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Abstract

The neocortex is organized into functionally specialized areas. While the functions and underlying neural circuitry
of individual neocortical areas are well studied, it is unclear how these regions operate collectively to form percepts
and implement cognitive processes. In particular, it remains unknown how distributed, potentially conflicting
computations can be reconciled. Here we show that the reciprocal excitatory connections between cortical areas
orchestrate neural dynamics to facilitate the gradual emergence of a ‘consensus” across areas. We investigated the
joint neural dynamics of primary (V1) and higher-order lateromedial (LM) visual areas in mice, using simultaneous
multi-area electrophysiological recordings along with focal optogenetic perturbations to causally manipulate neural
activity. We combined mechanistic circuit modeling with state-of-the-art data-driven nonlinear system identification,
to construct biologically-constrained latent circuit models of the data that we could further interrogate. This approach
revealed that long-range, reciprocal excitatory connections between V1 and LM implement an approximate line
attractor in their joint dynamics, which promotes activity patterns encoding the presence of the stimulus consistently
across the two areas. Further theoretical analyses revealed that the emergence of line attractor dynamics is a signature
of a more general principle governing multi-area network dynamics: reciprocal inter-area excitatory connections
reshape the dynamical landscape of the network, specifically slowing down the decay of activity patterns that encode
stimulus features congruently across areas, while accelerating the decay of inconsistent patterns. This selective dynamic
amplification leads to the emergence of multi-dimensional consensus between cortical areas about various stimulus
features. Our analytical framework further predicted the timescales of specific activity patterns across areas, which we
directly verified in our data. Therefore, by linking the anatomical organization of inter-area connections to the features
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they reconcile across areas, our work introduces a general theory of multi-area computation.

The neocortex is segregated into distinct areas that are special-
ized for specific functions. This organization allows for de-
composing complex problems into simpler sub-computations,
such as the extraction of low-level features from intricate vi-
sual scenes. However, cognition arises from the holistic inte-
gration of these processes, making it essential that the different
areas work in concert and remain consistent with each other.
It is unclear how such coordination is achieved, and in partic-
ular how any conflict that might arise between local subunits
can be globally resolved.

Anatomically, cortical areas are densely interconnected
through reciprocal long-range inter-area connections [Felle-
man and Van Essen, 1991], whose organization is markedly
distinct from that of local circuits within a cortical area. For
instance, both excitatory and inhibitory neurons have local
innervation, while only excitatory neurons have long-range
projections that may target other areas [Douglas and Martin,
2004, Markram et al., 2004, Harris and Shepherd, 2015]. The
functional role of these distinct connectivity rules is not clear;
it remains unknown how excitatory inter-area connections
coordinate cortical activity and unify local sub-units into co-
herent global computations. To address this, we combined

mechanistic modelling of cortical circuits with data-driven in-
ference of circuit dynamics. This approach allowed us to build
models of cortical activity that not only explained neural re-
sponses quantitatively, but also captured the causal effects of
optogenetic perturbations and had biologically interpretable
components — including local and long-range connections —
whose functional significance we could interrogate.

We focused on the joint activity dynamics of the primary (V1)
and higher-order (LM) visual areas in mice during visual
processing. We used simultaneous multi-channel recordings
from V1 and LM performed while mice were presented with
a 500 ms-long visual stimulus — one of two stationary gratings
oriented at 45° or -45°(Figure 1A-B). Mice were trained to
perform a go/no-go task, discriminating the two stimuli. In
some trials, neural activity in either V1 or LM (varying across
animals) was perturbed in brief 150 ms time windows, using
optogenetic activation of inhibitory parvalbumin-expressing
(PV+) interneurons expressing channelrhodopsin-2 (ChR2)
(Figure 1C) [Javadzadeh and Hofer, 2022].

We built circuit models that explicitly incorporated known
aspects of cortical circuit organization, in particular the exci-
tatory nature of long-range connections between areas and
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Figure 1: Modeling input-driven dynamics in the V1-LM network during visual processing. (A) Head-fixed, stationary mice
were presented with two differently oriented stationary grating stimuli (45° or -45°), only one of which was rewarded. Mice reported
the rewarded stimulus by licking a spout, which triggered the delivery of the reward (go/no-go). Paired neural recordings were
performed in retinotopically matched regions of V1 and LM with silicon probes in PV-Cre mice. (B) Trial- and neuron-averaged
spiking activity in no-go trials in V1 (left) and LM (right). A total of 194 neurons in V1 and 228 neurons in LM were recorded
in 7 mice across a total of 513+£110 (mean = std) correct trials per mouse across two stimuli. (C) Top: In some trials, either V1
or LM was silenced through light-mediated activation of parvalbumin-expressing inhibitory cells expressing ChR2. The light
onset was randomly chosen in each trial amongst 8 different times, spanning the duration of the stimulus uniformly (at 65 ms
intervals), with a total of 449+98 (mean =+ std) silencing trials per mouse. Bottom: Neuron- and trial-averaged spiking activity
of the optogenetically stimulated PV+ neurons (top) and all other neurons (bottom) in an example animal, for one laser delay.
(D) Biologically-constrained latent circuit model of V1-LM, with dynamics driven by 3 external inputs whose time course is inferred
on a single trial basis. Dashed lines indicate the time-varying standard deviations of the (zero-mean) prior distributions over these
inputs. Solid lines and shaded areas indicate posterior mean and standard deviation respectively, in one example trial, estimated
from 100 posterior samples and smoothed with a running average of 25ms for visualization. (E) Left: Inferred time course of inputs
for three example trials. Each column shows three input channels for one trial (optogenetic perturbation in blue, go stimulus in
green, and no-go stimulus in red). The prior standard deviation (dashed line) indicates the presence of each input in the trial: no-go
stimulus in the first trial, go stimulus paired with optogenetic perturbation in the second trial, and no-go stimulus paired with
optogenetic perturbation in the third trial. Shaded area is the posterior standard deviation. Right: Trial-averaged time course of the
three input channels, aligned to the input onset, shown as mean and standard deviation (shaded area) of the posterior mean across
all trials. For each input channels, trial averages were calculated from trials where that input was present. All traces were smoothed
with a running average of 25ms for visualization. (F) Example readout matrix (C in Equation 2) in the fitted model, depicting the
mapping from the latent units (columns, divided into two areas, and into excitatory (red) / inhibitory (blue) subpopulations within
each area) to the recorded neurons (rows; blue bars mark PV cells identified by optogenetic perturbations in LM). (G) Top: Average
recorded activity in V1 (left) and LM (right) during the no-go visual stimulus in an example animal. Bottom: Corresponding activity
of the excitatory (red) and inhibitory (blue) latent units. Shaded areas around mean traces in B, C, and G denote 95% confidence
intervals (£2 s.e.m.).

local excitation-inhibition dynamics. In these models, the time
course of spiking activity in V1 and LM was explained by the
recurrent dynamics of the latent circuit (Figure 1D). These dy-
namics were driven by time-varying inputs that we inferred
for each trial, reflecting any unobserved signals external to
the V1-LM circuit such as sensory or optogenetic stimuli.

Specifically, the latent circuit’s activity z(t) evolved according

to

() = —2(t) + W(2(t)) + Bu(t), (1)

where T = 20 ms is the characteristic neuronal membrane
time constant, W is the latent circuit connectivity, ®(-) is a
soft-rectified nonlinear activation function, and w is a set of
trial-specific external input signals that enter the dynamics
through the input matrix B (Methods). The activity of this
latent circuit was used to describe firing rate fluctuations in
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the observed V1 and LM neurons, according to
r(t) = exp(Cz(t) +d), )

where C'is a readout matrix specifying the way in which each
recorded neuron relates to the latent units, and d is a vector of
constant offsets. Action potentials were modelled as Poisson
processes given these time-varying firing rates.

The latent circuit was partitioned into two areas, which
mapped onto V1 and LM neurons respectively. Moreover,
the recurrent connectivity matrix W was constrained so that
each area was composed of separate populations of excitatory
and inhibitory units, and long-range connections between
the two areas originated exclusively from the excitatory units
(Methods). Although we did not know the E/I identities of
most of the recorded neurons, we used a specific sparsity
penalty on C to discourage any nonsensical, simultaneous as-
sociation of a neuron with both E and I latents subpopulations
(Methods). This soft constraint encouraged the model to learn
to label each neuron as either E or 1.

To fit the model, we used iLQR-VAE [Schimel et al., 2022], a
method ideally suited to learning the dynamics of a circuit
when the detailed time course of external inputs is unknown
and must therefore be inferred in each trial. Importantly, here
we did have some knowledge of what input signals might have
driven the circuit in a given condition and when. iLQR-VAE
lets us incorporate such information in the form of condition-
specific, time-varying statistical priors over the input u(t)
in Equation 1. Thus, we used three input channels reflect-
ing the two visual stimuli and the optogenetic perturbation
events. The mapping from inputs to latents, B, was con-
strained such that the input channel with the optogenetic
perturbation prior could only target the inhibitory latents of
the stimulated area for each animal. For each channel, we
learned two prior variances: the higher variance was used
during the time the corresponding stimulus was on, and the
lower one outside those epochs (Figure 1D, dashed lines). This
encouraged the model to use larger inputs when the stimuli
were present, while retaining flexibility with respect to their
exact time course. iLQR-VAE then inferred this time course on
a single trial basis, by computing a posterior distribution over
the input signals in each channel conditioned on the observed
neural data (Figure 1D and E, solid lines).

The parameters of the model (W, B, C, d and the prior vari-
ances) were obtained by maximizing the likelihood of the ob-
served spike trains. For each animal, we performed multiple
fits starting from random initializations (Methods), and found
that each fit robustly attributed a definite E or I identity to
each observed neuron (Figure 1F). For most fits (78.24%), the
model correctly labelled all of the directly photo-stimulated
neurons (known to be PV+ inhibitory cells) as inhibitory (Fig-
ure 1F, cyan mark); we rejected the few models where these
cells were mislabelled. Finally, for each animal we selected
the model with the best goodness of fit on held-out data (see
below, and Methods).

The model captures trial-by-trial variability

We first characterized how well the learned models captured
single trial activity in our recorded neurons. For each trial,
we could leave one neuron out, and let the model infer the
time course of its firing rate given the activity of the other
neurons (Figure 2A). Based on this single-trial firing rate, the
model then attributed a (Poisson) likelihood to each spike
for that neuron. On average, this single-trial likelihood was
greater than that predicted by the PSTH of the same cell ob-

tained by averaging over the other trials in the same condition
(Figure 2B, ‘residual likelihood’). In other words, our latent
circuits captured the spatio-temporal structure of our record-
ings beyond condition averages. Accordingly, our models also
captured the structure of pairwise covariances in neural activ-
ity (Figure S2). Importantly, the models did not significantly
suffer from the circuit constraints we imposed; they explained
the single-trial data just as well as fully unconstrained models
(Figure 2A-B, gray; Methods).

The model infers circuit dynamics that are consistent
across animals and captures key aspects of V1-LM
cortical physiology

That constrained and unconstrained models explain the data
equally well, despite being entirely different families of dy-
namical systems, raises a concern: have our constrained mod-
els learned dynamics that really capture the mechanics of the
underlying V1-LM circuit?

A first indication of faithful dynamics reconstruction is the con-
sistency of the learned solutions across animals. We evaluated
the distance between the inferred latent flow fields between
pairs of animals, accounting for an arbitrary rotation of the
latent state space for each animal (Methods). This analysis
revealed that the dynamics learned by our constrained latent
circuits were broadly consistent across animals — indeed more
consistent than in unconstrained models (Figure 2C).

As a second, stronger test of accurate dynamics reconstruc-
tion, we probed the responses of our models to internal per-
turbations of the inhibitory cells, and compared those to the
responses observed in the V1-LM data during optogenetic
perturbations. Specifically, we simulated single perturbation
trials by directly providing positive input to the inhibitory
latent units of the relevant area for the entire duration of
the photo-stimulation, whilst replaying the external inputs
inferred on a control trial (no photo-stimulation) for the rel-
evant condition (go vs. no-go). We adjusted the amplitude
of each perturbation input (four parameters per animal) in
order to match the trial-averaged norm of the responses of
the known PV cells in the stimulated area. We then evalu-
ated the model-predicted change in firing rates in the other
neurons (per-condition averages). These predictions were pos-
itively correlated with the corresponding firing rate changes
observed in the data (Figure 2D; average Pearson p = 0.34).
In contrast, models trained using only no-perturbation tri-
als failed to capture the sensitivity of the V1-LM circuit to
photoinhibition (Figure 2D, gray; average Pearson p = 0.12),
highlighting the importance of optogenetic manipulations for
accurate neural system identification.

As a third indication that our model has learned the correct cir-
cuit structure, we looked at the excitatory/inhibitory identity
that it assigned to each neuron in our recordings. Whilst we
used the assigned identity of the known PV cells in the photo-
stimulated area as a criterion for model selection, we could
study the identity assigned to the other recorded neurons. In-
hibitory neurons in the cortex are known to exhibit a bimodal
distribution of spike widths: fast-spiking (PV) interneurons
exhibit narrow spike waveforms, whilst other (non-PV) neu-
rons have slower action potentials similar to that of excitatory
neurons [Rudy et al., 2011]. Consistent with this known aspect
of cortical electrophysiology, we found that the neurons which
the model deemed inhibitory had a bimodal distribution of
spike widths (Figure 2E). The mode of the histogram corre-
sponding to broader spikes aligned well with the distribution
of spike widths in the neurons classified as excitatory by the
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eigenvalues of the latent circuit dynamics, linearized either before (gray) or during (black) stimulus presentation (pooled across

both go and no-go trials). This is shown for the full model (le

ft), and in the absence of inhibition (right; see Methods). (G) Effective

connectivity (see Methods) plotted against noise correlations in control no-go trials, for pairs of latent circuit units. This is shown
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model.

Finally, the dynamics inferred by the model are consistent
with previous studies of the mammalian visual cortex. In
particular, the network operates in the inhibition-stabilized
regime (Figure 2F; Ozeki et al., 2009, Ahmadian and Miller,
2021), whereby the excitatory subnetwork is unstable on its
own but stabilized by feedback inhibition. In fact, the net-
work is inhibition-stabilized even in the absence of visual
stimulation, as previously shown in mouse V1 [Sanzeni et al.,
2020]. Moreover, noise correlations in the latent circuit reflect
the strength of excitatory connectivity between pairs of latent
units (Figure 2G), as observed in mouse visual cortex [Ko
etal., 2011]. Importantly, this relationship was not present at
initialization, but arose after fitting the model to the data.

Contribution of external and recurrent inputs in shap-
ing cortical visual responses

Having established the validity of our model fits, we then
used the resulting latent circuits to dissect the roles of vari-
ous structural components of the V1-LM network in shaping
its sensory responses. To do this, we focused on several key
features of the learned latent circuit connectivity, systemati-
cally and individually down-modulated their strengths, and
quantified the effect of these modulations on the circuit’s re-
sponses to sensory stimuli. Only no-go trials, with no reward
or licking-related movement, were used for this analysis (Fig-
ure 3)

We began by dissociating external and recurrent inputs to
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Figure 3: Maintenance of activity via a slow mode emerging from interacting E/I networks (A) Left top: Schematic showing the
external (teal) and recurrent (burnt orange) inputs in the V1-LM circuit. Left bottom : Average external and recurrent inputs, in
no-go trials across all animals (shaded area denotes 2 sem). Middle top : Average network activity in no-go trials in an example
animal, as we scale down the gain of the external inputs (see Methods). We use gain values of 0.8, 0.9 and 1, ordered from light
to dark. The grey and black bars denote the stimulus onset and during the stimulus. Middle bottom : Same as top, for recurrent
inputs. Right : Sensitivity, i.e change in the response of the network (see Methods) as we scale down (by <) the external (burnt
orange) or recurrent (teal) inputs. This is shown at stimulus onset (top; first 100ms of the stimulus) and during the stimulus
presentation (bottom; 100-500 ms after stimulus onset). (B) Same as (A), but comparing local and long-range recurrent inputs (see
Methods). (C) Trial-averaged firing rate of an example neuron during no-go trials, smoothed at 25 ms (top) and the trial-averaged
inferred external input to the circuit, averaged over all latent units (bottom). The colors indicate different time segments. (D)
Flow field of the dynamics for the same animal as (C), projected in the subspace defined by the top 2 PCs of the latent activity
(see Methods). The color bar indicates the magnitude of the velocity. The trajectory represents the projection of the trial-averaged
inferred latent activity in no-go trials, with time segments color-coded as in (C). (E) Velocity of the autonomous latent dynamics (i.e
latent dynamics in the absence of external input), averaged either over the pre-stimulus period (-400-0 ms), around stimulus onset
(0-100 ms), or during the stimulus (100-500 ms). (F) Relaxation time constants (mean + 2 sem across all animals; see Methods)
of the linearized dynamics in the 100-500 ms time window of no-go trials. This is shown for constrained models in black and
unconstrained models in orange. The inset shows the absolute value of the imaginary to real ratio of the eigenvalues corresponding
to the slowest direction. (G) Distribution across animals of the line attractor score (see Methods) of the dynamics, linearized around
the mean activity in the 100-500 ms time window of no-go trials, for the constrained (black) and unconstrained (orange) models.
(H) Flow field of the V1-only (top) or LM-only (bottom) dynamics, for the same example animal and trials as in (D), projected in the
subspace defined by the top 2 PCs of the latent trajectories in each area (see Methods). (I) Distribution across animals of the lowest
relaxation time constant of the dynamics in the full networks (constrained models) and the V1-only or LM-only networks. The
gray box corresponds to the distribution of slowest time constants in networks of the size of a single area, randomly sub-selected
from the full networks. (J) Line attractor score of the V1-LM network, as we scale down the long-range (left) or within-area (right)
connections by a factor 7.
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the latent circuit. Whilst the average external input to each
neuron was mostly transient, i.e. confined to the onset and
offset of the sensory stimulus, the corresponding recurrent
input remained elevated for the whole stimulus duration (Fig-
ure 34, left), mirroring the period of sustained activity across
two areas during the stimulus epoch (recall Figure 1G). Even
modest down-scaling of all recurrent weights during the stim-
ulus (Figure 3A, center bottom, black bar) could nearly abolish
these sustained responses. Similar down-scaling of recurrent
connectivity during stimulus onset (Figure 3A, center bottom,
gray bar) had a weaker effect (Figure 3A, right; compare top
and bottom green curves). Modulation of the external input
weights had a weaker effect still (Figure 3A, center and right),
indicating that sustained activity arose primarily from recur-
rent connections, with external inputs triggering the onset
response.

Next, we characterized the differential contributions of local
vs. long-range connections. While the net local inputs were
smaller and negative (inhibition-dominated; Haider et al.,
2013), the long-range inputs were stronger (and positive by
design; Figure 3B, left) leading to positive net recurrent in-
puts. Moreover, modulating local and long-range connection
strengths separately revealed that stimulus-epoch sustained
activity depended strongly on long-range interactions, but
more weakly on within-area interactions. Together, these sen-
sitivity analyses suggest a mechanism for sustained sensory
responses in the V1-LM circuit that relies on across-area re-
verberation of activity, mediated by bidirectional long-range
connections.

Sustained sensory responses are maintained by ap-
proximate line attractor dynamics across V1 and LM

To further characterize the origin and properties of V1-LM
reverberation induced by transient inputs (Figure 3C), we
analyzed the activity flow field in the latent circuits. In the
subspace defined by the two principal components of latent
activity, the autonomous flow of the latent circuit’s dynamics
(i.e. latent trajectories obtained in the absence of external in-
puts) primarily converged towards a line of slow dynamics
(Figure 3D, one example mouse). Consistently across mice, the
latent state trajectories underlying the neural data spent most
of the stimulus epoch near this line of weak flow, only briefly
leaving this region at stimulus onset and offset in response to
transient external inputs (Figure 3E). This picture is highly sug-
gestive of line attractor dynamics [Ganguli et al., 2008, Mante
etal., 2013, Nair et al., 2023, Sylwestrak et al., 2022], a regime
characterized by slow decay of activity along a select direction
in state space, with all other directions decaying more rapidly.
Mathematical analysis of the time constants present in the
latent circuits (Figure 3F, Methods) revealed such a gap, with
local dynamics around the stimulus-evoked response largely
dominated by a slow mode with a timescale of ~ 400 ms,
which is 20 times longer than the characteristic time constant
of single neurons in our model (20 ms). Although the second
longest time constant was also slow (> 20 ms) — a point we
will return to below (Figure 4) — it was significantly shorter
than the slowest, reflected in a high “line attractor score” (Fig-
ure 3G; Methods).

Importantly, the approximate line attractor we identified in the
latent models arose from the constraints we imposed on the
structure of the circuit. Indeed, whilst unconstrained model
fits did also produce slow dynamics (Figure 3G, orange), they
exhibited less consistent line attractor scores, primarily be-
cause their slowest modes were occasionally oscillatory (and

therefore planar; inset). Moreover, we found that the line
attractor arose specifically from the long-range excitatory in-
teractions between V1 and LM. First, the line attractor score
was sensitive to modulation of the long range, but not the
local, connections (Figure 3]). Second, each area considered
separately (i.e. with long-range connections removed) did not
exhibit any line attractor (Figure 3H) and had substantially
faster dynamics (Figure 3I). Although weaker reverberation of
activity in those isolated areas could in principle reflect their
smaller sizes, randomly thinning both latent sub-circuits by
eliminating half of their units did yield significantly slower
dynamics than those of the isolated areas (Figure 31, gray).

A minimal model of the V1-LM circuit explains the
emergence of a line attractor

To understand the circuit mechanisms that underlie the emer-
gence of a line attractor across V1 and LM, we considered
simplified models of multi-area excitation/inhibition (E-I) net-
works. As a starting point, we recall a canonical model of
cortical E-I circuits, with one E and one I population recur-
rently connected as shown in Figure 4A (top), with E-I weight
parameters e and i. In these networks, activity can be generi-
cally decomposed into two main motifs (Figure 4A, middle):
E-I imbalance (with the E population firing more than aver-
age, and the I population firing less; dashed boxes) and E-I
balance (both populations firing in the same way; solid boxes).
In this modal decomposition, the recurrent connectivity is
more easily interpreted: it acts to transiently amplify any mo-
mentary imbalance in network activity into balanced activity
(Figure 4A, “Schur basis”; Murphy and Miller, 2009). Whilst
E-Iimbalance is typically short-lived, balanced activity may
linger depending on the level of excitatory dominance in the
recurrent connectivity (Figure 4A, bottom; Supplementary
Material S2).

Next, we extended the canonical single-area E/I model to
two interacting areas, yielding an idealized reduction of our
latent circuit models of V1 and LM. In this model, each area
is modelled as an E-I circuit as above, and they interact via
long-range excitatory connections of strength ¢ (Figure 4B).
Mathematical analysis of this model revealed a similar kind of
feedforward connectivity as for single-area E-I networks, now
for two different sets of unbalanced /balanced modes. In the
first set, the two areas fluctuate congruently such that their
patterns of E-I activities — whether balanced or unbalanced —
are aligned (“agree”, green boxes). In the other set, these pat-
terns are anti-aligned across the two areas (“disagree”, purple
boxes). Recurrent connectivity now acts separately on each
set, with transient amplification of congruent/incongruent E-I
imbalance into the corresponding balanced pattern. Notably,
long-range excitatory connectivity has an opposite effect on
each set of modes: it acts to slow down activity where the
two areas agree, and speed up the decay of any disagreement
(Figure 4E; Supplementary Material S2). This separation of
timescales gives rise to approximate line attractor dynamics
in the combined circuit (Figure 4G), as observed in the latent
circuit models we had obtained from data (recall Figure 3D-
G). Moreover, the model clarifies that the line attractor arises
specifically from long-range connections as previously shown
in Figure 3H-]. In addition, the model confirms that the line
attractor score (which depends directly on the timescale sep-
aration) should grow with the strength of those long-range
connections as in Figure 3].

Notably, this simplified model of V1-LM interactions not only
provided a qualitative explanation for the emergence of a line
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Figure 4: Network time constants in min-
imal models of interconnected E/I circuits
(A) In a canonical E-I circuit (top), momen-
tary activity can always be expressed as a
linear combination of two modes (middle):
an “unbalanced” mode (dashed outline) and
a “balanced” mode (solid outline). Recur-
rent E-I connectivity is equivalent to feedfor-
ward connectivity from the unbalanced to the
balanced mode (bottom; Murphy and Miller,
2009). The unbalanced mode exhibits fast
dynamics, whereas the balanced mode can
evolve more slowly depending on the degree
of excitatory dominance (c.f. D). (B) Minimal
E-Imodel of V1 and LM (top), where connec-
tivity within each area is of the same form
as in (A), and each area excites the other via
long-range connections of strength ¢. In this
model, activity can be decomposed into four
modes (middle): a pair of balanced & unbal-
anced modes in which V1 and LM activities
are anti-aligned (purple, ‘disagree’), and a sim-
ilar pair in which they align (green, ‘agree’).
These two pairs of modes are decoupled, and
interactions within each pair are effectively
feedforward (bottom). The dynamics are slow-
est along the mode of balanced agreement (c.f.
E), resulting in an approximate line attractor.
(C) This minimal model can be extended to
accommodate selectivity to £45° visual grat-
ings, by splitting each E/I population into two
differentially selective subpopulations. All
connection types (local E, local I, long-range
E) are composed of an unselective baseline
and a selective (like-to-like) components (top).
This connectivity structure gives rise to two
versions (unselective, pale / selective, dark)
of each of the four modes in B (middle), and
results in slow dynamics in the two modes
of balanced agreement (approximate “plane
attractor’). (D-F) Time constants of the bal-
anced mode(s) for each model (colors as in
A-C), as a function of key connectivity pa-
rameters. In (F), only the two slow modes
are shown. (G) Flow field of the dynamics of
the model in (B) in the activity plane spanned
by the two balanced modes, showing conver-
gence onto the ‘agree’ mode. Each line is ob-
tained by integrating the network’s dynamics
starting from a different initial condition in
that plane. (H) Autocorrelation function of

the neural data pre- (left half) and during stimulus (right half) projected onto the ‘agree (resp. disagree) balanced” modes (green resp.
purple). These two modes correspond to the sum (resp. difference) of the average V1 and LM spiking activities. Traces are mean
=+ 95% confidence intervals. pre: Amax = 0.06,p < 10-5. during: Amax = 0.13,p < 1072, (I) Same as (H), but for neural activity
projected onto the pair of unselective agree/disagree modes (left) and analogous selective versions (right) defined in the main text.
unselective, pre: Amax = 0.035, p = 0.0006. unselective, during: Amax = 0.11,p < 1072, selective, pre: Amax = 0.022, p = 0.003.

selective, during: Amax = 0.054, p < 10-5.

attractor, it also matched the dynamics of our latent circuit
models quantitatively. Indeed, with optimally chosen parame-
ters, this 4-dimensional network could account for 65% of the
impulse response of the (linearized) 16-dimensional network

(Figure S7).

Importantly, the simplified model of V1-LM interactions out-

lined above makes a prediction that can be tested indepen-
dently of our latent circuit model fits. Specifically, V1-LM
activity projected along the balanced-agree mode should ex-
hibit slower fluctuations than along the balanced-disagree
mode. To verify this prediction experimentally without rely-
ing on the latent circuit model, we estimated the contribution
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of each of these two modes to the momentary activity of the
recorded neurons in our dataset. This was done by separately
averaging the activity of V1 and LM neurons to estimate local
balance in each area, and then taking the sum (agree) and the
difference (disagree) of these local averages. As predicted, we
found that the empirical ‘balanced-agree’ mode had a longer
autocorrelation decay time than its ‘disagree’ counterpart (Fig-
ure 4H; Methods), both before (left) and during (right) the
presentation of the sensory stimulus.

More generally, the model predicts slower dynamics along the
balanced-agree mode compared to any other mode, including
the unbalanced modes. Testing this more general prediction
without referring to our latent circuit models is difficult, be-
cause estimating momentary E-I imbalance in V1 or LM di-
rectly from the neural data requires knowing the E-I identities
of all cells. Nevertheless, identifying these modes based on
model-predicted cell identities (c.f. Figures 1 to 3) allowed us
to confirm this more general prediction (Figure S6A).

Multi-area consensus on stimulus presence and iden-
tity via selective long-range interactions

The selective slowing down of activity patterns where V1 and
LM “agree”, and concurrent quenching of patterns where they
disagree, can be seen as a circuit mechanism for consensus
building (Figure 4G). We wondered about the generality of
this mechanism: whilst the minimal 2-area model of Figure 4B
gives rise to consensus regarding whether or not a stimulus is
present, a similar mechanism could also underlie consensus
about stimulus identity. We hypothesized that this second
mode of consensus might also account for the second slowest
mode in the learned dynamics (Figure 3F), which the simple
reduced model introduced above was unable to explain.

To explore this hypothesis, we took a similar modelling ap-
proach as above. We constructed a more detailed reduced
model of a 2-area network (Figure 4C) that incorporates fea-
ture specificity in its connectivity (see Supplementary Material
52). Each area was split into two E-I sub-circuits that were
differentially driven by two orthogonally oriented stimuli (cor-
responding to go and no-go stimuli in our experiments). Re-
current E-I connectivity in each area had a degree of specificity
that we could vary, i.e. connectivity could be made stronger
within, compared to between, the two local sub-circuits with
different stimulus preference. Similarly, long range excita-
tory connection strengths included both a baseline (/) and a
specific (¢s) component (Methods).

The effect of the connectivity on the dynamics of this circuit
could again be understood by considering a modal decompo-
sition similar to Figure 4B, which included (i) patterns of E-I
imbalance /balance, in which (ii) the two areas could either
agree (green) or disagree (purple), and which (iii) were either
stimulus selective (dark) or unselective (light). We found that
this circuit would predominantly dwell in two of these ac-
tivity modes: the ‘balanced-agree-selective’ mode, and the
‘balanced-agree-unselective’ mode, both of which were charac-
terized by long time constants. As before, all ‘unbalanced” and
‘disagree’ modes were associated with comparatively faster de-
cay times. The slow decay of the ‘balanced-agree-unselective’
mode relied on strong long-range connections regardless of
specificity (¢y or {s; Figure 4F, left), whilst the slow decay of
the ‘balanced-agree-selective’ mode required strong specific
long-range connections (¢s; Figure 4F, right). Thus, this circuit
supports the dynamic formation of a consensus across V1 and
LM about both the presence of a stimulus and its identity.
The presence of a second slow mode made this 8D reduced

model an even better quantitative match to the linearized dy-
namics of the full 16D model (Figure S8; 77.3% of variance
captured in the impulse response). Additionally, we also veri-
fied that the two slowest modes in the dynamics of our latent
circuit models aligned well with the unselective and selective
balanced-agree modes (Figure S6F).

We could again articulate the model’s predictions regarding
the relative timescales of these different activity modes, and
use our neural recordings to test these predictions. In particu-
lar, the model predicted that the network’s activity should
fluctuate slower along the two main modes of consensus
than along the corresponding modes of disagreement. To
test this hypothesis independently of our model fits, we esti-
mated the degree of engagement of each neuron in the four

‘agree/disagree-selective /unselective’ modes based on its ob-

served responses, and assessed the slowness of population
activity projected onto these modes. Specifically, we first ex-
tracted the sensitivity of each recorded population (V1 or LM)
to the presence of a stimulus irrespective of its identity by
taking the difference of its population activity vector after
and before stimulus onset, denoted by v(\f /LM (Methods). We
then defined the ‘agree-unselective’ mode as (v(\)/ L avg;M), and
the ‘disagree-unselective’ mode as ( v(\)/ 1 —txv(%M), where « is a
scaling factor that accounts for unequal sampling of V1 vs. LM
neurons in our recordings (Methods). Similarly, by computing
the differences vy /™ between population responses to the
go and no-go stimuli, we could define the ‘agree-selective’
and “disagree-selective’ modes as (vy !, £avIM) respectively.

We then projected the activity of all recorded neurons onto
these four modes and computed the autocorrelations of the
resulting signals (Figure 4I). As predicted by the model, ac-
tivity fluctuated slower along both ‘agree” modes, compared
to the corresponding ‘disagree” modes. This was true both
for activity taken before and during the stimulus presentation.
The relative slowness of the ‘agree-selective’ mode thus sug-
gests some degree of specificity in the long-range connections
between V1 and LM, consistent with experimental findings
[Ding et al., 2023].

Functional consequences of consensual dynamics

To explore the functional significance of slow unselective and
selective consensual dynamics across V1 and LM, we revisited
our minimal selective model (Figure 5A, top), and examined
its dynamics along the agree/disagree modes identified ear-
lier. Specifically, we provided the model with a stimulus
whose time course captured both the strong transient and
weaker sustained characteristics of the input which we had
inferred from the recorded spiking data (Figure 5A, middle).
By varying the degree to which the stimulus drove (i) each
area, as well as (ii) each sub-population therein, we could
manipulate the degree of ‘input agreement’ between V1 and
LM about (i) the presence of a visual stimulus and (ii) whether
it is oriented at 445 or —45 degrees (Figure 5B and E, gray
insets). We could then examine any emergent consensus in
the network’s response. For example, the stimulus pattern
shown in Figure 5B (gray) drives V1 and LM in opposite direc-
tions, increasing V1 activity while suppressing LM (evidence
for the presence of the stimulus in V1, and against it in LM).
Mathematically, this stimulus recruits both the agree- and
disagree-unspecific modes, leading to input ambiguity. In the
absence of long-range connections between V1 and LM, the
network’s response directly reflects this lack of consensus in
the input (Figure 5B, left; C and D, black). However, with
increasingly strong long-range connections, the network selec-
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Figure 5: Dynamic emergence of consensus via long-range connections in minimal models of interconnected E/I networks.
(A) Schematics of the minimal selective model of the V1-LM circuit, driven by an external stimulus that can target either one of
the two E/I pairs in each area depending on their orientation preference (@ vs. ©) with stylized time course shown at the bottom
displaying both transient and sustained elements. We allow for a variable degree of input coherence across V1 and LM (‘input
consensus’ dial). (B-D) Dynamics of V1-LM consensus for stimulus detection. (B) Network activity projected onto the ‘agree’
(green) and ‘disagree’ (purple) modes of balanced, unselective activity (green and purple insets; recall Figure 4B), in response to a @
stimulus that drives V1 while suppressing LM albeit less strongly (gray inset). Response projections are shown for three values of
the specific long-range connection parameter /5 (0, 0.5 and 0.9), with diamond marks indicating the point of maximum consensus
and triangular marks indicating 200ms after that. (C) Same data as in (B), with the projection of momentary, trial-averaged network
responses onto the ‘agree” mode (green line in B) now plotted against its ‘disagree’ counterpart (purple line in B). Diamond and
triangular marks as in (B). (D) Same data as in (B-C), now showing the projections onto local unselective modes (presence vs.
absence of stimulus) in V1 and LM against each other. (E-G) Same as (B-D), for stimulus discrimination. In this case, V1 is strongly
driven by a @ stimulus whilst LM is more weakly driven by a © stimulus (gray inset). The relevant agree/disagree modes are
now the selective modes (green and purple insets), corresponding to consensus about the identity of the stimulus, rather than its
presence/absence. As for detection, this conflicting stimulus gives rise to the correct consensus (@) especially for large /5. This

happens even though the input itself presents more disagreement than agreement (F, black).

tively amplifies the input contribution to the agree-unselective
mode, while suppressing it for the disagree-unselective mode,
thus allowing an inter-area consensus to dynamically emerge
on the presence of a stimulus (Figure 5B-D, orange). Impor-
tantly, this consensus is contingent on bidirectional inter-area
reverberation of activity, and is significantly diminished if the
feedback connections from LM to V1 are ablated (Figure S9).

Likewise, when the input to both areas has the same total
magnitude but is conflicted about stimulus orientation (Fig-
ure 5E, gray inset), specific long-range connections contribute
to the emergence of a consensus about stimulus identity (Fig-
ure 5E-G). Importantly, this consensus favors the alternative
that is more strongly supported by the input (here, +45°; see
Figure 5G, dashed, for the opposite scenario). This is true even
when the stimulus contributes more to the disagree-selective
than to the agree-selective mode (as in the case shown here).

Discussion

Here, we set out to elucidate the role of long-range connec-
tivity in orchestrating dynamics across cortical modules. By
combining data-driven and mechanistic modelling, we devel-
oped latent circuit models of observed neural activity across
mouse V1 and LM, which were constrained by known proper-
ties of cortical circuit organization. These models uncovered
slow reverberation of activity through long-range connections
between the two areas. Further mathematical modelling re-

vealed how this dynamical motif constrains the activity of
distributed cortical modules in a way that ensures consistency
of computation, or ‘consensus’ between them.

Issues with model identifiability and how to mitigate
them Identifying dynamical interactions between brain areas
from concurrent observations of their activity is in general
an ill-posed problem. Indeed, when trying to account for ob-
served neural activity using a network model, it is difficult to
unequivocally tease apart external and recurrent contributions
to the input that drives each neuron’s fluctuations [Pandar-
inath et al., 2018, Schimel et al., 2022, Malonis et al., 2021,
Soldado-Magraner et al., 2023], as neither input is directly
observed. In principle, even when using rich single-trial data,
no approach is immune to wrongly inferring a mechanism
not actually present in the cortical circuit [Qian et al., 2024,
Genkin and Engel, 2020]. Our approach mitigates this con-
cern in two ways. First, we include responses to optogenetic
perturbations in the dataset used to fit the model; thus, the
time course of at least some of the external inputs to specific
cells is known in at least some of the trials. Indeed, such per-
turbations apply instantaneous, direct input to known cells,
in contrast to e.g. sensory stimuli which enter the circuit of
interest after largely unknown spatial and temporal filtering.
Second, by introducing biological constraints into the model,
we not only restrict the space of possible models that fit the
recorded neural activity, but also expose the model to a series
of experimentally testable validation criteria. For example, we
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were able to exclude models that would wrongly label known
PV cells as excitatory, and explicitly simulate the effect of cell
type-specific photo-activation to predict the corresponding
neural responses. Finally, our model ultimately made qual-
itative predictions about the relative timescales of activity
in different cross-area modes, which we were able to verify
completely independently of our specific model fits (Figure 4).

Generalizing to other mechanistic models Mechanistic
models of cortical circuits have classically focused on captur-
ing the average behaviour of large neuronal populations, and
have proven remarkably effective at explaining non-trivial
qualitative features such as oscillations, global E/I balance,
normalization effects, surround suppression, etc [Rubin et al.,
2015, Kraynyukova and Tchumatchenko, 2018]. However, it
remains unclear how these models should be extended to ac-
count for more detailed aspects of a circuit’s behaviour, and
how their parameters could be constrained quantitatively us-
ing large-scale time series of neural data. Our work outlines
a systematic path for distilling detailed recordings of large
neuronal populations into the parameters of rich mechanistic
models.

Role of long-range connections in sustaining activity
in the cortex Our models and analyses make experimentally
testable predictions. Specifically, we predict that stimulus-
specific external input to the visual cortex is predominantly
restricted to stimulus onset and offset, while the sustained
cortical responses are supported by long-range cortical con-
nections. Notably, the transient time course of our inferred
external input resembles recent recordings from the visual
thalamus (dLGN, Siegle et al., 2021). Paradoxically, despite
the transient nature of feedforward thalamic input, intact tha-
lamic activity was shown to be essential for sustained cortical
responses: silencing the thalamus via optogenetic activation
of the thalamic reticular nucleus (TRN) leads to a rapid de-
cay of activity in V1 [Reinhold et al., 2015]. At first glance,
this appears to also contradict our predictions. However, it is
important to consider that TRN activation inhibits not only
dLGN but also higher-order thalamic areas (e.g., pulvinar),
which are thought to modulate corticocortical interactions
[Sherman and Guillery, 2011, Saalmann and Kastner, 2011].
This could effectively isolate V1 from other cortical areas. In-
deed, the rapid decay of cortical activity observed in Reinhold
et al. [2015] is consistent with the fast decay time constants

10

we identified in the isolated dynamics of our model’s V1 pop-
ulation. More broadly, beyond visual networks, sustained
cortical activity in decision making or motor planning has
also been shown to rely on multi-area interactions [Li et al.,
2016, Guo et al., 2017].

Role of long-range connections in consensus building
Here, we have found that the coupled dynamics of V1 and
LM implement a form of consensus algorithm, whereby the
two areas progressively get to reconcile their views about the
presence of a stimulus and its coarse orientation. The fairly
simple nature of this consensus arguably reflects the simplicity
of our experimental go/no-go task. However, we hypothe-
size that dynamic consensus is a general feature of cortical
dynamics that could play out at finer scales and be modulated
to meet complex behavioural demands. Importantly, achiev-
ing fine-grained consensus would require detailed specificity
in long-range connections between cortical areas. Just how
such specificity could be achieved and regulated by behav-
ioral context or learning is largely unknown. One possible
mechanism would exploit trans-thalamic pathways, which
appear to systematically mirror direct cortico-cortical path-
ways [Halassa and Sherman, 2019, Shepherd and Yamawaki,
2021]. Detailed gain modulation of thalamic neurons involved
in those pathways (e.g. pulvinar, known to send functionally
specific projections to V1; Furutachi et al., 2024) could provide
sufficient flexiblity for regulating multiple modes of consen-
sus between cortical areas. Indeed, Mo et al. [2024] showed
that inhibiting the trans-thalamic pathway between primary
and higher-order somatosensory cortices in mice leads to a
loss of learning-induced texture selectivity, but no change in
overall cell responsiveness to tactile stimuli. Our model of Fig-
ure 5 would attribute such effects to a decrease in specific long-
range connectivity affecting consensus in the selective mode
useful for stimulus discrimination, but not affecting the uns-
elective mode useful for stimulus detection. More generally,
richer forms of consensus arising from fine-grained connec-
tivity could serve more complex computations, for example
the integration and reconciliation of bottom-up sensory infor-
mation with top-down prior expectations [Knill and Pouget,
2004]. By integrating data from large-scale functional connec-
tomics [MICrONS Consortium et al., 2021] with multi-area
neural recordings during more complex tasks, our theoretical
approach is ideally positioned to test such hypotheses and
uncover the richer dynamics of brain-wide consensus.
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Methods

Experimental procedures

No new experimental data were collected for the purposes of this study. The acquisition and pre-processing of
data used in this study are described in detail in Javadzadeh and Hofer [2022]. From the total of 14 mice included
in Javadzadeh and Hofer [2022], we sub-selected 7 mice for inclusion in this study, based on the criterion that the
electrophysiological recordings contained at least one well-isolated single unit that was identified by the optogenetic
perturbations as PV+. Models were fit using all trial types, but only trials in which the mice performed the task
correctly were included in subsequent analyses, unless specified otherwise. The spiking activity of the recorded
neurons was binned at 5ms resolution, and for visualization, smoothed with a running average of 25ms or 5 bins
(Figures 1B,C,G,2A,D,3C).

Latent circuit model of V1/LM data

Latent circuit dynamics =~ We modelled latent circuit dynamics as an input-driven recurrent neural network described
by a standard firing rate equation [Dayan and Abbott, 2005]. Specifically, the circuit’s n-dimensional ‘latent state” z
evolved according to

T2(t) = —z(t) + WP(z(t)) + Bu(t) 3)
where T = 20ms is a single-neuron characteristic time constant, W is a matrix of recurrent connectivity (see below),
B is a matrix of input weights, and ®(z) = 1(z 4+ vz2+0.1) is a soft rectified-linear activation function. Note the
presence of external inputs u(t) described in detail below. The spiking activities of our N recorded neurons were then
modelled as conditionally independent Poisson processes given the latent circuit’s activity, z(t), with momentary
firing rates r(t) given by:

r(t) = exp [Cz(t) +d] 4
y(t)|z(t) ~ Poisson(rdt). )

Here, C is a N x n matrix of output weights and d is an N-dimensional vector of constant offsets. Equation 3 was
discretized using a time step dt = 5ms. All model parameters were optimized to fit the electrophysiological data (see
below, ‘Network training procedure’). Critically, W, C and B were constrained to reflect biophysical properties of the
V1-LM network (see below; schematics in Figure 1D-F).

Note that Equation 3 does not include a constant input term. We found that including such a bias term caused the
model to fall into local minima, consistently learning solutions with worse residual log-likelihoods (see Figure S1E).

External inputs ~ Our model captures trial-by-trial variability in neural activity not only via the Poisson sampling
step in Equation 5, but also — and more importantly — through trial-by-trial fluctuations in the external inputs w(t).
These (deterministically) produce variations in latent circuit activity according to Equation 3, and therefore also in
the neurons’ firing rates (Equation 4). In the language of probabilistic modelling, the external inputs u constitute the
model’s latent variables.

Simultaneously inferring dynamics and external input is a fundamentally ill-posed problem, which our probabilistic
model addresses by placing task-informed, non-stationary prior distributions on the latent inputs. Specifically, we
used three input channels —i.e. u(t) = [ug(t), u1(t), u2(t)] 7, each entering the latent circuit through input weights
given by the corresponding column of the n x 3 matrix B (Equation 3). For each input channel i, we assumed u;(t)
to be (a priori) independently and normally distributed across time steps — ensuring that any continuous/smooth
fluctuations in firing rates could only be accounted for by recurrent dynamics in the latent circuit. Moreover, the
variance of this Gaussian prior was given a channel- and trial-specific temporal profile reflecting the known timing of
the corresponding stimulus:

ui(t) ~ N(0,Zf + Zie;(£)) 6)
eo(t) = 1if laser on, 0 otherwise (7)
e1(t) = 1if go stimulus on, 0 otherwise 8)
ez(t) = 1if no-go stimulus on, 0 otherwise )

where X/ and ¥/ are two positive variance parameters optimized alongside all other model parameters (see below).
Given that the laser input in our experiments had a direct effect only on inhibitory neurons, we constrained the
first column of B (associated with u(t)) to be zero for all sub-populations except for the inhibitory neurons of the
targeted area. Additionally, we ensured that the weights of this column of B were all positive. Finally, to eliminate the
degeneracy that exists between the scale of the inputs u(t) (set by £j and X as detailed above) and the scale of the
matrix B, we constrained the norm of each column of B to be equal to v/n/m (where n is the number of units in the
latent circuit, and m = 3 is the number of input channels).
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Constraints on the latent circuit connectivity =~ We partitioned the latent circuit’s activity z(f) into two halves,
corresponding to the V1 and LM subcircuits respectively (see Figure 1D). Within each subcircuit, we took the first
half of the latent units to be excitatory, and the other half to be inhibitory. This partitioning of the circuit into four
sub-populations allowed us to enforce Dale’s law, as well as the purely excitatory nature of long-range projections, by
constraining the recurrent weight matrix W' to have the following structure:

Wy oWy w0

wo| W w0 | w0
WES 0w
WO 0w

with all elements of the various W, blocks constrained to be positive. We enforced the sign constraints in our model
by passing elements of W' through a positive nonlinearity, and multiplying W with a mask matrix containing the sign
of each element. We note that, in related work, Jha et al. [2024] proposed a method to learn linear latent dynamical
systems constrained to follow Dale’s law using a constrained quadratic optimization approach.

Structured sparsity constraint on the latents-to-neurons readout = The matrix C in Equation 4, which determines
how the firing rates of the recorded neurons (corresponding to rows) are assembled from the activity of the latent
units (corresponding to columns), was constrained such that the neurons recorded in V1 (resp. LM) would only be
associated with V1 (resp. LM) latent units. This was achieved by enforcing the following block structure (see Figure 1F):

latent units

sgl Cg 1 s}’l CIV 1 0 0 recorded
C= MM LM LM neurons
0 0 sg Cg s Cy

where each C is an element-wise positive matrix with unit-norm columns, and each corresponding s, is a positive
scalar. This per-block column-wise normalization of C balances the model internally by ensuring that all the latent
units within each sub-population have a comparable effect on the activity of the observed neurons. Moreover, the
inclusion of separate scale factors s, allows the different E/I sub-populations to contribute to different degrees to the
neural activity.

Importantly, to facilitate interpretability of the latent circuit, we learned the model in such a way that it would
unequivocally label each recorded neuron as being excitatory or inhibitory. We achieved this by included in the
overall cost function (see below) a structured sparsity penalty on C that encourages each recorded neuron to be
locally associated either with the excitatory latent units, or with the inhibitory latent units, but not with both types
simultaneously. In other words, this penalty promotes parameter solutions in which the rows of C are non-zero either
within the Cﬁ block or within the C} block (where o denotes the relevant cortical area), but not within both. This
penalty took the following form:

‘Csparsity =A 2 ”(an>"”2 H(C’Ian)nnz (11)

neneurons

where a, € {V1,LM} is the cortical area where neuron n was recorded, (C¢), denotes the n row of the matrix block
C:,and || - || denotes the L, norm. The scalar A was set to 10® following a hyperparameter search.

Definition of putative excitatory and inhibitory cells = For models trained with the above constraints, we were
able to assign each neuron a unique excitatory or inhibitory identity based on the learned readout matrix, C (see
Figure 1D). For each neuron, we calculated the L, norms of the corresponding readout weights originating from the
excitatory and inhibitory latent sub-populations separately, and labelled the neuron as E or I according to which of the
two norms was the largest.

Network training procedure

Our latent circuit model, together with the prior distribution over external inputs and the Poisson observation noise
model described above (Equations 3, 5 and 6), constitute a probabilistic generative model whose parameters we
directly optimized to fit our spiking data. To this end, we used iLQR-VAE [Schimel et al., 2022], a generic control-based
algorithm for learning probabilistic, input-driven latent dynamics from neural population recordings. iLQR-VAE
learns model parameters 6 = (W, B, C, d) that maximize a lower bound on the log likelihood of the data, log py(y).
This evidence lower bound (ELBO; Kingma and Welling, 2013) is a standard objective, used when the true log
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likelihood cannot be evaluated in closed-form, as is the case in our model. The ELBO, denoted by L, relies on an
approximate posterior distribution over inputs, ¢ (u|y):

L(y,0,¢) =Ey, (uly) {log po(ylu) +log pe(u) — logq¢(u|y)} <logpe(y). (12)
(13)
In iLQR-VAE, q4(uly) = N (u(y),X) is parametrized as a Gaussian distribution, whose mean jig(y) is defined as

the most likely set of inputs given the data and the model parameters. This maximum a posteriori estimate can be
efficiently obtained using the iLQR algorithm:

T

to(y) = argmax Z log po (yt|u) + log pe (1) (14)
uoop—

= iLQRsolve(y, 6) (15)

As in Schimel et al. [2022], we defined the covariance X as a trial-independent, separable matrix, i.e as the Kronecker
product of a spatial factor Zs and a temporal factor L, which were learned throughout training and shared across all
training trials.

In summary, fitting our latent circuit model to the V1-LM spiking data involved jointly optimizing all model parameters
6 and the approximate posterior parameters ¢ = {6, Zs, ¢} to minimize the following combined objective:

0(9' (P) = _E(yr 0, (P) + ['sparsity(g) (16)

Log-likelihood computations

Computation of cross-validated log-likelihoods  To validate the performance of our model, we computed its ability
to predict the activity of held-out neurons, given firing rates inferred using the held-in neurons. We held out one
neuron at a time. To predict the activity of held-out neuron j, we inferred inputs as ji* = iLQRsolve(g* " 0), where
gk j € RN-1*T is the spike trains of all neurons, excluding neuron j, in trial k (and  are the model parameters with
the j-th row of C and d masked out). We then computed the predicted firing rates for all (both held-in and held-out)
neurons 7 by unrolling the trajectories induced by the inputs i (using the full set of parameters 6). In turn, this
allowed to compute the log-likelihood of the spikes in trial k for the held-out neuron j, as

LLf = ;[y;‘(t) log(7 (t)dt) — 75 (t)dt —log y;(1)!]. (17)

Computation of the empirical log-likelihood  As a baseline to compare the model predictions to, we computed the
empirical log-likelihood for a trial k by evaluating the predicted activity for every neuron using that neuron’s average
activity across all the other trials from the same condition c, leading to a predicted firing rate time course

1

k 0

T t) = (1), 18
],EIIlp( ) Nc 1 [GC/ZZ ky] ( ) ( )

where N, is the number of trials in condition c. Given these empirical firing rates, we computed the empirical
log-likelihood for neuron j at trial k as

LL emp = ;[y?(t) 10g(femp ()dt) = 1 emp (D)t —log y;(1)1]. (19)

Residual log-likelihood = We define the residual log-likelihood for a given neuron j as LL;‘ - LL;-‘, emp- If this quantity
is positive, it means that the prediction of the model for that neuron is more accurate than a prediction based on trial
averaging, i.e., that the model is able to capture meaningful single-trial variability in the data. Residual likelihoods
were calculated separately for each neuron across 18 different conditions (2 visual stimuli and 9 silencing condition for

each visual stimulus), and then averaged across all trials and conditions.

Model selection

Choice of hyperparameters  To select the model hyperparameters n and m (number of latent state variables and
input channels, respectively), we used a 3-fold cross-validation approach. For each animal, we split the trials into 3
subsets. Then, for each possible pair of subsets among these three, we trained a model using the data from that pair
and subsequently computed the heldout log-likelihoods on the remaining subset. Finally, we averaged the results over
the three pairs, over animals, and over neurons.
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We first selected the optimal value of n for the model with three input channels (m = 3) corresponding to the visual
and optogenetic stimuli, as described above. We explored model sizes ranging from n = 8 to n = 24 in increments of
4, and selected the minimal value of n after which the residual log-likelihood stopped improving (see Figure S1A).
Having selected and fixed the optimal value for n, we checked whether the choice m = 3 was optimal, using the same
model selection procedure. When varying the number of input channels, we considered both (i) having multiple
channels corresponding to each prior variance profile (c.f. Equations 7 to 9), i.e. multiple channels for each external
stimulus ( Figure S1B), and (ii) the addition of channels with temporally unmodulated prior variance (see Figure S1C).
Neither of those increased model performance relative to using m = 3, which is the minimal number of channels
allowing to have one input per external stimulus. Note that models with additional input channels could in theory
capture timing difference in the visual input to V1 and to LM. However, we found that having one channel per input
yielded the best performance on the validation fold.

Additionally, we compared our models to models with the same architecture but for which the inputs were not
inferred, and were instead fixed to follow the envelope corresponding to each external stimulus. This implied that
their time course was constrained to be the same for every trial of a given condition. Those models performed
considerably worse than the models with inferred inputs (Figure S1D). Other model hyperparameters such as the
spectral radius of W at initialization and the Adam learning rate were fixed to values that allowed robust training.
Final hyperparameter choices are reported in Table 1. All trials, irrespective of behavioral outcome, were included for
log-likelihood calculation and model selection.

Selection of models for plotting and analysis  For the constrained models, having set the hyperparameters as
described above, we trained 10 models with different random seeds (i.e. different random initializations of the model)
per animal. This was done to reduce the chance of getting stuck in local minima. Moreover, as our conclusions were
dependent on the learned values of the long-range weights, and to avoid biasing our models, we varied the value
of the long-range weights at initialization. More precisely, we varied the ratio of the norm of long-range weights to
local weights at initialization between 1 and 1.6 in steps of 0.2. We discarded models that diverged during training
(41 out of 280 models in total). Out of the remaining models, we then picked the best model for each animal, across
initialization seeds and long-range weights, for further analyses and plotting. For each animal, the best model was
selected by first sub-selecting the models that classified the known PV cells correctly as inhibitory (187 out of 239, i.e.
78.24% of the models; see Figure S1F). Among these, we picked the model that yielded the highest cross-validated
log-likelihood. Furthermore, we only included active cells (neurons whose spike count during the stimulus in control
trials had a signal-to-noise ratio, i.e. mean/std over trials, larger than 1) for log-likelihood calculations.

For the unconstrained models, we used 5 random initialization seeds. However, as inhibitory cell identities were
not defined in these models, we picked the best model based only on the held-out log-likelihood criterion explained
above.

Calculating covariances

In Figure S2, we calculated N x N noise covariance matrices in both data and model-predicted activity as:

C K

TZCKCZZZ Yte — Ute) (Yte — Urc) " (20)

lk=1t=

where c indexes conditions (2 visual stimuli and 9 silencing condition per stimulus), yf . isa N x 1 vector denoting
spike count of N neurons in 25ms bins, in control condition ¢ (no optogenetic stimulation), trial k, and time ¢ (K.:
number of trials in condition ¢,T: number of time points, N: number of neurons). gi. is the trial-average activity in
condition c. For calculating model covariances, we sampled pseudo-observations y from a Poisson distribution whose
mean was taken to be the posterior predicted firing rates. All trials, irrespective of behavioral outcome, were used for
calculating covariances. Variances in Figure S2 are the diagonal values of X and cross-covariances are its off-diagonal
values.

Linearization of the dynamics

Around a (approximate) fixed point zf, the dynamics in Equation 3 can be Taylor-expanded to first order, leading to a
linear dynamical system whose dynamics matrix is given by the Jacobian A:

A=—-T+ WCD/(zf) (21)
————
Wegt

Here, W can be thought of as a matrix of “effective connectivity”.

For a given trial k, we defined Z as the time-averaged activity either before or during stimulus, i.e Z* ZtTOJ%OA z
with A = 400ms, Ty = —400ms for the pre-stimulus window and Ty = 100ms for the stimulus window (To is measured
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relative to visual stimulus onset). This choice was motivated by the fact that the dynamics exhibited very small
velocities in these time windows Figure 3E. We then defined zy = % Y25

Computation of the dynamics distance

In Figure 2C, we computed the similarity between the dynamics of the model for different animals, as a normalized
Procrustes distance (see Williams et al., 2021 and Ostrow et al., 2023) between their linearized dynamics, i.e as :

Tr[A] (UAUT)]
d(Al,A]): min 1-— (22)

UeO(n) Al Aille

where A; and A; denote the linearized learned dynamics for animals i and j (obtained as described in Methods - Lin-
earization of the dynamics), || - ||g denotes the Frobenius norm, and U is an orthogonal (rotation) matrix (optimization
over U is necessary in order to account for the fact that the dynamics may be equivalent up to a rotation). We used the
average distance d(A;, A;) across all pairs of animals (i.e. all (i, j) such that i > j), as our measure of consistency of the
learned dynamics across animals.

As shown in Ostrow et al. [2023], d(+, -) is a valid distance metric, bounded between 0 and 1, which computes the
similarity of the vector fields of two dynamical systems. While Ostrow et al. [2023] applied this analysis to dynamical
systems identified via delay embedding of the dynamics, we instead apply it directly to the linearized dynamics of
our model.

To perform the minimization in Equation 22, we parametrized the orthogonal matrix U using a Cayley transformation
[Ostrow et al., 2023]. As pointed out in Ostrow et al. [2023], the optimization landscape is disjoint for U matrices with

detU = 1and detU = —1. Thus, for each pair of dynamics matrices, we perform the optimization over matrices U
such that detU = 1 as well as over matrices U such that detU = —1, and use the minimum distance across those two
subsets.

Comparing the model’s ability to capture the effect of optogenetic perturbations

To evaluate how well the models captured the effect of artificial (optogenetic) perturbations (Figure 2D), we first
evaluated the average inferred input during no-go, no-laser trials. We then ran the dynamics forward with those
average inputs, whilst additionally perturbing the inhibitory population in either V1 and LM, depending on which
population expressed ChR2 in our experiments (different across animals). We could then compare the neural responses
predicted by the latent circuit model to the corresponding photo-stimulation responses observed in the experiments.
Specifically, we used a simulated pulse of optogenetic input modeled as

p(t) _ 1 ifte [t%aser/' tlaser + A] (23)
0 otherwise

where t),5r is the onset time of laser stimulation in the relevant silencing condition in the experiments, and A = 150 ms
is the laser duration. We assumed that this input influenced the latent units via a weight vector B,, whose elements
were non-zero only for the inhibitory latent units of the stimulated area. We optimized the non-zero elements of B, to
maximize the log-likelihood for the spike trains of the known PV cells in the relevant perturbation trials. We then
measured the average predicted perturbation-induced change (relative to no-perturbation), A? = #.ontrol — Pperturbation
in the rest of the neurons during the stimulation time window, and compared it to the same quantity, Ar, measured in
the data. We report the quality of fit as the Pearson correlation between A+ and Ar. This is plotted for one animal in
Figure 2D middle, and for the rest of the animals in Figure S3.

As a comparison, we repeated the above for “control-only” models which were trained on control trials without
optogenetic perturbation (2/3 of the control trials were used for training). We trained a minimum of 12 models per
animal, and chose the best model following the same procedure used for the default models (see Selection of models
for plotting and analysis). For one of the animals, no model resulted in correct classification of all PV neurons (from
>30 trained models). For that animal, we only used the log-likelihood criterion for model selection.

Spike width histograms

We extracted the average spike waveforms for each neuron, and the spike width was defined as the width of this
waveform at 10% of its full amplitude (Figure 2E).

Analysis of the role of inhibition in the dynamics.

To evaluate the role of inhibition in stabilizing the dynamics (Figure 2F), we measured the stability of our latent circuit
dynamics, in the presence or absence of inhibition. We measured stability before and during stimulus presentation
by computing the effective connectivity W (see Equation 21 in Methods - Linearization of the dynamics). We then
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computed the largest real part of the eigenvalues of the effective linear dynamical system, A5y = max;(R(A;)) where
A; are the eigenvalues of Weg. A (linearized) network is said to be “inhibition-stabilized” if Amax < 1 (stable) when
computed on the full W, but Amax > 1 (unstable) when all the inhibitory weights in W are set to zero.

Connectivity strength as a function of the response correlation

In Figure 2G, we computed the noise correlation matrix of the mean-subtracted latent circuit responses of the V1
excitatory subcircuit during control no-go trials z as follows :

IR — ——\T -1/2
L=D"2 | oD (2 — 2) (20 —2) | D / (24)
where z; = %Zlezt,k and D is a diagonal matrix of single-neuron variances, i.e. D;; = %ZszthT:l (zff e Zh)2.

In Figure 2G, we plot Z;; for each pair of excitatory latent units (i < j) as a function of the corresponding (i, jm

element of the effective connectivity matrix Weg computed based on the stimulus period as described by Equation 21.
We repeated the same procedure for go-trials, with similar results (Figure S4).

Calculating recurrent and external currents

For analyses described in Figure 3A-B, we defined external and recurrent currents as ext(t) = Y ;(Bwu);(t) and
rec(t) =Y ' {(W®(z));(t), respectively.

Sensitivity of the networks

In Figure 3A-B-], evaluated the sensitivity of the latent circuit to changes in the inputs vs. changes in the recurrent
weights by running the network dynamics forward, using the inputs inferred from the data for every test trial, but
including a gain 7 that we used to either scale down the input matrix B (see Equation 25), or the connectivity matrix
W (see Equation 27):

TE(t) = —2T(t) + WD(27 (1)) + v Bul(t) (25)
o’ =exp(Cz"™ +d) (26)
Vs.
T2V = 270 (£) + yWD(27%(t)) 4+ Bu(t) (27)
o' =exp(Cz"™ +d) (28)

We computed the sensitivity by measuring changes in the total activity in no-go trials, either before or during stimulus
onset, and normalizing those to the activity obtained fory = 1,i.e. S = Zi"‘:tl av(t)/ Z?: t, 6(t) where 6(t) = o(t) — oy,
with oy, the average baseline (pre-stimulus) activity.

We used the same approach to compute the sensitivity separately to either local or long-range weights, which was
done by applying the gain to the corresponding local (WM and W"1) or long-range blocks (WLM=V1 and WV1—LM)
of the W matrix.

Intrinsic flow and velocity

In Figure 3D, we plot the velocity field of the intrinsic dynamics (i.e dynamics in the absence of external inputs),
projected into the subspace spanned by the top two principal components (PCs) of the latent trajectories. Projections
onto the PCs were only used for visualization purposes, and all analyses were performed using the full-dimensional
dynamics.

We first performed a singular value decomposition on the trial-averaged latent activity in no-go trials Z € RN*T as
Z = ULV, before defining U = [Uy, U,] € RN*2 as the top 2 PCs. We then computed the projected velocity field at
each point in the 2D space, = = (x,y), as v(x) € R?, where:

v(z) = 2(20")U (29)
and the function 2(-) was given by:
(€)= —€ + W(E) (30)

To compute the velocity in Figure 3E, we similarly used Equation 30, but we used the no-go trial-averaged latent
trajectories (without dimensionality reduction) for £. In Figure 3H, we followed the same procedure, but using the Z
and W restricted to each area. In this case, the 2 PCs were similarly extracted from the area-restricted latents.
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Network time constants and line attractor score

For analyses in Figure 3EG,L ], we linearized the dynamics around the average value of the latents across trials and
time, either during or before the stimulus, and computed the eigenvalues and eigenmodes of the linearized dynamics
A (see Methods - Linearization of the dynamics).

A

In this continuous-time linear dynamical system, each eigenmode j evolves in time according to e©!, where T is the
single neuron time constant and A; the eigenvalue of mode j. The characteristic decay timescale of each mode is then
given by 7; = WTA]M

Assuming the modes are ordered such that 0 > Re(Ag) > ... > Re(A,), ie 19 > ... > Ty, Tp defines the slowest
timescale in the dynamics.

To calculate the time constants in the V1-only or LM-only networks in Figure 31, we followed the same procedure
but used W and Z restricted to each individual area to compute the linearized dynamics. When comparing the time
constants of these single-area networks to the full network, in order to control for their smaller size, we constructed
subnetworks of the size of each individual area, sampled randomly from the full network (500 random subsets, and
excluding any subselection that would correspond to the V1 or LM network).

To quantify the existence of a line attractor in the dynamics, we compute the “line attractor score", defined as in
Nair et al. [2023] as a log ratio of the slowest to the second-slowest time constant of the network dynamics, i.e.
log(ro /1)/ log 2. A true line attractor would correspond to an infinite line attractor score. A score of 1 means that the
slowest mode is twice as slow as the next mode. A score of 0 means that the first two slowest modes have the same
time constant (as happens e.g. when these two modes define a plane with rotational dynamics, i.e, the imaginary parts
of their eigenvalues are non-zero).

Minimal E-I networks

Our minimal E/I networks (Figures 4 and 5) are described as linear rate models, consisting of two areas, where each
area’s connectivity is given by:
e —i
Wiocal = . (31)
e —i

Where e and i are the strength of excitatory and inhibitory connections respectively. The activity in the full network
evolves as:
" = —r + Wr +u(t) (32)

where u(t) is an external input which is zero unless otherwise specified,

e e —i £ 0
rl e —1i ¢ 0
r=| Y| and W= (33)
TEM £ 0 e —i
r{M { 0 e —i

and / is the strength long-range excitatory connections. This is the minimal network architecture depicted in Figure 4B.

We can show that the orthonormal basis Q consisting of vectors Q = [bq, Ua, bg, ug] (b’ for ‘balanced’, ‘u” for
‘“unbalanced’; ‘a’ for ‘agree’, ‘d’ for ‘disagree’), where:

Uqg = 5 (34)

o
Q
Il
I
Y
<
Q
I
I
=
s
I
I
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is a Schur basis of W such that W = QTWQ is an upper triangular matrix:

e—i+¥0 ed+it+/t 0 0
i 0 0 0 0
W = (35)
0 0 e—i—f eti—t
0 0 0 0

This upper triangular form describes feedforward connectivity in the new basis Q, and reveals the existence of two
separate functional subnetworks, respectively describing the dynamics of agreement and disagreement between V1
and LM. The dynamics of each functional subnetwork are characterized by feedforward (balanced) amplification from
unbalanced to balanced modes [Murphy and Miller, 2009]. More details can be found in Supplementary Section 52.1
for more details, including elements of interpretation of the Schur decomposition.

We also considered a version of the above minimal model that also incorporated a notion of selectivity for go vs.
no-go stimuli (Figure 4C). Specifically, we split every E and I population in V1 and LM into two sub-populations,
one receiving direct go input, and the other receiving direct no-go input. This resulted in a circuit with 8 units, with
recurrent connectivity parameterized as:

e+es e —(i+1s) —i 4l 14 0 0
e e+eg —1i —(i+1is) / {4l 0 0
e+es e —(i+1is) —i £+l { 0 0
wo| © e+es —1i —(i+is) A R 0 0 36)
{4+ L 14 0 0 e+es e —(i+1is) —i
/ {4l 0 0 e e+eg —1 —(i+1is)
0+l 14 0 0 e+ e e —(i+1is) —i
/ £+l 0 0 e e+es —i —(i+is)

The Schur decomposition of this network, along with its interpretation in terms of time constants, can be found in
Section S2.

Autocorrelation of neural data

The autocorrelation of the agree (a) and disagree (d) neural activity patterns across V1 and LM are defined as,
respectively, the sum and difference of the average empirical spike counts binned at 5 ms (s(t)), within each area, i.e.,

1 ; 1 ;
ap(t) = —— ), sp(t) +-— ), si(t) (37)
1 ieZVI "M ieZL:M
1 ; 1 ;
d(t) = —— ) sp(t) ——— ), sp(t) (38)
i iezv:l "M ie;M
- 1
B() = ax(t) — = ¥ au(t) 39)
kK eK
. 1
di(t) = () = X d(t). (40)
K eK
We define the autocorrelation of the agree mode as the autocovariance normalized to the overall variance:
Cz(’l’) _ <ak(t)ak(t+7)>t (41)

(@ (t)ar(t))s
where (-); denotes an average over time bins ¢ that are such that both ¢ and ¢ + 7 fall within the relevant time window.
This time window was [—400 : 0] ms (‘pre’) or [100 : 500] ms (‘during’) relative to stimulus onset. The autocorrelation of
the disagree mode, Cl‘f(f), is defined analogously. See Figure S6B for a distribution of marginal variances (denominator
in Equation 41) in the agree and disagree modes.

In Figure 4 (H and I), we report the mean autocorrelation and its standard error across all correct control go and no-go
trials and all animals. Note that mean subtraction in Equation 39 was done separately per animal/condition for go
and no-go trials.
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Our minimal models of V1-LM dynamics (Figure 4B-C) also make predictions for the decay timescales of balanced vs.
unbalanced modes. Estimating the autocorrelation time constant of these modes required estimating the E/I identity
of each recorded neuron. For this, we used the identities inferred by the latent circuit models, and computed the
momentary contributions of the balanced and unbalanced agree (a;, ;) or disagree (dy,, d,;) modes to the recorded
activity as:

1 . 1 . 1 . 1 .
t — 1 1 1 1 42
wt) = —— L s+ L s+—— L s+ ¥ st @)
V1* jeviE V15 jevil LM® jeLME LM jepm!
1 . 1 . 1 . 1 .
ay(t) = Yo s ——— ) si(H)+ Y. si(t) - Y. st (43)
MviE jcviE il v NLME jcrmeE LMD jermi
1 1 1 1
dy(t) = . Y osi(t) + . Y os(t) — - Y si(t) — - si(t) (44)
V1E peyiE VI eyl LME el MmE LM epmt
1 1 1 1
W)= ¥ sl ¥oal) - T s+ = T al) o)
kevil kevil keLM keLM

Having defined these projections, we follow the same procedure as in Equation 39 - Equation 41 to calculate autocorre-
lations. Results are shown in Figure S6A

Quantifying autocorrelation differences

To quantify the difference between the autocorrelation functions of neural activity projected onto the agree vs. disagree
modes (Figure 4H and I), we first identified the time lag at which the average agree/disagree autocorrelation function
reached its maximum (fmax). We then quantified the difference between agree and disagree autocorrelation functions
at this time point (Amax).

Projected autocorrelations for selective/unselective modes

In Figure 41, to estimate the time course of the selective and unselective modes from the neural data, we computed two
indices for each neuron. The first measured ‘unselective’ responsiveness, i.e. how much more each neuron responded
to either stimuli (go/no-go), relative to baseline. The second index measured ‘selective’ responsiveness, i.e. how much
each neuron preferred the go stimulus over the no-go stimulus. This resulted in two vectors of indices:

1 500 0
w'msel — 7 Z 2 <2 si(t) — Z sli(t) (46)
k c=go,no-go \t=0 t=-500
sel 1 o 80 .- no—go
w = P D IEAGED I AN (47)
k \t=0 t=0

We then used these indices to compute weighted averages of the neural activity at each time step, ai‘md(t) =
T T
w™el g (t) and a,sfl(t) = w5 (t).

The distributions of unselective and selective weights (w and w*®) across V1 and LM neurons are shown in
Figure S6D-E, and their relationship with one another is shown in Figure S6C. The elements of w"*¢! were biased
towards positive values (Figure S6D), as most recorded neurons responded to visual stimuli by increasing their firing
rates. For w®, in contrast, the distribution was symmetric. This is because we measured responses early during
stimulus presentation, i.e. likely before any go-stimulus-related behavior could break the symmetry in the neural
responses to the two stimuli (Figure S6E). The choice of a small time window to compute w*! also ensured that the
selective index for a neuron was not corrupted by its unselective stimulus responsiveness, i.e that we! were not directly
correlated with w"™se! (Figure S6C). This was important to establish that the slow time constant of the autocorrelation
in agree-selective mode was not simply due to the correlation of this mode with the agree-unselective one, but instead
depended on the stimulus selectivity of neurons.

unsel

Alignment of the latent circuits’ eigenmodes onto agree unselective/selective modes

For our latent circuit models, we could ask whether their two agree modes (unselective and selective) bore any relation-
ship with their two slowest eigenmodes. Eigenmodes were computed for the Jacobian of the latent circuit dynamics
linearized around the average activity in no-go trials during stimulus presentation (see Methods - Linearization of
the dynamics), and were sorted from slowest to fastest according to their associated eigenvalues. Similarly, we could
estimate the latent circuit’s unselective and selective agree modes by computing, for each latent unit, similar indices of
unselective/selective responsiveness as we had computed for recorded neurons in Figure 4I (c.f. Equations 46 and 47).
For the selective indices, activity of the latent circuit during the onset period (0-100ms from the stimulus presentation)
was used, as the latent circuit activity was strongly driven by external inputs during this time window (Figure 3A).
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This yielded two normalized vectors, whose overlaps with the eigenvectors we evaluated, by calculating the absolute
value of their dot product. These overlaps are shown in Figure S6F.

Details of Figure 5

In Figure 5, we simulated the linear dynamics of the minimal circuit model of Figure 4C, i.e. Equations 32 and 36 with
parameters T = 10ms, e = 2,i = 2, e = 0,is = 0, £ = 0, and / taking values in the set {0,0.5,0.9}. The input to
the network was u(t) = a(t/7")ug with T = 15 ms, i.e. it was the product of a scalar temporal envelope (Figure 5A,
bottom) () = {t3e_t +31- e_t))} H(t — tstim) (Where H(-) denotes the Heaviside function) and a spatial input
pattern uy which expressed how much each subpopulation was driven by the ‘visual” stimulus. For Figure 5B-D, we
setug = (1,0,1,0,—0.6,0,—0.6, O)T, whereas for Figure 5E-G we set up = (1,0,1,0,0,0.6,0, 0.6)T (c.f. gray insets).
Statistics

We used two-sided Wilcoxon rank-sum tests for independent group comparisons, and two-sided Wilcoxon signed-rank
tests for paired tests, unless otherwise stated.

symbol | value | unit description
n 16 = number of latent units
m 3 - number of latent inputs
TE 20 ms excitatory latents time constant
T 20 ms inhibitory latents time constant
1 0.004 = learning rate
k 10 - scaling of the optimizer square root decay
r 0.6 = spectral radius of W at initialization
A 1000 - scale of the regularization for C
Fe 0.5 = fraction of excitatory neurons

Table 1: Model hyperparameters.
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