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Abstract 8 

Identifying non-coding regions that control gene expression has become an essential aspect of 9 

understanding gene regulatory networks that can play a role in crop improvements such as crop 10 

manipulation, stress response, and plant evolution. Transcription Factor (TF)-binding 11 

approaches can provide additional valuable insights and targets for reverse genetic approaches 12 

such as EMS-induced or natural SNP variant screens or CRISPR editing techniques (e.g. 13 

promoter bashing). Here, we present the first ever DAP-seq profiles of three GRAS family TFs 14 

(SHR, SCL23, and SCL3) in the crop Sorghum bicolor, Oryza sativa japonica, and Zea mays. 15 

The binding behaviors of the three GRAS TFs display unique and shared gene targets and 16 

categories of previously characterized DNA-binding motifs as well as novel sequences that 17 

could potentially be GRAS family-specific recognition motifs. Additional transcriptomic and 18 

chromatin accessibility data further facilitates the identification of root-specific GRAS regulatory 19 

targets corresponding to previous studies. These results provide unique insights into the GRAS 20 

family of TFs and novel regulatory targets for further molecular characterization.  21 
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Introduction 31 

GRAS transcription factors (TFs) form a large family of plant-specific TFs. Named from three 32 

members of the family, GIBBERELLIN-ACID INSENSITIVE (GAI), REPRESSOR of GA1 (RGA), 33 

and SCARECROW (SCR), these TFs serve a multitude of developmental and environmental 34 

response functions and comprise several subfamilies and number in the several dozens of 35 

individual proteins across plant lineages(Jaiswal et al., 2022). Members of the GRAS contingent 36 

have been shown to be involved in meristem development and axial initiation in tomato, petunia, 37 

and arabidopsis(Schumacher et al., 1999; Stuurman et al., 2002; Goldy et al., 2021); influencing 38 

meiotic progression in pollen development (Morohashi et al., 2003); fruit development and 39 

ripening(Huang et al., 2015; Liu et al., 2021b); seed germination(Lim et al., 2013); arbuscular 40 

mycorrhizal symbiosis(Gobbato et al., 2012; Floss et al., 2013; Xue et al., 2015); and light signal 41 

transduction as well as plant growth and fertility(Peng et al., 1999; Fukazawa et al., 2014; 42 

Fukazawa et al., 2017). This broad onus for GRAS TFs is due, in part, to its expansive cross-43 

talk with numerous hormone signaling pathways, including gibberellic acid(Peng et al., 1997; 44 
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Silverstone et al., 1998; Dill and Sun, 2001; King et al., 2001; Fu et al., 2002; Niu et al., 2019), 45 

jasmonic acid(Hou et al., 2010), brassinosteroids(Tong et al., 2009; Tong et al., 2012), and 46 

auxin(Gao et al., 2004; Sánchez et al., 2007); which also relates to GRAS genes having 47 

involvement in numerous stress responses like drought, heat, salinity, cold(Ma et al., 2010; 48 

Yang et al., 2011; Yuan et al., 2016), light(Chen et al., 2015), disease resistance(Fode et al., 49 

2008; Wild et al., 2012; Li et al., 2018), and flavonoid production(Pillet et al., 2015; Huang et al., 50 

2021). Initially, it was shown that many GRAS TFs might require the interaction of other proteins 51 

like Indeterminate Domain (IDD) TFs to regulate transcription(Welch et al., 2007; Hirano et al., 52 

2017; Aoyanagi et al., 2020), but other structural studies demonstrated the innate ability of 53 

certain GRAS TFs to bind DNA without heterodimerization(Li et al., 2016). 54 

 55 

Gene regulatory networks (GRNs) have been useful to identify modules that influence plant 56 

growth and development(Tu et al., 2020; Zhu et al., 2023; Fu et al., 2024; Khan et al., 2024). 57 

Incorporating multiple -omics datasets into these networks improves the power and resolution of 58 

their conclusions. While gene expression, epigenetic, and phenotypic profiling information have 59 

been useful to unveil regulatory schema, the addition of TF binding information and DNA-60 

binding motif fingerprinting can add significant improvements to GRN construction and 61 

interpretation(Savadel et al., 2021; Shojaee and Huang, 2023) and bioengineering 62 

targets(Rodríguez-Leal et al., 2017; Liu et al., 2021a; Cao et al., 2022; Yang et al., 2023). 63 

Despite the known importance that many GRAS TFs play throughout plants, few TF binding 64 

experiments have been conducted on members of this family in model or crop species(Yoon et 65 

al., 2016; Tu et al., 2020). By generating TF binding profiles of GRAS proteins, selected 66 

regulatory candidate promoters, enhancers, and gene targets can be identified and modified via 67 

CRISPR editing for breeding efforts pertaining to root and shoot development(Ron et al., 2014; 68 

Triozzi et al., 2021). These targeted approaches can show greater phenotypic variability than 69 

creating null or hypomorphic alleles of the TFs themselves(Aguirre et al., 2023). 70 

 71 

Sorghum [Sorghum bicolor (L.) Moench] is a globally important C4 grass crop with observed 72 

drought, heat, and high-salt tolerances with a completely sequenced genome (2x=2n=10; ~720 73 

Mb)(Paterson et al., 2009; McCormick et al., 2018; Cooper et al., 2019). There are significant 74 

discrepancies in understanding the targets and regulatory regions of important TF families in this 75 

monocot despite the wealth of genetic resources such as natural diversity panels(Casa et al., 76 

2008) and EMS-mutagenized populations(Jiao et al., 2016; Addo-Quaye et al., 2017) to be used 77 

for forward genetics and functional characterization(Jiao et al., 2017; Jiao et al., 2018; 78 

Dampanaboina et al., 2019; Gladman et al., 2019) as well as increased genomic profiling of 79 

sorghum root, leaf, flower, and seed. In the work presented here, we demonstrate the first DAP-80 

seq profiles of three GRAS family TFs: SHORT ROOT (SHR), SCARECROW-LIKE23 (SCL23), 81 

and SCARECROW-LIKE3 (SCL3) in Sorghum bicolor; characterize their binding behavior in 82 

maize (B73) and oryza (Nipponbare); and demonstrate the identification of conserved binding 83 

sites in both promoter and intergenic space through the incorporation of publicly available histone 84 

methylation data from root tissues. Further, we extend the potentially novel TF binding motifs 85 

discovered through the DAP-seq pipeline via a cross-species projection model using position 86 

weight matrices (PWM) to improve the validation of new binding sites. Ultimately, this combined 87 

information strengthens the model that some GRAS TFs can bind DNA without interacting with 88 
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other TFs while also strengthening tissue-specific candidates for genome editing approaches and 89 

can help further refine the functions of GRAS protein GRNs within the root system. 90 

 91 

Results 92 

GRAS Family Transcription Factor Selection and Expression 93 

TF profiling was conducted via DNA Affinity Purification (DAP-seq)(O’Malley et al., 2016) using 94 

Sorghum bicolor BTx623 gDNA. Three GRAS family TFs were chosen to be profiled via DAP-95 

seq based on their ability to be stably expressed and remain soluble in bacterial expression 96 

systems and to represent different clades within the GRAS family as defined by Fan et al. 2021: 97 

SHR (SORBI_3001G327900) from the SHR clade, SCL23 (SORBI_3002G342800) from the 98 

SCR clade, and SCL3 (SORBI_3005G029600) from the SCL3 clade. Sufficient levels of protein 99 

were able to be generated for DNA pulldowns with the addition of mannitol in the bacterial 100 

cultures (Figure 1a). Bound DNA fragments were eluted, sequenced, and peaks were called 101 

using input DNA fragments as controls. 102 

 103 

GRAS Transcription Factor Behaviour in Sorghum bicolor 104 

The peak calling from the SHR, SCL23, and SCL3 DAP-seq yielded tens of thousands of peaks 105 

genome-wide for all three TFs, with SHR having the most at >100,000 significant peaks 106 

throughout the genome (Supplemental Data Files 1,2, and 3). A total of 473 genes had all 107 

three GRAS TF binding events in their promoter region (<2,000 bp from transcriptional start site 108 

(TSS) to 1000bp after the TSS) (Figure 1b). Most peaks for all three TFs were contained within 109 

intergenic space, but around 20% of peaks could be discreetly classified to be within proximal 110 

promoter regions (Figure 1c). Greater than 6000 peaks between SHR, SCL23, and SCL3 111 

overlapped at least somewhat throughout the genome (Figure 1d). While not much DNA-112 

binding information is available for GRAS family proteins in monocots to compare against our 113 

results, there are ChIP-chip data from Arabidopsis for SHR, SCL23, and SCL3 orthologs (Cui et 114 

al., 2014) that was used for comparison. Based on this, there is ~60% overlap with the 115 

Arabidopsis genes that have peaks within the promoter of a corresponding sorghum ortholog 116 

gene and 75% overlap when including distal peaks (2kb-25Kb upstream from the TSS). 117 

 118 

When evaluating functional ontologies for genes with GRAS peaks, it was determined that 119 

genes with multiple DAP-seq peaks within the promoter did show enrichment in several 120 

interesting categories. Namely, gene promoters with multiple SHR peaks in this 3000 bp 121 

promoter window had ontologies associated with root hair development (GO:0080147), salicylic 122 

acid mediated signaling (GO:2000031), sulfate transport (GO:1902358), hypoxia detection 123 

(GO:0070483), amino acid biosynthesis (GO:0000162, GO:0055129), acyl-CoA metabolism 124 

(GO:0006637), menaquinone biosynthesis (GO:0009234), and others. The SCL23 cohort of 125 

gene promoters with multiple peaks include biological process of electron transport coupled 126 

proton transport (GO:0015990), acyl-CoA metabolism (GO:0006637), amino acid and nutrient 127 

transport (GO:0015808, GO:1903401, GO:0015813, GO:0009749, GO:0070574, GO:0071805), 128 

and very long-chain fatty acid and sphingolipid biosynthesis (GO:0042761, GO:0006665). 129 

Similar to SCL23, the genes with multiple SCL3 peaks had ontological processes of electron 130 

transport coupled proton transport (GO:0015990) and amino acid transport (GO:0015808) as 131 

well as glutathione metabolic process (GO:0006749), cell wall biogenesis (GO:0042546), and 132 
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cellular oxidant detoxification (GO:0098869). When evaluating all the biological process 133 

ontologies of the nearest genes annotated as being associated with a region where all three 134 

TFs have overlapping peaks, there is an enrichment for detection of abiotic stimulus 135 

(GO:0009582), triterpenoid biosynthetic process (GO:0016104), polyketide biosynthesis 136 

(GO:0030639), and phosphorelay signal transduction (GO:0000160). Most of the gene targets 137 

accounting for the polyketide biosynthesis ontology are chalcone synthases, which have been 138 

shown to be influenced by upstream GRAS activity(Pillet et al., 2015; Huang et al., 2021). 139 

 140 

When evaluating whether GRAS peaks exist in important root developmental and stress 141 

response pathways, we found that all three TFs had peaks associated with genes involved in 142 

gibberellic acid, jasmonic acid, phosphate starvation response, and arbuscular mycorrhizal 143 

symbiosis. Notably, either SHR, SCL23, or SCL3 have peaks associated with 89% of all 144 

sorghum GRAS TFs; at least one of the three TFs have a peak associated with another GRAS 145 

family (Supplemental Data Table 1).  146 

 147 

Sorghum GRAS Transcription Factor Binding in Maize and Oryza 148 

To evaluate the consistency of binding targets of the sorghum GRAS TFs in other monocots, we 149 

used maize (B73) and oryza (Nipponbare) DNA in the DAP-seq pulldowns using the sorghum 150 

SHR, SCL23, and SCL3 proteins. For both Nipponbare and B73, there were fewer peaks called 151 

for all three GRAS TFs compared to the sorghum BTx623 gDNA pulldowns (Figure 2a,b,d,e 152 

and Supplemental Data Table 2 and 3). When focusing on the sorghum genes with GRAS 153 

peaks in the promoter, SHR shared 76 gene orthologs with annotated peaks in B73 and 17 in 154 

Nipponbare, SCL23 shared 15 gene orthologs with annotated peaks in B73 and 9 in 155 

Nipponbare, and SCL3 shared 22 gene orthologs with annotated peaks in B73 and 6 in 156 

Nipponbare. This disparity in peak enrichment using the SbGRAS proteins could be due to the 157 

divergence in protein sequence identity between the closest orthologs of SbSHR, SbSCL23, 158 

and SbSCL3 in oryza and maize: SHR ortholog sequence identity is ~72-87%; SCL23 ortholog 159 

sequence identity is ~85-97%; and SCL3 ortholog identity is ~59-67%. Only the SbSCL3 peaks 160 

in B73 were enriched for DNA-binding motifs including bHLH, Myb, bZIP and MADS-box. All 161 

three sorghum GRAS TF peaks in Nipponbare were enriched for TF-binding motifs. SbSHR had 162 

bZIP, LOB, GATA, ABI3, B3, and TCP motifs. SbSCL23 promoter peaks were enriched for 163 

WRKY, NAC, GATA, Myb and GRF motifs. SbSCL3 oryza promoter peaks were enriched for 164 

ABI3, WRKY, bZIP, Myb and GRF motifs (Supplemental Data File 4 and 5). The SHR, SCL23 165 

and SCL3 motif enrichment analyses in either oryza or maize also yielded uncharacterized 166 

motifs that shared similar promoter frequency profiles to those identified from the DAP-seq 167 

pulldowns that used sorghum gDNA (see following section) (Figure 2c,f). 168 

 169 

Discovery of Novel DNA-binding Motifs in GRAS Family Transcription Factors 170 

A DNA motif enrichment analysis was performed to determine what other TFs were active in the 171 

same regulatory space as SHR, SCL23, and SCL3. All GRAS peaks in the promoter region 172 

were analyzed using the MEME suite and several different classes of TF binding sites were 173 

identified as co-populating the peaks for either SHR, SCL23, or SCL3 (Supplemental Figure 1 174 

and Supplemental Data File 6). The TF binding motifs observed to occur within the SHR 175 

promoter peaks included family members of AP2/EREBP, ABI3, TCP, NAC, and MYB 176 
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(Supplemental Figure 1a). TF binding sequences found in SCL23 promoter peaks are 177 

AP2/EREBP, ABI3, GRF, DOF, Heat Shock Factor, bZIP, and MYB (Supplemental Figure 1b). 178 

For SCL3 promoter peaks, DNA-binding motifs were discovered for the TF families 179 

AP2/EREBP, ABI3, GARP G2-like, NAC, and MYB (Supplemental Figure 1c).  180 

 181 

A subset of the enriched DNA motifs in the SHR and SCL23 peaks could be classified as novel 182 

GRAS motifs as they did not appear in existing TF-binding profile databases like 183 

JASPAR(Rauluseviciute et al., 2024) or Catalog of Inferred Sequence Binding Preferences (CIS-184 

BP)(Weirauch et al., 2014). Additional bioinformatic analyses were conducted to determine if any 185 

of these putatively novel GRAS motifs were legitimate TF-binding sites due to the noisy nature 186 

of DAP-seq as a TF-profiling experiment. The position weight matrix (PWM) for each of the 187 

novel motifs discovered in SHR and SCL23 were projected across the promoter regions of all 188 

genes within sorghum (BTx623 v3), maize (B73 v5), and oryza (Nipponbare v1) genomes to 189 

determine their frequency of occurrence relative to the TSS (Figure 3a). The promoter region 190 

was binned into 40 bp intervals and each motif occurrence was counted. The motif sequence 191 

frequency in the promoter region, which we propose is unique to the three GRAS family TFs in 192 

this analysis, gradually reaches apogee at the -1000 bp position relative to the TSS. Then it 193 

decreases abruptly and then has a sharp, bimodal occurrence near the TSS (~-400->+60 bp 194 

region), with some SCL23 profiles possibly displaying a 4th peak well into the coding sequence. 195 

These motifs had a unique frequency profile compared to other TF family DNA-binding motifs 196 

like WRKY, AP2/EREB, and bZIP proteins that can be more unimodal around the TSS but 197 

sometimes still display abrupt changes in frequency at different positions relative to the TSS 198 

(Figure 3b). There is variation of motif frequency conservation across sorghum, maize, and 199 

oryza for the SHR motifs; motif #29 shows fairly conserved frequencies across the three 200 

monocots, whereas SHR motif #26 shows strong frequency similarity between maize and 201 

sorghum, but the oryza profile seems to be ~50% of that. The frequency of these novel, 202 

previously uncharacterized motifs from the maize and oryza DAP-seq analysis (previous 203 

section) also displayed similar frequency profiles to that of sorghum-derived pulldowns in oryza 204 

and sorghum genomes. All sorghum genes that have GRAS TF DAP-seq peaks as well as motif 205 

frequency occurrences from the PWM projections can be found in Supplemental Table 4. This 206 

suggests that 1) the gene modules that could be regulated by these TFs via their promoter 207 

regions are not completely conserved, 2) there is some incompleteness in the motif fingerprint 208 

projection, 3) GRAS TFs can recognize multiple promiscuous sequences, and/or 4) the motifs 209 

we identified only represent a portion of a larger recognition motif that is defined by in vivo 210 

binding activity. Ultimately, this analysis likely indicates that these previously uncharacterized 211 

motifs are more likely to be real DNA-binding sites due to their unique frequency and conserved 212 

occurrence around coding sequences in different monocots. 213 

 214 

SCL23 Occupancy Around 3’UTR regions 215 

While the focus of DNA-binding profiles tends to fixate around the promoters, TSS, and 216 

enhancer regions, TFs can bind in and around the 3’ untranslated regions (3’UTR) of gene 217 

models (Supplemental data table 5). The sorghum SHR, SCL23, and SCL3 TFs all displayed 218 

3’UTR binding across hundreds of genes, often with no other nearby gene models. When 219 

evaluating DNA-recognition sites within 3’UTRs that host GRAS peaks, several environmentally 220 
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responsive TF binding sites come out, specifically ARR-B/HHO, ABI3, and GRF motifs. There 221 

was no enrichment for the putative GRAS motifs identified within promoter peaks at 3’UTR 222 

regions. There are no consistent ontology enrichments between the three GRAS TFs for the 223 

genes with peaks in their 3’UTRs. However, when manually validating SCL23 peaks that 1) 224 

occur within 3’UTRs and 2) are not upstream of a neighboring gene TSS, numerous growth and 225 

developmental genes emerge. Some examples are SORBI_3001G261545, a DNA photolyase 226 

that is essential for phosphorus starvation response in roots (Nilsson et al., 2007); a 227 

strigolactone biosynthesis gene SORBI_3005G168200 that is strongly upregulated in response 228 

to limiting phosphorus conditions in roots(Gladman et al., 2022); SORBI_3002G075900, a 229 

dolichyl-diphosphooligosaccharide-protein glycosyltransferase protein whose orthologs plays a 230 

role in proper primary and lateral root formation in oryza(Qin et al., 2013), a cysteine 231 

desulfurase domain (SORBI_3002G174900) and a MATE family transporter 232 

(SORBI_3002G232600) that are strongly upregulated in roots in response to abiotic 233 

stress(McCormick et al., 2018; Gladman et al., 2022), and an exocyst complex component, 234 

SORBI_3003G158700, whose orthologs are involved in a variety of targeted cell secretions for 235 

proper cell progression and polarization(Pecenková et al., 2017; Synek et al., 2021). 236 

 237 

Shared Peaks Highlight Tissue-specific Gene Expression 238 

Evaluating peaks that are shared between all three GRAS TFs revealed conserved promoter 239 

and enhancer elements within the sorghum BTx623 genome. Incorporating epigenetic 240 

information with the SHR, SCL23, and SCL3 binding locations also gives more power in 241 

identifying real versus spurious binding sites as well as yielding tissue-specific gene expression 242 

targets. To do this, all promoter DAP-seq peaks that have partial or near total overlap between 243 

SHR, SCL23, and SCL3 and were compared to Histone 3 trimethylation on the 4th lysine 244 

(H3K4me3) peaks that were derived from whole BTx623 roots grown in hydroponic conditions 245 

during a limiting phosphate experiment (data from Gladman, et al., 2022). H3K4me3 peaks 246 

generally indicate active gene expression and are often localized in a narrower fashion around 247 

the TSS, however H3K4me3 peaks can also be more broad and exist in the upstream promoter 248 

regions or distal enhancer space, and are likely indicative of tissue-specific expression in plants 249 

and other eukaryotes(Benayoun et al., 2014; Zhang et al., 2021).  250 

 251 

Of the 256 overlapping peak regions that occur within promoters between all three GRAS TFs, 252 

240 of them were associated with unique gene models (16 overlapping peaks occurred multiple 253 

times around the same gene element). Of the 240 unique shared peaks, 157 were manually 254 

confirmed to have near perfect overlap when visualized on a genome browser and 79 of those 255 

had almost complete overlap and exist on a region with notably higher H3K4me3 marks relative 256 

to the surrounding genome space (Supplemental Data Table 6). While gene expression 257 

doesn’t always correspond with upstream H3K4me3 peaks, 77 of the 257 overlapping peaks did 258 

show statistically different gene expression somewhere within the root system (data from 259 

Gladman, et al., 2022) during limiting phosphorus growth conditions. The majority of this 260 

significant differential gene expression occurred in the lateral root region, but there were also 261 

genes that showed differential expression in the root apex and elongation zone (Figure 4a). 262 

Both up- and down-regulated genes were downstream of these strong GRAS TF peaks, so the 263 
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presence alone of these TFs and H3K4me3 marks do not fully explain the regulatory nature of 264 

the native DNA binding capability of GRAS family proteins during nutrient stress response.  265 

 266 

To assess the accuracy of the PWM projections on these shared peaks, 186 of the 256 genes 267 

(72.7%) were present in at least one of the PWM projected gene groups from the above 268 

analysis (Figure 4b). Many of the genes that had near perfect overlap with all GRAS peaks; 269 

H3K4me3 marks; significant differential gene expression in the lateral, apex, or elongation root 270 

region; and existed in the PWM projections, are involved in cell growth, development, signaling, 271 

and environmental response. Some examples are the chromatin remodeler 272 

SORBI_3006G038400; the fasciclin-like arabinogalactan protein SORBI_3004G137200; the 273 

ABA/WDS protein SORBI_3008G049200 that is induced by water/ABA stress in oryza(Li et al., 274 

2017); and the LysM domain-coding protein SORBI_3002G222500 (Figure 4c), which is 275 

involved in arbuscular mycorrhizal symbiosis(Yu et al., 2023). SORBI_3005G053501, a defense 276 

response gene, shows a greater H3K4me3 signal and is more strongly expressed in the root 277 

apex and elongation zone during sufficient phosphorus conditions. SORBI_3002G076100, a G-278 

box TF that has been identified as playing roles in both photomorphogenesis with HY5(Singh et 279 

al., 2012) and also root hair development in Arabidopsis(Richter et al., 2011) has shared 280 

promoter binding between all three GRAS TFs and was shown to be upregulated in sorghum 281 

lateral root regions in response to limiting phosphorus(Gladman et al., 2022). When comparing 282 

the gene promoters that contained shared peaks with the PWM projection data on the putative 283 

SHR and SCL23-specific motifs, 50 out of 256 promoters (19.5%) had hits for at least one of the 284 

two SHR motifs and 156 out of the 256 promoters (49.2%) had hits for at least one of the four 285 

SCL23 motifs. Incorporating data from the STRING database, a network could be constructed 286 

based on existing protein-protein and co-expression information as well, which resulted in a 287 

smaller network that was statistically enriched for purine biosynthesis (GO:0009205 and 288 

GO:0006164) and translation (GO:0006412) (Figure 4d and Supplemental Data Table 7). 289 

 290 

Additionally, this multi-omics integration identified multiple short gene models that have no 291 

current functional domain annotation (e.g. SORBI_3007G226900, SORBI_3010G238300, 292 

SORBI_3005G145800, SORBI_3010G201332, SORBI_3002G149600, SORBI_3006G024450), 293 

yet have significant expression in root tissue or abundant H3K4me3 marks with the trio of GRAS 294 

peaks in the promoter, or both. This provides evidence that these are real gene models and 295 

likely active in the root transcriptome (Supplemental Figure 2). Importantly, when comparing 296 

DAP-seq peaks with the conserved cis-regulatory element information from the Conservatory 297 

Project(Hendelman et al., 2021), the GRAS-specific regulatory regions did not usually coincide 298 

with an evolutionarily constrained cis-regulatory elements, suggesting that while GRAS TFs are 299 

quite old in plants, their regulatory sites can undergo re-wiring in a species-specific manner. 300 

 301 

Discussion 302 

Prior experimentation on GRAS DNA-binding is scant, especially considering the importance of 303 

the family to multiple functions across plant systems. Our DAP-seq profiling demonstrated good 304 

agreement with other work in Arabidopsis, and targeted genes yielded functional ontologies that 305 

could correspond with prior genetic and molecular characterizations of SHR and SCL23 in other 306 

species. Specifically, all three GRAS TFs displayed gene target ontology associations for 307 
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previously characterized functions like flavonoid biosynthesis(Pillet et al., 2015; Huang et al., 308 

2021) and as well as basal molecular functions, especially with essential cofactor metabolism, 309 

cellular respiration, and cell wall/membrane-associated processes. This broad involvement of 310 

genetic function for these TFs could reflect the long co-evolution of GRAS genes since they first 311 

emerged in pre-vascularized plants. 312 

 313 

TF profiling in combination with identifying conserved non-coding sequences has become a 314 

powerful method to identify targets for gene editing approaches(Rodriguez-Leal et al., 2019; 315 

Hendelman et al., 2021; Liu et al., 2021a; Aguirre et al., 2023) as well as improve gene 316 

regulatory networks inference through machine learning approaches(Shojaee and Huang, 317 

2023). Despite DAP-seq being a ‘noisy’ assay to profile TF binding sites within a genome, it 318 

provides a notable benefit over similar assays like ChIP-seq and CUT&RUN: cell-type naive 319 

binding. While DAP-seq profiling precludes binding behavior of TFs that require or are modified 320 

by cell-type specific cofactors and DNA and histone methylation, native DNA binding behavior of 321 

TFs can be assessed and winnowed for high-confidence peaks through the inclusion of tissue-322 

specific transcriptomic and epigenetic data. This creates the capacity to generate GRNs across 323 

multiple tissues by performing DAP-seq once and then layering that data with tissue-specific 324 

gene expression information and epigenetic marks. We have used this paradigm in our novel 325 

characterization of the important plant-specific GRAS family of TFs and combine additional 326 

expression and epigenetic data to improve the confidence in calling biologically significant 327 

binding sites for SHR, SCL23, and SCL3 in Sorghum bicolor. 328 

 329 

Confirming the presence of TF binding motifs is more straightforward when working with TFs 330 

that have previously characterized binding sequences, such as WRKYs, NACs, bHLH, and 331 

others. It is hard to confidently assert that a previously uncharacterized motif sequence is a true 332 

TF binding recognition site with DAP-seq data. However, we found that filtering for SHR and 333 

SCL23 peaks, for example, that occur in the promoter regions of genes, then evaluating the 334 

frequency of those motifs across the promoters of the entire genomes for sorghum, oryza, and 335 

maize created additional supportive evidence that 1) those DNA-binding motifs are likely real 336 

and 2) they are likely recognized by the GRAS TFs due to the unique pattern of their occurrence 337 

relative to other well characterized TFs. This type of bioinformatic approach allows for additional 338 

means of identifying putative regulatory targets for TFs that can bind to projected motifs as well 339 

as provide insight into the evolutionary conservation of them across species. 340 

 341 

Our first-ever DAP-seq profiling of the sorghum SHR, SCL23, and SCL3 proteins using B73 and 342 

Nipponbare input DNA yielded significantly fewer peaks in both maize and oryza compared to 343 

the original sorghum gDNA template. This disparity in peak enrichment using the SbGRAS 344 

proteins could be due to the divergence in protein sequence identity between the closest 345 

orthologs of SbSHR, SbSCL23, and SbSCL3 in oryza and maize. Another explanation for this 346 

peak enrichment disparity is there is significant rewiring in the promoter and enhancer space of 347 

recognition sites for these three GRAS family motifs. However, both of these explanations rely 348 

upon the non-conservation of the regulatory motifs across these three species, which confounds 349 

our motif occurrence projections as described above and in Figure 3. Ultimately, this could 350 

reflect that the putative GRAS-specific motifs we identified for SbSHR and SbSCL23 are only 351 
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representative of a part of a larger cis-regulatory element sequence that cannot be resolved 352 

through the MEME suite program using DAP-seq peak inputs. There is evidence that single 353 

DAP-seq might only capture a small window of a larger biologically active binding site for TFs 354 

that require complexing with other TFs or cofactors(Li et al., 2023). This hypothesis could 355 

absolutely apply to the GRAS TFs, and SHR and SCL23 in particular, since it is well known that 356 

they interact with other TFs and protein cofactors as well as each other to heterodimerize and 357 

modulate binding functions in the nucleus. 358 

 359 

Ultimately, the power of this research lies in the GRNs that are generated. They reveal potential 360 

GRAS gene targets that can be leveraged by and for breeding programs and functional 361 

research through identification of disruptive alleles and CRISPR editing approaches. 362 

Furthermore, this analysis affirms that GRAS TFs do have innate DNA-binding activity without 363 

interacting with other protein cofactors or TFs like IDDs. Identifying these regulatory upstream 364 

promoter sequences are useful for EMS mutagenesis or CRISPR genome editing approaches 365 

to fine tune gene expression for a spectrum of agronomically valuable phenotypes. Additionally, 366 

these types of profiling experiments can also reveal tissue-specific regulatory DNA regions that 367 

are being acted upon by promiscuous TFs families, which could permit more precise genome 368 

editing that could impact intended organs and not have systemic effects across the plant. For 369 

example, SHR has been shown to be involved in arbuscular mycorrhizal symbiosis, and indeed 370 

through our GRNs and PWM projections, we show that all three GRAS TFs bind to a very 371 

narrow promoter region upstream of a gene involved in arbuscular mycorrhizal symbiosis, LysM 372 

(SORBI_3002G222500). This promoter region also displays strong epigenetic signals for open 373 

chromatin; yielding a strong candidate for EMS mutagenesis or CRISPR genome editing for 374 

those interested in nutrient use efficiency. Ultimately, this first-ever GRAS profiling in sorghum 375 

combined with additional -omics data has generated a list of useful targets for additional 376 

agronomic characterization that span everything from nutrient use efficiency to growth and 377 

developmental modification. 378 

 379 

Methods 380 

DAP-seq Pulldown and Sequencing 381 

DAP-seq was performed in a modified fashion from the original methods(O’Malley et al., 2016). 382 

Scarecrow Like 3 (SCL3; SORBI_3005G029600), Scarecrow Like 23 (SCL23; 383 

SORBI_3002G342800), and Short Hair Root (SHR; SORBI_3001G327900) full length coding 384 

sequences (CDSs) were synthesized from TwistBiosciences (pTwist-ENTR Kozak vector) and 385 

cloned into the pDEST15 Gateway vector (N-terminal GST-tag). The resulting plasmids were 386 

transformed into BL21 competent cells. Expression of GST-tagged TF proteins was induced 387 

between OD600=0.500-0.600 by the addition of 1mM isopropyl-beta-D-thiogalactoside (IPTG) 388 

(Goldbio: I2481C25) and 0.05M or 0.1M D-mannitol to bacteria in Lysogeny Broth. A 389 

concentration of 0.05M D-mannitol was added to SCL3 expressing bacteria, and 0.1M D-390 

mannitol was added to both SCL23 and SHR expressing bacteria. The bacteria were then 391 

shaken at 16°C at 220 rpm for 16 hours. Cultures were spun down and pellets resuspended in 392 

0.5M D-mannitol PBS. Cell membranes and plasmid DNA were disrupted by sonicating at 4°C 393 

in 10 cycles of 30 sec on, 30 sec off. Soluble fractions of lysate were added to triplicates of 394 

MagneGST beads (Promega) suspended in equal volumes of 0.5M D-mannitol PBS and 395 
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incubated at 4°C for 1.5hrs undergoing end-over-end mixing to bind GST-tagged transcription 396 

factor proteins. The protein-bound beads were then incubated in sheared adaptor-ligated high-397 

purity, sheared genomic DNA of sorghum BTx623, oryza Nipponbare, or maize B73, using 398 

between 100-250 ng of genomic DNA per sample.  399 

 400 

Genomic DNA from these plants were sheared by Covaris S220 sonicator. Adaptors were 401 

ligated to genomic DNA fragments according to NEBNext Ultra II DNA Library Prep Kit and size-402 

selected using AMPure XP beads for fragments larger than 300bp. Transcription factor-bound 403 

DNA fragments were then washed three times with the mannitol PBS solution and eluted off the 404 

beads by incubating at 98℃ for 5 minutes. qPCR was performed to determine the number of 405 

cycles needed during PCR to amplify eluted fragments and add barcodes; this PCR was 406 

performed with both elutes and fragmented input DNA as control, using 10-18 cycles depending 407 

on the library. PCR products were cleaned up using AMPure XP magnetic beads. Concentration 408 

was determined by Qubit HS dsDNA kit. Quality check was performed and average size of the 409 

libraries determined by Bioanalyzer on High Sensitivity DNA Chips. qPCR was performed to 410 

determine concentration of the barcoded libraries. Samples were pooled and sent for 411 

sequencing. Sequencing was performed at paired end 150 high output using the Illumina 412 

NextSeq2000 platform for the sorghum BTx623 samples and on the Illumina Novaseq 6000 413 

platform for the maize B73 and oryza Nipponbare samples. All 36 libraries (3 replicates of SHR, 414 

SCL23, and SCL3 pulldowns + Input control) from each sorghum, oryza and maize were 415 

multiplexed into 3 total pools (12 libraries per pool), yielding between 22.1-66.3 million reads per 416 

sample for the Sorghum bicolor DNA query (BTx623), 9.7- 27.2 million reads per sample for the 417 

Zea mays query (B73), and 8.9-33.8 million reads per sample for the Oryza sativa (Nipponbare) 418 

query. 419 

 420 

DAP-seq Bioinformatic Analysis 421 

The FASTQ files were aligned and merged as follows: Trimmomatic(Bolger et al., 2014) was 422 

used for FASTQ trimming, followed by BWA mem alignment to the BTx623 v3 genome and 423 

MACS3 callpeak (v3.0.0b1) peak calling (using the input controls for background subtraction), 424 

and finally the annotatePeaks program from the ChipSeeker package(Wang et al., 2022) was 425 

used to associate peaks with gene models from the reference genome files. For ChipSeeker, 426 

default values for intergenic space was defined was used >10,000 bp upstream or >300 bp 427 

downstream of gene elements. Promoter regions were defined as <2,000 bp from the TSS. 428 

 429 

The Sorghum bicolor BTx623 v3 reference genome files housed by Gramene(Release 430 

66)(Tello-Ruiz et al., 2022) were used for annotating peaks. Sorghum GFF and GTF files were 431 

both used for Chipseeker features functionality; SAMtools was used for various file formatting 432 

and manipulation steps, including sorting and merging of the 150-bp paired-end read files. The 433 

version 1 Oryza sativa Nipponbare reference genome files housed by Gramene (Release 66) 434 

(Tello-Ruiz et al., 2022) were used for oryza mapping and peak calling. The version v5 Zea 435 

mays B73 reference genome files housed by Gramene (Release 66)(Tello-Ruiz et al., 2022) 436 

were used for maize mapping and peak calling. Motifs were compared between the results of 437 

each genomic DNA background. Motif enrichment analysis was performed using the MEME 438 

suite(Bailey et al., 2015). Identification of DNA-recognition motifs were done by comparing DAP-439 
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seq PWMs to the JASPAR nonredundant plant database(Rauluseviciute et al., 2024). Gene 440 

ontology analysis was done by submitting genes to the Gene Ontology Consortium online tool 441 

(https://geneontology.org/)(Ashburner et al., 2000) and only the Fisher’s Exact statistical test 442 

was used to calculate for significant enrichment without any correction. 443 

 444 

Cis-regulatory Motif Frequency Projections 445 

To determine cis-regulatory elements for GRAS TFs within the promoters of sorghum, maize and 446 

oryza, we used a previously described computational prediction pipeline(Eveland et al., 2014; 447 

Knauer et al., 2019) (Eveland et al, 2014; Knauer et al 2019) that uses the Search Tool for 448 

Occurrence of Regulatory Motifs (STORM) from the Comprehensive Regulatory Element Analysis 449 

and Detection (CREAD) suite of tools (Smith et al., 2006; Schones et al., 2007). We identified 450 

GRAS PWMs from the MEME analysis (see above) and used these PWMs to identify motifs within 451 

the promoter region spanning 3kb upstream and 1kb downstream from the transcription start sites 452 

of all of the protein coding genes of sorghum BTx623, maize b73 and oryza Nipponbare. We 453 

considered only those motifs that were over-represented (p-value <0.001) in promoter sequences 454 

of protein coding genes as compared with a background set of the same number of random 455 

genomic sequences and these predictions were further filtered based on a PWM-specific median 456 

score threshold (i.e., quality score greater than or equal to the median score passed the filter) and 457 

a motif occurrence frequency of two or more per promoter.  458 

 459 

Supplemental Data Information 460 

Supplemental Data File 1. shr_peaks_sorghum_BTx623.zip 461 

Supplemental Data File 2. scl23_peaks_sorghum_BTx623.zip 462 

Supplemental Data File 3. scl3_peaks_sorghum_BTx623.zip 463 

Supplemental Data File 4. b73_3kb_to_1kb_downstream_tss_meme_output.zip 464 

Supplemental Data File 5. nipponbare_3kb_to_1kb_downstream_tss_meme_output.zip 465 

Supplemental Data File 6. Btx623_3kb_to_1kb_downstream_tss_meme_output.zip 466 

Supplemental Figure 1. DNA binding motifs in GRAS transcription factor peaks 467 

Supplemental Figure 2. Combining GRAS DAP-seq peaks and root H3K4me3 marks 468 

Supplemental Data Table 1. Sorghum GRAS transcription factor geness that have associated 469 

peaks  from SHR, SCL23, and/or SCL3. 470 

Supplemental Data Table 2. Oryza Nipponbare-mapped peaks for SHR, SLC23, and SLC3 471 

Supplemental Data File 3. Maize B73-mapped peaks for SHR, SLC23, and SLC3 472 

Supplemental Data Table 4. Genes with all thre GRAS TF peaks (SHR, SCL23, SLC3) 2kb 473 

upstream to TSS and also belong to the subset of promoters that have the PWM projections from 474 

either SHR or SCL23. 475 

Supplemental Data Table 5. 3'UTR region binding as annotated by the ChIPseaker program. 476 

Supplemental Data File 6. Gene promoter peaks that contain SHR, SLC23, and SLC3 within 477 

2kb to TSS. 478 

Supplemental Data Table 7. Shared GRAS peak network using STRING-DB protein-protein 479 

interaction and co-expression data. 480 

 481 

Data Availability Statement 482 

The DAPseq reads are available at the NCBI SRA repository, BioProject ID = PRJNA1162020. 483 
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Figure Captions 760 

 761 

Figure 1. GRAS family DAP-seq results in Sorghum bicolor. A) Immunoblot of Sorghum 762 

GST-tagged SHR protein eluted of affinity beads. Proteins were induced, isolated, and bound to 763 

affinity beads either in the absence or presence (0.10 M) of D-Mannitol. B) All genes with GRAS 764 

peaks in their promoter region called from the three DAP-seq pulldowns for Sorghum SHR, 765 

SCL23, and SCL3 mapped to the BTx623 v3 genome. C). Distribution of all significant peaks for 766 

SHR, SCL23, and SCL3 relative to gene transcriptional start sites. D) Upset plots of the share of 767 

genomic features where SHR, SCL23, and SLC3 are binding within the BTx623 genome. 768 

 769 

Figure 2. Sorghum GRAS family binding profiles in maize B73 and oryza Nipponbare. A) 770 

Distribution of all significant peaks for SbSHR, SbSCL23, and SbSCL3 relative to gene 771 

transcriptional start sites in the maize B73 genome. B) All maize B73 genes with GRAS peaks in 772 

their promoters. Called from the three DAP-seq pulldowns for Sorghum SbSHR, SbSCL23, and 773 

SbSCL3 using maize B73 DNA as the template. C) Uncharacterized DNA motifs that were 774 

detected in the SbSCL3 pulldowns in B73. D) Distribution of all significant peaks for SbSHR, 775 

SbSCL23, and SbSCL3 relative to gene transcriptional start sites in the Nipponbare genome. E) 776 

All rice Nipponbare genes with GRAS peaks in their promoters. Called from the three DAP-seq 777 

pulldowns for Sorghum SbSHR, SbSCL23, and SbSCL3 using Nipponbare DNA as the 778 

template. F) Uncharacterized DNA motifs that were detected in the SbSCL23 and SHR 779 

pulldowns in Nipponbare. 780 

 781 

Figure 3. DAP-seq PWM projections in sorghum, maize, and oryza. A) The SHR motifs and 782 

SCL23 uncharacterized motifs identified in the BTx623 DAP-seq analysis. B) are some 783 

examples of common TF motifs projected across the genomes (taken from JASPAR). 784 

 785 

Figure 4. Expression and network analysis of the 240 genes whose promoters have 786 

shared binding peaks from SHR, SCL23 and SLC3. A) Log2-fold expression heatmap of 787 

genes that have peaks in their promoter region from all three SHR, SCL23, and SCL3. Tissue 788 

expression data is from the root apex, elongation zone, and lateral root regions (data from 789 

Gladman, et al. 2022).  B) Log2-fold expression of (A) with colorized indication if those genes 790 

also were identified from the PWM projection analysis. C). Integrated Genome Viewer display of 791 

a LysM gene (SORBI_3002G222500) that has strong overlap between SHR, SCL23, and SCL3 792 

and the localization of all three peaks corresponds with H3Kme3 pileup taken from whole root 793 

samples grown in hydroponics under normal and limiting phosphorus  conditions (data from 794 

Gladman, et al. 2022). D) Cytoscape network display of available protein-protein interaction and 795 

co-expression data from the STRING-DB resource. The larger network on the lower right is 796 

enriched basic molecular ontologies (purine biosynthesis and translation). 797 

 798 

Supplemental figure 1. DNA binding motifs in GRAS transcription factor peaks. These are 799 

the DNA recognition motifs that were enriched under the DAP-seq peaks within gene promoters 800 

for A) SHR, B) SCL23, and C) SLC3 801 

 802 

 803 
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 804 

Supplemental Figure 2. Combining GRAS DAP-seq peaks and root H3K4me3 marks. 805 

Integrated Genome Viewer images of examples of short genes (protein polypeptide product < 806 

50 amino acids) that have overlapping GRAS family DAP-seq peaks and H3Kme3 pileups in the 807 

promoter region. (Histone methylation data taken from Gladman et al., 2022). 808 
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Supplemental Figure 2 (continued)
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