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A community effort to optimize 
sequence-based deep learning models of 
gene regulation
 

Abdul Muntakim Rafi    1  , Daria Nogina    2, Dmitry Penzar3,4,5, Dohoon Lee    6, 
Danyeong Lee6, Nayeon Kim6, Sangyeup Kim6, Dohyeon Kim6, Yeojin Shin6, 
Il-Youp Kwak    7, Georgy Meshcheryakov5, Andrey Lando8, 
Arsenii Zinkevich    2,3, Byeong-Chan Kim7, Juhyun Lee7, Taein Kang7, 
Eeshit Dhaval Vaishnav    9,10, Payman Yadollahpour9, Random Promoter DREAM 
Challenge Consortium*, Sun Kim6, Jake Albrecht11, Aviv Regev    9,12, 
Wuming Gong    13, Ivan V. Kulakovskiy    3,5, Pablo Meyer    14 & 
Carl G. de Boer    1 

A systematic evaluation of how model architectures and training strategies 
impact genomics model performance is needed. To address this gap, we 
held a DREAM Challenge where competitors trained models on a dataset of 
millions of random promoter DNA sequences and corresponding expression 
levels, experimentally determined in yeast. For a robust evaluation of the 
models, we designed a comprehensive suite of benchmarks encompassing 
various sequence types. All top-performing models used neural networks 
but diverged in architectures and training strategies. To dissect how 
architectural and training choices impact performance, we developed 
the Prix Fixe framework to divide models into modular building blocks. 
We tested all possible combinations for the top three models, further 
improving their performance. The DREAM Challenge models not only 
achieved state-of-the-art results on our comprehensive yeast dataset 
but also consistently surpassed existing benchmarks on Drosophila and 
human genomic datasets, demonstrating the progress that can be driven by 
gold-standard genomics datasets.

In eukaryotes, transcription factors (TFs) have a crucial role in regulat-
ing gene expression and are critical components of the cis-regulatory 
mechanism1–6. TFs compete with nucleosomes and each other for DNA 
binding and can enhance each other’s binding through biochemical 
cooperativity and mutual competition with nucleosomes7–10. While 
the field has made substantial progress in characterizing regulatory 

mechanisms11–19, a quantitative understanding of cis-regulation remains 
a major challenge. Neural networks (NNs) have shown immense poten-
tial in modeling and predicting gene regulation. While different network 
architectures, such as convolutional NNs (CNNs)11,12,14,19,20, recurrent NNs 
(RNNs)21 and transformers15,17,18,22, have been used to create genomics 
models, there is limited research on how NN architectures and training 
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estimated expression levels compared to the training data measure-
ments and providing higher confidence in the challenge evaluation. 
The test set consisted of 71,103 sequences from several promoter 
sequence types. We included both random sequences and sequences 
from the yeast genome to get an estimate of performance difference 
between the random sequences in the training domain and naturally 
evolved sequences. We also included sequences designed to capture 
known limitations of previous models trained on similar data, namely 
sequences at the high-expression and low-expression extremes and 
sequences designed to maximize the disagreement between the pre-
dictions of a previously developed CNN and a physics-informed NN 
(‘biochemical model’)13,22. We previously found that predicting changes 
in expression between closely related sequences (that is, nearly iden-
tical DNA sequences) is substantially more challenging; hence, we 
included subsets where models had to predict changes that result from 
single-nucleotide variants (SNVs), perturbations of specific TFBSs and 
tiling of TFBSs across background sequences13,22. Each test subset was 
given a different weight when scoring the submissions, proportional to 
the number of sequences in the set and how important we considered 
it to be (Table 1). For instance, predicting the effects of SNVs on gene 
expression is a critical challenge for the field because of its relevance 
to complex trait genetics29. Accordingly, a substantial number of SNV 
sequence pairs were included in the test set and SNVs were given the 
highest weight. Within each sequence subset, we determined model 
performance using Pearson’s r2 and Spearman’s ρ, which captured 
the linear correlation and monotonic relationship between the pre-
dicted and measured expression levels (or expression differences), 
respectively. The weighted sum of each performance metric across 
test subsets yielded our two final performance measurements, which 
we called the Pearson score and Spearman score.

Our DREAM Challenge ran for 12 weeks in the summer of 2022 and 
included two evaluation stages: the public leaderboard phase and the 
private evaluation phase (Fig. 1a). The leaderboard opened 6 weeks into 
the competition and allowed teams to submit up to 20 predictions on 
the test data per week. At this stage, we used 13% of the test data for lead-
erboard evaluation and displayed only the overall Pearson’s r2, Spear-
man’s ρ, Pearson score and Spearman score to the participants, while 
keeping the performance on the promoter subsets and the specific 

strategies affect their performance for genomics applications. Stand-
ard datasets provide a common benchmark to evaluate and compare 
algorithms, leading to improved performance and continued progress 
in the field23. For instance, the computer vision and natural language 
processing (NLP) fields have seen an ongoing improvement of NNs 
facilitated by gold-standard datasets, such as the ImageNet data23 and 
MS COCO24. In contrast, because genomics models are often created ad 
hoc for analyzing a specific dataset, it often remains unclear whether 
a model’s improved performance results from improved model archi-
tecture or better training data. In many cases, the models created are 
not directly comparable to previous models because of substantial 
differences in the underlying data used to train and test them.

To address the lack of standardized evaluation and continual 
improvement of genomics models, we organized the Random Pro-
moter DREAM Challenge25. Here, we asked the participants to design 
sequence-to-expression models and train them on expression measure-
ments of promoters with random DNA sequences. The models would 
receive a regulatory DNA sequence as input and use it to predict the 
corresponding gene expression value. We designed a separate set of 
sequences to test the limits of the models and provide insight into 
model performance. The top-performing solutions in the challenge 
exceeded performance of all previous state-of-the-art models for 
similar data. Our evaluation across various benchmarks revealed that, 
for some sequence types, model performances approached the previ-
ously estimated inter-replicate experimental reproducibility for this 
datatype13, while considerable improvement remains necessary for 
others. The top-performing models included features inspired by the 
nature of the experiment and state-of-the-art models from computer 
vision and NLP, while incorporating training strategies that are better 
suited to genomics sequence data. To determine how individual design 
choices affect performance, we created a Prix Fixe framework that ena-
bled modular testing of individual model components, revealing fur-
ther performance gains. Finally, we benchmarked the top-performing 
DREAM models on Drosophila and human datasets, including predict-
ing expression and open chromatin from DNA sequence, where they 
consistently surpassed existing state-of-the-art model performances. 
Recognizing the potential of these models to further the field, we are 
making all DREAM Challenge models available in an accessible format.

Results
The Random Promoter DREAM Challenge and dataset
To generate the competition training data, we conducted a high- 
throughput experiment to measure the regulatory effect of millions 
of random DNA sequences (Methods). Prior research has shown that 
random DNA can display activity levels akin to genomic regulatory 
DNA because of the incidental occurrence of numerous TF-binding 
sites (TFBSs)13,22,26. Here, we cloned 80-bp random DNA sequences into 
a promoter-like context upstream of a yellow fluorescent protein (YFP), 
transformed the resulting library into yeast, grew the yeast in Chardon-
nay grape must and measured expression by fluorescence-activated 
cell sorting (FACS) and sequencing13,27,28 (Methods). This resulted in a 
training dataset of 6,739,258 random promoter sequences and their 
corresponding mean expression values.

We provided these data to the competitors, who could use them to 
train their model, with two key restrictions. First, competitors were not 
allowed to use external datasets in any form to ensure that all models 
are trained on the same dataset. Second, ensemble predictions were 
also disallowed as they would almost certainly provide a boost in per-
formance but without providing any insight into the best model types 
and training strategies.

We evaluated the models on a set of ‘test’ sequences designed 
to probe the predictive ability of the models in different ways. The 
measured expression levels driven by these sequences were quanti-
fied in the same way as the training data but in a separate experiment 
with more cells sorted per sequence (~100), yielding more accurate 

Table 1 | Summary of the test subsets

Subset No. of 
sequences

Weight in 
evaluation 
metric

Description

All sequences 71,103 1 All sequences in the test data

High 968 0.3 Sequences designed to have 
high expression

Low 997 0.3 Sequences designed to have 
low expression

Native 997 0.3 Sequences that are present in 
the yeast genome

Random 6349 0.3 Random DNA sequences

Challenging 1,953 0.5 Sequences designed to 
maximize the differences 
between a convolutional model 
and a biochemical model 
trained on the same data

SNVs 44,340 pairs 1.25 Two sequences that differed by 
only a single base

Motif 
perturbation 
(Reb1 + Hsf1)

3,287 pairs 0.3 Two sequences that differed 
because of perturbations to 
specific known TFBS

Motif tiling 2,624 pairs 0.4 Two sequences that differed 
because of tiling known TFBSs 
across random sequences

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02414-w

sequences used for the evaluation hidden. The participating teams 
achieved increasing performance each week (Extended Data Fig. 1), 
showcasing the effectiveness of such challenges in motivating the 
development of better machine learning models. Over 110 teams across 
the globe competed in this stage. At the end of the challenge, 28 teams 
submitted their models for final evaluation. We used the remaining test 
data (~87%) for the final evaluation (Fig. 1b,c and Extended Data Fig. 2).

Innovative model designs surpass the state of the art
We retrained the transformer model architecture of Vaishnav et al.12, the 
previous best-performing model for this type of data, on the challenge 
data and used it as a reference in the leaderboard (‘reference model’). 
The overall performance of top submissions, all NNs, was substan-
tially better than the reference model. Despite recent prominence of 
attention-based architectures22, only one of the top five submissions 
in the challenge used transformers, placing third. The best-performing 
submissions were dominated by fully convolutional NNs, with first, 
fourth and fifth places taken by them. The best-performing solution 
was based on the EfficientNetV2 architecture30,31 and the fourth and 
fifth solutions were based on the ResNet architecture32. Moreover, all 
teams used convolutional layers as the starting point in their model 
design. An RNN with bidirectional long short-term memory (Bi-LSTM) 
layers33,34 placed second. While the teams broadly converged on many 
similar training strategies (for example, using Adam35 or AdamW36 
optimizers), they also had substantial differences (Table 2).

The competing teams introduced several innovative approaches 
to solve the expression prediction problem. Autosome.org, the 
best-performing team, transformed the task into a soft-classification 
problem by training their network to predict a vector of expression 
bin probabilities, which was then averaged to yield an estimated 
expression level, effectively recreating how the data were generated 
in the experiment. They also used a distinct data-encoding method 
by adding channels to the traditional four-channel one-hot encoding 
(OHE) of the DNA sequence used by most teams. The two additional 
channels indicated (1) whether the sequence provided as input was 
likely measured in only one cell (which results in an integer expres-
sion value) and (2) whether the input sequence is being provided 
in the reverse complement orientation. Furthermore, Autosome.
org’s model, with only 2 million parameters, was the model with the 
fewest parameters among the top ten submissions, demonstrating 
that efficient design can considerably reduce the necessary number 
of parameters. Autosome.org and BHI were distinct in training their 
final model on the entirety of the provided training data (that is, no 
sequences withheld for validation) for a prespecified number of 
epochs (determined previously using cross-validation using valida-
tion subsets). Unlock_DNA, the third best team, took a novel approach 
by randomly masking 5% of the input DNA sequence and having the 
model predict both the masked nucleotides and gene expression. 
This approach used the masked nucleotide predictions as a regular-
izer, adding a reconstruction loss to the model loss function, which 
stabilized the training of their large NN. BUGF, the ninth best team, 
used a somewhat similar strategy where they randomly mutated 15% 
of the sequence and calculated an additional binary cross-entropy loss 
predicting whether any base pair in the sequence had been mutated. 
The fifth best team, NAD, used GloVe37 to generate embedding vectors 

for each base position and used these vectors as inputs for their NN, 
whereas the other teams used traditional OHE DNA sequences. Two 
teams, SYSU-SAIL-2022 (11th) and Davuluri lab (16th), attempted to 
train DNA language models38 on the challenge data by pretraining 
a BERT (bidirectional encoder representations from transformers) 
language model39 on the challenge data and subsequently used the 
BERT embeddings to train an expression predictor.

Test sequence subsets reveal model disparities
Analysis of model performance on the different test subsets revealed 
distinct and shared challenges for the different models. The top two 
models were ranked first and second (sometimes with ties) for each 
test subset regardless of score metric, showcasing that their superior 
performance could not be attributed to any single test subset (Fig. 1d,e). 
Furthermore, the rankings within each test subset sometimes differed 
between the Pearson score and Spearman score, reinforcing that these 
two measures capture performance in distinct ways (Fig. 1d,e).

While the ranking of models was similar for both random and 
native sequences, the differences in model performance were greater 
for native yeast sequences than random sequences. Specifically, per-
formance differed between models by as much as 17.6% for native 
sequences but only 5% for random sequences (Pearson’s r2, Fig. 1f). 
Similarly, this difference was 9.6% (native) versus 2.7% (random) for 
Spearman’s ρ (Fig. 1g). This suggests that the top models learned more 
of the regulatory grammar that evolution has produced. Furthermore, 
the substantial discrepancy between performance on native and ran-
dom sequences suggests that there is yet more regulatory logic to learn 
(although the native DNA has lower sequence coverage, presumably 
because of its higher repeat content, likely reducing data quality and 
predictability of this set; Extended Data Fig. 3).

Models were also highly variable in their ability to accurately pre-
dict variation within the extremes of gene expression. The cell sorter 
had a reduced signal-to-noise ratio at the lowest expression levels 
and the sorting bin placement could truncate the tails of the expres-
sion distribution6,12. Overall, model performance was most variable 
across teams in these subsets, suggesting that the challenge models 
were able to overcome these issues to varying degrees. For example, 
the median difference in Pearson’s r2 between the highest and lowest 
performance was ~48% for high-test and low-test subsets and 16% for 
the others (Fig. 1f,g).

The models also varied in their ability to predict expression differ-
ences between closely related sequences (Fig. 1de, ‘SNVs’, and Extended 
Data Figs. 4 and 5), with more substantial differences in model perfor-
mance for subtler changes. Specifically, the percentage differences 
between best and worst in Pearson’s r2 and Spearman’s ρ were 6.5% 
and 4% for motif perturbation, 17.7% and 7% for motif tiling and 14.6% 
and 9.6% for SNVs, respectively, suggesting that the top-performing 
models better captured the subtleties of cis-regulation. This is consist-
ent with our understanding of the subtlety of the impact; perturbing 
TFBSs (motif perturbations, where we mutate sequences strongly 
matching the cognate motif for an important TF or vary the number 
of binding sites) represented a comparatively large perturbation and 
could be predicted with simple models that capture the binding of 
these TFs and can count TFBS instances. However, when TFBSs are 
tiled across a background sequence, the same TFBS is present in every 

Fig. 1 | Overview of the challenge. a, Left, competitors received a training  
dataset of random promoters and corresponding expression values.  
Middle, they continually refined their models and competed for dominance  
in a public leaderboard. Right, at the end of the challenge, they submitted a  
final model for evaluation using a test dataset consisting of eight sequence types: 
(i) high expression, (ii) low expression, (iii) native, (iv) random, (v) challenging, 
(vi) SNVs, (vii) motif perturbation and (viii) motif tiling. b,c, Bootstrapping 
provides a robust comparison of the model predictions. Distribution of ranks  
in n = 10,000 samples from the test dataset (y axes) for the top-performing  

teams (x axes) Pearson score (b) and Spearman score (c). d,e, Performance  
of the top-performing teams in each test data subset. Model performance  
(color and numerical values) of each team (y axes) in each test subset (x axes)  
for Pearson’s r2 (d) and Spearman’s ρ (e). Heat map color palettes are min– 
max-normalized by column. f,g, Performance disparities observed between the 
best and worst models (x axes) in different test subsets (y axes) for Pearson’s r2 (f) 
and Spearman’s ρ (g). The calculation of the percentage difference is relative to 
the best model performance for each test subset.
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sequence and the model must have learned how its position affects its 
activity, in addition to capturing all the secondary TFBSs that are cre-
ated or destroyed as the motif is tiled13. Lastly, SNVs are even harder 

to predict because nearly everything about the sequence is identical 
but for a single nucleotide that may affect the binding of multiple TFs 
in potentially subtle ways.
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Prix Fixe framework reveals optimal model configurations
The top three solutions from the DREAM Challenge were distin-
guished both by their substantial improvement in performance 
compared to other models and their distinct approaches to data 
handling, preprocessing, loss calculations and diverse NN layers, 
encompassing convolutional, recurrent and self-attention mecha-
nisms. To identify the factors underlying their performances, we 

developed a Prix Fixe framework that broke down each solution into 
distinct modules and, by selecting one of each module type, tested 
arbitrary combinations of the modules from each solution (Fig. 2a). 
We reimplemented the top three solutions within this framework 
and found that 45 of 81 possible combinations were compatible. We 
removed specific test time processing steps unique to each solution 
that were not comparable across solutions. Lastly, we retrained all 
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compatible combinations using the same training and validation 
data, addressing the issue that some original solutions had used the 
entire dataset for training. Our approach facilitated a systematic and 
fair comparison of the individual contributions of different compo-
nents to overall performance.

Our analysis revealed both the source of Autosome.org’s excep-
tional performance and the interplay of different model components, 
along with their potential for further optimization. The BHI and 
UnlockDNA NNs saw a notable improvement in performance when 
retrained using Autosome.org’s data processor and trainer (Fig. 2b,c 
and Extended Data Figs. 6 and 7). Moreover, each team’s model archi-
tecture could be optimized further, resulting in models that achieved 
better performance (Fig. 2c) using the same core blocks but with 
similar or fewer parameters (Fig. 2d). However, except for Autosome.
org’s data processor and trainer module, no other module component 
dominated the others and their performance appeared to depend 
on what other modules they were combined with (Supplementary 
Fig. 1). For each core block of Autosome.org, BHI and UnlockDNA, we 
named the optimal Prix Fixe model as DREAM-CNN, DREAM-RNN and 
DREAM-Attn, respectively. The DREAM models learned a very similar 
view of the cis-regulatory logic as shown by the similar attribution 
scores (Extended Data Fig. 8) using in silico mutagenesis (ISM). Interest-
ingly, in addition to agreeing on the large effects where recognizable 
consensus TFBSs were altered, the models also agreed on the smaller 
effects that varied in sign over 1–3 bp, which is too short to correspond 

to consensus TFBSs40, supporting the notion that the abundance of 
low-affinity binding sites has an important role in many cis-regulatory 
elements (CREs)7,13,41.

Optimized models outperform the state of the art for other 
species and data types
To determine whether the model architectures and training strate-
gies we optimized on yeast data would generalize to other species, we 
next applied them to Drosophila melanogaster and human datasets 
on a diverse set of tasks. First, we tested their ability to predict gene 
regulatory activity measured in D. melanogaster (in the context of a 
developmental and a housekeeping promoter) in a self-transcribing 
active regulatory region sequencing (STARR-seq) massively paral-
lel reporter assay (MPRA). This fundamentally represents the same 
sequence-to-expression problem the models were designed to solve, 
despite the different organism (Drosophila versus yeast), experimental 
measurement approach (RNA sequencing versus cell sorting), longer 
sequence (249 bp versus 150 bp), smaller datasets (~500,000 versus 
6.7 million) and the transition from a single-task to a multitask frame-
work (two promoter types). We compared the DREAM-optimized 
models to DeepSTARR42, a state-of-the-art CNN model based on the 
Basset20 architecture and specially developed for predicting the data 
we used in this benchmark (STARR-seq with unique molecular identi-
fier integration (UMI-STARR-seq)43 in D. melanogaster S2 cells42,44). For 
a robust comparison, we trained the models using cross-validation 
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and always evaluated on the same held-out test data (Methods). Our 
models consistently outperformed DeepSTARR across both develop-
mental and housekeeping transcriptional programs (Fig. 3a), with the 
DREAM-RNN’s model performance surpassing that of DREAM-CNN 
and DREAM-Attn.

To further validate the generalizability of our models, we next 
trained the DREAM-optimized models on lentivirus-based MPRAs 
(lentiMPRAs) that tested CREs across three human cell types: hepato-
cytes (HepG2), lymphoblasts (K562) and induced pluripotent stem cells 
(WTC11)45. Here, our models had to capture more complex regulatory 
activity from vastly smaller datasets (~56,000–226,000 versus 6.7 mil-
lion). We compared the models against MPRAnn45, a CNN model opti-
mized for these specific datasets (Methods). All models were trained 
using cross-validation and evaluated on held-out test data in the same 
way that MPRAnn was originally trained45. The DREAM-optimized mod-
els substantially outperformed MPRAnn, with the performance differ-
ence widening with more training data (Fig. 3b). The only exception 
was DREAM-Attn, which did not outperform MPRAnn on the smallest 
dataset (WTC11; 56,000 sequences). Again, DREAM-RNN demonstrated 
the best performance among our models, especially for larger datasets.

To evaluate the models on a distinct prediction task that still 
relates to CRE function, we evaluated our optimized models on the 
task of predicting open chromatin. Specifically, we compared our 
optimized models to ChromBPNet46–48, a BPNet-based16 model that 
predicts assay for transposase-accessible chromatin with sequencing 
(ATAC-seq) signals across open chromatin regions. Here, the input DNA 
sequences were ~14 times longer than the yeast promoters on which the 
DREAM models were optimized (2,114 versus 150 bp) and the models 
were now tasked with simultaneously predicting the overall acces-
sibility (read counts) and accessibility profile (read distribution) for 
a central 1,000-bp section, rather than predicting a single expression 
value. While DREAM-Attn could not be trained because the memory 
requirement for the attention block became too large with such a long 
input sequence, we trained and evaluated the other DREAM-optimized 
models and ChromBPNet on K562 bulk ATAC-seq data49 (Methods). 
DREAM-RNN outperformed ChromBPNet substantially in predictions 
of both read count and chromatin accessibility (Fig. 3c,d), highlight-
ing the adaptability of our models even on substantially different 
cis-regulatory data types. DREAM-CNN, on the other hand, performed 
on par with ChromBPNet46 in predictions of read count (Fig. 3c) but was 
less effective in predicting chromatin accessibility profiles (Fig. 3d).

Notably, the architectures and training paradigms of the 
DREAM-optimized models were changed minimally for these evalua-
tions (Extended Data Fig. 9). The components that could not accommo-
date the data were discarded (for example, the input-encoding channel 
denoting singleton observations was not compatible to STARR-seq, 
MPRA and ATAC-seq data; Methods). The only other modifications 
made were required for the prediction head to predict the new task 
(for example, the final layer block architecture and using task-specific 
loss functions; Methods) or to adapt to the smaller number of train-
ing sequences compared to the DREAM dataset (reducing the batch 
size and/or maximum learning rate (LR); Methods). Importantly, 
DREAM-RNN outperformed the other Prix Fixe optimized models in 
all of these secondary benchmarks (Fig. 3a–d), highlighting its excel-
lent generalizability.

Discussion
The Random Promoter DREAM Challenge 2022 presented a unique 
opportunity for participants to propose novel model architectures 
and training strategies for modeling regulatory sequences. The par-
ticipants trained sequence-to-expression models on millions of ran-
dom regulatory DNA sequences and their corresponding expression 
measurements. A separate set of designed sequences were used to 
evaluate these models and test their limits. Remarkably, 19 models 
from the DREAM Challenge outperformed the previous state of the art22 

(Extended Data Fig. 4), with the majority using unique architectures 
and training strategies. To systematically analyze how model design 
choices impact their performance, we developed the Prix Fixe frame-
work, where models were abstracted to modular parts, enabling us to 
combine modules from different submissions to identify the key con-
tributors to model performance. We applied the Prix Fixe framework 
to the top three models from the challenge that varied substantially 
in their NN architectures (CNN, RNN and self-attention) and training 
strategies and were able to construct improved models in each case.

The training strategies for NNs had as notable an impact on model 
performance as the network architectures themselves (Fig. 2c and 
Extended Data Fig. 7). In the Prix Fixe runs, training the network to 
predict expression as distributions using soft classification rather than 
as precise values helped models capture more of cis-regulation. These 
findings argue for a balanced focus not only on network architectures 
but also on the optimization of training procedures and redefinition 
of prediction tasks.

Notably, the top-performing models from the DREAM Challenge 
demonstrated that simpler NN architectures with fewer parameters, 
if optimized well, can effectively capture much of the activity of indi-
vidual CREs. Three of the top five submissions did not use transform-
ers, including the best-performing team (which also had the fewest 
parameters of the top ten). Using our Prix Fixe framework, we suc-
cessfully designed models that not only consisted of similar or fewer 
parameters but also achieved superior performance compared to 
their counterparts (Fig. 2d,e). Furthermore, these DREAM-optimized 
models consistently outperformed previous state-of-the-art models 
on other cis-regulatory tasks, despite having comparable (and often 
fewer) parameters than previous models (Figs. 1d and 3e and Extended 
Data Fig. 10). While genomics model design requires consideration of 
the nature of the task (for example, enhancer-gene regulation neces-
sarily requires the ability to capture long-range interactions), our 
findings highlight that building better models mostly depends on 
effective optimization rather than simply increasing model capacity. 
However, building better models may come with increased computa-
tional burden as the biochemistry is approximated with finer resolution 
(Extended Data Fig. 10).

In the DREAM Challenge, we observed varied results across test 
subsets that illustrate the complexity in evaluating cis-regulatory mod-
els effectively. For instance, performance on random sequences, which 
were in the same domain as the training data (also random sequences), 
was relatively uniform (Fig. 1d,e). Conversely, shifting the domain to 
native sequences highlighted the disparities between models, as the 
relative frequencies of various regulatory mechanisms likely differ, 
a consequence of their evolutionary origin (Fig. 1d,e). This indicates 
that a model that excels in modeling overall cis-regulation may still per-
form poorly for sequences involving certain regulatory mechanisms 
(for example, cooperativity in evolved sequences) that are difficult 
to learn from the training data, leading to incorrect predictions of 
biochemical mechanisms and variant effects for sequences that use 
these mechanisms. This emphasizes the importance of multifaceted 
evaluation of genomics models50 and designing specific datasets that 
test the limits of these models.

To continually improve genomics models, there is a need for stand-
ardized, robust benchmarking datasets. The DREAM Challenge dataset 
addresses this need and the impact that such standardized datasets can 
have was demonstrated by the generalizability of DREAM-optimized 
models across different Drosophila and human datasets and tasks with-
out additional model tuning. Nonetheless, it should be noted that the 
models stemming from this challenge explored only a fraction of the 
possible design space and are likely to be improved upon. Furthermore, 
performance of the DREAM-optimized models can be optimized for 
different datasets by tailoring hyperparameters of these models to the 
dataset in question or by using ensembles of the models. Our dataset 
accompanied by the Prix Fixe framework stands as a valuable resource 
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for the continued exploration and development of innovative NN 
architectures and training methodologies specifically crafted for DNA 
sequences. Furthermore, the modular nature and proven generaliz-
ability of the DREAM-optimized models will enable other researchers 
to easily apply them to other genomics problems.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
Designing the test sequences
High-expression and low-expression sequences were designed using 
DEAP58 with the mutation probability and the two-point crossover 
probability set to 0.1, selection tournament size of 3, initial population 
size of 100,000 and the genetic algorithm run for ten generations, 
using the predictions of a CNN trained on random yeast promoter 
sequences as the fitness function22. Native test subset sequences were 
designed by sectioning native yeast promoters into 80-bp fragments13. 
Random sequences were sampled from a previous experiment where 
the tested DNA was synthesized randomly (as in the training data) and 
quantified13. Challenging sequences were designed by maximizing the 
difference between the expressions predicted by a CNN model22 and a 
biochemical model (a type of physics-informed NN)13; these sequences 
represented the pareto front of the differences in expression between 
models when optimizing populations of 100 sequences at a time for 
100 generations using a genetic algorithm with a per-base mutation 
rate of 0.02 and recombination rate of 0.5 using DEAP58 and a custom 
script (GASeqDesign.py59). Most of the SNVs represented sequence 
trajectories from Vaishnav et al.22 but also included random muta-
tions added to random, designed and native promoter sequences. 
Motif perturbation included Reb1 and Hsf1 perturbations. Sequences 
with perturbed Reb1 binding sites were created by inserting Reb1 
consensus binding sites (strong or medium affinity; sense and reverse 
complement orientations) and then adding 1–3 SNVs to each possible 
location of each motif occurrence and inserting canonical and mutated 
motif occurrence into ten randomly generated sequences at posi-
tion 20 or 80. Sequences with Hsf1 motif occurrence were designed 
by tiling random background sequences with 1–10 Hsf1 monomeric 
consensus sites (ATGGAACA), added sequentially from both right 
and left of the random starting sequences, added individually within 
each of the possible eight positions or similarly tiling or inserting 1–5 
trimeric Hsf1 consensus sites (TTCTAGAANNTTCT). The motif tiling 
test subset sequences were designed by embedding a single consen-
sus for each motif (poly(A), AAAAA; Skn7, GTCTGGCCC; Mga1, TTCT; 
Ume6, AGCCGCC; Mot3, GCAGGCACG; Azf1, TAAAAGAAA) at every 
possible position (with the motif contained completely within the 
80-bp variable region) and orientation for three randomly generated 
background sequences13.

Quantifying promoter expression
High-complexity random DNA libraries that comprised the train-
ing data were created using Gibson assembly to assemble a double- 
stranded random DNA insert into a dual reporter vector yeast_Dual-
Reporter (AddGene, 127546). The random DNA insert was created 
by annealing a complementary primer sequence and extending 
to double strand using Phusion polymerase master mix (New Eng-
land Biolabs) and gel-purifying before cloning. The random DNA 
was inserted between distal (GCTAGCAGGAATGATGCAAAAGGTT
CCCGATTCGAACTGCATTTTTTTCACATC) and proximal (GGTTACG
GCTGTTTCTTAATTAAAAAAAGATAGAAAACATTAGGAGTGTAACACA
AGACTTTCGGATCCTGAGCAGGCAAGATAAACGA) promoter regions. 
The random promoter library in Escherichia coli theoretically contained 
about 74 million random promoters (estimated by dilution and plating) 
and was transformed into S288c (ΔURA3) yeast yielding 200 million 
transformants, which were selected in SD-Ura medium. Then, 1 L of 
Chardonnay grape must (filtered) was inoculated with the pool to an 
initiate an optical density at 600 nm (OD600) of 0.05 and grown at room 
temperature without continual shaking, with the culture diluted as 
needed with fresh Chardonnay grape must to maintain the OD below 
0.4, for a total growth time of 48 h and having undergone >5 genera-
tions. Before each OD measurement, the culture was gently agitated 
to decarbonate it, waiting for the resulting foam to die down before 
agitating again and continuing until no more bubbles were released. 
Before sorting, yeasts were spun down, washed once in ice-cold PBS, 

resuspended in ice-cold PBS, kept on ice and then sorted by log2(red 
fluorescent protein (RFP)/YFP) signal (using mCherry and green fluo-
rescent protein absorption and emission) on a Beckman-Coulter MoFlo 
Astrios, using the constitutive RFP under pTEF2 regulation to control 
for extrinsic noise13. Cells were sorted into 18 uniform bins, in three 
batches of six bins each. After sorting, cells from each bin were spun 
down and resuspended in SC-Ura and then grown for 2–3 days, shaking 
at 30 °C. Plasmids were isolated, the promoter region was amplified, 
Nextera adaptors and multiplexing indices were added by PCR and the 
resulting libraries were sequenced, with sequencing libraries pooled 
and sequenced on an Illumina NextSeq using 2 × 76-bp paired-end reads 
with 150-cycle kits. The designed (test) experiment was performed 
similarly but the library was amplified by PCR from a Twist oligo pool 
and the E. coli transformation complexity was only 105, over 10× cover-
age of the library.

To obtain sequence–expression pairs for random promoter 
sequences, the paired-end reads representing both sides of the pro-
moter sequence were aligned using the overlapping sequence in the 
middle, constrained to have 40 ± 15 bp of overlap, discarding any 
reads that failed to align well within these constraints13. To collapse 
related promoters into a single representative sequence, we aligned 
the sequences observed in each library to themselves using Bowtie2 
(ref. 60), creating a Bowtie database containing all unique sequences 
observed in the experiment (default parameters) and aligning these 
same sequences, which allowed for multimapping reads (parameters 
included ‘-N 1 -L 18 -a -f -no-sq -no-head -5 17 -3 13’. Any sequences that 
aligned to each other were assigned to the same cluster, which were 
merged using the sequence with the most reads as the ‘true’ pro-
moter sequence for each cluster. Expression levels for each promoter 
sequence were estimated as the weighted average of bins in which the 
promoter was observed13. For the designed (test) library, we instead 
directly aligned reads to a Bowtie database of the sequences we ordered 
to quantify and estimated their expression levels using MAUDE61, with 
the read abundance in each sorting bin as input, and estimating the 
initial abundance of each sequence as the average relative abundance 
of that sequence across all bins.

Competition rules

1.   �Only the provided training data could be used to train models. 
Models had to train from scratch without any pretraining on 
external datasets to avoid overfitting to sequences present 
in the test data (for example, some sequences in the test data 
were derived from extant yeast promoters).

2.   �Reproducibility was a prerequisite for all submissions.  
The participants had to provide the code and instructions to 
reproduce their models. We retrained the top-performing 
solutions to validate their performance.

3.   �Augmenting the provided training data was allowed.  
Pseudolabeling the provided test data was not allowed. Using 
the test data for any purpose during training was not allowed.

4.   Ensembles were not allowed.

Detailed information on the competition and its guidelines can 
be found on the DREAM Challenge webpage (https://www.synapse.
org/#!Synapse:syn28469146/wiki/617075).

Performance evaluation metric
We calculated Pearson’s r2 and Spearman’s ρ between predictions 
and measurements for each sequence subset. The weighted sum of 
each performance metric across promoter types yielded our two final 
performance measurements, which we called the Pearson score and 
Spearman score.

Pearson score =
subsets
∑
i=0

wi × Pearson r2 i /
subsets
∑
i=0

wi
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Spearman score =
subsets
∑
i=0

wi × Spearmani/
subsets
∑
i=0

wi

Here, wi is the weight used for the ith test subset (Table 1). 
Pearson r2 i and Spearmani are, respectively, the square of the Pearson 
coefficient and the Spearman coefficient for sequences in the ith 
subset.

Bootstrapping analysis of model performance
To determine the relative performance of the models, we performed a 
bootstrapping analysis. Here, we sampled 10% of the test data 10,000 
times and, for each sample, calculated the performance of each model 
and the rankings of the models for both Pearson and Spearman scores. 
We averaged the ranks from both metrics to decide their final ranks.

Description of the approaches used by the participants
An overview of the approaches used by the participants in the challenge 
is provided in the Supplementary Information.

Prix Fixe framework
The Prix Fixe framework, implemented in Python and Pytorch, facili-
tated the design and training of NNs by modularizing the entire process, 
from data-preprocessing to prediction, enforcing specific formats for 
module inputs and outputs to allow integration of components from 
different approaches. The different modules in the Prix fixe framework 
are described below.

Data processor and trainer. The data processor class is dedicated to 
transforming raw DNA sequence data into a usable format for subse-
quent NN training. The data processor can produce an iterable object, 
delivering a dictionary containing, a feature matrix ‘x’ (input to the 
NN) and a target vector ‘y’ (expected output). Additional keys can be 
included to support extended functionalities. Moreover, the data 
processor can provide essential parameters to initiate NN blocks, such 
as determining the number of channels in the first layer.

The trainer class manages the training of the NN. It processes 
batches of data from the data processor and feeds them into the NN. It 
computes auxiliary losses, if necessary, alongside the main losses from 
the NN, facilitating complex loss calculation during training.

Prix Fixe net. This module embodies the entirety of the NN architecture:

(i)   �First layer block: This constitutes the primordial layers of  
the network. They may include initial convolutional layers  
or facilitate specific encoding mechanisms such as k-mer 
encoding for the input.

(ii)   �Core layer block: This represents the central architecture 
components, housing elements such as residual connections, 
LSTM mechanisms and self-attention. The modular construc-
tion of this block also allows for versatile combinations, such 
as stacking a residual CNN block with a self-attention block.

(iii)   �Final layer block: This phase narrows the latent space to 
produce the final prediction, using layers such as pooling, 
flattening and dense layers. It computes the prediction and 
outputs it alongside the loss.

For all three blocks, the standard input format is (batch, channels, 
seqLen). The first two blocks yield an output in a consistent format 
(batch, channels, seqLen), whereas the last block delivers the predicted 
expression values. Each block can propagate its own loss. The whole 
framework is implemented in PyTorch.

To ensure fair comparison across solutions in the Prix Fixe frame-
work, we removed specific test time processing steps that were unique 
to each solution. We divided the DREAM Challenge dataset into two 
segments, allocating 90% sequences for training and 10% for validation. 

Using these data, we retrained all combinations that were compatible 
within the framework. Of the 81 potential combinations, we identified 
45 as compatible and 41 of these successfully converged during train-
ing. Because of graphics processing unit (GPU) memory constraints, 
we adjusted the batch sizes for certain combinations.

DREAM-optimized models from Prix Fixe runs
Data processor and trainer. Promoter sequences were extended 
at the 5′ end using constant segments from the plasmids to stand-
ardize to a length of 150 bp. These sequences underwent OHE into 
four-dimensional vectors. ‘Singleton’ promoters, observed only once 
across all bins, were categorized with integer expression estimates. 
Considering the potential variability in these singleton expression 
estimates, a binary ‘is_singleton’ channel was incorporated, marked as 
1 for singletons and 0 otherwise. To account for the diverse behavior of 
regulatory elements on the basis of their strand orientation relative to 
transcription start sites, each sequence in the training set was provided 
in both its original and reverse complementary forms, identified using 
the ‘is_reverse’ channel (0 for original and 1 for reverse complemen-
tary). Consequently, the input dimensions were set at (batch, 6, 150).

The model’s training used the AdamW optimizer, set with a weight_
decay of 0.01. The maximum LR of 0.005 was chosen for most blocks, 
while a conservative rate of 0.001 was applied to attention blocks 
because of the inherent sensitivity of self-attention mechanisms to 
higher rates. This LR was scheduled by the one-cycle LR policy62, which 
featured two phases and used the cosine annealing strategy. Training 
data were segmented into batches of size 1,024, with the entire train-
ing procedure spanning 80 epochs. Model performance and selection 
were based on the highest Pearson’s r value observed in the validation 
dataset.

During prediction, the data processing mirrored the data pro-
cessor apart from setting ‘is_singleton’ to 0. Predictions for both the 
original and reverse complementary sequences were then averaged.

Prix Fixe net. DREAM-CNN. First layer block: The OHE input was pro-
cessed through a one-dimensional (1D) CNN. Drawing inspiration from 
DeepFam63, convolutional layers with kernel sizes of 9 and 15 were used, 
mirroring common motif lengths as identified by ProSampler64. Each 
layer had a channel size of 256, used rectified linear unit activation and 
incorporated a dropout rate of 0.2. The outputs of the two layers were 
concatenated along the channel dimension.

Core layer block: This segment contained six convolution blocks 
whose structure was influenced by the EfficientNet architecture. The 
segment contained modifications such replacing depth-wise convo-
lution with grouped convolution, using squeeze and excitation (SE) 
blocks65 and adopting channel-wise concatenation for residual con-
nections. The channel configuration started with 256 channels for the 
initial block, followed by 128, 128, 64, 64, 64 and 64 channels66.

Final layer block: The final block consisted of a single point-wise 
convolutional layer followed by channel-wise global average pooling 
and SoftMax activation.

DREAM-RNN. First layer block: Same as DREAM-CNN.
Core layer block: The core used a Bi-LSTM, designed to capture 

motif dependencies. The LSTM’s hidden states had dimensions of 320 
each, resulting in 640 dimensions after concatenation. A subsequent 
CNN block, similar to the first layer block, was incorporated.

Final layer block: Same as DREAM-CNN.

DREAM-Attn. First layer block: This segment was a standard convolu-
tion with kernel size 7, followed by BatchNorm67 and sigmoid linear 
unit activation68.

Core layer block: This block used the Proformer69, a Macaron-like 
transformer encoder architecture, which uses two half-step feed- 
forward network (FFN) layers at the start and end of the encoder block. 
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Additionally, a separable 1D convolution layer was integrated after the 
initial FFN layer and before the multihead attention layer.

Final layer block: Same as DREAM-CNN and DREAM-RNN.

Human MPRA models
Within each of the three large-scale MPRA libraries, every sequence 
and its corresponding reverse complement were grouped together 
and these pairs were then distributed into ten distinct cross-validation 
folds to ensure that both the forward and the reverse sequences resided 
within the same fold. DREAM-CNN, DREAM-RNN, DREAM-Attn and 
MPRAnn were trained using nine of these ten folds, reserving one fold 
to evaluate the model’s performance. For every held-out test fold, 
nine models were trained, with one fold being dedicated for validation 
purposes while the remaining eight acted as training folds. Subsequent 
predictions from these nine models were aggregated, with the average 
being used as the final prediction for the held-out test data.

The MPRAnn architecture45 was trained with an LR of 0.001, an early 
stopping criterion with patience of 10 on 100 epochs, a batch size of 32 
and the Adam optimizer with a mean squared error loss function. For 
DREAM-CNN, DREAM-RNN and DREAM-Attn, components that could 
not accommodate Agarwal et al.’s data were discarded. For instance, 
the ‘is_singleton’ channel is not relevant for MPRA data and loss cal-
culation was performed using the mean squared error (as in MPRAnn) 
in place of Kullback–Leibler divergence because of the infeasibility of 
transitioning the problem to soft classification. MPRAnn used a much 
smaller batch size than our DREAM-optimized trainer (32 versus 1,024);  
thus, we reduced it to be the same as MPRAnn. No other alterations  
were made to either the model’s structure or the training paradigm.

Drosophila UMI-STARR-seq models
The DeepSTARR architecture42 was trained with an LR of 0.002, an early 
stopping criterion with patience of 10 on 100 epochs, a batch size of 128 
and the Adam optimizer with a mean squared error loss function. For 
DREAM-CNN, DREAM-RNN and DREAM-Attn, we used the exact setting 
as used for human MPRA datasets but with the output layer modified 
to predict two values corresponding to expression with housekeeping 
and developmental promoters and the loss calculated as the sum of the 
mean squared errors for each output (as in DeepSTARR).

Only the five largest Drosophila chromosomes (Chr2L, Chr2R, 
Chr3L, Chr3R and ChrX) were used as test data. For every held-out 
test chromosome, the remaining sequences were distributed into 
ten distinct train–validation folds and DREAM-CNN, DREAM-RNN, 
DREAM-Attn and DeepSTARR models (ten of each) were trained.  
Subsequent predictions from these ten models were aggregated,  
with the average being used as the final prediction for the held-out 
test chromosome.

Human chromatin accessibility models
We used five separate train–validation–test splits as proposed in a pre-
vious study46 for ATAC-seq experiments on the human cell line K56249. 
For each of these partitions, we first trained five different bias models, 
one per fold, which were designed to capture enzyme-driven biases 
present in ATAC-seq profiles. Subsequently, ChromBPNet, DREAM-CNN 
and DREAM-RNN models were trained for each fold, using the same bias 
models. For DREAM-CNN and DREAM-RNN, the prediction head from 
ChromBPNet (1D convolution layer, cropping layer, average pooling 
layer and a dense layer) was used in the final layer block to predict the 
accessibility profile and read counts. Input-encoding channels for is_
singleton and is_rev were omitted. We modified the DREAM-optimized 
trainer in this case to use the same batch size as ChromBPNet (from 
1,024 to 64) and a reduced maximum LR (from 5 × 10−3 to 5 × 10−4). No 
other alterations were made to either the model’s structure or the 
training paradigm.

For this task, we reimplemented DREAM-CNN and DREAM-RNN 
architectures in TensorFlow to ensure that all models had same  

bias models. This methodological choice came at the cost of having 
to leave some components (input encoding, AdamW optimizer, etc.) 
out of the DREAM-optimized data processor and trainer. However, it 
ensured uniformity across models, leading to an unbiased comparison 
across the different architectures.

ISM
The ISM scores for DNA sequences were obtained by creating all 
possible single-nucleotide mutations of each sequence and calcu-
lating the change in predicted expression relative to the original 
sequence. A single ISM score for each position was then determined 
by averaging the mutagenesis scores across nucleotides at that  
position.

Average training time per batch and throughput
We measured the training time per batch for the human ATAC-seq data-
set with a batch size of 64 and on two other datasets with a batch size of 
32. Throughput was determined by measuring how many data points 
each model could predict per second (without backpropagation). 
Starting with a batch size of 32, we doubled the batch size incrementally 
(64, 128, 256, etc.) and recorded the throughput at each stage until 
the maximum batch size supportable by the GPU was reached, which 
was then used to calculate throughput. We processed 5,000 batches 
for each model to calculate the average training time per batch and 
processed 100 batches for throughput. The calculations for both train-
ing time per batch and throughput were repeated 50 times to ensure 
reliability and the distribution of these measurements is presented as 
a box plot in Extended Data Fig. 10. All tests were conducted using an 
NVIDIA V100 16-GB GPU, ensuring consistency in the computational 
resources across all experiments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data generated for this study are available from the National Center of 
Biotechnology Information Gene Expression Omnibus (GEO) under 
accession number GSE254493. The processed datasets are available 
from Zenodo (https://doi.org/10.5281/zenodo.10633252)70. The Dros-
ophila STARR-seq data are available from the GEO under accession 
number GSE183939. The human MPRA dataset is available from Zenodo 
(https://doi.org/10.5281/zenodo.8219231)71. The human ATAC-seq 
data is available from the GEO under accession number GSE170378.  
Source data are provided with this paper.

Code availability
Open-source code for our models is available from GitHub (https://
github.com/de-Boer-Lab/random-promoter-dream-challenge-2022).
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A

B

Extended Data Fig. 1 | Progression of the top-performing teams’ performance in the DREAM Challenge public leaderboard. (A,B) Performance (y-axes) in (A) 
Pearson Score and (B) Spearman Score achieved by the participating teams (colours) each week (x-axes), showcasing the effectiveness of such challenges in motivating 
the development of better machine learning models.
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A B C

Extended Data Fig. 2 | Bootstrapping provides a robust comparison of the model predictions. (A,B,C) Frequency (y-axes) of ranks (x-axes) in (A) Pearson Score, (B) 
Spearman Score and combined rank (sum of Pearson Score rank and Spearman Score rank) for n=10,000 samples from the test dataset for the top-performing teams.
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Extended Data Fig. 3 | Library coverage differs between sequence subsets and is lowest for native sequences. Cumulative proportion (y-axis) of the number of reads 
per sequence (x-axis) for different sequence types (colours).
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A B

Extended Data Fig. 4 | Performance of the teams in each test data subset. (A,B) Model performance (colour and numerical values) of each team (y-axes) in each test 
subset (x-axes), for (A) Pearson r2 and (B) Spearman ρ. Heatmap colour palettes are min-max normalized column-wise.
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Extended Data Fig. 5 | Expression changes in response to SNVs, motif tiling, and motif perturbation. Expression changes (y-axis) are biggest for motif perturbation, 
smallest for SNVs, and intermediate for motif tiling.
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Extended Data Fig. 6 | Performance in Spearman Score from the Prix Fixe 
runs for different possible combinations of the top three DREAM Challenge 
models. Modules are indicated on the axes, with Data Processor and Trainer 
models on the top x-axis, Final Layer Block on the bottom x-axis, Core Layers 

Block on the left y-axis, and First Layers Block on the right y-axis. Incompatible 
combinations and combinations that did not converge during training have been 
greyed out.
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Extended Data Fig. 7 | Performance comparison of top DREAM Challenge models and their best performing counterparts. Performance (x-axes) of the top three 
DREAM Challenge models (y-axes) Autosome.org, BHI, and UnlockDNA - along with their best-performing counterparts (based on Core Layers Block) for different  
test subsets.
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Wildtype MutantA. YOL101C 

B. YBL057C

C. YGL075C

D. YDR248C

E. YCL051W

REB1

ABF1

RAP1

MSN2

RSC3/RSC30

Extended Data Fig. 8 | The DREAM-optimized models learn a very similar 
view of yeast cis-regulatory logic. (A-E) ISM scores (y-axes) for each nucleotide 
across each promoter region (x-axes and letters) for wild type (left) and SNV 
mutant (right) for yeast promoters (A) YOL101C, (B) YBL057C, (C) YGL075C, (D) 

YDR248C, and (E) YCL051W. Mutation locations are highlighted in grey. Probable 
transcription factor binding sites (TFBSs) altered by these mutations are marked 
with boxes, and the corresponding TF motifs are shown in the insets, identified 
using YeTFaSCo40.
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Extended Data Fig. 9 | NN architecture diagrams of the DREAM-optimized 
models. (A-C) High level illustration of the (A) DREAM-RNN, (B) DREAM-CNN, 
and (C) DREAM-Attn models. (D-F) High level illustration of different network 

blocks used within the core layers of (A-C). The Vanilla Conv Block, Grouped Conv 
Block, SE Block, Stem Block, FFN Block, SeparableConv Block, and Multi-head 
attention Block are described in detail in66 and69.
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Extended Data Fig. 10 | Comparative analysis of computational efficiency  
(per batch training time and throughput) and capacity (number of 
parameters) across different models. (A, D, G) Per batch training time in 
seconds (y-axes), (B,E,H) throughput in predictions per second (y-axes), and 
(C, F, I) number of parameters (y-axes) for the models (x-axes, colours) applied 

to (A-C) human ATAC-seq, (D-F) Drosophila STARR-seq, and (G-I) human MPRA 
dataset. Boxplots represent the distribution of measurements for training time 
per batch (A, D, G) and throughput (B, E, H), which were repeated 50 times to 
ensure reliability.
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