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SUMMARY
A single gene may have multiple enhancers, but how they work in concert to regulate transcription is poorly
understood. To analyze enhancer interactions throughout the genome, we developed a generalized linear
modeling framework, GLiMMIRS, for interrogating enhancer effects from single-cell CRISPR experiments.
We applied GLiMMIRS to a published dataset and tested for interactions between 46,166 enhancer pairs
and corresponding genes, including 264 ‘‘high-confidence’’ enhancer pairs. We found that enhancer effects
combine multiplicatively but with limited evidence for further interactions. Only 31 enhancer pairs exhibited
significant interactions (false discovery rate <0.1), none of which came from the high-confidence set, and 20
were driven by outlier expression values. Additional analyses of a second CRISPR dataset and in silico
enhancer perturbations with Enformer both support a multiplicative model of enhancer effects without inter-
actions. Altogether, our results indicate that enhancer interactions are uncommon or have small effects that
are difficult to detect.
INTRODUCTION

Enhancers are distal cis-regulatory elements that direct tran-

scription and shape cellular identity, growth, and biological func-

tion. Most genes are regulated by multiple enhancers,1,2 yet we

lack a detailed understanding of how they act together to influ-

ence gene expression. When multiple enhancers for a gene are

active in the same cell type, it is often assumed that they act

additively—that is, their combined effect is equal to the sum of

their individual effects.3 However, enhancers may also act non-

additively, and interactions between regulatory elements may

modulate their effects on gene expression.3–10

To date, most studies of regulatory elements have examined

their effects independently, and studies of regulatory element in-

teractions have focused on a small number of loci and reached

contradictory conclusions.4–8 For example, a study of a-globin

regulation in mice found that the expression of this gene is best

explained by simple additivity between constituent elements of

its super-enhancer.7 In addition, a study that systematically
Cell Genomics 4, 100672, Novem
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deleted three constituent enhancers of a super-enhancer for

Wap in mice found differences in the magnitudes of effect that

each enhancer had on the target gene and no evidence of synergy

between the enhancers, with all three enhancers necessary to

induce full induction of the gene during pregnancy.8 Reexamina-

tion of both of these super-enhancer datasets under hypothetical

additive, multiplicative, and logistic activity models found that the

effects of the constituent enhancers on the target geneswere best

described by a logistic model, where enhancers work together

multiplicatively until a saturation expression level is reached, but

there is no significant evidence for interactions between en-

hancers.5 Contrary to these findings, a recent study of the MYC

locus described both synergistic and additive enhancer-enhancer

interactions, where enhancers separated from one another by

larger genomic distances are more likely to have synergistic inter-

actions and enhancers located closer to one another are more

likely to have additive interactions.9 These studies have been

limited to the examination of a small number of genes and en-

hancers, and their results are difficult to interpret due to their
ber 13, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Detecting enhancer effects with GLiMMIRS

(A) Schematic of GLiMMIRS-base, a GLM to infer the effect of individual enhancers on the expression of target genes.

(B) Schematic of GLiMMIRS-int, a GLM to infer joint perturbation effects of two enhancers on target genes and for detecting interaction effects between the

enhancers.

(C) Schematic of GLiMMIRS-sim, which simulates data from single-cell CRISPR perturbation experiments with RNA-seq readout. It can be used to generate

reference values for evaluating the performance of GLiMMIRS-base and GLiMMIRS-int.

(D) Scatterplots comparing reference coefficient values generated by GLiMMIRS-sim to coefficient estimates from applying GLiMMIRS-base to the simulated

data for n = 1000 target sites (y axis) using two different values of Xperturb: (1) a perturbation probability (magenta), calculated as a function of gRNA efficiencies,

and (2) an indicator variable based on the presence/absence of a targeting gRNA for the putative enhancer of interest (lavender). Pearson’s correlations (r) are

denoted on plots (see also Table S2).

(legend continued on next page)
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conflicting findings and the lack of explicit definitions and consis-

tent terminology for different models of enhancer activity.

CRISPR-induced perturbations of enhancer sequences have

enabled high-throughput quantification of the effects of en-

hancers on gene expression.11,12 These experiments have re-

vealed that an activity-by-contact (ABC) model that combines

enhancer activity with promoter contact frequency can predict

the effect of enhancers on gene expression.11 However, the

ABC model scores each enhancer individually and was not

used to predict how joint perturbations to multiple enhancers

affect gene expression.11

CRISPR can be combined with single-cell RNA

sequencing10,13–19 to perturb targeted genome sequences and

measure the effects of these perturbations on gene expression.

Here, we present GLiMMIRS (generalized linear models for

measuring interactions between regulatory sequences), a statisti-

cal analysis framework that can be applied to single-cell CRISPR

perturbation experiments to quantify the effects ofmultiple regula-

tory elements on gene expression and identify interactions be-

tween them. GLiMMIRS has both data simulation and modeling

componentsandcanaccount for variation inguideRNA (gRNA)ef-

ficiency. We applied GLiMMIRS to a multiplexed, single-cell

CRISPR interference (CRISPRi) experiment that targeted putative

enhancers in K562 cells13 and conducted a power analysis, which

found that this dataset provides sufficient power to detect strong

interactions between enhancers and moderate power to detect

weak interactions. We also analyzed a second CRISPRi dataset

and performed in silico perturbations to enhancer pairs with En-

former, a deep neural network that predicts gene expression

from genomic sequences. All three analyses support a model in

which enhancers act multiplicatively to affect the expression of

their target genes but provide limited evidence for the presence

of additional interactions between them.

DESIGN

Development of GLiMMIRS
To estimate the effects of regulatory elements on target genes

using data from single-cell CRISPRi screens, we developed

GLiMMIRS, a dual modeling and simulation framework.

GLiMMIRS consists of three components: GLiMMIRS-base, a

baseline model for estimating the regulatory effects of a single

enhancer on a target gene (Figure 1A); GLiMMIRS-int, an interac-

tion model for estimating the combined regulatory effects of two

enhancers on a target gene (Figure 1B); and GLiMMIRS-sim, a

simulation framework for single-cell CRISPRi screens (Figure 1C).

We first developed GLiMMIRS-base, which estimates the ef-

fects of individual enhancers on gene expression using a nega-

tive binomial generalized linearmodel (GLM) that can be fit to sin-

gle-cell RNA sequencing (scRNA-seq) data from CRISPR

regulatory screens (Figure 1A). The response variable, Y, of the

GLM represents the observed scRNA-seq counts for a gene in
(E) Quantile-quantile (QQ) plot of observed versus expected �log10 p values. Th

Gasperini et al. values (blue) are previously published results (n = 664). Mismat

randomly selected genes, rather than genes near the enhancer (n = 609). Shuf

perturbation probabilities for each cell was shuffled (n = 609).
each cell, and the predictor, Xperturb, represents the CRISPR

perturbation of a putative enhancer for the gene in the same

cells. GLiMMIRS also includes covariates to control for cell cycle

and percentage of mitochondrial reads and an offset term to

control for the total number of unique molecular identifiers

(UMIs) observed in each cell. GLiMMIRS-base shares similarities

with prior analyses of CRISPR regulatory screens,13 but it can

optionally account for variation in guide efficiency. Typically,

related methods assume that the presence of a gRNA in a cell

guarantees the intended genome edit; however, this assumption

can lead to inaccurate estimates of enhancer activity (Figure S1).

To estimate the effects of pairs of enhancers on gene

expression, we developed GLiMMIRS-int (Figure 1B). In this

model, we replaced the single enhancer term (benhancerXperturb)

in GLiMMIRS-base with three new terms to represent (1) the first

enhancer in the pair (bAXA), (2) the second enhancer in the pair

(bBXB), and (3) an epistatic-like interaction between the en-

hancers (bABXAB). We set the values of the XA and XB predictors

to be perturbation probabilities for the respective enhancers.

Likewise, we set the value of XAB to be the probability that

both enhancers are simultaneously perturbed (XAB = XAXB).

To evaluate the performance of GLiMMIRS-base and

GLiMMIRS-int, we next developed the GLiMMIRS-sim simulation

framework (Figure 1C). GLiMMIRS-sim accepts user-defined

experimental parameters such as number of cells, number of

genes, number of distinct regulatory target regions, and gRNA li-

brary size. Using these parameters, it randomly assigns regulatory

target regions to genes and gRNAs to cells and generates refer-

ence coefficient values. Reference coefficient values include

enhancer effect sizes corresponding to each target region/gene

pair and interactions between target regions, which can be used

to benchmark GLiMMIRS-base and GLiMMIRS-int by comparing

the model’s coefficient estimates to the reference values.

Single-cell CRISPRi dataset
To analyze the effect of enhancers on gene expression, we lever-

aged data from a multiplexed, single-cell CRISPRi screen per-

formed inK562cells.13 In this screen,whichwe refer to asGasper-

ini et al., gRNAs were designed to target putative enhancers, and

enhancer-gene pairs were identified by associating perturbed en-

hancerswith differences in the expressionof nearbygenes.Due to

the high MOI used in this experiment, many gRNAs targeting

different enhancers are present within each cell. This feature of

the dataset can be leveraged to quantify how pairs of enhancers

regulate the expression of common target genes and to detect

potential interaction effects between them.

RESULTS

Detecting enhancer effects with GLiMMIRS-base
We used GLiMMIRS-sim to generate a single-cell CRISPRi

screen dataset resembling the Gasperini et al.13 experimental
e baseline values (red) are the results from GLiMMIRS-base (n = 609). The

ch gene (green) is a negative control in which GLiMMIRS-base was applied to

fled guides (purple) is a negative control in which the vector containing guide

Cell Genomics 4, 100672, November 13, 2024 3
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dataset. We then fit GLiMMIRS-base to the simulated count data

and compared the estimated coefficients from GLiMMIRS-base

to the simulated reference values using two different settings for

the CRISPR perturbation predictor Xperturb: a perturbation prob-

ability and a perturbation indicator. We examined both predictor

types because most enhancers in this dataset were targeted by

two different gRNAs, and the estimated effects of enhancer per-

turbations can be biased by the presence of low-efficiency

guides (Figure S1; Table S1). In the perturbation probability

setting, we defined the value of Xperturb as a function of gRNA ef-

ficiency, which is the estimated probability that its intended

target is actually repressed in a cell containing the gRNA. In

the perturbation indicator setting, we simply set Xperturb to 1 for

cells containing a gRNA targeting the enhancer and 0 for all other

cells. The Boolean perturbation indicator ignores guide effi-

ciency but is simpler and is the standard approach that is

commonly used in the analysis of CRISPR screens.10,13,20,21

Upon applying GLiMMIRS-base to the simulated data, we found

that the estimated enhancer effects, benhancer , correlated well

with the reference enhancer effects whenwe used a perturbation

indicator for Xperturb (Pearson’s r = 0:81) and that this correlation

improved when we used a perturbation probability for Xperturb

(Pearson’s r = 0:86) (Figure 1D; Table S2). In addition, using

the perturbation indicator underestimated the enhancer effects

(Figure 1D). This suggests that amodel that accounts for variable

guide efficiency using a measure of perturbation probability

could obtainmore accurate estimates of enhancer activity. How-

ever, gRNA efficiency estimates can be noisy, which may impact

these estimates.22–25 To assess this, we performed simulations

with varying levels of noise in guide efficiency values. In simula-

tions with low to moderate noise, the perturbation probability

continued to provide accurate estimates of enhancer effects

(Pearson’s r = 0:78). When the noise applied to the guide effi-

ciency values was very high, the perturbation probability still

yielded reasonable, albeit less accurate, estimates of enhancer

effects (Pearson’s r = 0:37) (Figure S2; Table S3). In summary,

GLiMMIRS-base provides accurate estimates of enhancer activ-

ity when applied to simulated data, and accounting for guide ef-

ficiency can improve accuracy when guide efficiency estimates

have low or moderate noise.

We then applied GLiMMIRS-base to the Gasperini et al.13 da-

taset and compared the p values obtained from our model to

those from their published analysis, which utilized Monocle

2.26 We detected a similar number of significant enhancer-

gene pairs (560 out of 609 reported as significant by Gasperini

et al.13 were validated by GLiMMIRS-base), but with lower p

values for most of the highly significant pairs (Table S4). Our p

values are well calibrated, and when applied to permuted data,

where gRNA identities are assigned to different cells, or to shuf-

fled genes, where the candidate enhancers are not near the

target gene, the p value distributions match the null expectation

(Figure 1E). These results establish that GLiMMIRS-base

matches the results reported in the published analysis by Gas-

perini et al. and may boost power by including guide efficiencies

and additional covariates such as cell-cycle scores. Having es-

tablished the validity of our approach for the simpler scenario

of single enhancers acting on single genes, we proceeded to

study the regulatory effects of enhancer pairs.
4 Cell Genomics 4, 100672, November 13, 2024
GLiMMIRS-int detects interactions between pairs of
enhancers
To identify pairs of enhancers between which interactions could

be evaluated by GLiMMIRS-int, we identified pairs of target sites

from the Gasperini et al. experiment, where both members of the

pair were locatedwithin 1Mb of a common target gene.We iden-

tified a total of 795,616 such pairs. Since cells containing pertur-

bations to both enhancers (joint perturbations) are required to

measure interaction effects with our model, we counted the

number of cells containing gRNAs targeting both enhancers in

these pairs. Themajority of enhancer pairs were jointly perturbed

in a small number of cells, which limits power to detect interac-

tions; however, we found that 46,166 pairs were jointly perturbed

in at least 10 cells (Figure 2A). We considered this latter set to be

‘‘testable’’ enhancer pairs and restricted our downstream anal-

ysis with GLiMMIRS-int to these pairs.

To assess our power to detect enhancer interactions with

GLiMMIRS-int, we used GLiMMIRS-sim to simulate data over

a range of MOIs (l) and interaction effect sizes (Figures 2A and

2B; Table S5). In this simulated dataset, we defined ‘‘interacting’’

enhancer pairs as having a non-zero interaction effect on their

target gene and ‘‘non-interacting’’ pairs as having individual ef-

fects on the target gene but no additional interaction effect.

We focused on simulations with MOIs of 15 and 20 since the

properties of these simulated datasets most closely resembled

the Gasperini et al. dataset (Figures 2A and 2B) and restricted

our analysis of the simulated data to enhancer pairs that

were jointly perturbed in at least 10 cells. As expected, our power

to detect interaction effects scaled with the magnitude of the

interaction effect sizes and MOI, which increase the number of

cells with joint perturbations of both enhancers (Figure 2A).

We found that at MOIs of l = 15; 20, there is reasonable po-

wer (7%–37%) to detect interactions with modest effect sizes

(bAB) of �1.0, �0.5, +0.5, and +1.0 (Figure 2C; Table S5) and

good power (50%–78%) to detect strong interactions with

effect sizes of�2 or +2. Negative interaction effect sizes as large

as �2 are plausible as they resemble the effect sizes we esti-

mated for individual enhancers in the Gasperini et al.13 dataset

(Figure 2D), and strong interactions might be expected if pairs

of enhancers act in a highly redundant or synergistic manner.

While our power to detect interactions with these effect sizes is

incomplete, we nonetheless expect to detect a substantial

number of interactions if they are a common feature of enhancer

pairs.

Enhancers act multiplicatively to control gene
expression, but the analysis of CRISPR perturbations
provides limited evidence for interactions
Next, we applied GLiMMIRS-int to the Gasperini et al. dataset to

study enhancer-enhancer interactions. In addition to the testable

enhancer pairs defined above, which contained 46,166 pairs and

corresponding target genes (5,895 of which were unique; Fig-

ure S3A), we also defined a set of high-confidence pairs, where

each of the individual enhancers showed prior evidence of

enhancer activity based on the Gasperini et al. study.

This high-confidence set contained 264 testable enhancer pairs

and corresponding target genes (94 of which were unique;

Figure S3B).
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Figure 2. GLiMMIRS-int detects interactions between pairs of enhancers in simulated data

(A) Boxplots showing the number of cells containing gRNAs targeting both enhancers belonging to a testable pair in the Gasperini et al. dataset (gray; n = 46; 166

pairs) or in the simulated data with positive enhancer effects (colored; n = 500 pairs per value of l). To consider an enhancer pair to be testable, we required both

enhancers to be located within 1 Mb of a common target gene and for the enhancers to be jointly perturbed in at least 10 cells.

(B) Histogram of the number of unique gRNAs per cell for data simulated with different values of l and positive interaction effects (colored; n = 50; 000 cells per

value of l) and the Gasperini et al. dataset (gray; n = 207; 324 cells).

(C) Power to detect interaction effects (y axis) in simulated datasets with varying MOIs (l) and effect sizes (x axis) using GLiMMIRS-int. See also Table S5.

(D) Histogram of significant (FDR corrected p value <0.1) effect sizes estimated by GLiMMIRS-base for n = 560 individual enhancers in the Gasperini et al.

dataset.
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We examined whether the combined effects of multiple en-

hancers on gene expression were better described by a multipli-

cative or an additive model. To this end, we fit two versions of

GLiMMIRS-int to the 264 enhancer pairs and their target genes

in the high-confidence set: an additive model, using an identity

link function, and amultiplicative model, using a log link function.

We then compared themodel fits with the Akaike information cri-

terion (AIC), an approach similar to that used by Dukler et al.5 to

compare different enhancer activity models. The multiplicative

model provided a better fit to the data in all cases, indicating

that the combined effect of enhancers is better described by a

multiplicative model (Figure 3A). Thus, we used themultiplicative

form of GLiMMIRS-int in all subsequent analyses.

We applied GLiMMIRS-int to the 264 enhancer pairs in the

high-confidence set and observed no significant interaction

terms (likelihood ratio test, false discovery rate [FDR] <0.1) (Fig-

ure 3B; Table S6). We then applied GLiMMIRS-int to the 46,166

enhancer pairs in the entire testable set and identified 31 signif-

icant interaction term effects (likelihood ratio test, FDR<0.1) (Fig-

ure 3C; Table S7). Of these significant interaction terms, 30 out of
31 were positive (Figure 3D; Table S7). To better understand

these significant interactions, we examined the distribution of

scRNA-seq UMI counts for their target genes, focusing on the

cells that received guides targeting both of the corresponding

enhancers. In themajority of cases, we observed a small number

of outlier cells with very high UMI counts (Figure S4A). Since

GLM coefficients and p value estimates can be sensitive to out-

liers, we computed Cook’s distance for each cell containing a

joint perturbation. Cook’s distance quantifies the influence of a

single observation on the coefficient estimate. The outlier cells

had large Cook’s distances, indicating that they disproportion-

ately affected coefficient estimates for the interaction effect,

bAB (Figure S4B). Therefore, we removed enhancer pairs where

any of the cells containing a joint perturbation had an extreme

Cook’s distance (max/mean ratio >5). After applying this filter,

11 out of 31 significant signals remained (Table S8).

The remaining interactions included one negative enhancer

interaction for the gene TIMM13 (Figure 3E). In this case, a

reduction in expression was observed only when both of the en-

hancers were jointly perturbed, potentially representing an
Cell Genomics 4, 100672, November 13, 2024 5
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Figure 3. Enhancers act multiplicatively to control gene expression, but analysis of CRISPR perturbations provide limited evidence for in-

teractions

(A) Distribution ofDAIC, the difference in AIC between the best-fitting model and the lesser model for n = 264 high-confidence enhancer pairs and corresponding

target genes from Gasperini et al. In every case evaluated, the multiplicative model fit better than the additive model.

(B) QQ plot of interaction coefficient p values for n = 264 high-confidence enhancer pairs, where each individual enhancer had significant effects on the target

gene expression. None of the interaction coefficients were significant (Benjamini-Hochberg FDR <0.1).

(C) QQ plot of n = 46; 166 enhancer pairs in the entire testable set, where each constituent enhancer did not necessarily have a significant effect on gene

expression. Significant interaction coefficients (FDR <0.1) are blue if one of the jointly perturbed cells was an outlier by Cook’s distance and red otherwise.

(D) Volcano plot of interaction coefficients for the 46,166 enhancer pairs in the entire testable set.

(E) An enhancer pair with a significant negative interaction on the expression of TIMM13. The y axis is TIMM13 expression estimated in cells lacking perturbations

to either enhancer (None), cells with perturbations of one enhancer (E1, E2), and cells with joint perturbations of both enhancers (E1 + E2). The blue rectangle is the

expected expression in joint perturbation condition under the null model of multiplicative enhancer effects (90% confidence interval [CI] estimated from 100

bootstraps). Whiskers are 90% CIs of expression estimates (from 100 bootstraps).

(F) A gene (SNX27) and enhancer pair with a significant positive interaction.

(G) Posterior estimate of frequency of enhancer pairs, with interactions estimated from the dataset of 264 high-confidence enhancer pairs. Each line corresponds

to a different power to detect interactions. The x axis is the prior belief in enhancer interaction frequency.

(H) Posterior estimate of frequency of enhancer pairs with interactions estimated from the 46,166 enhancer pairs in the entire testable set.
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example of enhancer redundancy.6,27 However, we believe that

this enhancer pair is unlikely to be a true case of enhancer redun-

dancy as neither of the targeted candidate enhancers

are marked by the canonical enhancer histone modification

H3K27ac in K562 cells (Figure S5), and they are located very

far from one another (>988 kb) in different topological associ-

ating domains (Figure S6).

The other 10 remaining significant interactions had positive ef-

fects and generally followed a pattern in which the expression of

the target gene was low in the absence of any enhancer pertur-

bations and elevated in jointly perturbed cells, as if the gene had

become de-repressed (Figure 3F). De-repression of gene

expression is not an expected response to targeting of en-

hancers by CRISPRi and could be due to regulatory effects on

other genes that exert downstream effects on the target genes.

Based on our analysis, evidence for interactions between en-

hancers in the Gasperini et al. dataset is very limited. In the cases
6 Cell Genomics 4, 100672, November 13, 2024
where we do identify significant interactions, they do not have

characteristics that would be expected given previously postu-

lated synergistic or redundant enhancers.6,27 To quantify the

possible frequency of enhancer interactions throughout the

genome, we estimated the posterior frequency of enhancer in-

teractions given a range of detection probabilities corresponding

to our power analysis (Figure 2C) and different priors for the fre-

quency of enhancer interactions (Figures 3G and 3H). For

example, with a prior enhancer interaction frequency of 25%

and a detection probability of 20%, which roughly corresponds

to our power to detect moderate interactions (effect size = �1),

the posterior enhancer interaction frequency for the high-confi-

dence set of enhancers is 2.4% (Figure 3G). Even if we assume

a very high prior enhancer interaction frequency of 50%, our pos-

terior estimate is only 8.6%. Since a detection probability of 20%

corresponds roughly to our power to identify moderate interac-

tions (effect size = �1), we infer that the frequency of enhancer
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tions from an independent CRISPRi dataset
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(A) Volcano plot of interaction coefficients and

�log10 p values estimated by GLiMMIRS-int from

the Morris et al. CRISPRi perturbation dataset. All

n = 36 possible pairs of enhancers for the nine

candidate enhancers for PTPRC were tested. Both

significant interactions were driven by jointly per-

turbed cells with outlier expression levels.

(B) Schematic of in silico perturbation strategy.

We input 196-kb sequences into Enformer, where

each input sequence contained both candidate en-

hancers and the target gene. We generated pre-

dictions from unperturbed WT sequences, se-

quences with the first enhancer (EnhA) scrambled,

sequences with the second enhancer (EnhB)

scrambled, and sequences with both enhancers

scrambled (EnhA&EnhB).

(C) We compared the Enformer-predicted change in

expression of the double mutant (EnhA&EnhB) to the

expected expression under a multiplicative model

with no enhancer interactions. We analyzed 1,372

enhancer pairs and genes where Enformer-pre-

dicted WT expression was >10 and quantified the

change in expression as the log ratio of mutant

expression to WT expression. The expected

expression for the double mutant was computed from the Enformer-predicted expression of the single (EnhA and EnhB) mutants under a multiplicative model of

activity. The shading of points corresponds to the Enformer-predicted WT expression level. Pearson’s r is indicated.
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interactions of moderate strength is likely below 10%. If we

consider a low detection probability of 5% corresponding to

weak interactions, the posterior interaction frequency estimates

depend more strongly on the priors and are 7.9% for a prior of

25% and 24% for a prior of 50% (Figure 3G). Thus, we have

less certainty in the frequency of weak enhancer interactions

but conclude that they are not likely to be extremely common.

For our entire set of 46,166 testable enhancer pairs, the poste-

rior estimates of enhancer interactions are far lower (Figure 3H).

Here, the frequency of interactions is expected to be low

because most of the individual enhancers included in this

analysis do not have evidence for independent effects on the

expression of their corresponding target genes. Nonetheless,

this analysis implies that cases of enhancer redundancy, where

enhancers’ effects on expression are only observed when two

enhancers are jointly perturbed, must be uncommon.

Validation with independent CRISPR perturbation
dataset and in silico perturbation experiments
To examine enhancer interactions in an independent dataset, we

next applied GLiMMIRS to a CRISPRi regulatory screen per-

formed byMorris et al.28 This study targeted candidate regulato-

ry sequences in K562 cells that were implicated in genome-wide

association studies of blood cell traits. We focused our analysis

on the PTPRC locus because six out of the nine candidate en-

hancers targeted near this gene were reported to affect its

expression. We re-analyzed this dataset using GLiMMIRS-

base and confirmed that those same six enhancers had signifi-

cant effects on PTPRC expression (Table S9; Bonferroni-cor-

rected p < 0.1). We then tested all 36 possible combinations of

pairs from the nine candidate enhancers for interactions using

GLiMMIRS-int and found two enhancer pairs with significant
interaction terms (Bonferroni-corrected p < 0.1). However, our

Cook’s distance analysis indicated that both significant interac-

tions were driven by outliers (Figure 4A; Table S10). Thus, we

conclude that there is no evidence for enhancer interactions

among the nine candidate enhancers for PTPRC.

As an orthogonal approach to examine interaction effects be-

tween enhancer pairs, we used Enformer29 to perform in silico

perturbation experiments. Enformer is a state-of-the-art deep

learning model that can accurately predict gene expression

from long genomic sequences (�200 kb). To use Enformer to es-

timate the effects of enhancer pairs on gene expression, we pro-

vided wild-type (WT) sequences and synthetic sequences where

regions corresponding to enhancers from the Gasperini et al. da-

taset30 were shuffled (Figure 4B). We then compared Enformer’s

predictions when individual enhancers were shuffled versus

when both enhancers were shuffled simultaneously (Figure 4B;

Table S11). The Enformer-predicted changes in gene expression

when both enhancers in a pair were simultaneously perturbed

were strongly correlated with the expected change in gene

expression under a multiplicative model of activity given the

predictions for individual enhancer perturbations (Pearson’s

r = 0:98; Figure 4C). This strong correlation is consistent with

a model of activity that does not require interaction effects be-

tween enhancers and provides further evidence that interactions

between pairs of enhancers are uncommon.

DISCUSSION

Summary
CRISPR perturbations provide a new way to measure how

combinations of enhancers regulate gene expression. We rean-

alyzed data from a single-cell CRISPRi experiment designed to
Cell Genomics 4, 100672, November 13, 2024 7
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map enhancers to the genes that they regulate. Since this data-

set transduced gRNAs with a high MOI, multiple enhancers

within 1 Mb of the same gene were sometimes perturbed within

the same cells, making it possible to analyze the joint effects of

multiple enhancers on gene expression. Our analyses of two

CRISPRi datasets (Figures 3 and 4A) and additional in silico

sequence perturbations (Figures 4B and 4C) support a model

in which enhancers act multiplicatively to control gene expres-

sion. Such a model was previously proposed by Dukler et al.,5

whose analysis of super-enhancers supported either a logistic

or multiplicative model of regulatory activity over an additive

model; however, this study was limited to examining enhancers

at only two loci. Likewise, a subsequent study proposed the

well-known ABC model of activity based on a perturbation

experiment targeting candidate enhancers for 30 genes; how-

ever, this study perturbed each enhancer individually, so its

conclusions about their regulatory activity cannot be extended

to the phenomenon of joint enhancer effects.31 A novel aspect

of our study is that we analyzed joint perturbations of

thousands of pairs of enhancers across the genome. Under a

multiplicative model of enhancer activity, we analyzed pairs of

enhancers that were jointly perturbed by CRISPRi and found

that the experimental results resemble those expected under

the null hypothesis of no enhancer interactions (Figures 3B,

3C, and 4A).

Limitations of the study
A limitation of the Gasperini et al. dataset that we analyzed is

that even with a high MOI and a large number of sequenced

cells, only a subset of enhancer pairs could be interrogated.

Specifically, we tested 46,166 of a possible 795,616 enhancer

pairs in the Gasperini et al. dataset because most were not

simultaneously perturbed in a sufficient number of cells.

Furthermore, our power to detect weaker interactions was

limited. For example, we only had 21.5% power to detect inter-

actions with an effect size of �1.0 under a simulated MOI

of l = 15 (Table S5). Many of these power limitations could

be overcome with CRISPRi experiments designed specifically

to probe enhancer interactions. For example, a high MOI

CRISPRi experiment could be performed targeting a much

smaller number of candidate enhancers so that testable pairs

are more frequently perturbed simultaneously in the same cells.

Multiple guides could also be transduced on the same vectors

so that nearby enhancers are guaranteed to be targeted in

many cells.32 This type of approach was recently used to esti-

mate enhancer interactions at the MYC locus.9 Another advan-

tage of providing multiple guides on the same vector is that

enhancer interactions could be interrogated with low MOI ex-

periments, which would circumvent two potential issues with

high MOI experiments. First, Cas9 competition for gRNAs

may reduce experimentally observed enhancer effect sizes,

and second, high MOIs may unintentionally induce cellular re-

sponses that alter gene expression.

Further limitations of our analysis are that both of the CRISPRi

datasets that we analyzed were from K562 cells, and it is

possible that enhancer interactions aremore prevalent under dy-

namic conditions or in different cell types. Interactions may also

be more common among enhancers that are clustered into su-
8 Cell Genomics 4, 100672, November 13, 2024
per-enhancers that were not specifically interrogated by the

Gasperini et al. dataset.
Conclusions
Despite the above limitations, our results argue against the

presence of strong epistatic interactions between enhancers.

If such interactions do exist, then they must be infrequent, of

small effect, or restricted to specific cell types or conditions.

How can these observations be reconciled with prior reports

of enhancer redundancy or synergy? A possible explanation

is that if an additive model is assumed, then interaction

terms are often required because the combined effects of

multiple enhancers are greater (synergistic) or less than

(redundant) than expected under an additive model. However,

these deviations from additivity may be naturally accounted

for by a multiplicative model without the need for an interac-

tion term. For example, under a multiplicative model, pertur-

bation of a weak enhancer may have a small or negligible

effect on expression on its own but a much more substantial

effect when combined with a perturbation to a strong

enhancer. An additive model would require an interaction

term to describe these results, and the enhancers would

appear to be redundant.

A recent study by Lin et al. analyzed enhancer interactions

at the MYC locus using pairs of CRISPR guides and reported

additive interactions between nearby enhancers and synergis-

tic interactions between distant enhancers.9 Our results are

difficult to compare with those from Lin et al. for two reasons.

First, the high-throughput screen in Lin et al. was performed

using cell proliferation rather than gene expression as

readout, thus assuming that proliferation was proportional to

MYC expression. Second, while Lin et al. examined how

selected pairs of enhancers affect the expression of MYC

and other genes, their analysis relied on log relative

expression obtained by RT-qPCR, which may not be directly

comparable to expression estimated from scRNA-seq UMI

counts.

Future studies examining enhancer interactions will benefit

from GLiMMIRS, which uses a GLM that accounts for guide ef-

ficiency, differences in per-cell sequencing depth, and several

covariates. We note that it is important to consider a multiplica-

tive model as the baseline expectation when looking for

enhancer interactions, and when interactions are identified, it is

important to consider the possibility that the results are driven

by a small number of outlier cells. To increase power to detect

weak interactions, CRISPR experiments that are specifically de-

signed to examine enhancer interactions are desirable. Our

study motivates the further study of enhancer interactions in

more cell types and conditions to which GLiMMIRS can be

applied to yield novel insights into regulatory element interac-

tions and their effects on transcription.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Endura electrocompetent cells Lucigen 60242

Chemicals, peptides, and recombinant proteins

Lipofectamine 2000 Life Technologies 11668019

Puromycin Life Technologies A1113802

RPMI-1640 L-glut, Gibco Thermo Fisher 11875119

DMEM GlutaMax high glucose pyruvate,

Gibco
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FBS Gemini Bio #100-500
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Superscript IV first-strand synthesis system Thermo Fisher 18091050

PowerUp SYBR Green Master Mix for

qPCR

Thermo Fisher A25742

BsmBI Thermo Fisher FERFD0454

NucleoBond Xtra Maxi EF kit Takara Bio USA 740424

Deposited data

Multiplexed single-cell CRISPRi

perturbation screen for enhancers in K562

Gasperini et al.13 GEO: GSE120861

PTPRC locus CRISPRi perturbation screen

for SNP effects

Morris et al.28 GEO: GSE171452

Data simulated with GLiMMIRS-sim

included in this paper

This paper Zenodo: https://doi.org/10.5281/zenodo.

13362083

Code for GLiMMIRS This paper Zenodo: https://doi.org/10.5281/zenodo.

13428917

Experimental models: cell lines

K562 cell line ATCC RRID:CVCL_0004

293FT cell line Salk Stem Cell Core RRID:CVCL_6911

Oligonucleotides

See Table S1 IDT N/A
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Thakore et al.33 Addgene #71236

psPAX2 Didier Trono Addgene #12260

pMD2.G Didier Trono Addgene #12259

Software and algorithms

GuideScan 2.0 Perez et al.,34

Schmidt et al.35
https://guidescan.com/grna

GLiMMIRS This paper https://github.com/mcvickerlab/

GLiMMIRS

Seurat Hao et al.,36 Stuart et al.37 https://satijalab.org/seurat/

FlashFry McKenna and Shendure38 https://github.com/mckennalab/FlashFry

biomaRt Smedley et al.39 https://useast.ensembl.org/info/data/

biomart/index.html

MASS Venables et al.40 https://cran.r-project.org/web/packages/

MASS/MASS.pdf

Enformer Avsec et al.29 https://github.com/google-deepmind/

deepmind-research/tree/master/enformer
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
K562 cells were cultured in RPMI with 10% FBS. 293FT cells were cultured in DMEM (high glucose) + 10% FBS +0.1 mM non-essen-

tial amino acids (NEAA) + 6mM L-glutamine + 1mM sodium pyruvate +500 mg/mL geneticin. Both cell lines were cultured at 37C with

5% CO2. K562 and 293FT are both female cell lines. Cell lines were not authenticated.

METHOD DETAILS

CRISPRi perturbation of NMU enhancers
We identified two target sites of interest, A and B, for the gene NMU, each of which was targeted by two gRNAs in the Gasperini

et al. experiment (A1 and A2 targeting enhancer A; B1 and B2 targeting enhancer B). Pairs of gRNAs were designed by FlashFry

to target enhancers A and B at the same time, using 2 gRNAs per site. The gRNA pairs included the following: NMU_tss+NMU_tss

(positive control), Safe_harbor (SH)+SH (negative control), A_sgRNA1+SH, A_sgRNA2+SH, SH + B_sgRNA1, SH + B_sgRNA2,

A_sgRNA1+B_sgRNA1, A_sgRNA1+B_sgRNA2, A_sgRNA2+B_sgRNA1, A_sgRNA2+B_sgRNA2. Pairs of gRNAs were cloned

into pLV-dCas9-KRAB-puro (Addgene #71236) following published methods.41,42 Briefly, DNA oligos carrying pairs of guides

were synthesized by IDT and cloned into pLV-dCas9-KRAB-puro plasmids by Gibson assembly reactions. Lentivirus was generated

by co-transfecting the plasmid with psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) in 293FT cells obtained from the Salk

Institute Stem Cell Core. Lentivirus was harvested 48h post transfection. K562 cells (ATCC #CCL-243) were transduced by the len-

tiviruses using spinoculation. 72h after transduction, K562 cells with viral genome integration were selected by puromycin for 48h.

Total RNA from live K562 cells was extracted and reverse transcribed using SuperScript IV First-Strand Synthesis System (Thermo

Fisher Scientific #18091050) with random hexamers. NMU expression was quantified by reverse transcription quantitative PCR (RT-

qPCR). CRISPR gRNA designs and PCR primers used in experiment can be found in Table S1.

Gasperini et al. dataset
Data from the at-scale screen in the Gasperini et al. study are available at GEO accession number GSE120861. We downloaded

guide spacer sequences from Table S2 of their paper.13 The single-cell RNA-seq expression matrix from the at-scale screen was

downloaded from the GEO file ‘GSE120861_at_scale_screen.exprs.mtx.gz’. The cell barcodes were determined from the GEO file

‘GSE120861_at_scale_screen.cells.txt.gz’. Gene names were determined from the GEO file ‘GSE120861_at_scale_screen.

genes.txt.gz’. Covariate information as well as cell-guide mapping information was determined from the GEO file:

‘GSE120861_at_scale_screen.phenoData.txt.gz’. Differential expression results were downloaded from ‘GSE120861_all_deg_

results.at_scale.txt.gz‘ to determine candidate enhancer pairs from the 664 enhancer-gene links. Enhancer-guide assignments

from the at-scale screen were downloaded from ‘GSE120861_grna_groups.at_scale.txt.gz‘ to find candidate enhancer pairs for

the larger low-confidence set.

Computing guide efficiencies
Wefirst collected the 13,189 guide RNA sequences used in the at-scale screen previously published byGasperini et al.,13 whichwere

published in Table S2 of their study. We then appended ‘NGG’ to each spacer sequence for compatibility with GuideScan 2.0.34 We

then used the GuideScan 2.0 gRNA sequence search tool with the organism ‘hg38’ and the enzyme ‘cas9’ parameters to predict

efficiencies for the guide RNA spacer sequences. We used the ‘‘Cutting.Efficiency’’ values outputted from GuideScan as our guide

efficiency values. These values are equivalent to the "Rule Set 200 scores defined by Doench et al. 2016 and can be used to predict the

on-target activity of gRNAs in CRISPRi screens.23

Out of the 13,189 guide RNA sequences, 762 guide RNAs were designed to target transcription start sites, 101 guide RNAs were

designed as non-targeting controls, 14 guide RNAs were designed as positive controls targeting the globin locus, and the remaining

12,312 guide RNAs were designed to target candidate enhancer sequences.

From the 12,312 enhancer-targeting guide RNAs, 2,331 guides did not have a guide efficiency value because GuideScan does not

compute scores for guides for which it cannot find a match or for which there are multiple matches within edit distance 1 (Table S12).

We excluded these 2,331 guide RNA sequences from downstream analysis so that in total 9,981 guides were used for our down-

stream analysis.

Computing Gasperini et al. cell cycle scores
Cell cycle scores were computed from the single-cell RNA-sequencing gene expression matrix from the at-scale screen previously

published by Gasperini et al.13 using the Seurat36,37,43–45 R package.

Since the Seurat R package uses gene names from the HUGOGene Nomenclature Committee, gene names were converted from

their Ensembl Gene ID to HGNC symbol (https://www.genenames.org/) using the biomaRt39 tool from Ensembl46 with the ‘‘hsa-

piens_gene_ensembl’’ dataset. Of the 13,135 genes in the at-scale expression matrix, 351 genes were not recognized by BioMart
Cell Genomics 4, 100672, November 13, 2024 e2
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and 571 genes did not successfully map from Ensembl Gene ID to HGNC symbol. For the total 922 genes that could not be mapped

from Ensembl Gene ID to HGNC symbol, the Ensembl Gene ID was imputed as the gene name for downstream analysis with Seurat

(Table S13).

To determine cell cycle scores, we used pre-defined sets of genes associated with S and G2M phases from the Seurat library. We

log-normalized the data, identified variable features, and scaled the expression matrix using functions defined in Seurat. We then

used the cell cycle scoring function with the predefined S and G2M gene sets in Seurat to compute cell cycle scores for each cell

in the at-scale screen. All Seurat functions were run with default parameters (Tables S14 and S15).

Model fitting and implementation
All models were fitted bymaximum likelihood using the ‘glm.nb()‘ function from theMASS package in R.40 Both GLiMMIRS-base and

GLiMMIRS-int use a negative binomial GLM with a log link function. The additive model was implemented with an identity link

function.

Defining the GLiMMIRS-base model
Our baseline model tests for the simple case where a single enhancer acts on a single gene. The model is a GLM

which assumes a log link function and that the single-cell RNA-seq UMI counts of each gene follow a negative binomial

distribution. In other words, y � NBðm; fÞ, where y represents the scRNA-seq UMI counts of the genes, f represents the

dispersion parameter of the negative binomial distribution, and m is the mean parameter of the negative binomial distribution.

The mean parameter is specified by a linear predictor passed through an exponential (inverse log-link) function:

m = exp ðb0 + benhancerXperturb + bSXS + bG2MXG2M + bmitoXmito + bgRNAsXgRNAs + bbatchXbatch + lnðsÞÞ.
In this expression, we have gene-specific coefficients and cell-specific predictor values. b0 is the intercept and represents the

baseline gene expression before the influence of any other relevant factors on gene expression. benhancer represents the effect of

a perturbed target site (putative enhancer) on its target gene. bS and bG2M are coefficients that represent the effect of the S and

G2M cell cycle states, respectively. bmito is a coefficient representing the effect of percentage of mitochondrial reads. Finally,

bgRNAs is a coefficient representing the effect of the total number of gRNAs observed within a given cell. bbatch is a coefficient repre-

senting the effect of the prep batch, from the Gasperini et al. 2019 experiment. We incorporate measures of guide efficiency in the

variable Xperturb. This variable is calculated for each cell based on the efficiencies of every gRNA targeting the target site being

modeled which are present in the cell. Specifically, Xperturb is calculated for any given cell and target site as 1 �
YK
k = 1

ð1 � gkÞ, where

K is the total number of gRNAs targeting the target site found in the cell and gk is the efficiency of the kth gRNA. Because we interpret

guide efficiency as the probability that a gRNA successfully perturbs its designated target site, the expression for Xperturb can be in-

terpreted as the joint probability of a perturbation in a given cell based on all of the gRNAs targeting the site that are present in that

cell. XS and XG2M are S and G2M cell cycle scores, respectively, for each cell. Xmito is the percentage of mitochondrial reads in a cell.

XgRNAs is the total number of gRNAs observed in a cell. Xbatch is the prep batch (from Gasperini et al. 2019). Finally, s is an offset term

for themodel that serves as a scaling factor controlling for variable sequencing depth across cells. It is calculated as s = T
1e6, where T

is the total scRNA-seq UMIs in a cell summed across all genes in the expression count matrix. Prior to fitting the models, we added a

pseudocount of 0.01 to the scRNA-seq counts of the gene being modeled for all cells to prevent inflation of coefficients (see section

Defining the GLiMMIRS-int model).

Simulating data for GLiMMIRS-base
To begin, we define some simulation parameters, including the total number of cells,C; the total number of genes,G; the total number

of target sites,N; and the number of gRNAs targeting each site, d. Note that the total number of target sites,N, is also the total number

of target genes, as this simulation assumes that each target site is a unique enhancer for a unique gene. To generate a simulated

dataset, we need to simulate sets of coefficient values for each gene (b0;benhancer ;bS;bG2M;bmito) as well as corresponding variable

values for each cell (Xperturb;XS;XG2M;Xmito; and scaling factor s). We also need to simulate the gRNA library and assign gRNAs to

cells, as well as assign guide efficiencies to gRNAs (which will be used to calculate Xperturb). These values are used to calculate a value

of m for defining a negative binomial distribution from which simulated counts for a given gene will be drawn. Specifically, m =

expðb0 + benhancerXperturb + bSXS + bG2MXG2M + bmitoXmito + lnðsÞÞ.The terms for total gRNA counts per cell and batch are omitted

from the simulation for simplicity, and are also omitted when fitting the baseline model to the simulated data. The dispersion param-

eter for the negative binomial distribution will be constant across all genes and estimated from the empirical data. For the simulated

dataset described in our paper, we used values of G = 13000;N = 1000;d = 2.

We first simulated values of cb0 for each gene. To do this, we randomly selected a subset of 1,000 genes and 10,000 cells from the

Gasperini et al. 2019 at scale experiment and fit the counts for these genes to negative binomial distributions using maximum likeli-

hood estimation (MLE). Specifically, we define the mean parameter of the negative binomial here as m = expðcb0 + lnðsÞÞ. Note that

here s is calculated from the total counts for the gene across the subset of 10,000 cells using the formula defined in the previous

section. This simplified model has no covariates, but does account for the scaling factor, as the goal is to simply get a sense of
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what coefficient values reflect the empirical data. After modeling the counts from the random subset of data, we visualized the dis-

tribution of estimated cb0 (from which m is calculated) and dispersion parameters for each gene tested. From what we observed, we

picked a fixed dispersion value of f = 1:5 for defining the negative binomial distribution for generating simulated count data. We also

observed that the distribution of cb0 estimated from the subset of the at scale experiment were roughly normally distributed. There-

fore, we fit these estimated cb0 values to a normal distribution with MLE to obtain parameters for defining a normal distribution from

which to sample b0 values for the simulated dataset. We obtained parameters for the normal distribution of mz2:24 and sz 1:8, so

we sampled G times from Nðm = 2:24;s = 1:8Þ to yield baseline coefficients for all the genes in the simulated dataset.

To assign guides to cells, we first determined the number of gRNAs in each cell in our simulated dataset by sampling from a Pois-

son distribution defined as Poisðl = 15Þ. This value of l comes from the fact that in the Gasperini et al. 2019 experiment, they

observed a median of approximately 15 unique gRNAs per cell. Thus, we sampled C times from the distribution defined by

Poisðl = 15Þ to obtain the number of unique gRNAs in each cell. To assign gRNAs to each cell, we sampled g times without replace-

ment from the set of all gRNAs in our library, where g is the total number of gRNAs in each cell (determined in the previous step) and

the gRNA library is denoted as a sequence of integers 1;2;:::;dN. Information about which gRNAs are found in which cells are stored in

a one hot encoded matrix.

We defined guide efficiency for each gRNA by sampling from a left-skewed Beta distribution, to represent the fact that an exper-

imental designwould select for gRNAswith higher efficiencies). For our simulationwe used aBeta distribution defined asBetaða = 6;

b = 3Þ.
Next, we created a mapping of gRNAs to target genes. For each target site, or putative enhancer, we randomly select an integer

from 1; 2; :::;G to represent the target gene of the candidate enhancer (indexers are used as gene identifiers). This is done without

replacement to simulate a case where we are attempting to study enhancers of distinct genes, and yields a vector of length N, which

wewill replicate d times to yield a completemapping of gRNAs to target genes. In this vector of lengthNd, the index of a given value in

the vector represents the gRNA identifier.

Enhancer effect sizes are represented by the coefficient benhancer and are assigned on a per-gene basis. These values represent the

effect that an enhancer has on the expression of its target gene. To do this, we sampled from a gamma distribution andmultiplied the

values by �1 to yield a negative value, representative of the expectation that successful repression of an enhancer will most likely

decrease target gene expression. We wanted the values to be on a comparable scale with the expected baseline expression, b0,

while also not being so small that they would be difficult for the model to detect changes in expression. We chose to sample values

of benhancer from a gamma distribution defined by Gða = 6;s = 0:5Þ, and all values drawn from the distribution weremultiplied by�1

to represent a negative effect on target gene expression, which is the expectation when an enhancer is repressed.

Xperturb is calculated for each cell as a function of guide efficiencies for the gRNAs targeting the putative enhancer of interest found

in that cell. Specifically, it is calculated for each cell as Xperturb = 1 �
YK
k = 1

ð1 �gkÞwhereK is the total number of gRNAs targeting the

putative enhancer of the gene being simulated/modeled that are present in the cell and gk is the guide efficiency of the k th gRNA in

this set of targeting gRNAs. Xperturb = 0 when K = 0. We compared the performance of using this variable in our model against the

performance of using a binary indicator variable that simply represents the presence of any gRNA targeting the gene being simulated/

modeled in each cell.

We generated cell cycle scores for each cell in our simulated dataset using a similar approach to the one we used for sampling b0
values. That is, we first fit models to the empirical data to identify a distribution to draw simulated values from such that they would

reflect the distribution of the real data. We first calculated S and G2M cell cycle scores for the empirical data using Seurat’s CellCy-

cleScoring() function.36,37,43–45We observed that while the S cycle scores calculated from the empirical data appeared to be normally

distributed, the G2M scores appeared to show a right skewed distribution. Thus, we fit the empirical S cycle scores to a normal dis-

tribution and the empirical G2M scores to a skew normal distribution with MLE. We used the estimated parameters to define distri-

butions for sampling S andG2Mscores for the simulated dataset. Specifically, we sampledC times froma normal distribution defined

by Nðm = � 1:296e � 3; s = 0:11Þ and a skew normal distribution defined by Nðz = � 0:256;u = 0:312;a = 6:29; t = 0Þ to obtain

simulated S and G2M scores, respectively.

We generated corresponding values of bS and bG2M by sampling from the same distribution used to generate the enhancer effect

sizes, or the gamma distribution defined by Gða = 6;s = 0:5Þ.
Percentage ofmitochondrial DNA per cell is simulated using the same approach used to simulate the cell cycle scores and baseline

expression values (b0). We fit to the empirical percentages of mitochondrial DNA per cell. We fit to a beta distribution using MLE, and

used the resulting parameter estimates to define a new beta distribution from which we sampled simulated values of percentage of

mitochondrial DNA. This beta distribution was defined as Betaða = 3:3;b = 81:48Þ.
Coefficients for the effect size of percentage of mitochondrial DNA, bmito, were simulated per gene by sampling from the same

gamma distribution used to sample the other coefficients (benhancer ;bS;bG2M). This is the gamma distribution defined as Gða = 6;

s = 0:5Þ.
Finally, we simulated scaling factor values, s, for each cell in our simulated experiment, which were used to calculate values of m for

simulating counts for each gene. To do this, we simulated values of T, or total counts per cell, for each cell by sampling from aPoisson
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distribution defined by Poisðl = 50000Þ, where 50000 is the expected number of reads observed in each cell in a scRNA-seq

experiment.

Simulating noisy guide efficiencies
The noisy guide efficiency estimate, w, for a given gRNA in our simulated dataset was sampled from a new Beta distribution param-

eterized by a0 and b0, which are calculated from the ‘‘true’’ simulated guide efficiency for the gRNA, w, and a dispersion-controlling

constantD.Wewanted the noisy guide efficiency to be sampled from aBeta distributionwhosemean is equivalent to the ‘‘true’’ guide

efficiency value; thus, w = a0
a0+b0. We defined the dispersion-controlling constant D as D = a0 +b0. From this, it follows that a0 = Dw

and b0 = D � a0. Like so, we calculated values of a0 and b0 fromwhich to draw the noisy guide efficiency estimate for a given gRNA in

our simulated guide library. The magnitude of D is inversely proportional to the amount of noise (Figures S2A and S2B).

Fitting GLiMMIRS-base to simulated data
To fit the baseline model to simulated data, we used a negative binomial GLM with a mean defined by the same log-link function

described for generating simulated counts: m = expðb0 + benhancerXperturb + bSXS + bG2MXG2M + bmitoXmito + lnðsÞÞ. Models were fitted

by MLE. Each model can be described as y = NBðm;fÞ, where y is the simulated counts for the gene being modeled, and all variable

values (Xperturb;XS;XG2M;Xmito) come from the per-cell values from the simulated dataset. We omit bgRNA when fitting to the simulated

data for simplicity.

Evaluating GLiMMIRS-base on simulated data
Our simulated dataset hadN target sites, or genes that were regulated by an enhancer perturbed in the experiment. For each of these

genes, we computed the Pearson’s correlation (r) between the estimated coefficients, derived from fitting the baseline model to the

simulated data, and the ‘‘true’’ (or reference) coefficients, which were generated for the simulation and used to parameterize the dis-

tribution from which the simulated counts were drawn. These results are summarized in Table S2 for the continuous vs. indicator

forms of Xperturb and in Table S3 for the three different sets of noisy simulated guide efficiencies.

Fitting GLiMMIRS-base to experimental data
For running a single enhancer-gene pair analysis on the experimental data, we obtained the 664 previously published enhancer-gene

pairs from the Gasperini et al.13 paper using information provided in their Table S2. Using these 664 previously published enhancer-

gene pairs, we retrieved all experimental gRNAs targeting these enhancers, and filtered gRNAs where there was no valid guide ef-

ficiency fromGuideScan 2.0 (Table S12). We then obtained the preparation batch, cell gRNA count, and percent mitochondrial reads

covariates from their experimental data published on GEO and excluded cells without the ‘guide_count’ covariate value from our

downstream modeling. To account for sequencing depth, we used the at-scale gene expression matrix and counted the number

of transcripts per cell. We then divided these values by 1e�6 to obtain values for each cell which we included in our linear model

through the offset() function. Prior to running the models, a pseudocount of 0.01 was added to the scRNA-seq counts for each

cell. Models were then fitted using the nb.glm() function in theMASSR package using a log-link function and optimizing via maximum

likelihood estimation. In the at-scale model, there were 207,324 cells total. After filtering for cells without guide count values, there

were 205,797 cells that were included in themodeling process. The scrambled perturbation negative control was obtained by scram-

bling the vector of guide efficiencies prior tomodeling. Themismatch gene negative control set was obtained by randomly sampling a

gene for a given enhancer from the set of 664 previously published enhancer-gene pairs. Models were successfully run for 609 of the

664 enhancer-gene pairs.

Defining the GLiMMIRS-int model
Our model for an enhancer gene is quite similar to our baseline model, except we replace benhancer with three new coefficients: bA;bB;

bAB. Referring to the two enhancers in the pair being modeled as enhancers A and B: bA represents the effect of enhancer A on the

target gene; bB represents the effect of enhancer B on the target gene; bAB represents the interaction effect between enhancers A and

B on the target gene. The new negative binomial GLM has a mean defined as: m = exp ðb0 + bAXA + bBXB + bABXAB + bSXS +

bG2MXG2M + bmitoXmito + bgRNAsXgRNAs + bbatchXbatch + lnðsÞÞ. Here, XA;XB;XAB represent the perturbation probabilities of enhancer

A, enhancer B, and both enhancers, respectively. They are calculated in the same manner as Xperturb.

When fitting linear models, we observed inflated bAB coefficients associated with cases where all cells containing gRNAs for both

enhancers A and B showed no expression of the target gene (Figure S7). To prevent this inflation of the coefficients, we added a

pseudocount of 0.01 to all the gene expression counts. When including a pseudocount in our modeling process, we observed a

reduction in outliers in our enhancer effect sizes (Figure S7).

Defining testable pairs of enhancers
From the at-scale screen, enhancers and genes were defined using the ‘GSE120861_gene_gRNAgroup_pair_table.at_scale.txt’ file

from Gasperini et al., which defined the gRNAgroup-gene pairs tested in their study. To filter for enhancer-gene tests only,
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gRNAgroup-gene pairs belonging to the ‘NTC’, ‘positive_ctrl’, and ‘TSS’ general groups were removed from our downstream anal-

ysis. This resulted in 5,766 unique enhancer sequences and 18,389 unique genes across the gRNAgroup-gene pairs.

The positions of both enhancers and genes were computed as the average between the start and end coordinates. Filtering for

enhancers within 1 MB of a gene resulted in 131,356 candidate enhancer-gene links. Some genes had the same Ensembl ID but

different positions. After removing these duplicates by keeping the first entry in the table, there remained 128,918 enhancer-gene

links. Taking pairwise combinations of these enhancers resulted in 795,616 total enhancer-enhancer-gene sets.

The 795,616 total enhancer-enhancer-gene sets spanned 16,189 unique genes. However, only 9,601 of these genes had gene

expression measurements in the scRNA-seq matrix from the at-scale screen. Filtering for enhancer-enhancer-gene sets with com-

plete information yields 477,994 enhancer-enhancer-gene sets.

Enhancer-enhancer-gene sets were then filtered to remove any where both enhancers were not perturbed in at least 10 cells in the

study. This was determined as a non-zero count in the matrix of gRNA assignments, which can be found in the ‘GSE120861_at_s-

cale_screen.phenoData.txt.gz’ file from the Gasperini et al. study. Filtering based on this criterion resulted in 82,314 enhancer-

enhancer-gene sets.

When computing guide efficiencies to run GLiMMIRS, there is a fraction of guides that do not have efficiency values in the

GuideScan database, mostly due to having multiple genome matches or multiple off-target effects (see: Computing guide effi-

ciencies). We removed these guides from downstream analysis, resulting in some enhancers where none of their targeting guides

have valid guide efficiency information. Due to this dropout effect, there emerged additional cases where the number of cells with

a non-zero perturbation probability for both enhancers is less than 10 which we also filtered out. Ultimately, we were left with

46,166 testable enhancer pairs and corresponding target genes that we successfully ran GLiMMIRS-int on.

Simulating data for GLiMMIRS-int
We adapted the simulation framework used for simulating data for a single enhancer acting on a single gene to simulate data for pairs

of enhancers acting on a single gene. We added additional parameters to determine the number of ‘‘reference’’ enhancer pairs with

and without an interaction effect between them. We refer to these as ‘‘interacting’’ (Nint) and ‘‘non-interacting’’ (Nnon) pairs, respec-

tively. These are selected from the set of all possible pairwise combinations of N target sites defined for our simulation. Note that for

the case of an enhancer pair acting on a single gene,N represents the total number of putative enhancers rather than the total number

of target genes. After randomly selecting Nint and Nnon pairs without replacement from the set of possible pairs, we then randomly

select the same number of genes without replacement from the set of possible genes (1; :::;G) to be the target genes of those pairs.

For the simulation described in this paper, we selected values of Nint = Nnon = 500 and a total of N = 1000 target sites.

Defining high-confidence enhancer pairs
The previously published 664 enhancer-gene pairs were derived from Table S2 in the Gasperini paper. Taking pairwise combinations

of enhancers that target the same gene from these 664 enhancer-gene pairs resulted in 330 enhancer-enhancer-gene sets. No dis-

tance metric limitation was imposed for the high-confidence enhancer-enhancer-gene sets. However, a handful of guide RNAs did

not have efficiencies, and were discarded. As a result, we were only able to run GLiMMIRS-int on 264 out of these 330 sets. Not all

enhancer pairs in the high-confidence set were jointly perturbed in a minimum of 10 cells (the threshold for defining the larger set of

testable enhancer pairs).

Simulating data for power analysis
Most aspects of the data simulation are identical to the data simulation for a single enhancer acting on a single gene. The coefficients

bA and bB are drawn from a normal distribution defined as Nðm = � 0:02;s = 0:16Þ. The cell cycle effects bS and bG2M were also

sampled from normal distributions defined asNðm = � 0:21;s = 1:04Þ andNðm = 0:004;s = 0:49Þ, respectively. The effect size for
percentage of mitochondrial DNA, bmito, was sampled from a normal distribution defined as Nðm = � 0:37; s = 9:04Þ. These
distributions were selected by fitting to the enhancer effects estimated from the experimental data. For the power analysis, we

assign a number of different fixed values of bAB for genes that are acted upon by an interaction effect between enhancers (e.g.,

the target genes of ‘‘positive’’ enhancer pairs). For genes that are not acted upon by any interaction effect, we set bAB = 0. The other

parameter that we modulate in the simulations is the value of l for the Poisson distribution used to sample the number of unique

gRNAs found in each cell. This is representative of multiplicity of infection, or MOI, so for each value of l that we want to test

with our power analysis, we generate different numbers of gRNAs per cell and use these sets of values to generate different

mappings of gRNAs in cells. This yields a different one-hot encoded matrix for each value of lambda, which will also lead to different

sets of values of XA;XB; and XAB, as greater MOImay result in more gRNAs for a target site found in each cell and greater perturbation

probabilities. Simulated counts are generated from a negative binomial distribution parameterized by NBðm; fÞ, where m =

exp ðb0 + bAXA + bBXB + bABXAB + bSXS + bG2MXG2M + bmitoXmito + lnðsÞÞ and f = 1:5 (determined from modeling empirical data,

see section Simulating data for GLiMMIRS-base). We generated a set of simulated counts for each value of l and interaction effect

size. For our power analysis, we used values of l = 15; 20;30;50 and bAB = 0:5;1;2;3;4;5;6.
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Power analysis
For our power analysis, we fit our model to the simulated data for the ‘‘positive’’ and ‘‘negative’’ pairs to obtain true positive rates

(TPR) and true negative rates (TNR), respectively. We calculated the proportion of models that correctly called significant interaction

terms, bAB, for the ‘‘positive’’ cases to obtain TPR. We calculated the proportion of models that correctly called no significant inter-

action terms, bAB, for the ‘‘negative’’ cases to obtain TNR.

Comparing multiplicative to additive model
To compare the fits of multiplicative vs. additive models of enhancer pair activity, we defined each model under the null hypothesis

(H0), where there is no interaction term (for simplicity). For the multiplicative model under H0, we use the canonical log-link function

and define the mean of the negative binomial, m, as:

m = expðb0 + bAXA + bBXB + bSXS + bG2MXG2M + bmitoXmito + bgRNAsXgRNAs + bbatchXbatch + lnðsÞÞ. For the additive model under H0,

we use the identity link function where the mean is simply equivalent to the linear predictor without transformation, defined as:

m = sðb0 + bAXA + bBXB + bABXAB + bSXS + bG2MXG2M + bmitoXmito + bgRNAsXgRNAs + bbatchXbatchÞ. We applied each model to the

330 testable pairs from the experimental data where each enhancer in the pair had evidence of being an enhancer for the target

gene based on the analysis by Gasperini et al. We compare model fits by examining the AIC, with a lower AIC indicating a better

fit. We calculated DAIC by subtracting the AIC of the lesser model from the AIC of the best fitting model. Since we found that the

multiplicative model fit better in every case we tested, every DAIC reported in our study reflects the AIC of the additive model sub-

tracted from the AIC of the multiplicative model.

Fitting GLiMMIRS-int to empirical data
For analyzing both sets of enhancer pairs tested in our analysis, we followed an identical procedure to the baseline model scenario,

with the exception of adding a second enhancer effect vector, and allowing for interactions between the two enhancer vectors using

built-in functionality within the glm.nb() function in the MASS R package.

Cook’s distance outlier filtering
When analyzing the significant enhancer-enhancer interactions from our at-scale analysis, we observed that several of these inter-

actions were large in magnitude and positive. We then manually inspected the gene expression counts of cells with both enhancers

perturbed and observed that this cell population generally had a single cell with a high expression. Since coefficient estimates from

GLMs can be strongly influenced by outliers, we believe the ‘‘significant’’ interactions detected by GLiMMIRS-int in the Gasperini

analysis are artifacts of the single-cell CRISPR experiment rather than true biological signals. To identify outlier cells that drive inter-

action coefficient estimates, we used Cook’s distance, which is a metric that quantifies the influence of each observation on the co-

efficients of a regression model and which has been previously used in differential expression analysis tools like DESeq2.47 To define

outlier-driven interactions, we set a threshold of:
Max Cook0s Distance over all cells

Mean Cook0s Distance over cells with double perturbation > 5, and we discarded enhancer-enhancer interactions with jointly perturbed cells that

met this criterion from downstream analysis. We applied this same metric to the significant interactions detected in the Morris et al.

dataset.

Bootstrapping expression confidence intervals
We used a bootstrapping procedure to compute confidence intervals for gene expression estimates and the expected expression

under a multiplicative model (Figures 3E and 3F). For each of the enhancer-enhancer interactions that remained significant in our

at-scale analysis following our Cook’s distance-based filtering, we performed 100 bootstrap sampling iterations, in which all cells

were resampled with replacement. In each iteration, the full GLiMMIRS-int model was fit to the data, and the intercept, enhancer

1 perturbation (E1), enhancer 2 perturbation (E2), and interaction coefficient estimates were recorded. Using these coefficients,

scaled expression values were computed using the following formulas:

No Perturbation = expðInterceptÞ

Enhancer 1 Perturbation = expðIntercept + E1Þ

Enhancer 2 Perturbation = expðIntercept + E2Þ

Double Perturbation ðmultiplicative expectationÞ = expðIntercept + E1 + E2Þ

Double Perturbation ðobservedÞ = expðIntercept + E1 + E2 + E1 � E2Þ
The central 90 coefficient estimates from the bootstrap iterations were used to compute 90% confidence intervals.
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Preprocessing Morris et al. data
Single-cell RNA-sequencing and guide RNA data were downloaded from GEO accession number GSE171452 under ‘STINGseq-

v1_cDNA’ (GSM5225857) and ‘STINGseq-v1_GDO’ (GSM5225859), respectively. Cell-level covariates were obtained from

Table S3C. SNP IDs for the SNPs surrounding the PTPRC locus were obtained from Table S1E. SNP-guide RNA assignments

were obtained from Table S3A. All supplementary tables referenced were downloaded directly from the Morris et al. manuscript.28

Cell cycle scoring was performed on the scRNA-sequencing data using the Seurat software package. Cells were pre-filtered using

the same QC metrics as Morris et al. Cell cycle scores were computed using the following functions: Read10X(), CreateSeuratOb-

ject(), NormalizeData(), FindVariableFeatures() with the ‘vst’ selection method, ScaleData() with all genes in the RNA-sequencing ma-

trix, and CellCycleScoring() using the predefined S and G2M gene sets from Seurat. All functions were run with default parameters

unless otherwise specified.

The gRNA assignment matrix was binarized based on whether each count value was greater than or equal to its gRNA UMI

threshold. Guide RNAUMI thresholds were determined using the ‘umi_thresholds.csv.gz’ file fromGEO. For the STING-seq analysis,

we did not include guide efficiency information, since none of the guide RNA sequences targeting PTPRC enhancers in the exper-

iment had efficiencies available in the GuideScan database.

Prior to running GLiMMIRS, both the guide RNA and RNA-sequencing matrices were pre-filtered to only include cells passing the

QC thresholds previously defined by Morris et al.

In silico perturbation with enformer
To select enhancer pairs for input into Enformer, we first filtered the set of 795,616 enhancer pairs in the Gasperini dataset to those

that were simultaneously perturbed in a minimum of 10 cells. We then reduced this set to enhancer pairs associated with expressed

genes in our single-cell RNA-sequencing matrix. To evaluate the effects of synthetic perturbations on a target gene of interest, we

focused on enhancer pairs that were both located in a �196kb window centered on the TSS of their putative target gene as these

would be possible to evaluate with Enformer given the model’s input size constraints (196,608bp). These criteria reduced the set

of enhancer pairs to 2,136 pairs. We then retrieved the input sequences containing each of these enhancer pairs from hg19 and

used Enformer to make predictions on these wild type (WT) unperturbed sequences. Enformer predicts CAGE-seq reads over a re-

gion of 114,688bp at the center of the input sequence in 128 bp bins, resulting in 896 output bins altogether. To focus on TSS activity

only, we considered the average of the predictions for the central bins (i.e., bins 447 and 448) across 10 different shuffles of the

enhancer regions as the predicted gene expression signal for a given gene. We used predictions for track 5,111 of the human output

head, which corresponds to K562 CAGE predictions. We then removed sequences where the Enformer predicted WT signal was

below 10, leaving a total of 1372 sequences for downstream analysis. We then made predictions with the first enhancer in the

pair shuffled (EnhA); the second enhancer in the pair shuffled (EnhB); and both enhancers in the pair shuffled (EnhA&EnhB). Shuffles

were accomplished by performing ten independent dinucleotide shuffles of the target enhancer(s) and averaging Enformer’s predic-

tions, similar to a Global Importance Analysis.48 This shuffling and averaging serves to marginalize out the contribution of the en-

hancer(s), similar to inactivation perturbation via CRISPRi. The difference between the average predicted CAGE-seq level between

mutant (i.e., shuffled) sequences and WT sequences was quantified with a log ratio: log
�

yM
yWT

�
, where yM is the Enformer-predicted

expression of themutant sequence and yWT is the Enformer-predicted expression of the wild type sequence.We estimated enhancer

effects for the individual mutant sequences under a multiplicative model as:

b0 = logðyWTÞ

bA = logðyEnhAÞ � b0

bB = logðyEnhBÞ � b0

and then computed the expected expression of the target gene for the double mutant sequence under the multiplicative model as:

Eðy
EnhA & EnhB

Þ = expðb0 + bA + bBÞ
We then plotted the expected difference in expression log

�Eðy
EnhA & EnhB

Þ
yWT

�
against the Enformer-predicted (observed) difference in

expression log
�y

EnhA & EnhB

yWT

�
and calculated the Pearson’s correlation between them (Figure 4C).

Bayesian interaction detection probability
Weperformed a Bayesian analysis to obtain posterior estimates of the frequency of enhancer interactions, given different prior beliefs

in interaction frequencies.We used a beta distribution to specify priors for interaction frequency, withmeans between 0.05 and 1, and

standard deviation of 0.2. Then, we considered various degrees of power to detect interactions: 0.05, 0.1, 0.2, 0.4, 0.6, 0.8. For each

power setting, we computed a prior probability distribution for detecting enhancer-enhancer interactions usingGLiMMIRS by scaling

the mean and standard deviation estimates by the power. Since the prior is a beta distribution and the number of detected interac-

tions follows a binomial distribution, the prior is conjugate and the posterior distribution is also a beta distribution with a closed-form
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solution. The curves in Figures 3G and 3H show the maximum a posteriori probability (MAP) from the resulting posterior distribution.

For the high-confidence set of enhancer pairs (Figure 3G), we set the number of detected interactions to 0 out of 264 tested. For the

entire set of enhancer pairs (Figure 3H), we excluded the significant outlier-driven interactions and set the number of detected inter-

actions to 11 out of 46,166 tested.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses, excluding the in silico perturbation with Enformer and downstream analyses, were performed with R. The En-

former analysis was performed with Python. Where relevant, the sample size n is indicated in the corresponding figure legends. Anal-

ysis details can be found in the method details section (i.e.,: modeling assumptions, statistical tests, definitions, etc.). All boxplots

indicate the data quartiles, where the median is indicated as a horizontal line and the top and bottom hinges of the box area indicate

the 75th and 25th percentiles, respectively. The upper and lower whiskers extend to the largest and smallest extreme values up to the

1.5 interquartile range. Any outlying points have been plotted individually. P-value significance thresholds and multiple testing cor-

rections methods are indicated in the figure legends or text when relevant.
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