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Chapter 1

Introduction to Deep Learning and

genomic DL models

Cis-regulatory codes are fundamental to the regulation of gene expression,

representing a significant portion of the functional complexity in biological sys-

tems. Understanding the roles and interactions of CREs remains a highly active

field of research, crucial for exploring the mechanisms underlying biological func-

tions. Their inherent complexity makes CREs a prime subject for the application

of DL methods. This chapter establishes a background for the development of DL

techniques and their applications to regulatory genomic functions. The chapter be-

gins by introducing the function and complexity of cis-regulatory codes (Chapter

1.1) and the various DL related methods that’s been applied to study them (Chap-

ter 1.2, 1.3). Then we discuss the technical innovations in DL the enabled these

developments (Chapter 1.4).
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1.1 Cis-regulatory code

The human body is composed of around 37 trillion cells (Chen et al., 2022c;

Panigrahi and O’Malley, 2021) that are vastly different in morphology and func-

tion but largely contain identical genetic information. Differential gene expression

is one of the fundamental processes underlying the formation of different cell types

during embryogenesis through precise spatio-temporal expression of genes (Pan-

igrahi and O’Malley, 2021; Ong and Corces, 2011). Moreover, dysregulation of

gene expression can lead to cells not carrying on their normal function at the right

place and at the right time (Jindal and Farley, 2021). This can be caused by vari-

ous sources of mutations in the non-coding, regulatory genome. For instance, the

majority of disease-causing SNPs are mapped to non-coding genome (Wong et al.,

2021). Therefore, understanding gene expression regulation is fundamental to the

study of normal development and disease biology.

Cells achieve precise activation and repression of genes specific to a cell

type through cis- and trans-regulatory elements (Wittkopp, Haerum, and Clark,

2004). CREs are non-coding sequences that activate or repress transcription from a

gene. CREs regulate gene expression by binding of trans-regulatory factors (Wit-

tkopp, Haerum, and Clark, 2004), such as TFs. TFs are proteins that contain a

DNA binding domain that recognizes and binds to specific sequence elements or

sequence motifs within CREs, leading to activation of transcription through various

mechanisms. Factors other than sequence motif, e.g. motif flanking nucleotides,

nucleosomal context of the DNA, presence of cofactors and co-binding TFs can

affect TF binding (Inukai, Kock, and Bulyk, 2017).

The main types of CREs are promoters and enhancers, which activate gene

expression and silencers which downregulate expression (Panigrahi and O’Malley,
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2021). A 72bp region in Simian Virus 40 (SV40) genome was the first element

demonstrated to increase gene expression levels of a given promoter (β globin

gene) independently from its orientation and genomic distance to the promoter

(Banerji, Rusconi, and Schaffner, 1981). In the original manuscript detailing this,

the authors refer to the newly discovered element as an enhancer “for convenience”.

Subsequently, stemming from this, the classical definition of an enhancer focuses

on sufficiency to activate transcription as well as orientation and distance indepen-

dence of an element.

Since then, the study of enhancers has resulted in various further defini-

tions. These are fundamentally different because of the methodology used to iden-

tify enhancers (Gasperini, Tome, and Shendure, 2020). For instance, a common

method of defining enhancers is biochemical characterization through various as-

says that probe the chromatin state (Gasperini, Tome, and Shendure, 2020). High-

throughput chromatin profiling assays such as DNase I hypersensitive site sequenc-

ing (DNase-seq) (Song and Crawford, 2010) can be used to define accessible or

DNase hypersensitive sites (DHSs) in the genome. Active TFBSs are more likely

to be within those regions and, therefore, DHS regions are often tagged as putative

CREs. Another common method to characterize candidate regulatory elements is

the histone code (Heintzman et al., 2009)– the set of post-translational modifica-

tions of histone proteins that can change the biophysical state of the chromatin.

These can be measured using histone Chromatin immunoprecipitation followed by

sequencing (ChIP-seq) experiments (Ren et al., 2000). For instance, H3K27ac is

a common mark of enhancer regions. Together, such assays describe the state of

the chromatin at a given gene but do not directly characterize the sequence de-

terminants of these functional elements. Moreover, these methods only identify

candidate regulatory elements and do not link them to the genes they target.
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Another common strategy is identification of elements through perturba-

tion experiments, i.e., measuring gene expression changes upon modifications to

the DNA sequence. Certain kinds of MPRAs (Kinney et al., 2010; Levo and Se-

gal, 2014), e.g. self-transcribing active regulatory region sequencing (STARR-

seq) (Arnold et al., 2013), allow testing if an element is sufficient to activate

transcription from a minimal promoter (similar to the classical definition). Oth-

ers approaches, such as clustered regularly interspaced short palindromic repeats

or CRISPR interference coupled with dead Cas9 (Diao et al., 2016; Fulco et al.,

2016; Gasperini et al., 2017) can epigenetically inactivate a specific element (of

around 1000 basepair (bp) length) and measure any changes in gene expression

profile. In contrast to the MPRA experiments, this approach essentially measures

if an enhancer is necessary for the expression of a given gene.

All of these methods provide valuable information about the complicated

set of elements that orchestrate gene expression. However, they target different bio-

logical questions and unsurprisingly identify different and largely non-overlapping

subsets of elements as enhancers. Moreover, only some of them can link an en-

hancer to its target gene in ‘native’ conditions – i.e. within the genome. For in-

stance, although assays such as ATAC-seq or Histone ChIP-seq provide valuable

insights into the state of the chromatin, and where the regions with higher activity

are, they do not identify enhancer-promoter pairs. Assays such as STARR-seq do

provide such a mapping, i.e. which enhancers can activate a given promoter. How-

ever, this is done in an episomal assay, and therefore the contribution of factors

such as distance between the candidate enhancer and a promoter or the influence

of other CREs in the genomic context is not taken into account.

CREs can be kilobases away from the target promoter through looping and
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3D structures in the genome therefore making the search space for putative regula-

tory elements larger (Fulco et al., 2019). Additionally, they can act in a quantitative

way (Kim and Wysocka, 2023; Zeitlinger, 2020) instead of simply turning promot-

ers on or off, leading to a dynamic range of activities. Finally, for the majority of

genes there are multiple elements acting within the ‘neighborhood’ of a gene and

it is unclear how they interact in order to drive promoter activity (Lin et al., 2022a;

Jin et al., 2013; Zeitlinger, 2020). All of these make the study of the regulatory

code and even the definition of what an enhancer is very complicated. Addition-

ally, the genomic context of enhancers has been shown to affect enhancers as well.

For instance, so called ‘shadow’ enhancers are groups of redundant enhancers that

completely or partially share functionality and can activate the gene even after one

in the set is inactivated (e.g. enhancers of Atoh7 gene (Miesfeld et al., 2020) in reti-

nal development). Similarly, cooperativity among enhancers has also been demon-

strated. For instance, (Lin et al., 2022a) conducted pairwise CRISPRi inactivation

experiments of the 7 MYC enhancers showing complex, epistatic and hierarchical

relationships between pairs of enhancer. Thus, enhancer-enhancer relationships

can also complicate how enhancers are studied and defined as the presence of one

enhancer can change the behavior of the others.

On the other hand, less is known about silencers, i.e. elements that reduce

transcriptional activity (Doni Jayavelu et al., 2020). These are elements that contain

repressor binding sites or form heterochromatin. Most of the screens for CRE

elements are conducted within DHS regions of the genome which might bias the

inclusion of these elements as candidates. Therefore, it is currently unclear where

we can efficiently search for silencers within the genome and the extent to which

they affect gene expression regulation.

In summary, many genes contain a complex landscape of enhancing and
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silencing elements that potentially interact with each other and lead to the pre-

cise and tissue and/or developmental time specific expression levels of a given

gene. Each of these elements contains a set of TF binding sites that in turn in-

teract hierarchically to orchestrate regulation of transcriptional rate. The study of

CREs has led to contradicting conclusions and debates about the exact definition

of an enhancer. Moreover, the complex hierarchical interactions, tissue-specificity,

quantitative binding of TFs and vast non-coding space where enhancer or silencer

CREs can reside complicate the study of the cis-regulatory grammar. Models of

sequence-to-function relationships, i.e. how sequence determinants lead to regula-

tory activity of elements can shed light on this complex CRE grammar. However,

the complexity of the problem requires flexible models that can approximate the

complex sequence-to-function landscape. DL models are well suited for this prob-

lem.

1.2 Advancing genomics with deep learning

1.2.1 What is deep learning?

DL models are now used for understanding complex systems in various

fields, including in genomics. The reason behind their versatility is that DL mod-

els are often considered as universal function approximators, capable of uniformly

approximating any continuous function (Cybenko, 1989). Compared to traditional

machine learning, this capability originates from the layered structure of neural

networks. Each layer employs a number of operators applying non-linear trans-

formations to its input data and passing on to the next layer. Through successive

applications of non-linearities, DL models can learn to identify useful features di-

rectly from data, and learn complex, high-order functions.
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According to the Universal Approximation Theorem, a neural network with

at least one hidden layer and a sufficient number of neurons can approximate any

continuous function to a desired degree of accuracy, given appropriate activation

functions (Cybenko, 1989). But in practice, deeper models and more complicated

operators are usually used. Expressivity is typically used to describe the capability

of a model to represent a wide variety of complex functions. The expressivity of

DL models is impacted by many design factors including width and depth, types

of layers and activation functions, optimization algorithms, etc (Raghu et al., 2017;

Shaham, Cloninger, and Coifman, 2018). The design choices also reflect our as-

sumptions about the data structure which is often refereed to as an inductive bias.

The inductive bias of a model determines its effectiveness in learning from the

training data and its ability to generalize well to new, unseen data. A well-chosen

inductive bias will make it easier for the model to learn efficient representations,

extracting features helpful for the predictive tasks.

1.2.2 Brief history of deep learning

Despite the recent craze in genomic DL, DNNs have been used to under-

stand biological problems since the 1980s and 1990s. They were initially applied

to relatively simpler tasks such as identifying E. coli translational initiation sites

(Stormo et al., 1982), annotating coding regions (Snyder and Stormo, 1993), align-

ing regulatory sites (Heumann, Lapedes, and Stormo, 1995) and recognizing pro-

tein domains (Bengio and Pouliot, 1990).

DL, despite its long history of study, experienced a period of relative stag-

nation until 2012, marked by the publication and success of AlexNet (Krizhevsky,

Sutskever, and Hinton, 2012). AlexNet, a deep CNN was submitted to the Ima-

geNet Large Scale Visual Recognition Challenge. It significantly outperformed the

then state-of-the-art (SOTA) models based on support vector machines by a large
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margin. This success underscored the potential of DNNs to tackle complex pre-

dictive tasks in an end-to-end manner. Following AlexNet, there was a significant

resurgence of interest in DL. This led to the development of diverse model struc-

tures and training algorithms, catalyzing a ‘revival’ in DL research and applications

(LeCun, Bengio, and Hinton, 2015).

1.2.3 The rise of genomic deep learning

Modeling of genomics sequence-to-function relationships underwent a sim-

ilar revolution after the success of DL models in other fields such as image classifi-

cation. This was also fueled by the need for advanced methods given the complex-

ity of the cis-regulatory code and the ability of DNNs to model complex hierarchi-

cal relationships in the data.

One of the first models in the field is DeepBind (Alipanahi et al., 2015b) - a

CNN for prediction of protein biding score from both microarray and TF ChIP-seq

experiments using 14–101 nucleotides of DNA sequence as input. DeepBind used

a simple model structure with a single convolutional layer followed by a ReLU ac-

tivation and max pooling. The convolutional filters were thought to fit well to the

task given their conceptual similarity to PWMs [see section 1.2.4 on PWMs]. The

ReLU layer allowed to prune out positions with negative activation (corresponding

to positions that did not match the learnt filters) and the maxpooling layer summa-

rized the activation across the input sequence. With this simple design DeepBind

outperformed the other methods, e.g. based on kmer content.

DeepSea (Zhou and Troyanskaya, 2015a) is another early genomics DNN

that expanded the architecture to include 3 layers of convolutional and maxpool-

ing blocks which allowed learning features at multiple scales. These layers trans-

formed the input features (DNA sequence of length 1 Kb) to predict a vector of
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binary labels corresponding to multiple epigenetic assays, specifically TF and hi-

stone modification ChIP-seq and DNase-seq (975 tasks in total). In addition to

these innovations the model was proposed and used to score SNPs for their po-

tential to be causal of epigenetic changes. Similarly, Basset (Kelley, Snoek, and

Rinn, 2016) utilized 3 blocks of convolution, ReLU and maxpooling to predict

DNase-seq peaks (binary labels) of 164 cell lines from 600bp input DNA.

These models set the foundations for genomic DNNs introducing the use

of multiple convolutional layers to learn motifs and multi-scale interactions, pre-

dicting various assay output (multi-tasking) and expanding input DNA length to

incorporate genomic context into the predictions. Each model was shown to out-

perform traditional bioinformatics methods which are described next.

1.2.4 Advantage over traditional PWMs/k-mer methods.

Traditionally, statistical methods such as PWMs have been used for un-

derstanding sequence-function relationships. PWMs quantify the variation of nu-

cleotides at specific positions within a set of aligned sequences known to share

a common function such as protein binding (Stormo et al., 1982; Berg and Hip-

pel, 1987; Stormo, 2000; Foat, Morozov, and Bussemaker, 2006). However, they

are convolution-based models that assume an additive effects model, treating each

nucleotide independently and ignoring motif positioning within sequences. Vari-

ous extensions to the PWM have been proposed to incorporate pairwise interaction

terms between adjacent positions in the motif (Bulyk, Johnson, and Church, 2002;

Siddharthan, 2010; Berger et al., 2006) or between all positions in the motif (Omidi

et al., 2017; Zhao et al., 2012; Tomovic and Oakeley, 2007); allow multiple PWMs

for a single motif (Hannenhalli and Wang, 2005); or extend the PWM model in a

Markovian manner by allowing the probability at each position to depend on some
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number of previous positions (Siebert and Söding, 2016; Mathelier and Wasser-

man, 2013; Ge et al., 2021), in addition to more expressive Bayesian networks

(Barash et al., 2003; Keilwagen and Grau, 2015; Pudimat, Schukat-Talamazzini,

and Backofen, 2005). A key limitation of previous PWM-based methods is that

they do not consider long-range dependencies between motifs or sequence context,

beyond the core binding sites – factors that can influence non-additive functional

activity via cooperativity (Venkatesh et al., 2021; Slattery et al., 2011; Monahan

et al., 2017; Huang et al., 2015), competition (Baeza-Centurion et al., 2019; Kwas-

nieski et al., 2012), or other dependencies, such as nucleosome positioning (Zhu

et al., 2018; Segal et al., 2006).

Comparatively, CNNs can be considered as a generalization of PWMs, with

each layer serving as a PWM-like model. Thus, deeper layers take as input PWM-

like scans from the previous layer, enabling them to learn non-linear interactions

within and across binding sites. Also, unlike the rigid binary motif scans employed

by traditional PWMs, CNNs adopt a more flexible assumptions about the expres-

sive representation of motifs, capturing a wider range of affinities than PWMs.

Additionally, DNNs have a larger receptive field, i.e. longer input area that affects

the calculation of a given output unit (Araujo, Norris, and Sim, 2019). Therefore,

more of the surrounding genetic context and distance dependencies between de-

tected motif pattern are considered during prediction. Collectively, these features

make DNNs more beneficial for understanding sequence to function relationships.

1.2.5 The second wave of genomic DNN applications

With the growing interest in using DNNs to model sequence-function rela-

tionships in genomics several early innovations followed the initial attempts (out-

lined in section 1.2.3). Below is a brief review of the important innovations in the

early stages following these pioneering works. For more extensive reviews refer
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to (Angermueller et al., 2016; Eraslan et al., 2019; Ching et al., 2018; Zou et al.,

2019; Koo and Ploenzke, 2020).

One of the earlier models, DanQ (Quang and Xie, 2016) was developed to

predict 919 binary target vectors from ChIP-seq and DNase-seq assays for each

input of 1Kb DNA sequence. It introduced bi-directional long short-term memory

network (BLSTM) on top of a convolutional and maxpooling layer block as an

innovation in genomics models. This was motivated by the need to allow motif po-

sitioning and interactions to be learnt across the length of the sequence. Coda (Koh,

Pierson, and Kundaje, 2017) was another model introducing a novel approach to

denoising histone ChIP-seq and DNase-seq datasets using two separate CNNs -

one for binary classification of presence or absence of a peak and the other for the

regression task of normalized read counts (per 25bp bin). Following the popularity

of DNNs in genomics (Zeng et al., 2016) compared simple architectural choices

(e.g. number of convolutional layers) and benchmarked their utility for prediction

of DNA-protein binding.

Following the early success of DNNs in other tasks (Cuperus et al., 2017)

aimed to model the expression levels of a functional protein required for growth

based on a library of 5’ UTR sequences in yeast Saccharomyces cerevisiae. This

was one of the earliest attempts at predicting expression (through the massively

parallel growth selection assay outputs) as well as overcoming the limitations of

the inherently small size of the training set by designing new synthetic sequences.

Ref.(Angermueller et al., 2017) used DNNs to impute missing single cell data us-

ing DNA sequence and single cell CpG methylation data using bidirectional gated

recurrent networks. This was the first use of DNNs to predict the methylation state

of the chromosome. Similarly, SpliceAI (Jaganathan et al., 2019) was the first

DNN trained to clasify genomic positions as splicing donor, acceptor or neither of
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those classes using a 10Kb sequence as input. This work also compared different

depths of DNNs and scales of input sequences in addition to using dilated convo-

lutions and residual connections. Overall, this wave of models explored a diversity

of new prediction tasks and some early innovations of architectural choices.

1.3 A maturing field: major breakthroughs in ge-

nomic DNN applications since 2017

Following the early success of genomic DNNs, there has been a surge of ap-

plications, pushing the boundaries of what can be predicted from DNA sequences.

Building on the early models which mostly used simple blocks of convolutions and

maxpooling the next generation of DNNs used various architectural tricks to im-

prove the models [see section 1.4.1 for architectural innovations]. These allowed

for larger input sizes, better performance outcomes and (in theory) improved flow

of information between different parts of the input sequence. This is crucial for

certain modeling tasks such as gene expression prediction which depend on distal

regulators. Many of these models were also trained to predict quantitative readouts

of larger sets of epigenetic marks (at various resolutions). In addition, new data

modalities were introduced, e.g. prediction of regulatory activity chromatin struc-

ture or gene expression. Overall, this generation of DNNs applied innovations in

architecture and explored various target datasets as discussed next.

1.3.1 Chromatin profiling: TF binding and histone marks and

chromatin accessibility

DNNs have been used for prediction of cell-type specific chromatin profiles

using DNA sequence only or coupled with other data modalities. Initial efforts
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(Quang and Xie, 2019; Li, Quang, and Guan, 2019; Asif and Orenstein, 2020)

were towards prediction of binarized target labels (binding or no binding events

based on peak-calling algorithm outputs). To make models generalizable to cell

types not included in the training dataset some of the models incorporated ATAC-

seq or DNase-seq as cell-type specific input to the models (Quang and Xie, 2019;

Cazares et al., 2023). More recently modeling efforts have shifted to quantitative

or base-resolution prediction of the TF binding profiles.

Deviating from this pattern, BPNet (Avsec et al., 2021a) was trained to pre-

dict ChIP-Nexus profiles from DNA sequences for 4 TFs of interest. The model

was then used to perform in silico experiments to address questions about TF

co-binding depending on distance revealing known patterns of TF-TF interaction.

Similarly, DNNs were initially trained to predict accessibility of binarized DNase-

seq (Kelley, Snoek, and Rinn, 2016; Minnoye et al., 2020) and histone modification

ChIP-seq data (Yin et al., 2019). The trend in this task group is the same in moving

from binary to quantitative profile predictions. Moreover, a series of models by

(Kelley et al., 2018a; Kelley, 2020; Avsec et al., 2021c; Linder et al., 2023) intro-

duced quantitative and parallel prediction of binned (lower than base-resolution)

accessibility, histone and TF ChIP-seq and CAGE-seq track predictions.

1.3.2 Regulatory element activity

Many of the introduced models have been benchmarked using datasets of

perturbation-based functional genomics assays, such as CRISPRi or MPRA. A sub-

set of models has also focused on directly modeling the regulatory function of DNA

elements based on data from such assays. For instance, STARR-seq measures en-

hancer activity in a massively parallel episomal assay and DeepSTARR (Almeida

et al., 2022) was trained to predict this activity based on input DNA sequence of
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the putative regulatory element discovering different syntax rules governing house-

keeping and tissue-specific gene regulation. Similarly, lentiMPRA measures reg-

ulatory activity of DNA segments inserted into the genome at random positions

and (Agarwal et al., 2023) trained MPRAnn to predict the regulatory activity of a

given element in a specific cell line and identified elements with cell type specific

activity. Regulatory element activity was also modelled in yeast (Vaishnav et al.,

2022) in order to uncover evolutionary dynamics of these elements.

1.3.3 DNNs for deciphering the cis-regulatory code

In the past, DNNs have been used to model various data types – e.g. ATAC-

seq, ChIP-seq, and CAGE. Although not all the models have been used or inter-

preted to their full potential, DNNs and interpretability methods have been used to

dissect the CREs in specific cell lines. For instance, Kim et al. (Kim et al., 2020),

used this approach to model the regulatory grammar of epithelial cells, discovering

a combinatorial and dynamic set of motifs that determine tissue differentiation. In

a similar work, Nair, et al. (Nair et al., 2023), used DNNs to uncover transiently ac-

tive and non-canonical motifs of TFs involved in fibroblast differentiation. Others

have applied this to study cardiogenesis (Ameen et al., 2022), DNA accessibility

in Drosophila embryos (Brennan et al., 2023), binding affinities in yeast and mam-

malian TFs (Le et al., 2018; Alexandari et al., 2023), etc. Here I will summarize the

main directions of DNN model application classified by the target assay modality.

1.3.4 Gene expression

One of the main challenges in predicting the amount of steady-state mRNA

expression levels through RNA-seq from DNA sequence as input is the multi-

tude of factors affecting the rates of RNA production, stability and degradation

as well as presence of long-range silencer- or enhancer-promoter interactions etc.
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Although many of these factors are believed to have sequence determinants, these

can be located kilobases away from the promoter sequence. Early models were

limited to shorter input sequences because of computational and technical con-

straints. Therefore, the initial efforts focused on using only the promoter sequence

albeit with limited success. This was pioneered by (Agarwal and Shendure, 2020)

and (Zhou et al., 2018a) who developed models that predicted a scalar value of

gene expression as log RPKM (Reads Per Kilobase per Million) from bulk RNA-

seq per input DNA sequence. Afterwards the efforts of predicting gene expression

shifted to predicting quantitative CAGE-seq profiles (Kelley et al., 2018a; Kelley,

2020; Avsec et al., 2021c; Karbalayghareh, Sahin, and Leslie, 2022) as a proxy for

gene expression achieving performance almost equal to replicate-replicate agree-

ment for gene-centered loci. Similarly, (Dudnyk, Shi, and Zhou, 2023) used DNNs

to predict readouts of transcription initiation (through CAGE, GRO-cap, PRO-seq,

RAMPAGE) using DNA sequence. Notably, (Karbalayghareh, Sahin, and Leslie,

2022) incorporated the 3D structure of the genome in the predictions essentially

forcing the model to focus on biologically important information - i.e. elements in

the spacial proximity, into the predictions. Finally, (Linder et al., 2023) reversed the

trend in the field by developing Borzoi - a large scale DNN that predicts RNA-seq

coverage values at 32bp resolution for more than half a megabase DNA sequence.

This was mainly possible due to architectural innovations which allowed the inclu-

sion of a larger input size sequence while maintaining a large receptive field (see

section 1.4.1 on technical details). Overall, one of the trends in the field of genomic

sequence-to-function DNNs, especially in expression prediction is incorporation of

more data modalities and longer input sequences.
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1.3.5 Chromatin structure

Vertebrate genomes are organized in a hierarchical way in the 3D space so

that long-range interactions between enhancers and silencers can take place. Al-

though the extent to which this influences or is causal to transcription is unclear

this is an important part in gene regulation. Moreover, mistakes in genome fold-

ing can lead to enhancer ’hijacking’ which in turn can cause disease (Della Chiara

et al., 2023). The 3D structure of the genome can be studied using Chromosome

Conformation Capture or 3C (Dekker et al., 2002) assays such as Hi-C (Belton

et al., 2012) or Micro-C (Hsieh et al., 2015) that map the high contact regions rep-

resenting them as a heatmap or a 2D matrix. DNNs have been used to uncover the

sequence determinants of the 3D genome structure in a cell-type specific manner

by modeling such matrices based on input DNA sequences (Yang et al., 2023; Fu-

denberg, Kelley, and Pollard, 2020; Schwessinger et al., 2020; Tan et al., 2023;

Zhou, 2022). These models, notably Orca (Zhou, 2022) operate at chromosome

length scales and have shown aptitude to predict genome folding given structural

variants. However, very few models (Karbalayghareh, Sahin, and Leslie, 2022)

have incorporated 3D genome structure into gene expression prediction.

1.3.6 Disease associated variants

Predicting the implications of putative disease causing variants is a ma-

jor downstream application of sequence-to-function models (Wong et al., 2021).

In an ideal scenario, a DNN trained to predict epigenetic assays or gene expres-

sion levels would capture the biological mechanisms in sequences that lead to nor-

mal expression of transcripts or their post-transcriptional regulation (e.g. splicing,

RNA-stability, etc). In order to assess how well models capture the effect of point

mutations (Avsec et al., 2021c) used the CAGI5 (Critical Assessment of Genome
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Interpretation) dataset of saturation mutagenesis (Kircher et al., 2019), to score how

well the introduced model, i.e. Enformer, predicts changes in expression caused by

point mutations. Generally, models like Enformer would then be used to score

non-coding sequence mutations and rank them according to how detrimental they

would be to normal expression levels. Alternatively, these could be used to score

known GWAS or eQTL variants to fine-map variants of interest among candidate

positions. Lastly, DNNs could be used to predict implications of genetic variation

for a particular gene from personalized genomes. However, (Huang et al., 2023)

and (Sasse et al., 2023) have shown that current state-of-the-art models struggle to

do this as summarized in (Tang, Toneyan, and Koo, 2023).

DNNs in regulatory sequence design. Sequence design is the rational design of

new sequence elements that satisfy or improve certain desiderata. An example of

this is adeno-associated virus or AAV capsid sequence design where there are mul-

tiple objectives or goals, e.g. packaging efficiency. This is usually done at the DNA

sequence level as libraries are constructed for viral assembly. Machine learning or

deep learning can then be used to predict the packaging efficiency and therefore

propose mutated versions of the sequence that will yield a higher enrichment for

successfully packaged viruses (Zhu et al., 2024; Ogden et al., 2019). Similarly,

DNNs can be used for de novo discovery of enhancer elements for tissue-specific

expression of a given gene (Almeida et al., 2022; Almeida et al., 2024).

1.4 Innovations that are empowering breakthroughs

1.4.1 Architectures

Although the majority of sequence to function models still rely on convo-

lutional networks without architectural innovations, many modern techniques that
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can achieve better performances have be developed. Among these, dilated convolu-

tional layers (Yu, Koltun, and Funkhouser, 2017) were designed to broaden the re-

ceptive field without an increase in parameter count. By introducing a dilation rate

that skips input values at a given interval, dilated convolutions allow the network

to collect information over larger areas of the input data, enabling more efficient

detection of long-range interactions (Yu and Koltun, 2015; Kelley et al., 2018b;

Jaganathan et al., 2019). Similarly, various pooling layers have been developed to

reduce the dimensions of input features while retaining critical information. Tech-

niques like max pooling and average pooling are commonly used to maintain either

the most significant or average feature statistics learned by the network (Boureau,

Ponce, and LeCun, 2010). In contrast, attention pooling offers a dynamic focus

during dimensionality reduction (Er et al., 2016). In addition to expanded recep-

tion field, skipped connection was developed to address the diminishing gradient

problem of traditional linear model structure, simplifying model training (He et al.,

2016). These architectural innovations combined constitute squeeze-and-excitation

(SE) networks. SE blocks can adaptively weigh channel-wise feature importance

by explicitly modelling interdependencies between channels (Hu, Shen, and Sun,

2018). There have also been innovations more specific to features of biological

data. Reverse-complement equivariant CNNs were developed to ensure that the

DNNs learn the inherent symmetry of reverse complement DNA sequences (Mal-

let and Vert, 2021).

Beyond CNNs, other types of neural networks has also been applied to se-

quence data. Recurrent neural network (RNN) architectures such as Bidirectional

Long Short-Term Memory (bi-LSTM) layers are specifically designed to capture

long-distance interactions within data. This is achieved by maintaining an internal

state that ’memorizes’ contextual inputs over time. When applied to sequence mod-

els, the convolution layer captures regulatory motifs, while the recurrent layer latter
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captures long-term dependencies between the motifs in order to learn a regulatory

‘grammar’ to improve predictions (Quang and Xie, 2016; Zhang et al., 2020). Ad-

ditionally, there has been a resurgence of RNN based state-space models. These

new layers are more often used in self-supervised sequence models (Nguyen et al.,

2024a; Gu and Dao, 2023).

Lastly, self-attention layers, capable of learning dependencies across the

full span of the input sequence regardless of distance, offer a significant advantage

in contexts where comprehensive contextual understanding is critical. Initially de-

veloped for natural language processing, this approach has been applied to diverse

fields including biological tasks, offering promising performances (Avsec et al.,

2021c; Dalla-Torre et al., 2023; Lin et al., 2022b; Zhou et al., 2023).

1.4.2 Training methods

In addition to architectural innovations training strategy choices can also

affect the DNN and various methods have been used in genomics. Below is an

outline of the main components of training methods.

Activation function Activation function is (most of the time) a non-linear func-

tion that is used to produce the final outputs of units or neurons. Mirroring the

success of rectified linear unit (ReLU) activation function in image classification

(Krizhevsky, Sutskever, and Hinton, 2012), genomics models also most commonly

use ReLU which clamps negative values to zero. Other functions such as tanh, soft-

plus, Gaussian Error Linear Unit (GELU) (Hendrycks and Gimpel, 2016) etc. have

also been deployed. Interestingly, (Koo and Ploenzke, 2021) showed that using ex-

ponential activation function instead of ReLU improves the interpretability of the

genomic models illustrating the importance of nuances in training method choices.
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Initialization Initialization of weights, i.e. how the weights are set to start the

training, is another important aspect of modeling. Note, that all initialization strate-

gies sample from different distributions instead of setting all the values to the same

number to ensure symmetry breaking - i.e. units learning non-redundant features.

Interestingly, early work (Glorot and Bengio, 2010; Pennington, Schoenholz, and

Ganguli, 2017; He et al., 2015) on how to sample these values demonstrated that

there is interaction between the choice of initialization and activation function, il-

lustrating that the modeling choices do not act independently. Despite the relative

lack of theoretical basis, the most commonly used initializations in genomics are

He (He et al., 2015) and Glorot (Glorot and Bengio, 2010) due to their empirical

success.

Regularization Regularization strategies aim to reduce overfitting and increase

model generalization to held-out data. Some approaches, such as dropout and

early stopping are widely adopted in genomics and elsewhere. Dropout (Srivas-

tava, 2013) randomly removes a subset of nodes (and connections to those nodes)

during training, essentially training an ensemble of multiple sub-models and aver-

aging those to make a prediction. Another approach commonly used in genomics

is weight decay, where the loss calculation is modified to include a penalty term

to reduce the number of non-zero parameters (L1-norm) or reduce the values of

weights (L2-norm). Batch normalization (Ioffe and Szegedy, 2015) which normal-

izes the activations of each layer across data points and layer normalization (Ba,

Kiros, and Hinton, 2016) which normalizes across activation values in the layer

per data point are also commonly used to stabilize the model gradients and prevent

overfitting.

Optimizers and learning rate The loss surface – i.e. the error or loss value at

each possible combination of weights or parameters of most DNNs is extremely
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complex due to over-parameterization of DNNs (much larger number of DNN

parameters than data points (Wu, Wang, and Su, 2022). Because of the lack of

an analytical solution to the optimal parameter set, DNNs are optimized through

gradient-based, iterative optimization methods. One of the simplest methods is

stochastic gradient descent (SGD) (Robbins and Monro, 1951) where the param-

eters are updated by computing the gradient of the loss (w.r.t. weights) given a

data point (or a mini-batch) and subtracting this gradient multiplied by the learning

rate. The learning rate determines the step size of the changes in the parame-

ters. Although certain genomic DNNs use SGD, the most popular method is Adam

(Diederik, 2014). This method uses momentum combined with root mean square

propagation (RMSProp). Intuitively, momentum allows parameter updates to take

into account the ‘inertia’ of the weight change in the prior step which reduces oscil-

lations on the loss surface, especially when the gradients in one direction are very

large. RMSProp adjusts the learning rate for each parameter by dividing it with the

exponentially weighted sum of all previous gradients. Additionally, various, more

advanced tricks have been proposed, e.g. cosine annealing (Loshchilov and Hutter,

2016) or stochastic weight averaging (Izmailov et al., 2018) which require further

exploration in genomic DNNs.

With a similar logic, (Lee et al., 2023) developed EvoAug – a new suite

of evolution-inspired data augmentations, e.g. inversions, deletions, etc. This dra-

matically increases the number of data points and reduced overfitting leading to

superior performance on held-out test set across different tasks. Similarly, (Dun-

can, Mitchell, and Moses, 2023) introduced phylogenetic augmentation which uses

phylogenetic information to enlarge the training dataset and incorporate more se-

quences from related species.
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Transfer learning Transfer learning is a machine learning technique where knowl-

edge learnt from pre-training task(s) is used to improve performance or efficiency

of a related target task. It is particularly helpful when the dataset size of the tar-

get task is the main limiting factor for prediction performance. It is believed that

by harnessing relevant knowledge from pre-training, the transferred model will

not only provide better performance, but also have better generalizability to new

tasks and data (Crawshaw, 2020; Jain et al., 2023). It has also been successful for

sequence to function models. Through using models pre-trained on large sets of

general biological functions, downstream models focusing on specific biological

mechanism or disease have shown better performances (Avsec et al., 2021c; Chen

et al., 2022a).

Binary vs quantitative The readouts from bulk sequencing assays such as TF

ChIP-seq are the number of reads that pile up at a given genomic region. These are

often normalized using a control experiment and are represented as quantitative

profiles showing various heights and shapes of peaks at regions of high activity.

To answer the question if a region is active or not (e.g. if a TF binds to the region

or not) various peak calling algorithms have been developed that use statistically

determined thresholds for binarizing the data. This has the potential to reduce the

noise in the data and filter for important regions. However, it also reduces the

information about a peak (shape and magnitude) into a single value. Moreover,

given the lack of ground truth it is unclear which thresholding strategy is the best

and whether intermediate intensity peaks should be considered as well. So, there

are two representations of such experiments used widely - binary peak locations or

the quantitative readouts of the assays. In genomics DNN models both have been

used as modeling targets or labels. Initially, given the easier nature of the data type,

the field used this to frame the modeling as a classification task with two possible
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outputs (peak or no peak). Subsequently, with the development of more advanced

models the field moved to quantitative models framing the problem as a regression

task. Some of these use base-resolution readouts as targets for prediction while

others bin the data into various lower resolutions to simplify the task.

Loss function Depending on the task formulation the loss function choice is dif-

ferent between binary and quantitative models. In case of a classification task with

binary or peak-based labels binary cross entropy loss is used which is a standard

approach in classification problems. In case of the regression based quantitiative

readouts the choice of the loss function is more diverse. Models such as (Kelley

et al., 2018a; Kelley et al., 2018b; Avsec et al., 2021c) used poisson negative log

likelihood (NLL) which assumes each base position or bin read count is indepen-

dent from the neighboring ones. In contrast, BPNet (Avsec et al., 2021b) split the

loss function to focus on two parts: (i) profile shape via multinomial NLL and (ii)

total read counts per input sequence via mean squared error.

Multi-task learning Multi-tasking models are trained to predict multiple differ-

ent tasks in parallel. In genomics this can include prediction of the same epige-

netic assay outputs across cell lines, prediction of different epigenetic tracks (e.g.

ATAC-seq and ChIP-seq) or both. Multi-tasking is advantageous because (i) the

model is less likely to overfit, (ii) can learn a common repertoire of representa-

tions (e.g. convolutional filters representing motifs) that are shared between tasks

and (iii) for a large number of tasks it can be efficient to train one unified model

instead of one model per task. However, depending on the combination of tasks

this can lead to adverse effects such as negative transfer, i.e. lower performance

in certain tasks compared to single task learning. The majority of genomic DNNs

(Zhou and Troyanskaya, 2015b; Avsec et al., 2021d; Kelley et al., 2018b; Kelley

et al., 2018a; Chen et al., 2022b) utilize multi-tasking, with the number of tasks
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ranging from a few ((Avsec et al., 2021b) used 4 cell line datasets) to thousands

((Avsec et al., 2021c) trained Enformer to predict almost 7,000 tracks from human

and mouse biosamples). However, it is unclear if combining all the tasks without

any grouping or changes in the training configuration is the most optimal approach

and requires further investigation.

1.4.3 Model interpretability

Model interpretability has become a crucial aspect of applying DL within

genomics, as it aids in understanding the predictive models’ decision-making pro-

cesses. Standard interpretation methods include techniques like filter visualization

and performing attribution analysis.

Filter visualization A standard approach for model interpretation is filter vi-

sualization (Alipanahi et al., 2015a), which involves analyzing the first convolu-

tion layer of a model. This layer scans the input sequence with a set of pattern-

recognizing filters, whose weights are optimized during training. Typically, an

accessible site on DNA, where regulatory proteins bind, is of interest. Predictive

models of accessibility are expected to capture these binding sites or motifs by

learning their sequence. However, it’s important to note that filters in the first layer

are not guaranteed to learn motifs. Nonetheless, certain design principles enable

filters to capture motifs effectively (Koo and Eddy, 2019; Koo and Ploenzke, 2021;

Novakovsky et al., 2023). By identifying inputs from the test set that maximally

activate a filter, aligning them, and converting them into position frequency matri-

ces, these can be compared to known motifs in databases (Castro-Mondragon et al.,

2021).
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Attribution analysis Attribution analysis, methods for attributing importance

scores to each nucleotide based on DNN predictions, further aids post-hoc in-

terpretation of genomic DNNs. These scores form attribution maps, which can

help to identify motifs, especially TF binding sites, and their dependencies. Other

observed CREs include nucleosome positioning signals and interactions between

TFs. Among the plethora of attribution methods, each bears unique advantages and

considerations.

In Silico Mutagenesis (ISM) (Zhou and Troyanskaya, 2015b) stands out

for its direct correlation with single-nucleotide saturation mutagenesis, offering a

straightforward attribution approach in genomic contexts. By comparing the pre-

dictions for in silico single-nucleotide variants (SNVs) against the wild-type se-

quence, ISM constructs an attribution matrix that reveals the impact of each variant,

mirroring traditional genomics experiments.

Saliency maps offer a simpler approach, computing input attributions by re-

turning the gradient of the output with respect to the input (Simonyan, Vedaldi, and

Zisserman, 2014). This method can be seen as a first-order Taylor expansion of the

network at the input, with gradients indicating feature importance. Saliency anal-

ysis uses the entire network to identify influential signals in the input data leading

to task-specific predictions. This method reveals the importance of each nucleotide

in a sequence by computing the gradient of a class prediction with respect to the

inputs, allowing the generation of sequence logos highlighting nucleotide signif-

icance. Further enriching the interpretability toolkit are methods like Integrated

Gradients (Sundararajan, Taly, and Yan, 2017), SmoothGrad (Smilkov et al., 2017),

DeepSHAP (Lundberg and Lee, 2017), and DeepLIFT (Shrikumar, Greenside, and

Kundaje, 2017).
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Despite these methods, interpreting models remains complex since differ-

ent methods may yield varying insights, shaped by the characteristics of the func-

tions learned by the DNN. Following up with tools like TF-MoDISco (Shrikumar

et al., 2018) or in silico experiments, and ultimately experimental validation, can

confirm these hypotheses. For instance, TF-MoDISco clusters attribution maps

into segments, offering averaged representations for each cluster that can be linked

to task-type-specific regulation.

Global interpretations Global interpretability methods such as GIA (Koo et al.,

2021) extends interpretability to a broader scale, quantifying the effect size of pu-

tative patterns on model predictions across a population. This method tests hy-

potheses on patterns and their interactions, mapping specific functions learned by

the network.

In summary, interpretability methods in genomics provide essential insights

into the predictive models’ workings. These methods not only help uncover motifs

and CREs but also facilitate a deeper understanding of cell-type-specific transcrip-

tion regulation.

1.5 Overview of thesis chapters

As discussed in this chapter, technical innovations in DL have led to sig-

nificant advancements for a diverse set of biological inquiries. However, the grow-

ing number of model design choices and training techniques has made evaluating

their utility, particularly within the domain of regulatory genomics more complex.

Since we not only care about training task performance, but also a model’s ability

to generalize to experimental design and clinical applications, as well as its inter-

pretability for understanding regulation mechanisms. It is unclear how well fitted
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some of the newest model innovations are for our research interests. In this thesis, I

explored the representational capabilities of current DL methods. In Chapter 2, we

will introduce a framework designed to assess supervised models, focusing only on

prediction performance but also robustness and generalizability. And in Chapter 3,

we shifts the focus towards the evaluation of unsupervised models, and explore

whether language models can extract meaningful representations from DNA se-

quences. Finally in Chapter 4, we will discuss the broader implications of DNNs

in biology, discussing their generalizability, the limitations we’ve encountered in

our research, and the potential paths forward.
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Chapter 2

Evaluating deep learning for

predicting epigenomic profiles

Deep learning has been successful at predicting epigenomic profiles from

DNA sequences. Most approaches frame this task as a binary classification relying

on peak callers to define functional activity. Recently, quantitative models have

emerged to directly predict the experimental coverage values as a regression. As

new models continue to emerge with different architectures and training configu-

rations, a major bottleneck is forming due to the lack of ability to fairly assess the

novelty of proposed models and their utility for downstream biological discovery.

Here we introduce a unified evaluation framework and use it to compare various

binary and quantitative models trained to predict chromatin accessibility data. We

highlight various modeling choices that affect generalization performance, includ-

ing a downstream application of predicting variant effects. In addition, we intro-

duce a robustness metric that can be used to enhance model selection and improve

variant effect predictions. Our empirical study largely supports that quantitative

modeling of epigenomic profiles leads to better generalizability and interpretabil-

ity.
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2.1 Introduction

DL has achieved considerable success in predicting epigenomic profiles

from DNA sequences, including transcription factor binding (Quang and Xie, 2019;

Li, Quang, and Guan, 2019; Zheng et al., 2021), chromatin accessibility(Kelley,

Snoek, and Rinn, 2016; Minnoye et al., 2020), methylation (Angermueller et al.,

2017), and histone marks (Zhou and Troyanskaya, 2015b; Yin et al., 2019). By

learning a sequence-function relationship, trained DL models have been utilized

on various downstream tasks, such as predicting the functional effects of single-

nucleotide variants associated with human diseases (Dey et al., 2020; Cheng et al.,

2021; Zhou and Troyanskaya, 2015b; Zhou et al., 2019; Park et al., 2021; Kelley,

Snoek, and Rinn, 2016; Zhou et al., 2018b).

Over the past several years, the variety of DL models proposed to address

regulatory genomic prediction tasks has increased substantially(Kim et al., 2021;

Novakovsky et al., 2021; Atak et al., 2021; Li et al., 2021; Karbalayghareh, Sahin,

and Leslie, 2022; Chen et al., 2022b; Janssens et al., 2022; Vaishnav et al., 2022;

Zhou, 2022). The wide variety of proposed models, the datasets they are trained on,

how the datasets are processed, and the tricks used to train the models make it chal-

lenging to assess which innovations are driving performance gains. A direct com-

parison of model performance cannot always be made easily due to the variations

of how the prediction tasks are framed. For instance, previous approaches typically

frame the task as a binary classification, where binary labels represent functional

activity based on a peak caller. However, in collapsing the amplitude and shape of a

peak into a binary label, information about differential cis-regulatory mechanisms

potentially encoded in these attributes is lost. Recently, quantitative models(Kelley

et al., 2018b; Kelley, 2020; Maslova et al., 2020; Avsec et al., 2021b; Avsec et al.,

2021d) have emerged, similarly taking DNA sequences as input but now directly
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predicting experimental read coverage values as a regression task, thus bypassing

the need for a peak caller and preserving quantitative information of epigenomic

tracks. Since standard metrics differ across classification and regression tasks, it

remains unclear how to directly compare models trained on binary tasks versus

quantitative tasks.

To address this issue, Kelley et al(Kelley et al., 2018b) propose to ‘bina-

rize’ their quantitative predictions using a peak caller, which enables a comparison

of the overlapping regions with binary labels. However, this approach narrowly fo-

cuses evaluation on regions of the genome that have been annotated as functional

according to a peak caller, which is noisy and sensitive to parameter choices of

the peak caller(Koohy et al., 2014). Alternatively, Avsec et al(Avsec et al., 2021b)

compared the performance of a binary model with an augmented version of the bi-

nary model that appends an output-head that simultaneously predicts quantitative

profiles. While this measures the added benefit of quantitative modeling, this ap-

proach requires retraining multiple versions of the model, which can be sensitive

to initialization, and it does not easily extend to comparisons with existing models.

Moreover, other modeling choices within a prediction task make it chal-

lenging to directly make fair comparisons. For instance, existing quantitative mod-

els predict different resolutions of the epigenetic profiles. Basenji (Kelley et al.,

2018b) predicts non-overlapping binned epigenomic profiles with a resolution of

128 base-pairs (bp), while BPNet(Avsec et al., 2021b) predicts at base-resolution.

Comparing models across different resolutions is not straightforward, because bin-

ning affects the smoothness of the coverage values which, in turn, can influence

performance metrics. Moreover, existing methods employ different data augmen-

tations and analyze different subsets of training and test data, further complicating

any direct comparisons.
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As the number of applications continues to grow, a bottleneck of modeling

innovations is forming as we lack the ability to perform a critical assessment of

newly proposed models. Here, we propose an evaluation framework for DL mod-

els trained on regulatory genomics data that enables a systematic comparison of

prediction performance and model interpretability, irrespective of how the predic-

tion task is framed. Using this framework, we perform a critical assessment of

quantitative models and binary models on a chromatin accessibility prediction task

to elucidate beneficial factors in model architecture, training procedure, and data

augmentation strategies. Moving beyond predictive performance, we assess each

model with additional criteria: 1) robustness of predictions to small perturbations

to the input sequence, 2) variant effect predictions, and 3) interpretability of the

learned representations. Our evaluation framework is packaged in a python-based

software, called GOPHER (GenOmic Profile-model compreHensive EvaluatoR).

2.2 Results

Many newly proposed DL models are accompanied with custom software;

however, their scope is often limited to employing a specific pipeline, making it dif-

ficult to mix-and-match innovations across methods. To gain deeper insights into

the factors that drive model performance, it is critical to be able to make a system-

atic and fair comparison across existing and newly proposed DL models. To ad-

dress this gap, we developed a new, integrative software package called GOPHER

that consists of high-level Tensorflow/Keras-based APIs for data processing, data

augmentation strategies, and comprehensive model evaluation, including variant

effect predictions and model interpretability, for binary and quantitative modeling

of epigenomic profiles (Fig. 2.1).
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FIGURE 2.1: GOPHER overview. (a) Comparison of binary and
quantitative prediction tasks for regulatory genomics. (b) Illustra-
tion of the 3 main components of DL analysis: data preprocess-
ing (i.e. input size, target selection and resolution), model training
(i.e. model architecture, loss and data augmentations) and evalu-
ation (i.e. generalization performance, robustness, interpretability

and variant effect predictions).
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2.2.1 Performance evaluation of best-in-class quantitative mod-

els

Prominent quantitative models for regulatory genomics are Basenji(Kelley

et al., 2018b) and BPNet(Avsec et al., 2021b). Each employ different strategies

for model design, data processing, loss function, evaluation metric, and data aug-

mentations (Supplementary Table A.1), which makes it difficult to identify the key

factors that drive performance gains. Thus, we performed a systematic comparison

of Basenji- and BPNet-inspired models on a multi-task quantitative prediction of

chromatin accessibility ATAC-seq data across 15 human cell lines (see Methods).

This dataset provides a sufficient challenge in deciphering the complexity of en-

hancer activity across cell types but maintains a dataset size that is amenable to the

scale of comprehensive evaluations performed in this study.

For each base model, we used GOPHER to search for optimal hyperpa-

rameters using each model’s original target resolution and training set selections

(Supplementary Fig. B.1). Target resolution defines the bin size of the prediction

task, which is used to create non-overlapping windows of coverage values, with

the lowest resolution being a bin size of the entire input sequence (i.e. predicting a

single quantitative output) while the highest resolution is a bin size of 1 (i.e. base-

resolution). BPNet was trained at base resolution on peak-centered data (BPNet-

base), which consists of a training set selection of genomic regions that contain

at least 1 peak from a target cell-type. On the other hand, Basenji was trained at

128 bin-resolution (Basenji-128) with coverage-threshold data, which consists of

training set selection based on segmenting each chromosome into non-overlapping

regions and then sub-selecting the regions that have a max coverage value above a

set threshold. Details of the default choices for the dataset and training parameters

are detailed in Methods.
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Overall, the quality of the model predictions were in line with previous

studies (Fig. 2.2a). Using the optimized models as a baseline, we compared the im-

pact of various factors that influence prediction performance, including loss func-

tion, target resolution, training set selection, and test set selection.

Loss function. The choice of loss function for quantitative models is not as

straightforward as binary models, which is typically a binary cross-entropy. Loss

functions can penalize the shapes (e.g. Pearson’s r) or the magnitudes (e.g. mean-

squared-error (MSE)). BPNet employs a combination of MSE for the magnitude

and multinomial loss for the shape. On the other hand, Basenji employs a single

loss, Poisson negative log-likelihood (NLL). To explore the effect of loss function

on quantitative modeling, we systematically evaluated Basenji-based models and

BPNet-based models (using the optimized parameter setting from hyperparameter

search) across 5 different loss functions at 8 different target resolutions (Fig. 2.2b).

Evidently, Poisson NLL outperformed the other losses at all tested bin-resolutions,

i.e. lower MSE and higher Pearson’s r on the held out test set. On the other hand,

Pearson’s r and the combination of Pearson’s r and MSE loss yielded the second

best overall performance. Interestingly, higher bin sizes tend to yield better perfor-

mance up to a bin size of about 1 kb for Basenji-based models, which is roughly

the width of an ATAC-seq peak. Surprisingly, BPNet-based models yielded a dif-

ferent trend, where base-resolution models performed the best, albeit Poisson NLL

remained the best loss (Supplementary Fig. B.2a). This is expected (to a degree)

as each of these models were optimized for different resolutions. This suggests

that model design can be optimized for a given resolution but may not necessarily

generalize across resolutions.

Target resolution. Quantitative models that employ different target resolu-

tions cannot be directly compared, because the bin sizes serve to down-sample the
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FIGURE 2.2: Evaluation of Basenji-based quantitative models. (a)
Example visualization of bigWig tracks for experimental measure-
ments and model predictions for GM23338 cell line on a test chro-
mosome for Basenji-128. (b) Loss function analysis. Scatter plot
of the whole-chromosome Pearson’s r versus the MSE for different
loss functions and target resolutions. Predictions were scaled us-
ing ground truth mean coverage (Methods). (c) Target resolution
analysis. Heatmap of the whole-chromosome Pearson’s r for mod-
els trained on a given bin size with predictions down-sampled to a
lower resolution for evaluation. (d) Training set selection analysis.
Scatter plot of whole-chromosome Pearson’s r versus different tar-
get resolutions for Baenji-based models trained on datasets with a
different coverage threshold. Peak-centered represents when model
is trained only on genomic regions identified as a peak. (e) Test
set selection analysis. Scatter plot of the thresholded Pearson’s r,
which is average of per sequence correlation in the thresholded test
set, versus different coverage thresholds applied to the test set for
different resolution Basenji-based models trained on default data.

(b-e) Pearson’s r represents the average across cell lines.
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number of data points, which can affect performance metrics based on correlation

and binning effectively smoothens high-frequency noise. To explore whether the

observed relationship between a higher bin size (i.e. lower resolution) and higher

prediction performance for Basenji-based models is due to more accurate predic-

tions or because of the statistical artefacts from binning, we developed an evalu-

ation scheme that enables a direct comparison across target resolutions. Specifi-

cally, we binned the predictions of the higher resolution models to match the lower

resolution predictions. This effectively provides an avenue to fairly compare the

performance across target resolutions. As expected, models trained at a given tar-

get resolution yield a higher Pearson’s r with increased smoothing, despite that

the biology underlying the predictions remains unchanged (Fig. 2.2c). A similar

observation was made for BPNet-based models (Supplementary Fig. B.2b). To

further demonstrate the sensitivity of Pearson’s r on smoothness properties, we

systematically smoothed predictions while maintaining the predicted resolution by

applying a box-car filter with window sizes that matched a lower-resolution bin

and observed a similar trend (Supplementary Fig. B.3).

Training set selection. One major component of generalization perfor-

mance depends on the composition of training data. To explore the impact of train-

ing set selection, we systematically trained Basenji-based models at different reso-

lutions on new datasets with increasing stringency of a coverage threshold, which

serves to modulate the balance between the original BPNet’s peak-centered train-

ing approach and the original Basenji’s whole-chromosome training approach. For

comparison, we also trained each model on peak-centered data. By evaluating each

model on the whole-chromosome test set for consistency, we found that the train-

ing set with the lowest threshold yielded the best performance, while peak-centered

models performed the worst (Fig. 2.2d). Limiting the model to only higher func-

tional activity reduces the data set size, and hence the number of examples the
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model has to learn from, which may explain some of the drop in performance. On

the other hand, providing too many inactive regions may imbalance the model’s

focus on features within inactive sites, though we did not observe this undesirable

behavior.

Test set selection. Choice of test set can influence the measure of gener-

alization performance. The common approach is to process the training set and

test set in the same way and split them via random splits or held-out chromo-

some(s). Alternatively, predictions across the whole chromosome (via tiled predic-

tions) puts a greater emphasis on generalization to regions of non-functional sites.

To explore the influence of test set selection on model performance, we generated

new test sets with progressively stringent coverage thresholds to modulate between

the two extremes. To compare performance across test thresholds, we calculated

the average Pearson’s r per sequence, instead of calculating a single Pearson’s r

across tiled predictions. Interestingly, Basenji-base’s performance monotonically

increases with the coverage threshold on the test set (Fig. 2.2e). A similar trend

was observed across other resolutions. This illustrates that predictions are more ac-

curate for higher coverage regions and thus focusing only on high-activity regions

can inflate test performance.

In addition, we performed a more targeted evaluation of the performance at

high-activity regions across models trained on either peak-centered or coverage-

threshold datasets (Supplementary Table A.2). We observed a consistent trend

where models trained on peak-centered data had a slight performance advantage

over models trained on coverage-threshold data in terms of scaling the heights of

the reads (i.e. lower MSE). However, models trained on coverage-threshold data
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yielded substantially better peak detection performance across the whole chromo-

some (i.e. higher Pearson’s r). Thus, there is a slight trade-off in scaling the predic-

tions when training on coverage-threshold data, but it leads to lower false positive

activity predictions genome-wide.

2.2.2 Robustness test to identify models with fragile predictions

Robustness to input perturbations is a widely used criterion for evaluat-

ing the trustworthiness of DL models(Madry et al., 2017; Cohen, Rosenfeld, and

Kolter, 2019). Adversarial attacks using small, targeted noise to the inputs dra-

matically affects the prediction of non-robust models(Goodfellow, Shlens, and

Szegedy, 2014). These noise-based perturbations do not naturally extend to ge-

nomic data. Alternative perturbations, such as single-nucleotide mutations, can

affect function and hence are also inappropriate. We developed a robustness test

to measure the sensitivity of model predictions to translational shifts of the input

sequences, whose function is largely maintained by also shifting the target predic-

tions (see Methods). Specifically, our robustness test provides a variation score

for a given input sequence that is randomly translated N times – the predictions

are aligned and only overlapping regions are considered for the variation summary

statistic (Fig. 2.3a).

To test the robustness of models across augmentation strategies and choice

of training sets, we compared how different combinations of augmentations, in-

cluding random reverse-complement (RC) transformations and random shifts of

the input sequence (up to 1024 bp), affect the model’s robustness properties for

BPNet-128 and Basenji-128 trained on either peak-centered or coverage-threshold

training data. We opted to compare BPNet-128 at a lower resolution (instead of

base-resolution) to make a direct comparison across models, since the robustness

metric is sensitive to bin-resolution. Indeed, models trained with augmentations
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FIGURE 2.3: Testing model robustness against translational shifts.
(a) Schematic overview of robustness test. For each 3 kb sequence,
N random 2 kb sub-sequences were extracted, and the standard devi-
ation across predictions within the overlapping regions is calculated.
Average variation score of predictions (i.e. average per-position
standard deviation of coverage values normalized by the total mean
coverage value) was used as a measure of model robustness. (b)
Scatter plot of the Pearson’s r (averaged across a per-sequence anal-
ysis) versus the robustness variation score across models with dif-
ferent augmentation methods (shown in a different color). Each 128
bin-resolution model (shown in a different marker) was trained 3
times with different random initializations. Pearson’s r represents

the average across cell lines.
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yielded improved robustness compared to models without augmentations, espe-

cially when trained on peak-centered data (Fig. 2.3b). On the other hand, models

that were trained on coverage-threshold data already benefited to a large degree on

the non-centered, random nature of the epigenomic profiles. This could explain

the observation that in BPNet-128 with RC augmentation alone was sufficient,

although Basenji-128 still benefited from both augmentations. Surprisingly, we

observed that models with similar prediction performance could yield large dif-

ferences in their robustness levels, demonstrating that prediction performance and

model robustness are not strictly correlated. This suggests that robustness can be

utilized along with generalization performance as an additional metric to facilitate

model selection.

2.2.3 Comparing quantitative model architectures

The space of binary model architectures has been well explored; however,

the exploration in quantitative models has been more limited. Existing quantitative

models often have complex designs, including dilated convolutions with skipped

connections and task-specific output-heads. It remains unclear to what extent that

complex model structures are needed to fit quantitative data. We therefore wanted

to address two questions: (1) could standard convolutional neural networks (CNNs)

that were successful on binary classifications have similar success at quantitative

regressions, and (2) could further exploration of the architectures improve perfor-

mance?

To address these questions, we benchmarked a baseline CNN – with 3

convolutional layers and 1 fully connected hidden layer – at base and 32 bin-

resolutions. We created 2 versions of each model where predictions are made based

on task-specific output-heads, where each task is given a nonlinear prediction mod-

ule or all predictions are based on a linear mapping from a single representation,
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Pearson’s r (whole)
Model Activation Output-head Base 32 Bin
BPNet ReLU Task-specific 0.601 0.583
Basenji GELU Single 0.617 0.654

CNN
ReLU

Single 0.600 0.605
Task-specific 0.607 0.604

Exponential
Single 0.599 0.600

Task-specific 0.599 0.601

ResidualBind
ReLU

Single 0.642 0.655
Task-specific 0.637 0.670

Exponential
Single 0.655 0.665

Task-specific 0.654 0.677

TABLE 2.1: Table shows the whole-chromosome Pearson’s r (aver-
aged across cell lines) for various quantitative models with different
activations, output-heads, and trained on different target resolutions.
For activations, Exponential refers to the application of it to only the

first-layer filters while ReLU is used in deeper layers.
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i.e. the common multi-task approach. In addition, we set the first-layer activations

of each model either to be rectified linear units (ReLU) or exponential activations,

which has been shown to improve the quality of learned motif representations(Koo

and Ploenzke, 2021). To test the benefits of a wider receptive field to give context

to the patterns learned in lower layers, we created an augmented version of the

baseline models by adding a residual block (He et al., 2016), each with 4 dilated

convolutional layers (Yu and Koltun, 2015; Yu, Koltun, and Funkhouser, 2017),

after each of the first two convolutional layers in a manner similar to ResidualBind

(Koo et al., 2021). Together, this results in a total of 8 custom models (see Methods

for details).

Surprisingly, we found that baseline CNNs perform on par with Basenji-

and BPNet-based models, with the exception of Basenji-32 (Table 2.1). This shows

that simple model architectures can be effective at predicting epigenomic profiles

as a quantitative regression. On the other hand, including dilated residual blocks,

but with components arranged differently than Basenji, substantially improved per-

formance at both tested resolutions for ResidualBind. Interestingly, task-specific

output-heads consistently yielded better performance versus a single output-head,

albeit the effect was variable and small. Moreover, exponential activations yielded

comparable results to ReLU-based models, suggesting that high-divergence activa-

tions do not negatively affect the ability to make quantitative predictions. Together,

this demonstrates that design considerations for quantitative models are largely

under-explored and can greatly improve performance.
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2.2.4 Benchmarking model performance across binary and quan-

titative models

Although quantitative models were developed with the aim of preserving

more information about epigenomic profiles, directly comparing the different pre-

diction formats between binary and quantitative tasks is not straightforward. To

bridge this gap, we developed a way to directly compare binary models to quanti-

tative models by converting predictions from one format to the other (Fig. 2.4a).

To convert binary predictions to a quantitative format, we treated the logits (i.e.

before the output activation function) as the predicted coverage values. While bi-

nary models are not trained to learn signal strength, the model’s confidence can

be encoded in the unbound logits. Thus, binary models can now be evaluated

with quantitative metrics. Moreover, to convert quantitative predictions to a binary

format, we calculated the average coverage predictions at positive regions and neg-

ative regions based on corresponding binary-labelled data. These two distributions

can be used to calculate standard classification metrics, such as the area-under the

precision-recall curve (AUPR) and area-under the receiver-operating-characteristic

curve (AUROC).

Using this task-conversion evaluation framework, we directly compared the

performance of various quantitative models with various binary models (Supple-

mentary Table A.3). Interestingly, when evaluating on peak-centered data, sev-

eral binary models yielded similar (if not better) AUROC and AUPR compared to

quantitative models (Fig. 2.4b and Supplementary Fig. B.4a). However, when

converting the binary models to quantitative metrics, quantitative models outper-

formed all binary models. This effect became more pronounced when evaluation

was extended across the whole chromosome, where all quantitative models yielded

better performance across both metrics (Fig. 2.4c and Supplementary Fig. B.4b).
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FIGURE 2.4: Performance comparison between binary and quan-
titative models. (a) Schematic overview of prediction task con-
version. Binary models can use logits to generate continuous
‘coverage-like’ values to calculate regression metrics. On the
other hand, the coverage predictions of quantitative models can be
grouped according to binary labels (i.e. peak and no peak groups)
to calculate standard classification metrics. (b) Scatter plot of the
classification-based AUROC versus the regression-based Pearson’s
r for various binary models (blue) and quantitative models (orange)
on peak-centered test data (left) and whole-chromosome test data

(right). Metrics represent the averaged value across cell lines.
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Together, this demonstrates that while some binary models can be competitive with

quantitative models within high-activity functional sites, quantitative models tend

to yield better overall performance across whole chromosomes.

2.2.5 Out-of-distribution generalization: variant effect predic-

tion

A major downstream application for DL models that learn sequence-function

relationships is to utilize them to score the functional effects of mutations. High-

performing models can inform how their predictions change relative to wild-type

when queried with a new mutated sequence. Thus, we benchmarked each model

on this out-of-distribution (OOD) generalization task by validating predictions with

experimental data from the CAGI5 Competition (Kircher et al., 2019; Shigaki et

al., 2019a), similar to previous studies (Minnoye et al., 2020; Avsec et al., 2021d).

CAGI5 dataset consists of massively parallel reporter assays (MPRAs) that mea-

sure the effect size of single-nucleotide variants through saturation mutagenesis

of 15 different regulatory elements across different cell-types. Instead of a stan-

dard approach that makes a single prediction based on a sequence centered on

the variant-of-interest, robust predictions were calculated by introducing random

translations and averaging the central overlapping region, similar to our robustness

test (see Methods). Robust predictions were calculated separately for reference

and alternative alleles and the effect size was calculated based on their log2 fold

change. An anecdotal visualization shows that the variant effect predictions by

quantitative models are qualitatively effective despite being trained on OOD data –

i.e. chromatin accessibility in different cell lines (Fig. 2.5a).

By benchmarking various models, we found that quantitative models con-

sistently outperformed binary models (Fig. 2.5b). In addition, by cross-comparison
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FIGURE 2.5: Comparison of functional effect predictions. (a)
Example visualization of predictions of a sequence with a refer-
ence allele (black curve) and an alternative allele (red curve) for a
given mutation. Below, heat maps show the experimental measure-
ments of variant effects for the TERT promoter in a GBM cell line
(ground truth) and the predicted variant effects from ResidualBind-
32. (b) Scatter plot of the prediction performance across whole-
chromosome test set (y-axis) and the average CAGI5 performance
(x-axis). Each dot represents a different model. (c) Bar plot shows
the CAGI5 performance difference between robust predictions mi-
nus standard predictions. Each bar represents a different model.
Groups of models represent different training strategies or target
resolutions. Inset shows the cumulative distribution of variant ef-
fect performance differences for models trained with and without

random shift data augmentation.
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with prediction performance, we found that whole-chromosome generalization is

a reliable metric for variant effect performance. As a control, we also compared

whether robust predictions are beneficial for predicting variant effects compared

to the standard approach of employing a single-pass prediction centered on the

variant-site. Strikingly, we found that 50 out of 56 models performed better us-

ing robust predictions (Fig. 2.5c). Upon further investigation, models that did not

employ random shift data augmentations were the ones that indeed benefited the

most from robust predictions (Fig. 2.5c, inset). This suggests that robust models

yield more trustworthy variant effect predictions, but our post hoc workaround of

making predictions more robust could improve the efficacy of less robust models.

2.2.6 Model interpretation

A major downstream application of genomic DL models is interpretability

analysis, which can lead to the discovery of functional motifs and their complex

interactions (Koo and Ploenzke, 2020). Here we compare binary and quantita-

tive models across several common interpretability approaches: motif discovery

through filter visualizations, foot-printing motifs at base-resolution using attribu-

tion methods, and quantitatively testing hypotheses in silico using global impor-

tance analysis (GIA).

Filter interpretability. First-layer convolutional filters provide an inductive bias

to learn translational patterns such as motifs. However, the extent that they learn

interpretable motifs largely depends on design choices, such as the max-pool size

(Koo and Eddy, 2019), activation function (Koo and Ploenzke, 2021), or even the

utilization of batch normalization (Ghotra et al., 2021). However, it is not clear

whether the same design principles established for binary models extends to quan-

titative models. To evaluate which models yield better motif representations, we
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visualized the first-layer filters of various models according to activation-based

alignments(Alipanahi et al., 2015a; Kelley, Snoek, and Rinn, 2016) and compared

how well they match motifs in the JASPAR database(Castro-Mondragon et al.,

2021) using Tomtom (Gupta et al., 2007), a motif search comparison tool. Since

the absolute number of hits can be misleading because of low-quality hits from

partial motifs, we also consider the q-value, which specifies the confidence level of

motif-filter matches. We found that among models that employ ReLU-based acti-

vations, binary models generally yield a lower hit-ratio as well as higher q-values,

which indicates poor quality hits (Supplementary Table A.3). However, models

that employ exponential activations in the first convolutional layer yield higher hit-

ratios and higher quality hits for both binary and quantitative models. We did not

notice any significant differences in learning motif representations across architec-

tures for a given activation. This suggests that the improved predictions do not

necessitate learning better motif representations in the first layer, but the design

principle using exponential activations can greatly improve the interpretability of

learned motifs in first layer filters for both binary and quantitative models.

Embedding representations and attribution maps. To visualize structure in

the data as seen through the lens of the model, we embedded the penultimate (or

bottleneck) representations of test sequences for a given class using Uniform Mani-

fold Approximation and Projection (UMAP)(McInnes, Healy, and Melville, 2018).

ResidualBind-32 with exponential activation yielded distinct UMAP structures and

clustered data points with similar profile distributions in each cell line (Supplemen-

tary Fig. B.5). By exploring different regions of the UMAP embeddings for the

PC-3 cell line as an example, we found that ResidualBind-32 is largely encoding

the magnitudes and locations of the read distributions (Supplementary Fig. B.6).

We generated attribution maps (based on saliency analysis) from different regions
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FIGURE 2.6: Interpretability analysis for ResidualBind-32 on PC-
3 cell line. (a) GIA for optimal flanking nucleotides. Ranked plot
of the global importance for each tested flank. Dashed line repre-
sents the global importance of the core motif with random flanks.
The hue represents the position-weight-matrix score for an AP-1
motif from the JASPAR database. The black dot indicates a high
position-weight-matrix score motif that yields a global importance
close to the core motif with randomized flanks. (b) GIA for distance
dependence between two motifs with optimized flanks. Global im-
portance plot for sequences with an AP-1 motif fixed at the center of
the sequence and another motif that is systematically placed in dif-
ferent locations.(c) GIA for cooperative interactions between AP-1
and another motif. Each subplot shows a box-plot of the global
importance when each motif is placed in random background se-

quences individually and in combinations.



Chapter 2. Evaluating deep learning for predicting epigenomic profiles 50

and found that the ResidualBind-32 has learned many known regulatory motifs,

such as AP-1, SP1, and GABPA, among others (Supplementary Fig. B.6). Inter-

estingly, many accessible regions with high functional activity for PC-3 contained

repeated clusters of AP-1, suggesting that our model considers AP-1 to be a critical

motif for accessible sites for PC-3. We also observed an unknown motif (ATAAA)

that flanked the AP-1 motif in many attribution maps potentially corresponding to a

Forkhead family transcription factor binding site (Castro-Mondragon et al., 2021).

Many of these motifs were observed in attribution maps of other models, but due

to the lack of ground truth, a quantitative comparison remains difficult.

Global importance analysis. While attribution maps can help to identify and

footprint putative motifs, they cannot quantify the importance of motifs beyond in-

dividual nucleotides. GIA is an interpretability approach that enables direct testing

of hypotheses gained from attribution analysis(Koo et al., 2021). GIA computes the

effect size, or global importance score, of hypothesis patterns that are embedded

within a population of background sequence, where the other positions are effec-

tively randomized. This approach essentially marginalizes out any confounding

patterns within any individual sequence, revealing the global importance of only

the embedded patterns on model predictions. Using GIA, we test various hypothe-

ses of AP-1, ATAAA and GATA motifs.

First, we used GIA to explore how the two flanking nucleotides adjacent

to the core motif on either side and the central nucleotide in AP-1 influences

accessibility predictions in PC-3 cells. We compared the results from our high

performing models within each prediction task, quantitative ResidualBind-32 and

ResidualBind-binary, both with exponential activations. Strikingly, we find that

flanking nucleotide combinations relative to the AP-1’s core binding site can drive
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predictions by a factor of 2 to 3 (Fig. 2.6a), similar to what was observed pre-

viously(Mauduit et al., 2021; Almeida et al., 2022). A position-weight-matrix-

based approach(Stormo et al., 1982), which considers each position independently,

would score many AP-1 binding sites the same, despite their wide spread in func-

tional activity. A similar observation was made for other models, both quantitative

and binary (Supplementary Fig. B.7). This demonstrates that DL models consider

complex higher-order dependencies of flanking nucleotides to be an important fea-

ture of TF binding sites, a well-known phenomenon (Le et al., 2018; Levo et al.,

2015). Moreover, both binary and quantitative models can capture this information

de novo from being trained on just the sequences.

We then explored to what extent the distance between motifs plays a role in

model predictions. Specifically, we performed GIA experiments where the AP-1

motif was fixed at the center of the sequences and the position of the other motif

(i.e. AP-1 or ATAAA) was varied (Fig. 2.6b). Interestingly, we found that two

AP-1 motifs yielded a symmetric 50 bp window where predictions are plateaued,

beyond which, the global importance begins to drop off for both models. On the

other hand, the ATAAA motif exhibits an asymmetric distance dependence with

a favorable location on the 3’ end flanking the AP-1 motif with a few nucleotide

gap, beyond which there is a precipitous drop in global importance. This was

also observed across other models, with variable magnitudes in effect size but a

similar relative trend (Supplementary Fig. B.8). These results suggest that flanking

nucleotides and distance dependence was consistently learned across quantitative

and binary models.

From the attribution maps, it appears that multiple motifs are often present

in combinations across accessible sites. To test whether ResidualBind-32 and

ResidualBind binary have learned cooperativity between AP-1 and other motifs,



Chapter 2. Evaluating deep learning for predicting epigenomic profiles 52

we compared the global importance for the motifs embedded in sequences alone

and in combinations with other motifs (at the optimal distance identified through

the distance dependence GIA experiments). In ResidualBind-32, we observed the

sum of individual effects were lower than when both motifs were present, indi-

cating the model has indeed learned cooperative interactions (Fig. 2.6c). The ef-

fect size was varied across transcription factors, with a smaller effect observed for

GATA::AP-1 compared to other motifs, such as ATAAA::AP-1 and AP-1::AP-1.

This suggests that cooperative interactions are strongly associated with chromatin

accessibility levels. Surprisingly, a discrepancy arose for binary models, including

in ResidualBind binary, for which there was no strong evidence that cooperativity

was learned. These trends were also observed across other binary and quantitative

models (Supplementary Fig. B.9).

Instead of directly imposing patterns on background sequences, we also

conducted occlusion-based interventional experiments where we identified exact

instances of the core motif for AP-1 and replaced them with randomized sequences

across the test set – a global importance of motif occlusion within its natural se-

quence context. We find that the number of AP-1 motifs indeed drives high func-

tional activity for PC-3, while other cell lines depend on a different distribution of

motifs for their functional activity (Supplementary Fig. B.10).

Together, the interpretations of quantitative models appear to be more con-

sistent with each other than binary models. Despite under-performing on gener-

alization tasks, well-trained binary models can largely capture similar biological

interpretations as quantitative models, with the exception of cooperative interac-

tions.
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2.3 Discussion

The variety of deep learning models being proposed to predict regulatory

genomic tasks has increased substantially in recent years. The variations of pro-

posed models, how the prediction tasks are framed, the composition of the data sets,

and the tricks used for training make it challenging to assess which innovations are

driving performance gains. Moreover, while many methods provide software to

deploy their methods, which only includes their specific pipeline, it is often chal-

lenging to mix-and-match modeling innovations across methods. To address this

gap, we introduced GOPHER to provide an evaluation framework to compare var-

ious modeling choices and enable a comprehensive and fair evaluation of existing

and emerging DL models in regulatory genomics. While previous software, such

as Janggu (Kopp et al., 2020) and Selene (Chen et al., 2019), help to process bi-

ological data (mainly focused on peak-centered data) and high-level APIs to train

neural network models in TensorFlow (Abadi et al., 2015) and Pytorch (Paszke

et al., 2019), respectively, they do not focus on downstream evaluation across dif-

ferent prediction tasks. By contrast, GOPHER provides a comprehensive model

evaluation framework that also supports data processing of peak-based binary clas-

sification and quantitative regression analysis of bigWig tracks, in addition to train-

ing custom deep learning models with various data augmentations. GOPHER also

incorporates many popular model interpretability tools, such as first-layer filter vi-

sualization, global importance analysis, and attribution methods, including in silico

mutagenesis (Nair et al., 2022; Schreiber et al., 2022), saliency maps (Simonyan,

Vedaldi, and Zisserman, 2013), integrated gradients (Sundararajan, Taly, and Yan,

2017), and SmoothGrad (Smilkov et al., 2017).

Using GOPHER, we addressed several open questions: (1) how to fairly

compare binary models and quantitative models; (2) how choice of loss function
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affects performance; (3) how dataset selection influences model performance; (4)

how to compare quantitative models that making predictions at different resolu-

tions; (5) how augmentation strategies influence model performance and robust-

ness to translational perturbations; how modeling choices influence downstream

(6) functional variant effect predictions and (7) model interpretability.

While the study here focuses on ATAC-seq data, the specific claims of opti-

mal architectures and training procedures may be nuanced across other data types,

such as ChIP-nexus (Avsec et al., 2021b) and CAGE-seq(Kodzius et al., 2006). In

such cases, additional considerations may arise, such as GC-bias and signal nor-

malization. These were not investigated in this study.

Moreover, many of the explored architectures in this study relied on pure

convolutional networks. The emergence of transformers (Vaswani et al., 2017)

could have better inductive bias to capture distal interactions, though the rationale

for the benefits of convolution-based networks and transformer-based networks re-

mains an ongoing research topic (Liu et al., 2022b). Due to the lack of established

transformer-based models beyond Enformer (Avsec et al., 2021d), we elected to

focus only on convolution-based models in this study.

In addition, BPNet and Basenji were initially developed for predictions on

very different data types and dataset sizes. Thus modifications had to be made to

each model architecture to adapt it to the ATAC-seq data used in this study (see

Methods for differences). These choices may have affected their performance. The

fact that both models performed well suggests that our hyperparameter optimiza-

tion mitigated any substantial disparities.

In general, our work largely supports that quantitative modeling yields bet-

ter generalization (on average), both on held-out data and OOD variant effect pre-

dictions. Of course, well-tuned binary models can perform comparable to (or even
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better than) a poorly designed quantitative model. It remains unclear whether bi-

nary models are fundamentally limited based on their treatment of functional ac-

tivity or whether incorporating more inactive regions during training would boost

performance. Moreover, it is not clear whether the performance gains of quanti-

tative models are due to learning better biological signals or whether they are just

better at learning noise sources within sequencing experiments. One major limi-

tation arises as a consequence of focusing on performance – treating experimen-

tal measurements as ground truth, despite biological variability across replicates

and technical noise (eg. Supplementary Table A.4). Thus, focusing on important

downstream tasks, such as variant effect prediction and model interpretability, as

was done here, provides a path to move beyond performance benchmarks to the

beneficial use case of genomic DL models – biological discovery.

2.4 Methods

Training data

ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput

sequencing (Buenrostro et al., 2015)) data for human cell lines were acquired from

the ENCODE database(Consortium et al., 2012) – fold change over control big-

Wig files for quantitative analysis and IDR peak bed files for binary analysis –

using experimental accessions in Supplementary Table A.5. The bigWig tracks

were log-fold-normalized for sequencing depth using control tracks as per the EN-

CODE data processing pipeline; no further processing was done. Each of the 15

cell lines were sub-selected based on a lower cross-correlation of coverage values

at IDR peaks across cell lines below 0.75. Data from replicate 1 for each experi-

ment was used to generate the train, validation, and test sets. Data from replicate 2

was used to assess the experimental ceiling of prediction performance.
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Coverage-threshold data. Each chromosome is split into equal, non-overlapping

input size chunks of 3 kb and each chunk is included in the dataset if the max

coverage value for any of the targets is above the threshold. By default, coverage-

threshold data employed a threshold of 2, unless specified otherwise. Each se-

quence that passed this threshold was included as part of the dataset and down-

sampled to 2 kb with a strategy that depends on data augmentations (see below).

The targets were then binned with non-overlapping windows according to the spec-

ified target resolution and was calculated online during training and testing. For any

given coverage value array of length L and bin size B, it was reshaped into an array

with shape (B, L/B) – down-sampling was achieved according to the mean within

each bin.

Peak-centered data. For peak-centered datasets, we selected IDR bed-

files from the ENCODE experiments corresponding to the same replicate as the

coverage-threshold data. The bed files of each cell line were merged into a single

bed file, in a manner similar to Kelley et al(Kelley, Snoek, and Rinn, 2016). The

Basset data processing pipeline divides the genome into segments of length spec-

ified as the input size and merges peaks according to an overlap size parameter.

Each sequence in the dataset contains at least one peak across all cell lines. Se-

quences containing an IDR peak for the cell line is given label ‘1’ otherwise label

‘0’.

Data splits. We split the dataset into training, validation, and test sets using

chromosome 8 for test, chromosome 9 as validation and the rest as training (ex-

cluding Y chromosome). We also removed the unmappable regions across all data

splits. The same split was applied to datasets to allow a direct comparisons across

experiments.
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Held-out test evaluation

Pearson correlation can be calculated using the concatenated whole chro-

mosome per cell line, which is referred to as Pearson’s r (whole), or per sequence

correlation averaged across the test set when specified. The difference between

these metrics manifests as a different mean in the correlation calculation; a global

mean for whole chromosome versus a per sequence mean. Whole chromosome

evaluation is calculated by concatenating the predictions for the entire chromosome

8 with the exception of unmappable regions. A per sequence Pearson correlation

was calculated for peak-centered data, test selection analysis, and robustness anal-

ysis, unless specified otherwise. For a compilation of all model evaluations see

Supplementary Data 1.

Scaling predictions. Predictions were scaled to address the large discrepancy

between predictions and experimental values for shape-based loss functions (eg.

Pearson’s r). Though we found that applying it to other losses also yielded slightly

better performance. This was accomplished by calculating a global scaling fac-

tor per cell line, which is computed as the ratio of the mean of experimental and

predicted coverage values across the entire test chromosome, and multiplying the

scaling factor to the predictions.

Models

Basenji. Basenji-based model is composed of a convolutional block, max-pooling

with pool size of 2 (which shrinks the representations to 1024), 11 residual blocks

with dilated convolutional layers, followed by a final convolutional layer. The con-

volutional block consists of: GELU activation(Hendrycks and Gimpel, 2016), con-

volutional layer with a kernel of width 15, batch normalization (Ioffe and Szegedy,

2015). The residual block is composed of: GELU activation, dilated convolutional
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layer with a kernel of width 3 and half the number of filters and a dilation rate that

grows by a factor of 1.5 in each subsequent residual block, batch normalization,

GELU activation, convolutional layer with width 1 and the original number of fil-

ters, batch normalization, and dropout with a rate 0.3. Each residual block has a

skipped connection to the inputs to residual block. An average pooling layer is

applied to the final output convolutional layer to shrink the representations to the

corresponding target resolution. A dense layer with softplus activations following

the last convolutional block then outputs the predictions target. In case of base

resolution, the first max-pool size is set to 1.

The original Basenji model employs multiple convolutional blocks with a

max pooling of size 2 to reduce the dimensions of the sequence to 1024 units, upon

which 11 residual blocks are applied. Since our input size is 2048 bps, we em-

ployed a single convolutional block to achieve the same dimensions as the original

Basenji model. We performed hyperparameter search of the number of convolu-

tional filters in each layer to optimize for the ATAC-seq dataset used in this study.

For additional details of specific hyperparameters, see Supplementary Data 2.

BPNet. BPNet consists of a convolutional layer, followed by 9 dilated convolu-

tional layers with progressively increasing dilation rates (scaled by powers of 2)

that each have a residual connection to the previous layer. Task-specific output-

heads, each with a separate transpose convolution, is built upon the final residual

layer. To adapt BPNet to lower resolutions, all predictions are initially made at

base-resolution followed by an average pooling layer for each task-specific output-

head, with a window size and stride that matches the target resolution.

A key difference with the original BPNet architecture is that the negative

strand, bias track and read counts output-head was not used throughout this study.

Moreover, the original loss function was not employed here as we found better



Chapter 2. Evaluating deep learning for predicting epigenomic profiles 59

success with the modified BPNet using a Poisson NLL loss. This may be attributed

to the lower resolution in read coverage for bulk ATAC-seq, or due to original

model targeting raw read count instead of fold change over control tracks, though

further investigation is needed to understand the disparity. These modifications

may have affected the performance of BPNet. We optimized hyperparameters of

the model, focusing on the number of filters in each layer and the kernel size of

the transpose convolution in the task-specific output heads (Supplementary Fig. 1).

The specific choices of hyperparameters in BPNet can be found in Supplementary

Data 2.

CNN-baseline. The CNN baseline model is composed of 3 convolutional blocks,

which consist of a 1D convolution, batch normalization, activation, max pooling

and dropout, followed by 2 fully-connected blocks, which includes a dense layer,

batch normalization, activation, and dropout. The first fully connected block scales

down the size of the representation, serving as a bottleneck layer. The second

fully-connected block rescales the bottleneck to the target resolution. This is then

reshaped to match the number of bins × 8. For instance, the number of hidden units

for models at 32 bin target resolution are 2048/32 = 64 × 8, then reshaped to (64,

8). Base resolution models set the hidden units to 2048× 8 then reshaped to (2048,

8). This is followed by another convolutional block. The representations from the

outputs of the convolutional block is then input into task-specific output heads or

is directly fed to a linear output layer with softplus activations. For task-specific

output heads, each head consists of a convolutional block followed by a linear

output layer with softplus activations. The activation of the first layer is either

exponential or ReLU, while the rest of the hidden layer activations are ReLU. The

specific hyperparameters of each layer, including the dropout rates, are specified in

detail in Supplementary Data 2.
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ResidualBind-base. ResidualBind-base builds upon the CNN-baseline models

by adding a residual block after the first 3 convolutional layers. The first two

residual blocks consist of 5 dilated convolutional layers and the third residual block

consists of 4 dilated convolutional layers. Similar to CNN-baseline models, this is

then followed by 2 fully connected blocks, which are reshaped to a shape (2048, 8),

and a convolutional block. Here, another residual block that consists of 5 dilated

convolutional layers was applied. This is then fed into an output head, which has

the same composition as the CNN-baseline. The details of model architecture and

hyperparameters can be found in Supplementary Data 2.

ResidualBind-32. ResidualBind-32 also builds upon the CNN-baseline models

by adding a residual block after the first 3 convolutional layers, but with a few

key differences from ResidualBind-base. The third residual block consists of 3

dilated convolutional layers instead of 4. Moreover, ResidualBind-32 does not go

through a bottleneck layer that is prototypical of the CNN-baseline design. For

task-specific output heads, the representations of the third residual block are input

into a convolutional block followed by a task-specific output heads similar to the

CNN-baseline models. For a single output head, the representations of the third

residual block are input into a position-wise fully connected block followed by a

linear output layer. The details of model architecture and hyperparameters can be

found in Supplementary Data 2.

Binary models Four main model structures are used for binary models. One

fine-tuned Basset(Kelley, Snoek, and Rinn, 2016) structure and three re-purposed

quantitative models structures: Basenji, CNN-base, and ResidualBind-base. Basset

is composed of three blocks of convolutional layer followed by batch normaliza-

tion, activation and max-pooling. The output is then flattened and fed into 2 fully

connected layers with dropout and an output layer with sigmoid activations. Basset
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hyperparameters were optimized for the binary version of the ATAC-seq dataset in

a similar manner to Basenji. For Basenji-binary, CNN-binary and ResidualBind-

binary, their structure highly resembles the quantitative model based on a single

output-head. For CNN-binary and ResidualBind-binary, we apply a fully con-

nected output layer with sigmoid activations to the bottleneck layer. For Basenji-

binary, we take the penultimate representation and perform a global average pool,

followed by a fully connected output layer. The details of model architecture and

hyperparameters can be found in Supplementary Data 2.

Training. Each quantitative model was trained for a maximum of 100 epochs us-

ing ADAM(Kingma and Ba, 2014) with default parameters. Early stopping was

employed with a patience set to 6 epochs (monitoring validation loss as a crite-

rion). By default, models were trained with random reverse-complement and ran-

dom shift data augmentations unless specified otherwise.

Quantitative CNN and ResidualBind (base and 32 bin-resolution), along

with binary versions of these models, were trained for a maximum of 100 epochs

using ADAM with default parameters. Early stopping with a patience of 10 was

used. The initial learning rate was set to 0.001 and decayed by a factor of 0.2 when

the loss function did not improve after a patience of 3 epochs.

Data augmentations

Random shift. Random shift is a data augmentation that randomly translates the

input sequence (and corresponding targets) online during training. All datasets

were generated with input size set to 3,072 bp. When random shift is used, for

each mini-batch, a random sub-sequence of 2,048 bp and its corresponding target

profile was selected separately for each sequence. When random shift is not used,

the central 2,048 bp is selected for all sequences in the mini-batch.
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Reverse-complement. Reverse-complement data augmentation is employed on-

line during training. During each mini-batch, half of training sequences were ran-

domly selected and replaced by their reverse-complement sequence. For those

sequences that were selected, the training target was correspondingly replaced by

the reverse of original coverage distribution.

Hyperparameter search

The ATAC-seq datasets in this study differ greatly in complexity, i.e. size

and coverage distribution, from the original Basenji and BPNet studies. Therefore,

we performed a hyperparameter search for each base architecture for our ATAC-seq

dataset (Supplementary Fig.B.1). We used WandB(Biewald, 2020) to keep track of

the model choices and for visualization. We fine-tuned Basenji and BPNet at 128

bp and base resolution, respectively, which represent the original resolutions for

these models. We also kept their original training set selection strategy, that is, we

trained Basenji on coverage-threshold data and BPNet on peak-centered data. For

Basenji, the number filters across the convolutional layers were varied as well as

the presence or absence of dropout layers (fixed rate for each layer). For BPNet,

we performed a hyperparameter search over the number of convolutional filters in

each layer and the kernel size in the task-specific output heads. We employed the

original data augmentations (i.e. random reverse-complement and random shifts

for Basenji and only random reverse-complement for BPNet). For each model,

we used the Poisson NLL loss function. We originally used a MSE and multino-

mial NLL loss for BPNet, but found that optimization using Poisson NLL yielded

better performance. The models were trained for maximum of 40 epochs with an

Adam optimizer (Kingma and Ba, 2014) using default parameters. Initialization

was given according to Ref.(He et al., 2016). The optimal set of hyperparame-

ters for each model was selected based on the lowest validation loss and the final
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architectures are given in Supplementary Data 2.

Robustness test

To measure the robustness to translational perturbations, we analyzed the

sequences within the held-out test chromosome that were identified to contain a

statistically significant peak for the given cell-type under investigation. This en-

sures that the robust predictions are only considered for genomic regions that ex-

hibit statistically significant coverage values. Specifically, we took each 3072 bp

sequence in the dataset and generated 20 contiguous sub-sequences of length 2048

bp. Each sub-sequence was sent through the model to get a prediction, and all of

the predictions were aligned based on the sub-sequence. All sub-sequences contain

a center 1024 bp window that overlaps. Standard deviation is calculated for each

position across these 20 sequences and averaged across the length of prediction.

The average sequence coverage across 20 sequences was used to normalize the av-

erage standard deviation to make it invariant to scale. Therefore variation score for

each sequence is calculated as average per position standard deviation divided by

average sequence coverage. A higher variation score corresponds to a less robust

model, while a lower variation score corresponds to more stable predictions, irre-

spective of translations to the inputs. Due to binning artifacts, we only compare

this robustness test for models that share the same bin-resolution.

Variant effect prediction

Dataset. The CAGI5 challenge dataset was used to benchmark model perfor-

mance on variant calling. Each regulatory element ranges from 187bp - 600bp in

length. We extracted 2048 bp sequences from the reference genome centered on

each regulatory region of interest and converted it into a one-hot representation.
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Alternative alleles are then substituted correspondingly to construct the CAGI test

sequences.

Standard predictions. For a given model, the prediction of 2 sequences, one

with a centered reference allele and the other with an alternative allele in lieu of the

reference allele, is made and the coverage values are summed separately for each

cell-type. For each sequence, this provides a single value for each cell-type. The

cell-type agnostic approach employed in this study then uses the mean across these

values to calculate a single coverage value. The effect size is then calculated with

the log-ratio of this single coverage value for the alternative allele and reference

allele, according to: log(alternative coverage / reference coverage).

Robust predictions. For a given model, robust predictions were made by: 1)

sampling 20 randomly shifted sequences centered on a variant-of-interest, 2) send-

ing them through the model to get coverage predictions for each cell-type, 3) align

predictions based on the shifted sub-sequences, 4) calculating the mean coverage

within overlapping 1024 bp region for each cell-type, and 5) averaging the mean

coverage values across cell-type. This was done separately for the reference allele

and the alternative allele, and the effect size was calculated similar to the standard

predictions as the log-ratio.

Evaluation. To evaluate the variant effect prediction performance, Pearson cor-

relation was calculated within each CAGI5 experiment between the experimentally

measured and predicted effect size. The average of the Pearson correlation across

all 15 experiments represents the overall performance of the model. A full list of

variant effect prediction performances for models can be found in Supplementary

Data 3.
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Model interpretability

Tomtom. The motif comparison tool Tomtom (Gupta et al., 2007) was used to

match the position probability matrix of the first convolutional layer filters (calcu-

lated via activation-based alignments(Alipanahi et al., 2015a)) to the 2022 JASPAR

nonredundant vertebrates database (Castro-Mondragon et al., 2021). Matrix pro-

files MA1929.1 and MA0615.1 were excluded from filter matching to remove poor

quality hits; low information content filters then to have a high hit rate with these

two matrix profiles. Hit ratio is calculated by measuring how many filters were

matched to at least one JASPAR motif. Average q-value is calculated by taking the

average of the smallest q-value for each filter among its matches.

Attribution analysis. Attribution analysis was based on grad-times-input with

saliency maps (Simonyan, Vedaldi, and Zisserman, 2013). For a given model,

gradients of the prediction with respect to a given cell-type were calculated with

respect to the input sequence to yield a L×A map, where L is the length of the se-

quence and A is 4 – one for each nucleotide. Each saliency map was multiplied by

the input sequence, which is one-hot, to obtain just the sensitivity of the observed

nucleotide at each position. A sequence logo was generated from this by scaling the

heights of the observed nucleotide, using Logomaker (Tareen and Kinney, 2020).

Global importance analysis. For global importance analysis(Koo et al., 2021),

we generated background sequences by performing a dinucleotide shuffle of 1,000

randomly sampled sequences from those within our coverage-threshold test set.

The global importance is calculated via the average difference in predictions of

background sequences with embedded patterns-under-investigation and without

any embedded patterns. For quantitative models, the predictions represent the aver-

age coverage predictions for the cell-type under investigation. For binary models,
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the predictions represent the logits for the cell-type under investigation.

GIA for flanking nucleotides. We fixed the core motif at the center of all

background sequences, i.e. starting at position 1024, and varied the 2 flanking

nucleotides on each side (and the central nucleotide for only AP-1) by separately

performing a GIA experiment for all possible combinations of flanking nucleotides.

GIA for distance-dependent motif interactions. To quantify the functional

dependence of the distance between 2 motifs with optimized flanks, we fixed the

position of 1 motif at the center of the sequence, i.e. starting at position 1024, and

then systematically performed a GIA experiment with the second motif at different

locations ensuring no overlap. This experiment provides a global importance score

for the 2 motifs at different distances in both positive and negative directions.

GIA for motif cooperativity. To quantify whether motifs are cooperatively

interacting, we inserted each motif (with optimized flanks) at the corresponding

position (1024 for motif 1 and best position for interaction for motif 2 based on the

distance-dependent GIA experiments) individually and in combinations. We then

compared the global importance when both motifs are embedded in the same se-

quence versus the sum of the global importance when only one motif is embedded.

Occlusion-based experiments. We randomly sampled 10,000 sequences from

those within our coverage-threshold test set. We performed a string search looking

for exact matches to the core motif of AP-1, i.e. TGA-TCA, where the - can be

any nucleotide. For each cell-type, we grouped the sequences according to the

number of instances that the core AP-1 motif was observed – 1 observed motif, 2

observed motifs, and 3 or more observed motifs. For each group, we replaced the

core motif with randomized sequences. Due to spurious patterns from randomized

sequences, we performed a GIA experiment where 25 randomized sequences were

embedded in lieu of the core binding site and the model predictions were averaged
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– first across the coverage for the cell-type under investigation, then across the 25

randomized sequences. This effectively marginalizes out the impact of the motif

for a given sequence. This occlusion-based (or conditional) GIA experiment was

done for each sequence in each group.
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Chapter 3

Evaluating the representational

power of pre-trained DNA language

models for regulatory genomics

The emergence of genomic language models (gLMs) offers an unsuper-

vised approach to learn a wide diversity of cis-regulatory patterns in the non-coding

genome without requiring labels of functional activity generated by wet-lab exper-

iments. Previous evaluations have shown pre-trained gLMs can be leveraged to im-

prove prediction performance across a broad range of regulatory genomics tasks,

albeit using relatively simple benchmark datasets and baseline models. Since the

gLMs in these studies were tested upon fine-tuning their weights for each down-

stream task, determining whether gLM representations embody a foundational un-

derstanding of cis-regulatory biology remains an open question. Here we evalu-

ate the representational power of pre-trained gLMs to predict and interpret cell-

type-specific functional genomics data that span DNA and RNA regulation. Our

findings suggest that current gLMs do not offer substantial advantages over con-

ventional machine learning approaches that use one-hot encoded sequences. This

work highlights a major limitation with current gLMs, raising potential issues in
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conventional pre-training strategies for the non-coding genome.

3.1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities

in natural language processing (Devlin et al., 2018; OpenAI, 2023; Touvron et al.,

2023; Wei et al., 2022) and protein sequence analysis (Rives et al., 2021; Elnag-

gar et al., 2021; Madani et al., 2020; Bepler and Berger, 2021). These LLMs,

often termed “foundation models”, are trained through self-supervised learning to

encode input data as contextual embeddings (also known as representations). The

strength of pre-trained LLMs lies in the versatility of their embeddings, which can

be leveraged for a broad spectrum of downstream predictive tasks. For instance,

representations from pre-trained protein language models have been used to pre-

dict protein structures (Lin et al., 2022b; Chowdhury et al., 2022; Wu et al., 2022),

predict non-synonymous variant effects (Brandes et al., 2023; Meier et al., 2021),

design novel protein sequences (Madani et al., 2023; Ferruz and Höcker, 2022; Hie

et al., 2023), and study protein evolution (Hie, Yang, and Kim, 2022; Zhang et al.,

2024).

LLMs pre-trained on DNA sequences offer a promising new paradigm to

accelerate our understanding of functional elements in the non-coding genome

(Consens et al., 2023). Genomic language models (gLMs) could, in principle, help

to understand the complex coordination of transcription factors (TFs) to control

the activity of cis-regulatory elements (CREs). They might also enable more ac-

curate predictions of the functional consequences of non-coding mutations, which

can help to prioritize diease-associated variants. Additionally, gLMs capable of

learning cis-regulatory rules could become instrumental in designing novel regu-

latory sequences with desirable functional properties. They might also facilitate
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functional comparisons of non-coding sequences across different species, a task

currently complicated due to substantial evolutionary drift in non-coding regions.

Recently, there has been a surge of pre-trained gLMs (Benegas, Batra, and

Song, 2023; Nguyen et al., 2023; Lal, Biancalani, and Eraslan, 2023; Dalla-Torre

et al., 2023; Ji et al., 2021; Zhang et al., 2023; Zhou et al., 2023; Sanabria, Hirsch,

and Poetsch, 2023b; Karollus et al., 2023; Chu et al., 2023; Chen et al., 2023;

Shen and Li, 2024; Zaheer et al., 2020; Fishman et al., 2023; Benegas et al., 2023;

Hallee, Rafailidis, and Gleghorn, 2023; Li et al., 2023; Gündüz et al., 2023; Yang

et al., 2022; Chen et al., 2022a; Zvyagin et al., 2023; Levy et al., 2022; Liang

et al., 2023; Gündüz et al., 2023; Gu and Dao, 2023; Liu et al., 2024; Outeiral and

Deane, 2024; Schiff et al., 2024). gLMs take as input DNA sequences that have

undergone tokenization, an encoding scheme applied to either a single nucleotide

or k-mer of nucleotides. Through self-supervised pre-training, the gLM learns a

vector representation for each token in the DNA sequence via masked language

modeling (MLM)(Devlin et al., 2018) or causal language modeling (CLM) (Rad-

ford et al., 2019). In a standard setting of MLM, a portion of the input tokens,

typically 15%(Devlin et al., 2018), is randomly masked, and the task is to predict

the masked tokens using the context provided by the rest of the unmasked tokens in

the sequence. On the other hand, CLM is an autoregressive pre-training task where

the goal is to predict the next token in a sequence given the previous tokens. These

language modeling objectives result in learning self-supervised representations of

the sequence that capture information about individual tokens and the complex

interrelationships between other tokens in the sequence. The burden of learning bi-

ologically meaningful features is paid upfront during the pre-training. Afterward,

the gLM’s representations can be leveraged for a broad spectrum of downstream

prediction tasks as inputs to simpler models, bypassing the need to learn essential
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features for each task from scratch. In contrast, the conventional one-hot represen-

tation of DNA sequences treats each element independently, assigning an identical

representation for the same nucleotide characters irrespective of their positions in

the sequence or what context is nearby. Consequently, the responsibility of extract-

ing important features falls solely on the machine learning model being employed.

Current gLMs are composed of different choices for the tokenization, base

architecture, language modeling objective, and pre-training data. Tokenization of

DNA sequences is employed for either single nucleotide (Benegas, Batra, and

Song, 2023; Nguyen et al., 2023; Lal, Biancalani, and Eraslan, 2023) or k-mer

of fixed size (Dalla-Torre et al., 2023; Ji et al., 2021; Zhang et al., 2023) or a k-mer

of variable sizes via byte-pair tokenization (Sennrich, Haddow, and Birch, 2015;

Zhou et al., 2023; Sanabria, Hirsch, and Poetsch, 2023b), which aims to aggregate

DNA in a manner that reduces the k-mer bias in the genome, a problem known as

rare token imbalance. The base architecture is typically a stack of transformer lay-

ers (Vaswani et al., 2017), with a vanilla multi-head self-attention(Ji et al., 2021;

Dalla-Torre et al., 2023; Karollus et al., 2023; Chu et al., 2023; Chen et al., 2023;

Zhang et al., 2023; Shen and Li, 2024; Sanabria, Hirsch, and Poetsch, 2023b)

or an exotic attention variant (e.g., flash attention (Dao et al., 2022; Zhou et al.,

2023), sparse attention (Zaheer et al., 2020; Fishman et al., 2023), or axial atten-

tion (Ho et al., 2019; Benegas et al., 2023)). Alternatively, the base architecture has

also been constructed with a stack of residual-connected convolution blocks, either

with dilated convolutional layers (Benegas, Batra, and Song, 2023) or state-space

models, such as a Hyena (Poli et al., 2023; Nguyen et al., 2023; Lal, Biancalani,

and Eraslan, 2023) or Mamba (Gu and Dao, 2023; Schiff et al., 2024). The pre-

training data can vary significantly, encompassing the whole genome of a single

species (Benegas, Batra, and Song, 2023; Ji et al., 2021; Zaheer et al., 2020) or the

whole genomes across multiple species(Dalla-Torre et al., 2023; Zhou et al., 2023;
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Fishman et al., 2023; Karollus et al., 2023; Zhang et al., 2023) or focused only

within specific regions of the genomes, such as the untranslated regions (UTRs)

(Chu et al., 2023), pre-mRNA (Chen et al., 2023), promoters (Lal, Biancalani, and

Eraslan, 2023), coding regions (Hallee, Rafailidis, and Gleghorn, 2023; Li et al.,

2023; Outeiral and Deane, 2024), non-coding RNA (Chen et al., 2022a; Penić et

al., 2024), or conserved sites (Benegas et al., 2023).

Notably, Nucleotide-Transformer (Dalla-Torre et al., 2023) is a collection

of BERT(Devlin et al., 2018)-style models that consider non-overlapping k-mer

tokenization and is pre-trained via MLM on either a single human genome, a

collection of 3,202 human genomes from the 1000 Genomes Project(Consortium

et al., 2015) alone or in combination with 850 genomes across diverse species.

DNABERT2 (Zhou et al., 2023) is also a BERT-style architecture but uses flash at-

tention, considers byte-pair tokenization, and is trained via MLM on the genomes

of 850 species. Genomic Pre-trained Network (GPN) is a convolution-based model

with a stack of residual-connected dilated convolutions, uses single-nucleotide to-

kenization, and is trained via MLM on Arabidopsis thaliana genome and seven

related species within the Brassicales order (Benegas, Batra, and Song, 2023).

Similarly, HyenaDNA (Nguyen et al., 2023) is a state-space model using Hyena

layers, single-nucleotide tokenization, and is trained via CLM on the human ref-

erence genome. Supplementary Table A.6 summarizes the unique combination of

components that comprise other gLMs.

The utility of gLMs pre-trained on whole genomes for studying the non-

coding genome has been limited. Previous benchmarks have largely considered

gLMs that have been fine-tuned (i.e., adjusting the weights of the gLM) on each

downstream task (Ji et al., 2021; Dalla-Torre et al., 2023; Chen et al., 2022a; Chen
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et al., 2023; Zhou et al., 2023). In each benchmark, a fine-tuned gLM has demon-

strated improved predictions on a host of downstream prediction tasks, often based

on the classification of functional elements, such as histone marks or promoter

annotations. However, the chosen benchmarks do not reflect the complexity of cis-

regulatory mechanisms observed in gene regulation, and the baseline models used

in the comparisons often do not represent the state-of-the-art. Hence, the capabili-

ties of gLMs in understanding the regulatory genome have yet to be demonstrated

in a fair assessment.

The reliance on fine-tuning poses challenges, as foundation models are typi-

cally large, and fine-tuning on individual tasks demands substantial GPU resources,

which may not be readily available to academic labs. Although parameter-efficient

fine-tuning methods have emerged, such as LoRA (Low Rank Adaptation)(Hu et

al., 2021; Zhou et al., 2023; Zhan, Wu, and Zhang, 2024), (hard or soft) prompt

tuning (Lester, Al-Rfou, and Constant, 2021; Nguyen et al., 2023), and (IA)3 (Liu

et al., 2022a; Dalla-Torre et al., 2023), fine-tuning makes it challenging to assess

the contribution of the prior knowledge gained via pre-training on each downstream

task. Moreover, benchmarks that do not fine-tune gLMs are limited in their down-

stream tasks (Marin et al., 2023; Robson and Ioannidis, 2023; Vilov and Heinig,

2024), relying on either binary classification of functional activity, which does not

reflect the complexity of cis-regulatory biology (Toneyan, Tang, and Koo, 2022;

Nair et al., 2023) or lack a more comprehensive set of benchmarking tasks. Thus,

it remains unclear the extent to which existing gLMs pre-trained on whole genomes

can genuinely serve as foundation models that can transfer their knowledge to pre-

dict and interpret functional genomics data, without necessitating additional fine-

tuning of the gLM weights.

Here we perform a focused evaluation to assess the informativeness of
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FIGURE 3.1: Experimental overview. Comparison of gLM em-
beddings versus one-hot representations for various functional ge-

nomics prediction tasks.
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learned representations by various gLMs pre-trained on whole genomes (with-

out fine-tuning) for six major functional genomics prediction tasks, which encom-

pass different levels of cis-regulation complexity at DNA and RNA levels (see Fig.

3.1). In particular, we compared the predictive power of representations from pre-

trained gLMs – namely Nucleotide-Transformer, DNABERT2, HyenaDNA, and

a custom GPN pre-trained on the human reference genome – versus one-hot en-

coded DNA and representations acquired from a supervised “foundation model”

pre-trained on a large corpus of functional genomics data. Our results suggest

that current gLMs pre-trained on whole genomes do not provide noticeable advan-

tages over conventional approaches to analyzing human functional genomics with

deep learning using one-hot sequences. Moreover, supervised foundation models

pre-trained on functional genomics data appear to encapsulate more relevant in-

formation and transfer better to other functional genomics data, albeit when the

source pre-training tasks and the target tasks are closely aligned. Our results sug-

gest that the standard pre-training schemes for current gLMs struggle to understand

cell-type specific functional elements and, therefore, fall short of achieving a foun-

dation model status for the non-coding genome of humans.

3.2 Results

3.2.1 Task 1: Predicting cell-type specific regulatory activity

from lentiMPRA data

Understanding the mechanisms that drive CRE activity is a major goal in

functional genomics; it is challenging due to complex rules of cell-type-specific

TF binding (Shlyueva, Stampfel, and Stark, 2014; Zeitlinger, 2020). In the first
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FIGURE 3.2: Test performance on predicting cell-type-specific reg-
ulatory activity from lentiMPRA data. a, Comparison of prediction
performance across various downstream machine learning models,
including ridge regression and MLP using either the gLM’s CLS
token or mean embedding, and a CNN trained using the full em-
bedding of the penultimate layer of gLMs. b, Prediction perfor-
mance using a baseline CNN trained using different gLM embed-
ding inputs, one-hot sequences, or supervised embeddings from Sei.
ResNet represents the performance of a more sophisticated model

that is trained using one-hot sequences.
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task, we compared the performance of various machine learning models that con-

sider different input representations of DNA sequences at predicting experimen-

tally measured enhancer activity via lentiMPRA (lentiviral Massively Parallel Re-

porter Assay) (Agarwal et al., 2023). Specifically, this task involves taking a 230

nucleotide (nt) DNA sequence as input, represented either as a gLM embedding

or one-hot sequence, and predicting a scalar value that represents the CRE’s func-

tional activity measured in a given cellular context via lentiMPRA (see Methods).

This task enables a direct comparison in performance across matched downstream

models for each sequence encoding scheme. By considering two cell types, namely

HepG2 and K562, we can assess whether pre-trained gLM representations capture

cell-type-specific CRE activity.

For each gLM, we considered the embeddings from the penultimate layer

using a linear model or multi-layer perceptron (MLP) based on the classification

token (CLS) or the mean embedding, which is standard practice for harnessing

sequence summarization of LLM embeddings. We also employed a baseline con-

volutional neural network (CNN) that analyzed the full embeddings of the penul-

timate layer as well as one-hot sequences for comparison (see Methods). We also

considered embeddings from the penultimate layer of Sei (Chen et al., 2022b), a

supervised foundation model pre-trained on 21,907 chromatin profiling datasets

across over 1,300 cell lines and tissues. To assess the performance against a more

sophisticated supervised model, we trained a ResidualBind(Koo et al., 2021)-like

model (ResNet) using one-hot sequences. These choices provide a fair bench-

mark to assess whether embeddings from foundation models, acquired via unsu-

pervised gLMs or supervised CNNs, are more informative for downstream models

than naive one-hot sequences.
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We found that CNNs trained on the whole sequence embedding led to im-

proved performance over the linear or MLP models that analyzed CLS or mean em-

beddings (Fig. 3.2a). This suggests that summarized gLM representations lack suf-

ficient information to predict cell-type specific regulatory activity, whereas CNNs

can build upon the full embeddings to better discriminate cell-type specific fea-

tures. Moreover, the performance gap between MLPs and linear models suggests

that the mapping between the pre-trained representations and the functional read-

outs of lentiMPRA data is highly non-linear.

We also observed that CNNs trained using sequence embeddings from gLMs

generally under-performed standard one-hot sequences, with the exception of our

custom-trained GPN (Fig. 3.2b). Notably, the performance of all gLM-based

representations were significantly lower than the supervised representations given

by Sei. Due to differences in the data splits for Sei, it is unclear to what extent

data leakage might lead to performance inflation. Nevertheless, the ResNet model

trained using one-hot sequences on the LentiMPRA dataset also achieved high per-

formance (Fig. 3.2b). These results suggest that gLM embeddings may not provide

beneficial context for CREs that cannot already be learned from one-hot sequences

for the lentiMPRA dataset.

To control for the possibility that gLM embeddings from the penultimate

layer may not be optimal, we performed the same analysis using embeddings from

other layers of Nucleotide-Transformer. While some layers yielded modest im-

provements, particularly layer 10, the overall trends held and thus did not change

the conclusions (Supplementary Fig. C.1).
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3.2.2 Task 2: Predicting TF binding sites from ChIP-seq data

Since TF binding is a cell-type-specific phenomenon, but standard language

modeling objectives are not cell-type aware, we surmised that the low performance

of gLMs on the lentiMPRA prediction task may be due to losing information about

key motifs during the pre-training. To test this hypothesis, we evaluated whether

the gLM embeddings can predict TF binding sites measured via ChIP-seq (Chro-

matin Immuno-Precipitation sequencing(Ren et al., 2000)). Briefly, this task is

framed as a binary classification where a model takes a 200 nt DNA sequence,

either as a gLM embedding or a one-hot sequence, as input and predicts whether

the sequence corresponds to a ChIP-seq peak. We consider ten ChIP-seq datasets

spanning different TFs in GM12878 cells; a separate single-task model was trained

for each TF (see Methods).

Evidently, CNNs trained using one-hot sequences modestly outperformed

the whole embeddings from DNABERT2, HyenaDNA, and Nucleotide-Transformer.

On the other hand, the custom GPN occasionally led to improved performance

(Fig. 3.3). Nevertheless, the performance differences across all sequence encod-

ing schemes were modest, suggesting that gLMs do not appear to lose TF-related

information in their embeddings. However, it is unclear whether the information

provided by gLM embeddings actively encodes for TF motifs or whether the em-

beddings are simply not losing essential information about the input sequence from

which a downstream CNN can learn TF binding information directly from the gLM

embeddings, similar to one-hot sequences.

As a control experiment, we trained MLP or linear models using the CLS

token of Nucleotide-Transformer. In this way, any information about motifs must

be fully encoded in these summarized embeddings. We observed that CNNs trained

on the whole embedding yielded substantially higher performance than an MLP
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FIGURE 3.3: Performance comparison on TF binding prediction
tasks from ChIP-seq data. Comparisons of CNNs trained using
different gLM embeddings versus CNNs trained using one-hot se-
quences for 10 TF ChIP-seq datasets. Performance is measured by
the average area-under the receiver-operating characteristic curve
(AUROC) and error bars represent the standard deviation of the
mean across 5 different random initializations. Average AUROC

represents the average performance across all ChIP-seq datasets.
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trained using the CLS token (Supplementary Fig. C.2a). Nevertheless, the MLP

still demonstrated aptitude in predicting TF binding overall. To rule out the pos-

sibility that biases in the dataset create a trivial prediction task, where low-level

sequence statistics can be used to discriminate class labels, we also trained an MLP

model on bag-of-dinucleotide frequencies. Indeed, the MLP based on dinucleotide

frequencies yielded comparable performance to the CLS token (Supplementary

Fig. C.2a), except for CTCF, a protein that plays an important role in chromatin

structure for all cell types. Together, these results suggest that gLMs do not appear

to lose TF-related information in their embeddings, albeit only a slight information

boost is gained regarding TF binding compared to low-level dinucleotide statistics.

Nevertheless, downstream models that analyze conventional one-hot sequences can

easily rectify any information deficiencies, leading to higher performances.

3.2.3 Task 3: Zero-shot variant effect prediction with MPRA

data

A major use case of highly accurate sequence-function models is their abil-

ity to predict the functional consequences of non-coding mutations (Avsec et al.,

2021c). In previous studies, Nucleotide-Transformer and GPN have demonstrated

an ability to predict single-nucleotide variant effects, albeit as part of a binary clas-

sification task (Dalla-Torre et al., 2023; Benegas, Batra, and Song, 2023). How-

ever, it is not intuitive how gLMs pre-trained on whole genomes could yield good

zero-shot predictions of cell-type-specific variant effects in the non-coding region

of human genomes since they are trained without any cell-type information. Thus,

we assessed the ability of gLMs, specifically Nucleotide-Transformer, GPN, and

HyenaDNA, to quantitatively predict single-nucleotide variant effects within CREs

using saturation mutagenesis data measured via MPRAs (Massively Parallel Re-

porter Assay)(Kircher et al., 2019). This task involves calculating the zero-shot
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variant effect predictions of gLMs either by the cosine similarity of embedding

vectors for the input sequence with mutant or wild-type allele (e.g. Nucleotide-

Transformer and Hyena) or the log2-ratio of predicted variant and wild-type nu-

cleotide via single-nucleotide masking (e.g. GPN). These variant effect scores are

compared with experimentally measured variant effects according to the Pearson

correlation coefficient (see Methods). This analysis includes MPRA measurements

for three CREs in HepG2 cells and one CRE in K562 cells as part of the CAGI5

challenge(Kircher et al., 2019; Shigaki et al., 2019b).

We found that all tested gLMs (without fine-tuning) exhibited poor vari-

ant effect predictions in this quantitative zero-shot generalization task (Table 3.1).

These results extended to all Nucleotide-Transformer models(Dalla-Torre et al.,

2023), including a 2.5 billion parameter BERT-based gLM trained on 3,202 di-

verse human genomes and 850 genomes from various species. On the other hand,

CNNs trained on lentiMPRA data using gLM embeddings yielded substantially

better performance relative to their pre-trained counterparts (Table 3.1). Moreover,

sophisticated models trained using one-hot sequences, such as Enformer(Avsec et

al., 2021c), which is a state-of-the-art model trained with supervised learning on a

wide variety of functional genomics data using one-hot sequences, and Sei yielded

better performance than all CNNs trained using gLM representations. However,

the CNN trained using Sei embeddings on the lentiMPRA dataset yielded the best

overall performance. Together, these results highlight a major gap in the zero-shot

variant effect performance of gLMs with the state-of-the-art.

3.2.4 Task 4: Predicting alternative splicing from RNA-seq data

Previous studies demonstrated that Nucleotide-Transformer and GPN has

learned properties related to gene definition and splice sites (Benegas, Batra, and
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FIGURE 3.4: Performance on RNA regulation tasks. a, Box-plot
shows average Pearson correlation across tissues on test data for
various models trained with different encoding schemes on an al-
ternative splicing prediction task using MTSplice data. b, Box-plot
shows Pearson correlation for various models trained with differ-
ent encoding schemes on a RNA poll II elongation potential pre-
diction task using INSERT-seq data. Box-plots show the first and
third quartiles, central line is the median, and the whiskers show the
range of data. Box-plots represent 5 different random initializations
for a and 50 different random initializations for b. Statistical signif-
icance represents the Mann-Whitney U test with a p value < 0.05

(∗), < 0.01 (∗∗), and < 0.001 (∗∗∗).
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Song, 2023; Dalla-Torre et al., 2023). Thus, we surmised that gLMs pretrained

on whole genomes may be more beneficial for RNA regulation tasks. To investi-

gate this, we tested the informativeness of gLM embeddings to predict mRNA al-

ternative splicing quantified using RNA-seq (RNA-sequencing) from the ASCOT

dataset(Ling et al., 2020). Specifically, the prediction task takes as input two se-

quences – a sequence with 300 nt upstream of the splice acceptor and 100 nt down-

stream of the acceptor and a sequence with 100 nt upstream of the splice donor

and 300 nt downstream of the donor – with the goal of predicting the percentage-

spliced-in (PSI) across 56 tissues as a multi-task regression; a task introduced by

MTSplice (Cheng et al., 2021). Similar to the DNA analysis, a baseline CNN was

trained to take as input the full embeddings from gLMs or the embeddings of a

pre-trained supervised model (see Methods).

Our results mirrored those seen for regulatory DNA, with embedding-based

models largely under-performing compared to one-hot-based models (Fig. 3.4a).

In contrast, Sei’s embeddings led to substantially lower performance than most

gLM embeddings for this task. This is likely due to Sei’s pre-training focus on

DNA-based functional genomics data, which leads to learning a set of DNA regu-

latory features that do not transfer well to RNA regulation. To test whether a more

relevant set of features acquired through supervised learning could transfer better

for RNA regulation, we trained a multi-task ResidualBind-like model to classify

RNA-protein binding (RBP) sites from a large trove of eCLIP-seq data (see Meth-

ods). The task is to take 1,000 nt sequences as input and predict binding for 120

RBPs in K562 cells as a multi-task classification. Indeed, the embeddings from

this RBP-trained supervised model led to substantially better performance than the

gLM embeddings, except GPN, which yielded comparable results (Fig. 3.4a).
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3.2.5 Task 5: Predicting RNA pol II elongation potential from

INSERT-seq data

Next, we performed a similar analysis for a prediction task that takes 173 nt

RNA sequences as input and predicts RNA pol II elongation potential measured via

INSERT-seq (INtegrated Sequences on Expression of RNA and Translation using

high-throughput sequencing)(Vlaming et al., 2022). The INSERT-seq dataset is

modest in size, containing only 10,774 sequences. This small data regime may not

provide sufficient examples to learn all relevant patterns using one-hot sequences.

Training a large deep learning model on this dataset can easily lead to over-fitting.

Thus, this task can help evaluate a scenario (i.e., the low data regime) where a

baseline CNN that uses gLM embeddings might have an advantage over one-hot

sequences.

Similarly, we found that the baseline CNNs trained using gLM embeddings

yielded lower performance than one-hot RNA sequences, except for the custom

GPN, which performed slightly better (Fig. 3.4b). Again, the CNN performance

based on Sei’s supervised embeddings was worse, and the best-performing model

was achieved using embeddings from the supervised multi-task model pre-trained

to classify RBPs. These results highlight that generic pre-training strategies are not

always beneficial; when carefully selecting pre-training tasks, one should consider

which relevant features are needed to ensure more positive outcomes on down-

stream applications.

While the custom GPN was the only embedding that demonstrated im-

proved performance over one-hot sequences, we hypothesized that further down-

sampling of the training data could lead to situations where gLM embeddings be-

come more beneficial than one-hot sequences. We systematically down-sampled
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both the alternative splicing and INSERT-seq datasets and retrained the same base-

line CNNs using different input encoding schemes. Interestingly, the GPN embed-

dings consistently outperformed other embeddings (Supplementary Fig. C.3). The

improved performance by GPN suggests that gLMs may specialize more effec-

tively in specific genomic regions. Specifically in this dataset, capturing 5’ splice

sites is a critical feature (Vlaming et al., 2022). Thus, understanding what features

gLMs learn well can help to identify suitable downstream tasks for which they can

thrive.

3.2.6 Task 6: Predicting RNA-binding protein binding with eCLIP-

seq data

RBPs are essential for various RNA processing stages, so next, we exam-

ined the ability of gLMs to predict RBP binding sites using eCLIP-seq (enhanced

chromatin immunoprecipitation sequencing) datasets (Van Nostrand et al., 2016).

Briefly, the task involves taking 200 nt DNA sequences as input and predicting

binary labels of whether the sequence corresponds to an eCLIP-seq peak or not

(see Methods). Ten eCLIP-seq datasets spanning different RBPs were used in the

evaluation. We trained a baseline CNN model using different sequence encoding

schemes similar to previous tasks.

We found that CNNs trained using gLM embeddings performed slightly

worse on average compared to the one-hot sequences (Fig. 3.5a), in agreement

with the ChIP-seq results of Task 2. The narrow performance difference between

models using gLM embeddings and one-hot sequences also indicates that RBP mo-

tif information is not lost in the gLM embeddings. In a similar control, we found

that an MLP based on Nucleotide-Transformer’s CLS token led to slightly better

performance than an MLP based on dinucleotide frequencies (Supplementary Fig.
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FIGURE 3.5: Performance comparison on RBP binding predic-
tion tasks from eCLIP-seq data. Comparisons of CNNs trained us-
ing different gLM embeddings versus CNNs trained using one-hot
sequences for 10 RBP eCLIP-seq datasets. Performance is mea-
sured by the average area-under the receiver-operating characteristic
curve (AUROC) and error bars represent the standard deviation of
the mean across 5 different random initializations. Average AUROC
represents the average performance across all eCLIP-seq datasets.
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C.2b). This supports that gLM embeddings encode beyond low-level sequence

statistics in regulatory regions of RNA. Again, we found that Sei embeddings lead

to a substantial decline in performance, further highlighting the importance of se-

lecting appropriate pre-training tasks.

3.2.7 Uncovering cell-type-specific motifs learned by gLMs is

challenging

As a follow up, we performed attribution analysis to identify motifs that

are captured by gLMs. Attribution maps were generated for a given sequence by

systematically masking one input token (i.e., a single nucleotide position for GPN

and a non-overlapping k-mer for Nucleotide-Transformer) at a time and calculating

the entropy over the predicted distribution of the masked token; ∆Entropy, which

is the difference between the maximum entropy value across the whole sequence

and the entropy values at each position, was used to identify positions that yielded

informative nucleotides (see Methods). For comparison, we generated gradient-

corrected Saliency Maps (Majdandzic et al., 2023) for a CNN trained using one-hot

sequences. The analysis focused on lentiMPRA and CTCF ChIP-seq data to cover

tasks from different systems with varying levels of complexity.

As expected, the attribution maps for pre-trained gLMs alone (i.e., not con-

sidering the downstream task) were difficult to interpret for both lentiMPRA (Fig.

3.6a) and ChIP-seq data (Supplementary Fig. C.4a). The attribution maps did not

reflect any known motifs, nor did they match any of the patterns captured in the

CNN’s Saliency Maps. This disparity can arise if the probed locus is used for mul-

tiple purposes across different cell types. If cell-type-specific cis-regulatory pat-

terns are projected onto a single DNA sequence, the overlapping set of motifs can

lead to complex attribution maps that may not resemble distinct cell-type-specific
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FIGURE 3.6: Attribution analysis comparison for sequences from
the lentiMPRA dataset. a, Representative example of attribution
maps for a regulatory sequence from the lentiMPRA dataset. Attri-
bution maps include (top to bottom): the gradient-times-input of a
one-hot-trained CNN; the delta entropy of predicted nucleotides via
single-nucleotide masking from a pre-trained GPN and Nucleotide-
Transformer; the gradient of a CNN-trained using correspond-
ing embeddings multiplied by the delta entropy of predicted nu-
cleotides via single-nucleotide masking from a pre-trained GPN
adn Nucleotide-Transformer. b, Box-plot of the predicted activity
for 300 dinucleotide-shuffled sequences from a, dinuc-shuffled se-
quences with the annotated patterns from the Saliency Map of the
one-hot-trained CNN, and dinuc-shuffled sequences with the anno-
tated patterns from the CNN trained using GPN embeddings (GPN-
CNN). Green triangle represents the global importance analysis
value. Red dashed line represents the prediction of the wild type se-
quence according to the one-hot-trained CNN. c, Scatter plot com-
parison of the attribution map correlations for different pre-trained
gLMs (left) and CNNs trained using gLM embeddings (right). At-
tribution map correlations reflect the Pearson correlation coefficient
between the attribution map generated by the gLM-based attribu-
tion method with the Saliency Map generated by a one-hot-trained
CNN. Each dot represents a different sequence in the lentiMPRA

dataset (N=500).



Chapter 3. Application of gLMs in regulatory genomics 91

motifs. Alternatively, the complex patterns that seem to span the length of the se-

quence could also reflect low-level sequence statistics that are memorized. Without

ground truth, interpreting attribution maps remains challenging.

Next, we evaluated attribution maps generated by the downstream CNN

that used gLM embeddings as input. Specifically, we scaled the gLM’s entropy-

based attribution map with the maximum gradients at each position based on the

downstream CNN (see Methods). Through a qualitative comparison, we noticed

that the attribution maps generated by GPN appear to be visually aligned with

Saliency Maps generated by the one-hot-trained CNN compared to Nucleotide-

Transformer (Fig. 3.6a), even after accounting for the block-like structure which

arises due to the k-mer tokenization. This trend was observed for other loci as well

(Supplementary Fig. C.5).

To validate the importance of the putative binding sites identified via Saliency

Maps for the one-hot-trained CNN, we employed global importance analysis (GIA)

(Koo et al., 2021). Specifically, we embedded the 3 annotated patterns into dif-

ferent dinucleotide-shuffled sequences, which serve as background sequences with

low CRE activities, and measured the effect of including the patterns on model pre-

dictions. Indeed, GIA shows that the motif patterns identified by Saliency Maps for

the one-hot-trained CNN are more-or-less sufficient to explain model predictions

(Fig. 3.6b).

We then quantified the correlation between the attribution maps generated

by the one-hot-trained CNN and the gLM-based attribution maps. We found that at-

tribution maps generated by pre-trained gLM are not well-aligned with each other,

nor the attribution maps generated by the one-hot-trained CNN (Fig. 3.6c, Sup-

plementary Fig. C.2b). By contrast, attribution maps generated by CNNs trained

with gLM embeddings led to improved alignment between their attribution maps
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and with one-hot-trained CNNs. These results suggest that the gLMs learn non-

overlapping features during pre-training, but a downstream model can still use

them to build cell-type-specific motifs (that are better aligned with motifs learned

by one-hot-trained CNNs).

Together, the attribution maps given by pre-trained gLMs seem to visually

capture a more diffuse set of patterns, which speculatively reflect low-level statis-

tics of genomic sequences. Downstream models, like CNNs, appear to use these

seemingly uninformative gLM embeddings (especially from GPN) to build cell-

type-specific regulatory features that are relevant for downstream prediction tasks.

3.3 Discussion

To assess the transferability of knowledge acquired during pre-training for

current genome language models for regulatory genomics, we evaluated four gLMs

pre-trained on whole genomes (without fine-tuning) across six functional genomics

prediction tasks with appropriate baselines for comparison. We found that the

gLM representations provide little to no advantage compared to standard one-hot

sequences. On a relative basis, we found that GPN, a convolution-based LLM,

yielded slightly more informative representations in the non-coding genome com-

pared to highly parameterized BERT-style LLMs. This suggests that stronger in-

ductive biases toward learning relevant features in the model architecture can im-

prove gLMs, albeit modestly.

Notably, we elected to not fine-tune weights of the gLM on each down-

stream task, which is how gLMs have been previously benchmarked (Ji et al., 2021;

Dalla-Torre et al., 2023; Chen et al., 2022a; Chen et al., 2023; Zhou et al., 2023).

While gLM performance would likely improve with fine-tuning, the scope of this

study was to strictly gauge the knowledge of cis-regulatory biology learned during
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pre-training. The poor performance observed in this study suggests that cell-type-

specific cis-regulatory mechanisms are predominantly learned during fine-tuning.

Our results suggest that the benefit of pre-training gLMs appears to be initializa-

tions that are pre-loaded with just a little more information than low-level statistical

properties for non-coding genomic sequences.

In previous studies, pre-trained gLMs have found some success by focus-

ing on specific regions of the genome during pre-training or working with simpler

organisms with compact genomes (Benegas et al., 2023; Karollus et al., 2023;

Nguyen et al., 2024b). For instance, a BERT-based LLM trained strictly in the

coding genome can provide more context than only considering amino-acids with

protein language modeling (e.g., codon usage) (Outeiral and Deane, 2024; Hallee,

Rafailidis, and Gleghorn, 2023; Li et al., 2023). However, our evaluation shows

that extending the pre-training task across the whole genome struggles to capture

meaningful representations in the non-coding genome.

The performance gap may be due to differences in the structure of the cod-

ing regions versus the non-coding regions. To elaborate, protein sequences have a

clear start and end with low-level grammars (i.e., secondary structures) and high-

level grammars (i.e., protein domains) shared throughout most globular proteins,

with structures that are conserved across species. On the other hand, the non-

coding genome contains a variety of short sequence motifs that vary broadly in

binding affinities and are sparsely located in seemingly random DNA, with us-

age and rules that vary across loci and cell types. Few non-coding elements ex-

hibit deep conservation that is typical in proteins. The differing selection pres-

sures in the non-coding regions lead to loss of syntenty, which makes it difficult to
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study sequence and functional conservation. Thus, treating each nucleotide posi-

tion equally, whether informative or uninformative, makes this a challenging lan-

guage modeling task. In the non-coding genome, this is tantamount to expecting

the LLM to predict predominantly random nucleotides, which, by definition, can

only be achieved via memorization. Hence, this may explain why gLMs have also

found greater utility in learning cis-regulatory features in simpler organisms with

compact genomes, such as bacteria (Nguyen et al., 2024b; Zvyagin et al., 2023;

Shao, 2023), arabidopsis (Benegas, Batra, and Song, 2023), or yeast (Karollus

et al., 2023), which have substantially reduced junk DNA (Eddy, 2012; Niu and

Jiang, 2013; Graur et al., 2013).

By contrast, supervised deep learning models trained on large troves of

functional genomics data in a multitask setting can learn discriminative features

related to cis-regulatory mechanisms in the non-coding genome (Koo and Eddy,

2019; Koo and Ploenzke, 2021; Avsec et al., 2021a; Almeida et al., 2022; Nair

et al., 2023). However, the representations learned by these models are biased

towards the experiments they are trained on, which are predominantly generated

within a few cell lines. Hence, their generalization capabilities to other cell types

remain limited. A major benefit of gLMs is their lack of reliance on labels gen-

erated from wet-lab experiments during training, allowing them to learn a broader

set of patterns. However, our results suggest that gLMs have yet to learn a founda-

tional set of cis-regulatory features in the non-coding genome of humans that can

be harnessed in prediction tasks across cell types.

Evaluating what gLMs have learned through predictive modeling remains

an endless endeavor. A more efficient approach can be achieved through model
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interpretation of the gLMs, which should help to understand the alignment be-

tween gLMs and prior biological knowledge. Our preliminary analysis of attribu-

tion maps was inconclusive, highlighting the need for a more in-depth understand-

ing of what gLMs are learning from pre-training. Further development can build

upon the initial progress (Clauwaert, Menschaert, and Waegeman, 2021; Sanabria,

Hirsch, and Poetsch, 2023a; Zhang, Bai, and Imoto, 2023) towards more meaning-

ful domain-inspired model interpretation tools to bridge this gap.

Looking forward, it remains an open question whether LLMs will bring the

same revolution in human genomics as seen in other fields. The current trends in

scaling gLMs (via larger models and considering broader sequence contexts (Za-

heer et al., 2020; Nguyen et al., 2023)) might only produce incremental gains, albeit

achieved inefficiently according to Chinchilla scaling laws (Hoffmann et al., 2022),

as the availability of diverse and informative genomics data is a major limiting fac-

tor. It remains unclear whether continued scaling of the gLMs pre-trained with

standard language modeling objectives (i.e., MLM or CLM) will eventually lead to

realizing emergent capabilities, such as learning cell-type-specific cis-regulatory

biology in the non-coding genome. The amount of genetic variation required to

capture the full complexity of the human genome may be simply too great, as a

single genome encodes for the spatio-temporal regulation for all cell types. In-

corporating additional information, such as functional genomics data, is likely

needed during the pre-training for gLMs to become proficient in characterizing

cell-type specific functional elements. Even protein language models trained solely

on amino-acid sequences can learn elements of conservation and protein structure

and yet struggle to generalize well to a wide diversity of functional tasks (Li et al.,

2024). In the least, a separate language modeling objective for different regions in

the genome to account for the high entropy in the non-coding regions is needed.

Due to the high upfront costs to train gLMs with the lack of reciprocal performance
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gains on downstream tasks, gLMs will likely require a more focused, domain-

inspired revelation in pre-training objectives to achieve the esteemed “foundation”

status for the non-coding genome.

3.4 Methods

Pre-trained language models

Nucleotide-Transformer. Nucleotide-Transformer consists of multiple BERT-

based language models with 2 different model sizes (i.e., 500 million and 2.5 bil-

lion parameters) and trained on various sets of genome sequences: human refer-

ence genome, 1000 genomes project, and 850 genomes from several species. De-

tails of the tokenizer, model structure, and training procedure can be found in the

original paper(Dalla-Torre et al., 2023). We acquired weights for each Nucleotide-

Transformer model from the official GitHub repository. In this analysis we mostly

used representations from NT2.5B-1000G, except for the zero-shot variant ef-

fect generalization analysis, which considered all Nucleotide-Transformer models.

Since Nucleotide-Transformer models allow flexible input sizes, no padding was

necessary for any evaluation tasks.

Custom GPN. The GPN model is a convolutional neural network that was orig-

inally trained on Arabidopsis genome sequences via masked language modeling

with an input size of 512 nucleotides (Benegas, Batra, and Song, 2023). It con-

sists of 25 convolutional blocks, where each convolutional block includes a dilated

convolutional layer followed by a feed-forward layer, connected by intermediate

residual connections and layer normalization. The dilation rate for each convolu-

tional layer cycles with increasing exponentially by factors of 2, from 1 to 32. The
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embedding dimension was kept fixed at 512 throughout the layers. For our cus-

tom GPN (human) model, we created training datasets using the human reference

genome (hg38(Schneider et al., 2017)). The genome was split into contigs and fil-

tered for a minimum length of 512 nucleotides, with chromosome 8 held out as test

set. During training, 15% of the nucleotide positions were masked and the model is

tasked to predict the nucleotide probabilities for each masked location. The model

was trained for 2 million steps with a constant learning rate of 0.001 using ADAM

(Kingma and Ba, 2014).

HyenaDNA. The HyenaDNA model is a gLM pretrained on the human refer-

ence genome, with context lengths up to 1 million tokens at the single nucleotide-

resolution (Nguyen et al., 2023). Architecturally, it adopts a decoder-only, sequence-

to-sequence configuration, organized into a succession of blocks each encompass-

ing a Hyena operator(Poli et al., 2023), followed by a feed-forward neural network.

The model weights and representation extraction code was acquired through the

Hugging Face repository (Wolf et al., 2019). For all experiments in this study, we

used the “hyenadna-tiny-1k-seqlen-d256” model due to the sequence length limi-

tation of the functional genomics datasets.

DNABERT2. DNABERT2, a second generation version of the original DNABERT

model(Ji et al., 2021), is constructed on the BERT architecture, comprising 12

Transformer blocks. In this new iteration, the authors improved the model by re-

placing learned positional embeddings with Attention with Linear Biases (ALiBi)

and utilizing Flash Attention to increase computation and memory efficiency(Zhou

et al., 2023). In the context of this study, analyses were done with the represen-

tations generated by the last Transformer block. The model was acquired through

the Hugging Face repository, using the “ DNABERT-2-117M” model.
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Pre-trained supervised models

Sei. The Sei model is composed of three sequential modules: (1) a convolutional

network with dual linear and nonlinear paths; (2) residual dilated convolution lay-

ers; (3) spatial basis function transformation and output layers. Sei was trained to

take as input 4 kb length sequences and predict 21,907 TF binding, histone marks

and DNA accessibility from peak data of cis-regulatory profiles. For this study,

we extracted our representations after the spline basis function transformation, be-

fore inputting into fully connected layers. The pre-trained Sei model was acquired

through zenodo from the original study (Chen et al., 2022b).

RBP. Our custom RBP model was trained using eCLIP-seq(Van Nostrand et al.,

2016) data of 120 RBPs in K562 from ENCODE(“An integrated encyclopedia of

DNA elements in the human genome” 2012). The dataset was organized into a

multi-task binary classification format. The model has a ResidualBind-like struc-

ture:

1. 1D convolution (96 filters, size 19, batch-norm, exponential)

dropout (0.1)

2. Dilated residual block(Yu, Koltun, and Funkhouser, 2017)

convolution (96 filters, size 3, batch-norm, ReLU)

dropout (0.1)

convolution (96 filters, size 3, batch-norm, dilation rate 2)

dropout (0.1)

convolution (196 filters, size 3, batch-norm, dilation rate 4)

dropout (0.1)
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skip connection to input

ReLU activation

max-pooling (size 10)

dropout(0.1)

3. 1D convolution (192 filters, size 7, batch-norm, ReLU)

dropout (0.1)

global average-pooling

4. flatten

5. fully-connected (512 units, batch-norm, ReLU)

dropout (0.5)

6. output layer (120 units, sigmoid)

Data

lentiMPRA. The lentiMPRA dataset for K562 and HepG2 cell lines was ac-

quired from the Supplementary Tables in Ref.(Agarwal et al., 2023). The HepG2

library consists of 139,984 sequences, each 230 nucleotides long, and the K562

library contains 226,253 sequences. Each sequence is paired with a target scalar

value that represents the transcriptional activity. Each cell line was treated indepen-

dently as a single-task regression. For each dataset, we randomly split the training,

validation, and test sets according to the fractions 0.7, 0.1, 0.2, respectively. Unlike

the original study, we treated reverse-complement sequences separately; they were

not aggregated or augmented during test time. The results represent the perfor-

mance over a single fold.



Chapter 3. Application of gLMs in regulatory genomics 100

CAGI dataset. The CAGI5 challenge dataset(Kircher et al., 2019) was used to

evaluate the performance of the models on zero-shot single-nucleotide variant ef-

fect generalization as following the same procedure as Ref. (Toneyan, Tang, and

Koo, 2022). We only considered MPRA experiments in HepG2 (LDLT, SORT1,

F9) and K562 (PKLR). We extracted 230 nucleotide sequences from the reference

genome centered on each regulatory region of interest. Alternative alleles are then

substituted correspondingly to construct the CAGI test sequences. Pearson correla-

tion was calculated between the varient effect scores by the model and experimen-

tally measured effect size per experiment. For HepG2 performances, we report the

average Pearson’s r across the three experiments.

ChIP-seq. Ten transcription factor (TF) chromatin immunoprecipitation sequenc-

ing (ChIP-seq) datasets were acquired from the zenodo repository of Ref.(Majdandzic

et al., 2023). The prediction task is a binary classification of whether 200nt input

DNA sequences are associated with a ChIP-seq peak (positive label) versus se-

quences from DNase I hypersensitive sites from the same cell type (i.e., GM12878)

that do not overlap with any ChIP-seq peaks (negative label). The number of nega-

tive sequences were randomly down-sampled to exactly match the number of pos-

itive sequences to ensure balanced classes. The dataset was split randomly into

training, validation, and test set according to the fractions 0.7, 0.1, and 0.2, respec-

tively.

Alternative splicing data. Data was acquired from direct correspondence with

the authors of Ref.(Cheng et al., 2021) Briefly, 61,823 cassette exons from ASCOT

was split into a training, validation, and test set. The training set consisted of

38,028 exons from chromosome 4, 6, 8, 10-23, and the sex chromosomes. The

11,955 exons from chromosome 1, 7, and 9 were used as the validation set, and

the remaining 11,840 exons were used as the test set (chromosomes 2, 3, and 5).
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Models are evaluated based on their performance on the test set. The prediction

task takes as input two sequences – a sequence with 300 nt upstream of the acceptor

and 100 nt downstream of the acceptor and a sequence with 100 nt upstream of the

donor and 300 nt downstream of the donor – and the goal is to predict PSI across

56 tissues as a multi-task regression.

INSERT-seq. INSERT-seq data was obtained from Ref.(Vlaming et al., 2022).

INSERT-seq measures the impact of transcribed sequences on the RNA polymerase

II elongation potential and expression in mouse embryonic stem cells. 11,417 in-

sert sequences of length 173nt long were used as inputs and the goal is to predict

the totalRNA output, which measures the relative abundance in RNA relative to

genomic DNA, as a regression task. Training, validation, and test sets were split

according to the fractions 0.8, 0.1, and 0.1, resulting in 9,131, 1,149, and 1,137

sequences, respectively.

eCLIP datasets. The in vivo eCLIP-based datasets were downloaded from the

ENCODE. For each RBP experiment, the bed narrowPeaks (two replicates) and

the bam file for the corresponding mock inputs experiment were downloaded. For

each replicate, we removed peaks with a signal value less than 1 and a log-p-value

greater than 3. Using bedtools, the remaining peaks that share at least one nu-

cleotide across the two replicates were selected as positive peaks. A correlation

filter across the replicates was applied: (2(s1i − s2i )/(s
1
i + s2i ))

2 < 1.0, where sji

represent the signal value for the ith peak in replicate j. The median peak size

was about 50 nt with a positive tail that exceeded 200 nt in some cases. Positive

sequences were generated by extracting 200 nucleotide sequences about the center

position of the peak coordinates. Sequences with undefined nucleotides were fil-

tered out. Negative peaks were generated by employing Piranha peak caller on the

bam file of the mock inputs with a bin size of 20 and a p-value threshold of 0.01.
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We then removed negative peaks which overlap with any unfiltered peaks from each

replicate. Negative peaks were generated by extracting 200 nt sequences about the

center position of the remaining negative peak coordinates. Because the negative

peaks usually had more entries compared to the positive peaks, we randomly se-

lected a similar number of negative peaks as positive peaks. All sequences were

given a corresponding label 1 for sequences which contain a positive peak and 0

for sequences which contain a negative peak. All sequences were then randomly

split into a training set, validation set, and test set according to the fractions 0.7,

0.1, and 0.2, respectively.

Models for downstream tasks

Linear models. Linear models with L2 regularization (i.e., Ridge) serve as the

baseline, representing a simple downstream model. The inputs of the model were

based on the embeddings of the CLS token or the average embedding across se-

quences for Nucleotide-Transformer models. For regression and classification tasks,

the linear model was a linear regression or logistic regression, respectively. The

strength of the L2 regularization was set to 1e-3.

MLP. A multi-layer perceptron model was used to train on CLS token embed-

dings or the average embedding across sequences for Nucleotide-Transformer mod-

els. The model is constructed by two fully connected blocks. The first block in-

cludes a fully-connected layer with 512 units and ReLU ativation, followed by

batch-normalization and a dropout rate of 0.5. The second block consists of a

fully-connected layer with 256 units and the same activation, batch-normalization,

and dropout layers. The model was trained on lentiMPRA dataset with Adam op-

timizer, learning rate of 0.0001, mean-squared error loss function, learning rate
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decay with a patience of 5 epochs and a decay factor of 0.2, and early stopping

patience of 10 epochs.

MPRAnn for lentiMPRA. MPRAnn is a convolutional based model with a total

of 4 convolutional and 3 dense layers trained on the lentiMPRA dataset. It takes

230 nt one-hot encoded sequences including the adapters as input to predict the

mean log2(RNA/DNA) values from forward and reverse strands. We augmented

the batches using the reverse-complement of the 200 nt target sequence, while

keeping the two 15 bp adapters fixed. To fit the model, we used a learning rate of

0.001, an early stopping criterion with patience of 10 on 100 epochs, and the Adam

optimizer with a mean square error loss function. Model structure and training

parameters obtained from Github directory of original publication(Agarwal et al.,

2023).

Baseline CNN for lentiMPRA. We designed a baseline CNN model with the

following structure:

1. batch-norm (optional)

2. 1D convolution (196 filters, size 1) (optional)

3. 1D convolution (196 filters, size 7, batch-norm, exponential)

dropout (0.2)

max-pooling (size 5)

4. 1D convolution (256 filters, size 7, batch-norm, ReLU)

dropout (0.2)

max-pooling (size 4)

5. flatten
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6. fully-connected (512 units, batch-norm, ReLU)

dropout (0.5)

7. fully-connected (256 units, batch-norm, ReLU)

dropout (0.5)

8. output layer (1 unit, linear)

CNN models were trained with Adam optimizer, mean-squared error loss

function, learning rate of 0.0001 with a learning rate decay patience of 5 epochs

with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-

hot sequence and language model embedding-based training on the lentiMPRA

dataset. For one-hot sequences, batch-norm and the convolution with kernel 1 were

not employed.

ResidualBind for lentiMPRA. We designed the ResidualBind model by adding

a dilated residual block after the first convolutional layer of the baseline CNN

model, according to:

1. 1D convolution (196 filters, size 15, batch-norm, exponential)

dropout (0.2)

2. Dilated residual block

convolution (196 filters, size 3, batch-norm, ReLU)

dropout (0.1)

convolution (196 filters, size 3, batch-norm, dilation rate 2)

dropout (0.1)

convolution (196 filters, size 3, batch-norm, dilation rate 4)
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dropout (0.1)

convolution (196 filters, size 3, batch-norm, dilation rate 8)

dropout (0.1)

convolution (196 filters, size 3, batch-norm, dilation rate 16)

dropout (0.1)

convolution (196 filters, size 3, batch-norm, dilation rate 32)

skip connection to input

ReLU activation

max-pooling (size 10)

dropout(0.2)

3. 1D convolution (256 filters, size 7, batch-norm, ReLU)

dropout (0.2)

max-pooling (size 5)

4. flatten

5. fully-connected (512 units, batch-norm, ReLU)

dropout (0.5)

6. fully-connected (256 units, batch-norm, ReLU)

dropout (0.5)

7. output layer (1 unit, linear)
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ResidualBind was trained with Adam optimizer, mean-squared error loss

function, learning rate of 0.001 with a learning rate decay patience of 5 epochs

with a decay rate of 0.2, and early stopping with patience of 10 epochs.

Baseline CNN for ChIP-seq and CLIP-seq. We designed a baseline CNN model

with the following structure:

1. batch-norm (optional)

2. 1D convolution (512 filters, size 1) (optional)

3. 1D convolution (64 filters, size 7, batch-norm, ReLU)

max-pooling (size 4)

dropout (0.2)

4. 1D convolution (96 filters, size 5, batch-norm, ReLU)

max-pooling (size 4)

dropout (0.2)

4. 1D convolution (128 filters, size 5, batch-norm, ReLU)

max-pooling (size 2)

dropout (0.2)

5. flatten

6. fully-connected (256 units, batch-norm, ReLU)

dropout (0.5)

8. output layer (1 unit, linear)

CNN models were trained with Adam optimizer, binary cross-entropy loss

function, learning rate of 0.001 with a learning rate decay patience of 5 epochs with
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a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-

hot sequence and language model embedding-based training on the lentiMPRA

dataset. For one-hot sequences, batch-norm and the convolution with kernel 1 were

not employed.

Insert-seq model. For the RNA pol II elongation potential dataset, we developed

a residual convolutional network structure and used it for all embedding and one-

hot-based models. The model was trained using mean square error loss function,

Adam optimizer, learning rate of 0.0001, learning rate decay patience of 5 epochs

with a decay rate of 0.2, and early stopping patience of 10 epochs.

1. convolution(48 filters, size 1) (optional)

2. convolution (96 filters, size 19, batch-norm, exponential)

dropout (0.1)

3. dilated residual block

convolution (96 filters, size 3, batch-norm, ReLU)

dropout (0.1)

convolution (96 filters, size 3, batch-norm, dilation rate 2)

dropout (0.1)

convolution (96 filters, size 3, batch-norm, dilation rate 4)

skip connection to block input

ReLU activation

max-pooling (size 10)

dropout(0.1)
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4. convolution (128 filters, size 7, batch-norm, ReLU)

global average-pooling

dropout (0.1)

5. fully-connected layer (128 units, ReLU)

dropout (0.5)

6. output layer (1 unit, linear)

CNN models were trained with Adam optimizer, mean-squared error loss

function, learning rate of 0.0001 with a learning rate decay patience of 5 epochs

with a decay rate of 0.2, and early stopping with patience of 10 epochs for both one-

hot sequence and language model embedding-based training on the lentiMPRA

dataset. For one-hot sequences, the convolution with kernel 1 was not employed.

Zero-shot variant effect prediction methods

For Nucleotide-Transformer, we derived the zero-shot predictions using co-

sine similarity as suggested in the original study (Dalla-Torre et al., 2023). For each

variant, we passed the sequences with the centered reference allele and the alterna-

tive allele through the model to extract embeddings. The cosine similarity between

the two complete sequence embeddings was calculated and used as the zero-shot

score. A negative correlation is expected between the score and effect size. Since

this distance-based zero-shot score only reflects the magnitude, not the direction,

of function change, we calculated the Pearson correlation using the absolute value

of the effect size.

For GPN, we followed a similar procedure as the original study (Benegas,

Batra, and Song, 2023). First, we input sequences with the center variant loci

masked and acquired the predicted allele probabilities for the masked loci. Then,
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we calculate the zero-shot prediction score as the log-likelihood ratio between the

alternate and reference alleles. Again, since the likelihood ratio doesn’t reflect

the direction of function change associated with the variants, we calculated the

correlation score using the absolute value of effect size.

Finally, for the embedding-based and one-hot based models, we used the

difference in predictions between the alternative and reference allele sequence as

the zero-shot prediction score. For Enformer, we use the cell-type agnostic ap-

proach of averaging the effect size across all DNase-seq tracks. To reduce predic-

tions to scalars, we summed across the profile predictions.

Attribution methods

For CNN models, the attribution analysis was based on grad-times-input

with saliency maps. The gradients of the prediction were calculated with respect to

the input sequence to yield an L x A map, where L is the length of the sequence and

A is 4 (one for each nucleotide). By subtracting the position-wise average saliency

scores from this map and then multiplying by the one-hot encoded sequence, the

method isolates the sensitivity of each observed nucleotide at every position, en-

hancing interpretability by pinpointing nucleotide-specific contributions to predic-

tions.

For gLMs, the analysis involved sequentially masking each token of the in-

put sequence and predicting the probability of the masked token by the model. The

entropy of the probability distribution for each position was computed to quantify

the information content represented by the gLM. Given that lower entropy signifies

a higher information level, the saliency score was derived as the difference between

the maximum entropy value and the entropy at each position, ensuring that a higher

saliency score reflects greater information retention.
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Sequence logos were visualized using Logomaker (Tareen and Kinney, 2020).

Global importance analysis

Global importance analysis was carried out according to Ref. (Koo et al.,

2021). A example sequence was selected from the LentiMPRA (K562) dataset.

We sampled 300 dinucletoide shuffled versions of the sequence to be used as back-

ground sequences. The shuffling aims to preserve the dinucleotide frequency while

destroying any coherent patterns. The LentiMPRA trained One-Hot-CNN models’

predictions for the shuffled sequences are considered to be the baseline for pre-

dicted CRE activity. The top three positive motif patters identified separately in the

One-hot-CNN and GPN-CNN saliency maps (Fig. 3.6c) were inserted into the cor-

responding position of the shuffled sequences, creating two experiment sequences

sets. The One-Hot-CNN model was used to make predictions for the motif embed-

ded sequences. The difference in prediction for the three sets of sequences reflect

the global importance of these motif patterns to the CNN model.
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Chapter 4

Discussion and perspectives

The work in this thesis has been done as attempts to understand the utility of

current DL methods for understanding the sequence-function landscape of genomic

regulation. In this chapter I discuss the major limitations encountered during my

research, as well as proposing paths forward that could overcome these challenges

and expand our understanding.

4.1 Modeling considerations from the sequence-function

landscape perspective

DNNs learn a sequence to molecular function mapping through training

on functional genomic data. From a function approximation standpoint, this can

be thought of as the DNN is simulating the functional genomics assay and the

subsequent data interpretation step. This allows one to use the trained DNN as a

surrogate for the experimental assay, albeit for the given condition that generated

the functional genomics data. This enables making new in silico measurements

for sequences that the model has not seen during training or as part of the original

experiment. Thus, the trained genomic DNN can generate hypothetical or counter-

factual measurements to sample new regions of sequence space, through the lens of
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the approximated functional genomics assay. Considering genomic DNNs accord-

ing to the inferred sequence-function landscape is a powerful tool that facilitates

their understanding. In this section, we elaborate how we view functional genomics

problems through the lens of sequence-function landscapes and distribution shifts,

explaining the behaviour of model generalization and interpretability.

4.1.1 Generalization under different levels of covariate shifts

Sequence space is high dimensional with 4L possible sequences (i.e., x ∈

{A,C,G, T}L), where L is the length of the sequence. This discrete combinatorial

space is larger than the number of atoms in the universe for typical prediction tasks

(with L > 200). While not exact, it can be helpful to gain intuition by visualiz-

ing sequence space according to a projection on a lower-dimensional, continuous

manifold. In this space, a sequence is a point. Similar sequences are placed in

close proximity and the surface, while portrayed smooth here, is rugged, with few

mutations that can dramatically change the functional activity of the sequence.

Through this perspective, the challenge becomes quite apparent – exper-

imental data samples sequence space only sparsely and in a biased manner, only

including the natural genetic variation across a reference genome. Thus, its unclear

whether the model would generalize well and produce reliable predictions for data

far outside the narrowly sampled training data. However, we are not pursing gen-

eralization everywhere in the sequence space. Since trivial sequences such as a

genome fully comprised of adenine are not of interest for understanding biological

mechanisms.

Generalization becomes increasingly difficult as the model encounters data

points that diverge from training data more; this is known as a covariate shift, which
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is a type of distribution shift of the input data. Thus, the evaluation for generaliza-

tion capabilities of genomic DNNs should be set according to the level of covariate

shift that is appropriate for the target application. Below we provide examples

of different scales of covariate shifts that are relevant for genomics applications:

individual-level variation, population-level variation, disease-level variation, and

synthetic sequence variation.

Individual-level variation. Generalization across an individual’s genome is the

most typical form of evaluation, using held-out data from the same dataset. In

practice, this is accomplished by holding out chromosomal data. This test ensures

that the model can predict new sequences that sample similar genetic variation as

the training data, under the same sequence biases that are under similar selection

pressures from evolution. Good performance on held-out test chromosomes does

not inform generalization across more distant regions of sequence space.

Population-level variation. Generalization across population-level variation is a

test to see how well population-level variant effects can be predicted. This usu-

ally includes a single nucleotide variant, but can extend to numerous variants as

part of a haplotype in a genomic locus. These variants are typically important for

phenotypic variability, but their effect sizes are often weak. Thus, generalization

across population-level variation can be subtle. Recently, a study led by Sasse et al.

has found that Enformer, a state-of-the-art sequence-to-expression DNN, struggles

to capture population variation. Moreover, Huang et al. have also found that En-

former strugges to predict eQTLs. Nevertheless, Enformer’s prediction on held-out

chromosomes remains SOTA and hence this gap can be attributed to poor general-

ization under population-level variation.
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Disease-level variation. The level of genetic variation is higher in diseases com-

pared to healthy populations. Certain diseases or predisposition to disease, are

caused by mutations - the majority of which have been mapped to the non-coding

genome. Other, such as cancer, can introduce numerous rearrangements in the

genome, from single-nucleotide mutations to indels and structural variations. Cur-

rently, much effort is focused on single-nucleotide level variation to fine-map dis-

ease loci and provide mechanistic understanding through generalization of ge-

nomic DNNs. While models can predict variants, the evaluation of disease-associated

variants remains difficult to comprehensively assess due to a lack of ground truth.

Further progress on curating meaningful tasks that can assess generalization to

disease-level variation is needed to be able to benchmark genomic DNNs at this

important generalization task.

Synthetic sequence variation. A major application of genomic DNNs is design

of synthetic sequences that can provide tunable control of regulatory function. This

requires the ability to either mine existing sequences that provide the desired effects

or to navigate along sequence space outside the training distribution to a mode

with a desirable level of activity. Thus, evaluating the ability of genomic DNNs to

generalize for synthetic sequence variation is required to ensure this objective.

All genomic DNNs produce a functional prediction for the entirety of se-

quence space. However, demonstrating generalization capabilities within individual-

level variation does not guarantee their ability to predict disease-level variation or

synthetic sequence variation, due to the varying levels of covariate shifts. More-

over, generalization on a finite set of values on average can appear good but there

could still be some pathological regions of sequence space, where predictions are

much less reliable.

There are not many experimental datasets that have been generated for the
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purposes of evaluating genomic DNNs. Not all evaluations are equally informative.

The level of covariate shifts should be stated for a given evaluation to ensure that

the expectation level of generalization is calibrated for the level of covariate shift

expected according to the downstream application of the model.

4.1.2 Generalization under label shifts

Sequence-function landscapes are complex due to the dynamic nature of bi-

ological processes, such as the evolution or spatio-temporal changes in the molec-

ular function of sequences. When training a sequence-based genomic DNN on

functional genomics data, the state of the cell is assumed to be constant with a fixed

concentration level of TFs. Since a single genome encodes for all cell types in a

human body, it is possible, in principle, to predict specific functional activity from

sequence alone. However, the complex biological processes are dynamic and can

easily alter the state of the cell, which changes the sequence-function landscape.

This distribution shift is known as a label shift and can manifest if the training and

test data were measured under different conditions. Examples of different condi-

tions could be in vitro versus in vivo, or different perturbations applied to the cell,

or under different stress conditions.

Label shifts can also arise due to measurements using different experimen-

tal technologies. Although it is typically assumed that the experimental measure-

ments are ground truth, this notion creates an arms race to make better predictions

on experimental data, which may not necessarily learn better underlying biology

but rather a better noise model of the experimental technology. Noise is intrinsic

to biology as well as measurements. Thus, the inferred landscape by the genomic

DNN may not be smoothing out the noise as well as it could be. Thus, comparisons

of the prediction of models comparing to replicate variability has emerged and this
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is quite informative for the level of performance given the expected noise levels of

the experiments.

By thinking about the label shifts across technologies and experimental

conditions, one can gain a better appreciation for the challenges in assessing gener-

alization of the underlying biology versus the ability to better predict noise. Recent

progress by ChromBPNet has illuminated a powerful strategy to decompose tech-

nical biases of different sequencing assays. This is a powerful way to remove biases

from data. While the intended purposes has been to regress out the bias for better

modeling, this process can also help to remove bias from held-out test data to better

show generalization capabilities across technologies.

Further, the expectation of generalization across cell types or generalization

across species can be informative but the take aways of the lack of generalization

is not constructive as this can be due to not learning shared biology or due to the

divergence of the biological systems (or due to being measured under different

conditions). One cannot draw any meaningful conclusions from these experiments

without further control experiments that test alternative hypotheses.

4.1.3 Model explanations from a function approximation per-

spective

Attribution methods—such as Saliency Maps, DeepLIFT, DeepSHAP, In-

tegrated Gradients, SmoothGrad, and more—are powerful tools to explain the el-

ements within a sequence that are important for model predictions. Each of these

popular attribution methods can be thought of as an additive approximation to a

local region about the sequence of interest; each method’s approximation window

(also called a neighborhood size) varies.
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For instance, a Saliency Map is a linear approximation of a point, tangent

to the sequence-function landscape. SmoothGrad samples different regions nearby

via input perturbations and averages the gradients at each sampled sequence. How-

ever, in practice, adding Gaussian noise as is done in the original SmoothGrad

study means that the sampled region lies off of the simplex where the data resides;

SmoothGrad explores the input space assuming its a continuous distribution while

valid sequences exist only in discrete space. Even though a genomic DNN can

produce predictions for all of 4D Euclidean space, its behavior off the simplex can

exhibit arbitrary biases due to not having any data to ground its behavior. Hence,

the gradients contain arbitrary components, albeit a simple statistical correction

that projects the gradient along the simplex can mitigate the impacts of this.

Integrated gradients, on the other hand, interpolates the gradients from a

reference point, such as a vector of all zeros or an inactive reference sequence, to

the sequence of interest. Similar to SmoothGrad, this also suffers from sampling

gradients in the function off of the simplex. Hence, importing attribution methods

developed in computer vision into genomics has brought some peculiar behaviors

that are not necessarily rigorous for categorical inputs. Some recent work has at-

tempted to address these gaps by adapting these methods for genomics, including

enhanced integrated gradients and a version of integrated gradients that walks along

the sequence space.

To address this challenge a surrogate modeling approach called SQUID di-

rectly samples a local region of the sequence-function landscape similar to MAVEs

and uses inherently interpretable quantitative models designed for MAVEs for the

approximation. Unlike previous attribution maps, SQUID enables approxima-

tions that fit non-linear functions and more tuned levels of neighborhood sizes.



Chapter 4. Discussion and perspectives 118

It can also make non-additive approximations, providing insights into pairwise in-

teractions within motifs and between motifs. Further progress on thinking about

sequence-function landscapes can help to identify weaknesses in exiting attribution

methods and develop theoretically more rigorous adaptations for genomics.

4.2 Major limitations and paths forward

4.2.1 Framing regulatory genomics prediction tasks

A major challenge lies in framing a meaningful prediction task in regulatory

genomics. The current paradigm that predicts regulatory functions from just DNA

sequences assumes fixed confounding variables of cell state and environmental

factors. However, features such as the concentration levels of TFs in the cell or sig-

nalling molecules in the cellular environment, change dynamically. Consequently,

these models struggle to generalize across different cell states, cell types, and en-

vironmental conditions, as they are trained on static snapshots in time and couldn’t

learn the dynamics of regulatory processes. Moreover, the models are trained on

observational profiling data instead of interventional perturbation data which can

give more direct insights into causal relationships for cis-regulatory mechanisms.

Confounding in variant effect predictions. As the consequence of the sequence-

focused approach, models are not aware of the potential changes and dynamics of

the gene regulatory network (GRNs), i.e. the interactome of TFs that bind to CREs

and regulate a target gene. Consequently, they overlook the cascade of interactions

at the gene level by TFs, which can significantly influence expression levels. This

could explain why eQTL predictions by such models are not always accurate. A

comprehensive model would need to consider all cellular context features instead

of solely base its prediction on sequences. Nevertheless, although sequence-based
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DNNs cannot directly predict the effect on the state of the cell, their instantaneous

variant effect predictions can still provide valuable insights for significant changes

in the GRN.

Bias in peak-centered training data. In addition to the limitations of pure sequence-

based models, artificial bias can be introduced during training. While convolutional

layers are often considered to be translation equivariant – the same patterns in dif-

ferent locations would lead to the same activation. This is only valid within the

receptive field of the layer and edge effects can limit its equivariance. If a CNN’s

receptive field covers the entire input seqeunce, the model would loss equivariance

to the translational transformation of inputs. This applies to all models that employ

a flatten layer followed by a dense layer, which is equivalent to a convolutional ker-

nel that spans the length of the input sequence. Thus, the non-equivariant CNNs

trained on peak-centered data where input sequences always centered at high read

coverage regions, have a tendency to learn only important patterns within the cen-

ter of the sequence. This artificial bias is introduced due to the sampling of train-

ing data, and makes DNNs susceptible to inaccurate predictions upon translational

shifts of the sequence. Solutions to improve DNN robustness to such effects in-

clude data augmentations, random sampling for training data, or manually include

translational shifts of the input data.

Limited training data. Given that training sequences cover only a small frac-

tion of all possible sequences, sequence-function landscape inferred by DNNs

may not fully reflect biological ground truth, especially in regions with little to

no data support. This includes most of sequence space because it is incredibly

high-dimensional, and training data only sparsely samples it in a biased manner

(because of evolutionary constraints). For example, a DNN will struggle to accu-

rately learn the biophysical mechanism for a TF binding from a dataset with only
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tens to a few hundred positive binding sites across the genome.

A possible solution is to integrate other biological data that share similar

cis-regulatory grammar through pre-training or multi-tasking. Pre-training datasets

may contain similar binding sites for different TFs or for different cell types. How-

ever, this strategy may not accurately learn binding contexts such as flanking nu-

cleotide preferences. In case of multi-tasking, the model learns different sequence-

function landscape for each task in parallel. The assumption is that each task is

independent, with potential overlap in underlying features. This method aims to

mitigate the limitations of small datasets by including more information during

training. However, the current approaches in genomics multi-tasking use the same

input and make predictions across different sequence assays, which can introduce

class imbalances for each task.

Poorly framed prediction tasks can introduce biases. Lastly, when prediction

performance is overly optimistic, this could be a red flag that the task itself is

trivial. One possible source of ill-posed problems is the selection of background

sequences. For example, the natural genetic variation in regulatory regions across

the human genome contains distinct low-level sequence biases that have been well-

recognized, such as GC bias and other low-level statistical biases. Hence care-

ful consideration in background selection is important for discriminative learning.

When poorly chosen, expressive models like DNNs can easily exploit low-level

statistics to make predictions, producing to good classification performance with-

out learning meaningful features. Another possible source is when the signal of

interest is correlated with other signal that is not mechanistically important. For in-

stance, when predicting TF binding, the background set should not be dinucleotide

shuffled sequences as any accessible signals could be predictive of the TF binding

in the given cell type. Rather, it should contain GC-matched accessible sites that do
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not have any TF binding in the cell type of interest. Other ways that framing can go

awry is when the prediction task is dependent on understanding other features, such

as when multitasking across different cell types for the same TF. The model cannot

simply learn the correct TF motif in order to make the right predictions, rather, it

has to learn other signals about accessibility for each cell type in order to make

the right prediction of binding. This may be why model performance was found

to improve when increasing the input sequence context, which provides more op-

portunities to learn cell type specific signals, not necessarily information specific

to the TF of interest. Moreover, the interpretation of in silico mutagenesis for these

models is also conflated due to the confounding factor of chromatin accessibility.

4.2.2 Models are not yet reliable oracles

Another major issue with DNNs is their lack of awareness about their own

knowledge gaps. Their inferred sequence-function landscape is not likely to be

fully reliable outside of the data support, in fact, there may be pathological re-

gions not far from training data. For instance, adversarial examples have long been

known to exist for computer vision models and their impact in genomics has not

been fully explored. Even thought there may not be clearly defined adversay ex-

amples, we care about the robustness of these models to small perturbations. Since

DNNs learn a 4D Euclidean space, learning off of the data simplex can still be

beneficial in terms of improving robustness properties on the simplex. Accurate

model predictions outside the training data distribution is important for variant ef-

fect prediction, model interpretation through in silico experiments, and designing

novel sequences with desirable properties. Therefore whenever a prediction for a

new sequence is required, it’s important to assess the reliability of that prediction.

There are several paths forward that can help address this gap, including
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uncertainty quantification, measures of OOD, robustness measures of the local-

sequence-function landscape, and sanity checks.

Uncertainty quantification. DNN predictions are known to be overconfident.

For binary classifiers, the predictions can be thought of as probabilities. However,

predictions tend to be more heavily skewed to extremes, 0 or 1. Thus, the confi-

dence in the predictions is uncalibrated. Expected Calibration Error(ECE) is one

approach to measure the prediction uncerntainty.

Genomic DNNs that are trained in a supervised manner typically learn point

estimates of weights, not distributions like Bayesian machine learning approaches.

So for a given input sequence, DNNs will produce a deterministic prediction. In a

Bayesian approach, the prediction are represented by a distribution for which the

uncertainty can be drawn. The simplest, but computationally expensive approach

to estimate uncertainty is to train an ensemble of models, each with a different ini-

tialization. The models will learn slightly different sequence-function landscapes,

providing a distribution of predictions for each input. This so-called DeepEnsem-

bles is a powerful approach to estimate epistemic uncertainty, the model-based

uncertainty that can become reduced with more data. Alternative approaches in-

clude less conventional methods like MCDropout, which keeps dropout on during

inference time, leading to variations in the model predictions. MCDropout has

been shown to approximate uncertainty by generating a distribution of outcomes

based on the dropout-induced variations. Alternatively, Bayesian neural networks,

with bayesian noise layers, can produce uncertainty estimations, but often do not

achieve similar performance as conventional DNNs. However, uncertainties esti-

mated by the model has no promise to be properly calibrated. Recently, there has

been a resurgence of conformalize predictions, which ensure that quantities like

uncertainties are calibrated and can make statistical guarantees of their estimates.
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This often involves using a held-out calibration set to set the bounds, the resultant

uncertainties can then ensure that they encompass 95 confidence interval of the true

values.

However, uncertainty is not a panacea in itself as the modeling bias can

still be misleading. Recently, a detailed study that explored found that there are

regimes where epistemic uncertainty is low, but the model prediction remains in-

correct. Moreover, epistemic uncertainty is only one aspect of the predictive un-

certainty, aleatoric uncertainty is a different type of uncertainty that is based on the

noise of the system. For genomics, this is the combined effect of the biological

noise and measurement noise. One strategy for estimating aleatoric uncertainty

is to consider replicate uncertainty within a given locus. When assessing the ef-

ficacy of sequence-function landscapes, its important to consider the combination

of epistemic uncertainty, aleatoric uncertainty and the bias of the models. If the

epistemic uncertainty is high, this may indicate an unstable region, perhaps patho-

logical region of sequence space. A high aleatoric uncertainty may suggest that

the biological variability or experimental noise across replicates was high and the

predictions may not necessarily be as accurate in these regimes as a result.

OOD measures. OOD is a way to measure the distance of new examples from

the training distribution. Descriptive statistics could be based on distribution mea-

sures of distance, such as KL divergence, JS distance and Wasserstein distance,

between descriptive statistics like k-mer frequencies. Recently a model-based ap-

proach to predict OOD score between two gropus of sequences has been developed.

It has shown promising performances, albeit the breadth of the demonstrated use

cases has not been extensive. Alternatively, generative approaches that learn the

data distribution offer another effective means for outlier detection. These meth-

ods are typically similar to homology search methods which consider log-odds
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scores. Further development of generative models for regulatory sequences and

their comprehensive evaluation (which is currently lacking) is needed to properly

test their abilities in OOD detection.

Robustness properties of local sequence space. An alternative approach to char-

acterizing pathological regions in sequence space, where model predictions would

not be reliable, could be to quantitatively analyze local properties of sequence

space. For example, if a specific region exhibits a more rugged landscape com-

pared to what the model encountered during training, it could signal a potentially

pathological area. This approach could draw from existing research on understand-

ing fitness landscapes, where techniques for assessing landscape ruggedness have

been explored.

4.2.3 Issues with model explanation methods

Similar to robustness in model predictions, the interpretations of DNNs

can be fragile. Interpretations may reside in unstable regions of sequence space

where small and biologically unsignificant changes can lead to large changes in the

attribution maps. This is problematic as because there are no established metrics

to gauge the reliability of interpretations from attribution maps. This issue also

extends to in silico experiments which may be operating in completely unreliable

regions of sequence space.

Benign overfitting can influence reliability of attribution maps. Benign over-

fitting is the phenomenon where the model overfits on the training set but still

generalizes well to the test set. This occurs when the model, rather than learning

a smooth function, transitions into an interpolation mode. This occurs not for all

training labels; but rather for those data points for which the initial learned patterns
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are not sufficient to drive model predictions to being 100% confident and accu-

rate. For these incorrectly predicted sequences, an extent of memorization occurs.

While the memorized labels does not generalize, the model still relies on learnt

features for the majority of the data and hence generalize well out of the training

set. Consequently, benign overfitting can introduce roughness in the sequence-

function landscape. This is challenging for attribution methods since they rely on

characterizing local properties of sequence-function landscapes and are therefore

susceptible to overfitting. The significance of this problem in practice is still un-

clear. Empirical comparisons of models have shown that while test performance

may be similar, their resulting attribution maps can vary significantly, often due to

benign overfitting.

Regularization strategies can help models learn smoother function. Regular-

ization is a powerful method to combat benign overfitting and to learn smoother

functions, ensuring that local explanation methods work as intended. Standard ap-

proaches to regularizing genomic DNNs include dropout and weight regularization

through L1 and L2 penalties. In practice, regularization does not necessarily im-

prove model performance, so their application has been varied. However, they can

have significant impact on attribution analysis outcomes.

More sophisticated regularization techniques such as mixup, manifold mixup,

adversarial training, gaussian smoothing, and attribution priors have also demon-

strated improved function smoothness properties. Mixup is a strategy that creates

new input samples by linearly interpolating between two input data points accord-

ing to a weighted average. The model is trained to predict the corresponding mix

of labels for these synthetic inputs. This ensures linear smoothness in the model’s

behaviour. Manifold-mixup also mixes two data points but at the hidden layer rep-

resentation level instead of raw data. It has demonstrated increased robustness over
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traditional mixup, offering advantages in adversarial robustness and improving the

quality of attribution analysis. Adversarial training expose the model to adversar-

ial examples during its training phase, aiming to make it learn robust input features

rather than relying on low-level noise statistics for class discrimination. Adversar-

ial training is typically employed by applying epsilon perturbations within an L-

infinity ball, using projected gradient descent. Adversarial trained models tend to

produce attribution maps that are more focused and human-interpretable, demon-

strating favorable properties in attribution analysis. Randomized smoothing, on

the other hand, adds Gaussian noise to the inputs to ensure local smoothness. Al-

ternatively, regularization of the learned function through attribution priors can be

achieved directly by regularizing the Jacobian or gradients, or indirectly via reg-

ularizing Fourier frequency components. The latter has demonstrated a powerful

approach to yield more reliable attribution maps. Despite the promising results of

these strategies, their practical application remains limited. The development of

effective regularization techniques that can be easily to implemented and compat-

ible across different models, without requiring extensive coding infrastructure, is

crucial.

Evaluating ability to generate reliable attribution maps Since attribution meth-

ods are typically sensitive to local function properties, it is not clear whether a given

attribution map is stable. Thus, averaging attribution maps across an ensemble of

models typically leads to higher efficacy. This suggests that individual models

are suffering from poor fits and could benefit from regularization. However, vi-

sualizing this effect can be challenging, highlighting the need for evaluating the

robustness of attribution methods. Basic sanity checks can greatly improve our

trust for patterns identified from attribution maps. For instance, small translational
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shifts should not affect attribution maps. By repeatedly randomly shifting a se-

quence, generating corresponding attribution map, then realigning them, one can

quantify the variability of the attribution maps induced by the shifts. This method

has proven effective for comparing the robustness of attribution maps across dif-

ferent models. Averaging these realigned attribution maps can also provide a more

robust attribution map as well – a genomic-specific version of SmoothGrad.

Evaluating the quality of attribution maps across different models can also

be approached by examining the consistency of these maps. One existing approach

calculates the KL divergence between the k-mer frequencies within high attributed

positions versus a null distribution (i.e., k-mer frequency of the whole sequence) for

a population of attribution maps. Another approach compares the KL-divergence

between an embedding space of a small window of attribution scores scaled ac-

cording to their average attribution score compared to a null distribution. In this

embedded space, clusters represent patterns that appear more consistently across

the population of attribution maps. While this method provide a measure of consis-

tency, it still fails to highlight the diversity of consistent patterns. Hence, further re-

search to identify quantitative measures of desirable properties of attribution maps

is needed. These metrics, such as the robustness scores and consistency scores, can

be utilized along with the predictive performance as part of a multivariate criteria

for model selection that yields a good balance between generalization performance

and model interpretability with attribution methods.

4.2.4 Model evaluation remains tricky

Model evaluation is typically demonstrated on held-out test performance.

This approach provides a basic evaluation, summarizing the model’s performance

through a single statistic and gauge its ability to generalize to held-out data within
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the same experiment. However, evaluating models remains the most difficult chal-

lenge for genomic deep learning, as we continue to explore the full extent of the

models’ capability and limitations. Comprehensive evaluations that provide deeper

insights are required to advance genomic deep learning.

Evaluating multi-task models. For multi-task models, its crucial to move be-

yond summary statistics and focus on cell type specificity instead. The model can

simply be predicting average functional activities across all cell types and produce

misleadingly high performances that’s difficult to beat. Thus, evaluations should

be focused on performance at differential activities across cell types or conditions.

Moreover, model interpretations for these differential regions should also be com-

pared to constitutive regions. While anecdotal demonstrations provide informative

qualitative insights, aiming for quantitative comparisons is essential for advancing

studies and providing more definitive outcomes. In silico experiments that directly

test the understanding of cell type specific regulatory activities can be an promising

avenue forward.

Evaluating genomic language models. While gLMs have recently emerged as

a promising innovation for self-supervised learning of genomic sequences, their

utility has been plagued with poor evaluations, using benchmark datasets that are

not insightful. Some of the most frequently used tasks include binary classifica-

tion for histone marks and promoter sequences. These binary classification tasks

often do not require learning meaningful features, and can sometimes be explained

by basic statistic summary of sequences. Hence, quantitative predictions tasks are

important for gLMs’ evaluation. Also, current benchmarks continue to propagate

existing tasks and only compare to existing gLMs as baseline for performances.

While a meaningful comparsion would be against state-of-the-art supervised mod-

els or downstream models that utilize their representations.
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Evaluating generative models. Generative modeling for genomic sequences is

becoming increasingly popular, but evaluating these models effectively continues

to be a challenge. Current approaches often consider homology search, or per-

cent identity as metrics for assessing diversity. These methods have limitations

since a single shift in a sequence can significantly reduce its percent identity with

the original sequence, despite it is essentially the same sequence. The standards

for evaluating generated sequences must go beyond low-level statistics like GC-

bias, in the least, to k-mer frequencies with different ks. Recent progress to help

advance the evaluation of generated regulatory sequences was proposed by Poly-

Graph, which also performs observational motif analysis. Alternatively, a trained

model can be used as a scoring function for regulatory activity, but this is subject

to the biases of the model. Its necessary to test the trained model’s generalizability

beyond the natural genome for it to be a reliable oracle. While these approaches

provide a good start, more rigorous evaluations are needed to characterize learned

regulatory mechanisms, diversity of regulatory mechanisms embedded in gener-

ated sequences, and diversity of the sequence context.

Evaluating supervised models using orthogonal datasets. A powerful method

to evaluate the generalization capabilities of genomic DNNs is to leverage or-

thogonal measurements of biological phenomena. This is especially true if the

orthogonal dataset incorporates interventional data that samples beyond the natural

genome. Ideally, we would have different levels of perturbation data to evaluate the

level of robustness to covariate shifts. Moreover, it would help advance the mod-

eling community to come up with standards to process and share these datasets so

that we could have a database of them and use them as other fields in ML have

standardized benchmark datasets. Several established models have utilized this ap-

proach to demonstrate their model performance. For example, Enformer(Avsec
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et al., 2021c) was trained with gene expression profiles and evaluated with variant

effect in regulatory elements; saluki(Agarwal and Kelley, 2022) trained to predict

mRNA half-life was evaluated on 3’ UTR regulatory function; APARENT2 trained

with 3’ cleavage and polyadenylation activites was evaluated on clinically relevant

variants etc.

While standardized benchmarks are always flawed, the absence of any bench-

mark is even more problematic to the field. We can start with existing benchmarks

and continue to evolve them as better, higher-quality data becomes available. A

major limitation of orthogonal experiments is that its readout might not directly

reflect the underlying biology due to technical biases and the intricate biological

processes, potentially limiting the generalizability of trained models. Thus, careful

considerations for the data generation process is needed. Recent work by Kun-

daje lab has decomposed Tn5 biases from ATAC-seq-based DNNs(Brennan et al.,

2023). Their extension of this method to other datasets have shown that such biases

are widespread issues. This suggest that it may be better to benchmark against data

whose biases has been decomposed, instead of raw data, to help evaluate general-

izability of biological knowledge.

4.3 Concerning directions

4.3.1 Unnecessary arms race

Building neural networks in genomics has become relatively simple due to

the democratization efforts of deep learning frameworks like TensorFlow, PyTorch,

and now Jax. While basic analysis of model fitting and held-out test performance

is common, it remains difficult to demonstrate that a given model structure or spe-

cific hyperparameter choices is what has enabled the model. In fact, often times
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the model innovations are not demonstrated as the key innovation that has led to

the better model. And a model that may perform slightly worse on held-out test

performance could often yield comparable biological discovery as well. This gap

is tricky as the arms race is based on model performance but the knowledge gained

from these models is not reciprocated with the better performance.

There have been efforts to demonstrate that DNNs can learn biologically

relevant features. A common method is by identifying known motifs from attri-

bution maps or convolution filters. However, this can also be achieved by tradi-

tional PWM methods, and doesn’t benefit from the better performance provided

by DNNs. Also, since the search is still based on known sequence patterns, it

remains difficult to probe new biological features and mechanisms. Therefore, de-

spite DNNs have shown better performance across many genomic tasks, they have

yet provide reciprocal gains in biological insights. Furthermore, better prediction

performance can also be the result of learning experimental measurement noise. If

the model has learnt to overly fit on experiment specific biases, its ability to gener-

alize based on biological understanding would be impaired. Also if we overly trust

the interpretation of these models, we might introduce experimental biases to our

understanding of biology.

4.3.2 Blurry line between motivation, claims, and speculation

There is a gap between how model choices, such as architecture or train-

ing hyperparameters, are motivated from the application of models in practice.

While motivation for using convolutional layers – first layer is used to learn mo-

tifs and deeper layers will learn motif interactions, is reasonable, deep learning

models can easily spread the motif representations across different layers in prac-

tice, making the identification of motifs difficult. These claims cannot be justified

without controlled experiments. Instead, the function approximation perspective
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is more helpful, with arguments that hyperparameter choices were arbitrarily cho-

sen, attempting to find a better solution. If claims of beneficial modeling choice

or biological discoveries are made based on observational and attribution analysis,

control experiments need to be conducted to ensure they are valid. For example,

claims that a model learnt regulatory code need to be substantiated by describing

the identified regulation mechanisms, and demonstrating their consistency with ex-

perimental behaviors.

Moreover, DNNs are function approximators. Hence, their approximation

may be good in some regions of sequence space and poor in others. It’s easy to con-

flate good overall average performance with experitise in all regions of sequence

space, even beyond the training distribution, which is typically the sequence space

that samples from the human reference genome. Good generalization on sequence

space about human reference genome, even if held out, does not gaurantee gener-

alization for larger covariate shifts – a distribution shift of the input sequence.

4.3.3 Lack of FAIR practices

FAIR (Findable, Accessible, Interoperable and Reusable) practices for re-

search software were proposed to facilitate reproducibility and use of packages

(Wilkinson et al., 2016). This includes the standards that the software (and its

components) is easily searchable, retrievable and free for the community use, and

can easily interface with other packages. Importantly, reusability means that the

software should be executable with minimal further debugging and complications.

Moreover, users should be able to build and modify on top of the released ver-

sion. All the components of FAIR principles are violated to some extent by many

genomic DNN model publications. However, the lack of reusability is likely the

most detrimental to the field. Many published models lack modular code to re-

produce the data preparation or model training leading to training and processing
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overhead as other groups attempt to reuse the released models. This is fueled by

the lack of standardized coding practices, poorly specified environments, lack of

containerization and general lack of interoperability.

In addition to following FAIR principles and deposition of all the necessary

components on platforms such as Zenodo, the field should also invest in creation

and maintenance of frameworks, such as Kipoi (Liu, n.d.) for depositing datasets

and models. In parallel to this, toolkits, such as Gopher (outlined in Chapter 2) and

EUGENe (Klie et al., 2023) can facilitate FAIR practices. Following the example

in protein sequence modeling by (Gruver et al., 2024), higher levels of abstraction

from the specific task of interest (e.g. ATAC-seq specific modeling in Gopher) can

improve such efforts and make such toolkits attractive for use by a larger audience.

4.3.4 Resource inequity: academia versus industry

Another major concern is that the rise of large-scale models relies on in-

dustry partners, who have the GPU resources, to provide the foundation models for

the academic community. The typical cost of the H100 GPU is now at $40,000.

Furthermore, industry priorities command the access to these scarce GPUs, which

leaves academics with limited resources. There are multiple possibilities for how

this can affect the future of genomic DL. A potential future is that there will be

synergy between models developed by industry and exploration of model inter-

pretability and applications by academia. This is likely and already takes place to

some extent, as models such as Enformer or large language models in genomics

(Mendoza-Revilla et al., 2023; Tang and Koo, 2024) become more mainstream

and replace single-task or smaller-scale models. Another possibility is increased

investment into unified and easy-to-use, GPU-powered servers for academia by

government bodies such as NIH (National Institute of Health), NSF (National Sci-

ence Foundation) or equivalents in other countries. Independent of the next phase,
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academic research in this field will likely need to change and adapt to survive this

resource inequity.
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SUPPLEMENTARY TABLE A.4: CAGI5 replicability. Each CAGI
saturated mutagenesis experiment was conducted for three repli-
cates. Pearson correlation across replication results were measured

to estimate experiment consistency.

NAME REPLICATE CORRELATION

F9 0.61
FP1BB 0.74
HBB 0.62
HBG1 0.78
HNF41 0.75
IRF4 0.98
IRF6 0.90
LDLD 0.99
MSMB 0.75
MYC 0.55
PKLR 0.79
SORT1 0.98
TERT(GBM) 0.90
TERT(HEK293T) 0.65
ZFAND3 0.72

SUPPLEMENTARY TABLE A.5: ATAC-seq experiments selected
from ENCODE database. The IDR-peak bed file and log-fold over
control BigWig files were taken based on the following ENCODE

experimental accessions.

CELL LINE EXPERIMENT ACCESSION

GM21381 ENCSR512YXO
GM23338 ENCSR485TLP
HEPG2 ENCSR291GJU
RWPE2 ENCSR080SNF
HG03575 ENCSR331JFZ
K562 ENCSR868FGK
DND-41 ENCSR660WSB
GM12878 ENCSR637XSC
A549 ENCSR032RGS
HCT116 ENCSR872WGW
IMR-90 ENCSR200OML
NCI-H929 ENCSR382LBS
PANC1 ENCSR591PIX
PC-3 ENCSR499ASS
MCF-7 ENCSR422SUG
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SUPPLEMENTARY FIGURE B.1: Hyperparamter search with
WandB. Parallel plot for different hyperparameters used in a grid
search for (a) BPNet-base and (b) Basenji. (a) BPNet-base opti-
mized hyperparameters were the number of kernels in the first con-
volutional layer (filtN_1), which is then fixed throughout all sub-
sequent convolutional layers, and the kernel size (kern_3) of the
task-specific output heads. (b) Basenji-based optimized hyperpa-
rameters specifying the number of filters in the first convolutional
layer (filtN_1) and the second convolutional layer (filtN_2), which
correspondingly sets the number of filters in the subsequent residual

blocks.
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SUPPLEMENTARY FIGURE B.2: Evaluation of BPNet-based quan-
titative models. (a) Loss function analysis. Scatter plot of the
whole-chromosome Pearson’s r versus the MSE for different loss
functions (shown in a different color) and different target resolu-
tions (shown in a different marker). The results for the scaled Pear-
son’s r loss function was removed due to poor training runs. (b)
Bin resolution analysis. Plot of the whole-chromosome Pearson’s r
for models trained on a given bin size (y-axis) with predictions that
were systematically down-sampled to a lower resolution for evalu-
ation (x-axis). (a,b) Pearson’s r represents the average across cell

lines.
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SUPPLEMENTARY FIGURE B.3: The effect of smoothing coverage
on performance. Basenji-based models were trained on target res-
olutions (y-axis) and evaluated using different levels of smoothing
with a box-car filter. For each higher resolution model, a box-car fil-
ter was applied to both predictions and experimental coverage val-
ues with various kernel sizes prior to calculating the average Pear-
son’s r (x-axis). Pearson’s r represents the average across cell lines.
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SUPPLEMENTARY FIGURE B.4: Performance comparison between
quantitative and binary models. Scatter plot of the classification-
based AUPR versus the regression-based Pearson’s r for various
binary models (blue) and quantitative models (orange) on peak-
centered test data (left) and whole-chromosome test data (right).

Metrics represent the average across cell lines.



Appendix B. Chapter 2 Supplemental Figures 146

GM21381 GM23338 HepG2

RWPE2 HG03575 K562

DND-41 GM12878 A549

HCT116 IMR-90 NCI-H929

Panc1 PC-3 MCF

SUPPLEMENTARY FIGURE B.5: UMAP embeddings of the test set
representations for Residualbind-32 with single-task outputs and
exponential activations. For each cell line, embedded sequences
were selected based on the coverage value above a threshold of 2.
Orange dots indicate sequences that overlap with a statistically sig-

nificant peak.
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SUPPLEMENTARY FIGURE B.6: UMAP embedding of the penul-
timate layer representations across all test sequences. (Left) Shows
the average experimental coverage and predicted coverage from se-
quences that map to specific locations in the embedding (shown in
a different color). (Right) Representative saliency maps (zoomed
in) for sequences within different embedding regions. The known
motifs from the JASPAR database are shown at the top and an un-
known ‘ATAAA’ motif is annotated with a box with black dashed

lines.
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SUPPLEMENTARY FIGURE B.7: GIA for optimal flanking nu-
cleotides of motifs in PC-3 cell line for various models. Ranked
plot of the global importance for each tested flank for AP-1 mo-
tif (left column), ATAAA motif (middle column) and GATA (right
column) for different models (shown in a different row). Dashed
line represents the global importance of the core motif with random
flanks. The hue in the first column represents the position-weight-
matrix score for an AP-1 motif from the JASPAR database (ID:
MA0491.1). The first 3 rows are quantitative models, the rest are
binary models (with (exp) in the name indicating that the first layer
ReLU activation has been replaced with an exponential function).
For binary models, the results are based on the logits before the out-
put sigmoid activation. The hue in the first column plots represents
the PWM score for an AP-1 motif from the JASPAR database (ID:
MA0491.1). The black dot in each plot (in the first column) indi-
cates “TGTGATTCATG”, which has a high PWM score (12.800)
but yields a global importance close to the core motif with random-

ized flanks.
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SUPPLEMENTARY FIGURE B.8: GIA for distance dependence be-
tween AP-1 and other motifs for PC-3 cell line for various models.
Global importance plot for sequences with an AP-1 motif fixed at
the center of the sequence and another motif that is systematically
placed in different non-overlapping locations. First column shows
results where the second motif is an identical AP-1 motif, the center
column shows results for ATAAA motif and right column for the
GATA motif. All the motifs were embedded with optimized flanks.
Red vertical dashed lines indicate the 1024bp position. Each row
corresponds to a different trained model, the first 3 are quantitative
models, the rest are binary models (with (exp) in the name indicat-
ing that the first layer ReLU activation has been replaced with an
exponential function). For binary models, the results are based on

the logits before the output sigmoid activation.
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SUPPLEMENTARY FIGURE B.9: GIA for cooperative interactions
between AP-1 and other motifs for PC-3 cell line for various mod-
els. Each column corresponds to a motif pair between two copies
of AP-1, ATAAA and AP-1 and AP-1 and GATA. Each row cor-
responds to a different trained model, the first 3 are quantitative
models, the rest are binary models ((exp)indicating that the first
layer uses exponential activation). For binary models, the results
are based on the logits before the output sigmoid activation. The
pairs were embedded at the optimal distance specified from the dis-
tance dependence GIA experiments. For each motif pair experi-
ment n=1000 independent samples were drawn from the test set se-

quences.
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SUPPLEMENTARY FIGURE B.10: Occlusion analysis for AP-1 mo-
tifs using Residualbind-32 with single-task outputs and exponential
activations. Randomly sampled sequences, n=10,000, from the test
set were used. Box-plots of the mean coverage value of predictions
for sequences from the sample that contained 1, 2, and 3 (or more)
AP-1 motifs and the mean coverage values when the AP-1 motifs
are replaced by randomized sequences (averaged across 20 random
trials) for each cell line. n=3,381, n=1,310, and n=323 sequences
contained 1, 2, and 3 instances of the AP-1 motif, respectively. Box
plots show the first and third quartiles, central line is the median,

and the whiskers show the range of data with outliers removed.
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SUPPLEMENTARY FIGURE C.1: Layer-wise performance of
Nucleotide-Transformer on the lentiMPRA dataset. Test perfor-
mance of various machine learning models trained using embed-
dings from different layers of Nucleotide-Transformer. Embeddings
include the CLS token, mean embedding (Mean), and the full em-
bedding (Embedding). Machine learning models include linear re-
gression (linear), ridge regression (ridge), multi-layer perceptron

(MLP) and a convolutional neural network (CNN).
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SUPPLEMENTARY FIGURE C.2: Control experiments with differ-
ent embeddings. Performance comparison between a CNN trained
using full embeddings of the penultimate layer from Nucleotide-
Transformer, an MLP trained using Nucleotide-Transformer’s CLS
token, and an MLP trained using dinucleotide frequencies of the se-
quence on (a) ChIP-seq data and (b) eCLIP-seq data. Performance
is measured by the average area-under the receiver-operating char-
acteristic curve (AUROC) and error bars represent the standard de-
viation of the mean across 5 different random initializations. Text
valeus represent the average AUROC across all ChIP-seq or CLIP-

seq datasets.
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SUPPLEMENTARY FIGURE C.3: Down-sampling performance on
RNA regulation tasks. Average performance of machine learning
models on (a) alternative splicing, task 4, and (b) RNA Pol II elon-
gation potential, task 5, down-sampled by various factors. Shaded
region represents standard deviation of the mean across 5 different

random initializations.
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SUPPLEMENTARY FIGURE C.4: Attribution analysis comparison
for sequences from CTCF ChIP-seq data. a, Representative ex-
ample of attribution maps for a CTCF binding sequence. Attri-
bution maps include (top to bottom): the gradient-times-input of
a one-hot-trained CNN; the delta entropy of predicted nucleotides
via single-nucleotide masking from a pre-trained GPN; the delta en-
tropy of predicted nucleotides via single-nucleotide masking from
a pre-trained Nucleotide-Transformer; the gradient of a CNN-
trained using GPN embeddings multiplied by the delta entropy of
predicted nucleotides via single-nucleotide masking from a pre-
trained GPN; and the gradient of a CNN-trained using Nucleotide-
Transformer embeddings multiplied by the delta entropy of pre-
dicted nucleotides via single-nucleotide masking from a pre-trained
Nucleotide-Transformer. b, Scatter plot comparison of the attri-
bution map correlations for different pre-trained gLMs (left) and
CNNs trained using gLM embeddings (right). Attribution map cor-
relations reflect the Pearson correlation coefficient between the attri-
bution map generated by the gLM-based attribution method with the
Saliency Map generated by a one-hot-trained CNN. Each dot repre-
sents a different sequence in the CTCF ChIP-seq dataset (N=500).



Appendix C. Chapter 3 Supplemental Figures 157

SUPPLEMENTARY FIGURE C.5: Representative examples of at-
tribution maps for sequences from the lentiMPRA dataset. In
each panel, attribution maps are shown for different sequences
in order of (top to bottom): the gradient-times-input of a one-
hot-trained CNN; the delta entropy of predicted nucleotides via
single-nucleotide masking from a pre-trained GPN; the delta en-
tropy of predicted nucleotides via single-nucleotide masking from
a pre-trained Nucleotide-Transformer; the gradient of a CNN-
trained using GPN embeddings multiplied by the delta entropy of
predicted nucleotides via single-nucleotide masking from a pre-
trained GPN; and the gradient of a CNN-trained using Nucleotide-
Transformer embeddings multiplied by the delta entropy of pre-
dicted nucleotides via single-nucleotide masking from a pre-trained

Nucleotide-Transformer.
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