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Population variability in X-chromosome
inactivation across 10 mammalian species

Jonathan M. Werner 1,2, John Hover1 & Jesse Gillis 1,2

One of the two X-chromosomes in female mammals is epigenetically silenced
in embryonic stem cells by X-chromosome inactivation. This creates a mosaic
of cells expressing either the maternal or the paternal X allele. The
X-chromosome inactivation ratio, the proportion of inactivated parental
alleles, varies widely among individuals, representing the largest instance
of epigenetic variability within mammalian populations. While various con-
tributing factors to X-chromosome inactivation variability are recognized,
namely stochastic and/or genetic effects, their relative contributions are
poorly understood. This is due in part to limited cross-species analysis,making
it difficult to distinguish between generalizable or species-specific mechan-
isms for X-chromosome inactivation ratio variability. To address this gap, we
measure X-chromosome inactivation ratios in ten mammalian species
(9531 individual samples), ranging from rodents to primates, and compare the
strength of stochasticmodels or genetic factors for explaining X-chromosome
inactivation variability. Our results demonstrate the embryonic stochasticity
of X-chromosome inactivation is a general explanatory model for population
X-chromosome inactivation variability in mammals, while genetic factors play
a minor role.

Every female mammalian embryo undergoes X-chromosome inacti-
vation (XCI) as an essential step for successful development1–3. XCI
evolved to balance the gene dosage between females with two
X-chromosomes and males with one X-chromosome4. While the exact
timing can vary across species5, XCI usually occurs during pre-
implantation embryonic development6. During this process, one of the
two X-alleles in each female cell is independently, randomly, and per-
manently chosen for transcriptional silencing to match the single
X-allele inmale embryos1,7–9. The choice of silenced X-allele is inherited
through cell divisions, propagating the random choice of allelic inac-
tivation down each cell’s subsequent lineage. This produces whole-
body mosaicism for allelic X-chromosome expression in each adult
mammalian female, originating from very early embryonic
development10.

In humans, both X-alleles are equally likely to be inactivated, but
XCI ratios vary widely among adult females, from balanced to highly
skewed. XCI ratios affect the phenotypes of X-linked diseases, as they

can either protect or expose individuals to disease variants10–13. The
factors that influence XCI variability are mostly studied in mice and
humans, and include stochasticity13 and genetics14–16, but their relative
roles are debated17. Cross-species comparisons of XCI variability stand
to reveal general or species-specific mechanisms of XCI. For instance,
genetic determinants of XCI are well-established in lab mice18–20, but
not in humans17,21,22, where they are more difficult to identify and
measure. Exploring XCI variability in other mammals presents the
opportunity to test models of stochasticity or genetics in the context
of evolution.

Considering first a stochastic model for XCI variability, each cell
within an embryo at the time of XCI independently selects an X-allele
to inactivate, resulting in ratios of allelic-inactivation varying across
embryos purely by chance (Fig. 1A). Closely following Mary Lyon’s
discovery of XCI in 19611, it was recognized that the inherent
embryonic stochasticity and permanence of XCI is the simplest
explanation for the observed variability in XCI among adults and
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positions this adult variability as a window into embryonic events23–27.
For example, flipping 10 coins is more likely to result in 8 heads than
flipping 100 coins is likely to result in 80 heads, meaning that the
variability in heads-to-tails ratios depends on the number of coins
flipped. Similarly, the variability of XCI ratios in a population of female
mammalian embryos is determined by the number of cells at the time
of XCI (Fig. 1A). Since each cell inherits its allelic-inactivation from its
ancestor, measuring XCI variability in adults can approximate
embryonic XCI variability and help infer cell counts at the time of XCI
or other early lineage decisions25,28 (Fig. 1D). Stochastic models have
been used to estimate cell counts during embryonic events in human
andmice populations for decades20,23,25,27–29—but their applicability has
not been tested in other mammalian species.

In addition to stochasticity, genetic effects can influence the
choice of allelic inactivation and contribute to population variability in

XCI ratios. Allelic inactivation during XCI is mediated by the cis-acting
long non-coding RNA XIST30, which silences its corresponding X-allele
through epigenetic modifications31,32. Heterozygous variants affecting
XIST expression canbias allelic inactivation15. For example, inbredmice
show preferential inactivation of specific X-alleles depending on the
parental strains and their corresponding X-chromosome controlling
element (XCE) haplotypes18,20,33. In humans, genetic influence on XCI is
mostly observed in small family studies or disease cases, with no
strong evidence for the broad allelic effects seen in mice21,22. Another
genetic influence on XCI is allelic selection, where disease-associated
variants impart a selective effect across the two X-alleles that often
results in extreme XCI skew14,16,34–38. However, the role of allelic selec-
tion outside of a disease context and its relationship to population XCI
variability remains to be thoroughly investigated across species. Thus,
the relative contributions of stochasticity and genetics to population

Fig. 1 | Reference aligned RNA-sequencing data enables scalable modeling of
XCI ratios. A Schematic demonstrating the relationship between the number of
cells present at the time of XCI and the probability of all possible XCI ratios.
Increased cell numbers result in decreased XCI ratio variance. B Schematic for
modeling XCI ratios frombulk reference-alignedRNA-seq data. The reference SNPs
will contain both maternal and paternal SNPs, representing allelic expression from
both parental haplotypes. Folded normal models are fit to the folded reference
allelic expression ratios (like folding a book closed), with the mean of the
maximum-likelihood distribution as the sample XCI ratio estimate. C Schematic for

sample processing (genome alignment and variant identification) and a bar graph
depicting the number of annotated female samples initially downloaded for each
species (bold color), with the number of samples per species with at least 10 well-
powered SNPs for XCI ratio modeling after processing (faded color). D Schematic
demonstrating the population modeling of XCI variability. Folded population dis-
tributions are first produced per species and then are unfolded. Normal distribu-
tions are fit to the unfolded population distribution to estimate the number of
embryonic cells required to produce the observed variance. Details for source data
are provided in the Data and Code Availability statements.
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XCI variability in mammals remain unclear with currently limited data
from mouse and human studies.

In this study, we assess population scale XCI variability and its
determinants across ten mammalian species. We source female
annotated bulk RNA-sequencing samples from the Sequencing Read
Archive (SRA), resulting in a total of 19,784 initial samples derived from
562 individual studies (Fig. 1C), including human samples from the
GTEx39 dataset. Our approach leverages natural genetic variation to
sample X-linked heterozygosity and eliminates the requirement for
costly phasedor strain-specific genetic information to assessXCI ratios
across diverse mammals at population scale. We start by establishing
the population-level XCI ratio distributions for all ten mammalian
species and use models of embryonic stochasticity to predict the
number of cells fated for embryonic lineages (Figs. 1D and 2).We then
investigate how broad genetic diversity, as indicated by measures of
inbreeding (Fig. 3), as well as specific individual variants (Fig. 4), may
impact population XCI variability. Overall, our analyses explore how
both models of stochasticity and genetic factors can explain popula-
tion XCI variability across diverse mammalian species.

Results
Reference aligned RNA-sequencing data enables scalable mod-
eling of XCI ratios
We use bulk RNA-sequencing (RNA-seq) data to measure the X-linked
allelic expression of a sampled tissue by computing allele-specific
expression ratios of heterozygous single nucleotide polymorphisms
(SNPs). The parental proportion of X-linked allelic reads are expected
to follow abinomial distribution dependent on the number of sampled
reads and the XCI ratio of the tissue (see methods). The binomial
distribution is an appropriate model when the parental identity of
sequencing reads is known, which is not the case when aligning to a
reference genome. A reference genome will contain SNPs from both
parents, making the parental identity of aligned reads ambiguous and
producing reference allelic expression ratios that represent expression
of both parental X-alleles (Fig. 1B).

Analogous to folding a book on its side closed, we fold the dis-
tribution of reference allelic-expression ratios around 0.50 so that
values an equal amount above and below 0.5 are in the same bin. This
allows us to aggregate data across both alleles and enable a robust
estimate of the XCI ratio magnitude for the bulk RNA-seq sample
(Fig. 1B). We fit folded-normal distributions to the reference allelic
expression ratios of multiple SNPs per sample, which serves as a con-
tinuous approximation of the underlying sequencing depth-
dependent mixture of folded-binomial distributions per SNP. The
mean of the fitted distribution is the estimate of the XCI ratio for the
sample (Fig. 1B). We also incorporate specific steps to address con-
founding factors that can impactmeasured X-linked allelic expression,
namely excluding SNPs with persistent reference bias across samples
and chromosomal bins that exhibit probable escape from XCI40,41

(Supplementary Figs. 1, 2, see methods). Of note, the rat population
exhibits a large collection of reference biased SNPs when compared to
the other species, likely due to the highly inbred nature of laboratory
rat strains.We circumvent this expected issue in themouse population
by leveraging two studies42,43 that sampled Diversity Outbred (DO)44

mice, evidenced by the lack of reference-biased SNPs in the mouse
population compared to the other species. Additionally, it is important
to note our approachdetects SNPs present onlywithin RNAmolecules,
so we will miss variants in non-transcribed proximal regulatory ele-
ments, such as the well-described XCE-interval in mice33. With regards
to escape from XCI, we find the strongest signals of escape near
chromosomal ends across all species (Supplementary Fig. 2), sug-
gesting escape within pseudo-autosomal regions is conserved across
mammals40,45. Previously28, we validated our SNP filtering and XCI
modeling approach using phased RNA-seq data (where haplotype
information is known for each variant) from the EN-TEx consortium46,

achieving nearly perfect agreement in XCI ratio estimates for samples
with foldedXCI ratios of 0.60or higher, demonstrating the accuracy of
our approach.

By calling SNPs from RNA-seq reads and employing folded dis-
tributions to model reference-aligned allelic expression, we can esti-
mate the magnitude of XCI in any female mammalian bulk RNA-seq
sample. We source female annotated bulk RNA-seq samples of 9 non-
human mammalian species from the SRA database (Fig. 1C), addi-
tionally including cross-tissue human samples from the GTEx dataset.
As sex annotations were not available on SRA for the two DO mouse
studies, we annotate the sex of the mouse samples by thresholding on
the total number of reads aligned to the Y-chromosome (Supple-
mentary Fig. 3). After processing, the number of samples with a
minimum of 10 well-powered SNPs for estimating XCI ratios are 130
macaca (meanof 28 SNPs ±17 SD), 275 horse (meanof 54 SNPs ±36 SD),
291 dog (mean of 29 SNPs ±13 SD), 369 rat (mean of 28 SNPs ±16 SD),
388 mouse (mean of 87 SNPs ±46 SD), 399 goat (mean of 34 SNPs
±14 SD), 654pig (meanof 50 SNPs ±28 SD), 784 sheep (meanof 81 SNPs
±43 SD), 1364 cow (meanof 33 SNPs ±19 SD), and4877 human (meanof
56 SNPs ±23 SD, 314 total individuals) samples (Fig. 1C, Supplementary
Fig. 1). Aggregating reference SNP allelic expression ratios for samples
with similar estimated XCI ratios (0.05 bins) clearly reveals the
expected haplotype expression distributions, demonstrating the
applicability of folded models (Supplementary Fig. 4). Following
sample-level XCI ratio modeling, we then generate population-level
distributions by unfolding the distribution of folded XCI ratio esti-
mates around 0.50, analogous to opening a closed book (Fig. 1D).

As an additional control to ensure the allelic variability we report
from X-linked SNPs is specific to XCI, we estimate autosomal allelic
imbalances for all samples using the samepipeline and approach as for
the X-chromosome analysis (Supplementary Fig. 5, see methods).
Comparing allelic imbalances across the two autosomes closest in size
to the X-chromosome reveals the vast majority of samples across all
species are biallelically balanced for autosomal expression, as expec-
ted (Supplementary Fig. 5). Several species (pig, cow, goat, rat, sheep,
and dog) exhibit small subsets of samples that are consistently
imbalanced across the two autosomes and the X-chromosome, indi-
cative of a global influence on allelic-expression independent of XCI
(Supplementary Fig. 5). These samples with global allelic imbalances
are excluded from all downstream analysis, ensuring the population
distributions of XCI ratios reflect variability specific to XCI.

Models of embryonic stochasticity explain adult population XCI
variability
After generating population distributions of XCI ratios for the 10
mammalian species, we next explore how well models of embryonic
stochasticity explain the observed adult XCI ratio variability. The initial
variability in XCI ratios among mammalian embryos is dependent on
the number of cells present during XCI (Fig. 1A), where adult variability
can be modeled to infer embryonic cell counts.

When estimating embryonic cell counts from XCI variability in
adult tissues, it is important to note that adult tissues represent only
the embryonic lineage of the blastocyst, not the extra-embryonic
lineages. This positions XCI variability of adult tissue samples as
informative for the number of cells present within the last common
lineage decision for all adult cells, i.e. the number of cells present
within the epiblast of the mammalian blastocyst. If XCI occurs after
epiblast specification, XCI ratio variability is determined by the num-
ber of epiblast cells at the time of XCI. If XCI occurs before epiblast
specification, the variability is influenced by both the initial stochas-
ticity of XCI and the stochasticity of cell sampling during epiblast
lineage specification. Without cross-tissue sampling of both extra-
embryonic and embryonic tissues, the temporal ordering of XCI
among these lineage events cannot be resolved. Therefore, estimating
cell counts based solely on XCI variability in adult tissues provides an
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estimate of the number of cells present in the epiblast at the
time of XCI.

Figure 2A presents the unfolded population distributions of XCI
ratios in the 10mammalian species we sampled, ranging from the least
variable (macaca) tomost variable (dog).We fit normal distributions as
continuous approximations to the underlying binomial distribution
that defines the relationship between cell counts and XCI ratio varia-
bility (Fig. 1A, D, see methods). We focus on the tails of the distribu-
tions for our model fitting (colored in portions of the distributions,
unfolded estimates ≤0.40 and ≥0.60, Fig. 2A), for two reasons. Our
analysis of autosomal allelic ratios (Supplementary Fig. 5) highlights

that samples with no expected allelic imbalance produce folded skew
estimates that vary between 0.5 and 0.6 and our previous work28 using
phased data indicated model misspecification around the point of
folding (0.50). Fitting to the tails of the empirical distribution is
therefore a more accurate representation of variability specific to XCI.

At a broad level, population XCI ratio variability varies sub-
stantially across the sampled mammalian species. Our estimates for
the number of epiblast cells present at the time of XCI include 65
(macaca), 31 (rat), 23 (pig), 16 (goat), 15 (horse), 14 (sheep), 14 (cow), 13
(human), 12 (mouse), and 8 (dog) cells, with associated 95% confidence
intervals presented in Fig. 2B. Importantly, species with similar

Fig. 2 | Models of embryonic stochasticity explain adult population XCI
variability. A Unfolded distributions of XCI ratios per species, with the maximum-
likelihood normal distribution depicted in bold, fitted to the tails of the distribu-
tions (shaded in sections of the distributions, unfolded estimated ≤0.40 and
≥0.60).BPhylogenetic tree of the sampledmammalian specieswith their estimated
embryonic cell counts on a log-2 scale, depicting the number of cell divisions that

separate the estimated cell counts between the species. Error bars are 95% con-
fidence intervals computed through bootstrap simulations with n = 2000, with the
measure of center corresponding to the estimatedcell numberper species ona log-
2 scale, denoted in each species’ panel in A as Estimated # cells. Details for source
data are provided in the Data and Code Availability statements.
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numbers of detected SNPs per sample and total sample size exhibit
variable cell number estimates, indicating it is unlikely our estimates
are driven by technical effects across the species (Supplementary
Fig. 6). We additionally down sample all species to the smallest sample
size present (130 macaca samples) and achieve virtually identical cell
number estimates, demonstrating variation in cell number estimates
across species is not driven by sample size differences (Supplementary
Fig. 6). The error between the empirical XCI ratio distributions and the
normal fitted distributions is strikingly small, with a mean of 0.00588
sum-squared error (±0.00965 SD) across the species (Supplementary
Fig. 6). This shows models of embryonic stochasticity can explain
observed XCI ratio variability in adult populations exceptionally well.

For the least and most variable species (macaca and dog), the
estimated autosomal imbalances offer additional context for the
reported XCI population variability. The reported X-linked

variability in macaca is in excess to the reported autosomal allelic
variability, which itself is highly consistent across species (Supple-
mentary Fig. 5). This demonstrates the X-linked population varia-
bility for macaca, while strikingly small, still varies beyond the
extremely consistent autosomal variability present across species
and is specific to the X-chromosome, representing informative
variability for estimating cell counts. On the other hand, the dog
population is the only one that contains samples with strong allelic
imbalances on only one autosome, where autosomal imbalances in
all other species are global (Supplementary Fig. 5). This is sugges-
tive of broader genomic incompatibilities within the dog popula-
tion. The reported X-linked population variability in dog is likely a
combination of XCI and broader allelic incompatibilities, position-
ing our estimate of 8 cells as a likely underestimate due to excess
variability outside of XCI.

Fig. 3 | XCI ratios are not associated with X-linked heterozygosity.
A Distributions of sample X-linked heterozygosity per species ordered by the
median value. The y-axis is in log-10 scale, depicting the ratio of SNPs per sample to
all unique identifiedSNPsper species. Boxplots indicatemedian (middle line), 25th,
75th percentile (box) and 1.5 times the inter-quartile range from the first and third
quartiles (whiskers) with sample numbers per species as follows: macaca n = 130,
horse n = 275, dog n = 291, rat n = 369, mouse n = 388, goat n = 399, pig n = 654,
sheep n = 784, cow n = 1364, human n = 4877. B The spearman correlation

coefficients between sample X-linked heterozygosity and either the estimated
standard deviation (SD) in X-linked allelic expression or the estimated XCI ratio of
the sample (the SD andmean of themaximum-likelihood folded-normal model per
sample). C 2D Scatter plots of sample heterozygosity compared to the sample
estimated X-linked allelic expression SD for the three species with moderate cor-
relation coefficients. Color bars represent the number of samples in each 2D bin.
Plots for the other species are in Supplementary Fig. 7. Details for source data are
provided in the Data and Code Availability statements.
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Modeling XCI ratio variability across numerous species allows
comparisons in light of evolution for determining generalizable or
species-specific characteristics in XCI. Broadly, we demonstrate XCI
ratios are variable in each species we assess, revealing variability in XCI
ratios itself as a conserved characteristic of XCI. The exact variance in
XCI ratios varies across the species, with differences in the timing of
XCI and/or differences in cell counts for embryonic/extra-embryonic
lineage specification as two putative explanations. We compare our
estimated cell counts to the evolutionary relationships among the
species we assess (Fig. 2B), suggesting that variability in these early
embryonic events can be recent evolutionary adaptations. This is
highlighted by the large differences in cell counts betweenmacaca and
humans, as well as between rats and mice. When viewed through the

lens of cell divisions (log2 of the estimated cell counts, Fig. 2B), the
differences in XCI ratio variability among the species can be explained
by differences in a range of only 3 cell divisions, a narrow develop-
mental window. Thisdemonstrates even slight changes in the timingof
XCI or cell counts for embryonic/extra-embryonic lineage specifica-
tion across mammalian species can produce large differences in
population XCI ratio variability, as explained through the inherent
stochasticity of XCI.

XCI ratios are not associated with X-linked heterozygosity
After determining stochastic models can explain population XCI ratio
variability across mammalian species, we turn to testing whether we
can identify any genetic correlates with XCI ratios. Our approach

Fig. 4 | Low frequency variants exhibit moderate associations with XCI ratios.
A Schematic depicting the AUROC quantification for testing the association
between individual variants and extreme XCI ratios. Samples are ranked by their
estimated XCI ratio, with the dark shaded red squares representing samples with
more extreme XCI ratios. The position of samples with a given individual variant
(gray squares) within the ranked list is used to compute the AUROC statistic. A
variantwith anAUROCvalue of 1means all sampleswith that variantwere at the top
of the ranked list, whereas an AUROC value of 0.5 represents a random ordering of
samples within the ranked list. B Distributions of variant AUROCs for each species
compared to a species-specific null distribution of AUROC values (faded distribu-
tions, see methods), ordered by the mean value of the empirical distributions. The

red dotted line depicts an AUROC of 0.50, performance due to random chance.
C Scatter plot of variant AUROCs compared toeach variant’s prevalence (percent of
sampleswith that variant, relative for each species) for all variants across all species.
The reddotted line depicts anAUROCof 0.50, performancedue to randomchance.
A threshold of AUROC> =0.75 was used to identify SNPs with moderate associa-
tions with XCI ratios.D Scatter plots depicting the same information as in C for the
variants with moderate associations with XCI ratios, but split by each species and
including gene annotations. SNPs not within annotated genes are unlabeled. Gene
labels not present due to overlapping labels are Sheep: IL3RA, LOC101108113,
LOC101115509, LOC101117055, LOC105605313, LOC121818231, PPP2R3B, PRKX).
Details for source data are provided in the Data and Code Availability statements.
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leveraging natural genetic variation to quantify XCI ratios enables us to
assess a large catalog of genetic variants for associations with XCI
ratios across mammalian species (10,735 macaca SNPs, 12,024 rat
SNPs, 28,339 mouse SNPS, 23,603 pig SNPs, 16,123 goat SNPs, 10,281
horse SNPs, 53,505 sheep SNPs, 18,509 cow SNPs, 16,168 human SNPs,
and 10,050 dog SNPs). One putative genetic contribution to XCI ratio
variability is allelic selection during development, where increased
X-linked heterozygosity (i.e., genetic distance), is more likely to pro-
duce selective pressures between the two X-alleles. It follows that
samples with higher X-linked heterozygosity would be expected to
exhibit more extreme XCI ratios.

We score X-linked heterozygosity per sample as the ratio of the
detected SNPs within a sample to the number of unique SNPs identi-
fied across all samples, relative for each species (Fig. 3A). This quan-
tification also serves as a measure of inbreeding, with decreased
heterozygosity associated with a higher degree of inbreeding47. The
trend in heterozygosity across species is as expected, with rats (likely
laboratory strains) as the most inbred (Fig. 3A). Next, we examine the
correlations between sample heterozygosity and the estimated XCI
ratio, as well as the estimated allelic variability across SNPs in each
sample (mean and standard deviation of the fitted folded-normal dis-
tribution per sample, Fig. 3B). Across all species, X-linked hetero-
zygosity shows a near-zero correlation with the estimated XCI ratio,
indicating a lack of association between X-linked genetic hetero-
zygosity and XCI ratio variability (Fig. 3B). However, we observe
moderate correlations between sample heterozygosity and the esti-
mated variability in SNP allelic ratios in three species: rat (corr: 0.576),
macaca (corr: 0.459), and cow (corr: 0.364), notably the most inbred
species (Fig. 3A, Supplementary Fig. 7). The increased variability in
allelic expression present only within the most inbred species could
potentially reflect gene-specific regulatory events between parental
haplotypes48 rather than a direct genetic effect on XCI.

Low frequency variants exhibit moderate associations with
XCI ratios
After investigating relationships between genetic variation and XCI
ratios at a broad level across the whole X-chromosome, we next asked
if individual variants might be associated with extreme XCI ratios.
Variants that affect the expression and/or function of the genetic ele-
ments that control XCI can result in highly skewed XCI ratios, as
documented in human studies15. This can also occur in other X-linked
genes, if the resulting differential in gene activity exerts a selective
pressure across the X-alleles, as documented in disease cases14,16. We
test the association between XCI ratios and individual variants for all
variants detected in each species with a minimum of 10 samples,
quantified through the area-under-the-receiver-operating-curve sta-
tistic (AUROC). For each species, we rank the samples based on their
estimated XCI ratio and score the placement of samples carrying a
given variant within the ranked list (Fig. 4A). If all the samples with that
variant are at the topof the ranked list, theXCI ratio canbe said to have
perfectly predicted the presence of that variant, quantified with an
AUROC of exactly 1. An AUROC of 0.50 indicates the XCI ratio per-
formsnobetter than randomchance for predicting the presenceof the
variant.

The distribution of AUROCs for each species show striking
similarities to a null comparison (Fig. 4B, see methods), indicating a
pervasive lack of association between XCI ratios and individual var-
iants. However, a small subset of variants in each species exhibits
moderate associations (AUROCs ≥0.75 and FDR-corrected p-value
≤0.05). By comparing each variant’s AUROC with its frequency in the
species, we find that the variants withmoderate associations occur at
low frequencies within the sampled populations (Fig. 4C, Supple-
mentary Fig. 8). We investigate whether this relationship is simply
due to a lack in power with bootstrap simulations, demonstrating
moderate AUROCs (≥0.75) are robust to their small sample sizes

(Supplementary Fig. 8). Figure 4D displays these variants along with
their gene annotations for each species. Notably, we observe no
statistically significant variant-XCI ratio associations in the GTEx
humanpopulationwhen performing either a tissue-specific or donor-
specific analysis, as well as only considering the sample per donor
with the highest sequencing depth (Supplementary Fig. 9). While the
GTEx dataset is comprised of thousands of tissue samples, only 314
female individuals are present in our final dataset. We test the effect
of a small population size by down sampling the cow data to
300 samples and scoring variant-XCI ratio associations (Supple-
mentary Fig. 9). All of the cow variants that we originally identified as
significantly associated with XCI ratios are no longer detected in the
down sampled data, in line with the observation that variants with
associations to XCI ratios occur at low frequencies withinmammalian
populations. Increased population sampling is likely required to
identify further genetic associations with XCI ratios.

Several genes with moderate AUROCs have prior evidence for
escaping XCI in humans49, bringing into question their associations
with extreme XCI ratios in our analysis. To explore further, we
compare the estimated XCI ratios of samples to the allelic ratios of
all detected variants for genes with at least one variant significantly
associated with XCI ratios. We report several examples across spe-
cies where the allelic expression of individual variants from these
putative escape genes does in fact exhibit the expected balanced
biallelic expression of escape from XCI while also being enriched in
samples with increased XCI ratios (Supplementary Fig. 9). A gene
that escapes XCI will be biallelically expressed; this suggests the
variant-specific association we detect within these XCI escapers
likely reflects a haplotype-effect, where the variant is linked to a
haplotype influencing XCI ratios, rather than an effect from the
gene/variant itself. Further analysis with phased data to assess
potential haplotype effects may help identify genetic associations
with XCI ratios. Overall, our assessments of chromosome-wide
genetic variability and individual variants do not reveal genetic
associations robust enough to explain population XCI ratio varia-
bility across all 10 mammalian species.

Putative mouse XCE-Xist-haplotypes exhibit highly variable
XCI ratios
One of the most well-documented instances of a genetic association
with XCI ratios is the XCE-haplotypes in laboratory mouse strains,
where a preferential ordering of allelic inactivation exists across
haplotypes33. The DO mice we utilize are expected to be genetically
diverse combinations of various lab strains and it is highly likely a mix
of XCE-haplotypes are present within this population andmay have an
impact on XCI ratios. Such a haplotype-specific effect would bemissed
in our previous AUROC variant-specific analysis of XCI ratios. Since we
only sample variants present within RNA molecules and the XCE-
interval is a proximal non-transcribed regulatory element of Xist33, we
reason variants present within Xist are likely linked to XCE-haplotypes
and may be informative for identifying putative XCE-Xist-haplotypes.
We identify 4 putative XCE-Xist-haplotypes asdetermined by groups of
samples with shared Xist variants (Supplementary Fig. 10). As a general
observation across haplotypes and the two studies we sample from,
XCI ratios of samples with the same haplotype are highly variable
(Supplementary Fig. 10), suggesting XCI ratios are not definitively
determined by Xist genotypes within the DO mice population. The
haplotype with the seemingly largest effect, evidenced by 2 samples
with highly skewed XCI ratios (0.799 and 0.782) in the one study that
collected striatal tissue, conversely exhibits XCI ratios ranging from
balanced to moderately skewed in the second study, which collected
pancreatic tissue (Supplementary Fig. 10).While this may be indicative
of a tissue-specific effect of a particular XCE-Xist-haplotype, far greater
sample sizes with higher genetic resolution to confirm haplotypes are
needed for validation. In general, the variability in XCI ratios within
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putative XCE-Xist-haplotypes suggests non-genetic contributions to
XCI variability of DO mice.

Discussion
We modeled tissue XCI ratios from bulk RNA-seq samples across 10
mammalian species and revealed population-level variation in XCI
ratios that likely reflects differences in developmental events such as
XCI timing or lineage specification. We showed that models of
embryonic stochasticity fit the XCI data exceptionally well and esti-
mated epiblast cell counts at the time of XCI across species. We also
searched for genetic factors influencing XCI ratios and found a per-
vasive lack of strong genetic associations with XCI ratios, indicating
that population XCI variability is better explained by the inherent
stochastic nature of XCI rather than through genetic mechanisms.

The lack of cross-mammalian comparisons of population XCI
variability has previously limited our understanding on the sources of
XCI variability in mammals. The existence of XCE-haplotypes in
laboratory mice18–20,33 has supported the hypothesis that a similar
genetic mechanism can exist in humans and drive population XCI
variability21, though evidence for XCE-haplotypes in human popula-
tions remains inconclusive22 anddata fromothermammalian species is
historically absent. Although genetic influences on XCI, particularly
variants affecting XIST15 or disease-associated variants34–37, have been
identified, they do not constitute a general mechanism that can fully
account for observed population-level XCI variability across species. In
particular, allelic selection via genetic variability across the X-alleles
has been put forth as an explanatory mechanism for XCI ratio
variability14,16, but is almost exclusively studied in a disease context and
typically associated with extreme XCI ratios14,16,17,34–38, which is con-
flicting with the continuous population variability we report across
species. Our measures of X-linked heterozygosity have near-zero
association with XCI ratios in all 10 mammals we assessed, a strong
indication that genetic variability on the X-chromosome has little
influence on XCI ratios outside of disease. This is supported by the
observation of depleted X-chromosome genetic variability via strong
rates of purifying selection50–53, rendering both parental alleles as lar-
gely equivalent at population scales. Our approach for extracting
heterozygous variants from RNA-seq data28, while providing a sample
of genetic variability, is still able to assess hundreds of X-linked genes
and chromosome-wide heterozygosity per species for associations
with XCI and culminated in only weak evidence of limited genetic
influence on XCI ratios. In contrast, we demonstrated models of
embryonic stochasticity can explain population XCI variability with
exceedingly small amounts of error consistently across mammalian
species, providing a much more general explanation for population
XCI variability.

Besides X-linked disorders and XIST-variants, other factors that
may affect XCI ratio variability are genomic incompatibilities48 and
stochastic allelic drift during development20 and/or aging as in the
well-reported case of increased skewing of blood samples with age29,54.
We found an association between the variance in X-linked allelic
expression and the degree of inbreeding for some species (Fig. 2B), as
well as autosome-specific allelic imbalances in dog samples (Supple-
mentary Fig. 5). This implies that X-linked allelic expression variability
may result from both the bulk tissue XCI ratio and the genomic
incompatibilities between the parental genomes48, depending on the
species. We controlled for global allelic imbalances by excluding
samples that showed consistent autosomal imbalances (Supplemen-
tary Fig. 5), which confirms the allelic-expression variability on the
X-chromosome is specific to XCI. Turning to allelic drift, develop-
mental allelic driftmay introduceXCI ratio variability beyond the initial
random choice of allelic inactivation20. While our previous cross-tissue
analysis of XCI ratios in humans28 showed consistent XCI ratios across
tissues, suggesting allelic drift is not a major factor in XCI ratio varia-
bility, similar data for non-human mammals is missing. In general, we

cannot account for tissue-specific or age-related effects in this dataset
as these sample annotations are almost universally absent for the SRA
sourced data. These factors indicate that our epiblast cell count esti-
mates are lower bound estimates for the number of cells needed to
produce the observed XCI ratio variability as purely derived from
embryonic stochasticity. Our statistical modeling approach here
would be greatly complemented by future experimental validation of
the timing and cell counts present during XCI across species.

Regarding the timing of XCI and our epiblast cell count estimates,
exploring known temporal variability in XCI across species provides
additional context. In mice, random XCI occurs within the epiblast
soon after its specification and is readily identified by monoallelic
expression of XIST55. In macacas and humans, inactivation appears
more continuous; data show progressive chromosome-wide silencing
over several days, with a shift from biallelic to monoallelic XIST
expression56–58. This lengthy continuous inactivation obscures the
exact timing of XCI in these species and highlights that XCI hallmarks
in mice, namely rapid mono-allelic XIST expression, are not readily
applicable to other species; indeed, many species initially exhibit
biallelic XIST expression59. In context, our epiblast cell counts estimate
the number of cells involved in XCI, not the exact timing. For instance,
our macaca and human cell counts indicate approximately four times
as many cells are present within the epiblast at the time of XCI in
macacas compared to humans. This difference could result from
delayed XCI or a greater number of cells fated for the epiblast in
macacas compared to humans. In general, our cell count estimates
reflect population sizes at the timeofXCI andwe attribute variability in
cell counts as most likely due to differences in XCI timing or lineage
specification dynamics across species.

An important caveat to our analyses of genetic influences on XCI
ratios is that we are limited to assessing variants present within RNA
molecules, which are necessary for quantifying allele-specific expres-
sion. Consequently, we likely miss many non-transcribed regulatory
variants thatmay significantly influence XCI ratios. The XCE-interval in
mice is one example, a proximal regulatory element to Xist known to
influence XCI ratios in heterozygous lab crosses33. We identified
putative XCE-haplotypes in the DOmice population using Xist variants
as proxies and showed XCI ratios are highly variable among samples
sharing a haplotype, indicating other factors outside of Xistgenotypes/
putative XCE-haplotypes influence XCI ratios in DO mice. While this
suggests the effects of XCE-haplotypes in DOmice areminor andmore
pronounced in inbred lab crosses, we cannot exclude the possibility of
similar genetic influences on XCI ratios in non-transcribed regions
among our sampled species. Our approach trades comprehensive
genetic screening for scalability, enabling the assessment of XCI ratios
across thousands of samples from different species. While we
demonstrate models of embryonic stochasticity explain observed
population XCI ratio variability far better than genetic associations, we
are limited in the type of genetic variability we can assess. Importantly,
we do not discount the well-documented role of genetics in XCI ratios
for rare and exceptional cases (e.g., disease); instead, we advance
embryonic stochasticity as the parsimonious explanation of XCI
variability in normal populations.

Methods
Snakemake pipeline for RNA-seq alignment and variant
identification
All non-human mammalian fastq data was downloaded from the
Sequencing Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra),
where only samples annotated as female were selected, using the
metadata provided through SRA. We sourced Diversity Outbred mice
data from two studies42,43 where sex annotations were not available on
SRA and identified female samples as those with less than 200 CPM
counts aligned to the Y-chromosome (Supplementary Figure 3).
Details for download and processing of the GTEx39 data can be found
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here28. The entire sample processing pipeline uses a standard collec-
tion of bioinformatics software tools, all available for installation via
Conda (STAR60 v2.7.9a, GATK61 v4.2.2.0, samtools62 v1.13, igvtools63

v2.5.3, and sra-tools 2.11.0). All Snakemake workflow rules, environ-
ment setup procedure, analysis commands and options, and under-
lying libraries are available on Github at https://github.com/gillislab/
cross_mammal_xci, and https://github.com/gillislab/xskew. Briefly,
a.fastq file acts as input, for either single- or pair-end sequencing
experiments, and a.vcf and.wig file are produced as outputs for sub-
sequent compiling of allele-specific read counts in R v4.3.0. The R
script used for combining the.vcf and.wig information is also made
available at https://github.com/gillislab/cross_mammal_xci/tree/main/
R. Genome generation and alignment was performed with STAR, with
the addition of the WASP64 algorithm for identifying and excluding
reference biased reads. We extract chromosome-specific alignments
from the.bam file (X chromosome or specific autosomes) and use
GATK tools to identify heterozygous SNPs from that chromosome. The
suite of GATK tools for identifying heterozygous variants from RNA-
sequencing data was used following the GATK Best Practices
recommendations. Specifically, the tools utilized include AddOrRe-
placeReadGroups –> MarkDuplicates –> SplitNCigarReads –> Haplo-
typeCaller –> SelectVariants –> VariantFiltration.

Reference genomes and gene annotations (.gtf files) for each
species were sourced from the NCBI Refseq database (https://www.
ncbi.nlm.nih.gov/refseq/). In each case the latest assembly version
pathwas used, and the genomic.fna and genomic.gtf was downloaded.
Annotated and indexed genomes were generated with STAR
using –runMode genomeGenerate with default parameters.

SNP filtering
Only SNPs with exactly two identified genotypes were included for
analysis and indels were excluded. We required each SNP to have a
minimum of 10 reads mapped to both alleles for a minimum read
depth of 20 reads per SNP. Gene annotations for all SNPs were
extracted from the species-specific.gtf files. For XCI ratiomodeling, we
only used SNPs found within annotated genes. For any sample with
multiple SNPs identified in a gene, we took the SNP with the highest
read count to be themax-powered representative of that gene, so each
individual SNP is representative of a single gene. In addition to
implementing the WASP algorithm for excluding reference biased
reads, we filter out SNPs within each species whose mean expression
ratios across samples deviate strongly from 0.50 (mean allelic ratio
<0.40 and >0.60, Supplementary Fig. 1). This SNP filtering also
excludes potential eQTL effects that may impact allelic-expression
outside of the underlying XCI ratio.

Identifying and excluding chromosomal regions that escape XCI
We reasoned robust escape from XCI would produce more balanced
biallelic expression in samples with skewed XCI. We performed an
initial pass at XCI ratio modeling including all well-powered SNPs in a
sample to identify sampleswith skewedXCI ratios (XCI ratios≥0.70 for
all species except rat and macaca, where a threshold of 0.60 was used
due to a reduced incidence of skewed XCI in these species). Using the
subset of skewed samples for each species, we averaged the folded
allelic-expression ratios for all SNPs present in 1 mega-base (MB) bins
across the X-chromosome (Supplementary Fig. 2). Chromosomal-bins
that displayed balanced allelic expression in opposition to the clearly
skewed allelic expression of the rest of the chromosome were exclu-
ded from analysis. Specifically, chromosomal bins with an average
allelic-expression <0.65 for pig, goat, horse, sheep, mouse, and cow,
<0.60 in rat and macaca, and <0.675 in dog were excluded (Supple-
mentaryFig. 2) The endsof theX-chromosome in all species, except rat
and mouse, demonstrated strong balanced biallelic expression, indi-
cative of escape within putative pseudo-autosomal regions. We
excluded any bin within these putative pseudo-autosomal regions

regardless of average allelic expression. The escape threshold for dog
was increased to exclude all bins within the dog putative pseudo-
autosomal region.

Modeling XCI ratios with the folded-normal distribution
Starting with a single parental allele, the sampled maternal allelic-
expression of a heterozygous X-linked SNP can be modeled with a
binomial distribution, dependent on the ratio of active maternal
X-alleles in the sample and the read depth of the SNP.

Xmat

nreads
� Bin nreads, pmat

� �

nreads
; E

Xmat

nreads

� �
=pmat ;Var

Xmat

nreads

� �
=
pmatð1� pmatÞ

nreads
, ð1Þ

where Xmat is the number of maternal allelic reads, nreads is the read
depth of the SNP, and pmat is the ratio of active maternal X-alleles.
When aligned to a referencegenome, the parental phasing information
is lost and the allelic-expression of X-linked SNPs can instead be
modeled with the folded-binomial model65,66. Since SNPs vary in read-
depth, we use a folded-normal model as an approximation of the
underlying mixture of sequencing depth-dependent folded-binomial
distributions. The probability of allelic-expression under the folded-
normal model is defined as:

Pr xratio;μ,σ
2� �

=
1
ffiffiffiffiffiffi
2π

p
σ
e�

ðxratio�μÞ2
2σ2 +

1
ffiffiffiffiffiffi
2π

p
σ
e�

ðxratio +μ�1Þ2
2σ2 , forμ 2 0:50, 1½ �,

ð2Þ

where xratio is the folded allelic-expression ratio of a SNP, μ is the
folded XCI ratio of the sample, and σ is the standard deviation of the
folded-normal distribution. We utilize a maximum-likelihood
approach (negative log-likelihood minimization of Eq. (2)) to fit
folded-normal distributions to the observed folded allelic-expression
ratios of at least 10 filtered SNPs per sample, taking the μ parameter of
the maximum-likelihood folded-normal distribution as the folded XCI
ratio estimate of the sample.

Modeling autosomal imbalances
The folded-normal model can also be applied to autosomal data to
estimate allelic-imbalances. For each species, we extract chromosome-
specific alignments from the.bam file for the two autosomes closest in
size to the X-chromosome (Supplementary Fig. 5). We employ the
exact same processing pipeline and thresholds as used for the
X-chromosome. Any sample that displayed an autosomal imbalance
greater than or equal to a folded estimate of 0.60 (dotted lines in
Supplementary Fig. 5A) on either autosome was excluded from
downstream analysis.

Modeling population XCI variability with models of embryonic
stochasticity
XCI is a binomial sampling event, where the number of cells choosing
to inactivate the same X-allele follows a binomial distribution defined
as:

X � Bin ncells,pinact

� �
, ð3Þ

where X is the number of cells inactivating the same X-allele, ncells is
the number of cells present at the time of XCI, and pinact is the prob-
ability of inactivation (0.50).

Embryonic XCI ratios can be modeled as:

X
ncells

� Binðncells ,pinactÞ
ncells

ð4Þ

We estimate ncells by fitting normal distributions to the unfolded
population XCI ratio distributions of each species, as a continuous
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approximation for the underlying binomial distribution. The variance
of the normal distribution is defined as:

varnormal =Var
Bin ncells,pinact

� �

ncells

� �
=
pinact ð1� pinact Þ

ncells
=
:5ð1� :5Þ
ncells

ð5Þ

We model population XCI ratios as:

X
ncells

� Norm μ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varnormal

p� �
, ð6Þ

where μ = pinact =0.50 and varnormal is computed for ncells 2 ½2, 200�.
We identify the normal distribution with minimum sum-squared

error between its CDF and the empirical population XCI ratio CDF,
minimizing error over the tails of the distributions with percentiles
≤0.40 or ≥0.60 (Supplementary Fig. 6). We compute 95% confidence
intervals about the cell number estimate ncells through bootstrap
simulations. We sample with replacement from the empirical popula-
tion XCI ratio distribution, matching the sample size of the original
empirical population distribution, and fit a normal model to derive a
bootstrap estimate of ncells. We repeat this for 2000 simulations to
generate a bootstrapped distribution of ncells, from which we derive
the 95% confidence intervals, defined as the interval where 2.5% of the
bootstrapped distribution lies outside either end.

We down sample the population XCI ratio distribution to 130 for
each species to match the sample size of macaca, the species with the
smallest sample size. We sample with replacement and then estimate
cell numbers as previously described, repeating for 2000 simulations.
The mean cell number estimate and 95% confidence intervals for each
down sampled species is reported in Supplementary Fig. 6D.

Measuring sample X-linked heterozygosity
We compute sample heterozygosity as the ratio of SNPs detected in a
sample (20 read minimum) to the total number of unique SNPs iden-
tified across all samples for a given species. We quantify associations
between X-linked heterozygosity and XCI ratios as the spearman cor-
relation coefficient between the sample X-linked heterozygosity ratio
and the fitted mean and variance of the maximum-likelihood folded-
normal distribution of the sample (Fig. 3B, C, Supplementary Fig. 7).
We only consider samples with at least 10 detected SNPs.

Quantifying variant associations with extreme XCI ratios
Wequantify the strength of XCI ratios as a predictor for the presence of
a given variant through the AUROC metric. Given a ranked list of data
(XCI ratios) and an indicator of true positives (samples with a given
variant), the AUROC quantifies the probability a true positive is ranked
above a truenegative. AnAUROCof 1 indicates all truepositive samples
were ranked above all true negative samples, demonstrating XCI ratios
were a perfect predictor for the presence of that variant. An AUROC of
0.50 indicates randomplacement of true positives and negatives in the
ranked list, demonstrating XCI ratios performed no better than ran-
dom chance for predicting the presence of that variant. We compute
the AUROC through the Mann–Whitney U-test, defined as:

AUROC =
U

npos + nneg
, ð7Þ

whereU is the Mann–Whitney U-test test statistic, computed in R with
wilcox.test(alternative = ‘two.sided’), npos is the number of true
positive samples and nneg is the number of true negative samples.
We generate a null AUROC per variant by randomly shuffling the true
positive and negative labels. The variant frequency is defined as the
number of samples that carry a given variant over the total number of
samples for a given species. The p-value for a given AUROC is the
p-value associated with the Mann–Whitney U-test test statistic (U),

where we determine significance as an FDR-corrected p-value ≤0.05.
We perform FDR correction for all p-values computed for all variants
across the 10 species through the Benjamini–Hochberg method,
implemented in R via p.adjust(method =‘BH’).

We estimate the power of each variant through bootstrap simu-
lations. We randomly sample with replacement the XCI ratios of the
true positive and true negative samples, those that either carry or do
not carry a given variant. Wematch the sample size of the original true
positive and negative labels. We compute a bootstrapped AUROC and
p-value from the simulated data, repeating for 2000 simulations to
compute a bootstrapped distribution of AUROCs. The AUROC power
(Supplementary Fig. 8B) is defined as the fraction of bootstrapped
AUROCs that are significant, using a significance threshold of FDR-
corrected p-value ≤0.05. The AUROC effect size power (Supplemen-
tary Fig. 8C) is defined as the fraction of bootstrapped AUROCs that
are ≥0.75. We also report the variance of the bootstrapped AUROC
distribution per variant in Supplementary Fig. 8D. We exclude all var-
iants classified as reference biased fromSupplementary Fig. 1, with the
distributions of AUROCs for the reference biased and non-reference
biased SNPs presented in Supplementary Fig. 8E.

We assess variants for associations with XCI ratios within the
human data in several slightly different ways to accommodate the
cross-tissue sampling structure of the GTEx data (Supplementary
Fig. 9A). For the tissue-specific analysis, we rank samples of a given
tissueby their XCI ratios and scoreXCI ratio associations for all variants
present within that tissue’s samples as previously described using our
AUROC metric. We only consider tissues with at least 50 donors. For
the donor-specific analysis, we average the tissue XCI ratios of all
samples for a givendonor and then rank all donors by their averageXCI
ratio. We also average the allelic-expression ratio of variants present in
multiple tissue samples for a given donor and then score XCI ratio
associations for all variants as previously described. We additionally
perform this experiment using the single tissue samplewith thehighest
sequencing-depth per donor. We down sample the cow sample
population to 300 and then score XCI ratio associations for variants as
a comparison to the human sample population (314). Sampling is done
without replacement 10 times andwe compute the average AUROCper
variant across the 10 samples (Supplementary Fig. 9).

Putative mouse XCE-Xist-haplotypes
We hierarchically clustered mouse samples by their Xist variants con-
sidering samples with at least 20 detected Xist variants using the
ComplexHeatmap67 R package with the following function options:
Heatmap(clustering_distance_columns = function(m dist(m, method =
‘binary’)), clustering_method_columns = ‘ward.D2’, column_split = 4).
This performs ward.D2 clustering using the Jaccard distance between
samples and cuts the column dendrogram using cuttree() into four
clusters, which we chose to capture the clear sample groupings pre-
sent within the data (Supplementary Fig. 10).

Software
All analysis was performed in R68 v4.3.3. All plots were generated using
ggplot269 v3.4.2 functions. The phylogenetic tree in Fig. 2B was gen-
erated from TimeTree http://www.timetree.org/.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data for all figure panels can be found at70 https://github.
com/gillislab/cross_mammal_xci/tree/main/R/data_for_plots. Where
applicable, exact p-values are provided in the source data files. The
SRA accession numbers for all non-human mammalian samples pro-
cessed can be found at https://github.com/gillislab/cross_mammal_
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xci/blob/main/R/data_for_plots/all_keep_species_meta.Rdata. Details
for accessing the GTEx samples can be found here https://gtexportal.
org/home/protectedDataAccess.

Code availability
All associated code canbe foundat70 https://github.com/gillislab/cross_
mammal_xci/tree/main/R. Code for generating all figure panels using
associated source data can be found at https://github.com/gillislab/
cross_mammal_xci/blob/main/R/figure_plots_with_data_code.md. The
snakemake pipeline used for processing the non-human mammalian
data can be found at https://github.com/gillislab/cross_mammal_xci/
tree/main. https://doi.org/10.5281/zenodo.13774726. Details and code
for processing the human GTEx samples can be found here28.
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