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Abstract 

Understanding the function and fitness effects of diverse plant genomes requires transferable 

models. Language models (LMs) pre-trained on large-scale biological sequences can learn 

evolutionary conservation, thus expected to offer better cross-species prediction through fine-

tuning on limited labeled data compared to supervised deep learning models. We introduce 

PlantCaduceus, a plant DNA LM based on the Caduceus and Mamba architectures, pre-trained on 

a carefully curated dataset consisting of 16 diverse Angiosperm genomes. Fine-tuning 

PlantCaduceus on limited labeled Arabidopsis data for four tasks involving transcription and 

translation modeling demonstrated high transferability to maize that diverged 160 million years 

ago, outperforming the best baseline model by 1.45-fold to 7.23-fold. PlantCaduceus also enables 

genome-wide deleterious mutation identification without multiple sequence alignment (MSA). 

PlantCaduceus demonstrated a threefold enrichment of rare alleles in prioritized deleterious 

mutations compared to MSA-based methods and matched state-of-the-art protein LMs. 
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PlantCaduceus is a versatile pre-trained DNA LM expected to accelerate plant genomics and crop 

breeding applications. 

Introduction 

Plant genomes will increasingly be sequenced in the coming decades 1. Understanding these 

genomes in terms of both transcription and translation is crucial for advancing plant genomics and 

crop breeding, including mapping causal genes for agronomic traits, improving crop fitness, and 

optimizing yield. Unlike biomedical applications that often focus on a few key species, plant 

genomics must consider hundreds of crop species, underscoring the importance of developing 

cross-species models that can learn general patterns. 

 

Supervised deep learning (DL) sequence models have acquired great success in understanding 

DNA sequence function such as transcription initiation 2, alternative splicing 3, gene expression  4 

and functional mutations. However, supervised DL models typically require large-scale labeled 

data, such as ENCODE-scale datasets 5,6, to achieve robust performance. Such extensive labeled 

data is often scarce in plant genomics. Moreover, training supervised models on model species, 

such as Arabidopsis, presents challenges when transferring to other plant species. However, the 

success of self-supervised language models (LMs) offers a promising alternative. In this paradigm, 

a base model is pre-trained on vast amounts of unlabeled data to learn general patterns. Pre-trained 

models are then fine-tuned on limited labeled data, enabling better performance on downstream 

tasks and enhancing generalizability across species relative to existing methods. For example, 

protein LMs, pre-trained on diverse protein sequences spanning the evolutionary tree, have shown 

successful applications in predicting atomic-level protein structure 7 and disease-causing variants 

8 as well as in engineering protein design 9. These models provide valuable tools for understanding 

protein function and facilitating innovative solutions in biotechnology and medicine 10. 

 

Unlike protein LMs that are limited to coding regions, DNA LMs enable a comprehensive 

understanding of the entire genome, offering deeper insights into gene regulation and evolution. 

Protein LMs have shown success in identifying pathogenic missense mutations in human genetics 

8,11, but increasing evidence shows that mutations in noncoding regions, including both intergenic 

and intronic regions, contribute significantly to both agronomic traits 12 and human diseases 13,14. 
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Additionally, training multi-species DNA LMs can capture evolutionary conservation at the DNA 

level, enhancing our understanding of genetic variation across different species.  

 

However, DNA LMs face significant challenges compared to protein LMs. Firstly, eukaryotes, 

especially plants 15, contain varied percentages of repetitive sequences, complicating the pre-

training task. Given that LMs are pre-trained to either predict the next token or tokens masked 

arbitrarily in a sequence, repetitive sequences that are easier to recover but do not necessarily 

improve downstream applications can reduce overall model quality 16. Additionally, noncoding 

regions are less conserved than coding regions, leading to potential biases if entire genomes are 

included in pre-training. Lastly, modeling double-stranded DNA requires consideration of reverse 

complementary base pairing 17 and a bi-directional model that accounts for both upstream and 

downstream sequences. 

 

To tackle these challenges, we introduce PlantCaduceus, a DNA language model pre-trained on a 

carefully curated dataset consisting of 16 angiosperm genomes. PlantCaduceus employs single-

nucleotide tokenization, enabling precise modeling at base-pair-resolution across diverse plant 

genomes. By down-sampling noncoding regions and down-weighting repetitive sequences, we 

generated an unbiased genomic dataset for pre-training. In contrast, other publicly available DNA 

LMs, such as AgroNT 18 and Nucleotide Transformer 19, use the entire genomes for pre-training, 

potentially introducing biases toward certain genomes and repetitive sequences. Unlike the 

unidirectional HyenaDNA 20 or Evo 21, or the convolutional neural network-based GPN 16, 

PlantCaduceus offers bi-directional context, providing a more comprehensive understanding of 

DNA interactions. Furthermore, to handle double-stranded DNA, we used the Caduceus 

architecture 22, which builds on the Mamba 23 architecture and supports reverse complement 

equivariance. By evaluating the pre-trained PlantCaduceus model on five cross-species tasks, 

including transcriptional junctions, translational junctions, and evolutionary conservation 

prediction, we found that our model demonstrated the best performance compared to baseline 

models for all five tasks. Notably, downstream classifiers fine-tuned on PlantCaduceus with 

limited labeled data in Arabidopsis maintained the best performance on other crop species such as 

maize, improving the PRAUC from 1.45-fold to 7.23-fold compared to the best baseline model, 

indicating that PlantCaduceus effectively captures broad evolutionary conservation. Additionally, 
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the deleterious mutations identified with the zero-shot strategy of PlantCaduceus show a three-

fold enrichment of rare alleles compared to the most commonly used evolutionary-based methods 

such as phyloP 24 and phastCons 24. For missense mutations, PlantCaduceus matches the 

performance of the state-of-the-art protein LMs, suggesting that PlantCaduceus could be 

effectively used for genome-wide deleterious mutation identification. These results suggest that 

PlantCaduceus could serve as a foundational model to accelerate plant genomics and crop 

breeding. 

Results 

PlantCaduceus: a pre-trained DNA language model with 16 Angiosperm genomes 

Caduceus 22 is a DNA LM architecture that builds upon the recently introduced Mamba 23 

architecture, a selective state space sequence model that has demonstrated competitive 

performance to transformers in various NLP tasks, with more efficient scaling for longer range 

sequences.  Unlike Mamba, Caduceus is specifically designed for DNA sequences, taking into 

account the bi-directional nature of DNA and introducing reverse complement (RC) equivariance. 

Here, we trained PlantCaduceus using the Caduceus architecture (Figure 1A) on 16 Angiosperm 

genomes (Supplemental Table S1), spanning 160 million years of evolutionary history 

(METHODS). PlantCaduceus takes 512 base pair (bp) windows of input sequences, tokenizing 

them into single nucleotides, and is pre-trained using a masked language modeling objective 

(Figure 1A and METHODS). To address the substantial variation in genome sizes and the high 

proportion of repetitive sequences in these genomes, we emphasized non-repetitive sequences by 

down-weighting repetitive sequences during pre-training (METHODS). To scale Caduceus, we 

trained  a series of PlantCaduceus models with parameter sizes ranging from 20 million to 225 

million (Table 1). The training and validation losses for each model are detailed in Supplemental 

Table S2.  After pre-training, we conducted a preliminary assessment to verify the model's 

learning capabilities. Taking the sorghum genome as an example, we employed Uniform Manifold 

Approximation and Projection (UMAP) 25 to visualize the embeddings generated by the four pre-

trained PlantCaduceus models. By segmenting the genome into 512 bp windows, we observed 

distinct clustering in the UMAP visualization, corresponding to different genomic regions (Figure 

1B). Due to the high proportion of repetitive intergenic sequences in the sorghum genome, the 
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embedding spaces appeared dispersed in the UMAP visualization (Figure 1C; Supplemental 

Figure 1). Even without any supervision, PlantCaduceus was able to differentiate between coding 

and noncoding regions with high clarity. 

Table 1. PlantCaduceus model parameters 

Models # of layers Hidden size # of parameters (million) 

PlantCaduceus_l32 32 1024 225 

PlantCaduceus_l28 28 768 112 

PlantCaduceus_l24 24 512 40 

PlantCaduceus_l20 20 384 20 

Improving the accuracy and cross-species transferability of modeling transcription and 

translation through fine-tuning of PlantCaduceus 

Accurate annotation of junction sites, including translation initiation site (TIS), translation 

termination site (TTS), and splice donor and acceptor sites, is crucial in understanding the genome. 

To evaluate PlantCaduceus’s performance on these tasks, we generated training and validation 

datasets using Arabidopsis thaliana TAIR10, a relatively well-annotated genome released over 

two decades ago26. Specifically, annotated TIS, TTS, and splice donor and acceptor sites were 

considered as true sites,  while the corresponding false sites were randomly selected from the entire 

genome to match corresponding motifs, such as ATG for TIS, stop codons for TTS, GT for splice 

donor, and AG for splice acceptor (Figure 2A). We used sites from chromosome 5 as the validation 

set  the rest of the genome for training (Figure 2B and METHODS). Previous LMs focus on 

evaluation within the same species 19,20,27–29, however, we wanted to investigate whether a model 

fine-tuned with limited labeled data in Arabidopsis could be used for prediction in other species, 

given that the DNA LM model is pre-trained on multiple species. Therefore, we generated three 

extremely imbalanced cross-species testing datasets for rice, sorghum, and maize using BUSCO-

supported genes as true sites (Figure 2B and Supplemental Table 3). We benchmarked the 

performance of PlantCaduceus against three DNA LMs: GPN 16, AgroNT 18, and Nucleotide 

Transformer 19, as well as a supervised hybrid model comprising a convolutional neural network 

(CNN) and a long short-term memory (LSTM) network 30, hereafter referred to as CNN+LSTM. 

For the Nucleotide Transformer, we used the multi-species version 2 that was pre-trained on 850 
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genomes, hereafter referred to as NT-v2. For DNA LMs, we kept model weights frozen and trained 

XGBoost models using embeddings extracted from the last hidden state of each DNA LM (Figure 

2C). The CNN+LSTM model was trained from scratch in a supervised manner.  

 

First, focusing on within species evaluation on Arabidopsis chromosome 5, PlantCaduceus (32 

layers) showed consistently superior performance across the four tasks of  predicting TIS (Figure 

2D), TTS (Figure 2E), splice donor site (Figure 2F), and splice acceptor site (Figure 2G). Other 

DNA LMs like GPN and AgroNT also performed well, particularly in predicting splice donor and 

acceptor sites. Additionally, for splice donor and acceptor site prediction, even the supervised 

CNN+LSTM model achieved near perfect PRAUC values, indicating that within-species 

prediction is a relatively straightforward task. We then tested the fine-tuned models’ performance 

on test sets in rice, sorghum and maize to assess the cross-species generalization ability of these 

models. Surprisingly, we found that, for all four tasks, all models except PlantCaduceus showed a 

meaningful drop in PRAUC when transferred to rice (14.9% to 99.5%), sorghum (19.3% to 99.8%) 

and maize (41.3% to 100%) (Figure 2D-2G). Particularly for the CNN+LSTM model, which 

performed well on TIS and TTS in Arabidopsis validation and nearly perfectly on splice donor and 

acceptor sites, the PRAUC dropped significantly when transferred to rice (46.9% to 99.5%), 

sorghum (68.2% to 99.8%), and maize (86.2% to 100%). This is expected as the supervised model 

had never seen sequences from these species, making cross-species generalization challenging 

(Figure 2D-2G). GPN maintained decent cross-species predictions but still showed significant 

drops in PRAUC for TIS and TTS tasks, ranging from 44.9% to 90.4% (Figure 2D-2G). As 

expected, the non-plant DNA NT-v2 model did not perform well on these tasks, due to the 

significant divergence between plant and animal genomes. But surprisingly, AgroNT also did not 

perform as well as expected. In contrast, PlantCaduceus consistently maintained high PRAUC 

values, with only slight decreases in rice, sorghum, and maize, demonstrating its strong cross-

species generalization ability. The minor variations among rice, sorghum and maize could be 

attributed to different numbers of false sites (Supplemental Table 3) in each test set.  

 

It is worth noting that the rice and sorghum genomes are included in the pre-training data of both 

PlantCaduceus and AgroNT, but not for GPN. AgroNT also includes the maize genome. To 

understand why PlantCaduceus achieved superior performance on these cross-species tasks, we 
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conducted an ablation test by re-training a custom GPN model using the same datasets as 

PlantCaduceus and scaled it to 130 million parameters, on the same order of magnitude as 

PlantCaduceus (METHODS). We observed that, including more genomes in the pre-training and 

scaling model size significantly improved GPN’s cross-species predictability (Supplemental 

Figure 2), especially for TIS and TTS tasks. This indicates that when more genomes are included 

during pre-training, the embeddings learned by the LM are more general across species. However, 

PlantCaduceus still exhibited the best performance, indicating that its architecture is superior to 

that of GPN.  Moreover, even with a parameter size of 20 million—6.5 times smaller than the 

custom 130 million GPN and 3.25x times smaller than the original GPN—PlantCaduceus still 

outperformed all models in predicting TIS, TTS, splice donor, and splice acceptor sites. These 

results demonstrate that PlantCaduceus not only captures broader evolutionary conservation 

features but also is more parameter-efficient than other DNA LMs. 

Cross-species evolutionary constraint prediction through fine-tuning PlantCaduceus 

Genome-wide association studies (GWAS) have identified thousands of variants associated with 

complex traits. However, identifying causal variants is complicated by linkage disequilibrium 

(LD), as significant SNPs identified by GWAS are usually in LD with causal variants. In contrast, 

evolutionary constraint can directly indicate fitness effects by detecting candidate causal mutations 

through conservation of DNA across species. Given that PlantCaduceus is pre-trained on 16 

Angiosperm genomes, we hypothesize that it can be fine-tuned to predict evolutionary constraint 

using DNA sequences alone. Maize and sorghum, both members of the Andropogoneae clade, 

descend from a common ancestor approximately 18 million years ago 31. To generate evolutionary 

constraints in the sorghum genome, we aligned 34 genomes from the Andropogoneae clade, with 

rice as an outgroup  (Supplemental Table 4), to the Sorghum bicolor reference genome 

(Supplemental Figure 3). We focused on the 277 million sites with nearly complete coverage and 

defined those sites with an identity threshold of 15 as conserved versus neutral with an identity 

threshold of 15 (Figure 3A). We used chromosomes 1-9 to train an XGBoost model and evaluated 

it on sorghum chromosome 10. We benchmarked this task against GPN, AgroNT, NT-v2, and the 

supervised CNN+LSTM model. On the validation set, PlantCaduceus achieved the best 

performance, with an AUC of 0.896 (Figure 3B) and a PR-AUC of 0.876 (Figure 3C). In 

comparison, the best AUC and PR-AUC for other DNA LMs were 0.778 and 0.790, respectively. 
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As expected, the supervised CNN+LSTM model performed the worst, with an AUC of 0.638, as 

it had only seen sequences from sorghum (Figures 3B-3C). This demonstrates that PlantCaduceus 

enables predicting evolutionary constraint without multiple sequence alignment. 

 

To further explore the cross-species predictive power of the model fine-tuned on sorghum 

evolutionary constraint data, we generated an analogous testing dataset for maize (METHODS). 

Remarkably, when our PlantCaduceus model, originally fine-tuned on sorghum, was applied to 

the maize dataset, it demonstrated strong cross-species prediction performance, achieving an AUC 

of 0.829 (Figure 4D) and a PR-AUC of 0.797 (Figure 4E). In contrast, all other models 

consistently showed poor performance on maize (Figure 4D-4E). As above, we also evaluated the 

performance of our custom GPN model which was trained on the same dataset as PlantCaduceus. 

While the custom GPN model showed improved performance with an AUC of 0.8326 and a PR-

AUC of 0.8148, PlantCaduceus, with only 20 million parameters, outperformed both the original 

GPN and the custom GPN models (Supplemental Figure 6). These results highlight the 

robustness and effectiveness of our DNA LM for cross-species predictions of evolutionary 

constraints using only sequence data as input. The transferability of our model across different 

species within the Andropogoneae clade suggests that it captures fundamental evolutionary 

patterns and can be readily adapted to predict evolutionary constraint in related species with limited 

additional training data.  

Zero-shot variant effect prediction identifies deleterious mutations in different species 

The training objective of PlantCaduceus is to predict masked nucleotides based on sequence 

context; if a pre-trained multi-species DNA LM can accurately predict masked tokens, it suggests 

that similar sequence patterns, conserved across different species, were frequently observed during 

pre-training. We hypothesize that the predicted likelihood of the reference allele versus the 

alternate allele can identify deleterious mutations, as mutations in conserved regions across species 

are likely deleterious. To test this hypothesis, we used a zero-shot strategy to estimate each 

mutation’s effect (Figure 4A). For each SNP, we calculated the log-likelihood difference between 

the reference and alternate alleles, where a more negative value indicates higher conservation. 

Deleterious mutations tend to have lower frequencies within a population due to selective 

constraints 32, we therefore used minor allele frequency (MAF) to quantify the deleteriousness of 
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mutations predicted by different methods. Despite the potential for low MAF in neutral/beneficial 

alleles, we believe this approach provides useful signals for assessing deleterious mutations 32. 

 

We benchmarked PlantCaduceus against two evolutionary-informed methods, phyloP 24 and 

phastCons 24, as well as GPN 16. Both phyloP and phastCons assess evolutionary constraint using 

multiple sequence alignments and phylogenetic models (METHODS), assigning higher scores to 

conserved regions. For GPN, we used the same zero-shot strategy (Figure 4A) as PlantCaduceus. 

We first analyzed 4.6 million SNPs in the sorghum TERRA population 33 and observed that most 

of the SNPs showed a neutral zero-shot score, while there was still a heavy tail with negative zero-

shot scores (Figure 4B). We categorized SNPs into four percentiles based on zero-shot scores: the 

top 50%, top 10%, top 1%, and top 0.1% most deleterious mutations (Figure 4B) and observed 

that all models showed a decreasing average MAF of SNPs in higher percentiles for missense, 

nonsynonymous, and noncoding SNPs (Figure 4C). Notably, the putative deleterious mutations 

identified by PlantCaduceus exhibited the lowest average MAF across all percentiles, 

outperforming GPN and significantly surpassing phyloP and phastCons. Given the success of 

protein LMs in predicting deleterious missense mutations 8,11, we also incorporated ESM 7 as a 

benchmark. For missense mutations, we found that PlantCaduceus matches the performance of the 

state-of-the-art protein language model ESM. At the top 50%, 10%, and 1% percentiles, 

PlantCaduceus even slightly outperforms ESM.  

 

To assess the model’s transferability to unseen genomes, we excluded the maize genome during 

pre-training, given that maize and sorghum are evolutionarily close species. We then analyzed 9.4 

million SNPs in the maize Hapmap 3.2.1 population from 1,224 lines 34 and observed the putative 

deleterious mutations identified by PlantCaduceus consistently showed the lowest average MAF 

at different percentiles (Figure 4D), demonstrating cross-species generalizability for this task.  

 

However, since GPN is only pre-trained with genomes from eight Brassicales species and 

specifically designed for mutation effect prediction in Arabidopsis, we further validated 

PlantCaduceus by analyzing over 10 million mutations from the Arabidopsis 1001 Genomes 

Project 35. Being pre-trained with a broader range of evolutionarily distant genomes, 

PlantCaduceus effectively captured deleterious mutations in Arabidopsis and slightly 
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outperformed GPN (Supplemental Figure 5). For missense mutations, PlantCaduceus matched 

the performance of the state-of-the-art protein language model ESM and was nearly competitive 

with GPN for noncoding mutations. These results highlight PlantCaduceus’s ability to identify 

genome-wide deleterious mutations, and demonstrate its broad applicability across diverse species, 

even those not included in pre-training. 

 

Discussion 

Functional annotation of plant genomes is crucial for plant genomics and crop breeding but 

remains limited by the lack of functional genomic data and accurate predictive models. Here, we 

introduced PlantCaduceus, a multi-species plant DNA LM pretrained on a well-curated set of 16 

evolutionarily distant Angiosperm genomes, enabling cross-species prediction of functional 

annotations with limited data. PlantCaduceus leverages Mamba 23 and Caduceus 22 architectures 

to support bi-directional, reverse complement equivariant sequence modeling. We demonstrated 

the superior cross-species performance of PlantCaduceus on five tasks involving transcription, 

translation, and evolutionary constraint modeling. These results highlight the potential of 

PlantCaduceus to serve as a foundational model for comprehensively understanding plant 

genomes. 

 

PlantCaduceus has the potential to accurately annotate newly sequenced Angiosperm plant 

genomes. Unlike supervised deep learning models that easily overfit on limited labeled data, 

PlantCaduceus demonstrates robust cross-species performance in modeling transcription, 

translation, and evolutionary constraints. This indicates that through self-supervised pre-training 

on large-scale genomic datasets, PlantCaduceus has captured DNA grammar and evolutionary 

conservation. The cross-species prediction ability of PlantCaduceus can significantly accelerate 

plant genomics research, aiding initiatives such as the 1000 Plant Genomes Project 1 by providing 

accurate annotations and insights across diverse plant species. 

 

PlantCaduceus also offers a more effective approach to estimating deleterious mutations without 

relying on multiple sequence alignments (MSAs). Deleterious mutations are considered the genetic 

basis of heterosis, where hybrids yield more due to the suppression of deleterious recessives from 
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one parent by dominant alleles from the other 36. Traditionally, deleterious mutations have been 

identified by generating MSAs 32,37,38 and using evolutionary methods such as phyloP 24 and 

phastCons 24. However, the prevalence of transposable elements and polyploidy in plant genomes 

complicates the MSA generation 39,40. PlantCaduceus overcomes these challenges by using a 

masked language modeling strategy to learn the conservation from large scale genomic datasets of 

diverse species. Promisingly, the deleterious mutations prioritized by PlantCaduceus with the zero-

shot strategy showed three-fold rare allele enrichment compared to phyloP and phastCons, and our 

approach is also competitive with state-of-the-art protein LM for missense mutations. These results 

suggest that PlantCaduceus can be utilized to identify genome-wide deleterious mutations across 

diverse crop species, enhancing crop breeding by optimizing parental line selection and thus 

promoting hybrid vigor 36. 

 

In future work, we plan to incorporate additional plant genomes from diverse lineages, such as 

gymnosperms, to capture broader evolutionary conservation. Additionally, we plan to pre-train 

PlantCaduceus with longer context windows, enabling it to capture long-range DNA interactions 

and better handle tasks benefiting from long-range cis-effects, such as, allele-specific expression, 

chromatin state prediction, and chromatin interaction mapping. Furthermore, it would also be 

interesting to explore how to better tokenize repetitive sequences in plant genomes. We envision 

that these approaches will allow us to push the boundaries of what PlantCaduceus can achieve, 

establishing it as an even more powerful and versatile foundation model for advancing genomic 

research and facilitating crop improvement. 

Methods 

 Pre-training dataset 

The pre-training dataset comprises 16 genomes from two distinct clades: eight genomes from the 

family Poaceae and eight genomes from the order Brassicales (Supplemental Table S1). The 

Poaceae species displayed substantial variation in genome size and repetitive sequence content, 

with the hexaploid wheat genome exhibiting a size of 15 Gbp. For each Poaceae genome, except 

for Tripsacum, we obtained the genome and corresponding genome annotation and repeat-masked 

annotation from the Joint Genome Institute (JGI). For the Tripsacum genome, the genome FASTA 
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and annotation files were downloaded from MaizeGDB 

(https://maizegdb.org/genome/assembly/Td-FL_9056069_6-DRAFT-PanAnd-1.0), and the 

EDTA tool 41 was used to identify repetitive sequences within the genome. Based on the repeat-

masked annotation, each genome was softmasked with bedtools 42 and subsequently divided into 

genomic windows of 512 bp with a step size of 256 bp. Each window was assigned to a unique 

class based on the genome annotation, and all coding sequence regions were selected for pre-

training. The remaining genomic regions were then down-sampled to ensure an equal number of 

CDS regions and noncoding regions. It is important to note that for the hexaploid wheat genome, 

only subgenome A was utilized to avoid species bias. The Brassicales genomes datasets were 

acquired from a Hugging Face repository (https://huggingface.co/datasets/songlab/genomes-

brassicales-balanced-v1). The validation and testing datasets were randomly selected and 

constituted 5% of the total dataset.  

 

Caduceus model architecture and pre-training 

We use the recently proposed Caduceus architecture 22, which is tailored to three important aspects 

of DNA sequence modeling. Caduceus is built off of the Mamba architecture 23, a recently 

proposed structured state space model which scales to long sequences more efficiently than 

attention-based methods while maintaining accuracy. To account for upstream and downstream 

gene interactions, Caduceus employs weight sharing to enable memory-efficient bi-directionality. 

Finally, Caduceus is designed to consider the reverse complement (RC) symmetry of DNA 

sequences. This is accomplished by encoding RC equivariance as an inductive bias: the Caduceus 

language model commutes with the RC operation. Combining these three design decisions, 

Caduceus has shown promising results when applied to human genome modeling 22.  

 

The implementation of RC equivariance in Caduceus entails doubling the number of channels for 

intermediate representations. At a high level, half the channels are used to encode information 

about a sequence and the other half are used to encode information about its RC. For downstream 

tasks in which we fine-tuned a classifier on top of learned embeddings, the labels were invariant 

to the RC operation, since both DNA strands carry the same label. To account for this, we therefore 

split embeddings of the Caduceus model along the channel dimension and averaged. This ensures 
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that both a sequence and its RC will have the same final embedding, i.e., we render the embeddings 

invariant to the RC operation as well.  

 

For the pre-training of PlantCaduceus, each model was trained for 480,000 steps using a 

Decoupled AdamW optimizer 43 with the global batch size of 2,048. The learning rate is 2E-4 with 

a cosine decay scheduler, and 6% of the training duration was dedicated to warm up. The learning 

rate decayed to 4E-6 by the end of training. The default BERT 44 masking recipe was used with a 

masking probability of 0.15. For each masked token: (i) there is an 80% probability it will be 

replaced by a special token ([MASK]), (ii) a 10% probability it will be replaced by a random token, 

and (iii) a 10% probability it will remain unchanged. Unless otherwise specified, all models were 

trained using a sequence length of 512 base pairs. A weight decay of 1E-5 was applied throughout 

the training process. 

 

TIS, TTS, splice donor and acceptor training, validation and testing dataset generation 

To generate high-quality training datasets for translation initiation sites (TIS), translation 

termination sites (TTS), splice donor sites, and splice acceptor sites, we used the well-annotated 

model plant genome of Arabidopsis with Araport 11 annotation 45. To accurately reflect the 

inherent imbalance in junction sites prediction, all annotated junction sites were considered as 

positive observations, while a randomly selected subset of sites (5%) that matched specific 

appropriate motifs (e.g., ATG for TIS, UAA, UAG, and UGA for TTS, GT for donor splice sites, 

and AG for acceptor splice sites) were used as negative observations. For each task, the pre-trained 

model weights were frozen, and XGBoost models (n_estimators=1000, max_depth=6, 

learning_rate=0.1) were trained using embeddings extracted from the last hidden state of the pre-

trained model. To ensure robust model training and validation, chromosome 5 was used for 

validation (Figure 2A-2B), and the rest of the Arabidopsis genome was used for training.  

 

Given the relatively poor annotation in other species compared to Arabidopsis, to generate reliable 

testing datasets in other species, we used the BUSCO tool 46 to identify 3,236 orthologous genes 

specific to monocotyledons in rice, sorghum and maize. This approach ensures that the selected 

annotated genes are highly conserved and likely to be correctly annotated, mitigating the issue of 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.04.596709doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.04.596709
http://creativecommons.org/licenses/by-nc/4.0/


inaccurate performance evaluations. Specifically, BUSCO was utilized to scan the annotated 

protein isoforms, and only complete BUSCO genes were considered as true positives. For those 

BUSCO genes with multiple transcripts, we selected the longest transcript to avoid sequence 

redundancy in the testing dataset. Subsequently, BUSCO gene/transcript-supported junction sites 

were used as positive examples for their respective tasks. To generate negative sites, all sites within 

the BUSCO genes that matched appropriate motifs (e.g., ATG for TIS, TAA, TAG, and TGA for 

TTS, GT for donor splice sites, and AG for acceptor splice sites) but were not part of any annotated 

gene models were used as true sites. Sites belonging to alternate transcripts were excluded to avoid 

ambiguity. Furthermore, to expand the negative observations and capture a broader range of non-

junction sites, we included sites in the intergenic regions flanking the BUSCO genes that matched 

the appropriate junction motifs. By incorporating both genic and intergenic sites from the BUSCO 

gene set as negatives, we created an extremely imbalanced testing dataset to reflect the real-world 

scenario of junction site prediction (Supplemental Table S3). 

 

Evolutionary constraint estimation 

The evolutionary constraint was estimated primarily within the Andropogoneae tribe, a large clade 

of grasses comprising approximately 1,200 species that descended from a common ancestor 

approximately 18 million years ago 31. In this analysis, 34 genomes from Andropogoneae and the 

rice genome were used to estimate the evolutionary constraint. Due to the substantial transposable 

element (TE) content in these genomes, AnchorWave, a sensitive genome-to-genome alignment 

tool 39, was used to align the 35 genomes to the sorghum reference genome using the parameters 

"-R 1 -Q 1". Following the alignments to the sorghum reference genome, we counted the number 

of identities, SNPs, and coverages (Supplemental Figure 5). Then the fine-tuned labels were 

generated based on per-site identity and coverage (Figure 4A). Conserved sites were defined as 

having an identity greater than 34, while neutral sites were defined as having an identity of 15 or 

less and coverage of at least 34. Sites with low coverage were excluded due to their potential 

ambiguity. Given the large size of the training dataset, only 5% of conserved sites were randomly 

selected for training, and an equivalent proportion of neutral sites was also randomly selected. 

Sites from chromosomes 1 to 9 were used for training, while those from chromosome 10 were 

used for validation. To generate the testing dataset in maize, the maize reference genome B73 was 
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used. Then, using the same approach, genome-wide evolutionary constraints were generated by 

aligning 35 genomes to the maize reference genome with AnchorWave, using the parameters "-R 

1 -Q 2," except for Tripsacum clades. For Tripsacum and maize, which share the most recent whole 

genome duplication, we used "-R 1 -Q 1". 

phyloP and phastCons calculation 

With the same 34 genomes from Andropogoneae, we generated pairwise genome-to-genome 

alignments using Cactus 47, a multiple genome alignment tool that uses a progressive alignment 

strategy. The neutral model was calculated from fourfold degenerate coding sites across the entire 

genome. The resulting alignments were then analyzed using PHAST 24 to quantify evolutionary 

conservation with phyloP conservation scores – using the SPH scoring method (--method SPH) 

and CONACC mode (--mode CONACC) – and phastCons scores. 

GPN, custom GPN, AgroNT and NT-v2 baselines 

To comprehensively evaluate our foundation model’s performance, four foundation models 

including GPN 16, custom GPN, AgroNT 18 and NT-v2 19 were used as baselines for various tasks. 

GPN is a convolutional DNA LM pre-trained on eight genomes of Arabidopsis and seven other 

species from the Brassicales order. However, since GPN was pre-trained with only eight 

evolutionarily close species and has only 65M parameters and most of the tasks in this paper focus 

on evaluation in crops, we re-trained a custom GPN with 130M parameters using 50 convolutional 

layers and the same dataset as PlantCaduceus for a fair comparison. The other hyperparameters 

were kept identical to the original GPN (Supplemental Table S5). In contrast, AgroNT 18 is a 

transformer-based 48 language model with 1 billion parameters, pre-trained on 48 plant genomes. 

NT-v2 19, is a non-plant multi-species transformer model pre-trained on 850 genomes excluding 

plant species. These models employ different tokenization strategies: GPN uses single-nucleotide 

tokenization, while AgroNT and NT-v2 use 6-mer tokenization. To ensure a fair comparison, we 

extracted the middle token embeddings for GPN and the middle k-mer token embeddings for 

AgroNT and NT-v2. 
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Supervised CNN+LSTM baseline 

To establish a fair comparison between our DNA LM and existing supervised models, which are 

primarily trained on human data, we used the DanQ model architecture 30 as the supervised 

baseline. DanQ is a hybrid convolutional and recurrent neural network specifically designed for 

predicting the function of DNA sequences. It has demonstrated impressive performance in 

predicting chromatin states in plant species, making it a suitable choice for our comparative 

analysis 49. For each task, the CNN+LSTM model was trained from scratch using one-hot encoded 

DNA sequences as input. The Adam optimizer with a learning rate of 0.01 was employed for model 

optimization. The batch size was set to 2,048. Early stopping with a patience of 20 steps was 

implemented. 

Data availability 

The pre-training genomes are available at: https://huggingface.co/datasets/kuleshov-

group/Angiosperm_16_genomes. All fine-tuned datasets are available at Hugging Face: 

https://huggingface.co/datasets/kuleshov-group/cross-species-single-nucleotide-annotation 

Code availability 

The pre-trained models, along with documentation on how to use them, are available at Hugging 

Face: https://huggingface.co/collections/kuleshov-group/plantcaduceus-512bp-len-

665a229ee098db706a55e44a  
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Figure 1. Overview of PlantCaduceus. (A) The input for PlantCaduceus consists of 512-bp DNA 

sequences with 15% of positions randomly masked. The pre-training objective is cross-entropy 

loss on the masked positions. The sequences are processed through the bi-directional Caduceus 

architecture, which is based on the Mamba sequence operator—a recently proposed structured 

state space model. Caduceus also contains a reverse complement equivariance inductive bias. (B) 

UMAP visualization of embeddings from PlantCaduceus (32 layers) averaged over non-

overlapping 100-bp windows along the sorghum genome without intergenic regions. (C) The same 

UMAP visualization as in (B) but with intergenic regions. 
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Figure 2. Modeling translation and transcription through fine-tuning PlantCaduceus. (A) 

TIS, TTS, splice donor and splice acceptor dataset generation. Annotation supported sites are 

considered as true, randomly selected sites from the genome but matching corresponding motifs 

are considered as false sites. (B) Sites from Arabidopsis are used as training and validation, the 

chromosome 5 in Arabidopsis is considered as validation, the rest of the Arabidopsis is used for 

training. Three cross-species tests are generated for rice, sorghum and maize. (C) Fine-tuning 

strategy for PlantCaduceus, the weights of pre-trained PlantCaduceus are kept frozen during pre-

training, and then the last hidden state of PlantCaduceus were used as features of XGBoost 

model. (D-G) bar plots display the PRAUC scores for validation, rice test, sorghum test, and maize 

test datasets for four tasks: TIS (D), TTS (E), splice donor (F), and splice acceptor (G). Blue bars 

represent our PlantCaduceus model with 32 layers. Gray bars denote three DNA language models: 

NT-v2, AgroNT, and GPN. Light gray bars represent a traditional supervised model, a hybrid of 

CNN and LSTM. The gray dashed line in each panel indicates the baseline for each dataset, 

corresponding to the negative sample ratio. 
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Figure 3. Evolutionary constraint prediction. (A) Illustration of the evolutionary conservation 

data curation. (B) Receiver operating characteristic (ROC) and (C) precision-recall (PR) curves of 

different models in sorghum. (D) ROC and (E) PR curves of transferring different models trained 

in sorghum to unseen maize data. 
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Figure 4. Deleterious mutations identification. (A) The zero-shot strategy of PlantCaduceus for 

identifying deleterious mutations. (B) The distribution of zero-shot scores in the Sorghum TERRA 

population. (C) The mean minor allele frequency (MAF) of putative deleterious mutations 

prioritized by different models in sorghum. (D) The MAF of putative deleterious mutations 

prioritized by different models in maize. 
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