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Abstract 

Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates 
from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific elongation rates as a generalized linear 
function of nearby genomic and epigenomic f eatures. W e validate this model with simulations and apply it to public PRO-seq (Precision Run-On 
Sequencing) and epigenomic data for four cell types, finding that reductions in local elongation rate are associated with cytosine nucleotides, 
DNA methylation, splice sites, RNA stem-loops, CTCF (CCCTC-binding factor) binding sites, and several histone marks, including H3K36me3 and 
H4K20me1. By contrast, increases in local elongation rate are associated with thymines, A+T-rich and lo w-comple xity sequences, and H3K79me2 
marks. We then introduce a con v olutional neural network that impro v es our local rate predictions. Our analysis is the first to permit genome-wide 
predictions of relative nucleotide-specific elongation rates. 
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ntroduction 

n enduring challenge in the study of eukaryotic gene reg-
lation is that there is no single, well-defined point of
ontrol for gene expression. Instead, rates and patterns
f expression are influenced at a broad array of cellular
tages, ranging from pre-transcriptional chromatin remodel-
ng to transcriptional, post-transcriptional, translational, and
ost-translational steps. Even within the critical stage of
ranscription—where research has traditionally focused on
ontrol of transcription initiation—many different steps can
e regulated. 
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After RNA polymerase II (Pol II) has been recruited to
a promoter, and together with its cofactors, unwound the
DNA and established a stable RNA–DNA hybrid, it begins to
translocate along the DNA template and synthesize a nascent
RNA molecule [ 1 , 2 ]. This process of productive elonga-
tion occurs at variable rates along the DNA template, some-
times pausing entirely for minutes at a time. A particular
focus of recent research has been the tendency of Pol II to
exhibit a pronounced pause ∼20–60-bp downstream of the
TSS (Transcription Start Site). Such promoter-proximal paus-
ing is remarkably widespread, both across metazoan species
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and across genes, and appears to be regulated in many cases
[ 3 , 4 ]. 

Rates of elongation also vary throughout the gene body,
however, for reasons that are less well understood. What is
known is, first, that productive elongation rates vary consider-
ably across genes. In mammals, elongation through gene bod-
ies occurs at an average rate of roughly 2 kb / min but this rate
can vary by four-fold or more across genes, and it can also vary
considerably for the same gene across cell types or conditions
[ 5–10 ]. Second, the local elongation rate changes along each
individual gene body, tending to increase with distance from
the TSS but becoming reduced again at exons and near the ter-
mination site [ 5 , 6 ]. Third, average elongation rates for genes
are correlated with a wide variety of genomic and epigenomic
features, including G+C content, exon density, nucleosome
density, DNA methylation, histone marks such as H3K4me1,
H3K4me3, H3K36me3, H3K79me2, and H4K20me1, stabil-
ity of the DNA–RNA hybrid, the density of low-complexity
sequences, as well as various DNA 5-mer frequencies [ 5–7 , 9 ,
11 , 12 ] (reviewed in [ 4 , 13–15 ]). Fourth, elongation rates are
positively correlated with the Pol II density itself, suggesting
that the activity of one polymerase somehow facilitates the
progress of others [ 5 ]. Finally, in at least some cases, elonga-
tion rates are actively regulated in response to various cellular
stimuli, with dysregulation potentially contributing to disease
progression [ 14 ]. 

Other studies have focused specifically on pausing of Pol II.
Aside from the pronounced pausing that occurs proximal to
the promoter, many, typically more subtle, pause sites occur
within gene bodies, and, in the aggregate, these sites have a
major effect on the dynamics of transcription elongation [ 16–
19 ] (see also [ 20 ] for a recent study in yeast). These gene-body
pause sites replicate well across experiments but vary substan-
tially in their density across genes [ 18 ]. Such pausing has been
reported to be associated with intron–exon boundaries, al-
ternative splicing, certain properties of DNA shape and the
RNA–DNA hybrid, DNA methylation, binding sites for fac-
tors such as ESR1, PAX5, SMAD3, YY1, and CTCF (CCCTC-
binding factor), and particular sequence motifs, some of which
are distinct from those associated with promoter-proximal
pausing [ 18 , 19 , 21–23 ]. 

Despite these findings, much remains unclear about the
determinants of local elongation rates through gene bodies.
Most studies have either been based on the measurement of
rates of progress of Pol II “waves” in time-course experiments
[ 5–10 ], or on pre-identified gene-body pause sites [ 18 , 19 ]. The
wave experiments have limited genomic resolution, because
waves tend to move tens of kilobases between timepoints, and
are therefore better suited for evaluating correlates of average
genic elongation rates than of local rates. They also are re-
stricted to longer genes at which transcription can be induced
or repressed. The experiments based on pre-identified pause
sites have better genomic resolution but tend to reflect only the
most extreme reductions in rate—ones sufficient to produce a
statistically significant local peak in nascent RNA sequencing
(NRS) read counts. Furthermore, with both types of studies, it
is difficult to make sense of the observed genomic and epige-
nomic covariates because many of them are also strongly cor-
related with one another. 

In this study, we revisit these questions using a fundamen-
tally different statistical modeling approach. Our method is
based on a recently developed “unified model” for NRS data,
which describes both the kinetics of Pol II movement on the 
DNA template and the generation of NRS read counts re- 
flecting the Pol II density along the genome (see bioRxiv: 
https:// doi.org/ 10.1101/ 2021.01.12.426408 ) [ 24 ]. We adapt 
this model to allow for elongation rates that vary contin- 
uously along the genome, using a generalized linear model 
(GLM) to capture the relationship between the local rate and 

nearby genomic features. In this way, we avoid a dependency 
on predefined pause sites, and jointly consider the influences 
of many features on elongation rate. By accounting for differ- 
ences across genes in initiation rate, we are able to efficiently 
pool information across genes, and extract high-resolution in- 
formation about relative local elongation rates from steady- 
state data. This strategy avoids a dependency on specially de- 
signed time-course experiments, and enables application to 

a wide variety of existing public datasets. An extension to a 
convolutional neural network (CNN) enables nonlinear rela- 
tionships to be captured and modestly improves prediction 

performance. We apply our methods to public data for four 
mammalian cell lines, identifying both previously known and 

novel correlates of elongation rate. We then use our models to 

predict nucleotide-specific elongation rates genome-wide and 

make our predictions available in a UCSC Genome Browser 
track. 

Materials and methods 

Unified probabilistic model for NRS data 

Our unified model has been detailed in [ 24 ]. Briefly, it con- 
sists of two layers: a continuous-time Markov model for the 
movement of individual polymerases along a transcription 

unit (TU), and a conditionally independent generating pro- 
cess for the read counts at each nucleotide site (Fig. 1 ). To- 
gether, these components produce a full generative model for 
NRS read counts along the TU, permitting inference of tran- 
scriptional rate parameters from the raw data. The model as- 
sumes (i) that collisions between polymerases are rare, allow- 
ing the movement of each one to be considered independently 
of the others and (ii) that premature termination of transcrip- 
tion is sufficiently rare that each polymerase can be assumed 

to traverse the entire DNA template if it is given enough 

time. (Notably, for this work, these assumptions only apply 
within gene bodies; they are unaffected, e.g. by premature ter- 
mination upstream of or near the promoter-proximal pause 
site.) 

The key extension for the purposes of this work is to allow 

for a different elongation rate at each nucleotide position, in- 
stead of a constant rate across all nucleotides. For reasons that 
will become clear below, we express the elongation rate for po- 
sition i and gene j as a product of a gene-wide average elon- 
gation rate ζ̄ j and a position-specific scale factor (hereafter,
the “local elongation rate”), ζi , j . In this version of the model,
we ignore promoter-proximal pausing and termination and 

focus on the gene body, where the elongation signal is easiest 
to interpret. With these changes, the steady-state density for 
polymerase occupancy at nucleotide i along the body of gene 
j is given by 

πi, j = 

1 

Z j 

ω j 

ζ̄ j ζi, j 
, (1) 

https://doi.org/10.1101/2021.01.12.426408
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Figure 1. ( A ) Conceptual illustration of kinetic model for Pol II movement along DNA template in gene body. At nucleotide site i , relative elongation rate 
ζi is an exponentiated linear function of features Y i and coefficient κ. Promoter-proximal pausing and termination are ignored here. For simplicity, the 
subscript j for the gene is omitted here (see text). ( B ) Graphical model representation showing unobserved continuous-time Markov chain ( Z i ) and 
observ ed NR S read counts ( X i ). ( C ) Conceptual illustration sho wing that differences in a v erage gene-body read depth are e xplained b y the scaled 
initiation rate χ, while relative read depth is explained by the GLM for local elongation rate ζi . Read count X i is assumed to be Poisson-distributed with 
mean χ

ζi 
. Pause and termination peaks are omitted. 
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here ω j is the gene-specific productive initiation rate and the
ormalization constant for gene j of length N j is given by Z j =

ω j 

ζ̄ j 

∑ N j 

i =1 
1 

ζi, j 
. 

In turn, the local elongation rate ζi , j is defined by a gener-
lized linear function of features along the genome: 

ζi, j = e κ·Y i, j , (2)

here Y i, j is the feature vector at site i of gene j and κ is a
orresponding vector of real-valued coefficients, whose first
lement is assumed to be a constant of 1 to accommodate
n intercept for the linear function at the corresponding posi-
ion in κ. The use of a single set of coefficients κ for all ana-
yzed sites allows sparse information about correlates of elon-
ation rate to be pooled efficiently across many sites and many
enes. 

As in previous work [ 24 ], we assume that the NRS read
ounts X i , j for nucleotide i of gene j are generated by a Pois-
on process, conditional on the steady-state density πi , j . In par-

icular, we assume that X i, j ∼ Pois 
(

λω j 

ζ̄ j ζi, j 

)
, where λ is a scale

arameter for sequencing read depth. Thus, the expected NRS
ead counts in gene j are proportional to the read depth and
he productive initiation rate ω j and inversely proportional
o the gene-wide and local elongation rates ζ̄ j and ζi , j . The
arameters λ, ω j , and ζ̄ j , however, are nonidentifiable from
teady-state data; only the compound parameter χ j = 

λω j 

ζ̄ j 
can

e estimated from the data. Thus, X i, j ∼ Pois 
(

χ j 

ζi, j 

)
. 
With these assumptions, the joint log likelihood function
for M independent genes is given by 

� ( X ; χ, κ, Y ) = 

M ∑ 

j=1 

N j ∑ 

i =1 

log 

⎡ 

⎢ ⎢ ⎢ ⎣ 

(
χ j 
ζi, j 

)X i, j 
e 
−

χ j 
ζi, j 

X i, j ! 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

M ∑ 

j=1 

N j ∑ 

i =1 

X i, j log 
(

χ j 

ζi, j 

)
− χ j 

ζ j,i 
− log Z 

= 

M ∑ 

j=1 

N j ∑ 

i =1 

X j,i log 
(
χ j 

) − X j,i 
(
κ · Y j,i 

) − χ j e 
−κ·Y j,i − log Z 

= 

M ∑ 

j=1 

s j log 
(
χ j 

) − κ · T j − χ j U j − log Z, (3)

where Z does not depend on the free parameters and can be
omitted in optimization, s j is the sum of read counts for gene
j , s j = 

∑ N j 

i =1 X i, j , and T j and U j are defined analogously as 

T j = 

∑ N j 

i =1 X i, j Y i, j , (4)

U j = 

∑ N j 

i =1 e 
−κ·Y i, j . (5)

This joint log likelihood can be maximized easily by gra-
dient ascent, in a manner similar to standard Poisson regres-
sion. The partial derivative with respect to the n th component
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of κ is given by 

∂ 

∂κn 
� ( X ;χ, κ, Y ) = 

M ∑ 

j=1 

χ j V j,n − T j,n , (6)

where the final subscript n indicates the n th element of a vec-
tor, and V j is defined as 

V j = 

N j ∑ 

i =1 

e −κ·Y i, j Y i, j . (7)

For a given value of κ, the maximum for χj can be deter-
mined analytically as 

ˆ χ j = 

s j 
λU j 

, (8)

where λ is approximated as the average read depth across all
genes. Thus, the gradient ascent algorithm iteratively improves
estimates of κ and, on each iteration, fully optimizes χj con-
ditional on the other parameters. Notice that the sufficient
statistics s j and T j need only be computed once, in prepro-
cessing, but U j and V j must be recomputed on each iteration
of the gradient ascent algorithm. We used a learning rate of
10 

−7 (i.e. the multiplier for the gradient on each iteration) for
gradient ascent. 

Penalized likelihood extension 

In the case of a high-dimensional feature vector (i.e. with the
k -mer or combined versions of the model), we augmented the
log likelihood with a sparsity penalty. We experimented with
L1 (lasso), L2 (ridge regression), and combined L1 / L2 (elastic
net) penalties but found the L1 version to work best in this
setting. In this version, the objective function to maximize is
(cf. equation 3 ) 

� ′ ( X ; χ, κ, Y , ν) = 

M ∑ 

j=1 

[
s j log 

(
χ j 

) − κ · T j − χ j U j 
] − ν

∑ 

n 

| κn | , 

(9)

where ν is a hyperparameter determining the strength of the
penalty and the final sum is over all features. Here, the partial
derivative with respect to the n th component of κ is given by 

∂ 

∂κn 
� ′ ( X ;χ, κ, Y , ν ) = 

M ∑ 

j=1 

[
χ j V j,n − T j,n 

] − ν sgn (κn ) . 

(10)

We determined a value for the hyperparameter ν separately
for each analysis by cross-validation. Specifically, we set ν to
the value that minimized the Akaike Information Criterion
(AIC) for held-out testing data, using 80% of the data for
training and 20% for testing (see Supplementary Fig. S8 ). We
considered a grid of possible ν values, estimating κ by max-
imizing the penalized log likelihood for the training data for
each choice of ν, and then evaluating the AIC for the testing
data. The estimate of κ and ν that minimized the AIC was
used for the subsequent analyses. 

DNA k -mer features 

Two types of k -mer models were considered, including either
5-mers only or all k -mers for k ∈ {1, 2, 3, 4, 5}. In both cases,
a separate indicator feature was defined for each candidate k - 
mer (1024 or 1364 features, respectively). At each site i and 

gene j , this feature was given a value of 1 if the reference 
genome matched that k -mer at the corresponding position and 

a value of 0 otherwise. For odd values of k , a match was eval- 
uated by aligning the middle position of the k -mer with the 
reference base at position i , j , assuming that the middle posi- 
tion represented the active site of Pol II. For even values of k ,
position k / 2 was aligned with the reference base, so that the 
active site fell slightly left of center in the k -mer, as shown by 
the underlined bases in Fig. 4 . A separate set of experiments 
considered 5-mers shifted upstream or downstream of the ac- 
tive site (Fig. 5 C and Supplementary Figs S18 and S19 ). 

Model extension allowing for sequence bias 

We also implemented a version of the k -mer model that allows 
for some, potentially unknown, source of nucleotide bias at 
the 3 

′ ends of aligned PRO-seq reads, and attempts to find 

k -mer associations relative to that bias. The idea behind this 
model is to see if larger k -mer associations persist even if the 
nucleotides at the apparent active site are somehow biased by 
the protocol (see Supplementary Fig. S10 C). 

This version of the model allows for arbitrary relative fre- 
quencies of 3 

′ nucleotides πA 

, πC 

, πG 

, and πT , which in prac- 
tice are pre-estimated from the bulk distribution of 3 

′ nu- 
cleotides in the PRO-seq reads. They are accommodated in 

the model by replacing the single read-depth scale parameter 
λ with a separate scale factor for each nucleotide, λA 

, λC 

, λG 

,
and λT , such that for each base b ∈ {A, C, G, T}, λb = 4 λπb .
For mathematical convenience, we then reparameterize using 
ρb = 

λb 
λ

= 4 πb . 
After this generalization, the (unpenalized) log likelihood 

becomes (cf. equation 3 ) 

� ( X ;χ, κ, Y ) = 

M ∑ 

j=1 

s j log 
(
χ j 

) − κ · T j 

+ 

⎡ 

⎣ 

N j ∑ 

i =1 

X i j log ρi 

⎤ 

⎦ − χ j U 

′ 
j − log Z, (11) 

where we use the notation ρi to indicate the value of ρb corre- 
sponding to the nucleotide at position i , and where U 

′ 
j is like 

U j (cf. equation 5 ) but has its terms weighted by the corre- 
sponding ρb parameters: 

U 

′ 
j = 

N j ∑ 

i =1 

ρi e −κ·Y i, j 

= 

N j ∑ 

i =1 

e −( κ·Y i, j −log ρi ) . (12) 

The effect of this model is to add to each dot product κ · Y i, j 

a quantity of −log ρi . Thus, nucleotides b that are overrepre- 
sented (with ρb > 1) are penalized, whereas nucleotides that 
are underrepresented (with ρb < 1) are rewarded. As a result,
k -mer associations that simply reflect the background distri- 
bution are down-weighted and ones that represent departures 
from that distribution are up-weighted. If the nucleotides are 
uniformly distributed (with ρb = 1), the model collapses to the 
original version. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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moothing filters for genomic features 

s specified, the model requires that any influence on the elon-
ation rate at nucleotide i of gene j must be captured by the
eature vector for the same position, Y i, j . Some features, how-
ver, appear to have broader effects that spread out to ad-
oining nucleotide positions. For example, 3 

′ and 5 

′ splice
ites are narrowly defined at a few nucleotide positions, but
etaplots of NRS data suggest that their effects on elonga-

ion rate extend for as much as a hundred nucleotides (see
.g. Supplementary Fig. S6 A–C), likely because physical inter-
ctions between Pol II and the spliceosome can occur over a
airly broad region. 

To address this problem, we introduced a preprocessing de-
ice called a “smoothing filter” that can be applied to any ge-
omic feature to cause its influence to be distributed to adja-
ent nucleotide positions. Even for features that are not nar-
owly defined at a few nucleotides, smoothing filters can be
seful in compensating for different levels of genomic reso-
ution across features, e.g. to put different ChIP-seq (Chro-
atin immunoprecipitation sequencing) datasets on the same

enomic scale. 
Formally, a filter F r , σ, δ is a function defined by three param-

ters: a “radius” of application r , a “smoothing bandwidth”
, and an “offset” δ. Applying a filter requires replacing each
scalar) covariate Y 

(n ) 
i, j with a filtered version, Ȳ 

(n ) 
i, j , such that 

Ȳ 

(n ) 
i, j = 

1 

Z 

+ r ∑ 

k = −r 

Y 

(n ) 
i + k + δ, j F r,σ,δ (k ) , where Z = 

+ r ∑ 

k = −r 

F r,σ,δ (k ) . 

(13)

The filter F r , σ, δ( k ) can take a variety of functional forms,
nd simple filters can be composed to create more complex
nes. In this work, however, we found it most useful to work
ith a Gaussian filter, 

F r,σ,δ (k ) = 

1 

σ
e −

1 
2 ( k/σ ) 2 , (14)

nd a generalized filter, 

F r,σ,δ (k ) = λk + r , (15)

hich is defined by a vector of nonnegative scale factors
= { λ0 , ..., λ2 r } that were estimated from metaplots of PRO-

eq data centered on the feature of interest. We used the gener-
lized filter for the 3 

′ and 5 

′ splice-site features, and the Gaus-
ian filter for the ChIP-seq-based features, including the his-
one modifications and CTCF ( r = 400 bp, σ = 100 bp; see
xamples in Supplementary Fig. S6 ). We also applied a Gaus-
ian filter (with r = 500 bp, σ = 200 bp) to the stem-loop
eature, matching it to the corresponding metaplot. 

tandardization of feature values 

s with any linear modeling application, the epigenomic and
 -mer features needed to be standardized to allow the esti-
ated coefficients to be on the same scale and comparable
ith one another. We used the simple approach of shifting

nd rescaling the values for each feature to have a mean of
ero and standard deviation of one. Some features were de-
ned for only a subset of genomic positions (such as DNA
ethylation, which was relevant only at CpG dinucleotides);

n these cases, the defined values were first standardized and
he remaining positions were subsequently assigned values of
ero, to ensure that they had no positive or negative effect in
the linear model. Notably, in the case of DNA methylation,
this strategy ensures that the model can distinguish between
the effects of methylation and those from cytosine nucleotides,
because no signal comes from noncytosine positions. 

Standardization of the indicator features for k -mers led to a
computational problem that required special attention. Prior
to standardization, these features had values of zero at the vast
majority of genomic positions, but after standardization these
zeroes were converted to negative real values. As a result, the
calculation of the U j and V j values needed for each iteration
of the gradient ascent algorithm (equations 5 and 7 ) became
considerably more laborious. We addressed this problem by
first calculating the U j and V j values from the unstandardized
feature values (containing mostly zeroes) and using a linear
transformation to convert them to the corresponding values
for the standardized features. In this way, the speed of pro-
cessing the unstandardized values could be maintained while
properly considering the effects of standardization. 

SimPol simulator 

The SimPol (Simulator of Polymerases) program tracks the
independent movement of RNA polymerases (RNAPs) along
the DNA templates of a large number of cells (Fig. 2 A). As de-
tailed in [ 24 ], the original program accepts user-specified pa-
rameters for the initiation pause-escape, and elongation rates,
as well as the number of cells being simulated, the gene length,
and the total time of transcription. For this study, we modified
the simulator to accept a vector of position-specific elongation
rates, which could be pre-computed based on covariates (see
below). We also omitted the pause-escape portion of the simu-
lation model. Based on the specified parameters, the simulator
simply allows each polymerase to move forward or not at the
specified rates, in time slices of 10 

−4 min, assuming at most
one movement per time slice, and prohibiting movement if an-
other polymerase blocks forward progress. The program was
run until polymerase occupancy along the gene body reached
equilibrium (20 min simulated time), and then the empirical
density was output as a file in csv format. From this output, an
accompanying R script was used to sample synthetic NRS read
counts at each nucleotide position (as in [ 24 ]), with a target
mean read depth equal to that observed in the real PRO-seq
data for K562 cells ( Supplementary Fig. S1 B). 

Generation of synthetic NRS data 

For the epigenomic simulations, we used SimPol to simulate
10 replicates of 100 TUs of length 10 kb in 5000 cells. In each
replicate, gene-specific initiation rates were sampled from real
data for K562 cells [ 24 ], by rescaling the estimated χ values
as initiation rates α having a median of 1 event per min. Of
the 100 simulated TUs in each replicate, 20 were held out
for testing, as noted in the text. We selected six representa-
tive epigenomic features from real data for K562 cells: CTCF
binding sites, four histone marks, and RNA stem-loops (see
Fig. 2 B). To generate synthetic covariates, we sampled combi-
nations of these covariates from the real data in 1 kb blocks
( Supplementary Fig. S1 C and D), ensuring that their corre-
lation structure was preserved. We then generated feature-
specific local elongation rates according to the same GLM
used for inference, but with the addition of Gaussian noise.
Specifically, we assigned a κ coefficient to each feature and set
it equal to a value estimated in a preliminary analysis of the
K562 data, and then we set the local elongation rate for each

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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Figure 2. ( A ) The SimPol simulator tracks the movement of virtual polymerases across DNA templates in a population of cells (left panel). Once an 
equilibrium is reached, read counts per site are sampled in proportion to the simulated Pol II density, such that the a v erage read depth is matched to real 
PR O-seq (P recision R un-On Sequencing) data (right panel). ( B ) Correlation map of selected epigenomic features f or simulations (Spearman’s ρ). ( C ) B o x 
plots for estimated coefficient κ in 10 replicates compared with ground truth in simulations (crosses). ( D ) Estimated versus true nucleotide-specific 
elongation rates ζi across all simulated TUs ( r 2 = 0.75). ( E ) Estimated versus true nucleotide-specific elongation rates ζi along an individual TU in 10 
replicates ( r 2 = 0.87). 
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position i to be ζi = exp ( κ · Y i ) + δi , where δi ∼ N (0 , 0 . 1) .
The vector of simulated ζi values was then passed to SimPol
for simulation of polymerase movement and NRS read counts
(above). We also experimented with a version of these simu-
lations without Gaussian noise ( Supplementary Fig. S3 A–D). 

The simulations for the 5-mer model were similar, but in
this case we simulated 200 TUs in each replicate, owing to the
high-dimensional feature vector. We randomly sampled 100 5-
mers and assigned them coefficients ranging from −0.3 to 0.3,
while the remaining 5-mers were assigned a coefficient of 0.
The initiation rates and position-specific elongation rates were
determined as above, but without the addition of Gaussian
noise. 

Analysis of real data 

We acquired PRO-seq datasets for K562, CD14+, Hela-S3,
and MCF-7 cell lines from published sources [ 25–28 ] and
processed them using the proseq2.0 pipeline ( https://github.
com/ Danko-Lab/ proseq2.0 ) [ 29 ]. The data were processed ex-
actly as described in [ 24 ]. Briefly, mapping was performed
with human genome assembly GRCh38.p13. The 3 

′ ends of
mapped reads—which we take to represent the active sites
of transcriptionally engaged polymerases—were recorded in
bigWig files and used for analysis. Gene annotations were
downloaded from Ensembl (release 99) in GTF [ 30 ]. An- 
notations of protein-coding genes from the autosomes and 

sex chromosomes were used, excluding overlapping genes on 

the same strand. DENR (Deconvolution of Expression for 
Nascent RNA-sequencing data) [ 26 ] was applied separately 
to each dataset to select dominant pre-messenger RNA (pre- 
mRNA) isoforms and estimate corresponding expression lev- 
els. Genes with a DENR-estimated abundance of < 10 TPM 

(transcripts per kilobase million) were removed. 
We took several measures to refine gene annotations, select 

regions for analysis, and remove signals not representative of 
elongation rates. First, we refined the annotated TSS positions 
using cell-type-matched NRS data. For the K562 data, we used 

available CoPRO-cap (Coordinated Precision Run-On and se- 
quencing with 5 

′ capped RNA) data [ 31 ] to re-position the 
TSS within a region −1500 bp to +1500 bp of the annotated 

TSS selected by DENR. In the other three cell lines, we per- 
formed a similar refinement using the 5 

′ ends of aligned PRO- 
seq reads (as in [ 24 ]). Second, we conservatively defined the 
“gene body”for each gene as the interval from 2250-bp down- 
stream of the refined TSS (a distance we verified was sufficient 
to eliminate all pause peaks) to 250-bp upstream of the anno- 
tated TTS. (See Supplementary Fig. S25 for a comparison with 

a more aggressive filtering strategy, which has almost no im- 
pact on our results.) Gene bodies < 6 kb were omitted. Finally,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://github.com/Danko-Lab/proseq2.0
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data


Predicting local rates of transcription elongation 7 

t  

p  

u  

5  

q  

w  

f  

d  

2  

r  

I  

d  

s  

H  

w  

o
 

b  

i  

r  

S  

u  

w  

c  

c  

a
 

f
 

w  

b  

g  

e  

a  

c  

p  

P  

i
 

(  

g  

c  

v

D

I  

t  

r  

b  

F  

c  

n  

G  

o  

s  

h  

t  

s  

t  

h  

b  

o  

c  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/4/gkaf092/8020229 by C

old Spring H
arbor Laboratory user on 18 February 2025
o eliminate potential internal TSSs—which create PRO-seq
eaks not representative of gene-body elongation rates—we
sed GRO-cap (Global Nuclear Run-On and sequencing with
 

′ capped RNA) [ 32 ] or PRO-cap (Precision Run-On and se-
uencing with 5 

′ capped RNA) [ 33 ] data where available, as
ell as dREG (discriminative Regulatory Element detection

rom GRO-seq) [ 34 ] predictions from the primary PRO-seq
ata. Specifically, we masked out predicted dREG peaks and
-kb intervals centered on GRO-cap or PRO-cap peaks (with
ead counts > 10) (see example in Supplementary Fig. S7 ).
n later analyses (with MCF-7), we omitted the less reliable
REG filter and used PRO-cap only. The final datasets con-
isted of 6391 genes for K562, 5336 for CD14+, 6657 for
eLa, and 6193 for MCF-7. For the comparison of cell lines,
e considered the intersection of these sets, which consisted
f 3716 genes. 
To eliminate the shared “U-shaped” pattern along gene

odies, we first merged the data for all genes after standardiz-
ng their lengths to a common scale and normalizing the raw
ead counts by dividing them by the median for each gene (see
upplementary Fig. S26 ). We then smoothed the merged data
sing the LOESS method, creating a gently U-shaped curve
ith an average height of one. We then adjusted the raw read

ounts by dividing by the height of the LOESS curve at the
orresponding positions, ensuring that the data were flat on
verage. These adjusted read counts served as the inputs X i , j

or our model. 
For the nonmodel-based validation of relative read depths,

e first computed a relative read depth along each gene body
y dividing all read counts by the average value within each
ene body, to account for differences in initiation and / or av-
rage elongation rates. We then computed the ratio of the rel-
tive read depth within the “covered” regions to that in “un-
overed” regions, pooling data across all 6000 robustly ex-
ressed genes. A ratio of > 1 therefore indicates an increase in
RO-seq read depth at annotated sites, whereas a ratio of < 1
ndicates a decrease in read depth. 

For the analysis of pausing locations within gene bodies
Fig. 3 E and Supplementary Fig. S10 A), we partitioned each
ene body into 200-bp intervals, summed the PRO-seq read
ounts within each window, and identified the top five inter-
als for each gene as putative pausing locations. 

etailed analysis of differences across cell types 

nitially we found a striking difference across cell types in
he apparent association of DNA methylation with elongation
ate, which was strongly negative in K562 and MCF-7 cells,
ut strongly positive in CD14+ and HeLa-S3 cells (Fig. 5 A).
urther investigation showed, however, that this difference
ould be explained by a failure to efficiently filter out inter-
al TSSs in CD14+ and HeLa-S3 cells, owing to the lack of
RO-cap or PRO-cap data for these cell types. An analysis
f K562 cells with and without the filter for internal TSSs
howed clearly that the correlation with DNA methylation is
ighly sensitive to the filter ( Supplementary Fig. S12 ). Because
hese internal TSSs tend to be both unmethylated and tran-
cribed, leading to a high PRO-seq read depth, they appear in
he context of our model to suggest that unmethylated DNA
as a reduced elongation rate, implying a positive correlation
etween methylation and elongation rate. This spurious signal
f positive correlation overwhelms the true signal for negative
orrelation that occurs elsewhere throughout the gene bodies.
We therefore disregard the positive κ estimates for CD14+ and
HeLa-S3 cells as artifacts of unfiltered internal TSSs. 

We also found that the positive association of H3K79me2
with local elongation rate was considerably strengthened
in MCF-7 cells, whereas the positive association of low-
complexity sequences was lost in this cell type. These differ-
ences traced back to an anomalous pattern of relative read
depths around these two features in the MCF-7 data, with
increases in H3K79me2 and decreases in low-complexity se-
quences relative to the background, for reasons we could not
discern. Conversely, the negative coefficient for H3K36me3
was smaller in MCF-7 cells. These differences contributed to
the reduced global correlation between MCF-7 and the other
cell lines—particularly with CD14+, which itself was an out-
lier in having a positive H3K9me3 coefficient. 

Differences across cell types were also observed in the
strength of association of cytosines with elongation rate
( Supplementary Fig. S15 B). In particular, this association was
largely absent in HeLa-S3 cells. On further investigation, how-
ever, we found that the HeLa-S3 dataset had an anomalous
bulk distribution of 3 

′ nucleotides, with much less enrichment
for cytosines than the others ( Supplementary Fig. S27 ). This
difference may also help to explain the unusually strong posi-
tive correlation for T-containing k -mers in HeLa-S3 cells. De-
spite reprocessing the raw data and re-mapping the reads for
HeLa-S3, we were unable to uncover the reasons for this dif-
ference. Notably, the CD14+ dataset is based on an unequally
concentrated four-dNTP library, where CTP and UTP concen-
trations are 10 times larger than ATP and GTP. Nevertheless,
the bulk distribution of 3 

′ bases was similar to those for the
other two-dNTP libraries. 

Test for ligation bias 

To test for a nucleotide bias in ligation, we leveraged the par-
ticular adapter design of another CD14+ PRO-seq library, as
follows. This library differs from the CD14+ library used in
the main analysis as it is a one-dNTP (CTP) run-on library,
which is not suitable for the application of our model. How-
ever, it can still serve as a useful dataset for studying liga-
tion bias. These adapter designs, denoted as RA3 and RA5,
incorporate a UMI (Unique Molecular Identifiers) consisting
of random bases (NNNNNN) at the 3 

′ end of the 5 

′ adapter
(see Supplementary Fig. S11 C). In this configuration, the 3 

′

end of a UMI mirrors the 3 

′ end of an insert, allowing for a
natural comparison of the nucleotide composition of insert–
adapter dimers with no-insert adapter dimers. We first estab-
lished that the 3 

′ ends of the synthesized UMIs have a uni-
form distribution of nucleotides ( Supplementary Fig. S11 D).
Next, we examined the 3 

′ ends of UMIs that were either lig-
ated to RA3 (no inserts) or inserts (with inserts). In a pool
of ∼20 million sequenced reads, about ∼90% were insert–
adaptor dimers, and ∼3% were no-insert adapter dimers. We
found no major difference between the 3 

′ -most nucleotides in
these two sets ( Supplementary Fig. S11 E), suggesting no liga-
tion bias. In particular, the cytosine frequencies in the two sets
were nearly identical. 

Enrichment logos for 5-mer candidates 

To determine the enrichment logos of the 5-mer model, we
clustered them using a K -means algorithm as implemented in
the kmeans() function in R (Hartigan–Wong algorithm). The
5-mers were divided into two groups based on their positive

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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Figure 3. ( A ) Estimated coefficient κ for the 12 epigenomic features considered, based on PRO-seq data for K562 cells [ 25 ]. Sign indicates direction and 
absolute value indicates strength of association with local elongation rate. Error bars indicate one standard error in each direction. ( B ) Ratio of relative 
a v erage PR O-seq read depth in regions co v ered b y each feature to that in regions not co v ered b y it (see te xt). ( C ) Metaplot (a v erage v alues across sites) 
of relative read depths centered on four selected features. Dashed line represents average across all gene bodies. ( D) Estimated versus true pausing 
locations within gene bodies (see text) ( r 2 = 0.68). ( E ) Predicted versus true PRO-seq read depths ( X i ) for held-out data averaged over 1-kb intervals for 
all TUs ( r 2 = 0.45). 
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or negative κ values, with the top 50 candidates selected for
each group. For each group, 5-mers with similar κ values were
clustered with K = 2. The enrichment of the sequence logos
for each cluster was visualized using ggseqlogo [ 35 ]. 

Convolutional neural network 

The CNN consists of separate branches for the epigenomic
and sequence features ( Supplementary Fig. S22 ). Input data
were divided into subsequences of 100 bp with batch sizes of
64, leading to input dimensions of (64, 100, 10) for the epige-
nomic features and (64, 100, 4) for one-hot encoded DNA se-
quences. The epigenomic data branch consists of a single con-
volutional layer, whereas the sequence data branch uses a se-
quence of three convolutional layers of increasing channel and
kernel sizes (as shown in Supplementary Fig. S22 ) to capture
features and motifs of varying sizes. We used odd-sized kernels
and the padding = “same” setting for the convolutional layers
to preserve data dimensionality. Each convolutional layer is
followed by a ReLU activation layer to allow for nonlinearity
and a dropout layer set to 0.5 to prevent overfitting. The final 
layers concatenate and integrate features from the two con- 
volutional branches while preserving data dimensionality. We 
experimented with several variants of this model architecture 
and found this one to perform best. 

To match the CNN to our Poisson-based GLM, the output 
of the CNN at each nucleotide is assumed to represent ρi , j = 

log ( ζi , j ), where ζi , j is the local elongation rate. The loss with 

respect to PRO-seq read counts X i , j is then calculated as 

� = X i, j ρi, j + χ j e −ρi, j , (16) 

where χj is pre-estimated under the assumptions of the GLM 

and passed in to the model. This loss function is equivalent to 

the negative log likelihood under the Poisson model up to a 
constant that does not depend on the CNN parameters. 

The data were split into a training set of ∼2.5k genes and 

a validation set of ∼300 genes. The model was trained with 

subsequences of length 100 but validation was performed on 

the full-length sequences. A dynamic learning rate scheduler 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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as used to decrease the learning rate by half during train-
ng whenever the validation loss increased. Early stopping was
sed to optimize model performance and prevent overfitting.
his entailed terminating training when the validation loss

ailed to decrease significantly over five consecutive epochs,
sually after 20–30 epochs. Hyperparameter sweeping was
sed for determining optimal channel sizes and kernel sizes
n each convolutional branch as well as for the learning rate
nd dropout. 

esults 

 GLM for variable elongation rates 

ur previous unified model describes both the stochastic
ovement of Pol II along a DNA template and the genera-

ion of NRS read counts from underlying Pol II densities. The
odel has two layers: the first layer describes the movement of
ol II using the framework of continuous-time Markov chains
 36 ]; and the second layer describes the generation of read
ounts at each site by assuming Poisson sampling conditional
n Pol II density. We recently adapted this model to charac-
erize the equilibrium dynamics of transcription initiation and
romoter-proximal pausing [ 24 ], ignoring variability in elon-
ation rate throughout the gene body. Here, we take a com-
lementary approach, focusing on gene-body elongation rates
ut ignoring promoter-proximal pausing. We focus in partic-
lar on the relationships between local elongation rates and
arious genomic and epigenomic features (Fig. 1 ). 

A key challenge in this analysis is that the information
bout elongation rate at each site is provided only by local
hanges in NRS read depth, which are difficult to detect re-
iably in low-coverage sequence data. We address this prob-
em by describing the relationship between the genomic fea-
ures at each site i in gene j , denoted Y i, j , and the elonga-
ion rate at that site, ζi , j , by a generalized linear relationship,
i, j = exp ( κ · Y i, j ) , where κ is a vector of coefficients that is
hared across all sites and all genes (Fig. 1 A and B). Thus, as
he model is fitted to the data, it “learns” to predict the site-
pecific elongation rate from local features through a simple
inear function, which is exponentiated to ensure that the pre-
icted rate remains nonnegative. In this way, the model can ef-
ciently pool information about local rates across many sites
n the genome and circumvent the problem of noise at each
ite. 

A second challenge is that NRS read counts reflect differ-
nces in gene-level initiation rates as well as both gene-level
nd local elongation rates (Fig. 1 C). In the same way that the
ensity of cars along a highway reflects both the rate at which
ew cars enter the road and their average speed, the poly-
erase density along each gene body reflects both the pro-
uctive initiation rate and the average elongation rate. In par-
icular, the steady-state read depth within each gene body j
an be shown to be proportional to the ratio of the produc-
ive initiation rate ω j to the average elongation rate ζ̄ j [ 24 ],
aking these two influences indistinguishable from steady-

tate data. Therefore, we focus instead on “local” variability
n elongation rate. First, we estimate a separate compound pa-
ameter χj for each gene j , which can be interpreted as a read-
epth-scaled initiation-to-elongation rate ratio for the gene
s a whole ( χ j = 

λω j 

ζ̄ j 
; see “Materials and methods” section).

hen we allow each site i in gene j to have a different “rel-
ative” local elongation rate ζi , j , which is defined as a func-
tion of the local features via the GLM. These ζi , j values can
be thought of as scale factors for the average elongation rate,
taking values < 1 for local slow-downs and values > 1 for local
speed-ups in polymerase movement. The model accounts for
the observed read depth X i , j at each site i by assuming X i , j is
Poisson-distributed with mean χi / ζi , j . 

The model recovers true elongation rates and 

epigenetic correlates in realistic simulations 

We first tested our modeling approach on data simulated with
SimPol [ 24 ], which tracks the movement of individual RNAPs
along the DNA templates in thousands of cells under user-
defined rates, and then samples NRS read counts in proportion
to the steady-state polymerase density (Fig. 2 A; see “Materi-
als and methods” section). For this study, we extended SimPol
to consider synthetic epigenomic correlates, which we tiled
along each synthetic DNA template using a block-sampling
approach based on real data for CTCF transcription bind-
ing sites, four different histone marks, and RNA stem-loops
(Fig. 2 B and Supplementary Fig. S1 ; see “Materials and meth-
ods” section). The “true” elongation rate at each site was de-
termined by an exponentiated linear function of the associ-
ated covariates plus independent Gaussian noise. Overall, the
estimated coefficients showed excellent agreement with the
true values, with some variation across replicates (Fig. 2 C).
We did observe a slight estimation bias in some cases (e.g.
H3K36me3), perhaps owing to unmodeled correlations be-
tween covariates. In most cases, however, the estimated coeffi-
cients were approximately unbiased, with median values close
to the truth. A second experiment based on overdispersed sam-
pling of the coefficients showed that the performance of the
model remains excellent even when the true values are fairly
far from those observed in real data ( Supplementary Fig. S2 ).

In a third experiment, we estimated the coefficient vector
κ from training data and then predicted per-nucleotide values
of the elongation rate ζi in held-out testing data (see “Mate-
rials and methods” section). In this setting, where the “true”
values also reflect a GLM, the predicted elongation rates were
well correlated with the true values ( r 2 = 0.75; Fig. 2 D). A
version without the addition of Gaussian noise showed al-
most perfect performance ( Supplementary Fig. S3 A–D). When
visualized along an individual TU, the predictions form a
smooth line through a cloud of variable true rates (Fig. 2 E).
While the precise degree of predictivity in these experiments
depends on the details of our simulation scheme, these re-
sults nevertheless demonstrate that our model can accu-
rately predict values of ζi when informative covariates are
available. 

Several epigenomic and sequence features are 

correlated with local elongation rate 

Having established that our model works well with simulated
data, we applied it to real PRO-seq data from K562 cells [ 25 ],
for which abundant epigenomic data are available. Based on
previous reports [ 5–8 ], we selected 12 features as covariates:
5 

′ and 3 

′ splice sites evident from cell-type-matched RNA-seq
data, DNA methylation based on whole-genome bisulfite se-
quencing data, CTCF binding sites based on ChIP-seq data,
six histone modifications (H3K4me1, H3K9me1, H3K9me3,
H3K36me3, H4K20me1, and H3K79me2) based on ChIP-seq

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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data (all from ENCODE [ 37 ]), as well as apparent RNA stem-
loops based on dimethyl sulfate data [ 38 ] and low-complexity
sequences annotated in the UCSC Genome Browser [ 39 ]. At
this stage, we omitted features strongly correlated with the
DNA-sequence base composition, such as DNA melting tem-
perature and stability of the DNA–RNA duplex. We also ex-
cluded several histone marks whose elongation-rate associ-
ation is driven by the 5 

′ ends of TUs (see Supplementary 
Fig. S4 ) and we avoided explicit consideration of exon anno-
tations, which are indirectly captured by splice sites and exon-
associated H3K36me3 marks (see Supplementary Fig. S5 ). To
account for differences in resolution or precision among these
features, we devised smoothing filters for several of them, to
distribute information along the genome sequence in an ap-
propriate manner (see “Materials and methods” section and
Supplementary Fig. S6 ). 

Before analyzing the PRO-seq data, we carefully prepro-
cessed them to avoid confounding signals not representative
of local elongation rates (see “Materials and methods” sec-
tion for details). Briefly, we adjusted annotated TSSs based
either on cell-type-matched CoPRO-cap data [ 31 ], if avail-
able, or the PRO-seq data themselves. We selected dominant
pre-mRNA isoforms using DENR [ 26 ] and then stringently
masked out possible internal TSSs using dREG [ 34 ] and avail-
able PRO-cap [ 33 ] or GRO-cap [ 32 ] data (see Supplementary 
Fig. S7 ). We then discarded the first 2250 bp downstream of
the TSS—which appeared to include all promoter-proximal
pause sites—and the final 250 bp of each TU. Finally, we
employed a LOESS-based adjustment to eliminate the “U-
shaped” pattern in read depths shared across genes [ 6 ], en-
suring that they were globally uniform along each gene on
average. 

We applied our model to the processed data for 6000 ro-
bustly expressed protein-coding genes, randomly sampling
2000 genes in each of 10 rounds of analysis and using the
variation in these estimates to obtain standard errors for the
estimated coefficients κ. We found that the estimates of κ were
mostly negative in sign, indicating associations with a reduc-
tion in elongation rate (Fig. 3 A). The strongest signal, by far,
was associated with DNA methylation ( κ = −0.20), although
its standard error is somewhat large owing to the sparseness of
the annotation (at CpG sites only). Moderately strong reduc-
tions in elongation rate were also associated with H3K36me3
( κ = −0.095), H3K9me1 ( κ = −0.067), and RNA stem-loops
( κ = −0.051). Somewhat weaker reductions were associated
with both 3 

′ ( κ = −0.033) and 5 

′ ( κ = −0.019) splice sites,
CTCF binding sites ( κ = −0.022), and other histone mod-
ifications (H4K20me1, H3K9me3, H3K4me1; κ ∈ [ −0.041,
−0.024]). Only two coefficients were positive, indicating as-
sociations with increases in elongation rate: those for low-
complexity sequence ( κ = 0.016) and the H3K79me2 histone
mark ( κ = 0.030). 

These observations are generally consistent with previous
observations at the level of entire genes, with negative cor-
relations having been reported for DNA methylation [ 6 , 7 ],
H3K36me3 [ 6 ], H4K20me1 [ 4 ], splice sites [ 17 , 22 , 40 ], and
CTCF binding [ 17 , 19 , 21 ], and positive correlations having
been reported for H3K79me2 [ 6–8 ] and low-complexity se-
quences [ 7 ]. Our analysis shows, however, that changes in the
presence or absence of these features are directly associated
with “nearby” changes in elongation rate, further suggesting
underlying mechanistic relationships with the movement of
Pol II (see “Discussion” section). 
To validate our model-based associations, we carried out a 
simpler, nonmodel-based analysis that compared the average 
read depths in sites within gene bodies that were annotated 

(covered) and were not annotated (noncovered) by each fea- 
ture (Fig. 3 B), after a suitable normalization (see “Materials 
and methods” section). We found that features that had neg- 
ative coefficients under the model (indicating an association 

with reduced elongation rate) did indeed show ratios > 1 and 

features that had positive coefficients mostly showed ratios 
< 1 with the exception of H3K79me2, where the effect was 
weak. The tendency for a local change in read depth could 

also be observed in “metaplots” of average values across an- 
notated sites (Fig. 3 C). Overall, this comparison shows that 
our model-based analysis does faithfully reflect first-order pat- 
terns of relative read depth, but makes some adjustments in 

rank order—and occasionally in sign—by jointly considering 
all features together in one unified framework. 

We also sought to test the model’s predictions of held-out 
PRO-seq data, but the predictive power for read counts at in- 
dividual nucleotide sites is poor, even with simulated data, be- 
cause the data are so sparse (see Supplementary Fig. S3 D and 

F). We therefore tested the model’s predictions of “pausing lo- 
cations” within gene bodies, defined as 200-bp intervals hav- 
ing the highest average read counts for each gene (see “Ma- 
terials and methods” section). We found, even with held-out 
genes, that model-based predictions of such pausing locations 
agreed fairly well with the truth ( r 2 = 0.68; Fig. 3 D). In addi- 
tion, we tested the model’s predictions of average read counts 
across larger windows, spanning 1000 bp. At this level of res- 
olution, the predictions for held-out genes were still approx- 
imate but much better than for individual nucleotides ( r 2 = 

0.45; Fig. 3 E). These results suggest that the model is effective 
at getting at underlying elongation rates even if the predic- 
tive power for nucleotide-level PRO-seq read counts remains 
weak. 

An extension to the model accommodates 

DNA-sequence k -mers 

In addition to epigenomic factors, it is well known that DNA 

sequences can also influence local elongation rates, based on 

studies ranging from bacteria [ 41 ] to yeast [ 42 ] and mam- 
mals [ 43 ] (reviewed in [ 14 ]). Promoter-proximal pausing in 

Drosophila and mammals is also associated with particular 
sequence motifs [ 9 , 43 , 44 ]. Recently it was shown using NET- 
seq (Native Elongating Transcript Sequencing) and PRO-seq 

data for Saccharomyces cerevisiae that nucleotide 5-mers were 
strongly predictive of local elongation rates, beyond what 
could be explained by G+C content, DNA folding energy, or 
sequencing bias [ 11 ]. 

We therefore extended our GLM to consider the k -mer con- 
tent of the local DNA sequence, initially considering 5-mers 
only ( k = 5). These 5-mers are accommodated using indica- 
tor features in our regression framework (see “Materials and 

methods” section), which can be used alone or together with 

epigenomic features. To address the high-dimensionality of 
the resulting feature vectors, we added a sparsity penalty to 

our likelihood function, which limits the number of nonzero 

coefficients and forces the model to choose the 5-mers that 
are most informative. After experimentation, we settled on an 

L1 (lasso) penalty and determined the strength of the penalty 
by cross-validation (see “Materials and methods” section and 

Supplementary Fig. S8 for details). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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Figure 4. ( A ) Estimated versus true nucleotide-specific elongation rates ζi in 10 rounds of simulated k -mer data ( r 2 = 0.89). ( B ) Estimated coefficient κ
for top k -mers ( k ≤ 5) based on PRO-seq data for K562 cells [ 25 ]. Sign indicates direction and absolute value indicates strength of association with local 
elongation rate. The active site of Pol II is underlined. Error bars indicate one standard error in each direction. ( C ) Ratio of relative average PRO-seq read 
depth at sites associated with each k -mer to that at sites not associated with it (see text). ( D ) Metaplot of relative read depths for three k -mers with 
positive coefficients (top panel) and three with negative coefficients (bottom panel). ( E ) Metaplot of relative read depths for six k -mers having 
coefficients close to zero. ( F ) Sequence logos summarizing clusters of 5-mers five nucleotides centered on the active site that are positively (left panel) 
or negatively (right panel) associated with elongation rate. 
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We tested this approach with data simulated by SimPol,
n which 100 randomly selected 5-mers were assigned neg-
tive or positive coefficients and all others were assigned
oefficients of zero (see “Materials and methods” section).
ith the L1 penalty, the model assigned nonzero coefficients

lso to 100 features, which heavily overlapped the true set
 Supplementary Fig. S8 ). In addition, the predictions of local
longation rate were generally close to the true values (Fig. 4 A;
 

2 = 0.89). Overall, the method appears to be effective both
t recovering 5-mers correlated with elongation rate and at
redicting the local elongation rate itself. 
 

Several k -mers are strongly associated with local 
elongation rates in K562 cells 

We re-analyzed the PRO-seq data from K562 cells, this time
considering DNA-sequence k -mers only. We started with the
same 6000 genes as in the epigenomic analysis but this time
sampled four batches of 500 genes to limit computational cost.
Also, instead of considering 5-mers only, we allowed for k -
mers of any length up to and including five nucleotides ( k ∈ {1,
2, 3, 4, 5}). In this version of the model, the k -mers of different
sizes compete with one another, and the smallest k -mer that
adequately explains the data will tend to be selected. For ex-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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ample, if the correlations with elongation rate are truly driven
by G+C content, the model will tend to choose the G and C 1-
mers rather than many different 5-mers containing Gs and Cs.
In addition, because the model is additive, larger k -mers are as-
signed coefficients representing their contributions “beyond”
those of shorter k -mers nested within them. For example, if
both G and AG are included in the model, then the coeffi-
cient assigned to G will reflect its marginal contribution and
the coefficient assigned to AG will reflect only the additional
contribution of a preceding A. 

When we fitted the model to the K562 PRO-seq data we
found that the strongest signals, by far, were for a negative
correlation of cytosine (C) nucleotides ( κ = −0.24) and a pos-
itive correlation of thymine (T) nucleotides ( κ = 0.15) with
local elongation rate (Fig. 4 B). The negative correlation was
enhanced when the C was followed by an A (CA) or a T (CT)
or when it was preceded by a G (GCA, GCT). The nucleotide
trimer AGT was also negatively correlated with elongation
rate. The positive correlation of a T was enhanced when it was
preceded or followed by additional Ts (TTT, TTG). In some
cases, a positive correlation also occurred with As or Gs in
place of Ts in the central position (T AA, T AG, AA, T AC, TGG,
TGC). The negative correlation with cytosines echoes similar
findings in Esc heric hia coli [ 41 ] and findings for promoter-
proximal pausing in mammals [ 9 , 43 ], and the positive cor-
relation with A+T-rich sequences is consistent with reports of
negative correlations with G+C content [ 6 , 7 , 15 ] with some
differences (see “Discussion” section). Interestingly, we found
three cases where reverse complementary k -mers were asso-
ciated with fairly strong opposite effects on elongation rate:
TGG / CC A, TGC / GC A, and TGT, AC A (positive / negative co-
efficients in all cases; see “Discussion”section). Altogether, be-
tween 159 and 232 k -mers were assigned nonzero coefficients
across replicates ( Supplementary Fig. S9 ). 

As with the epigenomic version of the model, we validated
these k -mer associations by examining the corresponding rel-
ative read depths. We found that the k -mers that had nega-
tive coefficients did indeed exhibit higher relative read depths,
and those with positive coefficients did have lower relative
read depths (Fig. 4 C). In this analysis, the larger k -mers had
more divergent relative read depths despite having smaller ab-
solute κ estimates, because, as noted, the κ estimates reflect
only the additional contribution associated with the larger
k -mer context. For example, GCA has higher relative read
depth than CA, but the κ estimate for GCA is smaller than
for CA. When relative read depths for each significant k -mer
are plotted along the genome sequence, the local departures
from the background levels can be clearly observed (Fig. 4 D).
By contrast, the relative read depths for insignificant k -mers
are much less pronounced (Fig. 4 E). Interestingly, we found
three cases where reverse complementary k -mers were asso-
ciated with fairly strong opposite effects on elongation rate:
TGG / CC A, TGC / GC A, and TGT, AC A (positive / negative
in all cases). This observation raises the possibility that k -
mer composition could help promote directionality in Pol II
movement. 

For comparison with the k -mers of various sizes, we also
analyzed the data with a version of the model that allowed
for 5-mers only. To make sense of the identified k -mers, we
separately clustered the ones positively or negatively associ-
ated with elongation rate and summarized each cluster using
a sequence logo (Fig. 4 F; see “Materials and methods” sec-
tion). The clusters negatively associated with elongation rate
were clearly dominated by a central C, which tended to be 
followed by A or T and tended to be preceded by G or A.
The positively associated clusters were clearly dominated by 
Ts with a secondary signal from As. 

We also evaluated the performance of the k -mer model in 

predicting pausing locations within gene bodies and held-out 
read counts in 1-kb intervals ( Supplementary Fig. S10 A and 

B). While it performed roughly as well at predicting pausing 
locations as the epigenomic model ( r 2 = 0.64 compared with 

r 2 = 0.68), its predictions of read counts were substantially 
better ( r 2 = 0.65 compared with r 2 = 0.45). 

A possible concern with this analysis is that the k -mer asso- 
ciations we find with elongation rate, which reflect nucleotide 
preferences at the 3 

′ ends of aligned PRO-seq reads, might 
be influenced by biases in the PRO-seq protocol. Several lines 
of evidence, however, suggest that such biases are not driv- 
ing our results, including comparisons of the bulk distribution 

of 3 

′ nucleotides across datasets ( Supplementary Fig. S11 A 

and B), an analysis of possible ligation biases ( Supplementary 
Fig. S11 C–E), and analyses with a version of the model 
that explicitly allows for 3 

′ nucleotide biases (see “Materi- 
als and methods” section and Supplementary Fig. S10 C). It 
is also notable that a strong preference for cytosines at sites 
of promoter-proximal pausing has been noted with NET-seq 

data as well [ 9 ], and the NET-seq protocol does not include 
the biotin run-on step of PRO-seq (see [ 31 ]). Overall, while 
we cannot rule out some influence from the protocol on our 
k -mer associations, these findings suggest that any such bias 
should be minimal (see “Discussion” section). 

Most associations with local elongation rate are 

shared across cell types 

We carried out a similar analysis of PRO-seq datasets from 

three other cell types: CD14+ [ 26 ], MCF-7 [ 28 ], and HeLa- 
S3 [ 27 ] cells. These datasets were generated by three differ- 
ent laboratories using slightly different methods, making them 

also informative about the sensitivity of our conclusions to 

variations on the PRO-seq protocol. For comparison with our 
results for K562 cells, we analyzed them separately with the 
epigenomic and k -mer versions of our model. 

We found that the epigenomic correlates were generally 
fairly consistent across cell types, with the exception of DNA 

methylation, which showed a strong negative correlation with 

local elongation rate in K562 and MCF-7 cells, but a strong 
positive correlation in CD14+ and HeLa-S3 cells (Fig. 5 A).
On further inspection, however, we found that this difference 
traced back to secondary TSSs within TUs, which could not 
be efficiently identified and removed in CD14+ and HeLa-S3 

cells, for which no GRO-cap or PRO-cap data were available.
The high degree of sensitivity of the DNA methylation coeffi- 
cient to internal TSSs was supported by two follow-up anal- 
yses: one in K562 cells showing that the sign of the DNA- 
methylation coefficient changes depending on whether or not 
the filter for internal TSSs is applied ( Supplementary Fig. S12 ); 
and one in all four cell types showing a similar effect when 

H3K4me3 is used as an approximate indicator of internal 
TSSs in cases where GRO-cap or PRO-cap is unavailable 
( Supplementary Fig. S13 ). Both of these analyses suggest a 
strong dependency of the analysis on DNA methylation sig- 
nals at internal TSSs. 

Aside from this dependency, however, the DNA methyla- 
tion signal appeared to be a robust predictor of elongation rate 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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Figure 5. ( A ) Estimated coefficient κ for 10 epigenomic features based on PRO-seq data for four mammalian cell lines: K562 [ 25 ], CD14+ [ 26 ], HeLa-S3 
[ 27 ], and MCF-7 [ 28 ]. Sign indicates direction and absolute value indicates strength of association with local elongation rate. Error bars indicate one 
standard error in each direction. ( B ) Estimated coefficients κ for top k -mers ( k ≤ 5) in the same cell lines. The active site of Pol II is underlined. ( C ) 
Sequence logos summarizing clusters of 5-mers five nucleotides upstream of the active site that are positively (left panel) or negatively (right panel) 
associated with elongation rate (see “Materials and methods” section). 
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nd to explain many differences between cell types. For exam-
le, we examined ∼16 500 sites that showed high-confidence
ifferences in DNA methylation between K562 and MCF-7
ells, and found that the model did indeed predict highly sig-
ificant differences in predicted elongation rate at these sites
 Supplementary Fig. S14 ). 

The other epigenomic covariates showed much better
greement across cell types. Once DNA methylation was
xcluded, the κ estimates for K562, CD14+, and HeLa-S3
were all strongly correlated, with pairwise r > 0.85 in all
cases ( Supplementary Fig. S15 ). The MCF-7 dataset, however,
showed somewhat weaker correlation with the others ( r ≈ 0.7
with K562 and HeLa-S3, r = 0.43 with CD14+). We also ob-
served a few other , more minor , differences in epigenomic as-
sociations as detailed in the “Materials and methods” section.

We also examined how well a model trained on data for one
cell type would predict PRO-seq data from another cell type.
In particular, we compared the performance of two models in

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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predicting PRO-seq read depths for K562 cells: one trained
on (nonoverlapping) K562 data and one trained on data for
MCF-7 cells. We found that these models performed similarly,
with only a slight advantage for the model trained on data
from the same cell type ( Supplementary Fig. S16 ), indicating
that the models are effectively capturing general features of
the relationship between epigenomic covariates and elonga-
tion rates. 

Finally, we fitted a version of the model to NET-seq data for
K562 cells from reference [ 10 ] and compared it with the model
fitted to PRO-seq data for the same cell type. We found close
agreement overall in the epigenomic coefficients estimated for
the two types of NRS data ( Supplementary Fig. S17 ). The main
exception was the coefficient for H3K79me2 marks, which
was strongly negative for NET-seq data but weakly positive
for PRO-seq data. These two types of NRS data do have some-
what different properties, however, with PRO-seq capturing
only transcriptionally active Pol II and NET-seq capturing
other Pol II-associated complexes, creating spikes specific to
NET-seq data that could explain some differences in these as-
sociations [ 45 , 46 ]. 

With the k -mer version of the model, we also observed gen-
eral agreement across cell types, with pairwise r values of ∼0.8
or greater in all cases ( Supplementary Fig. S15 B). Among the
most prominent k -mers (Fig. 5 B), the most striking difference
was in the κ estimate for cytosines, which in CD14+ and MCF-
7 cells was about half that in K562 cells, and in HeLa-S3
cells was nearly cut to zero (possibly for technical reasons;
see “Materials and methods” section). Nevertheless, the esti-
mates for cytosines in CD14+ and MCF-7 were still among
the largest (in absolute value) κ estimates for those cell types,
indicating that cytosines do seem to be associated with a sub-
stantial reduction in elongation rate across cell types, even if
the strength of association may be sensitive to the details of
the PRO-seq protocol (see “Materials and methods” section).

We also wondered whether k -mers upstream or down-
stream of the active site might be correlated with elongation
rate, e.g. owing to the energetics of the DNA–RNA hybrid,
Pol II–nucleic acid interactions, or structure in the nascent
RNA. We therefore applied the k -mer model to the datasets
for all four cell types, but this time we considered 5-mers that
were shifted upstream (in the 5 

′ direction) or shifted down-
stream (past the nascent RNA) by 5, 10, 15, 20, or 25 nt.
Upstream of the active site, the k -mers positively correlated
with elongation rate were dominated by A+T-rich sequences,
but farther upstream, they included As and Ts in roughly
equal proportions, whereas closer to the active site, they were
clearly dominated by Ts (Fig. 5 C and Supplementary Fig. S18 ).
By contrast, the upstream k -mers negatively correlated with
elongation rate—particularly at −5 nt—showed a distinc-
tive enrichment for A and G in alternating patterns remi-
niscent of GAGA-factor binding sites, which are known to
be associated with promoter-proximal pausing of Pol II [ 40 ,
44 , 47 ]. Downstream of the active site, both the positively
and negatively correlated k -mers were much less well-defined
( Supplementary Fig. S19 ). 

Predicted local elongation rates are available as a 

UCSC Genome Browser track 

The separate epigenomic and k -mer versions of the model
both exhibited good predictive performance on held-out PRO-
seq data (Fig. 3 D and E and Supplementary Fig. S10 A and B),
but we wondered if performance could be improved by com- 
bining all features into one model. We therefore devised a ver- 
sion of the model with all 12 epigenomic features and the k - 
mer features of sizes 1–5, applying the lasso penalty to induce 
sparsity. We fitted this model to the PRO-seq data for K562 

cells and tested it on held-out data, as in the previous experi- 
ments. We found that the combined model did perform better 
than the two separate models, but the improvement relative 
to the k -mer-only model was slight ( Supplementary Fig. S20 ).
This result suggests that most of the information in the epige- 
nomic model can be extracted from the k -mer composition 

of the underlying DNA sequences, and overall, the k -mers are 
more predictive than the epigenomic features, perhaps owing 
to their much denser coverage along the genome. 

Based on this combined model, we created a UCSC 

Genome Browser track (available at http://compgen.cshl. 
edu/elongation- rate- tracks.php ) showing the predicted 

nucleotide-specific local elongation rates genome wide 
(Fig. 6 ). This track allows our model-based predictions to 

be viewed alongside gene annotations, epigenomic data, and 

many other types of genomic data. In this browser track, each 

of the four cell types (K562, CD14+, MCF-7, and HeLa-S3) 
is configured as a complete composite track, enabling users 
to easily select cell types and models as needed. The track 

reveals that elongation rate patterns across cell types are in 

general similar, reflecting both similar sequence-related effects 
and dependencies on shared epigenomic marks (Fig. 6 A 

and Supplementary Fig. S21 A). In some cases, however,
interesting differences between cell types can be observed,
such as predicted decreases in elongation rate owing to 

cell-type-specific CTCF binding sites (Fig. 6 B) or H3K4me1 

histone marks ( Supplementary Fig. S21 B). In other cases, cell- 
type-specific epigenomic marks and associated decreases in 

local elongation rate appear to be linked to cell-type-specific 
exon-inclusion events (Fig. 6 C and Supplementary Fig. S21 C).
This browser track is publicly available either for browsing 
or for download of raw data. 

A CNN deli ver s improved predictive performance 

We wondered if predictive performance could be improved 

further by using a neural network in place of our GLM, allow- 
ing nonlinear and feature-interaction relationships with local 
elongation rate to be captured. We also reasoned that the use 
of a CNN might allow larger DNA-sequence contexts to be 
considered, as has been shown in regulatory genomics [ 48–
50 ]. To test this idea, we used PyTorch to implement a rela- 
tively simple CNN model that considers 100 bp of both DNA- 
sequence and epigenomic context, with three CNN layers for 
the sequences and one for the epigenomic data (see “Mate- 
rials and methods” section and Supplementary Fig. S22 ). To 

allow this model to be easily compared with the GLM, and to 

ensure that similar predictions of the nucleotide-specific rel- 
ative elongation rate ζi , j could be extracted from it, we used 

an output layer and loss function based on the GLM (i.e. with 

output representing the local elongation rate and loss equal 
to the negative log likelihood of the read-count data under 
the Poisson model; see “Materials and methods” section). We 
trained the model to minimize this loss on real PRO-seq data,
similar to the procedure with the GLM. 

We found that the CNN did achieve somewhat lower loss 
in training than the GLM and did perform significantly bet- 
ter in predicting held-out PRO-seq data. In particular, when 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
http://compgen.cshl.edu/elongation-rate-tracks.php
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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Figure 6. Examples of UCSC Genome Browser tracks showing predicted local elongation rates. ( A ) Predicted local elongation rates based on the 
combined k -mer and epigenomic model for the K562, CD14+, HeLa-S3, and MCF-7 cell types in a region of the RPF1 gene. Elevated predicted rates at 
poly-T sequences and reductions at cytosines are consistent across cell lines (boxes). ( B ) Predicted local elongation rates based on the epigenomic 
model for K562 and HeLa-S3 in a region of the ZNF746 gene. Cell-type-specific reductions in rates associated with CTCF binding sites are highlighted 
(bo x es). ( C ) Predicted local elongation rates based on the epigenomic model for CD14+ and HeLa-S3 in the alternatively spliced TGFB1 gene. H3K4me1 
presence correlates with rate reduction, accompanying exon inclusion in CD14+ (box). Conversely, its absence correlates with no reduction in rates, 
accompan ying e x on skipping in HeLa-S3, as supported by RNA-seq data. In all panels, positive values represent rates on positiv e strands, while negativ e 
values indicate rates on negative strands. 
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we used the CNN to predict held-out PRO-seq read counts in
windows of various sizes, we observe improvements in Pear-
son’s r 2 of 5%–15%, with the largest improvements in win-
dows of 10–50 bp and a top performance of r 2 = 0.67 in 4-
kb windows (Fig. 7 A). To see if the CNN was making use
of the same sequence patterns as the GLM, we compared
the predicted local elongation rates ζi , j under the two mod-
els at sites having k -mers assigned nonzero coefficients by the
GLM. We found, indeed, that the predictions at these sites
were strongly correlated, particularly for 3-mers ( r 2 = 0.83)
but also for 4-mers ( r 2 = 0.77) and 5-mers ( r 2 = 0.70), in-
dicating that the two models are driven by similar sequences
( Supplementary Fig. S23 ). An attribution analysis based on
Captum’s GradientShap implementation (see arXiv: https://
doi.org/ 10.48550/ arXiv.1705.07874 ), however, showed that
the CNN draws information not only from the 3–5 nt cen-
tered on the active site, as does the GLM, but from as many
as seven flanking bases on each side ( Supplementary Fig. S24 ).
Altogether, we find, in comparison to the GLM, that the CNN
discovers similar sequence associations but is able to improve
performance by taking advantage of weaker signals in flank-
ing sites. 

We added the CNN-based predictions as subtracks in our
UCSC Genome Browser track, where they can easily be com-
pared with the GLM-based predictions. It is evident from these
tracks that the two sets of predictions are generally similar
(Fig. 7 B), but the CNN-based predictions display a somewhat
larger dynamic range (Fig. 7 C). We recommend the use of the
CNN-based tracks when maximum predictive performance is
needed. Because the improvement over the GLM is modest,
however, and the CNN-based predictions are more difficult
to interpret, we have based our main analysis on the GLM. In
future work, we plan to explore other neural-network archi-
tectures and improve these predictions further. 

Discussion 

In this article, we introduce a new probabilistic model for eval-
uating correlations between local elongation rate and a wide
variety of genomic and epigenomic features. Our model ex-
plains nucleotide-specific NRS read counts by assuming they
are Poisson-distributed with mean inversely proportional to
the local elongation rate, which in turn is determined by an
exponentiated linear function of nearby genomic and epige-
nomic features. We separately applied epigenomic and DNA
k -mer versions of the model to data for four mammalian cell
types. DNA methylation emerged as the strongest epigenomic
correlate of local elongation rate (although one that is sensi-
tive to filters for internal TSSs), followed by H3K36me3 and
H3K9me1 histone marks and RNA stem-loops, all of which
were associated with slow-downs of Pol II. Other significant
negative correlates of rate included splice sites, CTCF bind-
ing sites, and several other histone marks. Low-complexity
sequences and H3K79me2 marks were positively associated
with elongation rate. In our DNA k -mer analysis, the strongest
signals came from cytosines, which were associated with re-
ductions in elongation rate, and thymines, which were asso-
ciated with increases in elongation rate. Notably, the effects
of cytosines and DNA methylation are not confounded in our
modeling framework but can be distinguished from one an-
other, owing to our strategy for encoding methylation (see
“Materials and methods” section). We also showed that it is
possible to improve the predictive performance of the model
somewhat by replacing the GLM with a CNN, which allows 
for nonlinearity, interactions between features, and larger se- 
quence contexts, at some cost in interpretability. We have used 

our GLM and CNN models to generate a publicly available 
UCSC Genome Browser track for the K562, CD14+, MCF-7,
and HeLa-S3 cell types. Work is underway to further improve 
our CNN models. 

A key feature of our model is that it directly predicts a 
“local”, nucleotide-specific elongation rate from features at,
or within a few bases of, each nucleotide site. By contrast,
most previous studies have focused on correlations at the level 
of entire genes. A disadvantage of our approach is that, be- 
cause it is based on a single timepoint and assumes Pol II oc- 
cupancy is at steady state, it cannot estimate absolute elon- 
gation rates. On the other hand, it provides high-resolution 

predictions of the relative local rate, and it identifies covari- 
ates of rate whose presence or absence is physically proxi- 
mal to changes in NRS read depth. This physical proximity 
increases the likelihood that these correlations reflect mech- 
anistic, causal relationships—although we still cannot prove 
causality in this setting. 

The correlations our model revealed were generally con- 
sistent with previous reports. For example, several studies 
have identified negative correlations of elongation rate with 

DNA methylation in mammalian cells [ 6 , 7 ] (see also [ 12 ]).
In addition, there have been reports of positive correlations 
with H3K79me2 [ 6–8 ] as well as negative correlations with 

H3K36me3 [ 6 ] and H4K20me1 [ 4 ]. Notably, some of the neg- 
ative signals associated with histone marks (with the excep- 
tion of H3K79me2) may simply reflect the presence of nucleo- 
somes, which are not separately accounted for by our model or 
other reported results. Elongation rates are now well known 

to be negatively correlated with exon density [ 6 , 7 , 17 ], and 

this relationship appears to be driven, at least in part, by a lo- 
cal reduction in rate at splice sites [ 17 , 22 , 40 ], likely from co-
transcriptional splicing. A negative correlation of elongation 

rate with CTCF binding has also been noted, which in some 
cases influences splicing [ 17 , 19 , 21 ]. The relationship between 

RNA secondary structure and elongation rates does not ap- 
pear to have been examined genome-wide in mammals, but 
associations of such structure with reduced elongation rates 
have been observed in bacteria, yeast, and in vitro systems [ 17 ,
51–53 ]. A positive correlation of elongation rate with low- 
complexity sequences has also been reported [ 7 ]. Our analysis 
shows that these correlations hold at the local level as well as 
at the level of averages across genes. 

In addition, previous studies have generally considered each 

potential covariate separately, whereas our model combines 
them in a unified framework, in such a way that their relative 
contributions to elongation rate can be compared. As a result,
we can say, e.g., that the impact of DNA methylation on elon- 
gation rate is about twice that of H3K36me3 marks in K562 

cells, accounting for all other covariates (Fig. 3 A). Perhaps ow- 
ing to our joint model, we do see some minor differences from 

previous results; e.g. H4K20me1 [ 7 ] and H3K4me1 [ 6 ] have 
been reported to be positively correlated with elongation rate,
whereas we find negative correlations. In an analysis of this 
kind, the directionality of a relationship can change depending 
on whether or not other correlated covariates are considered,
as was observed with H3K79me2 in Fig. 3 B. 

The negative correlation we observe with a cytosine at 
the 3 

′ end of a nascent transcript echoes a similar finding 
for promoter-proximal pausing, where paused Pol II shows a 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
https://doi.org/10.48550/arXiv.1705.07874
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf092#supplementary-data
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Figure 7. Prediction of elongation rates using a CNN based on combined DNA-sequence and epigenomic data. ( A ) Comparison of predictive 
performance of the CNN with the combined epigenomic and k -mer GLM. Performance is measured by P earson ’s r 2 between the predicted and true 
PRO-seq read depths ( X i ) at various window (bin) sizes, using held-out data for K562 cells. ( B ) UCSC Genome Browser tracks showing predicted local 
elongation rates for the CNN and GLM for K562 cells in a region of the AP5M1 gene. Under both models, rate increases are observed at poly-T 
sequences and reductions are observed at cytosines (boxes). ( C ) Similar comparison of tracks in a region of the TMEM260 gene showing somewhat 
e xaggerated v ariability in the CNN, particularly in poly -T sequences (bo x). 
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trong preference for cytosines at the active site [ 9 , 43 ]. These
tudies have also shown some enrichment for G at the pre-
eding position, as in our findings, although the motifs they
dentified were generally more dominated by Cs and Gs than
urs. A similar , but weaker , preference for cytosines was also
reviously observed outside of the promoter-proximal region
ased on CoPRO-cap and PRO-seq data [ 31 ]. This preference
or cytosines has been conjectured to be a consequence of cy-
osine being the least abundant nucleotide and therefore the
lowest to incorporate into nascent transcripts [ 31 ]. A similar
ssociation between cytosines and pausing of RNAP has been
bserved in E. coli , where it appears to result from RNAP–
ucleic acid interactions that inhibit next-nucleotide addition
 41 ] (see also [ 54 ]). In this case, however, the preference is for
ither C or T, both of which tend to be followed by G. 

The positive correlation we find between A+T-rich se-
uences and elongation rate is consistent with many re-
orts indicating a general correlation with G+C content, with
lower elongation rates in G+C-rich sequences—and, accord-
ngly, faster rates in A+T-rich sequences—likely resulting from
stronger RNA–DNA hybrids and a tendency to form stable
RNA secondary structures [ 6 , 7 , 15 ]. It has also been reported
that increased elongation rates in A+T-rich introns are stimu-
lated by the U1 small nuclear RNP at 5 

′ splice sites [ 55 ]. Our
findings differ from these previous reports, however, in indi-
cating that the effect seems to be driven by thymine somewhat
more than adenine bases. Another finding from our study,
which appears to be new, is that certain k -mers and their re-
verse complements have opposite associations with elonga-
tion rate. As pointed out by an anonymous reviewer of this
work, this observation raises the intriguing possibility that k -
mer composition could help promote directionality in Pol II
movement, which may be worth exploring in future work. 

Our analysis assumes that Pol II occupancy along the
genome is at a steady-state equilibrium among the cells in the
sample, a situation that seems likely to be reasonably approx-
imated in cell lines that have not been subjected to a treat-
ment or stimulus (control samples). The averaging effect of
sequencing a pool of cells should help further in establishing
a reasonable proxy for such an equilibrium. Importantly, by
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operating under this steady-state paradigm, we are able to an-
alyze all expressed genes, not just a subset at which expression
can be induced, as in strategies that measure elongation rates
from time-course data (e.g. [ 5–7 ]). We also avoid the off-target
effects of chemical treatments that block initiation or pause es-
cape. Nevertheless, it may be worthwhile, in future work, to
extend our GLM for transcription elongation to the nonequi-
librium setting and see whether new correlates of elongation
rates can be detected from time-course data. 

A second, perhaps more delicate, assumption is that NRS
read counts faithfully reflect the density of transcriptionally
engaged polymerases across the genome. The main concern
here is that read counts could be influenced by biases in library
preparation, sequencing, read mapping, or other processes.
In principle, any genomic or epigenomic feature favored or
disfavored in these processes could spuriously appear to be
associated with elongation rate in our analysis. Most of our
epigenomic associations should be fairly robust to such biases,
since they reflect modifications to the DNA template rather
than the nascent RNA. RNA stem-loops are a possible excep-
tion, but our findings suggest that they are overrepresented in
PRO-seq read counts, rather than underrepresented, as might
be expected from interference in capturing structured RNAs. 

On the other hand, it is easy to imagine biases that would
affect the k -mer associations that we detect, particularly the
single nucleotides that we find to be overrepresented (C) or
underrepresented (T) at the 3 

′ ends of aligned reads. In sev-
eral follow-up analyses, however, we could find no evidence
that biases in the protocol were responsible for the cytosine
and thymine associations with elongation rate. First, we found
that the bulk distribution of 3 

′ nucleotides for PRO-seq reads
was fairly consistent across datasets, even when generated by
different research groups ( Supplementary Fig. S11 A and B),
suggesting that it is not highly sensitive to variations of the
protocol. Second, we found that the cytosine enrichment and
thymine depletion were present with or without removal of
polymerase chain reaction duplicates. Third, we tested directly
for a ligation bias, despite that T4 RNA ligase has been re-
ported to have little sequence bias [ 56 ]. Specifically, we made
use of adapter sets in which the 5 

′ adapter incorporates a UMI
with randomly occurring nucleotides at its 3 

′ end, and com-
pared adapter dimers that contained inserts with ones that
did not, finding no difference in their cytosine frequencies
and little difference overall ( Supplementary Fig. S11 C–E). Fi-
nally, we devised a “sequence-biased” version of the model
that expects the 3 

′ -most base to appear in proportion to its
bulk distribution, under the assumption that an unknown
bias drives its frequency, and fitted it to the data, finding
that, while the coefficients for C and T were greatly reduced
(by design), the coefficients for most larger k -mers were rel-
atively unaffected (see “Materials and methods” section and
Supplementary Fig. S10 C). Altogether, we could find no as-
pect of the protocol that could explain our associations with
C, T, or other k -mers. It is also worth noting that NET-seq
data—which is produced using a quite different protocol from
PRO-seq, without run-on—also shows a strong preference for
cytosines at sites of promoter-proximal pausing [ 9 ]. 

To our knowledge, this study represents the first attempt
to model local rates of transcription elongation across mam-
malian genomes. Overall, we find that many features that cor-
relate with elongation rates at the level of entire genes do ap-
pear to result in local changes to the elongation rate along
gene bodies. By considering these features together in either
a unified probabilistic model or a CNN, we can obtain fairly 
accurate predictions of the local rate, as indicated by our sim- 
ulations and tests with held-out data. We have made predic- 
tions for four cell types publicly available in a UCSC Genome 
Browser track. We anticipate that they will be useful in a 
wide variety of downstream analyses, e.g., by helping to iden- 
tify potential cases where transcriptional output is regulated 

through changes in elongation rate or providing hypotheses 
about mechanistic influences on elongation rate. 
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