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Uncovering 2-D toroidal representations in
grid cell ensemble activity during 1-D
behavior

Erik Hermansen 1 , David A. Klindt1,2 & Benjamin A. Dunn 1

Minimal experiments, such as head-fixed wheel-running and sleep, offer
experimental advantages but restrict the amount of observable behavior,
making it difficult to classify functional cell types. Arguably, the grid cell, and
its striking periodicity, would not have been discovered without the per-
spective provided by free behavior in an open environment. Here, we show
that by shifting the focus from single neurons to populations, we change the
minimal experimental complexity required. We identify grid cell modules and
show that the activity covers a similar, stable toroidal state space during wheel
running as in open field foraging. Trajectories on grid cell tori correspond to
single trial runs in virtual reality and path integration in the dark, and the
alignment of the representation rapidly shifts with changes in experimental
conditions. Thus, we provide a methodology to discover and study complex
internal representations in even the simplest of experiments.

In neuroscience, the simultaneous movements from single neu-
rons to populations and from low-dimensional, controlled
experiments to more natural, diverse behaviors have amplified
the need for assumptions and perspectives useful for extracting
meaningful insights from these increasingly large data sets. In this
evolving landscape, topological data analysis has emerged as a
compelling approach1–4, prioritizing the detection of point cloud
features over the conventional search for best-fit models. Here,
we build on this perspective, following two core principles.
Firstly, we advocate for a minimal approach to identify popula-
tion codes in neural recordings. Our goal is to unravel the
intrinsic coding patterns without relying on observed task vari-
ables to identify the relevant subsets of recorded neurons or
prescribe to them a given computation. Secondly, we propose the
dimensionality of the population code is not restricted to that of
the task, but rather, the code adheres to the underlying internal
structure, even in experiments of minimal complexity. We focus
specifically on the paradigmatic case of rodent spatial repre-
sentations and find that even the simplest experimental setting
can reveal insights into the fundamental computational proper-
ties of the system. This approach not only simplifies and expands

the study of these neural codes but opens up new avenues for
understanding the intricacies of other higher-order cognitive
functions5,6.

Grid cells provide a fascinating glimpse into the internal
mechanisms of brain computations. These cells, typically identified in
two-dimensional (2-D) environments, are known for their character-
istic hexagonal patterns associated with spatial navigation7,8. In pre-
vious work, we found grid cell population representations, known as
modules9, to be toroidal4, which describes the two periodicities of the
grid pattern in 2-D environments. In the special case of 1-D linear
tracks, the spatial responses of grid cells have been thought to be
cross-sections of the 2-D patterns10,11. However, equating the internal
and the external representation may be misleading, and recent results
suggest that (putative) grid cells in 1-D tracks are tuned to integrated
distance and are weakly anchored to landmark stimuli12–15. Here, we
asked whether studying the neural activity by itself would allow us to
find grid cell modules and describe their computations under varying
experimental conditions and manipulations.

A common pipeline in population analysis starts by reducing the
dimensionality of the neural activity, using, for instance, uniform
manifold approximation and projection (UMAP)16 or (deep) latent
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variable models17–20, with the goal of extracting a low-dimensional
representation of the population activity at each time point. However,
dimensionality-reduction requires specifying a range of parameters
and a choice ofmethod for initializing the embedding21,22. In particular,
the dimensionality of the embedding space is often chosen as 2- or 3-D
for interpretability23,24, allowing visualization but potentially discard-
ing crucial information25. Topological data analysis offers an alter-
native approach to characterizing (high-dimensional) point clouds
with persistent homology (PH)26,27. Through constructing a nested
sequence of spaces ordered by decreasing affinity, PH reveals the
evolution of holes (of any dimension) in the data, and the collection of
intervals for when different holes appear and disappear is called a
barcode. This characterization helps to discern prominent topological
structures, such as circular features (1-D holes)28,29. However, PH is
sensitive to outlier points, partial or skewed sampling of the full state
space, and mixed population activity may distort or complicate the
underlying topology1–3,30–32. PH also has a computational bottleneck,
with polynomial growth of run-time and memory requirements in the
number of points in the point cloud33. Therefore, preprocessing (noise
removal and downsampling) the data and separating neurons into
distinct ensembles is necessary to reveal shape information from the
barcodes.

Results
Identifying a conjunctive head direction and grid cell ensemble
We start by looking at the Neuropixels recording of the grid cell
population (n = 483 cells) of rat ‘R’ in an open field (OF) arena

performed by Gardner et al.4 (Fig. 1a and similar analysis performed
for rat ‘S’ in Supplementary Fig. 1b). Naïvely applying UMAP and
CEBRA20 to the mix of grid cells gives an indiscernible shape (Fig. 1b
top). Hence, we use agglomerative clustering based on the time-
lagged cross-correlations of the recorded activity and observe a
clear cluster (Fig. 1c). However, the dimensionality of this ensemble
seems to exceed visualization (Fig. 1b bottom), so we turn to PH.
First, we apply PCA whitening to eight dimensions, extracting the
dominant information in the dataset34, and use a two-step temporal
downsampling scheme based on the spread and density of the point
cloud1,35,36 to get a representative sample of the underlying space
(Fig. 1d). Applying PH to the reduced dataset, we detect three cir-
cular features in the barcode (Fig. 1e). Higher-dimensional homol-
ogy should reveal further depiction, but is costly to compute
and requires a greater number of neurons for a confident
characterization31. A more detailed view is gained, however, by
computing circle-valued maps representing selected 1-D bars in the
barcodes, which assigns angular coordinates to each population
vector37,38. Obtaining three circular coordinatizations of the data
(from the three identified bars) gives a 3-D toroidal description
which can be compared with the recorded variables - here, head
direction and 2-D space. While one circle aligns with the head
direction of the animal, the other two capture the spatial axes of the
hexagonal grid pattern of the ensemble (Fig. 1f). Furthermore,
visualizing single neuron activity within the 3-torus (visualized as a
cube with periodic boundaries), we see single convex tuning fields,
indicating each neuron encodes a unique position in the state space

a
Gardner et al. (2022)
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Fig. 1 | Finding 3-D toroidal representation of grid cell ensemble with con-
junctive head direction tuning. aGardner et al. recorded 483 grid cells4 in rat `R'.
Illustration of single grid cell tuning in an OF arena (upper) with directional pre-
ference (lower). b Embedding the (randomly sampled) whole grid cell population
activity (n = 483 cells, top row) and (preprocessed) identified ensemble activity
(n = 75 cells, bottom row) into three dimensions using CEBRA20 with cosine (left)
and Euclidean (middle) distance and UMAP16 (right, cosine metric). Colored by
simultaneously recorded head direction (HD) angle (as indicated by color wheel).
c Correlation distance matrix (one minus Pearson correlation of the time-lagged
cross-correlation of the firing rate activity between all recorded grid cells, values
indicated by color bar), sorted by cluster indices from hierarchical clustering.
Largest ensemble (‘M’,n = 75 cells) indicated.dThe spike trains for all grid cellsmay
be represented by a matrix X of size N × T (neurons × time; left). Gray bars indi-
cating time of spike. The ensemble activity X0 (upper right) is a subset of X (n <N

neurons) and is further reduced by downsampling the number of activity states
(bottom right, X″, t < T time points). e Barcode from applying PH to ensemble
activity after temporal downsampling (as in d), with bars corresponding to the
lifetime of 0- and 1-dimensional features (H0 and H1). Three circular features are
identified (ϕ1−3, arrows). Shaded region indicates 99th percentile of shuffled dis-
tribution. f Comparing decoding of the circular features in (e) obtained by coho-
mological coordinatization37, with recorded physical variables, reveals encoding of
headdirection (HD, top) and spatial position (bottom, color indicating cosine value
of specified decoding, ‘dec’). g Eight examples (rows) of normalized single-cell
firing rate tuning to spatial position (left column, value indicated by color bar),
head direction (middle) and the decoded 3-D toroidal state space (right, each
axis of the cube corresponds to a circular coordinate as in f and boundaries are
continuous across opposite sidesof the cube). Sourcedata areprovidedasa Source
Data file.

Article https://doi.org/10.1038/s41467-024-49703-1

Nature Communications |         (2024) 15:5429 2



(Fig. 1g). The proposed framework is thus able to find and char-
acterize the state space of an ensemble of conjunctive head direc-
tion and grid cells31,39.

While several pipelines using persistent homology have been
suggested1–3, we emphasize the importance of subdividing population
recordings into relevant networks, preprocessing the activity accord-
ingly and employing the information found in the barcode explicitly to
decode the dynamics. Identifying functionally relevant cells using
known covariates before assessing the topology of the state space,
may also provide interesting insights (see Supplementary Fig. 9 for
preliminary analyses on head direction, boundary vector and object
vector cells), but such a covariate may not always be available. Hence,
we showcase this approach in various datasets, revealing the orienta-
tion circle of boundary vector cells40 (Supplementary Fig. 1b), the
toroidal topology of grid cells in entorhinal and parasubicular calcium
imaging recordings (Supplementary Fig. 1c)41, the separation of three
simultaneously recorded grid cell modules in dark42 (Supplementary
Fig. 1d), and the identification of the circular representation of head
direction cells in anterodorsal thalamic nucleus and post-subiculum
during slow-wave sleep (SWS)43 (Fig. 1e) where previous pipelines have
not succeeded (see e.g., Supplementary Fig. 11 in2). To summarize, the
pipeline allows the discovery of topological structure in the neural
recording, providing further insight into internal computations with-
out the need of a priori linking them through tuning to external
covariates.

Toroidal tuning of mouse entorhinal cells in calcium recordings
during open field foraging and wheel-running
Obenhaus et al. performed two-photon calcium imaging of the
medial entorhinal cortex (MEC) in freely moving and head-fixed
mice (Fig. 2a)40. We clustered the cross-correlations for three
recordings of mouse 88592 (Fig. 2b and Supplementary Fig. 2a) with
both OF foraging and wheel running (W) sessions, obtaining a grid
cell ensemble in each recording. Applying the above framework
revealed toroidal expression in the barcodes of each session (Fig. 2c
and Supplementary Fig. 2b). During W session, the pair of circular
coordinates attained from decoding of the two longest circular
features in the barcode revealed mostly unidirectional trajectories
on the toroidal sheet in line with the spatial behavior (Fig. 2d and
Supplementary Movie 2) and stripe-like patterns in the OF arena
corresponding to the two periodicities of the grid pattern (Fig. 2d
and Supplementary Fig. 2c, Supplementary Movie 1). This suggests
that, even when the animal’s location is not changing, with the

wheel’s relative position to any landmark cues fixed, the internal
position can still integrate over the animal’s locomotion and pro-
prioceptive cues, supporting the idea of path integration – i.e., that
the inference of position is computed through integration over
velocity and not landmark navigation. Furthermore, each neuron
had a single toroidal tuning field in the same location on the torus in
OF foraging and wheel running (toroidal phase distances closer than
shuffled comparisons, n = 1000 shuffles, P < 0.001, Fig. 2e-g and
Supplementary Fig. 2d), demonstrating that the internal repre-
sentation is stable across tasks. In summary, the 2-D toroidal
representation of grid cell modules is carried over in minimal tasks,
suggesting we can find and understand the internal structure even
in simple experiments where we may not have access to the 2-D
spatial tuning.

Stable toroidal tuning of mouse grid cells in virtual reality with
Neuropixels recordings
Campbell et al. used Neuropixels probes to record extracellular spikes
in the MEC of head-fixed mice engaged in virtual reality (VR) task on a
running wheel under different conditions: baseline, dark, gain (wheel
slowed down with respect to VR track) and contrast (reduced visual
cue contrast) sessions (Fig. 3a)14. We first studied one exemplary
recording day (mouse I1 day0417, Fig. 3b, f–h)with good experimental
yield (having 101 ‘distance’/‘putative grid’ cells out of 286 cells inclu-
ded in the analysis, classified by shared spatial features in the 1-D
spatial auto correlograms as in Campbell et al., Supplementary Fig. 3b
and d), before repeating our analysis for the remaining available data
(Fig. 3e and Supplementary Fig. 4–8, J5 day 0505 shown in Fig. 3b–e).
Ensembles were first clustered based on cross-correlations (Fig. 3b),
without any prior assumption about the spatial tuning of the studied
neurons. We found three clusters (n = 25, 49 and 65 neurons), con-
taining 23, 30 and 29 distance cells, respectively (Supplementary
Fig. 3b and d). Applying our framework to the firing rates of these
ensembles gave barcodes suggesting toroidal structure (one H 0-, two
H1- and one H2-bar, Fig. 3c and Supplementary Fig. 4b). Decoding
revealed primarily unidirectional trajectories on the toroidal manifold
(Fig. 3f,g). The activity ofmost cells in each ensemblewas confined to a
specific location on the toroidal surface (Fig. 3d and Supplementary
Fig. 6-8 and each neuron’s preferred location on the torus was pre-
served across the experimental conditions (P <0.001 compared to
n = 1000 shuffles, Fig. 3f and Supplementary Fig. 4c, d). Taken toge-
ther, the method identified grid cell representations without requiring
2-D spatial movement.

Fig. 2 | Uncovering2-D toroidal representationof entorhinal grid cell ensemble
during wheel running. a Obenhaus et al. performed calcium imaging of the MEC
during wheel running and free foraging in OF arenas40. b Sorted correlation dis-
tancematrix as in Fig. 1b. Relevant ensemble (‘M’n = 211 cells) indicated. cResulting
barcode of ensemble activity during free foraging in OF arena (left) and wheel
running (right) as in Fig. 1e. Arrows indicate the homological signature of a 2-D
torus - one 0-Dbar (H0), two 1-D bars (H1) and one 2-D bar (H2).dCoordinatizing the
circular features from wheel running (ϕ1,2 as in c.) reveals unidirectional internal
dynamics on the toroidal sheet of the mean population activity (top left, color-
coded by ‘viridis’-color bar), as traced by position of activity bump for 12 s (`hot'
color bar), in coordination with running on the wheel (bottom left). Right,

extrapolating the wheel 2-D toroidal parametrization to the OF session, shows
correspondence with the periodicities of the grid cell pattern (similar to Fig. 1f).
e Five examples of single-cell responses as in Fig. 1g (from left): tuning to 2-D spatial
position; 1-D spatial auto-correlation for wheel position; internal 2-D toroidal
positionduringOF andWsessions. f, g Single-cell toroidal phases are givenbymass
center of toroidal tuning for each cell (see e). Comparing phases for each cell across
W and OF sessions shows stability of encoded internal state space position. Phases
shown on toroidal sheet for data in (b) (c) (f) with black lines connecting each cells'
phase in the two sessions. Cumulative distribution of phase distances acrossW and
OF sessions for three days (#1–3) of the recorded mouse vs shuffled distribution
("Sh";g). Source data are provided as a Source Data file.
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Next, we clustered the remaining (n = 118) recordings and clas-
sified ensembles as grid cell modules if the cells’ toroidal tuning
matched an idealized point source distribution on a hexagonal
torus44 (Supplementary Fig. 3c, d), as expected for grid cells45

(shown in grid cell continuous attractor network models in
Supplementary Fig. 3a)). We observed similar toroidal (grid cell)
characteristics as the above ensembles in 17 more clusters
(Supplementary Fig. 4, 3b–e and 6–8).

Alignments of the toroidal representation in VRare unstable but
follow (gain/contrast) manipulations
Coloring the 1-D VR trajectories with the decoded 2-D toroidal
coordinates, we observed a clear, time-dependent relation between
spatial and toroidal coordinates (Fig. 3g, Supplementary Fig. 5 and
Supplementary Movie 3). At times, the movement on the torus was
aligned with the spatial movement (visible in the figures as intervals
of stable horizontal pattern), but would occasionally shift or drift, as
suggested also by Low et al.46. For the three ensembles in I1 day 0417,
this seemed to happen in coordination, in line with recent work
showing grid modules drift together in dark42. However, gain and
contrast manipulations clearly elicited a shift in the alignment
between the torus and virtual space. When the contrast changed
from high to low, an aligned representation quickly disappeared
until the contrast was reset, uponwhich themapping returned to the
former representation. During strong gain manipulation (gain = 0.5
and contrast either 10 or 100%), the toroidal path length was longer
than baseline sessions for 14 out of 15 ensembles (P < 0.05, Z > 4;
Fig. 3h). Hence, in line with Campbell et al. (2021), the grid cells
dynamics appear to be conjunctively influenced by self-motion (as
seen in dark and gain manipulations) and visual cues (contrast
manipulations).

Discussion
Wefind and reveal the toroidal topologyof grid cell population activity
in mice, both in calcium imaging and with electrophysiology. Notably,
this 2-D structure is found during head-fixation and 1-D wheel running.
We observed a clear relation between the internal dynamics and
movement, suggestive ofpath integration.While the toroidal structure
was preserved across sessions, the alignment to the VR track was
affected by gain and contrast manipulations, and underwent coherent
shifts also during baseline trials. Furthermore, we describe a 3-D tor-
oidal representation for grid cell ensembles with conjunctive tuning to
head direction, as well as a circular representation in boundary vector
cells and another in head direction cells during SWS.

Our results also serve as a proof-of-principle, demonstrating how
a topological perspective on population coding allows us to identify
populations in large neural recordings and study their computations
even in the simplest of experimental settings (Fig. 4). This contributes
to debates about whether simple, artificial stimuli are sufficient e.g., in
visual neuroscience5,6,47 and supports a vast array of experimental
methods in head-fixed 1-D and virtual environments15,48,49. These task
settings come with several benefits such as high-throughput experi-
ments with large or movement-sensitive equipment, detailed animal
tracking, and permit trial-based, stereotyped analyses6,50. We believe
these findings open the path to new insights beyond what has been
expected from such artificial settings6,51,52, also in other brain regions
and cognitive tasks53,54.

The spatial representation of grid cells can appear distorted in 2-D
space (e.g., in the dark, see Supplementary Fig. 1d) and in 1-D their
alignment with space is dynamic and sensitive to allo- and idiothetic
information (Figs. 2, 3), making single neuron properties seemingly
difficult to study in anything but an appropriately-sized square box
with reliable cues. Our results support viewing grid cells instead

Fig. 3 | Revealing 2-D toroidal representations in entorhinal ensembles during
1-D VR navigation. a Campbell et al. used Neuropixel probes to record from the
MECwhile head-fixed mice engaged in a VR task showing a continuously repeating
linear track of 400 cmwith five evenly spaced visual cues with a water reward at the
end (baseline trials)14. b Correlation distance matrices (as in Fig. 1b) for two mice,
with indicated clusters (‘M’, ‘M1–M3’). c Barcodes (as in Fig. 1e) from ensemble
activity of M1, mouse J5 (n = 43 cells), during baseline, contrast (visual cue contrast
manipulations) and dark trials. d Four examples of single-cell responses: 1-D VR
linear track auto-correlation (left, ‘Acorr’) and tuning to decoded toroidal position
duringbaseline (B), contrast (C) anddark (D) sessions, as inFig. 2e. eToroidal phase
comparison between sessions for M1 mouse J5 (as in Fig. 2f; left, n = 43 cells) and
mean phase distance for each toroidal ensemble ("Or") with more than one session
vs shuffledmean ("Sh") (right, ± S.E.M.,n = 25, (I1 #2M1), 49 (I1 #2M2), 65 (I1 #2M1),
46 (H3), 24 (I1 #1), 28 (J1), 43 (J5 #1), 50 (J5 #2M1), 43 (J5 #2M3) and 25 (J5 #3) cells.

f Left, 3-D toroidal parametrization of the 2-D decoded angles for the first third of
baseline trials of the three ensembles of mouse I1 (n = 25, 49 and 65 cells) as indi-
cated in (b) Note that all regions of the torus seem to be visited despite the animal
running along a straight track. Right, unwrapped toroidal position for eachmodule
showing alignment of the unidirectional movement across module during dark
session. g Virtual track position (y-axis) as a function of time (x-axis) colored by the
2-D toroidal position for eachmodule as inb (indicatedby colormap). Bottom, gain
(of optical flow) and contrast values during session. h Violin plot of decoded tor-
oidal path lengths per trial across all animals (y-axis) categorized by gain value (x-
axis, n = 1230 (gain 1), 87 (0.8), 36 (0.7), 23 (0.6) and 80 (0.5) trials, normalized by
mean length at baseline trials. The black line indicates the mean value, and the
dashed lines expected trial length if strictly aligned to the distance on the wheel
(dark green) or to the VR track (cyan). Shading shows trial distribution and gray
lines the max-min range. Source data are provided as a Source Data file.
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through their internal toroidal nature. We propose grid cells and other
cell types with simple topological signatures (e.g., head direction cells
and simple cells in the visual cortex32) are best understood through the
lens of the corresponding activity state spaces and how those interact,
suggesting a shift away from reliance on task variables, and using ideas
from topology in future studies of various neural systems32,55–58.

Methods
Preprocessing of neural recordings
The data were retrieved fromprevious experiments. In Gardner et al.59,
Neuropixels silicon probes60,61 were used to record from the MEC-
parasubiculum of three male Long Evans rats (named ‘R’, ‘S’ and ‘Q’.)
during sleep and free foraging in a square (1.5m× 1.5m) and a wagon-
wheel shaped environment. The spike times (spike sorted using Kilo-
Sort 2.560) of grid cells (defined by clustering of spatial auto-
correlogram in the original publications) in 2 rats (‘R’ and ‘S’; n = 483
and 140 cells) during open field and sleep were used in this study.
Similarly, in ref. 62 Waaga et al. perform Neuropixels recordings from
the MEC of four Long Evans rats during free foraging (in a 175 cm
diameter circular arena) both during darkness and light conditions.
Here, we used the spike times from 186grid cells in rat 26018 (similarly
spike sorted and identified as above).

Each spike time was replaced by a delta function (valued 1 at the
time of firing; 0 otherwise) and temporally convolved with a Gaussian
kernel of σ = 60 ms for topological analyses and 100 ms for clustering
for ‘R’ and ‘S’ and 100 ms and 500 ms for 26018. All delta functions
were summed over, giving a continuous firing rate function. Firing
rates were sampled every 10, 20, and 50 ms (rat 26018, ‘R’ and ‘S’
respectively) for the topological analysis and 100 ms for clustering.
The firing rates were squarely rooted and the neurons clustered into
ensembles and each ensemble was analyzed separately (see ‘Ensemble
detection’; sleep, wagon-wheel maze and open field sessions and
ρ = 0.4 r was used for ‘R’ and ‘S’, and dark session 0.89 r of rat 26018.
τmax was set to 3 s).

Next, the firing rates were speed-filtered at a minimum of 5 and
10 cm s−1 (26018 vs. ‘R’ and ‘S’ respectively), so to remove moments of
inactivity. PCA whitening was then applied to denoise and standardize
the n-dimensional data (n signifying the number of neurons), pro-
jecting the z-scored population vectors to its d = 6 and 8 (26018 vs. ‘R’

and ‘S’) first principal components and dividing by the square root of
the eigenvalues (see34 for a thorough discussion of PCA as a
preprocessing tool).

Due to the computational complexity of computing barcodes, the
size of the point cloud was reduced using a two-step downsampling
scheme (setting ϵ =0.8, κ = 1000 and m = 2200 / 2100 for rats ‘R’ / ‘S’
and ϵ =0.5 and m = 2000 for rat 26018; see ‘Downsampling’). Finally,
PH was applied, using cosine metric and Z47-coefficients (47 was
chosen to not likely divide the torsion subgroup37).

For 3-D visual comparison, UMAP was applied to the PCA-
whitened firing rates of rat ‘R’ (d = 8), using default parameters (num-
ber of neighbors equal to 100) and fitted to both 20681 randomly
drawn samples of the whole grid cell population and same number of
samples of the ensemble activity after first downsampling step
described above. CEBRA was fitted to the same datasets, using 128 in
batch size and either “model_architecture = offset1-model" and cosine
distance or “offset-model-mse" and euclidean distance.

Obenhaus et al.40 performed calcium recordings using a miniature
two-photon miniscope similar to that used in41 from layers II/III of the
MEC in adult male mice freely moving in a 80×80cm2 open field. The
fluorescence traces were processed into calcium events (for details
see Supplementary Information in40). The events of mouse 88529 and
90222, sessions: ‘26fd0fbe1e205255’ (named ‘#1W’), ‘1f20835f09e28706’
(‘#1 OF’), ‘419c1c6b319d0ddf’ (‘#2 W’), ‘5b92b96313c3fc19’ (‘#2 OF’),
‘d5a06b6a7630bb11’ (‘#3 W’), ‘7e888f1d8eaab46b’ (‘#3 OF’), and
’5116e01aa80b6402’, were obtained in the ‘__filtered_spikes’ database
table derived from the MySQL-dump file ‘dump.sql’ (available in63), and
used in the present study.

The ‘filtered_cells’-table was used to get cell IDs with a signal-to-
noise ratio above 3.5 (see Supplementary Information in40).

For each neuron, the events were normalized to 0-1, temporally
convolved with a Gaussian kernel of σ =0.27 s and square rooted.
Ensembles were found using both open field and wheel sessions and
ρ = 0.835 r for mouse 88529 and open field session and 0.91 r for
mouse 90222 and τmax = 1:35 s. The data were speed-filtered at mini-
mum 5 cm s−1 and population vectors with no activity were excluded. A
subsequent preprocessing pipeline as above was then applied with
d = 6 and 4 (mouse 88529 and 90222 respectively), ϵ =0.5 and 0.2, and
m = 1200 and 600.

Fig. 4 | Illustration of 2-D toroidal representations of grid cell activity during
running in 1-D and 2-D environments (left and center) and natural behavior
(right).While studying single cell activity in simple tasksmay reveal specific tuning
to behavioral variables (top row), the population activity of all recorded neurons
together is often difficult to interpret, in this case only recovering the properties of

the task itself (bottom row, the activity covering the geometryof the environment).
Focusing instead on distinct neural ensembles, such as grid cell modules, we can
uncover the intrinsic structure of the neural computations (middle row, toroidal
representation as shown in 1- and 2-D environments in this paper and during
sleep4), that is likely to generalize to natural behavior (right).
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Calcium recordings using a novelminiaturized two-photondevice
(MINI2P) of 3 male and 2 female transgenic mice and 5 male wild-type
mice 12-24 weeks old at the time of surgery41. The implants targeted
either the MEC, hippocampus or visual cortex. Recordings were made
during an open-field task (80 cm2 square box), a ladder-climbing taks
and an escape task and the fluorescence signals processed to calcium
events. Here, only calciumevents found in the ‘NAT.mat’-files ofmouse
97045 day 20210307 (open field session) were accessed from64.
Duplicate cells listed in variable ‘RepeatCell’ of the corresponding
‘NeuronInformation.mat’-file were removed. As the neurons were
recorded in two separate planeswith a temporal offset, the activitywas
interpolated at similar frames using the package ’scipy.stats.interp1d’.
Activity values less than 10−10 were subsequently set to 0 and neurons
with average activity above 10 were excluded in the analysis. This
resulted in 1-hour recordings of n = 350 neurons formouse 97045. The
same pipeline as the calcium recordings described above was used,
with ρ =0.85 r, d = 6, ϵ =0.5, m = 1600.

All above-mentioned experiments were performed in accordance
with the Norwegian Animal Welfare Act and the European Convention
for the Protection of Vertebrate Animals used for Experimental and
Other Scientific Purposes.

Neuropixels recordings of the MEC, restrosplenial cortex and
primary visual cortex were performed by Campbell et al. in 32 female
mice during head-fixed wheel running in darkness and while following
a virtual reality setup (see Fig. 3a). All techniques were approved by the
Institutional Animal Care and Use Committee at Stanford University
School of Medicine. Here, we analyzed the spike times (spike sorted
using Kilosort 2) of a total of 119 sessions (all MEC recordings),
retrieved from65. Each spike time was replaced by a delta function
(valued 1 at the time of firing; 0 otherwise) and temporally convolved
with a Gaussian kernel with σ = 100ms, before summing over all spike
times (for each neuron), giving a continuous firing rate function. Firing
rates were sampled every 10ms (100ms for clustering) and square
rooted. Neurons not determined as ‘good’ (based on "contamination,
signal to noise ratio and firing rate", see Method details in14) in one
recording or neurons withmean firing rates below0.05Hz or above 10
Hz were excluded. The remaining neurons were then clustered (see
‘Ensemble detection’ using ρ =0.46 r and τmax =0:9 s, using all avail-
able recordings – baseline, dark and gain/contrast sessions), and a
similar pipeline as above was used, with d = 7, ϵ = 0.7 andm = 1200 for
all ensembles.

Peyrache et al. performed electrophysiological recordings from
the anterodorsal thalamic nucleus and postsubiculum of 5 adult male
and 2 female mice using Neuronexus silicon probes43. All experiments
were approved by the Institutional Animal Care and Use Committee of
New York University Medical Center. Here, we applied a similar fra-
mework as above the spike times of mouse 28 day 140313 (n = 62
neurons, spike sorted using KlustaKwik66) found at67. The data con-
tained 192-minute recording during wakefulness, rapid-eyemovement
sleep (REM) and SWS. SWS activity was analyzed similarly to that
described above. First, delta functions (one per spike) were convolved
with aGaussian kernel of σ = 1 s forwake andREMsleep recordings and
σ = 0.5 s for SWS sleep. Population vectors were then sampled at
300 ms (for topological analysis) and 100 ms (for clustering) intervals
and subsequently square-rooted. Neurons were clustered using all
sessions and ρ =0.6 r and τmax = 3 s. Parameters were set to
ϵ =0.1, d = 3,m = 700, resulting in barcodes indicating ring topology
(Supplementary Fig. 1a.iii).

Downsampling
To reduce computational complexity and remove outliers in the
dataset, the point cloud was downsampled before applying persistent
homology. First, a ‘radial’ downsampling scheme was performed
(alike1) as follows. The point with maximum absolute summed value
was chosen as the initial landmark point, and the Euclidean distance to

the rest of the point cloud was computed. Points closer than ϵ were
discarded and the remaining closest point to all sampled landmark(s)
(defined as the maximum distance to all landmarks) was then picked.
This process was iterated until exhaustion, vastly reducing the size of
the point cloud (leaving approx. 30–50% of the points). While this
method preserves the spread of the data, it is prone to keeping out-
liers. Thus, a second, density-based downsampling method was used
(‘Fuzzy downsampling’ as in4), described in the following.

Given a point cloud X and neighborhood sets Nx, one for each
x∈X (containing the κ closest neighbors), define, for each x, the
(membership) function μx:X→ I, for I = [0, 1] by

μxðyÞ= exp �dxðx,yÞ
σx

� �
, ð1Þ

where σx is found by letting
P

y2Nx
μxðyÞ= log2ðkÞ. The global mem-

bership function μ(x, y) was then constructed as

μðx,yÞ=μxðyÞ+μyðxÞ � μxðyÞμyðxÞ: ð2Þ

Initializing X0 as an empty set, a subsample XN⊂X was given
recursively as follows.

For each iteration, n >0, define a function Fn as the summed
membership strength for each point in the residual point cloud
x 2 X0 =X n Xn, given by

FnðxÞ=Σy2X0μðx,yÞ=Σy2Xμðx,yÞ � Σy2Xn
μðx,yÞ: ð3Þ

The (n + 1)-th point is then given by:

xn+ 1 = xmax FnðxÞ: ð4Þ

In other words, themethod iteratively keeps the point with the highest
probability of being in the neighborhoods of all other points.

Defining μðx,yÞ= expð� dðx,yÞ
σy

Þ, there is a close relation to mean-
shift clustering68 and the objective function used in the topological
denoising technique introduced by Kloke and Carlsson36. The latter
uses this function to translate a subsample of points to topologically
relevant positions, describing it as a weighted difference of two
Gaussian kernel density estimators, one for the dataset X, serving to
push the subsample, XN, towards the densest regions of X and one for
the subsample itself, repelling the points away from each other.
Similarly, the fuzzy downsampling scheme picks points from the
densest regions ofX, but steers away from the regions already chosen.

Persistent Homology
The shape of the neural data was characterized using persistent
cohomology. Persistent cohomology results in the same barcodes as
persistent homology (which is described below), but cohomology was
necessary for decoding37.

The homology of a topological space, T, is a sequence of vector
spaces Hn(T), for all natural numbers n 2 N and the rank of Hn(T)
represents the number of n-dimensional holes69. A zero-dimensional
hole describes a connected component, a 1-dimensional hole a circle, a
2-dimensional hole a void, and so on for higher dimensions. The
homology of a point cloud,X, only returns a count of the points. Thus,
to elicit non-trivial homology reflecting the underlying space the
dataset is sampled from, combinatorial spaces called Rips complexes,
Tτ(X), are associated to thedata. TheRips complexes dependona scale
τ, commonly describing a dissimilarity relation between the points in
the point cloud. Varying τ gives rise to an ordered sequence of com-
plexes known as the Rips filtration:

Tτ0
� T τ1

� . . . � T τn
, ð5Þ
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where τ0 < τ1 <… < τn. Applying homology to the Rips filtration gives a
sequence of vector spaces and maps induced by inclusion in each
dimension, n:

HnðT τ0
ðXÞÞ ! HnðT τ1

ðXÞÞ ! . . . ! HnðTτn
ðXÞÞ: ð6Þ

The totality of sequences is called persistent homology, PH*(X), and
may be decomposed to a sum of elementary persistence intervals,
I([bi, di)):

PHnðXÞffi
M

i
Ið½bi,diÞÞ: ð7Þ

Here,bi < di gives the scales forwhich ann-dimensional element hole in
PHn(X) first appears and later disappears. Persistent homology may
thus be represented as bars starting at bi and ending at di. The col-
lection of such bars (across all dimensions) is called the barcode.

To obtain a shuffled distribution of the barcodes, the activity of
each neuron was independently rolled a random amount of time. The
same pipeline was then applied to the shuffled population activity to
give a barcode, and the process was repeated 100 times with
different seeds.

We used Ripser70,71 for all computations of persistent
cohomology.

Cohomological coordinatization
Circular coordinatization, as introduced by De Silva et al.37, was per-
formed to allow studying the internal dynamics of the population
activity, This has previously beenused to studyheaddirection andgrid
cell activity1,4 and is motivated by a theoretical correspondence
between 1-D cohomology and circle-valued maps of a topological
space. By computing maps associated with the n longest-lived H1-bars
in the barcode and the Rips complexes at τ = b + 0.99 ⋅ (d − b) (see
Supplementary Fig. 10b,c for how this choice affects the decoding),
where b and d correspond to the birth and death of the chosen bars, n-
D toroidal coordinates were computed for all vertices in the Rips
complex (note, n = 1 gives circular coordinates). Furthermore, we
decorated the circular coordinates (for n ≥ 2), as introduced by Scoc-
cola et al.72.

The vertices correspond to the m points in the downsampled
point cloud, thus, only m toroidal coordinates are obtained. To
extrapolate these to the rest of the original point cloudor to a different
session, the coordinates were first weighted by the values of the cor-
responding points, giving a distribution on the torus for each dimen-
sion. The toroidal coordinates were then computed, for each time
step, by weighing the distribution by the corresponding value of each
point in the full point cloud and finding the mass centers of the sum-
med weighted distributions.

In visualizing the decoded toroidal positions as a function of VR-
track (Fig. 3h and Supplementary Fig. 5), the coordinates were
smoothed temporally with a Gaussian filter of σ = 0.5 s.

For the head direction ensemble, SWS was used to decode both
awake and sleep data. To determine alignment with the recorded head
direction, the decoded angles were reoriented by testing clockwise
and anti-clockwise orientation, and the origin was fixed by minimizing
the mean difference to the recorded head direction angles during
wake sessions.

Rate maps and autocorrelograms
Spatial positions in the open field were binned into a 302 square grid,
generating spatial rate maps. The mean neural activity in each bin was
computed and spatially convolvedwith aGaussian filter ofwidth 2 bins
(during which non-visited bins were assigned the mean value of the
visited bins).

1D spatial autocorrelograms were computed for the linearized
positions on the running wheel and the VR track, using 1 and 4 cm

spatial bins, respectively. Autocorrelograms for each neuron were
computed by finding the mean activity in each spatial bin and taking
the dot product between this and a zero-padded copy of it, iteratively
shifting the latter up to 300 bins.

Toroidal firing rate maps were calculated in the same way as the
OF arena, first binning the toroidal surface into a square grid of
12° × 12° bins and computing the average activity in each position
bin. To spatially smooth the toroidal rate map, the 60° angle of
the toroidal axes was addressed by first shifting the bins horizontally
by a length equal to half the bins’ vertical position. To address
boundary conditions, nine copies of the shifted rate map were
then tiled and spatially smoothed as the OF rate maps. The
middle tile was then extracted and shifted back. For visualizations,
the resulting ratemapswere given 15° shear angles both horizontally
and vertically.

The angular tuning curveswere computed using 60 bins andmax-
normalized.

For 3-D toroidal tuning, radial downsampling of the coordinates
(ϵ =0.5) was first used to obtain spherical bins, and each center point
was colored by the mean value for each bin.

Ensemble detection
The electrophysiological data were clustered into groups of neurons
through the time-lag cross-correlation values between pairs of neu-
rons. This was computed, as in73, for the entire population recording:

ct
0
ij =

Z T

0
sti s

t + t0
j dt, ð8Þ

where sti is the firing rate of neuron i at time t, converted from spike
times as described in ‘Preprocessing of entorhinal recordings’, using a
Gaussian kernel of σ =0.3 s and sampled every 30 ms. T denotes the
total duration of the recording. The inverse, normalized cross-
correlation was then given as (with τmax as given for each recording
above):

Cij =
minτ cτij ,c

τ
ji

h iτmax

0

maxτ cτij ,c
τ
ji

h iτmax

0

: ð9Þ

To emphasize that neurons within amodule should have stronger
intra-correlation than inter-correlation, we take the pairwise correla-
tion distance of each neuron’s squared cross-correlation with all other
neurons (averaged over all recordings of the samepair of neurons) and
perform agglomerative clustering with average linkage on this, using ρ
as distance threshold (see above for values of ρ). Ensembles containing
fewer than 19 neurons were disregarded, having too few neurons to
confidently interpret the toroidal structure (see Supplementary
Fig. 4e in4).

Hexagonal torus detection
To determine whether the decoded toroidal coordinates suggested a
hexagonal torus in the VR-sessions, firing rates and rate maps were
modeled for each neuron based on the analytical heat distribution on
both a hexagonal and a square torus (Supplementary Fig. 3). The heat
kernel on the hexagonal torus with point source at the origin is given
as:

Hhexðx,y; tÞ=
1
t

X
ðk,lÞ2Z2

exp�π1
t

2ffiffi
3

p ððk + xÞ2 + ðk + xÞðl + yÞ+ ðl + yÞ2Þ, ð10Þ
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describing the temperature for (normalized) toroidal positions
(x, y)∈ [0, 1]2 after time t, while

Hsqrðx,y; tÞ=
1
t

X
ðk,lÞ2Z2

exp�π1
tððk + xÞ

2 + ðl + yÞ2Þ, ð11Þ

is the heat kernel on the square torus44. The fit of the original toroidal
ratemaps (generated by computing themean activity in 102 bins of the
m toroidal coordinates found before extrapolation, see ‘Cohomologi-
cal coordinatization’) for the VR data to a toroidal point source heat
distribution was tested as follows.

First,m toroidal coordinateswere sampledwith even spacing. The
origin of the sampled torus was shifted to each cell’s peak activity on
the torus (basedon radial downsampling of themoriginal coordinates;
see ‘Comparisonof toroidal tuning’), andusing t =0.1, k, l∈ { − 1, 0, 1} in
the above equations, allowed computing temperature estimates for
each toroidal position. The heat distribution on the sampled torus was
defined as the mean temperature in 102 square bins. The linear corre-
lation between the heat distribution and the firing rate maps asserted
the hypothesized hexagonal toroidal tuning of each neuron.

A hexagonal torus permits three periodic axes, and it was not
known a priori pair of axes the decoded torus potentially described.
However, this is reflected in the left vs right 45° angular shift of the
distribution, so the reversed orientation was also tested by reversing
one of the sampled coordinates. The maximum correlation between
the modeled rate maps and the original one was used in the assess-
ment and compared with a square torus rate map similarly modeled.
We required the median correlation of an ensemble to exceed 0.6 and
that of the square torus to be classified as hexagonal toroidal. Note,
that this heuristic eschews the computational problem of doing sta-
tistics on barcodes74.

Replacing the sampled toroidal coordinates with the decoded
toroidal positions in computing the heat kernel, Hhex, gave time-
varying heat models for the firing rate of each neuron. This allowed
computing spatial autocorrelograms for idealized hexagonal toroidal
tuning, visually matching the original firing rate counterpart (Supple-
mentary Fig. 3d).

Toroidal linearization and path length
The decoded coordinates were smoothed with a 0.2 s Gaussian kernel
and unwrapped onto a flat space to simplify the analysis of toroidal
trajectories. This was done by iteratively assessing whether the next
toroidal coordinate crossed either of the two circular origins (one for
each dimension). All combinations (of 0 or 1 crossings per circle) were
tested, and the next point was chosen to be the point closest to the
previous one, as measured by the Euclidean metric.

To assess the influence of gain manipulation on the internal
representation, the lengths of the linearized toroidal trajectories for
each trial were estimated. First, the positions were fitted using linear
regression for each axis and only trajectories with a fit of > 0.5 r in both
axes were included. The length of each trial was then assessed as the
Euclidean distance between the start and end points of the 2-D
linear fit.

Toroidal alignment
When decoding the toroidal coordinates, the origin and orientation
are arbitrarily chosen. Thus, to compare these across sessions, the
decoded toroidal coordinates were first pairwise reoriented. More-
over, it was necessary to account for the hexagonal torus allowing for
three axes 60 or 120 degrees apart (Supplementary Fig. 10a).

For eachalignment, one set of toroidal coordinateswasheldfixed,
and the goal was obtaining the same orientation and axes for a second
set (i.e., the coordinates obtained by decoding the first session using
the torus found in the second session). All possible combinations of
orientations and axes were tested. For each combination, the

coordinates were temporally smoothed with a 1-D Gaussian filter of
width 200ms and the mean angular difference was then computed
and the combination which minimized this difference was chosen.

To align the toroidal coordinates of the ensembles with 2-D OF
recordings, the combination of axes and orientation which visually
lookedmost similar across differentmice and sessions when decoding
the OF data and plotting the mean toroidal coordinate in 302 square
bins of the OF coordinates (Fig. 2a), was chosen.

Comparison of toroidal tuning
Peak toroidal positions were compared across sessions to assess the
conservation of toroidal tuning. The preferred locations were com-
puted as the mass center of each neuron’s activity distribution on the
torus (162 bins), given by:

Tpeak =arctan2
P

i sinϕ � siP
isi

,
P

i cosϕ � siP
isi

� �
, ð12Þ

where si is the mean activity in the i-th toroidal bin ϕi.

Continuous attractor network simulations
To study the toroidal structure of grid cell continuous attractor net-
work (CAN) models, firing rate activity was simulated using three
noiseless CAN models (Supplementary Fig. 3a).

First, a 56 × 44 grid cell network with purely inhibitory con-
nectivity was simulated as proposed in75. Animal behavior was mod-
eled by using the first 1000 s of the recorded trajectoryof rat ‘R’during
OF foraging session day 1 found in4. The spatial positions were inter-
polated at 2 ms time steps and the speed s(t) and head direction ϕ(t)
were computed as a function of the difference in position between
each time step. The firing rate for time step tn+1 was given as:

f tn+ 1
= f tn +

1
ρ

�f tn + ½ J + f tn �W + γsðtnÞ cosðϕðtnÞ � ϕÞ�
+

� �
, ð13Þ

where […]+ is the Heaviside function,ϕ is the preferred head direction
and parameters were given as J = 1, γ =0.15, l = 2,R = 20,W0 = −0.01
and ρ = 10. The activity pattern was initialized to random and subse-
quently stabilized by running 2000 iterations of the above equation
with no movement. The firing rate was set to 0 if below 0.0001 and
resampled at 10 ms time steps.

Next, the twisted torus model by Guanella et al.45 was used to
simulate a 20 × 20 grid cell network for a simulated random walk in a
square box. The parameter definitions and code can be found in the
open-source implementation by Santos Pata (https://github.com/
DiogoSantosPata/gridcells). Here, we used 5000 time frames and
‘grid_gain=0.06’.

Finally, an untwisted version of the previous model created
square grid cell patterns for a 10 × 10 network. This was simulated
using a Python translation of the Matlab implementation of Zilli76. 20
ms time steps were used, and a total duration of 295 s was simulated,
following an OF trajectory recorded by Hafting et al.7, provided in the
same code repository.

Data analysis and statistics
All data analyses were performed with custom-written scripts in
Python 3.9.12. The following open-source Python packages were used:
umap (version 0.5.5), ripser (0.6.4), numba (0.58.1), scipy (1.11.4),
numpy (1.26.2), scikit-learn (0.24.2), matplotlib (3.8.2), h5py (3.6.0),
gtda (0.6.0), cv2 (4.8.1), pandas (1.4.2) and datajoint (0.13.5), IPython
(8.2.0), Cebra (0.3.1).

In addition, open-source softwares Jupyter notebook 6.4.8 and
MySQL 5.7 have been used.
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The analyses have mostly been performed on a Macbook ProM2,
macOS Ventura (13) but for CEBRA computations, which were per-
formed using a Lenovo Thinkpad, Intel i7, Windows 11.

The heaviest computational burdens were performed on resour-
ces provided by the NTNU IDUN/EPIC computing cluster77 and that of
the Department of Mathematical Sciences.

All statistical tests were one-sided.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are publicly shared by: Giocomo et al.65

athttps://plus.figshare.com/articles/dataset/VR_Data_Neuropixel_
supporting_Distance-tuned_neurons_drive_specialized_path_
integration_calculations_in_medial_entorhinal_cortex_/15041316; Zong
et al.64 at https://archive.sigma2.no/pages/public/datasetDetail.jsf?id=
10.11582/2022.00008; Obenhaus et al.63 athttps://archive.sigma2.no/
pages/public/datasetDetail.jsf?id=10.11582/2022.00005; Gardner
et al.59 at https://figshare.com/articles/dataset/Toroidal_topology_of_
population_activity_in_grid_cells/16764508; Peyrache et al.67 at https://
crcns.org/data-sets/thalamus/th-1and Waaga et al.62 at https://zenodo.
org/records/6200517. Source data are provided with this paper.

Code availability
The code used in this article can be found at: https://github.com/
erikher/Uncovering-spatial-representations-in-large-scale-recordings/78.
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