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ABSTRACT

Supervised learning has become a cornerstone of modern machine learning, yet
a comprehensive theory explaining its effectiveness remains elusive. Empirical
phenomena, such as neural analogy-making and the linear representation hypothe-
sis, suggest that supervised models can learn interpretable factors of variation in a
linear fashion. Recent advances in self-supervised learning, particularly nonlinear
Independent Component Analysis, have shown that these methods can recover
latent structures by inverting the data generating process. We extend these identifia-
bility results to parametric instance discrimination, then show how insights transfer
to the ubiquitous setting of supervised learning with cross-entropy minimization.
We prove that even in standard classification tasks, models learn representations
of ground-truth factors of variation up to a linear transformation. We corrobo-
rate our theoretical contribution with a series of empirical studies. First, using
simulated data matching our theoretical assumptions, we demonstrate successful
disentanglement of latent factors. Second, we show that on DisLib, a widely-used
disentanglement benchmark, simple classification tasks recover latent structures
up to linear transformations. Finally, we reveal that models trained on ImageNet
encode representations that permit linear decoding of proxy factors of variation.
Together, our theoretical findings and experiments offer a compelling explanation
for recent observations of linear representations, such as superposition in neural
networks. This work takes a significant step toward a cohesive theory that accounts
for the unreasonable effectiveness of supervised deep learning.

1 INTRODUCTION

Representation learning is a central task in machine learning, underpinning the success of extracting
and encoding meaningful information from data (Bengio et al., 2013). Among the various paradigms,
supervised learning—particularly classification tasks using cross-entropy minimization—has become
the dominant method in deep learning (Krizhevsky et al., 2012). Despite its simplicity, this form of
supervised learning has led to several intriguing and widely-observed phenomena, including: neural
analogy making (Mikolov et al., 2013), where models seemingly map between related concepts;
the linear representation hypothesis (Park et al., 2023), which posits that interpretable features can
be linearly decoded from neural representations; recent work on superposition in neural networks
(Elhage et al., 2022), showing evidence that interpretable features are linearly represented in neural
activations (Templeton et al., 2024); and the success of transfer learning (Donahue et al., 2014),
where a linear readout can be trained on top of learned representations to solve new tasks. These
phenomena suggest that deep learning models encode various features in a manner that allows for
linear decoding. Yet, a comprehensive theory that explains why these properties emerge in deep
learning models has remained elusive (Arora et al., 2016; Park et al., 2023).

∗Joint first authorship; 1Max Planck Institute for Intelligent Systems, Tübingen AI Center, ELLIS Institute,
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We address this gap by building on the theory of Independent Component Analysis (ICA), which
studies the conditions under which latent variables in probabilistic models can be uniquely identified
(Comon, 1994; Hyvarinen et al., 2001). Recently, ICA has been extended to nonlinear models
(Hyvärinen et al., 2023), providing a theoretical foundation for recovering latent variables in a broad
class of machine learning tasks (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Gresele et al.,
2019; Khemakhem et al., 2020a; Klindt et al., 2021; Khemakhem et al., 2020b; Locatello et al., 2020;
Morioka et al., 2021; Hälvä et al., 2021; Morioka & Hyvarinen, 2023). Most of these advances have
focused on self-supervised learning (SSL) (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019;
Zimmermann et al., 2021; von Kügelgen et al., 2021; Rusak et al., 2024), i.e., when neural networks
are trained by solving a surrogate (classification) task to learn from unlabeled data. However, we
seek to understand whether similar identifiability guarantees can explain under what conditions
cross-entropy-based supervised learning, i.e., when the labels for the classification task are provided
in the dataset, recovers interpretable and transferable representations.

Our journey starts with a recent development in SSL: nonlinear ICA has been shown to provide iden-
tifiability guarantees in contrastive learning, where models invert the data generating process (DGP)
and recover latent variables up to linear transformations (Hyvarinen et al., 2019; Zimmermann et al.,
2021). Building on this insight, we first extend nonlinear ICA to a simple form of SSL—i.e., para-
metric instance discrimination (PID) (Dosovitskiy et al., 2014)—through the DIET method (Ibrahim
et al., 2024), which streamlines the auxiliary task into an instance-discrimination paradigm. We
model the DGP in a new, cluster-centric way, and show that DIET’s learned representation is linearly
related to the ground-truth representation.

From this foundation, we take the crucial step of extending the theoretical framework to the more
common paradigm of supervised learning. Specifically, we show that models can recover ground-
truth latent variables up to a linear transformation even in standard classification tasks using the
cross-entropy loss, which is the most prevalent setting in modern machine learning. By doing so, we
aim to explain why deep learning, particularly supervised classification, is so effective in learning
interpretable and transferable representations, offering a unifying framework to explain phenomena
such as linear representations and neural analogy-making. Thus, our theoretical insights offer a
potential explanation for the extraordinary success of supervised deep learning across a wide variety
of tasks.

Our contributions are

• We propose a cluster-centric DGP to prove the linear identifiability of the parametric instance
discrimination objective from (Ibrahim et al., 2024) (Thm. 1);

• We use our insight to extend the identifiability guarantee to standard cross-entropy-based
supervised classification (Thm. 2);

• We provide a “genealogy” of cross-entropy-based classification methods to connect our
identifiability results in instance discrimination and supervised classification to auxiliary-
variable nonlinear Independent Component Analysis (ICA) (Hyvarinen et al., 2019) and
self-supervised learning (SSL) (§ 3.4) (Zimmermann et al., 2021);

• We corroborate our findings in synthetic experiments matching our cluster-centric DGP, the
DisLib disentanglement benchmark (Locatello et al., 2019), and real-world ImageNet-X data
(Idrissi et al., 2022), showing that the cross-entropy loss, irrespective of the meaningfulness
of labels, can lead to linear identifiability of the features (§ 4).

2 BACKGROUND

Empirical evidence of a linear latent representation. The linear representation hypothesis (Park
et al., 2023) has lately received a lot of attention. A weak version of this hypothesis could mean
that there are directions in neural activation space that correspond to interpretable features. In the
case of neural analogy making, Mikolov et al. (2013) showed that there exist directions in word
embeddings that are interpretable and preserved across input pairs. As an example for encoder f ,
producing latent variables z, the direction z = f(man)−f(woman) seems to correspond to gender
and can be added to other words such as f(king) + z ≈ f(queen). Several datasets, such as the
Google Analogy Dataset (GA) (Mikolov, 2013) and BATS (Drozd et al., 2016), have been developed
to evaluate neural analogy-making. These were, for instance, evaluated in (Dufter & Schütze, 2019).
Theoretical explanations of linear representations have been proposed for word embeddings by Arora

2



Under review

Figure 1: DIET (Ibrahim et al., 2024) learns identifiable features: given N samples and a
d−dimensional latent representation, DIET learns a linear (N × d)−dimensional classification
head W on top of a nonlinear encoder f through an instance discrimination objective (1). For
unit-normalized f(xn), DIET maps samples and their augmentations close to the cluster vector vc
corresponding to the class—as if sampled from a von Mises-Fisher (vMF) distribution, centered
around vc. For duplicate samples, i.e., matching class labels, the corresponding rows ofW will be
the same, as shown for x1 and xi with w1 = wi

et al. (2016) and Allen & Hospedales (2019). Both approaches take a statistical learning theory
perspective and focus on characterizing the pointwise mutual information. They do not consider
cross-entropy-based classification; and, thus, do not make a connection to supervised classification, as
we do in Thm. 2. Park et al. (2023) provide a framework to specify what exactly is meant by the linear
representation hypothesis. They also provide a strong, causal hypothesis where finding that a feature
is linearly represented does not imply that an intervention on that linear subspace will causally remove
the feature from the model output. Engels et al. (2024) point out that some latent representations are
not linear. This makes intuitive sense if we consider that some latent features, such as the pose of
an object, have a non-Euclidean topology that will have to be embedded on a curved manifold in
a linear subspace of the latent representation (Higgins et al., 2018; Pfau et al., 2020; Keurti et al.,
2023). For instance, the quadrature pair of sines and cosines representing rotations in a 2D subspace
in (Klindt et al., 2021, Fig. 15) depends on the object symmetries (Bouchacourt et al., 2021). Roeder
et al. (2020) prove that different models trained with a discriminative objective converge to learning
the same latent representation. Importantly, their claim is about the linear relationship between any
two learned representations, and not the learned and the ground-truth one, as is usually the case in
identifiability theory (Hyvarinen et al., 2001). They also show this empirically for pairs of models
trained on different datasets. Their results are corroborated even with widely varying training factors
by Moschella et al. (2023). These findings are also supported by recent large scale empirical studies
in the converging representations of vision models (Chen & Bonner, 2023). This could also explain
the recently proposed platonic representation hypothesis (Huh et al., 2024) about the convergence
of representations, the improved disentanglement across model families (Du & Xiang, 2021), and
the better identifiability of biological mechanisms (Genkin & Engel, 2020). However, these insights
from the literature fail to connect the linearity of learned representations to the identifiability of the
assumed ground-truth DGP—this is the gap our contribution aims to address.

Identifiable weakly-/self-supervised learning and ICA. Independent Component Analysis (ICA)
theory studies the conditions under which latent variables in probabilistic models can be uniquely
identified (Comon, 1994; Hyvarinen et al., 2001). Identifiability means that the learned representation,
at the global optimum of the training loss, relates to the ground-truth representation (i.e., the ground-
truth latent variables underlying the data) via a “simple” transformation, such as permutations or
elementwise invertible transformations—this is different to investigations relating two instances of
learned representations, such as in Roeder et al. (2020); Moschella et al. (2023); Zhang et al. (2023).
Recently, ICA has been extended to nonlinear models (Hyvärinen et al., 2023), providing a theoretical
foundation for recovering latent variables in a broad class of learning tasks (Hyvarinen & Morioka,
2016; Hyvarinen et al., 2019; Gresele et al., 2019; Khemakhem et al., 2020a; Klindt et al., 2021;
Khemakhem et al., 2020b; Locatello et al., 2020; Morioka et al., 2021; Hälvä et al., 2021; Morioka
& Hyvarinen, 2023). Most of these advances have focused on SSL, (Hyvarinen & Morioka, 2016;
Hyvarinen et al., 2019; Zimmermann et al., 2021; von Kügelgen et al., 2021; Rusak et al., 2024).
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3 THEORY

This section presents our main theoretical contribution. We start with our motivation to understand
self-supervised learning (SSL) with the help of the simplified DIET (Ibrahim et al., 2024) algorithmic
pipeline. For this, we propose a cluster-centric data generating process (DGP) that can model semantic
classes (§ 3.1). Then we state our main result in § 3.2 and discuss an intuition behind DIET’s
identifiability. We conclude by investigating how DIET fits into the vast literature of (identifiable)
SSL and auxiliary-variable Independent Component Analysis (ICA) methods (§ 3.4). This leads to
a significant result for supervised classification by proving its identifiability under the DIET DGP
(§ 3.3). We provide the technical details for Generalized Contrastive Learning (GCL) (Hyvarinen
et al., 2019) in Appx. B.1 and InfoNCE (Chen et al., 2020; Zimmermann et al., 2021) in Appx. B.3.

Motivation. Despite significant theoretical progress (Zimmermann et al., 2021; von Kügelgen et al.,
2021; Rusak et al., 2024), it remains elusive why SSL methods work well in practice. Rusak et al.
(2024) highlighted two remaining gaps between theory and practice: 1) practitioners often discard
the encoder’s last few layers (termed the projector) for better performance, despite identifiability
guarantees not reflecting this fact; and 2) the data is presumably clustered, not reflected in the
common assumption of a uniform marginal. Despite a similar terminology in auxiliary-variable
nonlinear ICA algorithms, such as Time-Contrastive Learning (TCL) (Hyvarinen & Morioka, 2016) or
GCL (Hyvarinen et al., 2019), it is unclear how such methods relate to SSL at large. Interestingly, the
identifiability proofs for nonlinear ICA partition the model into a separate encoder and a regression
function (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019) and prove identifiability for the
latent variables after the encoder, but before the regression function. This aligns with the practice of
discarding the projector in SSL (Bordes et al., 2023), though identifiability results do not reflect this
fact (Zimmermann et al., 2021; von Kügelgen et al., 2021; Rusak et al., 2024). These observations
served as our motivation to investigate

How can we extend the identifiability guarantees to more realistic self-supervised classification
scenarios, and can we apply these insights to improve our understanding of supervised learning?

Results overview. We aim to advance our theoretical understanding of SSL, for this, we use
the recently proposed DIET (Ibrahim et al., 2024) (detailed in § 3.1), which, beyond its simplicity,
promises the strongest and most realistic results, based on similarities to GCL (Hyvarinen et al., 2019).
Namely, DIET uses a separate encoder and classification head, and solves an auxiliary classification
task akin to GCL—furthermore, its loss correlates with downstream performance, a non-obvious
and welcome fact (Rusak et al., 2024). This provides the hope to resolve the two above points by
modeling the cluster structure of the data and proving identifiability for the representation used for
downstream tasks (Thm. 1). Subsequently, we leverage the insights from our identifiability theory
and the DIET pipeline’s similarity to supervised classification to show how the latter is a special case
of DIET, where the sample indices correspond to the semantic class labels (Thm. 2).

3.1 SETUP

DIET (Ibrahim et al., 2024). DIET solves an instance classification problem, where each sample x
in the training dataset of size N has a unique instance label i. Augmentations do not affect this label.
We have a composite modelW ◦ f , where the backbone f produces d-dimensional representations,
and a linear, bias-free classification head W ∈ RN×d maps these representations to a logit vector
equal in size to the cardinality of the training dataset. If the parameter vector corresponding to
logit i is denoted as wi, then W effectively computes similarity scores (scalar products) between
the wi’s and embeddings f(x). DIET trains this architecture to predict the correct instance label
using multinomial regression (with f ,W and temperature β as learnable variables), i.e., it solves a
parametric instance discrimination (PID) task (Dosovitskiy et al., 2014; Wu et al., 2018):

LPID(f ,W , β) = E(x,i)

[
− ln

eβ⟨wi,f(x)⟩∑
j e

β⟨wj ,f(x)⟩

]
. (1)

An important fact is that (1) is the cross-entropy loss with instance labels, which we will leverage to
connect instance discrimination to supervised classification.
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The proposed cluster-centric data generating process (DGP). To prove the identifiability of the
latent variables, we need to formally define a latent variable model (LVM) for the data generating
process (DGP). We take a cluster-centric approach, representing semantic classes by cluster vectors,
similar to proxy-based metric learning (Kirchhof et al., 2022). Then, we model the samples of
a class with a von Mises-Fisher (vMF) distribution (intuitively, this is an isotropic multivariate
Normal distribution that is restricted to the unit hypershere), centered around the class’s cluster
vector. This conditional distribution jointly models intra-class sample selection and augmentations
of samples, together called intra-class variances. In contrast to conventional SSL methods such as
InfoNCE (Zimmermann et al., 2021), this conceptually separates global and local structure in the
latent space: 1) the cluster-vectors describe the global structure of the latent space; and 2) the cluster-
centric conditional in (2) describes the local structure. This cluster-centric conditional embodies
that data augmentations are selected such that they ought not to change the sample’s semantic class.
Our conditional does not mean that each sample pair transforms into each other via augmentations
with high probability. It does mean that—since we assume a latent variable model (LVM) on the
hypersphere; i.e., all semantic concepts (color, position, etc.) correspond to a continuous latent
variable—the latent manifold is connected, or equivalently, that the augmentation graph is connected,
which is an assumption used in (Wang et al., 2022; Balestriero & LeCun, 2022; HaoChen et al., 2022).
We provide an overview of our assumptions, and defer additional details to Assums. 1C in Appx. A:

Assumptions 1 (DGP with vMF samples around cluster vectors. Details omitted.).
(i) There is a finite set of semantic classes C , represented by a set of unit-norm d-dimensional

cluster-vectors {vc|c ∈ C } ⊆ Sd−1. The system {vc} is sufficiently large and spread out.
(ii) Any instance label i belongs to exactly one class c = C(i).

(iii) The latent variable z ∈ Sd−1 of our data sample with instance label i is drawn from a vMF
distribution with concentration parameter/temperature α around the cluster vector vc of class
c = C(i):

z ∼ p(z|c) ∝ eα⟨vc,z⟩. (2)

(iv) Sample x is generated by passing latent variable z through an injective generator function:
x = g(z).

3.2 MAIN RESULT: DIET IDENTIFIES BOTH LATENT VARIABLES AND CLUSTER VECTORS

Under Assums. 1, we prove the identifiability of both the latent representations z and the cluster
vectors, vc, in all four combinations of unit-normalized (i.e., when the latent space is the hypersphere,
commonly used, e.g., in InfoNCE (Chen et al., 2020)); and non-normalized (as in the original DIET
paper (Ibrahim et al., 2024)) learned embeddings, z̃, and weight vectors, wi . We state a concise
version of our result and defer the full treatment and the proof to Thm. 1C in Appx. A:

Theorem 1 (Identifiability of latent variables drawn from vMF around cluster vectors. De-
tails omitted.). Let (f ,W , β) globally minimize the DIET objective (1) under the following
additional constraints:

C3. the embeddings f(x) are unnormalized, while the wi’s are unit-normalized. Then wi

identifies the cluster vector vC(i) up to an orthogonal linear transformation O: wi =
OvC(i), for any i. Furthermore, the inferred latent variables z̃ = f(x) identify the
ground-truth latent variables z up to a scaled orthogonal transformation with the same O:
z = α

βOz̃.
C4. neither the embeddings f(x) nor the wi’s are unit-normalized. Then wi identifies the

cluster vectors vc up to an affine linear transformation. Furthermore, the inferred latent
variables z̃ identify the ground-truth latent variables z up to a linear transformation.

In all cases, the weight vectors belonging to samples of the same class are equal, i.e., for any
i, j, C(i) = C(j) implies wi = wj .

Intuition. DIET assigns a different (instance) label and a unique weight vectorwi to each training
sample. The cross-entropy objective is optimized if the trained neural network can distinguish
between the samples. Thus, the learned representation z̃ = f(x) should capture enough information
to distinguish different samples, even from the same class. However, the weight vectors wi’s cannot
be sensitive to the intra-class sample variance or the sample’s instance label i (because the conditional
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distribution over latent variables is identical for all samples of the same class). This leads to the
weight vectors taking the values of the cluster vectors. As cluster vectors only capture some statistics
of the conditional (1), feature recovery is more fine-grained than cluster identifiability. The interaction
between the two is dictated by the cross-entropy loss, which is minimized if the representation z̃
is most similar to its own assigned weight vector wi. Fig. 1 provides a visualization conveying the
intuition behind Thm. 1.

3.3 SUPERVISED CLASSIFICATION

In this section we relate our cluster-centric DGP to supervised classification. To see how supervised
machine learning is a special case of self-supervised approaches, consider that the sample index
(i.e., the target of the cross-entropy loss) can be defined arbitrarily (as long as Assums. 1 are still
satisfied). This means that many labelings are possible, including the one used for supervised
classification. This, in hindsight obvious insight has important consequences: it can explain the
success of supervised cross-entropy-based classification. Namely, supervised learning performs
non-linear ICA. We demonstrate this in §§ 3.4 and 4.3.

Theorem 2 (Identifiability of latent variables drawn from a vMF around class vectors). Let
Assums. 1 hold, and suppose that a continuous encoder f : RD → Rd, a linear classifierW
with rows {w⊤

c | c ∈ C }, and β > 0 globally minimize the cross-entropy objective:

Lsupervised(f ,W , β) = E(x,C)

[
− ln

eβ⟨wC ,f(x)⟩∑
c′∈C eβ⟨wc′ ,f(x)⟩

]
.

Then, the composition h = f ◦ g is a linear map from Sd−1 to Rd.

Intuition: In the context of DIET, the cross-entropy objective encourages the learned representations
to align with the cluster vectors corresponding to each class. The identifiability of the latent variables
is ensured by the fact that the cluster structure reflects the underlying data distribution, modeled as a
vMF distribution. This leads to a representation that captures the latent structure up to an orthogonal
transformation. Given the same underlying structure as in DIET, supervised learning can be viewed
as a special case of instance discrimination, where the instance labels are replaced by class labels.
The cross-entropy objective, when applied to classification tasks, similarly encourages representations
to align with class vectors. As a result, the latent variables are recovered up to a linear transformation,
providing a theoretical explanation for the success of supervised classification in learning linearly
decodable representations.

3.4 THE GENEALOGY OF IDENTIFIABLE CLASSIFICATION WITH CROSS-ENTROPY

Our main result in Thm. 1, and its corollary for supervised classification (Thm. 2) suggest the
following surprising conclusion to invert the DGP:

Solving an (almost) arbitrary classification task by optimizing the cross-entropy objective is sufficient
to invert the DGP and identify the ground-truth representation up to a linear transformation.

To show how solving a cross-entropy-based classification task is a key component to invert the DGP
and to achieve linear identifiability, we provide a unified treatment of auxiliary-variable ICA (i.e.,
weakly supervised or self-supervised classification) and supervised classification methods. We call
this a genealogy to allude to the fact that these methods can be seen as special cases, descending from
each other (cf. Fig. 2 and Tab. 1 for an overview, and Appx. B for details).

From GCL to TCL (Fig. 2a: arbitrary scalar labels and exponential family latent variables).
The most general framework we consider is Generalized Contrastive Learning (GCL) (Hyvarinen
et al., 2019), i.e., auxiliary-variable nonlinear ICA. GCL works with conditionally independent
latent variables in Euclidean space given (possibly vector-valued) auxiliary information u. It aims to
classify different values of u by distinguishing (x,u) from (x,u∗), where u∗ is an arbitrary value of
the auxiliary variable. At the Bayes optimum of the cross-entropy loss, GCL provides identifiability
of the latent variables after the encoder f , but before the classifier head W , up to elementwise
invertible transformations. When the latent variables are distributed according to an exponential
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GCL TCL DIET

InfoNCE

Supervised
(a) (b)

(c)

(d)

Figure 2: The simplified genealogy of cross-entropy-based classification methods (cf. Tab. 1 for
details): The labeled arrows express how to go from general to special methods. (a) The most general
auxiliary-variable ICA framework, Generalized Contrastive Learning (GCL) (Hyvarinen et al., 2019),
yields Time-Contrastive Learning (TCL) (Hyvarinen & Morioka, 2016) as the special case when
the latent conditional is assumed to come from an exponential family (of order one) with a scalar
auxiliary variable; (b) TCL relates to non-unit-normalized DIET by further restricting the latent
conditional to a vMF distribution; (c) if the neural network used in InfoNCE is partitioned into a
linear classifier head and a backbone, the marginal is assumed to be a vMF instead of uniform, we
get the unit-normalized version of DIET; (d) if the labeling function in DIET is assumed to assign the
semantic class labels to the samples, we get classic supervised training

Property GCL TCL InfoNCE DIET Supervised

Latent space Rd Rd Sd−1 Rd/Sd−1 Rd

Network W ◦ f W ◦ f f W ◦ f W ◦ f
Aux.info u t i i c
Conditional ⊥u ExpFam vMF vMF vMF
Marginal N/A N/A uniform uniform uniform

Table 1: Comparison of the components of different cross-entropy-based classification methods:
u denotes a (possibly) vector-valued auxiliary variable, t is the scalar time step, i the sample index,
and c the semantic class; ExpFam stands for exponential family, ⊥u for conditionally independent
sources given the auxiliary variable,W is the classifier head, f the encoder, whereas N/A stands for
no assumption

family distribution and the auxiliary variable is a scalar (e.g., time), then we get the more specialized
method, named Time-Contrastive Learning (TCL) (Hyvarinen & Morioka, 2016). If the order of the
exponential family is one, identifiability holds only up to a linear transformation, otherwise, up to
elementwise invertible transformations.

From TCL to DIET (Fig. 2b: sample index as u and vMF latent variables). Using our cluster-
centric DGP (Assums. 1), and assuming an even more special latent distribution (i.e., a vMF), we
get the identifiability guarantee for DIET, i.e., our main result in Thm. 1. The auxiliary variable is a
scalar for our result, too; however, instead of time, it is the (arbitrary) sample index.

From InfoNCE to DIET (Fig. 2c: a compositional model W ◦ f and unit-normalized latent
variables). Importantly, our main result also encompasses unit-normalized representations, the
conventional choice in (identifiable) SSL methods such as InfoNCE (cf. Appx. B.3 for details on
InfoNCE)—this is why we illustrate both InfoNCE and TCL as being the “parents” of DIET in
Fig. 2. Thus, Thm. 1 is more general in terms of latent spaces than nonlinear ICA, and it proves
identifiability for the latent variables that are used post-training, as opposed to the proofs for InfoNCE
in (Zimmermann et al., 2021; Rusak et al., 2024), where practitioners discard the last few layers.

From DIET to supervised classification (Fig. 2d: semantic class labels). When the labeling
function assigns the semantic class labels, and not arbitrary indices, then our identifiability result still
holds, yielding the case of supervised learning (Thm. 2).
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normalized wi unnormalized wi

R2
o(↑) MAEo(↓) R2

a (↑)
N d |C | p(z|vc) M. z̃ → z wi → vc z̃ → z wi → vc z̃ → z wi → vc

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.00 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

105 5 100 vMF(κ=10) ✓ 98.2±0.01 99.5±0.00 0.00±0.00 0.00±0.00 99.7±0.00 99.8±0.00

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.00 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 10 100 vMF(κ=10) ✓ 92.5±0.01 99.6±0.00 0.01±0.00 0.00±0.00 93.0±0.03 99.6±0.00

103 20 100 vMF(κ=10) ✓ 70.8±0.02 97.1±0.01 0.03±0.00 0.00±0.00 81.9±0.01 99.7±0.00

103 5 10 vMF(κ=10) ✓ 88.6±0.05 85.7±0.15 0.02±0.00 0.00±0.00 90.0±0.05 99.0±0.03

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 1000 vMF(κ=10) ✓ 99.3±0.00 99.9±0.00 0.00±0.00 0.00±0.00 99.2±0.00 99.9±0.00

103 5 100 vMF(κ=5) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.8±0.00

103 5 100 vMF(κ=10) ✓ 99.0±0.00 99.9±0.00 0.00±0.00 0.00±0.00 99.1±0.00 99.9±0.00

103 5 100 vMF(κ=50) ✓ 45.0±0.06 49.7±0.06 0.30±0.00 0.00±0.00 72.5±0.03 75.5±0.00

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 100 Laplace (b=1.0) ✗ 85.2±0.01 99.7±0.01 0.01±0.00 0.00±0.00 85.4±0.00 99.5±0.00

103 5 100 Normal (σ2=1.0) ✗ 98.7±0.00 99.8±0.00 0.01±0.00 0.00±0.00 98.6±0.00 99.6±0.00

Table 2: Identifiability of parametric instance discrimination (PID) in numerical simulations:
Mean ± standard deviation across 5 random seeds. Settings that match and violate our theoretical
assumptions are denoted as ✓ and ✗, respectively. We report the R2 score for linear maps z̃ → z
andwi → vc with normalized (subscript o) and not normalized (subscript a)wi. For normalizedwi,
we verify that the z̃ → z maps are orthogonal by reporting the Mean Absolute Error (MAE) between
their singular values and those of an orthogonal transformation.

d |C | p(z|vc) M. R2 : z̃→z

5 100 vMF(κ=10) ✓ 99.8±0.00

10 100 vMF(κ=10) ✓ 97.2±0.01

20 100 vMF(κ=10) ✓ 82.1±0.02

5 10 vMF(κ=10) ✓ 97.5±0.03

5 100 vMF(κ=10) ✓ 99.8±0.00

5 1000 vMF(κ=10) ✓ 99.8±0.00

5 10000 vMF(κ=10) ✓ 99.8±0.00

5 100 vMF(κ=5) ✓ 99.7±0.00

5 100 vMF(κ=10) ✓ 99.7±0.00

5 100 vMF(κ=50) ✓ 65.5±0.09

5 100 vMF(κ=10) ✓ 99.8±0.00

5 100 Laplace (b=1.0) ✗ 85.4±0.01

5 100 Normal (σ2=1.0) ✗ 99.6±0.00

Table 3: Identifiabil-
ity of supervised learn-
ing in numerical simu-
lations: Mean ± standard
deviation across 5 ran-
dom seeds. Settings that
match and violate our the-
oretical assumptions are
denoted as ✓ and ✗, re-
spectively. We report the
R2 score for linear map-
pings z̃ → z, and not
normalizedwi. We used
N = 103 samples

4 EMPIRICAL RESULTS

In § 4.1, we empirically verify the claims made in Thm. 1 and Thm. 2 in the synthetic setting. We
generate data samples according to Assums. 1: ground-truth latent variables are sampled around
cluster centroids vc following a vMF distribution. Data augmentations, which share the same instance
label i, are sampled from the same vMF distribution around vc. In § 4.2, we describe our results on
the DisLib disentanglement benchmark (Locatello et al., 2019), and § 4.3 includes our experiments
on ImageNet-X (Idrissi et al., 2022).
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4.1 SYNTHETIC DATA

Setup. We consider N latent samples of dimensionality d generated from the conditional vMF
z ∼ p(z|vc), sampled around a set of |C | class vectors vc, which are uniformly distributed across
the unit hyper-sphere Sd−1. We use an invertible multi-layer perceptron (MLP) to map ground-truth
latent variables to data samples. We train a classification headW =[w⊤

i |Ni=1] and an MLP encoder
that maps samples to representations z̃ ∈ Rd using the DIET objective (1). While to verify Thm. 1
case C4., we do not normalizeW , we do unit-normalize the weight vectors to validate Thm. 1 case
C3. We verify our theoretical claims by measuring the predictability of the ground-truth z from z̃
and vc from wi using the R2 score on a held-out dataset (Wright, 1921). For identifiability up to
orthogonal linear transformations, we train linear mappings with no intercept, assess the R2 score
and verify that the singular values of this transformation converge to 1, while for identifiability up to
affine linear transformations, we simply assess the R2 of a linear predictor with intercept.

Results for DIET. In Tab. 2, we report the R2 scores for the recovery of the cluster vectors vc
from W ’s rows and of the ground-truth latent variables z from the learned latent variables z̃. For
DIET’s PID task, we also consider cases with row-normalized W . We observe scores close to
100% (≥ 98%), even with many clusters (≥ 103) and samples (∼ 105). High latent dimensionality
(> 10) does impact the recovery of ground-truth latent variables—such scalability problems are a
common artifact in SSL (Zimmermann et al., 2021; Rusak et al., 2024). For a higher concentration
of samples around vc (i.e., κ= 50) as well as a lower number of clusters (i.e., |C |= 10), the R2

score decreases, which is also a common phenomenon, and is possibly explained by too strong
augmentation overlap (Wang et al., 2022; Rusak et al., 2024). For a low number of clusters, high κ
and a fixed number of training samples, the concentration of samples in regions surrounding centroids,
vc, increases, a setting, refered to as “overly overlapping augmentations”, known to be suboptimal and
leading to a drop in downstream performance (Wang et al., 2022). Our results also suggest that even
under model misspecification (last two rows in Tab. 2 with non-vMF distributions), identifiability
still holds. For unit-normalized W rows, the MAE is lower, confirming the orthogonality of the
map wi→vc. We provide an additional ablation study for the concentration of vc across the unit
hyper-sphere in Appx. C.

Results for Supervised Classification. In Tab. 3, where the semantic class labels were used instead
of the sample index, we only report the R2 score for the recovery of the ground-truth latent variables
z from the learned latent variables z̃. Interestingly, in all but one setting, we observe higher R2

from representations learned with class labels rather than instance indices. This suggests that even a
coarser classification task may suffice to learn linearly identifiable representations of the underlying
latent variables.

4.2 DISLIB

Setup. Next, we evaluate our methods on the DisLib disentanglement benchmark (Locatello et al.,
2019), which provides a controlled setting for testing disentanglement and latent variable recovery. It
includes the vision datasets dSprites, Shapes 3D, MPI 3D, Cars 3D, and smallNORB. We train both a
three-layer MLP with 512 latent dimensions and BatchNorm (which helped with trainability) and a
CNN (ResNet18) also with 512 latent dimensions. We only consider latent variables with Euclidean
topology, as non-Euclidean, e.g., periodic latent variables such as orientation, are problematic to
learn and are potentially mapped to a nonlinear manifold (Higgins et al., 2018; Pfau et al., 2020;
Keurti et al., 2023; Engels et al., 2024). We evaluate the recovery of latent variables by computing
the Pearson correlation between ground-truth and predicted factors.

Results. The models trained using cross-entropy were able to recover latent variables such as object
position, scale, and orientation with high accuracy. As shown in Tab. 4, the Pearson correlation is
generally highest when predicting the latent variables from the CNN’s representation. In few cases,
such as the position in dSprites, this can be done with fairly high accuracy even on the input data.
Nevertheless, in all settings, we see that the nonlinear function estimated by the model is necessary to
linearly identify the correct latent variables.
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Model Latent x fMLP(x) fCNN(x)

dSprites category 0.26±0.00 0.94±0.01 1.00±0.00

dSprites scale 0.62±0.00 0.98±0.00 0.92±0.05

dSprites posX 0.92±0.00 0.97±0.00 0.99±0.00

dSprites posY 0.92±0.00 0.97±0.00 0.99±0.00

Shapes 3D category 0.42±0.00 1.00±0.00 1.00±0.00

Shapes 3D objSize 0.21±0.00 0.89±0.01 0.99±0.00

Shapes 3D objAzimuth 0.04±0.00 0.85±0.02 0.93±0.01

MPI 3D category 0.03±0.00 0.71±0.01 0.97±0.00

MPI 3D posX 0.28±0.00 0.76±0.01 0.90±0.01

MPI 3D posY 0.46±0.00 0.76±0.01 0.84±0.01

MPI 3D real category 0.19±0.00 0.88±0.01 0.98±0.00

MPI 3D real posX 0.14±0.00 0.74±0.01 0.83±0.01

MPI 3D real posY 0.44±0.00 0.54±0.01 0.71±0.02

Cars 3D category 0.05±0.00 0.63±0.11 0.77±0.02

Cars 3D elevation 0.15±0.00 0.87±0.03 0.78±0.02

smallNORB category 0.22±0.00 0.94±0.01 1.00±0.00

smallNORB elevation 0.15±0.00 0.83±0.01 0.79±0.01

Table 4: Identifiability in DisLib datasets (Locatello et al., 2019): We train different models to
predict the categorical variable in each setting: (x): as a baseline, from the inputs; (fMLP(x)): from
a three-layer MLP; and (fCNN(x)): from a CNN (ResNet18). All continuous latent variables can be
decoded from the learned representations, corroborated by the Pearson correlation—reported with
mean ± standard deviation across 3 random seeds. Including the category is informative to see how
well the underlying training classification training task was solved.

4.3 REAL DATA: IMAGENET-X

Setup. Finally, we test the generalizability of our theoretical insights on real-world data using
ImageNet-X (Idrissi et al., 2022). The latent variables are proxies, defined by human annotators
(Idrissi et al., 2022). We evaluate how well linear decoders can predict latent variables from pretrained
model representations. We use two architectures, a ResNet50 and a Vit-b-16 both trained on standard
supervised classification using a cross-entropy loss on the full ImageNet dataset (Deng et al., 2009).
We report the accuracy, correlation, and f1 score (the classes are significantly imbalanced). We plot
each of these metrics against the performance of a random baseline consisting of shuffled labels.

Results. Fig. 3 shows that even on complex, high-dimensional data, representations learned via
supervised learning allow for linear decoding of latent variables above chance performance. With the
caveat that the latent variables are likely not the true latent variables of the data generating process,
still, the linear identifiablity results on these proxy latent variables support our theoretical results.

5 DISCUSSION

Limitations. One limitation of our work is that we mainly focus on synthetic and controlled
datasets. While the results on ImageNet-X (Idrissi et al., 2022) are promising, further experiments
on other large-scale datasets would support the generality of our findings. However, this would
require the availability of such datasets with full latent variable annotations. Although our cluster-
centric modeling of the data generating process allows capturing the inherent structure of the data,
our assumption about the latent variables’ geometric properties (such as being drawn from a vMF
distribution), may not hold in all real-world settings. The assumption that a data sample and its
augmented version are conditionally independent given their semantic class could be relaxed in future
work, since it may be misaligned with realistic scenarios (Wang et al., 2022). Our experimental
results also suggest that our assumptions can be relaxed, as linear identifiability seems to hold even
when some of the assumptions are violated (cf. Tabs. 3 and 5).
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Figure 3: Approximate identifiability on ImageNet-X against a random (shuffled) baseline:
Using ImageNet-X (Idrissi et al., 2022), we test how well linear decoders are able to predict each
latent from the second-to-last layer of different models, i.e., when the classification head is discarded.
We train a linear classifier on the second-to-last layer’s features, and plot the accuracy, correlation, and
f1 score of predicting different (color-coded) latent variables. The x−axis shows the original model
against a shuffled (random) baseline on the y−axis. A single shuffled comparison was used since
the shuffled scores were nearly indistinguishable across seeds. Points below the dashed identity line
indicate that the learned representation captures the true latent variables at above chance performance.
(Top): ResNet50; (Bottom): Vit-b-16.

Implications for Deep Learning. Our results indicate that deep learning models trained using
cross-entropy naturally recover the underlying latent variables up to linear transformations. As our
identifiability proof for parametric instance discrimination illustrates with DIET, this statement also
holds when the classification task is standard supervised learning. Our analysis on the key role of
cross-entropy-based classification provides a theoretical foundation for phenomena such as neural
analogy-making, transfer learning, and linear decoding of features.

Conclusion. We extend the identifiability results of the auxiliary-variable nonlinear Independent
Component Analysis (ICA) literature to parametric instance discrimination with a cluster-centric
data generating process. Our modeling choice can capture the clustered structure of the data,
accommodates non-normalized (as in ICA) and unit-normalized (as in InfoNCE) representations
(Thm. 1). Furthermore, our identifiability result holds for the latent representation used post-training,
i.e., for the latent variables before the classification head. Our results offer new insights into the
success of deep learning, particularly in supervised classification tasks, which we show is a special
case of the DIET parametric instance discrimination algorithm, where the instance labels equal
the semantic class labels (Thm. 2). By linking self-supervised learning—via nonlinear ICA and
DIET—to supervised classification, we provide a theoretical framework that explains why simple
classification tasks recover interpretable and transferable representations.

Future Work. Future research could extend these insights by exploring the connections between
nonlinear ICA and other forms of supervised learning, as well as testing the scalability of our
theoretical results to larger models and datasets. To assess the predictions of our theory beyond proxy
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labels (Idrissi et al., 2022), we also need real world image datasets with full specification of the latent
variables, e.g., in rendered scenes.
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David Pfau, Irina Higgins, Alex Botev, and Sébastien Racanière. Disentangling by Subspace Diffusion.
In Advances in Neural Information Processing Systems, volume 33, pp. 17403–17415. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c9f029a6a1b20a8408f372351b321dd8-Abstract.html. 3, 9

Geoffrey Roeder, Luke Metz, and Diederik P. Kingma. On Linear Identifiability of Learned Repre-
sentations. arXiv:2007.00810 [cs, stat], July 2020. URL http://arxiv.org/abs/2007.
00810. arXiv: 2007.00810. 3

Evgenia Rusak, Patrik Reizinger, Attila Juhos, Oliver Bringmann, Roland S. Zimmermann, and
Wieland Brendel. InfoNCE: Identifying the Gap Between Theory and Practice, June 2024. URL
http://arxiv.org/abs/2407.00143. arXiv:2407.00143 [cs, stat]. 2, 3, 4, 7, 9

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, and et al. Scaling
Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet, 2024. URL https:
//transformer-circuits.pub/2024/scaling-monosemanticity. 1
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A IDENTIFIABILITY OF LATENTS DRAWN FROM A VMF AROUND CLUSTER
VECTORS

This section contains the formal statement and proof of our main theoretical result. Appx. A.1 contains
the definition and properties of affine generator systems, a useful mathematical object we rely on
in our proof. Appx. A.2 contains the assumptions and the proof for the four combinations of unit-
normalized and non-normalized features and cluster vectors for parametric instance discrimination,
whereas Appx. A.3 discusses a special case, supervised classification.

A.1 AFFINE GENERATOR SYSTEMS

Definition 1 (Affine Generator System). A system of vectors {vc ∈ Rd|c ∈ C } is called an affine
generator system if the affine hull defined by them is Rd. More precisely, any vector in Rd is an
affine linear combination of the vectors in the system. Put into symbols: for any v ∈ Rd there exist
coefficients αc ∈ R, such that

v =
∑
c∈C

αcvc and
∑
c∈C

αc = 1. (3)

Lemma 1 (Properties of affine generator systems). The following hold for any affine generator
system {vc ∈ Rd|c ∈ C }:

1. for any a ∈ C the system {vc − va|c ∈ C } is now a generator system of Rd;
2. the invertible linear image of an affine generator system is also an affine generator system.

A.2 IDENTIFIABILITY OF PARAMETRIC INSTANCE DISCRIMINATION

Assumptions 1C (DGP with vMF samples around cluster vectors). Assume the following DGP:

(i) There exists a finite set of classes C , represented by a set of unit-norm d-dimensional cluster-
vectors {vc|c ∈ C } ⊆ Sd−1 such that they form an affine generator system of Rd.

(ii) There is a finite set of instance labels I and a well-defined, surjective class function C : I →
C (every label belongs to exactly one class and every class is in use).

(iii) A data sample x belongs to class C = C(I) and is labeled with a uniformly-chosen instance
label, i.e., I ∈ Uni(I ).

(iv) The latent z ∈ Sd−1 of our data sample with label I is drawn from a vMF distribution around
the cluster vector vC , where C = C(I):

z ∼ p(z|C) ∝ eα⟨vC ,z⟩. (4)

(v) The data sample x is generated by passing the latent z through a continuous and injective
generator function g :Sd−1→RD, i.e., x = g(z).

Assume that, using the DIET objective (6), we train a continuous encoder f : RD → Rd on x and a
linear classification head W on top of f . The rows of W are

{
w⊤

i | i ∈ I
}

. In other words, W
computes similarities (scalar products) between its rows and the embeddings:

W : f(x) 7→
[
⟨wi,f(x) ⟩ | i∈I

]
. (5)

In DIET, we optimize the following objective amongst all possible continuous encoders f , linear
classifiersW , and β > 0:

L(f ,W , β) = E(x,I)

[
− ln

eβ⟨wI ,f(x)⟩∑
j∈I eβ⟨wj ,f(x)⟩

]
(6)

Theorem 1C (Identifiability of latents drawn from a vMF around cluster vectors). Let (f ,W , β)
globally minimize the DIET objective (6) under the following additional constraints:

C1. both the embeddings f(x) and wi’s are unit-normalized. Then:
(a) h = f ◦ g is orthogonal linear, i.e., the latents are identified up to an orthogonal linear

transformation;
(b) wi = h(vC(i)) for any i ∈ I , i.e., wi’s identify the cluster-vectors vc up to the same

orthogonal linear transformation;
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(c) β = α, the temperature of the vMF distribution is also identified.
C2. the embeddings f(x) are unit-normalized, the wi’s are unnormalized. Then:

(a) h = f ◦ g is orthogonal linear;
(b) wi =

α
βh(vC(i)) +ψ for any i ∈ I , where ψ is a constant vector independent of i.

C3. the embeddings f(x) are unnormalized, while the wi’s are unit-normalized. If the system
{vc|c} is diverse enough in the sense of Assum. 2, then:
(a) wi = OvC(i), for any i ∈ I , where O is orthogonal linear;
(b) h = f ◦ g = α

βO with the same orthogonal linear transformation, but scaled with α
β .

C4. neither the embeddings f(x) nor the rows ofW are unit-normalized. Then:
(a) h = f ◦ g is linear;
(b) wi identifies vC(i) up to an affine linear transformation.

Furthermore, in all cases, the row vectors that belong to samples of the same class are equal, i.e., for
any i, j ∈ I , C(i) = C(j) implies wi = wj .

Remark. In cases C2 and C4, the cluster vectors are unnormalized and, therefore, can absorb the
temperature parameter β. Thus β can be set to 1 without loss of generality. In case C3, it is f that
can absorb β.

Assumption 2 (Diverse data). The system {vc|c ∈ C } is said to be diverse enough, if the following
|C | × 2d matrix has full column rank of 2d: · · · · · · · · · · · · · · · · · ·

(vc ⊙ vc)⊤ v⊤c
· · · · · · · · · · · · · · · · · ·

 , (7)

where [x⊙ y]i = xiyi is the elementwise- or Hadamard product.

As long as |C | ≥ 2d, this property holds almost surely w.r.t. the Lebesgue-measure of Sd−1 or any
continuous probability distribution of vc ∈ Sd−1.

Proof. Step 1: Deriving an equation characterizing the global optimizers of the objective.

Rewriting the objective in terms of latents: we plug the expressionx = g(z) into the optimization
objective (6) to express the dependence in terms of the latents z:

L(f ,W , β) = E(z,I)

[
− ln

eβ⟨wI ,f◦g(z)⟩∑
j∈I eβ⟨wj ,f◦g(z)⟩

]
= Lz(f ◦ g,W , β), (8)

where the optimization is still over f (and not h = f ◦ g).

We note that the generator g is, by assumption, continuously invertible on the compact set Sd−1.
Therefore, its image g(Sd−1) is compact, too, and its inverse g−1 is also continuous. By Tietze’s
extension theorem (Wikipedia, 2024b), g−1 can be continuously extended to a function F : RD →
Sd−1. Therefore, any continuous function h : Sd−1 → Rd can take the role of f ◦ g by substituting
f = h ◦ F continuous, since now f ◦ g = h ◦ (F ◦ g) = h ◦ idSd−1 = h.

Hence, minimizing Lz(f ◦ g,W , β) (and by extension L(f ,W , β)) for continuous f equates to
minimizing Lz(h,W , β) for continuous h:

Lz(h,W , β) = E(z,I)

[
− ln

eβ⟨wI ,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
. (9)

Expressing the condition for global optimality of the objective: We rewrite the objective (9) by
1) using the indicator variable δI=i of the event {I = i} and 2) applying the law of total expectation:

Lz(h,W , β) = E(z,I)

[
−
∑
i∈I

δI=i ln
eβ⟨wi,h(z)⟩∑

j∈I eβ⟨wj ,h(z)⟩

]
(10)

= Ez

[
EI

[
−
∑
i∈I

δI=i ln
eβ⟨wi,h(z)⟩∑

j∈I eβ⟨wj ,h(z)⟩

∣∣∣∣ z]
]
. (11)
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Using the properties that E
[
Af(B)

∣∣B] = E
[
A
∣∣B]f(B) and that E[δI=i] = P(I = i), we conclude

that:

Lz(h,W , β) = Ez

[
−
∑
i∈I

EI

[
δI=i ln

eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

∣∣∣∣ z]
]

(12)

= Ez

[
−
∑
i∈I

EI

[
δI=i

∣∣z] ln eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
(13)

= Ez

[
−
∑
i∈I

P(I = i|z) ln eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
. (14)

By Gibbs’ inequality (Wikipedia, 2024a), the cross-entropy inside the expectation is globally mini-
mized if and only if

eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩ = P(I = i|z), for any i ∈ I . (15)

Moreover, the entire expectation is globally minimized if and only if the above equality (15) holds
almost everywhere for z ∈ Sd−1.

Using that instance label I is uniformly distributed, or P(I = j) = P(I = i), the likelihood of the
sample being in class i can be expressed via Bayes’ theorem as:

P(I = i|z) = p(z|I = i)P(I = i)∑
j∈I p(z|I = j)P(I = j)

=
p(z|I = i)∑

j∈I p(z|I = j)
. (16)

Substituting (16) into (15) yields that for any i ∈ I and almost everywhere w.r.t. z ∈ Sd−1:

eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩ =

p(z|I = i)∑
j∈I p(z|I = j)

. (17)

We now divide the equation (17) for the probability of a sample having label i with that of having
label k and take the logarithm. This yields that Lz(h,W , β) is globally minimized if and only if

β⟨wi −wk,h(z)⟩ = ln
p(z|I = i)

p(z|I = k)
(18)

holds for any i, k ∈ I and almost everywhere w.r.t. z ∈ Sd−1.

Plugging in the vMF distribution: Plugging the assumed conditional distribution from (4) into
(18) yields the equivalent expression:

β⟨wi −wk,h(z)⟩ = α⟨vC(i) − vC(k), z⟩, (19)

which holds for any i, k ∈ I and almost everywhere w.r.t. z ∈ Sd−1. Since h is continuous, the
equation holds almost everywhere w.r.t. z if and only if it holds for all z ∈ Sd−1.

Observe that if h = id|Sd−1 ,wi = vC(i) for any i ∈ I , and β = α, then the equation is satisfied.
Thus, we can conclude that the global minimum of the cross-entropy loss is achieved.

Step 2: Solving the equation for h,W and proving identifiability.

We now find all solutions to prove the identifiability of the latent variables and that of the cluster
vectors. Denote w̃i =

β
αwi to simplify the above equation to:

⟨w̃i − w̃k,h(z)⟩ = ⟨vC(i) − vC(k), z⟩. (20)

h is injective and has full-dimensional image: We prove that h is injective. Assume that
h(z1) = h(z2) for some z1, z2 ∈ Sd−1. Plugging z1 and z2 into (20) and subtracting the two
equations yields:

0 = ⟨w̃i − w̃k,h(z1)− h(z2)⟩ = ⟨vC(i) − vC(k), z1 − z2⟩, (21)
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for any i, k. However, as the cluster vectors {vc|c} form an affine generator system, the vectors
{vC(i) − vC(k)|i, k} form a generator system of Rd (see Lem. 1). Therefore, ⟨y, z1 − z2⟩ = 0, for
any y ∈ Rd, which holds if and only if z1 = z2. Hence, h is injective.

By the Borsuk-Ulam theorem, for any continuous map from Sd−1 to a space of dimensionality at
most d−1 there exists some pair of antipodal points that are mapped to the same point. Consequently,
no such function can be injective at the same time. Since h : Sd−1 → Rd is injective, the linear span
of its image must be Rd.

Collapse of wi’s: We prove that w̃i = w̃k if C(i) = C(k), i.e., samples from the same cluster will
have equal rows ofW associated with them.

Assume that C(i) = C(k) and substitute them into (20):

⟨w̃i − w̃k,h(z)⟩ = 0 for any z ∈ Sd−1. (22)

However, we have just seen that the linear span of the image of h is Rd, which implies that w̃i = w̃k.
We may abuse our notation by setting w̃c = w̃i if C(i) = c, which yields a new form for (20):

⟨w̃a − w̃b,h(z)⟩ = ⟨va − vb, z⟩, (23)

for any a, b ∈ C and any z ∈ Sd−1.

Linear transformation from va − vb to w̃a − w̃b: We now prove the existence of a linear map
A on Rd such that A(va − vb) = w̃a − w̃b for any a, b ∈ C . For this, we prove that the following
mapping is well-defined:

A :
∑

a,b∈C

λab(va − vb) 7→
∑

a,b∈C

λab(w̃a − w̃b). (24)

Since the system {va − vb|a, b} is not necessarily linearly independent, we have to prove that
the mapping is independent of the choice of the linear combination. More precisely if for some
coefficients λab, λ′ab ∑

a,b∈C

λab(va − vb) =
∑

a,b∈C

λ′ab(va − vb) (25)

holds, then it should be implied that∑
a,b∈C

λab(w̃a − w̃b) =
∑

a,b∈C

λ′ab(w̃a − w̃b). (26)

Assume that (25) holds. Then, the difference of the two sides is:

0 =
∑

a,b∈C

(λab − λ′ab)(va − vb). (27)

Taking the scalar product with an arbitrary z ∈ Sd−1 and using the linearity of the scalar product
gives us:

0 = ⟨
∑

a,b∈C

(λab − λ′ab)(va − vb), z⟩ =
∑

a,b∈C

(λab − λ′ab)⟨va − vb, z⟩. (28)

Now using (23) yields:

0 =
∑

a,b∈C

(λab − λ′ab)⟨w̃a − w̃b,h(z)⟩ = ⟨
∑

a,b∈C

(λab − λ′ab)(w̃a − w̃b),h(z)⟩. (29)

However, the linear span of the image of h is Rd, which implies that∑
a,b∈C

(λab − λ′ab)(w̃a − w̃b) = 0, (30)

equivalent to (26). Therefore, the mapping is well-defined and the linearity of A follows.
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h is linear: Equation (23) becomes:

⟨A(va − vb),h(z)⟩ = ⟨va − vb, z⟩, (31)

for any a, b ∈ C and any z ∈ Sd−1. Nevertheless, {va − vb|a, b ∈ C } is a generator system of Rd,
and, hence, (31) is equivalent to

⟨Ay,h(z)⟩ = ⟨y, z⟩, for any y ∈ Rd and any z ∈ Sd−1. (32)

This is further equivalent to
⟨y,A⊤h(z)⟩ = ⟨y, z⟩. (33)

Since y is arbitrary, we conclude that A⊤h(z) = z for any z ∈ Sd−1. Therefore A is an invertible
transformation and h = (A⊤)−1 is linear.

Proving Thm. 1C case C4: We have shown that h is linear. Furthermore, from (31) it follows, by
fixing b and defining ψ = Avb −wb, that

w̃a = Ava +ψ, for any a ∈ C , (34)

which proves case C4 of Thm. 1C.

Proving Thm. 1C case C2: As a special case of the previous one, now we assume that h(z)
is unit-normalized and maps Sd−1 to Sd−1. That amounts to h = (A⊤)−1 being linear, norm-
preserving, and therefore orthogonal. Consequently A is also orthogonal, h = A and (34) simplifies
to β

αwa = w̃a = Ava +ψ = h(va) +ψ, which proves C2 of Thm. 1C.

Proving Thm. 1C case C1: We now assume that both h and wi’s are unit-normalized. Conse-
quently, h = A is orthogonal linear and wa = α

βAva +ψ.

Therefore, on one hand, the wa’s lie on a d-dimensional hypersphere of radius α
β and center ψ. On

the other hand, by definition, wa’s also lie on the unit hypersphere Sd−1.

Since the system {wa|a ∈ C } is the bijective affine linear image of the affine generator system
{va|a ∈ C }, {wa|a ∈ C } is also an affine generator system (Lem. 1). Consequently, there could be
at most one hypersphere in Rd which contains all thewa’s. Hence α

β = 1, ψ = 0, andwa = h(va),
which proves C1 of Thm. 1C.

Proving Thm. 1C case C3: Finally, we assume that wi’s are unit-normalized. As this is a special
case of Thm. 1C C4, we know that there exists a constant vector ψ such that:

wa =
α

β
Ava +ψ, (35)

for any a ∈ C . We are going to prove that O = α
βA is orthogonal and ψ = 0.

Let O = U⊤ΣV be the singular value decomposition (SVD) of O. Premultiplying with U yields:

Uwa = ΣVva + Uψ. (36)

As orthogonal transformations U and V keep their arguments unit-normalized and {Vva − Vvb} is
still an affine generator system (Lem. 1), we may assume without the loss of generality that

wa = Σva +ψ, (37)

for any a ∈ C , where all va’s and wa’s are unit-normalized.

Let us assume that ψ ̸= 0. In that case both sides of (37) can be scaled such that the offset ψ has
unit norm. In this case wa’s are no longer on the unit hypersphere, but they instead have a mutual
norm r. Assuming that the diagonal elements of Σ are σ = (σ1, . . . , σd), this is equivalent to:

r2 = ∥Σva +ψ∥2 = ∥Σva∥2 + 2⟨Σva,ψ⟩+ ∥ψ∥2 (38)
= ⟨va ⊙ va,σ ⊙ σ⟩+ ⟨va, 2σ ⊙ψ⟩+ 1, (39)

where [x⊙ y]i = xiyi is the elementwise product. Eq. (39) is equivalent to the following:

(va ⊙ va)⊤(σ ⊙ σ) + v⊤a (2σ ⊙ψ)− r2 = −1. (40)
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Collecting the equations for all a ∈ C yields:

D

 σ ⊙ σ
2σ ⊙ψ
r2

 = −1|C |, (41)

where D is the following |C | × (2d+ 1) matrix:

D =

 · · · · · · · · · · · · · · · · · · · · ·
(va ⊙ va)⊤ v⊤a −1
· · · · · · · · · · · · · · · · · · · · ·

 . (42)

By Assum. 2, the left |C | × 2d submatrix of D has full rank of 2d. Consequently, the solution space
to the more general, linear equation Dt = −1|C |, where t ∈ Rd, has a dimensionality of at most 1.
Using the unit-normality of va’s, we see that (va ⊙ va)⊤1d = 1. From this, it follows that the
solutions are exactly the following:

t =

(
γ · 1d

0d

γ + 1

)
, where γ ∈ R. (43)

Therefore, for any solution of (41) there exists γ such that:

σ ⊙ σ = γ · 1d (44)
σ ⊙ψ = 0d. (45)

However, as the original transformation A was invertible, all singular values σi are strictly positive
and, thus, it follows that ψ = 0. Technically speaking, this is a contradiction to our initial assumption
that ψ ̸= 0. Thus, it follows that ψ = 0.

Therefore, (37) becomes:
wa = Σva, (46)

where all va’s and wa’s are unit-normalized. Following the same derivation yields:

1 = ∥Σva∥2 = (va ⊙ va)⊤(σ ⊙ σ), (47)

or, after collecting the equations for all a ∈ C :

B(σ ⊙ σ) = 1|C |, (48)

where B is the |C | × d matrix

B =

 · · · · · · · · ·
(va ⊙ va)⊤
· · · · · · · · ·

 . (49)

By Assum. 2, B has full rank, thus, there is at most one solution to the equation Bt = 1|C |. Due to
the unit-normality of va’s, this solution is exactly t = 1d. However, as the singular values σi are all
positive, the only solution to σ ⊙ σ = 1d is σ = 1d. This is equivalent to saying that O = α

βA is
orthogonal.

Furthermore, h = (A⊤)−1 = (βαO
⊤)−1 = α

βO.

A.3 IDENTIFIABILITY OF SUPERVISED CLASSIFICATION

B THE GENEALOGY OF CROSS-ENTROPY–BASED CLASSIFICATION METHODS

This section provides the necessary background on auxiliary-variable ICA and discusses the connec-
tion between ICA and DIET, and InfoNCE and DIET.
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B.1 AUXILIARY-VARIABE NONLINEAR ICA: GENERALIZED CONTRASTIVE LEARNING (GCL)

In this section, we discuss the most general auxiliary-variable nonlinear ICA, termed Generalized
Contrastive Learning (GCL) (Hyvarinen et al., 2019). GCL uses a conditionally factorizing source
distribution (given auxiliary variable u): log p(s|u) is a sum of components qi(si, u):

log p(s|u) =
∑
i

qi(si, u) (50)

For this generalized model, Hyvarinen et al. (2019) define the following variability condition:
Assumption 3 (Assumption of Variability). For any y ∈ Rn (used as a drop-in replacement for the
sources s), there exist 2n+ 1 values for the auxiliary variable u, denoted by uj , j = 0 . . . 2n such
that the 2n vectors in R2n given by

(w (y,u1)−w (y,u0)) , (w (y,u2)−w (y,u0)) . . . , (w (y,u2n)−w (y,u0))

with

w(y,u) =

(
∂q1 (y1,u)

∂y1
, . . . ,

∂qn (yn,u)

∂yn
,

∂2q1 (y1,u)

∂y21
, . . . ,

∂2qn (yn,u)

∂y2n

)
are linearly independent.

Assum. 3 constrains the components of the first- and second derivatives of the functions constituting
the sources’ conditional log-density, given the auxiliary variable u. As the authors write: “[Assum. 3]
is basically saying that the auxiliary variable must have a sufficiently strong and diverse effect on the
distributions of the independent components.”

We state the required assumptions for the identifiability of GCL, adapted from (Hyvarinen et al.,
2019, Thm. 1):
Assumption 4 (Auxiliary-variable ICA with conditionally independent sources (GCL)). We assume
the following for latent factors z, observations x, generative model g, encoder f (parametrized by a
neural network), linear mapWwith (f ,W ) solving a multinomial regression problem:

1. The observations are generated with a diffeomorphism g : x = g(z), where dimx = dimz = d
2. The source components zi are conditionally independent, given a fully observed, m−dimensional

random variable (RV) u, i.e.,

log p(z|u) =
∑
i

qi(zi,u), (51)

3. The conditional log-pdf qi is sufficiently smooth as a function of zi for any fixed u
4. Assum. 5 holds
5. the multinomial regression function

r(x,u) =

n∑
i

ψi(fi(x),u), (52)

discriminating (x,u) vs (x,u∗) has universal approximation capability, both for ψi and a
diffeomorphic f = (f1, . . . , fn) (parametrized by a neural network)

When Assum. 4 holds, Hyvarinen et al. (2019) showed identifiability up to component-wise invertible
transformations.

For the special case when the conditional distribution comes from the exponential family (in the case
of our chosen vMF conditional, the distribution has order one), Assum. 4 turns into a simpler form
(Assum. 5).

B.2 PARAMETRIC INSTANCE DISCRIMINATION (DIET) AND TIME-CONTRASTIVE LEARNING
(TCL)

Arbitrary labels: time and sample index As Hyvarinen et al. (2019) note in (Hyvarinen et al.,
2019, 5.4), u can stand for many types of additional information. TCL uses the time index, which is
assumed to be a RV. Importantly, an arbitrarily defined class label, such as in DIET, can serve the
same purpose. In this case, we denote the auxiliary variable u = c
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Adapting the assumptions between TCL and DIET. The only reason we cannot apply (Hyvarinen
et al., 2019, Thm. 1) is that our exponential family has order one, violating Assum. 3. This
fact, however, shows our theory’s consistency as we cannot go beyond identifiability up to linear
(orthogonal or affine) transformation.

To fit our theory into the ICA family of methods, we note that modeling the DGP in DIET with a
cluster-centric approach, we naturally fit most of the ICA assumptions. To compare our Assums. 1C
to all the assumptions used for (Hyvarinen et al., 2019, Thm. 3) (cf. Assum. 4), we note that the vMF
distribution belongs to the exponential family, and that requiring that the cluster vectors form an
affine generator system (cf. Appx. A.1 for a definition and properties) satisfies the special case of the
general sufficient variability Assum. 3 condition:

Assumption 5 (Sufficient variability). Define the modulation parameter matrix L ∈ R(E−1)×dk for
d−dimensional exponential family distributions of order k with rows as:

[L]j: = (θj − θ0)⊤ (53)

θj = [θj11, . . . , θ
j
dk]. (54)

Then, sufficient variability means that rank(L) = dk, i.e., the modulation parameter matrix has full
column rank.

To see how a vMF fulfills Assum. 5, consider that the log-pdf qi(zi, c) comes from a conditional
exponential family, i.e.:

qi (zi, c) =

k∑
j=1

[q̃ij (zi) θij(c)]− logNi(c) + logQi(zi), (55)

= α⟨vc, z⟩+ logCd(α) (56)

where k is the order of the exponential family, Ni is the normalizing constant, Qi the base measure,
q̃i is the sufficient statistics, and the modulation parameters θi := θi(c) depend on c. In our cluster-
centric vMF conditional in (2), k = 1 (i.e., we can drop the j index) and θi(c) = vc. This corresponds
to (56) above, where Cd(α) is the concentration- and dimension-dependent normalization constant.

As our DGP assumes that the cluster vectors form an affine generator system, and in the above
Eq. (55) the cluster vectors take the role of θij(c), we can prove that our DGP fulfils Assum. 5.

Lemma 2 (The cluster-based DIET DGP is sufficiently variable). Assuming that the cluster-vectors
form an affine generator system (Assums. 1C), then the modulation parameter matrix L (defined in
Assum. 5) formed by the cluster vectors vc − va has full column rank.

Proof. First we need to show that the cluster vectors vc have the same role as θij(c). The derivative
of the log-pdf of the vMF distribution in (56) w.r.t. z is the exponent in the DIET conditional (we can
differentiate for non-normalized z, which is the case for auxiliary-bvariable ICA).

∂

∂z
[α⟨vc, z⟩+ logCd(α)] = αvc (57)

Then, we need d+ 1 cluster vectors to use one as a pivot to calculate L as defined in Assum. 5. By
Lem. 1, this new set of vectors (i.e., offset by va, expressed as vc−va) also forms a generator system
of Rd, which implies that L has rank d, concluding the proof.

To apply (Hyvarinen et al., 2019, Thm. 3) to recover the identifiability result of TCL, we need to show
that our setting can solve the regression problem defined in Assum. 4. What we will show, w.l.o.g., is
that our regression function akin to (Hyvarinen et al., 2019, (11)) does not have an auxiliary-variable
dependent constant.

Lemma 3 (Regression function). The regression function in (Hyvarinen et al., 2019, Thm. 3), which
solves the multiclass classification problem, consists of three items: 1) a scalar product of vector-
valued functions of either z or c, and scalar-valued functions of 2) z and 3) c. Our DGP and neural
network pipeline used for learning can also match this regression function, by choosing a pivot (zero)
value for the c-dependent scalar function. This is without loss of generality.
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Proof. In Thm. 1, the identifiability of the cluster vectors is up to an affine transformation, where the
bias is denoted by ψ. Calculating the scalar product of the learned cluster vector with the learned
latents yields two terms:

1. a scalar product term between z− and c−dependent vectors; and
2. a ψ · h(z) term, which depends only on z

Comparing to (Hyvarinen et al., 2019, Eq. (11)), we see that a c−dependent scalar function is missing.
Following the common practice in multinomial regression, we can, w.l.o.g., arbitrarily choose the
pivot value of the c−dependent scalar function to be 0, thus we do not need that term. This yields the
following expression for the regression function:

r(x, c) = h(x)⊤w̃c = h(x)
⊤(Avc +ψ) = h(x)⊤Avc + h(x)⊤ψ (58)

= h(x)⊤Avc + a(x), (59)

where h is linear, so the first term depends on both x, c, the second term a(x) only on x, and we can
choose (as usual practice in MLR), w.l.o.g., b(c) = 0, which concludes the proof.

B.3 THE RELATIONSHIP BETWEEN INFONCE AND DIET

Last, we show how DIET relates to InfoNCE, where we reframe InfoNCE in form of instance
disrimination. InfoNCE optimizes the cross entropy between the true conditional of the underlying
DGP (a vMF distribution) and the approximate conditional parametrized by an encoder network.
This cross entropy can be formulated as a loss for an N−class classification problem, where N is the
dataset size:

L =

B∑
i=1

CE(q(x+
i ), ei) s.t. qk(x

+
i ) =

exp (f(x+
i )

⊤f(xk))∑
b=1...B exp (f(x+

i )
⊤f(xb))

, (60)

where ei is the ith unit vector, encoding the class label in a one-hot fashion, and x+
i denotes the

positive pairs. Note that the last part is simply the standard softmax σ(.) over the innner product
(f(x+

i )
⊤f(xk)). To go from InfoNCE to DIET, we need to make the following modifications:

1. Sum over the whole dataset N , not just the batch B.
2. Replace the encoding of the anchor sample f(xk) with a learnable linear projectionW , i.e.,

setting q(x+
i ) = σ(Wf(x+

i ))

A remaining difference to the original DIET formulation is that InfoNCE assumes unit-normalized
features. However, our theory (cf. Thm. 1C) can accommodate unit-normalized vectors, so this is not
a problem.

Let (xn,x
+
n ) be positive pair for sample n and let there be N samples in total. The InfoNCE loss is

equivalent to a multi-class N−pair loss of the form:

L =

B∑
i=1

CE(q(x+
i ), ei) s.t. qk(x

+
i ) =

exp (f(x+
i )

⊤f(xk))∑
b=1...B exp (f(x+

i )
⊤f(xb))

. (61)

Now instead of having mini-batches of size B, we take the loss over the whole dataset:

L =

N∑
i=1

CE(q(x+
i ), ei) s.t. qk(x

+
i ) =

exp (f(x+
i )

⊤f(xk))∑
b=1...N exp (f(x+

i )
⊤f(xb))

. (62)

Next, replace f(xk) with a learnt and normalized weight vector wk:

L =

N∑
i=1

CE(q(x+
i ), ei) s.t. qk(x

+
i ) =

exp (f(x+
i )

⊤wk)∑
b=1...N exp (f(x+

i )
⊤wb)

. (63)

Note that the last part is simply the standard softmax σ(.) over a linear projection:

L =

N∑
i=1

CE(q(x+
i ), ei) s.t. q(x+

i ) = σ(Wf(x+
i )) (64)
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where W is the projection matrix for which the kth row corresponds to wk. Since i in this case
corresponds to the sample index in the dataset, we recovered DIET up to normalization, and soW is
simply the linear classifier.

C ADDITIONAL EXPERIMENTAL RESULTS

In Tab. 5, we present additional ablation studies exploring the effect of varying the levels of con-
centration for vc across the unit hyper-sphere. We do not observe any significant impact on the R2

scores from more concentrated cluster centroids vc.

Table 5: Identifiability in the synthetic setup. Mean ± standard deviation across 5 random seeds.
Settings that match our theoretical assumptions are ✓. We report the R2 score for linear mappings,
z̃ → z and wi → vc for cases with normalized (o) and unormalized (a) wi. For unormalized wi,
we verify that mappings z̃ → z are orthogonal by reporting the mean absolute error between their
singular values and those of an orthogonal transformation.

normalized wi cases unnormalized wi

R2
o(↑) MAEo(↓) R2

a (↑)
N d |C | p(vc) p(z|vc) M. z̃ → z wi → vc z̃ → z wi → vc z̃ → z wi → vc

103 5 100 Uniform vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 100 Laplace vMF(κ=10) ✓ 98.7±0.00 99.5±0.00 0.01±0.00 0.00±0.00 99.1±0.00 99.8±0.00

103 5 100 Normal vMF(κ=10) ✓ 98.2±0.01 99.2±0.01 0.01±0.00 0.00±0.00 99.2±0.00 99.8±0.00
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D ACRONYMS

DGP data generating process

GCL Generalized Contrastive Learning

ICA Independent Component Analysis

LVM latent variable model

MAE Mean Absolute Error

PID parametric instance discrimination

RV random variable

SSL self-supervised learning

TCL Time-Contrastive Learning

vMF von Mises-Fisher

E NOMENCLATURE

R2 coefficient of determination S hypersphere
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