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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Human neural organoids offer an exciting opportunity for studying inaccessible human-spe-

cific brain development; however, it remains unclear how precisely organoids recapitulate

fetal/primary tissue biology. We characterize field-wide replicability and biological fidelity

through a meta-analysis of single-cell RNA-sequencing data for first and second trimester

human primary brain (2.95 million cells, 51 data sets) and neural organoids (1.59 million

cells, 173 data sets). We quantify the degree primary tissue cell type marker expression and

co-expression are recapitulated in organoids across 10 different protocol types. By quantify-

ing gene-level preservation of primary tissue co-expression, we show neural organoids lie

on a spectrum ranging from virtually no signal to co-expression indistinguishable from pri-

mary tissue, demonstrating a high degree of variability in biological fidelity among organoid

systems. Our preserved co-expression framework provides cell type-specific measures of

fidelity applicable to diverse neural organoids, offering a powerful tool for uncovering unify-

ing axes of variation across heterogeneous neural organoid experiments.

Introduction

Pluripotent stem cells create self-organized multicellular structures, termed organoids, when

cultured in a 3D in vitro environment [1,2]. The advantage of organoid models over 2D cell

culture counterparts is their ability to generate structures that resemble endogenous tissues

both in the differentiated cell types produced and their 3D spatial organization [3,4]. The abil-

ity to model organogenesis in a controlled in vitro environment creates opportunities to study

previously inaccessible developmental tissues from both humans and a range of model organ-

isms [5–7]. As such, organoids are genetically accessible [8] and environmentally perturbable

[9] models enabling the study of molecular, cellular, and developmental mechanisms behind

tissue construction. However, the applicability of studies in organoids to in vivo biology hinges
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on how well these in vitro models recapitulate primary tissue developmental processes, which

remains an open question.

Quantifying the degree to which organoid systems replicate primary tissue biological pro-

cesses is a critical step toward understanding the strengths and limitations of these in vitro

models [10–14]. However, studies that perform such primary tissue/organoid comparisons are

inherently confounded by batch [15] (in vivo versus in vitro), making it difficult to disentangle

batch effects from underlying primary tissue and organoid biology. Meta-analytic approaches

across many primary tissue and organoid data sets offer a route around these confounds,

enabling the discovery of replicable primary tissue and organoid signatures independent of

batch, which can then be interrogated for how well organoids recapitulate primary tissue biol-

ogy [16–18]. A useful biological signature for this purpose is gene co-expression [19]. Genes

that are functionally related tend to be expressed together, resulting in correlated gene expres-

sion dynamics that can define functionally relevant gene modules [19]. Gene co-expression

relationships represent a shared genomic space that can be aggregated across experiments

(e.g., [20]) in either in vivo or in vitro systems, thus providing a useful framework for quantify-

ing functional similarities and differences. Excitingly, coupling meta-analytic comparisons of

primary tissue and organoid co-expression with single-cell RNA-sequencing data (scRNA-

seq) stands to deliver cell type-specific quantifications of organoids’ current capacity for pro-

ducing functionally equivalent cell types to primary tissues [21,22].

Among organoid systems, human neural organoids are particularly well suited for meta-

analytic evaluation due to well-described broad cell type annotations and their known lineage

relationships [23], the wide variety of differentiation protocols in use [24], and the increasing

amount of single-cell primary brain tissue and neural organoid data publicly available. In par-

ticular, the diversity of differentiation protocols for human neural organoids poses a unique

challenge for organoid quality control that can be met by meta-analytic approaches. Neural

organoids can either be undirected [25] (multiple brain region identities) or directed (specific

brain region identity) with an increasing number of protocols striving to produce a wider vari-

ety of region-specific organoids [11,26–37]. Meta-analytic primary tissue/organoid compari-

sons across differentiation protocols stand to derive generalizable quality control metrics

applicable to any differentiation protocol, fulfilling a currently unmet need for unified quality

control metrics across heterogeneous neural organoids.

Prior comparisons between primary brain tissues and neural organoids demonstrated that

organoids have the capacity to produce diverse cell types that capture both regional and tem-

poral variation similar to primary tissue data as assayed through transcriptomic

[10,11,13,16,17,38], epigenomic [39,40], electrophysiologic [41], and proteomic studies [42].

At the morphological level, neural organoids can produce cellular organizations structurally

similar to various in vivo brain regions, including cortical layers [43] and hippocampus [27],

as well as modeling known inter-regional interactions like neuromuscular junctions [34] and

interneuron migration [29]. Additionally, several prior studies have compared primary tissue/

organoid co-expression and concluded that neural organoids recapitulate primary brain tissue

co-expression [5,13,39], but these assessments are highly targeted to study-specific properties,

limiting potential generalization or potential assessment across the field. Typically, only a sin-

gle organoid differentiation protocol is used in these assessments and it remains unclear

whether organoids across different protocols will produce similar results. This lack of breadth

also affects the use of primary tissue data used as a reference, with the primary tissue data sets

utilized being treated as gold standard data sets with little consideration for the extent one pri-

mary tissue reference may generalize to another. Furthermore, while prior meta-analytic com-

parisons of primary tissue and organoids have been conducted that include different neural

organoid protocols, these analyses were either performed at the bulk level [17] without cell
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type resolution or relied on single-cell integration approaches [44,45], thereby limiting the bio-

logical resolution or scalability of the findings.

In this study, we perform a meta-analytic assessment of primary brain tissue (2.95 million

cells, 51 data sets; Fig 1A and S1 Table) [46–54] and neural organoid (1.59 million cells, 173

data sets, 10 neural organoid, and 2 non-neural organoid protocols; Fig 1B and S1 Table)

[6,8,11,12,29,31,33,35,36,38,41,43,44,55–69] scRNA-seq data sets, constructing robust primary

tissue cell type-specific markers and co-expression to query how well neural organoids recapit-

ulate primary tissue cell type-specific biology. We sample primary brain tissue data over the

first and second trimesters and across 15 different developmentally defined brain regions,

extracting lists of cell type markers that define broad primary tissue cell type identity regardless

of temporal, regional, or technical variation (Fig 1A). We derive co-expression networks from

individual primary tissue and organoid data sets as well as aggregate co-expression networks

across data sets (Fig 1C). From these networks, we assess the strength of co-expression within

primary tissue cell type marker sets as well as the preservation of co-expression patterns

between primary tissue and organoid data (Fig 1D and 1E). We also provide an R package to

download our primary tissue reference co-expression network to assay new neural organoid

data using simple, meaningful, and fast statistics (Fig 1F). By constructing robust primary tis-

sue cell type representations through meta-analytic approaches, we demonstrate the preserva-

tion of primary tissue cell type co-expression provides both specific and generalizable

characterization of the primary tissue fidelity of human neural organoids.

Results

Meta-analytic framework for primary tissue/organoid comparisons

We reason that, if they exist, primary tissue cell type-specific signals robust to temporal,

regional, and technical variation will constitute in vivo standards applicable to any organoid

data set regardless of time in culture or differentiation protocol. We first show it is possible to

learn sets of marker genes that define broad primary tissue cell types (Fig 1A and S2 Table)

across time points (gestational weeks GW5-GW25) and brain regions (15 developmentally

defined brain regions) through a meta-analytic differential expression framework (Figs 1A, 2A

and 2B). We then compare co-expression within these marker sets between primary tissue and

organoid data to quantify the degree organoids preserve primary tissue cell type-specific co-

expression. An important aspect of our analysis is our cross-validation of primary tissue differ-

ential expression and co-expression. We employ a leave-one-out cross-validation approach

when learning robust differentially expressed marker genes from our annotated primary tissue

data sets (2,174,934 cells, 37 data sets) and we interrogate co-expression of our primary tissue

marker genes within a large cohort of unannotated primary tissue data sets (776,344 cells, 14

data sets). This approach ensures we are extracting primary tissue markers and co-expression

relationships independent of temporal, regional, and technical variation, a powerful approach

for deriving broad primary tissue signatures appropriate for comparison to a wide range of

organoid data sets.

Cross-temporal and -regional primary tissue cell type markers

To learn markers that define broad primary tissue cell types (see Methods), we apply the Meta-

Markers [70] framework to our cross-temporal and -regional annotated primary tissue data

sets (Fig 2A and 2B). MetaMarkers uses robust differential expression statistic thresholds (log2

fold-change > = 4 and FDR-adjusted p-value < = 0.05) for determining whether a gene is dif-

ferentially expressed (DE) within individual data sets, then ranks all genes via the strength of

their recurrent DE across data sets (see Methods). We test the generalizability of our primary
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Fig 1. Using meta-analysis to quantify preserved primary tissue co-expression in organoids. (A) Collection of annotated primary tissue brain scRNA-seq

data sets, ranging from gestational week (GW) 5 to 25 and sampling from 15 developmentally defined brain regions. The primary tissue data sets are annotated

at broad cell type levels (Neural Progenitor, Dividing Progenitor, Intermediate Progenitor, Glutamatergic, GABAergic, and Non-neuronal) and these

annotations are used to compute MetaMarkers, cell type markers identified through recurrent differential expression. (B) Collection of human neural organoid

scRNA-seq data sets, sampling from 12 different differentiation protocols. We also include vascular organoid and iPSC-microglia data sets as non-neural

organoid controls. Included is a cell type annotated temporal forebrain organoid data set. (C) Example of a sparse co-expression network derived from scRNA-

seq data and an example of an aggregate co-expression network averaged over many scRNA-seq data sets. The aggregate network enhances the sparse signal

from the individual network. (D) Schematic showing a quantification of intra- and inter-marker set co-expression. (E) Schematic showing a quantification for

the strength of preserved co-expression between 2 co-expression networks, measuring the replication of the top 10 co-expressed partners of an individual gene

across the networks. (F) Example plot from the preservedCoexp R library, placing cell type-specific preserved co-expression scores of an example forebrain

organoid data set in reference to scores derived from primary tissue data sets. Red lines denote the percentile of the organoid cell type scores within the primary

tissue distributions. Underlying data can be found in the Zenodo repository (doi:10.5281/zenodo.13946248).

https://doi.org/10.1371/journal.pbio.3002912.g001
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Fig 2. Meta-analytic primary tissue cell type markers. (A) Annotated UMAPs of the annotated primary tissue brain scRNA-seq data sets. (B) Example of our

leave-one-out cross-validation approach for learning primary tissue MetaMarkers and testing the markers’ capacity for predicting annotations in the left-out

data set, quantified with the AUROC statistic. (C) Meta-analytic primary tissue markers have high performance in predicting primary tissue cell type

annotations. Boxplot distributions of the AUROC statistic for predicting cell type annotations across all leave-one-out combinations of our annotated primary

tissue data sets, with an increasing number of MetaMarkers used for predicting cell type annotations on the x-axis. (D) MetaMarkers have the highest

performance in predicting primary tissue cell type annotations compared to data set-specific markers. Boxplots of marker gene set performances. Gene sets are

the top 100 cell type markers from individual primary tissue data sets compared to the top 100 MetaMarkers performance. Performances for each cell type in

individual primary tissue data sets are presented in S1A Fig. Data sets are ordered by their median performance. (E) Averaged distributions of gene expression

for the top 100 MetaMarkers. This is performed with a leave-one-out cross-validation, with individual data set distributions reported in S1B Fig. Underlying

data can be found in the Zenodo repository (doi:10.5281/zenodo.13946248).

https://doi.org/10.1371/journal.pbio.3002912.g002
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tissue MetaMarker gene sets in predicting primary cell types by employing a leave-one-out pri-

mary tissue cross-validation (Fig 2A and 2B). We construct an aggregate expression predictor

in the left-out data set using MetaMarkers learned from the remaining data sets (see Methods),

quantifying how well the MetaMarker gene sets predict the left-out cell type annotations with

the area-under-the-receiver-operating-characteristic curve statistic (AUROC; Fig 2B and 2C).

The AUROC is the probability of correctly prioritizing a true positive (e.g., cell of the right

type) above a negative, (e.g., cell of the wrong type), given some predictor of the positive class,

in this case, aggregate cell type marker expression.

Starting with just the top 10 primary tissue MetaMarkers per cell type, we achieve a median

AUROC across all primary tissue data sets of 0.945 (interquartile range (IQR): 0.935–0.959),

0.901 (IQR: 0.858–0.931), 0.870 (IQR: 0.858–0.925), 0.950 (IQR: 0.928–0.967), 0.882 (IQR:

0.857–0.909), and 0.967 (IQR: 0.958–0.975), for dividing progenitors, neural progenitors,

intermediate progenitors, GABAergic neurons, glutamatergic neurons, and non-neuronal cell

types (oligodendrocytes, oligodendrocyte precursor cells, and astrocytes), respectively

(Fig 2C). These extremely high performances demonstrate that even a small number of meta-

analytically derived primary tissue cell type markers have high utility in predicting primary tis-

sue cell type annotations regardless of temporal and regional variability. We provide a list of

the top-ranked MetaMarkers per cell type in S3 Table. For all following analysis, we take the

top 100 MetaMarkers per cell type as robust representations of our 6 broad primary tissue cell

type annotations (median AUROCs range from 0.904 to 0.980), with the 100 MetaMarkers

achieving modest increases in performance over the top 10 MetaMarkers for all cell types

except GABAergic cells (Fig 2C, median AUROC for 100 GABAergic MetaMarkers: 0.931

IQR: 0.905–0.957). When comparing MetaMarkers to markers derived from individual pri-

mary tissue data sets, we find the MetaMarkers are consistently top performers in predicting

primary tissue annotations (Fig 2D), with MetaMarkers producing the top results for interme-

diate progenitors, glutamatergic neurons, GABAergic neurons, and non-neurons (S1 Fig), as

well as comparable performance to top individual data sets for dividing and neural progenitors

(S1 Fig).

We explore the primary tissue MetaMarker sets further by computing the average expres-

sion of the top 100 MetaMarkers for our 6 annotated cell types across all cells within our 37

annotated primary tissue data sets (Fig 2E), continuing our leave-one-out approach. Each

annotated primary tissue cell type expresses the corresponding matched MetaMarker set over

all other MetaMarker sets, with the exception of off-target expression for the neural progenitor

MetaMarkers in astrocytes (aggregated over all data sets Fig 2E, individual data sets S1B Fig).

This demonstrates our MetaMarker gene sets act as robust cell type markers in aggregate

across all first and second trimester time points (Figs 2E and S1B). Additionally, we investigate

the expression of the top 100 MetaMarker gene sets across annotated primary brain regions

(S2A and S2B Fig). While each primary tissue cell type predominantly exhibits maximal

expression of the corresponding primary tissue MetaMarker set across brain regions compared

to other marker sets, there is shared expression of the neural progenitor MetaMarkers for the

non-neurons and neural progenitors that appears in a data set-specific manner (S2A and S2B

Fig). Overall, we are able to meta-analytically extract cell type markers that define broad pri-

mary tissue cell types independent of temporal and regional variation.

Broad primary tissue cell type markers capture organoid temporal

variation

After extracting meta-analytic cell type markers that capture broad primary tissue temporal

and regional variation, we can test how well these markers also capture organoid temporal and
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regional (protocol) variation. We start with a large-scale temporal organoid atlas with cell type

annotations [38] derived from a forebrain differentiation protocol containing time points

ranging from 23 days to 6 months in culture. When comparing primary tissue and organoid

data along a temporal axis, one might expect younger primary tissue expression data to be a

better reference for younger organoid cell types (better able to predict cell-types) and vice-

versa for older primary and organoid data (S3A Fig). We test this relationship using the same

AUROC quantification as in Fig 1C, but now using the top 100 primary tissue cell type mark-

ers per primary tissue data set to predict organoid cell type annotations across all organoid

time points (S3B Fig, see Methods).

We observe highly consistent performance across all primary tissue data sets (GW5–

GW25) when predicting organoid cell types regardless of the organoid time point (S3B Fig).

The average absolute difference in AUROC scores when predicting organoid cell types using

either our youngest (GW5) or oldest (GW25) primary data is 0.000382 ± 0.0357 SD,

0.141 ± 0.192 SD, 0.0139 ± 0.0317 SD, 0.00171 ± 0.113 SD, and 0.0712 ± 0.0607 SD for dividing

progenitors, neural progenitors, glutamatergic neurons, GABAergic neurons, and non-neuro-

nal cells, respectively (no annotated intermediate progenitors for several older primary tissue

data sets). This demonstrates strikingly consistent performance across distant primary tissue

time points, highlighting that broad primary tissue cell type signatures are applicable as refer-

ence for organoid cell types regardless of the primary tissue or organoid time point. The one

possible exception is for neural progenitors, where there seemingly is a temporal shift in per-

formance with younger primary tissue data sets predicting younger organoid annotations over

older organoid annotations and vice-versa for older primary tissue/organoid data (S3B Fig).

However, a subset of the young GW6-8 primary tissue data sets report sharp increases in per-

formance predicting older organoid time points in opposition to other GW6-8 primary tissue

data sets, suggesting variance in performance is driven by intersections of technical variability

between individual organoid and primary tissue data sets rather than overarching temporal

variability. Importantly, our lists of top 100 primary tissue MetaMarkers produce the highest

mean AUROC across the 6 cell types in comparison to markers from individual data sets

(MetaMarker mean AUROC across cell types: 0.887, individual data set means range from

0.751 to 0.867, S3B Fig). This demonstrates our meta-analytic primary tissue cell type markers

capture organoid temporal variation more generally across cell types than any individual pri-

mary tissue data set.

Broad primary tissue cell type markers characterize organoid expression

variability

Due to the lack of publicly available cell type annotations for the vast majority of the orga-

noid data sets we sample, we investigate whether our primary tissue MetaMarker gene sets

characterize organoid variability through principal component analysis (PCA). Genes that

are heavily weighted in the first PC of a transcriptomic data set are sources of significant

variability in gene expression and likely represent important biological variability; this is

largely the reasoning for using PCA as a feature selection tool in standard transcriptomic

analyses. We find that our lists of 100 primary tissue MetaMarkers have higher PC1 weights

(absolute-value of PC1 weights that are then min-max normalized per data set) than non-

marker genes and are consistently heavily weighted in PC1 across organoid data sets more

so than non-marker genes (S3C and S3D Fig). This demonstrates our MetaMarker gene sets

characterize greater sources of gene expression variability across organoid data sets com-

pared to non-marker genes.
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Quantifying intra- and inter-MetaMarker co-expression of neural

organoids

Our primary tissue MetaMarkers that represent both primary tissue and organoid temporal/

regional variation enable assessments of cell type-specific co-expression between arbitrary pri-

mary tissue and organoid data sets. One normally would need matched cell type annotations

across data sets to compare cell type-specific biology, but here we couple our meta-analytically

derived cell type markers with gene co-expression quantifications, which do not rely on cell

type annotations, to extract cell type-specific co-expression from any given scRNA-seq data

set. Practically, if organoids are producing cell types functionally identical to primary tissue

cell types, we would expect near identical co-expression relationships of the primary tissue

MetaMarker gene sets across primary tissue and organoid data sets.

We first visualize marker set co-expression within our unannotated primary tissue (not

included in generating the primary tissue MetaMarker gene sets) and neural organoid data

sets through aggregate co-expression networks, which provide well-powered summarizations

of co-expression relationships present within the data (Fig 3A and 3B, see Methods). While

intra-marker set co-expression qualitatively appears comparable between the aggregate net-

works, the organoid network contains noticeably increased inter-marker set co-expression,

particularly for the glutamatergic and GABAergic markers. To explore further, we quantify

both the intra- and inter-marker set co-expression of MetaMarker gene sets for individual and

aggregate networks.

We score intra-gene set co-expression strength through a simple machine learning frame-

work [71,72], which quantifies whether genes in a given set are more strongly co-expressed

with each other compared to the rest of the genome (Fig 3C). Co-expression module scores

across the annotated and unannotated primary tissue data sets are largely comparable with the

exception of a sharp decrease in intermediate progenitor performance for the unannotated pri-

mary tissue data sets (Fig 3D). Six out of the 14 unannotated data sets are sampled from either

the ganglionic eminences or the hypothalamus, potentially explaining this decrease in perfor-

mance and suggesting our intermediate progenitor MetaMarkers are enriched for signal from

cortical areas. In contrast, performance is much more variable across the individual organoid

data sets for all cell types except the dividing progenitors, ranging from no signal (AUROC ~

0.50) to comparable results with primary tissue networks (Fig 3D). Notably, the intra-marker

set co-expression of the aggregate organoid network is nearly identical to the aggregate pri-

mary tissue networks (diamond, triangle, and square special characters, Fig 3D). This demon-

strates that while individual organoid data sets may suffer in performance compared to

primary tissue, neural organoids in aggregate broadly replicate co-expression relationships

within primary tissue marker sets.

The variation among individual organoid data sets for co-expression of the primary tissue

cell type markers may be influenced by the compositional variation in cell types produced

across the differentiation protocols. A protocol that aims to produce a directed excitatory line-

age organoid is not expected to produce inhibitory cell types and thus should not necessarily

exhibit strong inhibitory neuron co-expression. We test this relationship by first estimating

the cell type compositions of each neural organoid data set through their expression of the pri-

mary tissue MetaMarkers. Briefly, cells are scored for their aggregate expression of genes

within each MetaMarker gene set (using the top 15 MetaMarkers per cell type) and then

assigned a cell type label determined by the MetaMarker gene set with the highest enriched

expression. Comparing this annotation approach to author-provided annotations for the tem-

poral directed forebrain neural organoid atlas reveals high concordance in cell type annota-

tions (S4A Fig), with some misannotations between neural progenitors and non-neurons (S4B
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Fig 3. Neural organoids vary in recapitulating primary tissue cell type marker set co-expression. (A) Example of a sparse co-expression network derived

from scRNA-seq data and an example of an aggregate co-expression network averaged over many scRNA-seq data sets. The aggregate network enhances the

sparse signal from the individual network. (B) The aggregated co-expression networks for the unannotated primary tissue data sets and organoid data sets.

Genes are grouped by MetaMarker gene sets and ordered within gene sets by their average intra-gene set co-expression. (C) Schematic for the co-expression

module learning framework, measuring the co-expression strength within an arbitrary gene set compared to the rest of the genome, quantified with the

AUROC statistic. (D) Distributions of co-expression module AUROCs for individual annotated primary tissue, unannotated primary tissue, and organoid data

sets for the co-expression strength of the MetaMarker gene sets for the 6 cell types. The gray “All GO terms” distributions report the average co-expression

module AUROC across all GO terms for each individual data set. Co-expression module AUROCs for the aggregate co-expression networks are denoted with

the special characters. (E) Distributions of inter-marker set co-expression ratios standardized to the ratios of the aggregate unannotated primary tissue network

(triangle special character). The bottom plots show violin plot distributions of MetaMarker expression of the bottom (left, low inter-marker set co-expression)

and top (right, high inter-marker set co-expression) scoring organoid data sets for glutamatergic inter-marker set co-expression. The violin plots depict the

mean z-score of the corresponding MetaMarkers within each cell, reported for the top 10% of cells per data set determined via glutamatergic MetaMarker

expression. The protocol type is labeled in the top right corner for each panel. Underlying data can be found in the Zenodo repository (doi:10.5281/zenodo.

13946248).

https://doi.org/10.1371/journal.pbio.3002912.g003
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Fig), again most likely attributable to the shared expression of the neural progenitor MetaMar-

kers with astrocytes. We then group neural organoid data sets by their shared cell type percent-

ages and compare their co-expression module scores, revealing pervasively weak relationships

between a data set’s cell type percentage and its associated co-expression module score, partic-

ularly for the differentiated cell types (S4C and S4D Fig).

Starting with glutamatergic composition, the range of co-expression module scores for data

sets with 0% to 10% glutamatergic cells is 0.399 to 0.920, which spans from no signal (~0.5) to

signal comparable to primary tissue scores (~>0.85, S4D Fig). Organoid data sets with greater

than 10% glutamatergic cells (spanning >10% to 90%) have scores ranging from 0.560 to

0.911, exceedingly similar to data sets with 10% or less glutamatergic cells. This demonstrates

organoids with small glutamatergic percentages (<10%) are producing glutamatergic co-

expression relationships equal to data sets with much higher glutamatergic percentages (10%

to 90%). The GABAergic, non-neuronal, and intermediate progenitor cell type compositions

display the same trend when comparing the lowest cell type percentage data sets to all other

data sets (GABAergic: [0%–10%] scores 0.312–0.826, (10%–90%] scores 0.440–0.862. Non-

neuronal: [0%–10%] scores 0.497–0.929, (10%–60%] scores 0.683–0.948. Intermediate Progen-

itors: [0%–5%] scores 0.379–0.826, (5%–20%] scores 0.371–0.822, S4D Fig). The neural and

dividing progenitors are the exception, with higher estimated cell type percentages trending

with lower co-expression module scores, which is more apparent with the neural progenitors

than the dividing progenitors (S4D Fig). This is most likely due to the misannotations between

neural progenitors and non-neurons (likely astrocytes). In general, the majority of organoid

data sets with near-zero co-expression signal are also the data sets with near-zero predicted

composition of the respective cell type, particularly for the differentiated cell types (S4D Fig).

This suggests co-expression performance within neural organoids is influenced largely on

whether or not the cell type is present within the organoid, regardless of the exact prevalence

of the cell type. As another example of this broad compositional effect on co-expression, we

compare the co-expression module scores of all neural lineage MetaMarkers to scores for

Microglia/Immune MetaMarkers (derived identically as the other primary tissue MetaMar-

kers, see Methods, S3 Table) between the neural organoid protocols and the 2 non-neural

organoid protocols we sample (vascular organoid and iPSC-microglia data sets), which are not

expected to produce neural lineage cell types. The non-neural organoid data sets have near-

zero signal for intra-marker set co-expression of the neural lineage MetaMarkers (co-expres-

sion module score ~0.50), while having high scores for the microglia/immune MetaMarkers

(co-expression module score ~0.90), with the neural organoids exhibiting the exact opposite

results (S5A Fig). Taken together, our results show neural organoids ranging from very small

to very large percentages of a given cell type produce comparable intra-marker set co-expres-

sion signal, while organoids that do not produce a given cell type have near-zero co-expression

signal of the corresponding cell type markers, most likely simply explained by the lack of

expression of those cell type markers. To further explore co-expression variability of expressed

genes between primary tissue and neural organoids, we turn to scoring inter-marker set co-

expression.

We quantify inter-marker set co-expression by scoring the ratio of average inter-marker set

to intra-marker set co-expression of individual MetaMarker genes for all co-expression net-

works, taking the average ratio within each MetaMarker gene set to summarize individual net-

works. We then standardize to the ratios of the aggregate unannotated primary tissue network

(Fig 3E, raw ratios in S5B Fig). Broadly, neural organoids produce higher inter-marker set co-

expression compared to primary tissue data sets, particularly for the differentiated cell types

(non-neuronal, glutamatergic, and GABAergic MetaMarker sets). As an example, we visualize

MetaMarker expression of the bottom and top scoring neural organoid data sets for
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glutamatergic inter-marker set co-expression, considering only the top 10% of cells that

express glutamatergic MetaMarkers within each data set. This demonstrates the range of inter-

marker set co-expression across neural organoids, which vary from cells with nearly exclusive

expression of glutamatergic MetaMarkers to cells that express markers from glutamatergic,

GABAergic, and non-neuronal MetaMarker gene sets (Fig 3E). Taking the intra- and inter-

marker set co-expression quantifications together, our results demonstrate that while neural

organoids can produce comparable intra-marker set co-expression to primary tissue; this is

accompanied by extensive off-target cell type marker co-expression.

Organoid data sets vary in preserving gene-level primary tissue co-

expression

We take our primary tissue/organoid co-expression comparisons a step further and ask how

well individual organoid data sets preserve gene-level primary tissue co-expression relation-

ships. For any given individual gene, we quantify whether that gene’s top co-expressed part-

ners are preserved in one co-expression network compared to another (Fig 4A). We use the

aggregate co-expression network from the annotated primary tissue data sets as our refer-

ence co-expression network and test how well individual co-expression networks, either

primary tissue or organoid, perform in preserving primary tissue gene-level co-expression

patterns (Fig 4A, top 10 co-expressed neighbors). We start by quantifying the preserved co-

expression of genes within our primary tissue MetaMarker gene sets, using the average pre-

served co-expression AUROC as a measure of preserved co-expression for any given gene

set (Fig 4A). Across our 6 annotated primary tissue cell types, primary tissue co-expression

networks deliver consistently high performance for preserved co-expression scores of our

primary tissue MetaMarker gene sets (Fig 4B, mean preserved co-expression score across

cell types and primary tissue data sets: annotated 0.970 ± 0.0229 SD, unannotated

0.962 ± 0.0102 SD). This indicates that across the highly temporally and regionally diverse

primary tissue data, the co-expression relationships of our MetaMarker gene sets are

incredibly highly preserved, again reflecting the temporally and regionally robust nature of

our primary tissue cell type markers.

In contrast, organoid data sets vary substantially in preserved co-expression scores across

our primary tissue MetaMarker gene sets, with exceedingly small overlaps in scores to primary

tissue data sets for all MetaMarker gene sets except dividing progenitors (Fig 4B). As before

with our quantification of intra-gene set co-expression, compositional variation across orga-

noid protocols may influence the variation in performance across cell types/data sets. We

again compare the preserved co-expression scores across data sets grouped by cell type compo-

sition and find the same trend as before with the intra-marker set co-expression module

scores; organoids ranging from small to large cell type percentages produce largely similar pre-

served co-expression scores (S5C Fig). We quantify variability in preserved co-expression

across neural organoids in a slightly different manner by computing the correlation in pre-

served co-expression between all MetaMarker gene sets, revealing significant positive correla-

tions across all cell type marker sets in neural organoids (Spearman correlations range from

0.426 to 0.886, FDR-adjusted p-values are all<0.001, Fig 4C). This indicates preserved primary

tissue co-expression is a global feature of organoid data sets, which is not expected if variability

in cell type composition among neural organoids was a strong determinant of preserved co-

expression. Importantly, regardless of the cell type composition of neural organoids, we dem-

onstrate the vast majority of the sampled organoids consistently fail to preserve primary tissue

co-expression at a level comparable to primary tissue for all the broad cell types except dividing

progenitors (Fig 4B, exceedingly small overlap in the primary tissue and organoid
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Fig 4. Neural organoids vary in their preservation of primary tissue gene-level co-expression. (A) Schematic showing the quantification for gene-level

preserved co-expression. The preserved co-expression score for any given gene set is the average preserved co-expression AUROC across all genes within that

gene set. (B) Boxplot distributions of the preserved co-expression scores for the 6 primary tissue MetaMarker gene-sets across all individual primary tissue and

organoid networks. (C) Spearman correlation matrix for the preserved co-expression scores for all 6 cell type annotations across all individual organoid data

sets. (D) Preserved co-expression scores computed from the directed dorsal forebrain and directed ventral midbrain organoid data sets for the top 10 cell type

markers of various region-specific neural cell types. (E) Scatter plots comparing the preserved co-expression score of the top 100 MetaMarkers against the top

10 markers (no overlaps in gene sets) for various neural cell types per organoid data set. Spearman correlation coefficients are reported in the bottom right

corner. (F) Scatter plots summarizing the semantic distances of GO terms that are significantly preserved or non-preserved between the aggregate annotated

primary tissue and organoid co-expression networks. (G) Organoids globally fail to preserve primary tissue co-expression of ECM and vascular related genes.

Bar plot detailing the top 10 GO terms from a GO enrichment test of the 98 genes with high and low preserved co-expression AUROCs within primary tissue

networks and organoid networks, respectively. The preserved co-expression AUROC for each individual gene from primary tissue networks and organoid

networks is reported in S8B and S8C Fig. Underlying data can be found in the Zenodo repository (DOI:10.5281/zenodo.13946248).

https://doi.org/10.1371/journal.pbio.3002912.g004
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distributions). This suggests a persistent remaining deficit in the fidelity of neural organoids in

reference to primary tissue that is independent of variability in cell type composition.

We test the robustness of our results demonstrating consistent deficits in the preserva-

tion of primary tissue co-expression among organoid data sets by repeating the cross-vali-

dation of primary tissue preserved co-expression using brain region-specific co-expression

networks (S6 Fig). While we report sizable variability in preserved co-expression across

brain regions for intermediate progenitors, glutamatergic, and GABAergic neurons, these

scores track well with the number of cells captured per brain region, suggesting data set size

is a significant contributor to performance variability across data sets (S6 Fig). Importantly,

when comparing these region-specific primary tissue scores to neural organoid scores and

controlling for data set size and gene detection rates, we again observe consistent deficits in

performance across neural organoid data sets for all 6 cell types (S7 Fig), in agreement with

our earlier results.

Neural organoids are commonly employed for the study of diverse disease mechanisms

through various perturbations. We tested the relevance of our co-expression scores for quanti-

fying primary tissue fidelity across normal and perturbed organoids. A subset of our organoid

data sets come from studies that performed diverse perturbations (22q11.2 deletion,

SMARCB1 knockdown, exposure to Alzheimer’s serum, amyotrophic lateral sclerosis patient-

derived organoids). We compare the MetaMarker co-expression scores between normal and

perturbed organoids and find only 2 significant differences across all cell type MetaMarker

sets (co-expression module scores normal versus mutant FDR-adjusted p-values: glutamater-

gic- 0.00544, dividing progenitor 0.0481, S8A Fig). This demonstrates our broad primary tissue

cell type co-expression signatures are also applicable for comparison with organoids in pertur-

bation experiments.

Fidelity of region-specific cell types through preserved co-expression

While our broad cell type annotations are useful for unifying meta-analysis across heteroge-

neous primary tissue and organoid data sets, it is also of interest the degree neural organoids

are capable of producing primary tissue cell types at a finer resolution, typically through the

lens of region-specific cell types. As our approach for quantifying the preservation of co-

expression is derived from a genome-wide co-expression network of primary neural tissue, we

can also putatively assess preserved co-expression of more specific cell type markers. We inves-

tigate preserved co-expression of region-specific cell type markers by utilizing marker genes

derived from a morphogen screen in neural organoids that reported the production of exten-

sive neural cell type diversity [73]. As examples of protocol specific trends, we show the

directed dorsal forebrain organoid preserves co-expression of telencephalic excitatory neuron

markers over markers for mid-brain and thalamic excitatory neurons as well as dopaminergic

mid-brain neurons (Fig 4D). Similarly, the directed ventral mid-brain organoid protocol,

which reported production of dopaminergic neurons, preserves co-expression of dopaminer-

gic neuron markers over excitatory neuron markers on average (Fig 4D). Extending across all

the organoid data sets, we demonstrate preserved co-expression of region-specific cell types

exhibit high correlations with the preservation of our broader class-level markers for several

glutamatergic and GABAergic cell types (Fig 4E). In summary, our results show that disrup-

tion of co-expression at one level of cell type hierarchy captures disruption at finer levels, sug-

gesting a single score for organoid fidelity can capture shared variation. More generally, our

quantification for preserved co-expression in organoids can also be applied to the study of

region-specific cell types to study variation from the shared baseline.
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Genome-wide preservation of co-expression reveal consistent organoid

deficits

In addition to investigating cell type-specific variation for preserving primary tissue co-expres-

sion within organoids, our co-expression networks additionally allow genome-wide assess-

ments of preserved co-expression. We extend our analysis via GO terms to quantify preserved

primary tissue co-expression within organoids across the whole genome. GO terms with sig-

nificantly preserved primary tissue co-expression (see Methods) in organoids are mostly

related to basic cellular functions like response to DNA damage and protein translation, as

well as GO terms related to neurodevelopment (Fig 4F). GO terms that significantly lack pres-

ervation of primary tissue co-expression are largely related to angiogenesis or immune func-

tion (Fig 4F), concordant with the fact that organoids lack vasculature and an immune system.

These results demonstrate quantifications of preserved co-expression can capture known bio-

logical deficits in neural organoids.

While GO terms are useful for partitioning the genome into functional units for comparison,

our co-expression networks also enable assessments of preserved co-expression for individual

genes. As a particular use-case, we search for genes with exceptionally high preserved primary tis-

sue co-expression across primary tissue data sets that also have poor preserved primary tissue co-

expression across organoid data sets. We only consider genes that have some measurable expres-

sion for the vast majority of data sets (excluding genes with zero expression in more than 5 orga-

noid or primary tissue data sets) and compute the average preserved co-expression AUROC for

each gene across the organoid and primary tissue data sets (S8B Fig). The top 10 enriched GO

terms for genes with high primary tissue (average AUROC> = 0.99) and low organoid (average

AUROC< 0.70) preserved co-expression are related to extra-cellular matrix (ECM) and vascular

characterizations (Fig 4G). The poor conservation of genes related to vasculature can be explained

by the absence of vascularization in the vast majority of our organoid data sets. We repeat this

analysis using primary tissue co-expression networks derived from only the 6 broad neural cell

types, excluding all other cell types including vasculature (S8C Fig). We find that the same ECM-

related GO terms are the top ranked terms (by p-value) for genes with persistent low preserved

co-expression in neural organoids. There are 6 ECM-related genes shared between these 2 experi-

ments: ITGA1 (collagen and laminin receptor), LAMB1 (laminin protein), CD36 (collagen recep-

tor), DISC1 (scaffold protein), PARVB (actin-binding protein), and MMP28 (metalloproteinase).

DISC1 is of particular note due to its well-documented association with a wide-range of neuropsy-

chiatric disorders [74], positioning its consistent co-expression dysregulation (DISC1 is expressed

similarly to primary tissue and exhibits consistently poor preserved co-expression, S8D Fig) as

acutely motivating for further field-wide assessments of neural organoids.

In summary, we interrogate co-expression in organoids at multiple levels, revealing orga-

noids vary in preserving primary tissue co-expression at gene, cell type, and whole genome res-

olutions through the use of a robust aggregate primary tissue co-expression network. We

demonstrate the applicability of our approach for quantifying primary tissue fidelity in orga-

noids against a variety of use-cases, such as comparing across variability in cellular composi-

tion, comparing normal and perturbed organoids, and investigating preserved co-expression

of individual genes and region-specific cell type markers.

Temporal variation in organoid preservation of primary tissue co-

expression

We score preserved co-expression in organoids using the aggregate primary tissue co-expres-

sion network, which by design aims to capture signal robust to temporal variation. To investi-

gate temporal trends in organoid co-expression, we employ a similar approach as when
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predicting organoid cell type annotations in S3 Fig, this time quantifying the preservation of

primary tissue co-expression for the top 100 cell type markers per individual primary tissue

data set across all organoid time points (Fig 5A and 5B). We uncover a broad temporal shift in

the preservation of primary tissue co-expression within organoids across all cell types, with

younger organoids (23 days to 1.5 months) as the top performers for mostly first trimester pri-

mary tissue co-expression transitioning to older organoids (2 to 6 months) as top performers

for mostly second trimester primary tissue co-expression (Fig 5B). This temporal shift appears

consistent across the cell types, beginning around GW9-10 (Fig 5B). Our approach in predict-

ing organoid annotations in S3 Fig is based on aggregate marker expression and did not pro-

duce temporally variable results, whereas our approach here comparing preserved co-

expression of the same marker genes does produce temporally variable results. This indicates

that the co-expression relationships of genes rather than their expression levels better capture

temporal variation in developing systems.

Fig 5. Neural organoids capture temporal dynamics in primary tissue co-expression. (A) Schematic showing 2 potential outcomes when comparing the

preserved co-expression between primary tissue and organoid data on a temporal axis. There may be a temporal relationship, with younger organoids

recapitulating younger primary tissue co-expression over older primary tissue co-expression and vice versa for older organoids, or there may be no temporal

relationship. (B) Organoid co-expression produces temporal trends in primary tissue co-expression. Line plots showing the preserved co-expression scores

computed from individual organoid co-expression networks for cell type markers of individual primary tissue data sets. Primary tissue data sets on the x-axis

are ordered from youngest to oldest. Underlying data can be found in the Zenodo repository (doi:10.5281/zenodo.13946248).

https://doi.org/10.1371/journal.pbio.3002912.g005
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Organoids preserve developing brain co-expression over adult brain co-

expression

We demonstrate temporal variation in developing brain co-expression relationships is cap-

tured by organoids, but only from the single directed dorsal forebrain organoid protocol used

in the temporal organoid atlas. In order to extend analysis across all our organoid data sets and

assess broad temporal variation in co-expression, we next investigate the preserved co-expres-

sion within organoids of both developing and adult brain co-expression relationships.

We construct an aggregate adult co-expression network from a medial temporal gyrus

scRNA-seq data set of 155,781 cells [54]. We compare the preserved co-expression scores of

organoids for either developing or adult glutamatergic, GABAergic, and non-neuronal cell-

types. Organoids almost unanimously preserve developing brain co-expression over adult co-

expression (S8E Fig) for all 3 cell types. We extend this analysis genome-wide and place orga-

noids in context between developing and adult data by computing the average preservation of

co-expression AUROC across all genes for organoid, developing, and adult co-expression

using the annotated primary developing brain tissue network as the reference. The adult co-

expression network produces a global preserved developing brain co-expression score of

0.591, indicating very poor performance across the genome in preserving developing co-

expression relationships (S8F Fig). Organoids vary substantially in their global preservation of

developing brain co-expression with some organoid data sets performing comparably to the

adult data. This result is largely influenced by the number of cells present within individual

organoid data sets (S8F Fig, corr 0.562, p-value<0.001), suggesting a cell-sampling limitation

for uncovering developing brain co-expression within organoids. However, organoid data sets

report more variable global preserved co-expression scores compared to down-sampled devel-

oping brain data (S8F Fig), indicating a remaining gap between primary developing brain tis-

sue and organoid data not explained through cell number sampling alone.

We further explore the applicability of our preserved co-expression quantifications for

investigating temporal variation through a study that tested the limits of neuronal maturation

in organoids. This study generated data from human directed cortical organoids either trans-

planted or not into developing rat brains to test the limits of maturation organoids can achieve

in vitro [67]. We compare the preservation of developing and adult co-expression between

these age-matched non-transplanted and transplanted human cortical organoids. We report

that for glutamatergic co-expression, non-transplanted organoids preserve developing brain

co-expression over adult (non-transplanted; mean developing glut. AUROC: 0.807, mean

adult glut. AUROC: 0.672), whereas the transplanted organoids preserve adult co-expression

over developing brain (transplanted; mean developing glut. AUROC: 0.766, mean adult glut.

AUROC: 0.850, S8G Fig). There was weak preservation of GABAergic co-expression for both

developing and adult brain, with slight decreases for both in the transplanted organoids (non-

transplanted; mean developing GABA. AUROC: 0.686, mean adult GABA. AUROC: 0.585.

Transplanted; mean developing GABA. AUROC: 0.606, mean adult GABA. AUROC: 0.544),

as expected of a directed cortical organoid. And for the non-neuronal co-expression, trans-

plantation resulted in slight increases in scores for both developing and adult brain, but the

non-transplanted and transplanted organoids had higher preservation of developing non-neu-

ronal co-expression in both cases (non-transplanted: mean developing nonN. AUROC: 0.774,

mean adult nonN. AUROC: 0.638. Transplanted; mean developing nonN. AUROC: 0.809,

mean adult nonN. AUROC: 0.660). In summary, transplantation produced the strongest

effects on glutamatergic co-expression, with non-transplanted organoids preserving develop-

ing co-expression over adult and transplanted organoids preserving adult co-expression over

developing tissue, in agreement with the authors’ original observations of increased
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maturation of transplanted organoids. By recapitulating known maturation dynamics in orga-

noid models, we demonstrate the broad applicability of preserved co-expression quantifica-

tions for investigating a range of biological phenomenon in neural organoids.

Variability in organoid co-expression is driven by marker gene expression

We investigate the impact of various technical features in our analysis on our co-expression

results by assessing their correlation with our various co-expression scores, specifically focus-

ing on the number of cells, gene detection rate, and percent of mitochondrial mapping reads.

Comparing the genome-wide preserved co-expression score (average preserved co-expression

AUROC across all genes) per organoid data set to these technical features, we find the size of

the data set (number of cells) to have the clearest relation to performance (corr: 0.562, p-value:

<0.001, S9A Fig), though with top performing data sets ranging from 100s to 10,000s of cells.

We also show the genome-wide preserved co-expression score has little relation to the normal-

ization used across organoid studies, with the exception of the Seurat SCTransform normaliza-

tion that is utilized by a single study which also has the lowest gene detection rate among all

the organoid data sets (S9A Fig). An important technical consideration for our analysis is

ensuring all data sets have an identical gene namespace for meaningful comparisons of expres-

sion data. We fit all data sets to the GO gene universe, dropping gene annotations not in GO

and zero-padding missing GO annotations in individual data sets. Excessive zero-padding of

genes within our MetaMarker gene sets may artificially lower co-expression module scores or

preserved co-expression scores, though we find this relationship to be relatively weak with little

impact on score variance (S9B and S9C Fig, R2 for co-expression module scores and zero-pad-

ding: 0.0486, 0.0292, 0.0506, 0.0562, 0.0480, 0.158. R2 for preserved co-expression and zero-

padding: 0.408, 0.104, 0.132, 0.0763, 0.117, 0.168 for dividing prog., neural prog., intermediate

prog., glutamatergic, GABAergic, and non-neuronal cell types, respectively). Comparatively,

the correlations between marker set expression and co-expression module scores or preserved

co-expression scores are consistently higher (S9B and S9C Fig, range of significant positive (p-

value <0.001) correlations: 0.245–0.616, R2: 0.0600–0.379 excluding dividing progenitors).

In numerous studies, neural organoids consistently show increased expression of stress-

related genes compared to primary tissue [5,12,44,45]. We confirm that finding here and

examine its correlation with our preserved co-expression scores. While neural organoids

exhibit general increased expression of stress-related genes (glycolysis [45], endoplasmic retic-

ulum-stress [5], and oxidative-stress [5]), there is considerable variability among data sets,

with many showing levels comparable to primary tissue (S10A Fig). Stress-related gene expres-

sion in neural organoids shows minimal correlation with our preserved co-expression scores

at the genome level (S10B Fig), with only slight negative correlations between cell type pre-

served co-expression and ER-stress expression specifically (S10C Fig). This suggests that ER-

related stress pathways may have an increased impact on cellular identity within neural orga-

noids compared to other stress pathways. Additionally, we observe high variability in stress-

related gene expression across different organoid protocols (S10D and S10E Fig), indicating

different protocols may have distinct impacts on cellular stress.

Preservation of primary tissue co-expression as a generalizable quality

control metric

As a general summary, our approach for quantifying preserved primary tissue co-expression

across numerous organoid protocols reveals the axes on which organoids lie for recapitulating

primary tissue co-expression relationships at gene, cell-type, and whole-genome resolutions.

These assessments provide powerful quality control information, identifying which genes and/
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or cell types organoids can or cannot currently model on par with primary tissue data. We

make our methods accessible through an R package to aid in future organoid studies and pro-

tocol development, providing means for rapidly constructing co-expression networks from

scRNA-seq data (Fig 6A) as well as querying preserved co-expression of users’ data with our

aggregate primary tissue brain co-expression network (Fig 6A). Additionally, we make the

results of our meta-analysis across primary tissue and organoid data sets available for users to

place their data in reference to a field-wide collection (Fig 6B).

Discussion

Through the use of meta-analytic differential expression and co-expression, we are able to pro-

vide cell type-specific measurements of human neural organoids’ current capacity to replicate

primary tissue biology. We extracted broad cell type markers that define primary brain tissue

cell types across a large temporal axis (GW5–25) and across numerous heterogenous brain

regions to act as a generalizable primary tissue reference for organoids that also vary tempo-

rally and regionally (by protocol). By quantifying intra- and inter-marker set co-expression

and the preservation of co-expression across networks, we revealed human neural organoids

lie on a spectrum of near-zero to near-identical recapitulation of primary tissue cell type

Fig 6. The preservedCoexp R package enables fast computation of preserved co-expression. (A) The preservedCoexp R package can compute co-expression

networks and genome-wide preservation of co-expression in a few minutes even for low-memory computers. Line plots showing the computational time to

either compute co-expression networks or preserved co-expression as the number of cells or genes increases. Points are the mean value from 10 replicates, with

error bars depicting ± 1 standard deviation. (B) Example plot from the preservedCoexp R package, placing cell type-specific preserved co-expression scores of

an example forebrain organoid data set in reference to scores derived from primary tissue data sets or organoid data sets. Red lines denote the percentile of the

forebrain organoid cell type scores within either the primary tissue distributions or organoid distributions. Underlying data can be found in the Zenodo

repository (doi:10.5281/zenodo.13946248).

https://doi.org/10.1371/journal.pbio.3002912.g006
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specific co-expression in comparison to primary tissue data. We made our aggregate primary

tissue reference data and methods for measuring preserved co-expression publicly available as

an R package to aid in the quality control and protocol development of future human neural

organoids.

Prior work comparing primary brain tissue and neural organoid systems demonstrated

organoids can produce cell types [11,12] and morphological structures [27,43] similar to pri-

mary tissues and are capable of modeling temporal [13,38,40] and regional [3,12,28,29] pri-

mary tissue variation. Multiple lines of evidence support these findings such as assessments of

cytoarchitecture and cell type proportions [3,11,16,23], whole transcriptome and marker gene

expression correlations [10,12], and comparisons of co-expression modules [5,13,17,39]. Our

meta-analytic approach is able to quantify these field-wide observations within a generalizable

framework, recapitulating that organoids model broad primary tissue biology with our specific

approach offering several key advancements for primary tissue/organoid comparisons. First,

we derive quantifications of preserved primary tissue co-expression that can be extended from

individual genes to the entire genome and, second, we place organoid co-expression in refer-

ence to robust meta-analytic primary tissue performance providing a general benchmark for

protocol development and quality control across heterogeneous organoid systems. Impor-

tantly, we largely avoided direct comparisons of neural organoids across differentiation proto-

col labels, as naming schemes for protocols are inconsistent across studies and the field as a

whole is actively working towards a consensus nomenclature [75], which will require a signifi-

cant amount of experimental work to fully characterize each protocol. Instead, we grouped

data sets empirically through cell type composition to ensure comparisons were made across

similar data sets.

In neural organoid systems, a consistent finding is the elevated expression of stress-related

genes compared to primary tissue, as confirmed in our analysis. However, there are conflicting

conclusions regarding the impact of this increased stress-related expression. Some studies

report an impairment of cell type identity among stressed cells [12,44], while others report lit-

tle effect on core cellular identity programs [38,45]. In our study, we observe a slight negative

correlation between cell type-specific preserved co-expression scores and ER stress-related

gene expression, with minimal association found for glycolysis and oxidative stress genes.

These findings support the notion that cell stress may compromise cellular identity within

neural organoids. Importantly, we note significant variability in stress gene expression across

organoid protocols, which may contribute to the discordant observations in previous studies.

Overall, extensive experimental work is necessary to investigate the potential relationship

between cellular stress and cell type identity in in vitro systems further.

While comparisons between primary tissue and organoid systems at a high resolution of

cell type annotation are certainly of interest, our results, which focus on broad cell types at the

cell-class level, form a critical foundation for these more fine-tuned investigations of orga-

noids. Cell type specification within the brain involves complex spatial and temporal mecha-

nisms [76] to produce the high cellular heterogeneity we observe, with the exact resolution of

meaningful cell type annotations still being actively debated and posing a general conceptual

challenge within the field of single-cell genomics [77]. We focus here on establishing methods

for assessing consistent and accurate production of primary tissue cell types at the class-level

within organoids as a critical actionable first step towards increasing primary tissue fidelity

across variable organoid differentiation protocols. While we prioritize broad cell type compari-

sons, we also display the flexibility of our approach by scoring the preserved co-expression of

region-specific cell type markers. This demonstrates our quantifications of preserved co-

expression are applicable to a variety of cell type annotation resolutions.
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One exciting application for the use of neural organoid systems is the study of a wide-range

of human neurological diseases using human in vitro models [78,79], which critically depends

on the in vivo fidelity of cell types produced in organoids. Neural organoids have been used to

model and investigate human disorders of neurodevelopmental [3,80], neuropsychiatric [81–

83], and neurodegenerative [58,65,84] nature, as well as infectious diseases [28,85,86]. It is

essential that organoid systems model in vivo cell types with extreme fidelity to fully realize the

therapeutic potential of human organoids and ensure findings in these in vitro models are not

specific to potential artifactual or inaccurate in vitro biology. Our observation of consistent

dysregulation of DISC1 among neural organoids is a prime example; DISC1 is associated with

a large range of neuropsychiatric disorders [74] and its general dysregulation that we report

across neural organoids may obfuscate in vivo and in vitro comparisons. While our results

demonstrate that high primary tissue fidelity in organoids is currently methodologically possi-

ble, we find this to be the case for a small minority of data sets coupled with a high degree of

variability across data sets, indicating a substantial remaining methodological gap. The broad

applicability of our meta-analytic approach offers the potential for benchmarking primary tis-

sue fidelity across numerous organoid protocols, aiding in increasing the quality of neural

organoids for use in a wide-range of human health-related translational investigations.

Methods

Data set download and scRNA-seq preprocessing

Links for all downloaded data (GEO accession numbers, data repositories, etc.) are provided

in S1 Table. All scRNA-seq data was processed using the Seurat v4.4.0 R package [87]. Data

made available in 10XGenomics format (barcodes.tsv.gz, features.tsv.gz, matrix.mtx.gz) were

converted into Seurat objects using the Read10X() and CreateSeuratObject() Seurat functions.

Data made available as expression matrices were converted into sparse matrices and then con-

verted into Seurat objects using the CreateSeuratObject() function. Ensembl gene IDs were

converted into gene names using the biomaRt v2.20.1 [88] package.

Where metadata was made available, we separated data by batch (Age, Donor, Cell line,

etc.) for our final total of 173 organoid and 51 primary tissue data sets (S1 Table). We pro-

cessed and analyzed each batch independently without integration. We used consistent thresh-

olds for filtering cells across all data sets, keeping cells that had less than 50% of reads mapping

to mitochondrial genes and had between 200 and 6,000 detected genes. Several data sets pro-

vided annotations for potential doublets; we excluded all cells labeled as doublets when anno-

tations were made available. All data made available with raw expression counts were CPM

normalized with NormalizeData(normalization.method = ’RC’, scale.factor = 1e6), otherwise

normalizations were kept as author supplied.

For primary tissue and organoid data made available with cell type annotations, we provide

our mapping between author provided annotations and our broad cell type annotations in

S2 Table.

Primary tissue MetaMarker generation and cross-validation

MetaMarkers were computed using the MetaMarkers v0.0.1 [70] R package, which requires

shared cell type and gene annotations across data sets to derive a ranked list of MetaMarkers.

Gene markers for individual data sets were first computed using the compute_markers() func-

tion on the CPM normalized expression data for our annotated primary tissue data sets (S1

Table). A ranked list of MetaMarkers was then computed using the make_meta_markers()

function using all 37 individual annotated primary tissue data set marker lists. Genes are first

ranked through their recurrent differential expression (the number of data sets that gene was
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called as DE using a threshold of log2 FC > = 4 and FDR-adjusted p-value< = 0.05) and then

through the averaged differential expression statistics of each gene across individual data sets.

When we take the top 100 markers per individual data set as in Figs 2D, 5, S1A and S3B, we

rank markers for each data set by their AUROC statistic as computed with the compute_mar-

kers() MetaMarkers function. The top 20 ranked MetaMarkers per cell type are made available

in S3 Table and the full lists of top 100 MetaMarkers are made available in the preservedCoexp

R package.

For the cross-validation of our primary tissue MetaMarkers, we excluded a single annotated

primary tissue data set, computed MetaMarkers from the remaining 36 annotated primary tis-

sue data sets, and then used those MetaMarkers to predict the cell type annotations of the left-

out data set. We construct an aggregate expression predictor to quantify the predictive strength

a list of genes has, in this case our MetaMarker lists, in predicting cell type annotations. Taking

any arbitrary number of genes (10, 20, 50, 100, 250, or 500 MetaMarkers), we sum the expres-

sion counts for those genes within each cell and then rank all cells by this aggregate expression

vector. We compute an AUROC using this ranking and the cell type annotations for a particu-

lar cell type through the Mann–Whitney U test. Formally:

AUROC ¼
U

n0∗n1

where U is the Mann–Whitney U test statistic, n0 is the number of positives (cells with a given

cell-type annotation), and n1 is the number of negatives (cells without that cell type annota-

tion).

U ¼ R0 �
n0ðn0 þ 1Þ

2

where R0 is the sum of the positive ranks.

As an example, if there are 10 genes that are perfect glutamatergic markers (only glutama-

tergic cells express these genes), then ranking cells by the summed expression of these genes

will place all glutamatergic cells (positives) in front of all other cells (negatives), producing an

AUROC of 1. The violin plots in S1B Fig and in Fig 2E visualize our aggregate expression

approach, where data points per cell type are the aggregated expression counts for the given

top 100 MetaMarkers across all cells per data set (S1B Fig) or aggregated across all data sets

(Fig 2E). We also compared the aggregate expression of the Neural Progenitor MetaMarkers

across author provided cell type annotations included in our broad Non-neuronal annotation,

revealing the off-target expression of Neural Progenitor MetaMarkers is specific to annotated

astrocytes (S1B Fig).

For S1A Fig, we took the top 100 cell type markers per individual primary tissue data set

(x-axis) and used those genes to predict cell type annotations as described above for all other

annotated primary tissue data sets, reported as the AUROC boxplot distributions. The Meta-

Marker distribution was computed using a leave-one-out approach as described above. We

ranked the individual primary tissue data sets by their median AUROC performance per cell

type to derive the distributions of ranks presented in Fig 2D, excluding the dividing progenitor

data as performance was highly consistent across all primary tissue data sets.

Cross-regional primary tissue MetaMarker expression

We investigated the aggregate expression of our top 100 MetaMarkers per cell type across

annotated brain regions separately for the annotated first trimester and second trimester pri-

mary tissue atlases due to differing regional annotations. MetaMarkers were computed with a
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leave-one-out approach as described above using all 37 of the annotated primary tissue data

sets. For the heatmaps in S2 Fig, rows represent the annotated cells present within the given

data set, columns represent the aggregated expression for the top 100 given cell type MetaMar-

kers and each annotated region present. We average the aggregated expression for each cell

type per region and then normalize each region (column) by the maximum average expression

value across the cell types. A value of 1 indicates that cell type is the one maximally expressing

the given MetaMarker set for that brain region. The heatmaps are ordered by cell type and

region and are not clustered.

Organoid PCA

PCA analysis was performed using the Seurat function RunPCA() with the top 2,000 variable

features, determined using the Seurat function FindVariableFeatures(selection.method = “vst”,

nfeatures = 2,000). For each organoid data set, we took the eigenvector for the first principal

component, computed the absolute value, and then divided by the maximum value to compute

a normalized vector between 0 and 1. We visualized the normalized eigenvectors for each orga-

noid data set in S3C Fig, keeping primary tissue MetaMarker genes that were detected in the

top 2,000 variable genes of at least 10 organoid data sets. Genes missing from any given data

set’s top 2,000 variable genes were given a value of 0. The heatmap was produced using the

ComplexHeatmap v2.12.1 [89] package and was hierarchically clustered using the ward.D2

method for both rows and columns.

Generating co-expression networks from scRNA-seq data

To generate a shared gene annotation space across all data sets, we fit each data set to the GO

gene universe before computing co-expression matrices. Using human GO annotations

(sourced 2023-07-27 using the org.Hs.eg.db v3.18.0 [90] and AnnotationDbi v1.64.1 [91] R

packages), we excluded gene expression from a data set if the gene annotation was not present

in GO and we zero-padded missing GO genes for each data set.

We compute a gene-by-gene co-expression matrix per data set using the Spearman correla-

tion coefficient computed across all cells in a given data set. We then rank the correlation coef-

ficients in the gene-by-gene matrix and divide by the maximum rank to obtain a rank-

standardized co-expression matrix. All results reported using individual data set co-expression

networks (Figs 3D, 3E, 4B, 5, 6 and S4–S9) were obtained using the rank-standardized co-

expression networks.

We compute the aggregated co-expression networks by taking the average of the rank stan-

dardized co-expression networks for each gene-gene index and then rank-standardizing the

averaged network.

Co-expression module learning analysis

EGAD v1.30.0 [71] is a machine learning framework that quantifies the strength of co-expres-

sion within an arbitrary gene-set compared to the rest of the genome with an AUROC quanti-

fication (Fig 3C). We compute co-expression module AUROCs for all GO gene-sets (between

10 and 1,000 genes per GO term) and our top 100 primary tissue MetaMarker gene sets for

each individual primary tissue and organoid co-expression network as well as the aggregated

annotated, unannotated and organoid networks. For all co-expression analyses using the top

100 MetaMarkers per cell type, we ignore duplicated markers across cell types. We employ a

leave-one-out approach for the annotated primary tissue co-expression networks, learning

MetaMarkers from 36 of the annotated data sets and computing co-expression module AUR-

OCs for these MetaMarkers in the left-out data set’s co-expression network. We compute co-
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expression module AUROCs using the EGAD run_GBA() function with default parameters.

In Fig 3D, the “All GO terms” distributions report the average co-expression module AUROC

across all GO terms for each individual network.

MetaMarker inter-marker set co-expression

To score the inter-marker set co-expression of a given gene in a given MetaMarker gene set,

we compute the mean co-expression between that gene and all MetaMarkers not in that gene’s

MetaMarker gene set, divided by the mean co-expression of all MetaMarkers within that

gene’s MetaMarker gene set. A value less than 1 indicates that gene’s co-expression within its

MetaMarker gene set is stronger than without, and vice versa for a value greater than 1. We

take the average of these ratios across genes within each MetaMarker gene set to summarize at

the level of individual networks, with Fig 3E and S5B Fig reporting the average ratios. We cen-

ter the distributions around the scores of the aggregated unannotated primary tissue network

in Fig 3E, with the raw ratios in S5B Fig.

Organoid cell type composition

We compute organoid cell type composition by annotating organoid cells using the default

MetaMarker cell type annotation approach. MetaMarker cell type annotation takes a set of cell

type markers, gives each cell a score for each cell type marker set as the average expression of

that marker set within the cell (MetaMarker function score_cells()), and then divides all scores

by the total average marker set expression to compute marker enrichment (MetaMarker func-

tion compute_marker_enrichment). The marker set with the highest enrichment score per cell

is used as the predicted cell type annotation for that cell (MetaMarker function assign_cells()).

The final cell type percentage we report for each data set is the number of cells annotated for a

given cell type annotation divided by the total number of cells within that data set. We use the

top 15 primary tissue MetaMarkers, excluding duplicate markers, as the marker sets to predict

cell type annotations in organoid data sets, using all MetaMarker package functions with

default parameters. We compare the MetaMarker predicted cell type annotations to the author

provided cell type annotations in the temporal directed dorsal forebrain organoid data sets

(S4A Fig), which we also used to generate the confusion matrix in S4B Fig. S4C Fig depicts the

MetaMarker assigned cell type percentages for all the organoid data sets, with columns hierar-

chically clustered using the ward.D2 algorithm. We note that data sets that used the SCTrans-

form normalization and the default Seurat log normalization with UMI regression generally

failed the MetaMarker cell type annotation prediction, with large portions of cells being unable

to be assigned a cell type through enriched marker set expression. This is likely due to incom-

patibilities between the normalization used and the MetaMarker approach of averaging

expression values. We exclude these data sets when comparing cell type composition and our

co-expression scores in S4D and S5C Figs. When grouping organoid data sets by cell type com-

position, we bin the data sets using increasing intervals of 10 percentage points per cell type.

Preservation of co-expression

To compute our preservation of co-expression AUROC, we take the top 10 co-expressed part-

ners for gene A in a reference co-expression network as our positive gene annotations. In a test

co-expression network, we rank all genes through their co-expression with gene A and com-

pute an AUROC using this ranking and the positive annotations derived from the reference

network. If gene A in the test network has the exact same top 10 co-expressed partners as in

the reference network, that would result in an AUROC of 1. To summarize a given gene set’s

preserved co-expression, we take the average preserved co-expression AUROC across all genes
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in that gene set as the preservation of co-expression score for that gene set. For all co-expres-

sion analyses using the top 100 MetaMarkers per cell-type, we ignore duplicated markers

across cell types. We use the aggregated annotated primary tissue co-expression matrix as our

reference network.

The preserved co-expression scores for the annotated primary tissue data in Fig 4B were

computed with a leave-one-out approach. MetaMarkers and an aggregated co-expression net-

work were computed from 36 of the annotated primary tissue data sets and then preserved co-

expression scores were computed using the co-expression network of the left-out annotated

primary tissue data set.

Preservation of co-expression across individual primary tissue brain

regions

We construct co-expression networks for individual annotated brain regions using annota-

tions provided by the original authors in a similar leave-one-out manner as described above,

generating an aggregated co-expression network from the remaining annotated primary tissue

data sets. The number of cells per sampled brain region as well as the preserved co-expression

scores for our 6 broad cell types are presented in S6 and S7 Figs.

Preservation of region-specific cell types

To define markers for region-specific cell types, we utilize the differential expression (DE) sta-

tistics computed from a study that performed a morphogen screen in neural organoids and

reported extensive neural cell type diversity [73]. For each cell type, we rank genes by their

adjusted DE p-value and take the top 10 genes per cell type to compute preserved co-expres-

sion scores. When comparing against our MetaMarker gene sets in Fig 4E, we ensure no over-

lap in the top 10 cell type and top 100 MetaMarker gene sets.

Preservation of GO term co-expression

We compute p-values for the preservation of co-expression of GO terms using a mean sample

error approach. Using the aggregated annotated primary tissue co-expression network as the

reference and the aggregated organoid network as the test network, we first compute the pre-

served co-expression AUROCs for all individual genes, taking the mean and standard devia-

tion value as the population mean and population standard deviation. For any given GO term,

we first compute the preserved co-expression score for the term (the average of the preserved

co-expression AUROCs for the genes in the term) and then compute the sample error for that

score with:

SE ¼
SDpop
ffiffiffiffiffiffiffinGO
p

where SDpop is the population standard deviation and nGO is the number of genes in the GO

term. We then compute a z-score through:

ZGO ¼
muGO � mupop

SE

where mugo is the preserved co-expression score for the GO term and mupop is the population

mean preserved co-expression AUROC. We compute left-sided p-values using the standard

normal distribution:

pL ¼ PðX � ZGOÞ
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where X is a normal distribution with mean = 0 and standard deviation = 1. We use the R

function pnorm(ZGO) to compute this p-value.

We then compute the right-sided p-value as:

pR ¼ 1 � pL

We adjust p-values using the R function p.adjust(method = ‘BH’). We filter for GO terms

that have between 20 and 250 genes per term and use a threshold of FDR-corrected p-value <

= 0.0001 to call significance. Significant left-sided p-values are interpreted as GO terms with

significantly smaller preserved co-expression scores (significantly not preserved) than expected

through sampling error and right-sided p-values are interpreted as GO terms with significantly

larger preserved co-expression scores (significantly preserved) than expected through sam-

pling error. We use the R package rrvgo to visualize the significant GO terms in Fig 4F.

Computing correlation significance

We employ a permutation test to compute p-values for any given correlation coefficient. We

permute data pairs and compute a correlation coefficient, repeating for 10,000 random permu-

tations to generate a distribution of correlation coefficients under the null hypothesis of inde-

pendence. We calculate a two-sided p-value for the original correlation coefficient as the

number of permuted correlation coefficients whose absolute value is greater than or equal to

the absolute value of the original correlation coefficient, divided by 10,000. We adjust p-values

using the R function p.adjust(method = ‘BH’) and use a FDR-corrected p-value threshold of<

= 0.05 to call significance.

Comparing co-expression of normal versus perturbed organoids

For both the co-expression module AUROCs and the preserved co-expression scores of nor-

mal and perturbed organoids, we test for significant differences per cell type using the Mann–

Whitney U test, adjusting p-values with the R function p.adjust(method = ‘BH’) and using a

FDR-corrected p-value threshold of< = 0.05 to call significance.

Organoid temporal analysis

The organoid temporal analysis for both predicting organoid annotations with primary tissue

markers (S3B Fig) and scoring the preserved co-expression of organoid co-expression using pri-

mary tissue networks as reference (Fig 5) were performed for all pair-wise combinations of the 37

annotated primary tissue data sets and the 26 temporally annotated directed dorsal forebrain

organoid data sets. We excluded the GW7-28 annotated primary tissue data set from the temporal

preserved co-expression analysis (Fig 5) due to the wide temporal range sampled. For predicting

organoid annotations with primary tissue markers (S3B Fig), we used the top 100 markers per

primary tissue data set to construct aggregate expression predictors in the organoid data sets as

described above. The MetaMarkers performance was calculated using MetaMarkers derived from

all 37 annotated primary tissue data sets. For scoring preserved co-expression, individual primary

tissue networks were used as the reference with individual organoid networks as the test net-

works. We computed the preserved co-expression scores of the top 100 primary tissue cell type

markers per individual primary data set for each individual organoid network.

Stress-related gene expression

We use stress-related gene sets as defined by prior studies [5,45] comparing neural organoids

and primary tissue, with all genes provided in S4 Table. Specifically, the glycolysis genes are
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the Canonical Glycolysis GO term (GO:0061621) and the ER-stress (organoid_human_ER_-

stress_module) and Oxidative stress (organoid_human_oxidative_stress_module) genes were

defined through module analysis in [5], as provided in their S3 Table. Only data sets that uti-

lized CPM normalization were used in S10 Fig.

GO enrichment analysis

We compute enrichment for GO terms using Fisher’s exact test as implemented through the

hypergeometric test. We compute raw p-values for GO terms with between 10 and 1,000 genes

and compute FDR-adjusted p-values using p.adjust(method = ‘BH’). We only consider GO

sets with between 20 and 500 when choosing the top 10 GO sets in Fig 4G, ranked by FDR-

adjusted p-value.

R and R packages

All analysis was carried out in R v4.4.1. Colors with selected using the MetBrewer v0.2.0 R

library. Plots were generated using ggplot2 v3.5.1 [92]. Spearman correlation matrices for co-

expression networks were computed using a python v3.6.8 script, implemented in R with the

reticulate v1.38 R package, as well as using functions from the matrixStats v1.3.0 R library.

Supporting information

S1 Fig. MetaMarkers as temporally robust primary tissue cell type markers. (A) Boxplots of

AUROCs for predicting cell type annotations across all primary tissue data sets using the top

100 marker genes per individual primary tissue data set compared to MetaMarkers (red). Data

sets are ordered by their median performance, providing the rank distributions in Fig 2D. (B)

Distributions of averaged gene expression for the top 100 MetaMarkers across all annotated

primary tissue data sets with leave-one-out cross-validation. Fig 2E is the aggregate over these

individual data set distributions. Inset displays the average neural progenitor MetaMarker

expression for neural progenitor, astrocyte, and all non-astrocyte non-neuronal cells. Underly-

ing data can be found in the Zenodo repository (doi:10.5281/zenodo.13946248).

(PNG)

S2 Fig. MetaMarkers as regionally robust primary tissue cell type markers. (A) Heatmaps

of maximum normalized average MetaMarker expression for cell types and brain regions of

the first trimester annotated primary tissue atlas. Cell types comprise the rows with MetaMar-

ker gene expression for cells from each annotated brain region comprising the columns. Data

is maximum normalized per region/column. (B) Heatmaps of maximum normalized average

MetaMarker expression for cell types and brain regions of the second trimester annotated pri-

mary tissue atlas. Cell types comprise the rows with MetaMarker gene expression for cells

from each annotated brain region comprising the columns. Data is maximum normalized per

region/column. Underlying data can be found in the Zenodo repository (doi:10.5281/zenodo.

13946248).

(PNG)

S3 Fig. Primary tissue MetaMarkers consistently predict organoid cell types across time

points. (A) Schematic showing 2 potential outcomes when comparing cell type marker expres-

sion between primary tissue and organoid data on a temporal axis. There may be a temporal

relationship, with younger organoids recapitulating younger primary tissue marker expression

over older primary tissue marker expression and vice versa for older organoids, or there may

be no temporal relationship. (B) Line plots showing the cell type prediction AUROCs using

top 100 markers from individual primary tissue data sets for all organoid time points. Primary
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tissue data sets on the x-axis are ordered from youngest to oldest. (C) Heatmap of min-max

normalized eigenvalues for primary tissue MetaMarkers within the first principal component

of each organoid data set. (D) MetaMarker and non-marker gene set distributions of normal-

ized PC1 eigenvalues across all organoid data sets (left plot). The right plot depicts the fraction

of data sets each MetaMarker gene (the average for each MetaMarker gene set is reported) is

called as “heavily weighted” in PC1 for a given normalized eigenvalue threshold (x-axis).

Underlying data can be found in the Zenodo repository (doi:10.5281/zenodo.13946248).

(PNG)

S4 Fig. Intra-marker set MetaMarker co-expression is weakly related to cell type composi-

tion. (A) Scatter plots comparing the cell type annotation percentage of individual organoid

data sets from the annotated directed dorsal forebrain temporal data sets, with author-pro-

vided annotations on the x-axis and annotations determined by MetaMarker expression on

the y-axis. (B) Confusion matrix for the results in A, comparing the MetaMarker predicted

annotations to the author provided annotations. (C) Heatmap displaying the predicted cell

type percentages (rows) of all the organoid data sets (columns), hierarchically clustered by the

organoid protocol. The plot to the left of the heatmap depicts the distributions of unassigned

cell percentages per data set, where large percentages of unassigned cells are dependent on the

expression normalization used in individual studies. Studies with those normalizations were

excluded from S4D and S5C Figs. (D) Boxplot distributions comparing the predicted cell type

percentage (top boxplot plot per cell type, binned in intervals of 10-percentage points) to the

co-expression module score (bottom boxplot plot per cell type) for all neural organoid data

sets. The x-axes are the same for the top and bottom sets of boxplots per cell type. Underlying

data can be found in the Zenodo repository (doi:10.5281/zenodo.13946248).

(PNG)

S5 Fig. Preservation of MetaMarker set co-expression is weakly related to cell type compo-

sition. (A) Boxplots comparing the co-expression module scores (top row) for the neural line-

age (neural progenitor, intermediate progenitor, glutamatergic, GABAergic, and non-

neuronal MetaMarkers) or microglia/immune MetaMarkers between the neural organoid and

non-neural organoid data sets. Bottom row of boxplots depicts the preserved co-expression

scores. (B) Boxplots depicting the raw inter-marker set co-expression ratios across MetaMar-

ker gene sets for the unannotated primary tissue and neural organoid data sets, standardized

ratios are in Fig 3E. Special characters denote the scores of the aggregate co-expression net-

works. (C) Boxplot distributions comparing the predicted cell type percentage (top boxplot

plot per cell type, binned in intervals of 10-percentage points) to the preserved co-expression

score (bottom boxplot plot per cell type) for all neural organoid data sets. The x-axes are the

same for the top and bottom sets of boxplots per cell type. Underlying data can be found in the

Zenodo repository (doi:10.5281/zenodo.13946248).

(PNG)

S6 Fig. Primary tissue variability in cross-regional preservation of co-expression is related

to dataset size. (A) Violin and dotplots displaying the number of sampled cells per annotated

brain region across the cross-regional first and second trimester primary tissue data sets. (B)

Violin and dotplots displaying the preserved co-expression scores of the top 100 MetaMarkers

for each of our 6 cell type annotations, separated by brain region. Underlying data can be

found in the Zenodo repository (doi:10.5281/zenodo.13946248).

(PNG)

S7 Fig. Organoids maintain a deficit in preserved primary tissue co-expression when con-

trolling for data set size and gene detection rates. (A) Boxplots and dotplots comparing the
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preserved co-expression scores for the top 100 dividing progenitor MetaMarkers for all neural

organoid data sets (gray) and the region-specific primary tissue data sets (red) from S6 Fig. All

data sets are binned on the x-axis by the number of cells present (left-most plot) or the median

number of detected genes (right-most plot) per data set. (B) Same as A, but for the top 100 neural

progenitor MetaMarkers. (C) Same as A, but for the top 100 intermediate progenitor MetaMar-

kers. (D) Same as A, but for the top 100 glutamatergic MetaMarkers. (E) Same as A, but for the

top 100 GABAergic MetaMarkers. (F) Same as A, but for the top 100 non-neuronal MetaMarkers.

Underlying data can be found in the Zenodo repository (doi:10.5281/zenodo.13946248).

(PNG)

S8 Fig. Neural organoids preserve co-expression of developing neural tissue over adult

neural tissue. (A) Boxplots comparing either the co-expression module scores or preserved

co-expression scores by cell type between normal and treated organoids. (B) Scatter plot show-

ing the average preserved developing brain co-expression AUROC of individual genes, com-

paring the average across developing brain networks (x-axis) against the average across

organoid networks (y-axis). The points colored in red are genes with developing brain scores

> = 0.99 and organoid scores< 0.70. (C) Same as in B, only using primary tissue co-expres-

sion networks derived using only the 6 broad annotated cell types. Points in red are genes with

developing brain scores > = 0.90 and organoid scores< 0.70. The bar plot shows the top 10

GO terms determined by p-value for GO set enrichment of the genes in red. (D) Scatter plot

comparing the expression of DISC1 (log10(CPM+1)) to the preserved co-expression score of

DISC1 (computed using primary tissue co-expression networks derived from just the neural

lineage cell types) for all primary tissue and organoid data sets that used CPM normalization.

The boxplots compare DISC1 expression (left) and DISC1 preserved co-expression (right)

between primary tissue and neural organoids. (E) Scatterplots showing the preserved co-

expression scores of either the top 100 developing brain MetaMarkers (x-axis) or the top 100

adult MetaMarkers (y-axis). (F) Distributions of average preserved developing brain co-

expression AUROCs across all genes for organoid and developing brain networks. The redline

shows the performance of the adult co-expression network. The scatterplot plots the data in

the histogram (y-axis) against the number of cells in each organoid data set (x-axis). The blue

line shows performance for a cell down-sampled developing brain data set, with points repre-

senting the average performance over 10 random samples and the error bars showing ± 1 stan-

dard deviation. (G) Transplanted organoids preserve adult co-expression over developing

brain co-expression. Points represent the log2-fold change over the mean performance of the

non-transplanted organoids for preserved co-expression scores. Underlying data can be found

in the Zenodo repository (doi:10.5281/zenodo.13946248).

(PNG)

S9 Fig. Strength of MetaMarker co-expression in organoids is related to expression levels.

(A) Scatter plots comparing either the cell number, the median number of detected genes, or

the median percentage of mitochondrial mapping genes (x-axis) of each organoid scRNA-seq

data set to the average preserved co-expression AUROC across all genes (y-axis). The boxplots

display the global preserved co-expression score across the RNA-seq normalizations used

among the organoid data sets. (B) Scatterplots of either the zero-padded ratio (top row) or

marker set expression (bottom row) against the co-expression module scores for each cell type

across the organoid data sets. (C) Scatterplots of either the zero-padded ratio (top row) or

marker set expression (bottom row) against the preserved co-expression scores for each cell

type across the organoid data sets. Underlying data can be found in the Zenodo repository

(doi:10.5281/zenodo.13946248).

(PNG)
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S10 Fig. ER-related stress gene expression is lightly related to preserved co-expression

within neural organoids. (A) Histogram depicting the log2 fold change (FC) of the 76 stress-

related genes as defined in S4 Table, including only genes present within all data set gene

annotations. The boxplots compare the expression distributions of the genes with at least a

mean expression of 50 CPMs across all data sets and defined as either elevated in expression

for primary tissue data sets (log2(FC) < = −0.25, left set of boxplots) or elevated in expression

for neural organoids (log2(FC > = 0.25), right set of boxplots). Expression values are the z-

scored CPM values for each gene. Only neural organoid and primary tissue data sets that used

CPM normalization were used for this analysis. (B) Scatter plots comparing the global pre-

served co-expression score of all neural organoid datasets against their mean expression

(CPM) of either the glycolysis, ER-stress, or oxidative stress genes. (C) Heatmap depicting the

Spearman correlations between the mean expression of stress-related gene sets (columns) and

the cell type-specific preserved co-expression scores (rows) across the neural organoid data

sets that used CPM normalization. (D) Boxplots depicting the distributions of mean expres-

sion (CPM) of either the glycolysis, ER-stress, or oxidative stress genes across the neural orga-

noid protocols/data sets and primary tissue data sets that used CPM normalization. (E)

Heatmap depicting the Spearman correlations in mean expression (CPM) of the glycolysis,

ER-stress, and oxidative stress genes across the neural organoid data sets that used CPM nor-

malization. Underlying data can be found in the Zenodo repository (doi:10.5281/zenodo.

13946248).

(PNG)

S1 Table. Table containing the study origin and download links for all primary tissue and

organoid scRNA-seq data sets. The batch variable column details the meta-data used in deter-

mining batch. The Author described protocol column contains protocol descriptions as uti-

lized in each data set’s original publication and the Protocol classification/region column

contains protocol descriptions as we classify them in this study. We also provide the age, con-

dition, and cell-line annotations when made available for all studies, as well as various techni-

cal and quality control-related factors for all data sets.

(XLSX)

S2 Table. Table containing our mapping between authors provided annotations (Author

annotations column) and our broad cell type annotations (Class annotations column).

(XLSX)

S3 Table. Table containing the top 20 ranked MetaMarkers for the dividing progenitor,

neural progenitor, intermediate progenitor, glutamatergic, GABAergic, non-neuronal,

and microglia/immune cell type annotations.

(XLSX)

S4 Table. Table containing cellular stress gene sets.

(XLSX)
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33. Eura N, Matsui TK, Luginbühl J, Matsubayashi M, Nanaura H, Shiota T, et al. Brainstem Organoids

From Human Pluripotent Stem Cells. Front Neurosci [Internet]. 2020 [cited 2023 Jan 26]: 14. Available

from: https://www.frontiersin.org/articles/10.3389/fnins.2020.00538. https://doi.org/10.3389/fnins.2020.

00538 PMID: 32670003

34. Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, et al. Generation of Functional Human

3D Cortico-Motor Assembloids. Cell. 2020 Dec; 183(7):1913–1929.e26. https://doi.org/10.1016/j.cell.

2020.11.017 PMID: 33333020

35. Huang WK, Wong SZH, Pather SR, Nguyen PTT, Zhang F, Zhang DY, et al. Generation of hypotha-

lamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell. 2021 Sep 2; 28

(9):1657–1670.e10. https://doi.org/10.1016/j.stem.2021.04.006 PMID: 33961804

36. Nayler S, Agarwal D, Curion F, Bowden R, Becker EBE. High-resolution transcriptional landscape of

xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci Rep. 2021 Jun 21; 11

(1):12959. https://doi.org/10.1038/s41598-021-91846-4 PMID: 34155230

37. Sozzi E, Nilsson F, Kajtez J, Parmar M, Fiorenzano A. Generation of Human Ventral Midbrain Orga-

noids Derived from Pluripotent Stem Cells. Curr Protoc. 2022; 2(9):e555. https://doi.org/10.1002/cpz1.

555 PMID: 36121202

38. Uzquiano A, Kedaigle AJ, Pigoni M, Paulsen B, Adiconis X, Kim K, et al. Proper acquisition of cell class

identity in organoids allows definition of fate specification programs of the human cerebral cortex. Cell.

2022 Sep 29; 185(20):3770–3788.e27. https://doi.org/10.1016/j.cell.2022.09.010 PMID: 36179669

39. Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR. Cerebral Organoids Recapitulate

Epigenomic Signatures of the Human Fetal Brain. Cell Rep. 2016 Dec 20; 17(12):3369–3384. https://

doi.org/10.1016/j.celrep.2016.12.001 PMID: 28009303

40. Amiri A, Coppola G, Scuderi S, Wu F, Roychowdhury T, Liu F, et al. Transcriptome and epigenome

landscape of human cortical development modeled in brain organoids. Science. 2018 Dec 14; 362

(6420):eaat6720.

41. Fair SR, Julian D, Hartlaub AM, Pusuluri ST, Malik G, Summerfied TL, et al. Electrophysiological Matu-

ration of Cerebral Organoids Correlates with Dynamic Morphological and Cellular Development. Stem

Cell Rep. 2020 Oct 13; 15(4):855–868. https://doi.org/10.1016/j.stemcr.2020.08.017 PMID: 32976764

42. Nascimento JM, Saia-Cereda VM, Sartore RC, da Costa RM, Schitine CS, Freitas HR, et al. Human

Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Front Cell Dev Biol. 2019 Nov

28; 7:303. https://doi.org/10.3389/fcell.2019.00303 PMID: 31850342

43. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, et al. Sliced Human Cortical

Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell. 2020 May 7; 26(5):766–781.

e9. https://doi.org/10.1016/j.stem.2020.02.002 PMID: 32142682
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45. He Z, Dony L, Fleck JS, Szałata A, Li KX, Slišković I, et al. An integrated transcriptomic cell atlas of

human neural organoids [Internet]. bioRxiv. 2023 [cited 2024 Mar 21]. p. 2023.10.05.561097. Available

from: https://www.biorxiv.org/content/10.1101/2023.10.05.561097v1.

46. Polioudakis D, de la Torre-Ubieta L, Langerman J, Elkins AG, Shi X, Stein JL, et al. A Single-Cell Tran-

scriptomic Atlas of Human Neocortical Development during Mid-gestation. Neuron. 2019 Sep 4; 103

(5):785–801.e8. https://doi.org/10.1016/j.neuron.2019.06.011 PMID: 31303374

47. Fan X, Fu Y, Zhou X, Sun L, Yang M, Wang M, et al. Single-cell transcriptome analysis reveals cell line-

age specification in temporal-spatial patterns in human cortical development. Sci Adv. 2020 Aug 21; 6

(34):eaaz2978. https://doi.org/10.1126/sciadv.aaz2978 PMID: 32923614

48. Bhaduri A, Sandoval-Espinosa C, Otero-Garcia M, Oh I, Yin R, Eze UC, et al. An atlas of cortical areali-

zation identifies dynamic molecular signatures. Nature. 2021 Oct; 598(7879):200–204. https://doi.org/

10.1038/s41586-021-03910-8 PMID: 34616070

49. Braun E, Danan-Gotthold M, Borm LE, Lee KW, Vinsland E, Lönnerberg P, et al. Comprehensive cell

atlas of the first-trimester developing human brain. Science. 2023 Oct 13; 382(6667):eadf1226. https://

doi.org/10.1126/science.adf1226 PMID: 37824650

50. Shi Y, Wang M, Mi D, Lu T, Wang B, Dong H, et al. Mouse and human share conserved transcriptional

programs for interneuron development. Science. 2021 Dec 10; 374(6573):eabj6641. https://doi.org/10.

1126/science.abj6641 PMID: 34882453

PLOS BIOLOGY Meta-analysis of in vivo and in vitro developmental neural transcriptomics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002912 December 2, 2024 32 / 34

https://doi.org/10.1038/s41587-020-00763-w
http://www.ncbi.nlm.nih.gov/pubmed/33273741
https://www.frontiersin.org/articles/10.3389/fnins.2020.00538
https://doi.org/10.3389/fnins.2020.00538
https://doi.org/10.3389/fnins.2020.00538
http://www.ncbi.nlm.nih.gov/pubmed/32670003
https://doi.org/10.1016/j.cell.2020.11.017
https://doi.org/10.1016/j.cell.2020.11.017
http://www.ncbi.nlm.nih.gov/pubmed/33333020
https://doi.org/10.1016/j.stem.2021.04.006
http://www.ncbi.nlm.nih.gov/pubmed/33961804
https://doi.org/10.1038/s41598-021-91846-4
http://www.ncbi.nlm.nih.gov/pubmed/34155230
https://doi.org/10.1002/cpz1.555
https://doi.org/10.1002/cpz1.555
http://www.ncbi.nlm.nih.gov/pubmed/36121202
https://doi.org/10.1016/j.cell.2022.09.010
http://www.ncbi.nlm.nih.gov/pubmed/36179669
https://doi.org/10.1016/j.celrep.2016.12.001
https://doi.org/10.1016/j.celrep.2016.12.001
http://www.ncbi.nlm.nih.gov/pubmed/28009303
https://doi.org/10.1016/j.stemcr.2020.08.017
http://www.ncbi.nlm.nih.gov/pubmed/32976764
https://doi.org/10.3389/fcell.2019.00303
http://www.ncbi.nlm.nih.gov/pubmed/31850342
https://doi.org/10.1016/j.stem.2020.02.002
http://www.ncbi.nlm.nih.gov/pubmed/32142682
https://doi.org/10.15252/embj.2022111118
http://www.ncbi.nlm.nih.gov/pubmed/35919947
https://www.biorxiv.org/content/10.1101/2023.10.05.561097v1
https://doi.org/10.1016/j.neuron.2019.06.011
http://www.ncbi.nlm.nih.gov/pubmed/31303374
https://doi.org/10.1126/sciadv.aaz2978
http://www.ncbi.nlm.nih.gov/pubmed/32923614
https://doi.org/10.1038/s41586-021-03910-8
https://doi.org/10.1038/s41586-021-03910-8
http://www.ncbi.nlm.nih.gov/pubmed/34616070
https://doi.org/10.1126/science.adf1226
https://doi.org/10.1126/science.adf1226
http://www.ncbi.nlm.nih.gov/pubmed/37824650
https://doi.org/10.1126/science.abj6641
https://doi.org/10.1126/science.abj6641
http://www.ncbi.nlm.nih.gov/pubmed/34882453
https://doi.org/10.1371/journal.pbio.3002912


51. Zhou X, Lu Y, Zhao F, Dong J, Ma W, Zhong S, et al. Deciphering the spatial-temporal transcriptional

landscape of human hypothalamus development. Cell Stem Cell. 2022 Feb 3; 29(2):328–343.e5.

https://doi.org/10.1016/j.stem.2021.11.009 PMID: 34879244

52. Yu Y, Zeng Z, Xie D, Chen R, Sha Y, Huang S, et al. Interneuron origin and molecular diversity in the

human fetal brain. Nat Neurosci. 2021 Dec; 24(12):1745–1756. https://doi.org/10.1038/s41593-021-

00940-3 PMID: 34737447

53. Trevino AE, Müller F, Andersen J, Sundaram L, Kathiria A, Shcherbina A, et al. Chromatin and gene-

regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell. 2021 Sep

16; 184(19):5053–5069.e23. https://doi.org/10.1016/j.cell.2021.07.039 PMID: 34390642

54. Jorstad NL, Song JHT, Exposito-Alonso D, Suresh H, Castro-Pacheco N, Krienen FM, et al. Compara-

tive transcriptomics reveals human-specific cortical features. Science. 2023 Oct 13; 382(6667):

eade9516. https://doi.org/10.1126/science.ade9516 PMID: 37824638

55. Field AR, Jacobs FMJ, Fiddes IT, Phillips APR, Reyes-Ortiz AM, LaMontagne E, et al. Structurally Con-

served Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influ-

ence Cell-Type-Specific Genes. Stem Cell Rep. 2019 Feb 12; 12(2):245–257. https://doi.org/10.1016/j.

stemcr.2018.12.006 PMID: 30639214

56. Khan TA, Revah O, Gordon A, Yoon SJ, Krawisz AK, Goold C, et al. Neuronal defects in a human cellu-

lar model of 22q11.2 deletion syndrome. Nat Med. 2020 Dec; 26(12):1888–1898. https://doi.org/10.

1038/s41591-020-1043-9 PMID: 32989314

57. Parisian AD, Koga T, Miki S, Johann PD, Kool M, Crawford JR, et al. SMARCB1 loss interacts with neu-

ronal differentiation state to block maturation and impact cell stability. Genes Dev. 2020 Oct 1; 34(19–

20):1316–1329. https://doi.org/10.1101/gad.339978.120 PMID: 32912900

58. Chen X, Sun G, Tian E, Zhang M, Davtyan H, Beach TG, et al. Modeling Sporadic Alzheimer’s Disease

in Human Brain Organoids under Serum Exposure. Adv Sci. 2021 Aug 2; 8(18):2101462.

59. Dailamy A, Parekh U, Katrekar D, Kumar A, McDonald D, Moreno A, et al. Programmatic introduction of

parenchymal cell types into blood vessel organoids. Stem Cell Rep. 2021 Oct 12; 16(10):2432–2441.

https://doi.org/10.1016/j.stemcr.2021.08.014 PMID: 34559998

60. Popova G, Soliman SS, Kim CN, Keefe MG, Hennick KM, Jain S, et al. Human microglia states are con-

served across experimental models and regulate neural stem cell responses in chimeric organoids. Cell

Stem Cell. 2021 Dec 2; 28(12):2153–2166.e6. https://doi.org/10.1016/j.stem.2021.08.015 PMID: 34536354

61. Suong DNA, Imamura K, Inoue I, Kabai R, Sakamoto S, Okumura T, et al. Induction of inverted mor-

phology in brain organoids by vertical-mixing bioreactors. Commun Biol. 2021 Oct 22; 4(1):1–13.

62. Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, et al. Vascularized human cortical organoids (vOrganoids)

model cortical development in vivo. PLoS Biol. 2020 May 13; 18(5):e3000705. https://doi.org/10.1371/

journal.pbio.3000705 PMID: 32401820

63. Fiorenzano A, Sozzi E, Birtele M, Kajtez J, Giacomoni J, Nilsson F, et al. Single-cell transcriptomics

captures features of human midbrain development and dopamine neuron diversity in brain organoids.

Nat Commun. 2021 Dec 15; 12(1):7302. https://doi.org/10.1038/s41467-021-27464-5 PMID: 34911939

64. Fernando M, Lee S, Wark JR, Xiao D, Lim BY, O’Hara-Wright M, et al. Differentiation of brain and retinal

organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections

of optic origin. Stem Cell Rep. 2022 Jun 14; 17(6):1476–1492. https://doi.org/10.1016/j.stemcr.2022.

04.003 PMID: 35523177
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