
close to each other. Moreover, we were able to deconvolve
the effects of mutations on binding at different registers and
inferred allele and position specific energetic contributions to
binding (Figure 4B). As expected, the reverse complement
of the aSD is the most stable binder, but different mutations
have substantially variable effects in the binding energy. Not
only do some positions have stronger energetic contributions
in general (positions 2-5 within the SD sequence), but dif-
ferent missmatches with the aSD in the same position have
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different energetic effects e.g. A4G is only slightly destabi-
lizing (AAG = 0.79 kcal/mol), whereas A4C is highly desta-
bilizing (AAG = 1.77 kcal/mol). Importantly, predictions of
this simple model for all 4° SD sequences recapitulate the
main structure of the genotype-phenotype map with isolated
peaks and extended ridges corresponding to different regis-
ters of binding, as expected (Figure 4C). We can verify that
the peaks correspond to different binding registers by com-
puting the binding energy of every sequence at specific posi-
tions relative to the start codon and color the visualization by
those energies (Figure 4D). Overall, the visualization allowed
us to develop a simplified biophysically interpretable model
and to verify that this model recapitulates the main qualita-
tive features of the genotype-phenotype map of the Shine-
Dalgarno sequence.

Discussion

In this paper, we present gpmap-tools, an extensively doc-
umented software library with tools for the inference, visu-
alization and interpretation of empirical genotype-phenotype
maps containing arbitrarily complex higher-order genetic in-
teractions. By providing a framework for the analysis of com-
plex genetic interactions, gpmap-tools has the potential to re-
veal the simple qualitative properties of these complex map-
pings, and to aid in development of biophysical and mecha-
nistic hypotheses for these observed features.

The first step in this framework is the inference of the
complete genotype-phenotype comprising all possible se-
quences from either experimental MAVE data or sequence
counts. Taking into consideration the noise in the data (due
either to sampling noise or experimental error), gpmap-tools
is capable of computing the high-dimensional posterior dis-
tribution over all possible genotype-phenotype maps under
a variety of priors. This allows us to obtain the maxi-
mum a posteriori (MAP) estimate, this is, the most probable
genotype-phenotype map given the observed data. However,
in contrast to other expressive models able to capture com-
plex genetic interactions e.g. neural networks (57, 96), our
inference methods provide a rigorous quantification of the
uncertainty about the phenotypes of specific sequences, mu-
tational effects across genetic backgrounds and, more gener-
ally, any linear combination of the phenotypes of a number
of genotypes. This is important, as it tells the user which
phenotypic predictions, mutational effects or genetic interac-
tions can be trusted and to what extent, given the information
provided by the data.

gpmap-tools re-implements a powerful method for visu-
alizing fitness landscapes (75) that allows exploratory data
analysis, interpretation and comparison of these complex
datasets. Thus, rather than interpreting the results through
an explicit parametric model allowing high-order genetic in-
teractions or descriptive statistics like the number of peaks
or adaptive walks (26, 35, 97, 98), this method leverages
the evolutionary dynamics on the genotype-phenotype map
to highlight its main, potentially unexpected, qualitative fea-
tures. Moreover, we can use it to generate hypotheses for
how mutational effects change with genetic backgrounds,
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Fig. 4. Thermodynamic model of sequence-dependent translational efficiency. (A) Estimated average free energy of binding at position p relative to the start codon across
all possible sequences. (B) Sequence logo representing the site-specific but register-independent allelic contributions to the binding energy, where the size of the letter
represents the difference in binding energy to the average across nucleotides. (C) Visualization of the genotype-phenotype map that results from predicting the phenotype of
every possible sequence under the inferred thermodynamic model. Every dot represents one of the possible 4° possible sequences and is colored according to the predicted
log(GFP). The inset represents the phenotypic distribution along with their corresponding color in the map. Sequences are laid out according to the first two Diffusion axes
and dots are plotted in order according to the predicted log(GFP). (D) Visualization of the genotype-phenotype map under the inferred thermodynamic model representing the
binding energies at positions -14, -13 and -12 relative to the start codon showing that the peaks in the visualization correspond to the strongest binding at different positions.
Binding energies are reported in units of kcal/mol assuming a temperature of 37°C. Dots are plotted in reverse order of binding energy in the corresponding register.

which can then be evaluated through the posterior distribu-
tion (Figure 3 and S4). Identifying the main features of the
genotype-phenotype map can be crucial for defining an ap-
propriate mechanistic or biophysical model. For instance, vi-
sualization of the Shine-Dalgarno genotype-phenotype map
allowed us to define a thermodynamic model in which the
binding energy depended only additively on the sequence at
each register, while recapitulating the peaks observed in the
data. Additionally, this technique enabled a detailed com-
parison of genotype-phenotype maps inferred with different
methods and data sources and the extent to which they had the
same structure, in contrast to broadly used metrics, like Pear-
son or Spearman correlation coefficients. In this work, we
used it to show genotype-phenotype maps with essentially
the same structure inferred from data from distant species
like E. coli and B. subtilis and completely independent data
sources (experimental MAVE data and observations of natu-
ral sequences). Finding consistent structures across differ-
ent data types and sources is particularly relevant for un-
derstanding the role of the fitness landscape on evolution of
these regulatory sequences because we do not have access
to the true fitness values. More generally, the visualization
technique opens up the opportunity to compare genotype-
phenotype maps of different genetic elements e.g. regulatory
sequences, protein-protein interactions, and enzymes, by for
example finding shared fitness landscape structures that in-
duce similar evolutionary dynamics despite the differing bio-
logical substrates.

gpmap-tools enables inference and interpretation of com-
plex genotype-phenotype maps comprising millions of se-
quences by making a number of assumptions that introduce
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some limitations. First, MEM and VC regression are phe-
nomenological models that do not explicitly account for non-
specific epistasis e.g. biophysical models. While these mod-
els can still make highly accurate phenotypic predictions in
the presence of global epistasis through pervasive specific in-
teractions, this limits our ability to distinguish specific from
non-specific genetic interactions (54-56, 99). Second, Se-
gDEFT assumes that observed sequences are drawn indepen-
dently from the underlying probability distribution. While
this assumption may hold for a few specific regulatory se-
quences that are repeated many times along the genome of
a single species e.g. the Shine-Dalgarno sequence or the
57 splice site (71), it remains unclear how robust it is to
the known challenge of using phylogenetically related se-
quences from widespread multiple sequence alignments of
protein families (100-102). Third, both inference and visual-
ization methods still require storing all possible sequences
and their phenotypes in memory, whose number grow ex-
ponentially with sequence length, thus limiting the applica-
bility of gpmap-tools to spaces of sequences of a constant
and relatively short length. Despite these limitations, gpmap-
tools provides a unique set of tools for studying the structure
of short sequence genotype-phenotype maps at an unprece-
dented scale, which is a necessary stepping stone towards un-
derstanding genotype-phenotype maps at the gene, protein or
genome-wide scale.

Methods

Sequence diversity of the Shine-Dalgarno sequence.
We downloaded the E. coli genome and annotation from
Ensembl bacteria release 51, built on the assembly version
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ASM160652v1, and B. subtilis assembly ASM904v1 from
GeneBank. We extrated the 5’UTR sequence for every anno-
tated gene using pysam (103, 104) and kept the 5,311 and
4,328 sequences, respectively, for which we could extract
20 bp upstream of the start codon without any ambiguous
character ‘N*. These sequences were aligned with respect
to the start codon and used for computing site-frequency lo-
gos using logomaker (105) and estimating the complex prob-
ability distribution using gpmap-tools implementation of Se-
gDEFT (71). The MAP estimate was used to compute the co-
ordinates of a low dimensional representation assuming that
the stationary distribution of the evolutionary random walk
matches the estimated sequence probabilities for selecting a
proportionality constant of ¢ = 1 and uniform mutation rates.

Analysis of the experimental fithess landscape of the
Shine-Dalgarno sequence. Phenotype data was computed
from the processed data for independent replicates conducted
in the dmsC genetic background as reported in the original
manuscript (31). The mean and standard error was computed
for all the 257,565 measured sequences. We estimated a com-
mon measurement variance of 2 = 0.058 using genotypes
measured across all 3 experimental replicates. The squared
standard error for each genotype ¢ was computed by dividing
the overall experimental variance 52 by the number of repli-
cates n; in which each sequence was measured (61»2 =42 /).
We kept 0.1% of the sequences as test set, and use the remain-
ing sequences for fitting different models to infer the com-
plete genotype-phenotype map while evaluating their perfor-
mance on the held-out test data. We estimated the variance
components from the empirical distance-correlation function
and used them to define a Gaussian process prior for infer-
ence of the complete combinatorial landscape containing all
49 genotypes, taking into account the known experimental
variance 61-2 for each sequence. We also computed the poste-
rior mean and variances across all test sequences to assess the
accuracy of the predictions and the calibration of the poste-
rior probabilities in held-out data. We used the MAP estimate
to compute the coordinates of the visualization assuming sev-
eral different average values of log(GF P) under the station-
ary distribution that ranged from 1 to 2.5 (Figure S5). An
average log(GFP) of 2 at stationarity was selected and used
for all subsequent visualizations, similar to our best estimate
of 2.03 for the wild-type reference.

Thermodynamic model of the Shine-Dalgarno geno-
type-phenotype map. We assume that translation is limited
by the initiation step, which is itself modulated by the binding
of the 16S rRNA to the 5’UTR of the mRNA, whose concen-
tration is assumed to be independent of the Shine-Dalgarno
sequence. Binding and dissociation are assumed to be much
faster than the rate at which translation is effectively initiated,
so that the protein abundance is proportional to the fraction of
mRNA bound by the 16S rRNA in any configuration or reg-
ister p at thermodynamic equilibrium. This quantity depends
on the binding energy AG of the 16S rRNA to the mRNA to
the sequence x, located at position p, the temperature, which
is assumed to the 37°C (310K), and the universal gas con-
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stant R = 1.9872 x 10~3 kcal/mol K—1. Moreover, we as-
sume that there is a minimal value « that is independent of the
variable 5’UTR sequence in the experiment, which can repre-
sent a background translation level that depends on a different
mechanism of initiation, or background signal in the assay
e.g. cells auto-fluorescence in the GFP channel. Thus, the
overall protein abundance f(x) for a sequence = depends on
« and the fraction of bound mRNA multiplied by the transla-
tion rate when bound (3, which also encodes for the maximal
protein output through this initiation mechanism:

 AGp(p)
L AT
f@)=a+p GG | (12)
1+ Zp e RT

We next assumed that the binding energy at position p de-
pends only on the 8 nucleotide subsequence at that position,
such that each position has an intrinsic preference of bind-
ing AGg and a site independent contribution of the allele ¢
at each position 7 of the sequence x(i,c). Importantly, we
extended the variable 9 nucleotide sequences with the fixed
upstream and downstream sequences CCG and UGAG from
the dmsC genetic context to incorporate the effect of muta-
tions in binding registers spanning both fixed and variable
regions of the sequence:

AG(zp) = AGY+ > > " ay(i,c) AAGe.  (13)

Finally, we assume that the measurement y for sequence
x is observed with known noise variance o? and an extra
or uncharacterized variance 72 under a Gaussian likelihood
function given by p(y|z) = N(f(x),02 +72). We used Py-
Torch to encode the model and the Adam optimizer with a
learning rate of 0.01 for 2500 iterations, while monitoring
for convergence (Figure S7A), to find the maximum likeli-
hood estimates of the model parameters.

Code availability

gpmap-tools is an open-source library with source code
available at https://github.com/cmarti/gpmap-tools. It is
thoroughly documented with several tutorials and expla-
nations of the provided functionalities at https://gpmap-
tools.readthedocs.io. ~ Code to reproduce the analyses
of the Shine-Dalgarno landscapes can is available at
https://github.com/cmarti/shine_dalgarno.
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Fig. S1. Visualization rendering times using two different back-end libraries for plotting as a function of the size of DNA and protein genotype-phenotype maps.
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Fig. S2. Predictive performance of Minimum Epistasis Interpolation and Variance Component regression in held-out data. (A,B) Model predictive performance measured by
the R?2 (A) and RMSE (B) in held-out data as a function of the fraction of data used for training and phenotypic prediction. Error bars represent the standard deviation over
3 independent subsets of sequences used for training at each proportion. (C) Evaluation of Variance Component regression model calibration by comparing the expected
fraction of times a predictive interval will contain the real phenotypic value compared to the fraction of times it actually contained the measured phenotype across 274 test
data points. Error bars represent the 95% Jeffreys confidence interval for the estimated fraction of data points laying within the corresponding predictive interval. Diagonal
dashed gray line shows the expectation under perfect model calibration.
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Fig. S4. The structure of the genotype-phenotype map inferred from B. subtilis is conserved. (A) Sequence logo representing the site-specific allele frequencies of 4,328
5'UTRs in the B. subtilis genome aligned with respect to the annotated start codon. The start codon and the 9 nucleotide sequences 4 bases upstream are highlighted to
emphasize the most relevant cis-regulatory sequences for translation initiation. (B) Two-dimensional histogram representing the relationship between the inferred sequence
probabilities from their frequency in the E. coli and B. subtilis genomes. (C) Low dimensional representation of the Shine-Dalgarno probability distribution inferred with
SeqDEFT. Every dot represents one of the possible 4° possible sequences and is colored according to its inferred probability. The inset represents the distribution of inferred
sequence probabilities along with their corresponding color in the visualization. Sequences are laid out according to the first two Diffusion axes and dots are plotted in order
according to the 3rd Diffusion axis. (D) Posterior distribution of the effects of specific mutations when introduced in two genetic contexts UUAAGGAGC and UAAGGAGCA
representing a shift by one position of the AGGAG motif. (E) Posterior distribution of phenotypes associated to genotypes representing the shift of the AGGAG motif by 3
positions. Points represent the Maximum a posteriori (MAP) estimates and error bars represent the 95% credible intervals.
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Fig. S7. Fitting a thermodynamic model to the Shine-Dalgarno genotype-phenotype map using MAVE data. (A) Training curve showing the evolution of the log-likelihood
as a function of the number of iterations of the Adam optimizer. (B) Comparison of measured log(GFP) in the training data with the predicted values under the estimated
thermodynamic model. (C) Comparison of measured log(GFP) in the test data with the predicted values under the estimated thermodynamic model.
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Supplementary Information

Linear operator for Laplacian of the Hamming graph. The space of possible sequences of length ¢ and « different alleles
can be represented by a Hamming graph, in which nodes represent genotypes and edges represent single point mutations. The
Laplacian matrix L of this graph is given by

-1 if ¢ and j are neighbors
L(i,j) =< l(a—1) ifi=j (14)
0 Otherwise

This matrix is sparse and can be stored in Compressed Sparse Row (CSR) format to efficiently compute matrix vector
products. Despite the sparsity, there are still o x (14 ¢(cv—1)) non-zero entries. For a the space of sequences of length 9 with
4 alleles with 64 bits floating point values, only storing the non-zero entries would require about 450MB. Here, we develop a
matrix-free function to compute matrix-vector products with the Laplacian matrix Lb by leveraging the highly regular structure
of this matrix and tensor broadcasting with memory requirements that scale only with the size of sequence space af. We can
express Lb as

Lb=({(a—1)[-A)b= (bal —(lI+A)b="lab— ({I+A)b=Llab—w

where A is the adjacency matrix and w is the product (¢I + A)b. For a fixed choice of b, let B € R(@X@X---Xa) g tensor

choice of b, the tensor W, where Wy, 4, ... 2, = W, can be easily computed in tensor form using broadcasting,

e
w=> B (15)

i . . . .
where Bgf,,,,,xifl,*,mm,,,,,w,v, = Z? Bxh._,%_l’c,xiﬂ,_._7;5[, which can be efficiently computed by summing the entries

of B over axis i. We can then use B and W to calculate w = (¢1 + A)b as:

{ «
Wz = Way 2g,..0p = E :E :Brl7~~wri71,07%+17-~7$e
A c

4 «
:£B$1,$27---7$e+§ , E Bﬂﬂl,--~,$i—1,6,ﬂci+1,-~-7Ie

i c#w,

= by + (Ab)y = (€1 + A)b),.

Properties of the P projection operators. Let f represent a genotype-phenotype map in the space of sequences with a
single site and « different alleles. The function f can be projected into the constant subspace V through the projection matrix
Py =0b(bTb)" b= éﬁT and into the orthogonal subspace through the projection matrix Py =1 — Py = I — éﬁT. For any
pair of sequences z,y, Py(x,y) = é and

-1 .

= ifz#y
Pl(x7y) = {aa_l e
I lfl’—y

For a genotype-phenotype map f in the space of sequences of length ¢, these elementary subspaces can be combined through
tensor products into 2¢ different V; = ®;; V), subspaces defined by the set of sites U, such that V,, = V; forp € U and V,, = Vj

for p ¢ U. Thus, the projection operator into the subspaces defined by U are obtained through Kronecker product Py = ®f) P,

Py(zy)=a " [ (<1 ] (a-1). (16)
peU peUp
TpAYp Tp=Yp

It is easy to show that the resulting subspaces V; are orthogonal to each other using the mixed product property of the
Kronecker product (A® B)(C ® D) = (AC) ® (BD). As a consequence, if either AC =0 or BD = 0, then (A® B)(C' ®
D) = 0 are orthogonal. If we consider two subspaces defined by different subsets of sites U and U’, there will be at least
one position at which the two site-specific elementary subspaces are orthogonal to each other PpPI', = Py P = 0, such that

Py P/, = (®f) Pp)(®f) P)) = ®f7(PpPI§) = 0. Next, we consider the subspaces defined by the direct sum of subspaces U
containing exactly k sites Vj, = @UZIU\: « Vu and derive the corresponding projection operator Fy:
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Pu(z,y)= Y Pulwy= > o " J] =1 [] (@—1)

U:U|=k U:|U|=k peU peUp

x Tp=Y
p7Yp p—Ip (17)
> II o II @-v
U:|U|=k peU peUp
Tp#Yp Tp=Yp

We note that the elements in the sum can only be obtained by multiplying the factors (v — 1) and (—1) k times. There-
fore, these products can take only k + 1 possible values (o — 1)°(—=1)!, (a — 1)} (=1)~1, ..., (a — 1)*(—1)° or more generally
(—1)7(a— 1), such that Py, can be expressed by:

k
Pp(z,y) =a "> (1) (a—1)""n,, (18)

q
where n is the number of times each unique value appears when summing through the corresponding Pr; matrices. Whether
we take (ov— 1) or (—1) depends on whether sequences x and y have the same alleles at the sites in U, but not on which
alleles. Moreover, because we are summing over all possible U of the same size, n, does not depends on the specific sites
that are different, but only on the Hamming distance d(x,y) between sequences = and y. Specifically n, can be obtained by

multiplying the number of ways in which we can select ¢ sites within the set of different sites d(z,y), given by (d(“;’y)), with

the number of ways we can select the k — ¢ sites within the set of £ — d(z,y) sites with the same allele, given by (Z_SSZ’y)).

k

Puloa) =~ Syt o (1) (1) (19)

q

Note that this expression corresponds to the projection operator into the k-th order subspace (61), showing that the k-th order
subspace can be decomposed into smaller subspaces V7 corresponding to pure k-th order interactions involving specific subsets
of sites. It is also easy to show that the columns of Py are in the k-th eigenspace of the graph Laplacian by taking its projection
and using the Py orthogonality properties:

PPr= Y Pupy =0 HIUI=E 20)
e 0 it U] £k

Using the same argument, we can show that the columns of Pp; span a non-zero subspace within the k-th order eigenspace of
the graph Laplacian since Py P, = Py )1, pr|=p Pur when |U| =

Linear operator for /-Kronecker products. In the previous section, we describe the projection matrix Py that projects
a function f into the subspace corresponding to pure interactions between sites in a set U. Here we describe an efficient
method for calculating the product Py f by noting that Py can be written as a Kronecker product of ¢ matrices (P = ®f; Py).

Specifically, for any matrix A for any matrix obtained through an /-Kronecker product A = ®1’; Ap, we can compute the matrix
vector product Ab without explicitly constructing A as follows:

L

L
Ab= (®Ap)b = (A ®Ap)b
=1 p=2

[(A1D)11(®)— Ap)b1 + (A1) 12(R) 5 Ap)ba + -+ + (A1) 1a(R) 5 Ap)be
(A1)21(®)—o Ap)b1 + (A1)22(R) 5 Ap)ba + -+ + (A1) 20 (5 Ap)be

(A) (® Ap)bl+(Al)a2(®f,:.2Ap)b2+"'+(f41)aa(®f; 2 )bé

(AD)1e(®p=p Ap)be | [(®posAp) X2 (A1) <®p 2 Ap)unn

[0 p=2 ) X2 (A)1ch
S22 @pp Aplbe || (@ Ap) T (A2 || (@pz Ap)urz
Z Z Al ac

(AD)ael @y Ahe]  [(®' s 4) X0 (A1) <®f,:2?1p>um
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where we let uy; = >0 (A1)icbe and note that these vectors can be computed simultaneously by multiplying an o X o
matrix with an a x of~! matrix

u?l Zg (A1)1cb§ b;
U2 > e (A1)2cbe A ba

. = . = A1 .
u{a E(cl (Al)acbcT bg

Once these vectors are computed, we can use the same strategy to compute the (®£:2

£=1 matrix multiplication operations,

Ap)uij. Recursively repeating
this calculation, we find that we can compute Ab using only ¢ different o X a by a X «
avoiding storage and computation of the o x af dense matrix A.

Posterior distribution computation with the cost matrix. Given a set of n measurements y in a subset of sequences x with
measurement variances arranged along the diagonal of am n x n matrix D, we aim to obtain the complete genotype-phenotype
map represented by the o/-dimensional vector f that maximizes the posterior probability of f given the observations y, i.e. we
wish to find

f= argmaxlogp(/[y)-

We begin by defining an o

fm :XTf

x n matrix X relating the points in the complete space with the n observed values, such that

o 1 if observation j corresponds to sequence %
* 0 otherwise.

Using X, we can then write the posterior log-probability as a function of f:

1 1 _
logp(fly) O<—§fTCf—§(y—XTf)TD Hy—XTf). 2D
We can then expand this expression to separate factors that depend on f from those that depend only on the data y.
logp(f1y) ox —ffTCf TD y+ XDy~ fTXD’lXTf
_ _ 1 _

= —ifT(C—FXD XY f+fTXD 1y — inD Ly.
We next take the gradient with respect to f

Vs logp(fly) = —(C+ XD 'XT)f + XDy,
and solve for f by setting V ¢ log p(f|y) = 0, which yields

f=(C+XD1XxT)"1xD Yy (22)

If C is invertible, then we can define a kernel matrix K = C~! over the complete genotype-phenotype map and verify
that this is equivalent to the classical solution for the posterior mean of a Gaussian process model using Woodbury’s identity.
Specifically, for a subset of sequences z and the o by |z| matrix Z defined by:

g _ 1 if sequence ¢ is the j-th member of z
700 otherwise,

we find that
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fz = ZTf
=zYCc+xD'xT)~"1xD 1y
=7 (Kf KX(XTKX +D)—1XTK) XD 1y
7Tk (1— X(XTKX+D)*1XTK) XDy
=7TK (X CX(XTKX + D)—1XTKX) DYy
—ZTKX (If (XTKX+D)—1XTKX) DYy,

Then we can use the fact that I = (X7 KX + D)~} (XT K X + D) to obtain the identity:

I-(XTKX+D)'XTKX
=(XTKX+D) ' XTKX+D)-(XTKX+D)'XTKX
=(XTKX+D)" Y XTKX+D-XTKX)
=XT"Kx+D)"'D

Substituting this identity into our previous expression for f,, we now recover the classical maximum a posteriori solution
for Gaussian process regression

Jo=2TKX (XTKX+D)_1 DD 'y =2"KX (XTKX+D)_11/,

as desired.

Turning to the covariance matrix for the posterior, knowing that the posterior distribution is multivariate Gaussian implies
that the posterior covariance matrix is given by the inverse of the Hessian matrix of the log-posterior probability. Thus the
covariance matrix of the posterior distribution is given by:

2= (VVlog(fly) ' = (C+xD7'XT) (23)

which we note depends on our observations only through the pattern of observed sequence as encoded in X and not on the
observed phenotypes .

Based on the marginalization property of multivariate Gaussian distributions, the posterior covariance at a subset of points
z can be obtained simply by taking the submatrix X,, = Z7%Z. We can verify that this also matches the classical solution for
Gaussian process posterior covariance when K = C~! using Woodbury’s identity:

—1
5., =27 (O+XD—1XT) 7z
-1
y (c—l _c! (XTC—1X+D) c—l) Z
—1
— 77 (KK(XTKX +D) K>Z (24)
—1
—7TK7-7TK (XTKX+D) KZ
:KZZ_KZZ(sz—i_D)ilKQJZ)

as desired.
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