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 Abstract 
 Insoluble  amyloid  aggregates  are  the  hallmarks  of  more  than  fifty  human  diseases,  including 
 the  most  common  neurodegenerative  disorders.  The  process  by  which  soluble  proteins 
 nucleate  to  form  amyloid  fibrils  is,  however,  quite  poorly  characterized.  Relatively  few 
 sequences  are  known  that  form  amyloids  with  high  propensity  and  this  data  shortage  likely 
 limits  our  capacity  to  understand,  predict,  engineer,  and  prevent  the  formation  of  amyloid 
 fibrils.  Here  we  quantify  the  nucleation  of  amyloids  at  an  unprecedented  scale  and  use  the 
 data  to  train  a  deep  learning  model  of  amyloid  nucleation.  In  total,  we  quantify  the  nucleation 
 rates  of  >100,000  20-amino-acid-long  peptides.  This  large  and  diverse  dataset  allows  us  to 
 train  CANYA,  a  convolution-attention  hybrid  neural  network.  CANYA  is  fast  and  outperforms 
 existing  methods  with  stable  performance  across  diverse  prediction  tasks.  Interpretability 
 analyses  reveal  CANYA’s  decision-making  process  and  learned  grammar,  providing 
 mechanistic  insights  into  amyloid  nucleation.  Our  results  illustrate  the  power  of  massive 
 experimental  analysis  of  random  sequence-spaces  and  provide  an  interpretable  and  robust 
 neural network model to predict amyloid nucleation. 
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 Introduction 

 Specific  insoluble  protein  aggregates  in  the  form  of  amyloid  fibrils  characterize  more  than 
 fifty  clinical  conditions  affecting  more  than  half  a  billion  people  (Fig.  1A)  1  .  These  include 
 common  neurodegenerative  disorders  and  the  most  frequent  forms  of  dementia. 
 Nonetheless,  amyloids  are  present  in  all  kingdoms  of  life  and  can  have  functional  roles, 
 including  in  humans  2  .  The  importance  of  amyloids  across  biological  functions  and  diseases 
 has  spurred  massive  research  efforts,  yet  the  determinants  and  mechanisms  of  their 
 formation remain quite poorly understood  3,4  . 

 Recent  advances  in  cryogenic  electron  microscopy  have  allowed  the  atomic  structures  of 
 many  mature  amyloid  fibrils  to  be  determined  5  .  Amyloids  share  a  cross-β  structure  wherein 
 hydrogen-bonded  β-strands  are  perpendicularly  stacked  along  the  fibril  axis,  creating 
 β-sheets  that  face  each  other  and  are  parallel  to  the  fibril  axis  3,6,7  .  The  same  amino  acid  (AA) 
 sequence  can  form  multiple  different  filament  structures,  and  in  at  least  some  cases,  these 
 amyloid  polymorphs  appear  to  be  associated  with  distinct  clinical  conditions.  Amongst 
 humans,  amyloid  fibrils  typically  have  hydrophobic  cores,  for  which  hydrophobicity  and 
 β-strand  propensity  form  the  basis  of  many  computational  methods  to  predict  amyloid 
 propensity  from  sequence  8–14  .  However,  other  amyloids,  for  example  yeast  prions,  have  very 
 different  sequence  composition,  hinting  at  a  richer  diversity  of  amyloid-forming 
 sequences  15,16  . 

 In  contrast  to  the  remarkable  advances  in  the  structural  characterization  of  mature  fibrils,  the 
 process  of  amyloid  formation—how  soluble  proteins  overcome  a  free  energy  barrier  to 
 nucleate  fibrils  (Fig.1B)—is  much  less  understood.  Time-resolved  structure  determination 
 has  been  used  to  study  the  in  vitro  assembly  of  amyloids,  revealing  a  striking  diversity  of 
 intermediate  filament  folds  appearing  and  disappearing  as  fibrillation  proceeds  17,18  .  However, 
 how  this  process  initiates  and  why  it  only  occurs  for  some  sequences  under  physiological 
 conditions  remains  unclear.  Mature  amyloid  fibrils  are  very  stable  and  are  likely  to  be  the 
 thermodynamically  favored  state  at  high  protein  concentration  for  many  proteins  19,20  .  There 
 is,  however,  a  very  high  energy  barrier  to  amyloid  nucleation  for  most  proteins  i.e.  the 
 process  is  under  kinetic  control  20  .  The  kinetic  control  of  amyloid  nucleation  is,  therefore,  the 
 key  problem  to  understand:  why  do  only  some  sequences  nucleate  amyloid  formation  on 
 timescales relevant to biology? 

 We  believe  that  our  ability  to  understand  and  predict  amyloid  formation  is  currently 
 data-limited.  Only  a  small  number  of  sequences  with  high  amyloid  propensity  are  known, 
 restricting  the  development  and  benchmarking  of  predictive  computational  methods  21  .  In 
 contrast  to  the  very  small  number  of  characterized  amyloids,  the  number  of  known  and 
 possible  protein  sequences  is  vast.  For  example,  there  are  20  20  (>10  26  )  different  sequences 
 of  20  amino  acids.  Such  a  large  sequence  space  can  never  be  substantially  explored  by 
 experimental  or  computational  techniques,  necessitating  the  development  of  predictive 
 models. 

 To  address  this  data  gap  we  have  developed  a  massively  parallel  selection  assay  that  allows 
 the  nucleation  kinetics  of  thousands  of  different  sequences  to  be  quantified  in  a  single 
 experiment  22,23  .  We  have  previously  used  this  assay  to  quantify  the  change  in  nucleation 
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 kinetics  for  all  possible  substitutions,  insertions  and  deletions  in  the  amyloid  beta  peptide 
 that  aggregates  as  a  hallmark  of  Alzheimer’s  disease  and  is  mutated  in  familial  forms  of  the 
 disease.  The  resulting  data  agree  very  well  with  in  vitro  measured  nucleation  kinetics  and 
 also  identify  the  known  familial  Alzheimer’s  disease-causing  variants  22,23  .  However,  these 
 datasets  are  limited  to  small  changes  to  a  single  sequence,  hindering  utility  for 
 general-purpose model-building. 

 Here  we  apply  the  same  assay  at  a  much  larger  scale,  using  it  to  quantify  the  nucleation  of 
 >100,000  peptides  with  completely  random  sequences.  We  use  this  massive  dataset  to  train 
 CANYA,  a  convolution-attention  hybrid  neural  network  that  predicts  the  propensity  of  any 
 primary  sequence  to  form  amyloids.  This  fast  model  outperforms  existing  predictors  of 
 protein  aggregation  on  both  internal  and  out-of-sample  datasets,  demonstrating  the  power  of 
 massive  sequence-space  exploration.  We  then  use  post-hoc  explainable  AI  (xAI)  analyses  to 
 provide  mechanistic  insights  into  CANYA’s  decision-making  process  and  learned  grammar. 
 CANYA  provides  a  robust  and  interpretable  neural  network  model  for  understanding  and 
 engineering  amyloid-forming  proteins.  More  generally,  our  results  provide  a  very  large  and 
 well-calibrated  dataset  to  train  and  evaluate  models  beyond  CANYA  and  they  demonstrate 
 the utility of massive experimental analysis of random protein sequence-spaces. 

 Results 

 Massively parallel quantification of amyloid nucleation kinetics 
 To  better  understand  the  sequence  determinants  of  amyloid  nucleation  kinetics,  we  used  an 
 in-cell  selection  assay  to  quantify  the  rate  of  nucleation  of  more  than  a  hundred  thousand 
 peptides  with  fully  random  sequences.  We  generated  four  libraries  (NNK1-4)  of  random  20 
 AA  peptides  using  NNK  degenerate  codons  (where  N  =  A/C/G/T  and  K  =  G/T)  and 
 expressing  them  as  fusions  to  the  nucleation  domain  of  Sup35,  a  yeast  prion-forming  protein 
 that  allows  fitness-based  selection  for  amyloid  nucleation  (Fig.  1C)  22–24  .  Briefly,  fusion 
 sequences  that  nucleate  amyloids  sequester  Sup35  resulting  in  translational  readthrough  of 
 a  premature  stop  codon  in  the  ade1  gene  so  that  cells  containing  those  sequences  become 
 able  to  survive  in  medium  lacking  adenine.  Enrichment  or  depletion  of  each  sequence  after 
 selection  can  be  quantified  by  deep  sequencing,  with  enrichment  scores  linearly  related  to 
 the log of  in vitro  amyloid nucleation rates  22,23  . 

 Each  library  was  selected  independently  and  sequencing  was  used  to  quantify  the  relative 
 enrichment  (‘nucleation  score’)  for  each  genotype  in  the  library.  Sequences  in  the  first  three 
 experiments  made  up  our  training  and  testing  sets  (NNK1-3,  ~  111,000;  Fig.  1D;  Extended 
 Data  Files  1  and  2),  corresponding  to  about  a  1/10  17  fraction  of  the  possible  sequence  space 
 (20  20  ),  while  sequences  from  the  fourth  experiment  (NNK4,  ~7,000)  were  used  as  a  held-out 
 validation  data  set.  After  data  processing  and  quality  control,  the  vast  majority  of  sequences 
 had  a  nucleation  score  of  0.  Consequently,  we  classified  sequences  with  a  nucleation  score 
 significantly  greater  than  0  (one-sided  Z-test,  FDR  adjusted  p-value  <=0.05)  as  nucleators 
 (n=21,936),  and  all  other  sequences  as  non-nucleators  (n=88,470)  (Fig.  1E).  Importantly, 
 these  nucleation  scores  are  reproducible,  as  measured  by  an  additional  selection 
 experiment  on  a  designed  library  (replication  library)  re-quantifying  the  nucleation  of  400 
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 sequences  sampled  across  all  four  libraries  (Pearson  correlation  range  0.506-0.797,  Fig.  1F, 
 Supp. Fig. 1). 

 Figure  1.  Quantifying  the  nucleation  of  >100,000  random  peptides.  (A)  Examples  of  amyloids  in 
 human  diseases.  (B)  The  amyloid  state  is  thermodynamically  favorable,  but  requires  overcoming  a 
 kinetic  barrier.  (C)  Experimental  design.  (D)  While  we  explore  over  110,000  sequences,  our  dataset  is 
 a  tiny  sample  of  the  possible  sequence  space.  (E)  The  assayed  nucleation  scores  of  sequences 
 labeled  “Nucleators”  and  “Non-nucleators”  in  our  experiment.  (F)  An  example  of  a  follow-up  replication 
 experiment using a synthesized library (NNK3; see Supp. Fig. 1 for others; Extended Data File 3). 

 Nucleating  sequences  span  a  large  sequence-space  and  are  non-trivial 
 to predict 
 After  classifying  sequences  as  nucleators  and  non-nucleators,  we  sought  to  characterize 
 each  class  through  amino  acid  composition  (Fig.  2A),  physicochemical  properties  (Fig.  2B), 
 and current amyloid prediction tools (Fig. 2C). 

 First,  we  examined  the  differences  in  amino  acid  frequency  between  nucleating  and 
 non-nucleating  sequences.  Differences  in  frequencies  were  generally  modest,  however  we 
 observed  statistically  significant  differences  owing  to  the  large  sample  size  of  our  data. 
 When  looking  at  composition  independent  of  position,  nucleators  had  higher  frequencies  of 
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 cysteine  (difference  in  frequency  0.012,  p<2e-16),  asparagine  (0.009,  p<2e-16),  and 
 isoleucine  (0.005,  p<2e-16),  and  lower  frequencies  of  arginine  (-0.010,  p<2e-16),  leucine 
 (-0.008,  p<2e-16),  and  lysine  (-0.006,  p<2e-16;  Fig.  2A,  See  Supp.  Table  1  for  full 
 differences).  Moreover,  both  nucleators  and  non-nucleators  covered  the  beta-sheet 
 propensity  and  hydrophobicity  spaces  of  the  human  proteome  and  known  amyloid 
 sequences,  and  nucleators  had  slightly  higher  values  of  both  than  non-nucleators  on 
 average  (difference  in  means  of  hydrophobicity=0.130,  beta-sheet  propensity=0.012,  both 
 two-way  t-test  p-values  <  2e-16;  Fig.  2B).  Considering  position-specific  composition, 
 differences  were  again  modest,  ranging  from  a  difference  in  frequency  from  -0.06  to  0.03 
 (Fig.  2D).  Subsequently,  we  grouped  amino  acids  by  their  physicochemical  properties  to 
 check  for  more  broad,  position-specific  differences  between  the  two  sequence  classes  (Fig. 
 2E).  Toward  the  N-terminus  of  the  random  sequence  (i.e.,  closer  to  Sup35),  nucleators  were 
 significantly  enriched  (chi-squared  test)  for  aliphatic  residues  (min  p-value=1.54e-13, 
 position  2  difference=0.033),  and  significantly  depleted  for  positive  (min  p-value=1.57e-25, 
 position  9  difference=-0.032)  and  negative  residues  (min.  p-value=3.14e-11,  position  2 
 difference=-0.016).  The  differences  in  charge  waned  toward  the  C-terminus  (min.  p-value 
 above  position  15=1.03e-3,  position  20  charged  difference=0.011),  however,  and  frequency 
 differences  in  aliphatic  residues  changed  such  that  nucleators  were  significantly  depleted  for 
 aliphatic  residues  relative  to  non-nucleators  (min.  p-value=5.77e-39,  position  19 
 difference=-0.058).  Several  groupings  showed  other  position-sensitive  differences,  such  as 
 an  enrichment  of  aromatic  residues  toward  the  C-terminus  in  nucleators  (min. 
 p-value=5.09e-6,  position  19  difference=0.015),  an  enrichment  of  varying  strength  for  polar 
 residues  in  nucleators  (p-value=  5.57e-8  position  1  difference=0.023,  p-value=9.41e-7 
 position  17  difference=0.020),  and  the  enrichment  of  cysteines  away  from  the  ends  of  the 
 random construct (min. p-value=1.11e-28, position 10 difference=0.023). 

 Despite  statistical  significance,  we  highlight  that  differences  in  sequence  space  are  subtle.  In 
 other  words,  the  collection  of  slight  variation  in  amino  acid  frequencies  offers  minimal  insight 
 or  definitive  conclusions  around  the  overall  properties  or  characteristics  determining 
 nucleation  in  our  experiment.  To  attempt  to  elucidate  characteristics  that  separate  the 
 sequence  classes  and  consequently  learn  important  axes  of  variability,  we  turned  to 
 dimensionality  reduction  techniques.  In  addition  to  manually  examining  differences  within  the 
 first  several  dimensions,  we  also  used  the  scores  in  lower-dimensional  space  as  features  in 
 a  logistic  multiple  regression  task  to  distinguish  nucleators  from  non-nucleators.  Using 
 principal  components  analysis  (PCA),  we  observed  no  clear  separation  between  nucleators 
 and  non-nucleators  whether  we  used  amino  acid  composition  alone  (cumulative  variance 
 explained  from  the  top  10  PCs  =  54.7%,  Area  Under  ROC  curve  (AUC)  using  all  10  PC 
 scores=0.601,  95%  Confidence  Interval  (CI)=[0.596,  0.607],  Supp.  Fig.  2),  or  maintained 
 positionality  of  the  amino  acids  when  fitting  the  model  (cumulative  variance  explained  from 
 the  top  10  PCs  =  3.1%,  AUC=0.564,  95%  CI=[0.559,  0.570],  Supp.  Fig.  2).  This  modest 
 separation  between  classes  of  sequences  was  consistent  even  when  using  non-linear 
 embedding  techniques  (first  10  UMAPs  AUC=0.584,  95%  CI  [0.578,  0.589]),  or  adding 
 amino  acid  propensities  to  the  dimensionality  reduction  tools  (first  10  PCs  AUC=0.614,  95% 
 CI [0.608, 0.619]; Supp. Fig. 2). 
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 Figure 2. Differences in amino acid composition across nucleating and non-nucleating 
 sequences are subtle.  (A) The percent composition  of residues grouped by their physicochemical 
 properties in nucleators and non-nucleators. (B) The hydrophobicity and beta-sheet propensity of 
 assayed sequences relative to known human amyloids (Supp. Table 2) and the human proteome. (C) 
 The predictive power of previous amyloid predictors on the random sequences. (D, E) The 
 position-specific differences in amino acid frequencies across nucleating and non-nucleating 
 sequences. Asterisks indicate marginal p-value (chi-square test) lower than 0.05 “*”; lower than 0.01 
 “**”; lower than 0.001 “***”. 

 As  dimensionality  reduction  methods  were  unable  to  distinguish  the  classes  of  sequences, 
 we  next  explored  whether  separation  is  possible  using  existing  amyloid  predictors.  Beyond 
 hydrophobicity  indices,  several  of  these  methods  include  structural  information  25  or  model 
 biophysical  mechanisms  11  ,  potentially  enabling  them  to  capture  more  complex  features  of 
 nucleation.  We  applied  several  state-of-the-art  amyloid  prediction  algorithms  to  our  data  and 
 found  that  the  methods  either  failed  to  generalize  to  our  data  or  had  only  modest  predictive 
 power  (Fig.  2C,  CamSol,  highest  AUC=0.598,  95%  CI  [0.593,  0.603]).  We  posit  that,  since 
 many  of  these  tools  have  been  trained  on  very  small  sets  of  known  amyloids  or  moderate 
 numbers  of  short  hexamer  sequences,  their  applicability  to  our  experimental  data  may  be 
 limited.  To  understand  where  the  methods  underperformed,  we  examined  the  scores  from 
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 the  highest  performing  methods  (CamSol  12  and  TANGO  11  )  and  found  that  non-nucleating 
 sequences  with  a  high-predicted  nucleation  score  had  higher  hydrophobicity  (two-sided  t-test 
 p-value<2e-16)  than  all  other  non-nucleating  sequences  (Supp.  Table  3).  We  also  found  that 
 low-predicted  nucleators  had  higher  presence  of  positive  (two-sided  t-test  p-value<2e-16) 
 and negative (p-value<2e-16) residues than all other nucleators (Supp. Table 4). 

 Figure 3. Convolution-Attention Network of amYloid Aggregation (CANYA).  (A) CANYA is a 
 3-layer neural network with 65,491 parameters. The model contains 100 filters, a single attention head 
 with key-length 6, a dense layer with 64 nodes, and finally a sigmoid output layer. (B-D) Evaluation 
 metrics across the top 50 performing (of 100) model fits of CANYA. (B) The area under receiver 
 operating characteristic curve (AUC) for held-out testing sequences. (C) The area under precision 
 recall curve (AUPROC) for held-out testing sequences. (D) The interpretability score (KL divergence; 
 Methods) calculated on all held-out test sequences plotted against the mean AUPROC across 
 experiments. See Supp. Fig. 3 for results on all 100 model fits. 
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 A hybrid neural-network predicts nucleation 
 Given  previous  approaches  failed  to  accurately  predict  nucleation  status  within  our  dataset, 
 we  built  our  own  model  to  capture  the  sequence-nucleation  score  landscape.  Concretely,  we 
 developed  a  hybrid  neural  network  which  we  term  CANYA,  or  Convolution  Attention  Network 
 for  amYloid  Aggregation.  Though  a  neural  network  may  seem  inherently  less  interpretable 
 than  simpler  models,  as  we  explain  below,  the  architecture  of  CANYA  is  not  only  simple,  but 
 also  biologically  motivated.  CANYA  builds  off  the  observation  that  known  amyloids  are 
 composed  of  interacting  short  sequences,  such  as  stacked  beta  sheets,  and  treats  this 
 information  as  an  inductive  bias  for  the  model—first  the  sequences  are  passed  through  a 
 convolutional  layer  which  discovers  ‘motifs’,  then  these  motifs  are  passed  through  an 
 attention  layer  to  learn  positional  effects  of  motifs  and  to  encourage  these  motifs  to  interact 
 with  each  other  (Fig.3  A).  Moreover,  we  set  the  filter  lengths  of  the  convolutional  layer  based 
 on  the  distribution  of  secondary  structure  lengths  in  80  known  amyloid  fibril  structures 
 (WALTZ-DB  26  ,  Supp.  Fig.  4).  Though—to  our  knowledge—this  class  of  models  is  new  to 
 proteins,  convolution-attention  hybrid  models  have  been  used  in  genomics  and  found  to 
 serve as a sound inductive bias for discovering motifs and their interactions  27,28  . 

 We  trained  CANYA  100  times  on  over  100,000  synthetic  sequences  and  their  respective 
 nucleation  status  to  learn  the  sequence-nucleation  landscape.  Unlike  massive, 
 computationally  intensive  neural  networks,  CANYA  comprises  only  three  layers  (spanning 
 65,491  parameters)  and  requires  less  than  an  hour  to  train  on  a  basic,  modern  CPU.  Despite 
 this  simplicity,  and  having  only  observed  a  small  fraction  of  the  possible  sequence  space, 
 CANYA  substantially  improved  the  prediction  of  nucleation  status  of  held-out  test  sequences 
 (average  AUC=0.710,  0.650,  0.769  across  NNK  experiments  1-3  respectively,  Fig.  3B-C) 
 over previous methods (max AUC CamSol, NNK1=0.617, NNK2=0.537, NNK3=0.673). 

 To  understand  the  differences  in  performance  across  methods,  we  examined  the  sequence 
 scores  between  the  next  best  performing  method  (CamSol)  and  CANYA.  We  found  that  the 
 largest  discrepancies  for  non-nucleating  sequences  occurred  in  hydrophobic  sequences  with 
 tryptophans,  and  in  cysteine-  or  asparagine-rich  sequences  with  few  aliphatic  residues  in  the 
 case  of  nucleating  sequences  (Supp.  Tables  3  and  4).  Our  results  not  only  highlight  the  utility 
 of  exploring  a  vast  sequence  space,  but  also  suggest  that  CANYA  is  able  to  contextualize 
 physicochemical  properties  within  sequences  (e.g.,  among  hydrophobic  sequences,  CANYA 
 adjusts its score in the presence of bulky, or disruptive residues). 

 Crucially,  we  developed  CANYA  with  the  goal  of  interpreting  the  grammar  of  nucleation 
 rather  than  maximizing  predictive  power.  We  accordingly  scored  each  trained  instance  of 
 CANYA  using  a  recently  developed  interpretability  metric  to  select  a  model  amenable  to 
 uncovering  this  learned  grammar  29  .  Briefly,  this  metric  examines  the  enrichment  of  motifs 
 utilized  when  training  the  model  and  compares  them  to  the  set  of  all  equal-length  (k=3) 
 kmers  in  the  training  sequences  (Methods).  Strong  enrichment  (i.e.,  divergence  from  the 
 background  training  sequences)  indicates  a  model  may  yield  clearer  resolution  in 
 downstream  interpretability  analyses.  Though  the  area  under  the  precision-recall  curve 
 (AUPROC)  of  test  sequences  was  more  consistent  than  AUC  across  experiments  (average 
 AUPROC  NNK1=0.434,  NNK2=0.452,  NNK3=0.415  ;  Fig.  3C),  we  did  not  find  a  correlation 
 between  predictive  performance  and  this  interpretability  metric  (correlation  of  average 
 AUPROC  and  interpretability  score  r=-0.059,  p-value=0.6847,  Fig.  3D).  We  therefore  chose 
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 the  trained  model  with  the  highest  interpretability  score,  conditional  on  the  fact  that  it  scored 
 better than the median-performant model (of 100 training runs; Methods). 

 CANYA robustly predicts nucleation across external datasets 
 After  establishing  that  CANYA  can  predict  the  experimental  nucleation  status  from  primary 
 sequence,  we  sought  to  understand  whether  the  nucleation  function  learned  by  CANYA  is 
 applicable  to  sequences  and  contexts  outside  the  experimental  dataset  from  which  it  was 
 learned.  To  examine  this  capability,  we  evaluated  the  performance  of  CANYA  on  an 
 additional  set  of  random,  synthetic  sequences,  as  well  as  across  an  independent  collection 
 of  several  public  datasets:  WaltzDB  26  ,  CPAD  30  ,  and  AmyPred  31  .  We  also  compared  CANYA 
 to  previous  amyloid-prediction  approaches  on  these  datasets.  Testing  each  method  across  a 
 wide  range  of  datasets  more  concretely  enables  us  to  evaluate  whether  there  exist  specific 
 conditions or sequences for which one specific predictor is more suitable than another. 

 First,  we  evaluated  each  method  on  an  additional  set  of  ~7,000  unseen  random  sequences 
 quantified  in  our  nucleation  assay  (Fig.  4A).  Here,  we  expect  CANYA  to  outperform  previous 
 methods  as  it  was  trained  using  data  from  the  same  selection  assay.  However,  this  serves 
 as  a  measure  of  whether  CANYA  has  genuinely  learned  functional  information  from  its 
 training,  as  the  sequence  spaces  spanned  by  the  training  and  test  sequences  are  effectively 
 independent  (i.e.,  ~10  5  and  ~10  3  samples  from  a  >10  22  sequence  landscape).  CANYA 
 remained  highly  accurate  on  the  7,000  unseen  sequences,  significantly  outperforming  all 
 tested  previous  methods  11–14,31,32  (AUC  CANYA=0.809,  95%  CI  [0.798,  0.821]  and  the 
 next-best  performing  method  AUC=0.707  95%  CI  [0.694,  0.719];  Fig.  4B,  PROC  in  Supp. 
 Fig.  5).  Of  the  previous  methods  tested,  AggreScan,  TANGO,  and  CamSol  significantly 
 outperformed  hydrophobicity  scales  (min  AUC=0.679  95%  CI  [0.665,  0.693],  hydrophobicity 
 AUC=0.593 95% CI [0.579, 0.607]). 

 We  next  evaluated  the  methods  on  1,400  hexapeptides  from  WALTZ-DB,  one  of  the  largest 
 databases  of  amyloidogenic  and  non-amyloidogenic  sequences  26  .  However  no  method 
 significantly  outperformed  hydrophobicity  for  classifying  aggregating  hexamers  in  WALTZ-DB 
 (AUC=0.813  05%  CI  [0.791,  0.836])  (Fig.  4C).  The  hydrophobicity  distributions  of  amyloid 
 and  non-amyloid  hexamers  in  WALTZ-DB  are  indeed  very  distinct  (Supp.  Table  5), 
 suggesting  biases  in  this  dataset  or  that  hydrophobicity  dominates  the  aggregation  potential 
 of  such  very  short  peptides.  This  cautions  against  the  use  of  such  short  sequences  for 
 model training. 

 9 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.13.603366doi: bioRxiv preprint 

https://paperpile.com/c/MwkGp8/Mhyw7
https://paperpile.com/c/MwkGp8/HKI8S
https://paperpile.com/c/MwkGp8/CiKfu
https://paperpile.com/c/MwkGp8/BQMiL+CiKfu+gWOh8+BNBM6+OJr7X+oVcBH
https://paperpile.com/c/MwkGp8/Mhyw7
https://doi.org/10.1101/2024.07.13.603366
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figure 4 Stable performance of CANYA across diverse prediction tasks.  (A) The fitness of a held 
 out nucleation assay experiment with 7040 random length-20 AA sequences (NNK4 dataset). (B) The 
 predictive performance of CANYA relative to previous methods on the held out, test set of 7040 NNK 
 sequences. (C) The AUC of each method on several external datasets. Low-opacity bars represent 
 cases in which the method used data from the testing dataset for training and thus are not valid 
 out-of-sample evaluations. See text for additional descriptions of datasets (Methods, Supp. Table 5) 
 as well as performance reported as area-under precision-recall curve (AUPROC; Supp. Fig. 5). 

 We  next  turned  to  a  dataset  comprising  known  amyloid-forming  sequences  from  the  Curated 
 Protein  Aggregation  Database  (CPAD).  CPAD  contains  a  set  of  over  2,000  amyloid-forming 
 and  non-amyloid-forming  sequences  curated  from  literature  sources  (such  as  GAP, 
 WALTZ-DB,  and  AmyLoad)  26,33–35  .  To  eliminate  overlap  with  WALTZ-DB  and  to  evaluate  the 
 methods  on  longer  sequences,  we  excluded  sequences  less  than  10  residues  long.  Here, 
 our  evaluation  consisted  of  479  sequences  with  median  length  16  (Q1  length=10  and  Q3 
 length=22)  comprising  304  amyloid-forming  sequences  and  175  non-amyloid-forming 
 sequences  (Supp  Table  5).  We  also  note  that  several  of  the  previous  methods  (including 
 TANGO,  CamSol,  and  Aggrescan)  were  directly  fitted  on  sequences  within  CPAD,  violating 
 the  ability  to  evaluate  their  out-of-sample  prediction  on  this  dataset.  This  complication  is 
 exacerbated  by  several  methods  (e.g.,  TANGO,  CamSol)  also  being  ensemble  methods  (or 
 extensions)  that  leverage  several  algorithms  for  prediction—it  is  not  trivial  to  account  for,  or 
 remove,  these  previously  seen  sequences,  as  any  sequence  that  was  used  for  training  the 
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 main  algorithm  or  their  antecedent  ensemble  methods  is  not  out-of-sample.  CANYA 
 performed  similarly  well  to  previous  methods  on  CPAD  (AUC=0.804,  95%  CI  [0.762,  0.845], 
 AUPROC=0.855,  95%  CI  [0.817,  0.890]),  including  those  fine-tuned  on  CPAD  sequences 
 (Fig. 4C). 

 We  also  evaluated  performance  on  the  Amy  dataset  36  ,  which  is  composed  of  547 
 non-redundant,  long  (>50  residue)  sequences  of  amyloid-  and  non-amyloid-forming  proteins 
 spanning  both  prokaryotes  and  eukaryotes.  Specifically,  Amy  contains  a  set  of  382 
 non-amyloid  sequences  (median  length=708  [Q1=344.5,  Q3=1375.5])  gathered  from  UniProt 
 and  165  amyloid  sequences  (median  length=162  [Q1=77,  Q3=443])  from  the  AmyPro 
 database  37  .  The  AmyPro  database  contains  literature-mined  amyloid  precursor  proteins  with 
 validated  amyloidogenic  sequence  regions—portions  of  an  amyloid-forming  protein  that 
 when  isolated  from  the  remaining  sequence  have  been  confirmed  to  form  amyloids  in 
 external  experiments.  The  median  length  of  sequences  in  Amy  (539)  is  substantially  longer 
 than  those  of  the  previous  datasets  (next  longest  median  length=19  in  NNK4,  or  16  in 
 CPAD),  so  this  prediction  task  evaluates  whether  methods  can  account  for  context-specific 
 and  distal  effects  when  generating  their  propensity  scores.  Strikingly,  CANYA  was  the  only 
 predictor  with  both  statistically  significant  AUC  and  PROC  in  this  task  (AUC=0.681  95%  CI 
 [0.631,  0.731],  Fig.  4C,  AUPROC  0.495,  95%  CI  [0.428,  0.568]).  The  poor  performance  of 
 hydrophobicity  and  previous  methods  suggests  the  importance  of  features  beyond  sequence 
 composition in determining amyloid propensity in longer protein sequences. 

 Finally,  we  evaluated  whether  each  method  could  identify  amyloidogenic  regions  of  each 
 protein  in  the  AmyPro  dataset.  To  do  so,  we  removed  from  each  nucleating  sequence  its 
 amyloidogenic  region  and  labeled  this  amyloidogenic  sequence  as  a  nucleator,  then  labeled 
 any  remaining,  non-overlapping,  non-core  parts  of  the  nucleating  sequence  as  a 
 non-nucleator  (breaking  these  remaining  non-core  sequence  into  non-overlapping 
 sequences  of  maximum  length  100;  see  Methods).  This  task  evaluates  whether  methods 
 can  distinguish  an  amyloidogenic  region  from  a  non-amyloidogenic  region  in  the  absence  of 
 any  contextual  region,  for  which  we  term  it  “Context-Free  AmyPro.”  CANYA  significantly 
 out-performed  all  previous  approaches  (AUC=0.796,  95%  CI  [0.756,  0.837],  Fig.  4C),  and 
 was  the  only  method  to  significantly  out-perform  hydrophobicity  (AUC=0.663,  95%  CI  [0.609, 
 0.717]).  As  with  the  Amy  dataset,  the  amyloid-labeled  sequences  were  much  shorter 
 (median  length=17  [Q1=10,  Q3=35])  than  non-amyloids  (median  length=100  [Q1=81, 
 Q3=100]),  however  amyloid  sequences  were  generally  more  hydrophobic  (median=-0.09 
 [Q1=-0.63,  Q3=0.72])  than  non-amyloid  sequences  (median=-0.47,  [Q1=-0.79,  Q3=-0.26]; 
 Supp.  Table  5).  The  improvement  of  CANYA  over  hydrophobicity  and  CamSol  suggests 
 CANYA  has  learned  more  complicated  features  of  nucleation  than  hydrophobicity  alone,  and 
 that these features are informative independent of protein context. 

 In  summary,  CANYA’s  performance  is  state  of  the  art  and  consistent  across  diverse 
 prediction tasks and protein sizes. 

 CANYA learns physicochemical nucleation motifs 
 After  establishing  the  predictive  power  on  CANYA,  we  performed  a  series  of  interpretability 
 analyses  to  understand  how  CANYA  assigns  its  nucleation  score  and  to  elucidate 
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 difficult-to-see  patterns  that  differentiate  the  nucleators  and  non-nucleators  in  the  training 
 data. 

 First,  we  establish  a  set  of  physicochemical  “motifs”  learned  by  the  model.  To  visualize 
 motifs  learned  by  the  model,  we  constructed  position-weight-matrices  (PWMs)  using  kmers 
 that  activated  a  given  filter  at  least  75%  of  the  maximum-activating  kmer  (Methods).  We 
 selected  a  filter  length  of  3,  as  this  was  the  mode  length  of  secondary  structures  in 
 structurally  resolved  amyloids  (Methods;  Supp.  Fig.  4).  Motifs  generally  showed  low 
 information  content  per  position  but  showed  clear  physicochemical  preferences  (Fig.  5).  For 
 example,  many  motifs  capture  blocks  of  hydrophobicity  (clusters  1  and  2)  or  charge  (clusters 
 6  and  8).  Some  motifs  showed  heterogeneity,  or  position-preferential  effects,  such  as  polar 
 or  charged  residues  being  surrounded  by  hydrophobic  (clusters  4  and  5)  or  aromatic 
 residues (clusters 7, 9 and 10; Fig. 5). 

 We  next  turned  to  a  post-hoc  interpretability  method  named  Global  Importance  Analysis 
 (GIA)  to  learn  the  effect  of  each  motif  38  .  Briefly,  GIA  learns  effect  sizes  by  embedding  a  motif 
 of  interest  in  a  set  of  background  sequences,  then  comparing  the  difference  in  the  models’ 
 predicted  nucleation  propensity  between  these  background  sequences  with  and  without  the 
 embedded  motif  (Fig.  6A).  The  effects  learned  by  CANYA  recapitulated  previously  known 
 amyloid  biology—hydrophobic  motifs  strongly  increased  a  given  sequence’s  propensity  to 
 nucleate,  and  charged,  proline-containing  motifs  lowered  sequences’  propensity  to  nucleate 
 (Fig.  5)  39–41  .  Motifs  containing  residues  enriched  in  yeast  prions  (Q/N)  also  increased  amyloid 
 propensity  (weaker  motifs  of  clusters  1,  2,  and  3,  stronger  motifs  of  cluster  4),  as  did  motifs 
 enriched  in  cysteine  (cluster  3)  or  aromatic  residues  (cluster  2;  Fig.  5).  Interestingly, 
 tryptophan-containing  motifs  showed  effect  sizes  in  both  directions,  and  these  differences 
 corresponded  to  cases  in  which  the  tryptophan  was  surrounded  by  charged  residues 
 (negative  effect;  clusters  7,  9,  10;  Fig.  5),  or  hydrophobic,  polar,  or  aromatic  non-tryptophan 
 residues  (positive  effect;  clusters  1,  2,  3;  Fig.  5).  Notably,  CANYA  also  found  a  set  of  motifs 
 enriched  in  hydrophobicity  with  a  positively  charged  residue  (cluster  5,  Fig.  5),  suggesting  it 
 can capture previously uncharted areas of the amyloid sequence space. 

 We  next  sought  to  cluster  the  motifs  to  generate  a  more  concise  representation  of  what  the 
 model  has  learned  and  to  reduce  the  dimensionality  of  in  silico  analyses  to  extract  further 
 information  learned  by  the  model.  To  do  so,  we  first  generated  BLOSUM  scores  (which 
 capture  a  similarity  of  amino  acids  based  on  evolutionary  divergence)  for  each  motif,  then 
 performed  affinity  clustering  on  the  BLOSUM  scores  to  derive  a  candidate  set  of  clusters  42  . 
 Next,  we  used  the  previously  calculated  GIA  scores  to  investigate  whether  the  effects  of 
 motifs  corresponded  to  the  same  direction  of  effect  of  their  respective  physicochemical 
 cluster.  There  were  seven  discrepancies—namely,  several  motifs  containing  histidines  and 
 tryptophans  (Supp.  Fig.  6).  As  our  goal  was  simply  to  interpret  the  model  and  to  reduce  the 
 number  of  in  silico  experiments  we  needed  to  run,  we  excluded  these  seven  motifs  from  any 
 downstream  analyses.  We  verified  that  this  approach  results  in  a  sound  set  of  clusters  by 
 re-running  GIA  using  the  clusters  as  the  feature  of  interest  and  confirming  that  the  learned 
 effect  size  for  a  cluster  was  consistent  with  the  motifs  of  which  it  is  composed  (Methods; 
 Supp.  Table  6).  Summarily,  we  were  left  with  10  clusters  on  which  to  perform  downstream  in 
 silico  experiments,  effectively  reducing  the  number  of  experiments  by  at  minimum  one  order 
 of magnitude (from 100 filters). 
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 Figure  5  CANYA  discovers  physicochemical  nucleation  motifs.  The  motifs  discovered  by  CANYA, 
 clustered  by  their  physicochemical  properties  and  GIA  effect  sizes,  then  sorted  based  on  their  effect 
 size  magnitude.  Translucency  represents  the  ratio  of  cluster  effect  size  compared  to  the  strongest 
 cluster  (Methods).  The  enrichment  (in  AUC)  of  motif-cluster  presence  in  secondary  structures  of 
 resolved  amyloids  in  Uniprot  (Methods;  Supplementary  Fig.  7).  The  dashed  lines  represent  an  AUC  of 
 0.50  and  asterisks  represent  structures  for  which  the  enrichment  was  significantly  higher  than  both 
 0.50 and the second most-enriched structure. 
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 Motif activation in known amyloid structures 
 We  examined  whether  the  motif  clusters  discovered  by  CANYA  showed  propensity  for 
 secondary  structures  in  known  amyloid  fibril  structures  (from  the  Structural  analysis  of 
 Amyloid  Polymorphs  (StAmP)  database  43  ).  We  included  in  our  comparison  full-length 
 resolved  structures  of  amyloid  fibrils  for  114  PDB  entries  comprising  amyloid  structures  of  23 
 proteins  (Supp.  Table  7).  Here,  we  used  the  activation  energy  of  a  cluster  across  positions  to 
 predict  whether  or  not  the  corresponding  position  was  in  a  beta-strand,  other  structured 
 region  (coil),  or  unresolved  (disordered,  see  Methods).  The  AUC  from  this  task  serves  as  a 
 metric  of  whether  high  activation  (high  matching  score)  of  a  motif  is  associated  with  a 
 specific  structural  element.  As  expected,  the  clusters  with  high  hydrophobicity  and  positive 
 effect  size  were  most  strongly  associated  with  activating  in  beta  strands  (Fig.  5;  Supp.  Fig. 
 7).  Concretely,  positive-importance  clusters  generally  showed  tendency  toward  presence  in 
 beta-sheets  (max  AUC=0.683,  95%  CI  [0.672,  0.693],  cluster  1),  whereas  the  strongest 
 enrichment  amongst  negative-importance  clusters  was  observed  in  disordered  regions  (max 
 AUC=0.617,  95%  CI  [0.605,  0.628],  cluster  6).  Interestingly,  negative-importance  clusters 
 with  tryptophan  showed  varying  enrichments  in  secondary  structures  (Fig.  5;  Supp.  Fig  7). 
 Clusters  with  tryptophans  near  histidines  were  moderately  enriched  in  coils  (cluster  7; 
 AUC=0.553,  95%  CI  [0.541,  0.565]),  tryptophans  adjacent  to  lysines  or  arginines  showed 
 moderate  enrichment  for  strands  (cluster  10;  AUC=0.566,  95%  CI  [0.554,  0.577]),  and 
 tryptophans  near  other  tryptophans  or  aromatic  residues  (cluster  9)  showed  no  significant 
 enrichment for any structure. 

 Motif position-dependence and interactions 
 Treating  the  motif  clusters  as  input  for  GIA,  we  performed  an  additional  set  of  experiments  to 
 evaluate  whether  CANYA  has  learned  positional  information  of  motif  effects  and  whether 
 motif effects are additive (Fig. 6A). 

 To  learn  positional  information  for  each  cluster  of  motifs,  we  ran  an  experiment  in  which  we 
 calculated  the  GIA  effect  of  the  cluster  at  every  position  of  the  construct,  and  compared  it  to 
 the  global,  position-averaged  effect  of  the  cluster.  These  comparisons  revealed  that  CANYA 
 indeed  learned  position-relevant  information  across  each  cluster  of  motifs  (Fig.  6D). 
 Generally,  the  positive-effect  clusters  showed  diminished  effects  at  the  ends  of  the  construct 
 and  stronger  effects  at  the  center  (Fig.  6D).  The  range  of  percent  change  was  most  drastic 
 for  cluster  5,  potentially  due  to  the  presence  of  a  charged  residue  (%-change  in  effect  from 
 14.81%  95%  CI  [9.59,  19.59]  to  -39.81  %,  95%  CI  [-43.76,  -36.02];  Fig.  6D).  Clusters  1,  2, 
 and  4  followed  similar  trends,  however  the  changes  were  much  more  modest  (highest 
 percent  change  position  12,  cluster  4=4.42%,  95%  CI  [2.05,  6.73],  lowest  percent  change 
 position  18,  cluster  1=-8.58%,  95%  CI  [-9.53,  -7.63]).  Cluster  3,  which  is  marked  by  its  high 
 presence  of  cysteines,  followed  a  similar  trend  except  that  at  the  C  terminus  its  effect 
 significantly increased (% change=10.76, 95% CI [9.11, 12.37]). 

 Conversely,  the  negative-importance  clusters  all  had  strengthened  effects  toward  the  Sup35 
 peptide,  and  all  but  the  negative,  proline-rich  cluster  (cluster  6)  had  diminished  effects 
 toward  the  C  terminus  (Fig.  6D).  This  may  be  due  to  the  fact  that  cluster  6  was  the  most 
 negatively  charged  cluster,  consistent  with  negative  charges  in  the  C-terminus  of  some 
 amyloid-forming peptides reducing fibril formation  44  . 
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 Figure  6.  In-silico  experiments  reveal  CANYA’s  learned  nucleation  grammar.  (A)  An  example  of 
 an  experiment  using  GIA,  an  explainability  tool  to  extract  importance  (effect  sizes)  of  features  in  a 
 model.  Briefly,  model  predictions  for  a  background  set  of  sequences  are  compared  to  predictions  on 
 the  same  set  of  sequences  with  a  feature  (motif)  embedded  in  them.  (B)  The  distribution  of  effects 
 from  adding  1-4  copies  of  a  cluster-motif  to  sequences.  Points  represent  importance.  (C)  Interaction 
 importance  from  adding  motifs  from  two  clusters  to  sequences.  Warmer  colors  indicate  higher  CANYA 
 score  than  from  marginally  adding  the  motifs  (and  their  effects)  separately  to  sequences,  whereas 
 cooler  colors  represent  a  CANYA  score  lower  than  expected  from  adding  marginal  motif  effects.  “X” 
 indicates  effects  that  were  not  significantly  different  from  0.  (D)  The  position-dependence  of  motif 
 effects.  Plotted  is  the  percent  change  of  a  position-specific  effect  relative  to  the  motif’s  global, 
 position-averaged effect. Stars represent a significantly non-zero percent change in effect. 

 Tryptophan-containing  motifs  (clusters  7,  9,  and  10)  typically  had  increased  effects  closer  to 
 Sup35  (greatest  %  change  cluster  9,  position  1=11.14%  95%  CI  [8.96,  13.28])  and 
 dampened  effects  at  the  C-terminus  (greatest  %  change  cluster  10,  position  18=-19.67 
 [-21.74,  -17.80]).  Like  cluster  5,  cluster  10  both  contains  many  positively-charged  and 
 hydrophobic  residues  and  had  its  most  dampened  effect  at  position  18.  However,  cluster 
 10’s effect size is in the opposite direction, likely due to cluster 10’s presence of tryptophan. 

 To  learn  whether  the  effects  of  motifs  were  additive,  we  ran  an  experiment  where  we 
 embedded  motifs  in  a  cluster  in  non-overlapping  positions  between  1  and  4  times.  Simple 
 additive  effects  explained  nearly  all  of  the  variance  observed  in  model  predictions  (range  of 
 R  2  between  multiplicity  and  importance  =  [0.971,  0.999];  Fig.  6B).  However,  some  clusters 
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 showed  evidence  of  heteroskedasticity  in  their  importance  values,  which  may  indicate  minor 
 epistatic  or  background-specific  grammars.  Accordingly,  we  used  GIA  to  perform  an 
 experiment  similar  to  the  one  determining  additivity  of  motifs,  however  we  focused  on  the 
 case  in  which  there  are  only  two  motifs,  and  the  embedded  motifs  are  selected  from  different 
 clusters  (Methods).  This  enables  us  to  learn  how  interactions  between  clusters  affect 
 nucleation  scores.  Every  cluster  showed  at  least  8  statistically  significant  interactions 
 (p-value  of  paired,  two-way  t-test  <0.05  /(10*10  tests);  Fig.  6C;  Methods),  suggesting  the 
 importance  of  modeling  sequence  context  in  the  prediction  of  nucleation  status. 
 Nonetheless,  cluster  interaction  effects  were  modest  (ranging  from  -0.058  to  0.085) 
 compared  to  cluster  main  effects  (-0.608  to  0.448).  Almost  all  clusters  exhibited  a 
 self-enhancing  effect  in  which  their  interaction  importance  was  statistically  significantly 
 higher  than  the  expected  importance  from  additively  combining  each  marginal  effect 
 (maximum  importance  cluster  6,  0.063).  This  was  not  the  case  for  the  mixed-charge  disorder 
 cluster  (cluster  8;  importance  -0.012  p-value<2e-16)  interacting  with  itself,  nor  the 
 negative-importance  charged,  hydrophobic  cluster  (cluster  10;  importance  -0.011 
 p-value<2e-16).  Interestingly,  the  hydrophobic  and  aromatic  positive-importance  clusters 
 (clusters  1  and  2,  respectively),  showed  positive  interaction  effects  with  the  mixed-charge 
 disorder  cluster  (cluster  8),  whereas  the  cysteine  and  asparagine  positive  clusters  (clusters  3 
 and  4)  showed  negative  interaction  effects  with  both  disorder  clusters  (clusters  6  and  8;  Fig. 
 6C).  This  is  in  line  with  previous  reports  wherein  disordered  regions  (like  cluster  8)  are 
 posited  to  facilitate  amyloid  fibril  formation  in  contexts  of  hydrophobic,  core-like  regions  (like 
 clusters 1 and 2)  45  . 

 Discussion 
 Amyloid  protein  aggregation  is  a  hallmark  of  many  human  diseases  and  a  major  problem  in 
 biotechnology.  However,  relatively  few  protein  sequences  are  known  to  nucleate  amyloids 
 under  physiological  conditions,  and  this  shortage  of  data  likely  limits  our  ability  to 
 understand, predict, engineer, and prevent the formation of amyloid fibrils. 

 Here  we  have  quantified  the  nucleation  of  amyloids  at  an  unprecedented  scale  and  used  the 
 data  to  train  a  fast  and  interpretable  deep  learning  model  of  amyloid  nucleation.  In  total  we 
 quantified  the  nucleation  rates  of  >100,000  20-amino-acid  peptides,  which  enabled  us  to 
 explore  a  vast  range  of  diverse  sequences  very  different  to  the  small  number  of  known 
 amyloids.  We  used  this  unique  data  set  to  train  an  open-source  and  robust  predictor  of 
 nucleation,  CANYA,  an  inherently  interpretable  model  whose  architecture  is  inspired  by 
 biology.  In  demonstrating  the  utility  of  CANYA,  we  simultaneously  provide  a  principled 
 evaluation  of  existing  amyloid  predictors  11–14,31  using  our  own  and  existing  datasets  26,30,31,37  , 
 serving  as  a  guideline  for  the  community.  We  also  adapted  state-of-the-art  explainable  AI 
 (xAI)  techniques  from  genomic  neural  networks  to  the  protein  space  28,29,38,46  .  This  not  only 
 reveals  insight  into  the  decision-making  process  of  our  model,  but  also  illustrates  how  xAI 
 techniques  developed  for  genomic  neural  networks  can  provide  intelligible  information  from 
 neural networks that model protein function. 

 The  consistent  performance  of  CANYA  across  evaluation  tasks  suggests  CANYA  does  in 
 fact  learn  an  accurate  approximation  of  the  sequence-nucleation  landscape,  despite  only 
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 training  on  random,  synthetic  peptides.  The  performance  of  previous  methods  compared  to 
 that  of  hydrophobicity  scales  suggests  that  the  use  of  limited  dataset  sizes  and  short 
 peptides  may  have  limited  the  amount  of  additional  nucleation-relevant  information  these 
 approaches  could  learn.  This  underscores  the  importance  of  using  longer  sequences  and 
 high-throughput  assays  to  profile  previously  unexplored  regions  of  the  sequence-nucleation 
 landscape. 

 Using  interpretability  analyses  we  identified  physicochemical  motifs  that  impact  CANYA 
 nucleation  scores.  Motifs  with  hydrophobic  residues,  cysteines  and  asparagines  generally 
 had  positive  effects  on  nucleation,  whereas  negative,  mixed  charge,  and  proline-containing 
 motifs  had  negative  effects.  Positive-effect  motifs  comprised  sequences  reminiscent  of  those 
 found  in  beta  sheets  of  known  amyloids,  whereas  negative-effect  motifs  were  enriched  in  the 
 unstructured  disordered  regions  of  known  fibrils.  We  also  found  position-specific  effects  of 
 motifs—hydrophobic  motifs  generally  had  their  strongest  effects  in  the  center  of  constructs, 
 whereas  charged,  tryptophan-containing  motifs  were  strongest  toward  the  N-terminus  and 
 weakest  toward  the  C-terminus.  This  polarity  of  sequence  effects  deserves  further  attention 
 in  future  work.  Finally,  motif  effects  were  mostly  additive,  with  only  subtle  motif-motif 
 interactions. 

 While  we  believe  that  both  CANYA  and  our  dataset  represent  important  advances,  we  note 
 several  limitations  of  our  approach.  Primarily,  we  only  tested  the  nucleation  of  sequences  of 
 20  amino  acids  and  in  one  particular  context.  We  show  through  several  evaluations  that  the 
 information  learned  by  modeling  these  20  amino  acids  can  offer  accurate  predictions  of 
 nucleation  status  across  a  wide  range  of  protein  lengths,  however,  there  likely  remains 
 additional  predictive  power  to  be  harvested  by  experimentally  testing  at  scale  and  modeling 
 longer  sequences  and  consequently  longer-range  interactions.  Moreover,  we  limited  our 
 neural  network  architecture  to  a  relatively  simple  class  of  models  as  our  focus  was  on 
 interpretability.  Recent  literature  suggests  that  leveraging  protein  embeddings—in  lieu  of 
 one-hot  encoding  sequences—may  boost  our  predictive  power  47–54  ,  though  such  an 
 approach  will  likely  pose  difficulties  when  performing  post-hoc  xAI  experiments  as  done 
 here  55  .  Further,  our  model  comprises  a  modest  65,000  parameters  and  leverages  sparsity 
 despite  having  over  100,000  sequences  on  which  to  learn.  Many  models  of  protein  structure 
 employ  much  more  complex  architectures,  with  both  substantially  larger  numbers  of  layers 
 and  parameters  47,52,54,56–58  .  Future  investigations  may  build  off  of  the  work  presented  here  by 
 generating longer sequences, or exploring more complex architectures. 

 The  pairing  of  massive  scale  experimental  data  generation  using  random  sequences  with 
 interpretable  models  has  led  to  insights  into  genomic  regulatory  functions  59  .  However,  to  the 
 best  of  our  knowledge,  it  has  been  little  utilized  in  the  space  of  proteins  to  probe 
 mechanisms  beyond  short  motifs.  We  believe  the  approach  deserves  wider  adoption, 
 whenever  sequences  are  functional  at  sufficient  frequencies  to  allow  their  identification  in 
 practical library sizes. 

 Finally,  we  note  that  CANYA  is  simply  an  approximation  of  our  assay—namely,  that  the 
 learned  grammar  and  predictions  of  CANYA  need  only  be  faithful  to  the  experiment  itself  and 
 may  be  partially  distinct  from  the  process  of  nucleation  in  different  experimental  or  in  vivo 
 contexts.  Nonetheless,  given  CANYA’s  performance  across  tasks,  we  are  optimistic  that  its 
 predictions  and  insights  will  assist  in  advancing  our  understanding  of  how  proteins  nucleate 
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 to  form  amyloids.  Moreover,  we  expect  the  dataset  presented  here  to  be  used  to  train  and 
 evaluate  many  additional  models,  and  the  predictions  and  outputs  of  these  models  to  loop 
 back into additional large-scale experimental explorations of sequence space. 

 Data Availability 
 All datasets generated from this study are provided under Gene Expression Omnibus (GEO) 
 accession number GSE268261. 
 External datasets can be found under their respective repositories, which we list here: 
 AmyPred  https://pmlabstack.pythonanywhere.com/dataset_AMYPredFRL 
 AmyPro  http://www.amypro.net/ 
 CPAD  https://web.iitm.ac.in/bioinfo2/cpad2/index.html 
 WALTZ-DB  http://waltzdb.switchlab.org/sequences  . 

 Code availability 
 CANYA  is  open-source,  free  to  use,  and  available  at  the  following  link 
 https://github.com/lehner-lab/canya  . 
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 Methods 

 Plasmid library construction 
 Libraries  of  random  sequences  (NNK1-4)  were  synthesized  by  Integrated  DNA  Technologies 
 (IDT)  as  ultramers  of  20  NNK  codons  (60  nucleotides).  A  library  containing  400  sequences 
 selected  from  the  previous  four  random  libraries  was  synthesized  as  an  oligopool  by  IDT  for 
 validation  and  replication  (Extended  Data  Files  3  and  4).  In  both  cases,  sequences  were 
 flanked  by  constant  regions  of  25  nt  upstream  and  21  nt  downstream  for  cloning.  The  NNK 
 ultramers  and  the  replication  oligo  pool  were  extended  in  a  1-cycle  PCR  (Q5  high-fidelity 
 DNA  polymerase,  NEB)  with  primers  TSO_2  and  TSO_65  (Extended  Data  File  5).  The 
 resulting  products  were  treated  with  2µl/tube  of  ExoSAP  (ExoSAP-IT,  Applied  Biosystems) 
 for  30  minutes  at  37  °C  and  20  minutes  at  80  °C  and  purified  through  a  MinElute  column 
 (Qiagen).  In  parallel,  the  PCUP1-Sup35N  plasmid  was  linearized  by  PCR  (Q5  high-fidelity 
 DNA  polymerase,  NEB;  primers  TSO_3  and  TSO_4,  Extended  Data  File  5).  The  products 
 were  purified  from  a  1%  agarose  gel  (QIAquick  Gel  Extraction  Kit,  Qiagen)  and  ligated  by 
 Gibson  with  3  h  of  incubation  at  50°C  followed  by  dialysis  for  3  h  on  a  membrane  filter 
 (MF-Millipore  0.025  μm  membrane,  Merck)  and  vacuum  concentration.  The  resulting 
 (NNK1-4)  libraries  were  transformed  into  10-beta  Electrocompetent  E.  coli  (NEB),  by 
 electroporation  with  2.0  kV,  200  Ω,  25  μF  (BioRad  GenePulser  machine).  Cells  were 
 recovered  in  SOC  medium  for  30  min  and  grown  overnight  in  50  ml  of  LB  ampicillin  medium. 
 A  small  amount  of  cells  was  also  plated  on  LB  ampicillin  plates  to  assess  transformation 
 efficiency.  Total  transformants  were  estimated  (Extended  Data  File  6),  50  ml  of  overnight 
 culture  were  harvested  to  purify  each  library  with  a  midi  prep  (Plasmid  MIDI  Kit,  Qiagen). 
 Libraries  NNK1-4  were  bottlenecked  to  〜  1  million  transformants,  while  for  the  replication 
 library we estimated 625,000 transformants. 

 Large-scale yeast transformation of random libraries 
 Saccharomyces  cerevisiae  GT409  [psi-pin-]  (MATα  ade1–14  his3  leu2-3,112  lys2  trp1 
 ura3–52)  provided  by  the  Chernoff  lab  was  used  in  all  experiments  in  this  study  24  .  Yeast  cells 
 were  transformed  with  the  above  plasmid  library  midipreps.  After  an  overnight  pre-growth 
 culture  in  25  ml  of  YPDA  medium  at  30˚C,  cells  were  diluted  to  OD600  =  0.3  in  175  ml  YPDA 
 and  incubated  at  30˚C  200  rpm  for  ~4  hr.  When  cells  reached  the  exponential  phase,  they 
 were  harvested,  washed  with  milliQ,  and  resuspended  in  sorbitol  mixture  (100  mM  LiOAc,  10 
 mM  Tris  pH  8,  1  mM  EDTA,  1M  sorbitol).  After  a  30  min  incubation  at  room  temperature 
 (RT),  4  µg  of  plasmid  library  and  175  µl  of  ssDNA  (UltraPure,  Thermo  Scientific)  were  added 
 to  the  cells.  PEG  mixture  (100  mM  LiOAc,  10  mM  Tris  pH  8,  1  mM  EDTA  pH  8,  40% 
 PEG3350)  was  also  added  and  cells  were  incubated  for  30  min  at  RT  and  heat-shocked  for 
 15  min  at  42˚C  in  a  water  bath.  Cells  were  harvested,  washed,  resuspended  in  250  ml 
 recovery  medium  (YPD,  sorbitol  0.5M,  70  mg/L  adenine)  and  incubated  for  1.5  hr  at  30˚C 
 200  rpm.  After  recovery,  cells  were  resuspended  in  350  ml  -URA  plasmid  selection  medium 
 and  allowed  to  grow  for  50  hr.  Transformation  efficiency  was  calculated  for  each  of  the  four 
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 transformations  by  plating  an  aliquot  of  cells  in  -URA  plates  (Extended  Data  File  6).  Two 
 days  after  transformation,  the  culture  was  diluted  to  OD600  =  0.08  in  500  ml  -URA  medium 
 and  grown  until  exponential  phase.  At  this  stage,  cells  were  harvested  and  stored  at  -80˚C  in 
 25%  glycerol.  In  yeast,  libraries  NNK1-4  were  bottlenecked  to  0.5-1  million  transformants 
 (Extended Data File 6). 

 Small-scale yeast transformation of replication library 
 Yeast  cells  were  transformed  with  the  library  containing  400  sequences  in  three  biological 
 replicates.  An  individual  colony  was  grown  overnight  in  3  ml  YPDA  medium  at  30  °C  and  4  g. 
 Cells  were  diluted  in  60  ml  to  OD600  =  0.25  and  grown  for  4–5  h.  When  cells  reached  the 
 exponential  phase  (OD~0.7–0.8),  cells  were  harvested  at  400  ×  g  for  5  min,  washed  with 
 milliQ,  and  resuspended  in  1  ml  YTB  (100  mM  LiOAc,  10  mM  Tris  pH  8.0,  1  mM  EDTA). 
 They  were  harvested  again  and  resuspended  in  72  µl  YTB.  100  ng  of  plasmid  library  were 
 added  to  the  cells,  together  with  8  µl  of  salmon  sperm  DNA  (UltraPure,  Thermo  Scientific) 
 previously  boiled,  60  µl  of  dimethyl  sulfoxide  (Merck)  and  500  µl  of  YTB-PEG  (100  mM 
 LiOAc,  10  mM  Tris  pH  8.0,  1  mM  EDTA,  40%  PEG  3350).  The  cells  incubated  at  room 
 temperature  for  30  minutes  at  4g.  Heat-shock  was  performed  at  42  °C  for  14  min  in  a  thermo 
 block.  Finally,  cells  were  harvested  and  resuspended  in  50  ml  plasmid  selection  medium 
 (-URA,  20%  glucose),  allowing  them  to  grow  for  50  h  at  30  °C  and  4  g.  A  small  amount  of 
 cells  was  also  plated  in  plasmid  selection  medium  to  assess  transformation  efficiency.  We 
 estimated  70,000  transformants  per  replicate  (Extended  Data  File  6).  Two  days  after 
 transformation,  the  culture  was  diluted  to  OD600  =  0.08  in  500  ml  -URA  medium  and  grown 
 until  exponential  phase.  At  this  stage,  cells  were  harvested  and  stored  at  -80˚C  in  25% 
 glycerol. 

 Selection experiments 
 Cells  were  thawed  from  −80  °C  in  50  ml  plasmid  selection  medium  at  OD  =  0.05  and  grown 
 until  exponential  for  15  h.  At  this  stage,  cells  were  harvested  and  resuspended  in  300  ml 
 protein  induction  medium  (-URA,  2%  glucose,  100  μM  Cu2SO4)  at  OD  =  0.1.  After  24  h  the 
 250  ml  input  pellets  were  collected,  and  cells  were  plated  on  -ADE-URA  selection  medium  in 
 145-cm2  plates  (Nunc,  Thermo  Scientific).  Plates  were  incubated  at  30  °C  for  7  days.  Finally, 
 colonies  were  scraped  off  the  plates  with  PBS  1x  and  harvested  by  centrifugation  to  collect 
 the  output  pellets.  Both  input  and  output  pellets  were  stored  at  −20  °C  before  DNA 
 extraction.  For  each  random  library  experiment,  one  input  sample  and  three  technical 
 replicates  of  the  output  pellet  were  processed  for  sequencing.  Selection  experiments  for  the 
 replication  library  were  instead  performed  in  three  biological  replicates,  following  the  same 
 steps as above. Three input and three output samples were processed for sequencing. 

 DNA extraction and sequencing library preparation 
 Input  and  output  pellets  were  thawed  and  resuspended  in  1.5  ml  extraction  buffer  (2% 
 Triton-X,  1%  SDS,  100  mM  NaCl,  10  mM  Tris  pH  8,  1  mM  EDTA  pH  8),  and  underwent  two 
 cycles  of  freezing  and  thawing  in  an  ethanol-dry  ice  bath  (10  min)  and  at  62˚C  (10  min). 
 Samples  were  then  vortexed  together  with  1.5  ml  of  phenol:chloroform:isoamyl  25:24:1  and 
 1.5  g  of  glass  beads  (Sigma).  The  aqueous  phase  was  recovered  by  centrifugation  and 
 mixed  again  with  1.5  ml  phenol:chloroform:isoamyl  25:24:1.  DNA  precipitation  was 
 performed  by  adding  1:10  V  of  3M  NaOAc  and  2.2  V  of  100%  cold  ethanol  to  the  aqueous 
 phase  and  incubating  the  samples  at  -20°C  for  1  hr.  After  a  centrifugation  step,  pellets  were 
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 dried  overnight  at  RT.  Pellets  were  resuspended  in  900  µl  resuspension  buffer  (10  mM  Tris 
 pH  8,  1  mM  EDTA  pH  8)  and  treated  with  7.5  ml  RNase  A  (Thermo  Scientific)  for  30  min  at 
 37˚C.  The  DNA  was  finally  purified  using  30  µl  of  silica  beads  (QIAEX  II  Gel  Extraction  Kit, 
 Qiagen),  washed  and  eluted  in  22  µl  of  elution  buffer.  Plasmid  concentrations  were 
 measured  by  quantitative  PCR  with  SYBR  green  (Merck)  and  primers  annealing  to  the  origin 
 of  replication  site  of  the  PCUP1-Sup35N  plasmid  at  58  °C  for  40  cycles  (TSO_05  and 
 TSO_06,  Extended  Data  File  5).  The  library  for  high-throughput  sequencing  was  prepared  in 
 a  two-step  PCR  (Q5  high-fidelity  DNA  polymerase,  NEB).  In  PCR1,  160  million  of  molecules 
 were  amplified  for  15  cycles  at  68ºC  with  frame-shifted  primers  with  homology  to  Illumina 
 sequencing  primers  (primers  TSO_7  to  TSO_20,  Extended  Data  File  5).  The  products  were 
 purified  with  ExoSAP  treatment  (Affymetrix)  and  by  column  purification  (MinElute  PCR 
 Purification  Kit,  Qiagen).  They  were  then  amplified  for  10  cycles  in  PCR2  with 
 Illumina-indexed  primers  (primers  TSO_21  to  TSO_54,  Extended  Data  File  5).  The  library 
 was  sequenced  by  150  bp  paired-end  sequencing  in  an  Illumina  NextSeq500  sequencer  at 
 the CRG Genomics core facility. 

 Sequence data preprocessing 
 We  processed  each  of  the  4  NNK  experiments  separately  using  DiMSum  60  .  Briefly,  DiMSum 
 comprises  an  end-to-end  pipeline  for  processing  deep  mutational  scanning  datasets  from 
 raw  reads  to  measured  sequences  and  their  associated  assay  scores  (plus  errors).  DiMSum 
 was  run  with  the  following  parameters:  cutadaptMinLength="60";  cutadaptErrorRate="0.2"; 
 vsearchMinQual="30";  vsearchMaxee="0.5";  startStage="0";  fitnessMinInputCountAny="0"; 
 maxSubstitutions="20";  mixedSubstitutions="TRUE"; 
 experimentDesignPairDuplicates="TRUE".  We  then  removed  sequences  with  fewer  than  100 
 reads  in  the  input  sequencing  experiment.  Next,  we  centered  the  fitness  estimates 
 (nucleation  scores)  of  each  dataset  individually  by  adding  or  subtracting  the  corresponding 
 mode  fitness  of  the  non-nucleating  sequences.  After  centering  each  sequence,  we  next 
 labeled  sequences  as  “nucleators”  (or  “non-nucleators”)  by  transforming  their  fitness 
 estimate  to  a  Z-score  composed  of  the  fitness  estimate  scaled  by  the  DiMSum  error,  and 
 performing  a  one-sided  hypothesis  test  to  check  whether  standardized  score  was 
 significantly  larger  than  0.  We  treated  sequences  whose  p-values  after  FDR  adjustment 
 were  <=  0.05  as  “nucleators”,  and  remaining  sequences  as  “non-nucleators.”  A  proportion  of 
 sequences  produced  no  reads  after  the  selection  experiments,  thus  leading  to  NA  scores 
 from  DiMSum.  We  labeled  these  sequences  as  “non-nucleators.”  If  a  sequence  contained  a 
 stop  codon,  we  used  only  the  component  of  the  sequence  preceding  the  stop  for  model 
 training.  For  cases  in  which  this  resulted  in  duplicate  sequences  (e.g. 
 FN*VILRDEGHGSYGFDNNN  and  FN*FVVMHTCIMVVFCLGDI  are  both  mapped  to  “FN”), 
 we  summarized  the  truncated  sequence  by  taking  its  mean  nucleation  score  or  mode 
 nucleation  status  across  observations.  If  a  given  truncated  sequence  had  an  equal  number 
 of  nucleator  and  non-nucleator  status  observations,  we  discarded  this  truncated  sequence. 
 As  a  result  we  classified  >  35,000  sequences  for  libraries  NNK1-3  (35,456;  37,578;  38,893 
 respectively) and 7,040 for NNK4. 

 The architecture of CANYA 
 CANYA  is  a  biologically  motivated  hybrid-neural  network  designed  to  discover  motifs  and 
 their  interactions.  More  concretely,  the  architecture  of  CANYA  is  inspired  by  recent  work  that 
 suggests  stacked  convolution  and  attention  layers  serve  as  a  reasonable  inductive  bias  for 
 motif  and  motif-interaction  discovery.  The  hyperparameters  of  CANYA  were  influenced  by 
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 summary  statistics  of  interacting  secondary  structure  elements  in  amyloids  within  the  PDB 
 (Supp.  Fig.  4).  Summarily,  we  chose  the  simplest  architecture  of  our  model  such  that  it  is 
 expressive, interpretable, and importantly, principled in biological knowledge. 

 CANYA  takes  as  input  an  amino  acid  sequence  of  length  limit  up  to  145  residues,  and 
 outputs  a  score  related  to  the  sequence’s  propensity  to  form  amyloids.  Prior  to  passing  the 
 sequence  to  the  input  layer,  we  first  one-hot  encode  it,  allowing  only  the  20  canonical  amino 
 acids.  As  we  use  filters  of  length  3  (See  below  for  justification;  Supplementary  Fig.  4),  we 
 pad  the  sequence  with  two  0s  both  up-  and  downstream  the  sequence.  Finally,  if  this  padded 
 sequence  is  not  of  length  149,  we  add  a  mask  with  values  of  -1  downstream  the  sequence 
 until  it  reaches  length  149.  The  input  length  restrictions  of  CANYA  arise  from  the  fact  that  a 
 given  sequence  in  the  assay  is  fused  to  a  Sup35N  construct  of  length  125,  is  (up  to)  length 
 20,  and  is  padded  with  two  0s  on  each  side.  Explicitly,  the  training  data  of  CANYA  looks  as 
 follows: 

 00[one-hot encoded Sup35N][one-hot encoded random sequence]00 

 when there is no masking or stop codons, and as follows if so: 
 00[one-hot encoded Sup35N][one-hot encoded random sequence]00[  -1  ] 

 where the number of  -1  values is the required quantity  such that the sequence is length 149. 
 The input layer of CANYA correspondingly accepts a matrix of size 149x20 

 representing a one-hot encoded, padded, and potentially masked peptide sequence. The 
 output layer is a single unit with sigmoid activation. The hidden layers of CANYA are: 

 1.  Convolution (100 filters, size 3, stride 1, exponential activation) 

 2.  Self-attention (1 attention head, key-length 6) 

 3.  Fully-connected layer (64 units, ReLU activation) 

 We  selected  an  exponential  activation  function  for  the  convolutional  layer  as  this  type  of 
 activation  is  generally  more  robust  for  motif  discovery  61  .  We  chose  filters  of  length  3  as  this 
 was  the  mode  length  of  beta-sheets  in  amyloid  sequences  with  resolved  structures  in 
 Uniprot  (Supp.  Fig.  4).  We  utilize  dropout  with  probability  0.1  after  the  convolution  and 
 attention  layers,  and  0.4  after  the  fully-connected  layer.  We  use  an  elastic  net  regularization 
 (with  value  0.01)  when  learning  the  weights  between  the  attention  and  fully-connected 
 layers.  Finally,  to  encourage  the  model  to  learn  positional  information,  we  do  not  perform 
 pooling  after  the  convolution  layer,  and  we  include  positional  encodings  prior  to  taking  the 
 softmax  in  the  attention  layer.  We  trained  CANYA  for  100  epochs  using  the  adam  optimizer 
 with  default  values  and  the  binary  Kullbeck-Leibler  divergence  as  a  loss  function.  We  limited 
 the  learning  rate  of  the  model  during  training  by  monitoring  the  validation  area  under 
 precision-recall  curve,  decaying  at  a  factor  of  0.2  with  patience  4,  and  performed  early 
 stopping  by  monitoring  the  validation  area  under  precision-recall  curve  with  patience  10.  For 
 sequences  with  length  greater  than  145,  we  collect  the  CANYA  score  at  every  overlapping 
 length-145  window  of  the  sequence,  then  use  its  minimum  CANYA  score  as  its  final  score 
 (under  the  logic  that  nucleation-forming  propensity  is  limited  by  a  sequence’s  most 
 nucleation-disrupting region). 

 Compilation of external datasets 
 We  first  collected  6-mers  from  the  WALTZ-DB  dataset  26  .  Here,  we  assigned  all  sequences 
 whose  “Classification”  field  was  “amyloid”  as  a  1,  and  all  other  sequences  as  0.  We  next 
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 collected  the  collection  of  aggregating  peptides  from  the  CPAD  repository  30  .  We  used 
 sequences  from  the  “Peptide”  field,  filtering  for  sequences  of  at  least  length  10  and  for 
 sequences  that  did  not  contain  a  space  in  their  sequences.  We  assigned  sequences  with 
 “Classification”  field  “Amyloid”  a  1,  and  all  other  sequences  0.  We  then  collected  the  Amy 
 dataset  from  the  AMYPred-FRL  server  31  .  Here,  we  assigned  all  sequences  in  the  negative 
 sets  a  label  of  0,  and  all  sequences  in  the  positive  sets  a  label  of  1.  Many  of  the  sequences 
 had  lengths  greater  than  145,  we  therefore  applied  a  sliding  window  approach  to  these 
 sequences  in  which  we  score  every  overlapping  length-145  region  of  a  sequence,  and 
 assigned  a  final  score  to  the  entire  sequence  as  the  minimum  of  the  length-145  regional 
 scores.  The  final  external  dataset  we  used  was  from  the  AmyPro  database  37  .  Though 
 AmyPro  contains  overlapping  sequences  with  the  Amy  dataset,  we  treated  this  task 
 differently  than  the  previous  tasks.  Namely,  all  sequences  in  the  AmyPro  dataset  were 
 amyloids,  and  so  we  sought  to  evaluate  methods’  abilities  to  distinguish  the  amyloidogenic 
 region  from  the  non-amyloidogenic  regions  of  the  sequences.  First,  we  collected  all 
 sequences  from  the  “regions”  field  in  the  dataset.  Next  we  removed  each  of  these  “region” 
 sequences  from  the  main  peptide  sequence  and  concatenated  the  remaining  two  portions  of 
 the  main  sequence  together,  comprising  a  set  of  positive  sequences  (labeled  1)  from  the 
 “region”  field  and  negative  sequences  (labeled  0)  from  the  remaining  peptide  sequences. 
 Finally,  we  limited  the  length  of  all  sequences  to  100  by  breaking  sequences  longer  than 
 length  100  into  non-overlapping  subsequences  of  at  most  length  100.  While  this  task 
 evaluates  un-natural  sequences,  it  evaluates  the  ability  of  each  method  to  distinguish 
 amyloid  cores  from  non-amyloid  cores  while  also  making  the  problem  more  amenable  to 
 previous  approaches,  which  generally  underperformed  on  long  sequences.  We  list 
 descriptive  summary  statistics  (e.g.  length,  sample  sizes,  hydrophobicity)  in  Supplementary 
 Table 5. 

 Aggregation predictors 
 Aggregation  predictors  or  physicochemical  scales  (Tango  11  ,  Amypred  31  ,  Camsol  12  ,  PLAAC  13  , 
 Aggrescan  14  )  were  used  to  calculate  a  score  for  each  sequence.  When  appropriate, 
 individual  residue-level  scores  were  summed  to  obtain  a  single  score  per  sequence. 
 CamSol,  Amypred  and  Aggrescan  were  run  with  the  default  parameters.  PLAAC  was  run 
 using  a  core  of  length  6  and  weightings  from  input  sequences.  Tango  was  run  with  pH  7.2, 
 no  protection  of  termini,  ionic  strength  =  0.1  and  T  =  298K  (25ºC).  Some  of  the  predictors 
 present  sequence  length  limitations:  Amypred  runs  only  for  sequences  longer  than  10  amino 
 acids,  CamSol  for  sequences  longer  than  6  amino  acids,  and  Aggrescan  cannot  be  run  for 
 sequences longer than 2004 amino acids. 

 Selecting a model for interpretability analyses 
 We  trained  CANYA  with  random  weight  initialization  100  times  and  recorded  for  each  fitted 
 model  the  area  under  the  curve  (AUC)  of  the  test  data,  area  under  the  precision-recall  curve 
 (AUPROC)  of  the  test  data,  and  interpretability  score  adapted  from  a  recently  developed 
 approach  for  interpretability  analyses  of  genomic  neural  networks  29  .  Briefly,  Majdandzic  et  al. 
 propose  an  approach  to  quantify  the  consistency  of  the  attribution  maps  of  a  trained  model 
 by  comparing  the  entire  set  of  kmers  in  the  training  sequences  to  the  set  of  kmers  in 
 (adjusted  46  )  attributed  positions  in  the  training  sequences.  These  two  distributions  of 
 kmers—in  the  case  of  CANYA,  3-mers—are  compared  using  the  Kullbeck-Leibler  (KL) 
 divergence,  where  a  higher  KL  divergence  suggests  greater  amenability  to  downstream 
 interpretability  analyses.  To  calculate  an  interpretability  score  for  each  trained  instance  of 
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 CANYA,  we  used  this  same  approach,  but  rather  than  using  kmers  of  nucleotides,  we  used 
 kmers  from  the  input  amino  acids.  As  we  saw  that  the  test  AUPROC  was  more  consistent 
 across  experiments,  we  used  a  models’  mean  AUPROC  across  experiments  and 
 interpretability  score  as  model  selection  criteria.  More  rigorously,  we  selected  the  model  with 
 the  highest  interpretability  score,  conditional  on  the  fact  that  its  mean  AUPROC  across 
 datasets  was  greater  than  the  median  of  these  mean  scores  across  model  training 
 instances. 

 Visualization of filters (motifs) 
 Notably,  the  use  of  random  sequences  in  amino  acid  space  poses  difficulties  for  observing  a 
 typical,  lexicographic  motif,  and  consequently,  observing  convergence  toward  a 
 lexicographic  motif  in  first-layer  convolutional  filters.  We  elaborate  as  follows:  using  a  filter 
 length  of  3,  there  is  a  1  in  8,000  (20  3  )  chance  of  observing  a  given  kmer.  Ideally,  for  the 
 model  to  learn  a  stable  feature,  this  kmer  must  not  only  exist  in  a  sizable  proportion  of 
 sequences,  but  its  effect  must  also  not  be  masked  out  by  surrounding  contextual 
 information.  Even  if  we  were  to  ignore  contextual  information,  this  motif  would  need  to  occur 
 independently  multiple  times,  an  event  whose  probability  quickly  converges  to  0. 
 Consequently,  we  are  much  stricter  than  previous  approaches  when  generating  a  position 
 weight  matrix  (PWM)  for  a  given  filter.  For  interpretability’s  sake,  we  limit  the  kmers 
 comprising  a  PWM  for  a  filter  to  the  minimum  of  either  the  10  most-activating  kmers  of  a 
 filter,  or  the  collection  of  kmers  whose  activation  is  at  least  75%  of  the  maximum-activating 
 kmer.  Summarily,  a  filter  is  both  visualized  and  represented  numerically  by  its  PWM 
 composed of at most the top 10 strongest activating kmers. 

 Motif clustering 
 Following  the  above  logic,  CANYA  must  learn  physicochemical  properties  of  amino  acids 
 and  understand  how  these  properties  interact  amongst  each  other  when  constructing  its 
 features  at  the  convolution  layer.  Moreover,  these  physicochemical  3-mers,  or  motifs,  may 
 often  capture  redundant  physicochemical  information,  but  independent  sequences—for 
 example,  two  different  motifs  capturing  hydrophobicity  may  separately  comprise  sequences 
 of  “IVF”  or  “ALM.”  To  further  improve  interpretability  and  reduce  the  dimensionality  of 
 downstream  experiments  leveraging  the  learned  motifs  of  CANYA,  we  performed  clustering 
 on  the  PWM  matrices.  More  concretely,  we  calculated  BLOSUM  scores  for  each  filter  by 
 taking  the  dot  product  between  its  PWM  and  BLOSUM  score  matrix  42  .  We  next  performed 
 affinity  propagation  on  these  calculated  motif  BLOSUM  scores  to  cluster  the  motifs.  Affinity 
 propagation  discovered  10  clusters  of  motifs.  However,  after  performing  Global  Importance 
 Analysis  (GIA)  experiments  38  ,  we  found  7  discrepancies  when  evaluating  whether  a  given 
 motif  had  the  same  effect  size  (importance  score)  direction  compared  to  the  effect  size  of  the 
 motif  with  the  greatest  absolute  effect  within  the  cluster.  As  our  goal  was  to  interpret  model 
 decisions  and  physicochemical  clusters,  we  removed  these  7  filters  from  their  corresponding 
 clusters  so  that  each  cluster  contained  only  filters  with  the  same  effect  size  direction.  We 
 show the original and changed cluster assignments in Supplementary Figure 6. 

 Global Importance Analysis (GIA) Experiments 
 To  learn  the  effect  of  motif  presence  on  CANYA’s  decision-making,  we  turned  to  Global 
 Importance  Analysis  (GIA)  in-silico  experiments  38  .  Briefly,  GIA  is  a  post-hoc  interpretability 
 method  applied  to  genomic  neural  networks  that  enables  users  to  learn  importance  scores 
 (i.e.  effect  sizes)  of  a  given  sequence  feature  on  a  model’s  output  score.  The  importance 
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 score  is  derived  from  taking  the  average  difference  in  model  score  between  a  set  of 
 background  sequences,  and  this  same  set  of  background  sequences  but  with  a  functional 
 element,  such  as  a  motif,  placed  in  the  background  sequence  (sequence  length  is 
 maintained,  i.e.  a  window  of  the  sequence  is  replaced  by  the  functional  element).  For  all 
 experiments,  we  limited  our  analyses  to  25,000  randomly  selected,  full-length  (length-20  and 
 and  absent  of  stop  codons)  training  sequences  that  were  confidently  predicted  by  CANYA. 
 We  defined  “confidently  predicted”  as  nucleators  with  CANYA  score  above  0.3  and 
 non-nucleators  with  CANYA  score  below  0.2  (see  Supp.  Fig.  8  for  prediction  score 
 distributions).  Finally,  we  emphasize  that  owing  to  the  random  nature  of  our  experiment,  the 
 training  sequences  serve  as  a  valid  set  of  background  sequences  for  GIA  as  they  span  an 
 extremely wide range of contexts. 

 In  the  first  set  of  GIA  experiments,  we  sought  to  characterize  the  importance  score  of  each 
 filter  individually.  To  do  so,  we  first  randomly  selected  25,000  sequences  from  the  training 
 set,  comprising  sequences  from  across  all  three  experiments.  Next,  for  a  given  filter,  we 
 collected  the  activation  energy  of  each  kmer  used  to  represent  the  PWM,  and  used  the  ratio 
 of  the  activation  energy  of  each  kmer  to  the  activation  energy  of  the  kmer  with  the  maximum 
 activation  energy  in  this  PWM  to  generate  kmer  sampling  probabilities.  For  each  sequence, 
 we  randomly  sampled  one  kmer  using  this  normalized  ratio  as  the  kmer’s  sampling 
 probability,  and  embedded  this  kmer  into  the  sequence.  Afterward,  we  calculated  for  all 
 25,000  background  sequences  and  all  25,000  modified  sequences  the  CANYA  nucleation 
 score  prior  to  applying  the  softmax  function.  We  calculated  each  filter’s  importance  score  as 
 the  mean  paired  difference  in  scores  between  the  25,000  background  and  modified 
 sequences. 

 After  clustering  the  learned  motifs,  we  next  wished  to  validate  whether  the  clusters  could  be 
 utilized  to  simplify  further  interpretability  analyses  by  reducing  the  scale  of  in-silico 
 experiments  performed.  To  do  so,  we  conducted  a  GIA  experiment  within  each  cluster  to 
 determine  a  cluster-level  importance  score.  The  experiment  follows  the  same  logic  as  the 
 original,  filter-level  GIA  experiment,  only  that  we  first  randomly  selected  a  filter  within  a 
 cluster  prior  to  sampling  a  kmer  from  its  PWM.  The  filters  were  randomly  selected  according 
 to  the  ratio  of  their  absolute  GIA  importance  score  to  the  maximum  absolute  GIA  importance 
 score  across  filters  of  the  corresponding  cluster.  Indeed,  cluster-level  scores  recapitulated 
 the  scores  of  the  motifs  from  which  they  were  composed  (Supp.  Table  5).  We  therefore 
 performed  all  following  GIA  analysis  at  the  cluster  level,  using  this  filter-first,  kmer-second 
 sampling scheme. 

 We  next  performed  an  experiment  to  evaluate  the  additivity  of  motif-clusters  on  nucleation 
 propensity.  Here,  we  collected  25,000  background  sequences  from  the  training  dataset,  then 
 embedded  into  these  background  sequences  1  to  4  kmers  in  non-overlapping  positions 
 where  each  of  the  4  kmers  was  sampled  using  the  filter-first,  kmer-second  sampling  scheme. 
 Each  sequential  kmer  addition  (from  kmers  2-4)  was  embedded  in  the  sequence  such  that 
 the  sequence  with  antecedent  kmer  multiplicity  maintained  the  kmer(s)  at  its  (their)  original 
 embedded  position(s).  We  calculated  the  cluster  importance  score  for  a  given  multiplicity  by 
 taking  the  mean  difference  in  prediction  score  between  the  sequences  with  the  injected 
 kmer(s)  and  their  corresponding  background  sequences—in  other  words,  each  importance 
 score  is  generated  by  taking  the  mean  difference  between  25,000  background  sequences 
 and 25,000 modified background sequences with either 1, 2, 3, or 4 embedded kmers. 

 25 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2024. ; https://doi.org/10.1101/2024.07.13.603366doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.13.603366
http://creativecommons.org/licenses/by-nc-nd/4.0/


 To  evaluate  whether  CANYA  learned  position-specific  importance  of  motifs,  we  performed  an 
 additional  GIA  experiment  in  which  we  systematically  embedded  a  motif-cluster  at  each 
 position  of  a  random  sequence.  In  these  experiments,  we  performed  a  single  GIA 
 experiment  with  25,000  background  sequences  and  25,000  modified  sequences  for  each 
 position  from  positions  1-18,  so  that  the  entire  3-mer  could  be  contained  within  the 
 sequence. 

 In  a  final  GIA  experiment,  we  characterized  interaction  effects  between  motif-clusters.  For  a 
 given  motif-cluster  pair,  we  sampled  a  kmer  (as  mentioned  above)  from  each  cluster  as  well 
 as  a  corresponding  position  randomly  from  positions  1-18  in  which  to  embed  each  kmer.  We 
 evaluated  the  CANYA  score  for  the  background  sequence,  the  background  sequence  with 
 the  kmer  from  the  first  cluster  at  the  first  sampled  position,  the  background  sequence  with 
 the  kmer  from  the  second  cluster  at  the  second  sampled  position,  and  the  background 
 sequence  with  both  kmers  at  both  positions.  We  called  the  interaction  importance  as  the 
 result  of  subtracting  the  sum  of  CANYA  predictions  of  the  sequences  with  each  marginal 
 kmer  embedding  from  the  sum  of  the  CANYA  predictions  of  the  background  sequence  and 
 sequence  with  both  motifs.  The  final  importance  was  calculated  as  the  mean  interaction 
 importance across 25,000 sequences. 

 Secondary structure enrichment scoring of motifs 
 To  examine  whether  certain  motifs  were  characteristically  similar  to  sequences  found  in 
 specific  secondary  elements  of  amyloids,  we  examined  activation  energies  of  filters  across 
 secondary  structure  elements  in  a  set  of  amyloids  with  resolved  structures  in  the  PDB. 
 Concretely,  we  collected  114  entries  from  the  STAMP  dataset  43  ,  then  downloaded  their 
 structural  information  from  the  PDB  (see  Supp.  Table  7  for  entries  and  corresponding 
 proteins).  Next,  we  passed  all  sequences  through  CANYA,  and  extracted  their  filter 
 activation  energies  (i.e.,  output  from  the  convolution  layer).  At  each  position,  we  summarized 
 a  cluster’s  activation  energies  as  the  maximum  activation  energy  across  filters  within  a 
 cluster,  generating  a  vector  of  maximum  activation  energies  for  each  cluster.  Next,  we 
 encoded  each  secondary  structure  (coil,  beta  strand,  or  disorder)  as  a  binary  vector  where  1 
 indicated  positions  in  the  corresponding  secondary  structure,  and  0  indicated  otherwise.  We 
 collected  this  set  of  secondary  structure  vectors  and  activation  energy  vectors  for  all 
 sequences,  then  concatenated  them  across  sequences.  Finally,  we  generated  secondary 
 structure  enrichment  scores  by  calculating  the  AUC  between  a  given  secondary  structure 
 element and cluster activation energy across all sequences. 

 Extended Data 
 Extended Data File 1  All sequences recorded spanning  each experiment with reported 
 fitnesses, error, and nucleation status 
 Extended Data File 2  Sequences used to train and test  CANYA 
 Extended Data File 3  Sequences used in replication  experiments with their original 
 measured fitness and fitness from the replication experiment 
 Extended Data File 4  Validation sequences and their  corresponding nucleotide sequences 
 Extended Data File 5  Oligo pool and primer sequences  for the NNK experiments 
 Extended Data File 6  Transformants measured across  each experiment 
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