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Quantitative models of sequence-function relationships are ubiqui-
tous in computational biology, e.g., for modeling the DNA binding of
transcription factors or the fitness landscapes of proteins. Interpret-
ing these models, however, is complicated by the fact that the values
of model parameters can often be changed without affecting model
predictions. Before the values of model parameters can be meaning-
fully interpreted, one must remove these degrees of freedom (called
“gauge freedoms” in physics) by imposing additional constraints (a
process called “fixing the gauge”). However, strategies for fixing the
gauge of sequence-function relationships have received little atten-
tion. Here we derive an analytically tractable family of gauges for a
large class of sequence-function relationships. These gauges are
derived in the context of models with all-order interactions, but an
important subset of these gauges can be applied to diverse types of
models, including additive models, pairwise-interaction models, and
models with higher-order interactions. Many commonly used gauges
are special cases of gauges within this family. We demonstrate the
utility of this family of gauges by showing how different choices of
gauge can be used both to explore complex activity landscapes and
to reveal simplified models that are approximately correct within lo-
calized regions of sequence space. The results provide practical
gauge-fixing strategies and demonstrate the utility of gauge-fixing for
model exploration and interpretation.
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Introduction1

One of the central challenges of biology is to understand2

how functionally relevant information is encoded within the3

sequences of DNA, RNA, and proteins. Unlike the genetic4

code, most sequence-function relationships are quantitative in5

nature, and understanding them requires finding mathematical6

functions that, upon being fed unannotated sequences, return7

values that quantify sequence activity (1). Multiplex assays8

of variant effects (MAVEs), functional genomics methods,9

and other high-throughput techniques are rapidly increasing10

the ease with which sequence-function relationships can be11

experimentally studied. And while quantitative modeling12

efforts based on these high-throughput data are becoming13

increasingly successful, in that they yield models with ever-14

increasing predictive ability, major open questions remain15

about how to interpret both the parameters (2–12) and the16

predictions (13–17) of the resulting models. One major open17

question is how to deal with the presence of gauge freedoms.18

Gauge freedoms are directions in parameter space along19

which changes in model parameters have no effect on model20

predictions (18). Not only can the values of model parameters21

along gauge freedoms not be determined from data, differences22

in parameters along gauge freedoms have no biological meaning23

even in principle. Many commonly used models of sequence-24

function relationships exhibit numerous gauge freedoms (19–25

35), and interpreting the parameters of these models requires26

imposing additional constraints on parameter values, a process 27

called “fixing the gauge”. 28

The gauge freedoms of sequence-function relationships are 29

currently most completely understood in the context of ad- 30

ditive models [commonly used to describe transcription fac- 31

tor binding to DNA (19, 22, 35)] and pairwise-interaction 32

models [commonly used to describe proteins (20, 21, 23–34)]. 33

Recently, some gauge-fixing strategies have been described 34

for all-order interaction models, again in the context of pro- 35

tein sequence-function relationships (30, 31, 34). However, a 36

unified gauge-fixing strategy applicable to diverse models of 37

sequence-function relationships has yet to be developed. 38

Here we provide a general treatment of the gauge fixing 39

problem for sequence-function relationships, focusing on the 40

important case where the set of gauge-fixed parameters form 41

a vector space, thus ensuring that differences between vectors 42

of gauge-fixed parameter values are directly interpretable. We 43

first demonstrate the relationship between these linear gauges 44

and L2 regularization on parameter vectors, and then derive 45

a mathematically tractable family of gauges for the all-order 46

interaction model. Importantly, a subset of these gauges–the 47

“hierarchical gauges”–can be applied to diverse lower-order 48

models (including additive models, pairwise-interaction mod- 49

els, and higher-order interaction models) and include as special 50

cases two types of gauges that are commonly used in practice 51

[“zero-sum gauges” (23, 28) and “wild-type gauges” (9, 23, 33)]. 52

We then illustrate the properties of this family of gauges by 53

analyzing two example sequence-function relationships: a simu- 54

lated all-order interaction landscape on short binary sequences, 55

and an empirical pairwise-interaction landscape for the B1 do- 56

main of protein G (GB1). The GB1 analysis, in particular, 57

shows how different hierarchical gauges can be used to explore, 58

simplify, and interpret complex functional landscapes. A com- 59

panion paper (36) further explores the mathematical origins of 60

gauge freedoms in models of sequence-function relationships, 61

and shows how gauge freedoms arise as a consequence of the 62

symmetries of sequence space. 63

Results 64

Preliminaries and background. In this section we review how 65

gauge freedoms arise in commonly used models of sequence- 66

function relationships, as well as strategies commonly used 67

to fix the gauge. In doing so, we establish notation and 68

concepts that are used in subsequent sections, as well as in 69

our companion paper (36). 70

Linear models. We define quantitative models of sequence- 71

function relationships as follows. Let A denote an alphabet 72
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comprising α distinct characters (written c1, . . . , cα), let S73

denote the set of sequences of length L built from these char-74

acters, and let N = αL denote the number of sequences in75

S. A quantitative model of a sequence-function relationship76

(henceforth “model”) is a function f(s; θ⃗) that maps each se-77

quence s in S to a real number. The vector θ⃗ represents the78

parameters on which this function depends and is assumed to79

comprise M real numbers. sl denotes the character at position80

l of sequence s. We use l, l′, etc. to index positions (ranging81

from 1 to L) in a sequence and c, c′, etc. to index characters82

in A.83

A linear model is a model that is a linear function of θ⃗.84

Linear models have the form85

f(s; θ⃗) = θ⃗ · x⃗(s) =
M∑

i=1

θixi(s), [1]86

where x⃗(·) is a vector of M distinct sequence features and each87

sequence feature xi(·) is a function that maps sequences to the88

real numbers. We refer to the space RM in which x⃗(·) lives as89

feature space, and the specific vector x⃗(s) as the embedding90

of sequence s in feature space. We use S to denote the vector91

space spanned by the set of embeddings x⃗(s) for all sequences92

s in S.93

One-hot models. One-hot models are linear models based on94

sequence features that indicate the presence or absence of95

specific characters at specific positions within a sequence (1).96

Such models play a central role in scientific reasoning concern-97

ing sequence-function relationships because their parameters98

can be interpreted as quantitative contributions to the mea-99

sured function due to the presence of specific biochemical100

entities (e.g. nucleotides or amino acids) in specific positions101

in the sequence. These one-hot models include additive mod-102

els, pairwise-interaction models, all-order interaction models,103

and more. Additive models have the form104

fadd(s) = θ0x0(s) +
∑

l

∑
c

θc
l xc

l (s), [2]105

where x0(s) is the constant feature (equal to one for every106

sequence s) and xc
l (s) is an additive feature (equal to one if107

sequence s has character c at position l and equal to zero108

otherwise). Pairwise interaction models have the form109

fpair(s) = θ0x0(s)+
∑

l

∑
c

θc
l xc

l (s)+
∑
l<l′

∑
c,c′

θcc′

ll′ xcc′

ll′ (s), [3]110

where xcc′

ll′ (s) is a pairwise feature (equal to one if s has111

character c at position l and character c′ at position l′, and112

equal to zero otherwise). All-order interaction models include113

interactions of all orders, and are written114

fall(s) =
L∑

K=0

∑
l1<...<lK

∑
c1,...,cK

θc1...cK
l1...lK

xc1...cK
l1...lK

(s), [4]115

where xc1c2...cK
l1l2...lK

(s) is a K-order feature (equal to one if s has116

character ck at position lk for all k, and equal to zero otherwise;117

K = 0 corresponds to the constant feature).118

Gauge freedoms. Gauge freedoms are transformations of model 119

parameters that leave all model predictions unchanged. The 120

gauge freedoms of a general sequence-function relationship 121

f(·, ·) are vectors g⃗ in RM that satisfy 122

f(s; θ⃗) = f(s; θ⃗ + g⃗) for all s ∈ S. [5] 123

For linear models, gauge freedoms g⃗ satisfy 124

Xg⃗ = 0⃗, [6] 125

where X is the N × M design matrix having rows x⃗(s) for 126

s ∈ S. In linear models, gauge freedoms thus arise when 127

sequence features (i.e., the columns of X) are not linearly 128

independent. In such cases, the space S spanned by sequence 129

embeddings is a proper subspace of RM , so is the space G of 130

gauge freedoms, and G is orthogonal to S. 131

Each linear relation between multiple columns of X yields 132

a gauge freedom. For example, additive models have L gauge 133

freedoms arising from the L linear relations, 134

x0(s) =
∑

c

xc
l (s), [7] 135

for all positions l. Pairwise models have L gauge freedoms 136

arising from the L additive model linear relations in Eq. (7), 137

and
(

L
2

)
(2α − 1) additional gauge freedoms arising from the 138

linear relations 139

xc
l (s) =

∑
c′

xcc′

ll′ (s) and xc′

l′ (s) =
∑

c

xcc′

ll′ (s) [8] 140

for all characters c, c′ and all positions l and l′, with l < l′ (see 141

SI Sec. 2 for details). More generally, the gauge freedoms of 142

one-hot models arise from the fact that summing any K-order 143

feature xc1...cK
l1...lK

over all characters ck at any chosen position 144

lk yields a feature of order K − 1. 145

Parameter values depend on choice of gauge. Gauge freedoms pose 146

problems for the interpretation of model parameters because 147

different choices of model parameters can give the exact same 148

predictions when they are present. Thus, unless constraints 149

are placed on the values of allowable parameters, individual 150

parameters will have little biological meaning when viewed in 151

isolation. To interpret model parameters, one therefore needs 152

to adopt constraints that eliminate gauge freedoms and, as a 153

result, make the values of model parameters unique. These 154

constraints are called the “gauge” in which parameters are 155

expressed, and this process of choosing constraints is called 156

“fixing the gauge”. There are many different gauge-fixing 157

strategies. For example, Fig. 1 shows an additive model of 158

the DNA binding energy of CRP [an important transcription 159

factor in Escherichia coli (37)] expressed in three different 160

choices of gauge. 161

Fig. 1A shows parameters expressed in the “zero-sum gauge” 162

(23, 28) [also called the “Ising gauge” (28), or the “hierarchical 163

gauge” (9)]. In the zero-sum gauge, the constant parameter 164

is the mean sequence activity and the additive parameters 165

quantify deviations from this mean activity. The name of the 166

gauge comes from the fact that the additive parameters at 167

each position sum to zero. The zero-sum gauge is commonly 168

used in additive models of protein-DNA binding (35, 38–43). 169

As we will see, zero-sum gauges are readily defined for models 170

with pairwise and higher-order interactions as well. 171

p. 2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.12.593772doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.12.593772
http://creativecommons.org/licenses/by/4.0/


Fig. 1. Choice of gauge impacts model parameters. (A-C) Parameters, expressed in three different gauges, for an additive model describing the (negative) binding energy of the
E. coli transcription factor CRP to DNA. Model parameters are from (56). In each panel, additive parameters, θc

l , are shown using both (top) a heat map and (bottom) a
sequence logo (57). The value of the constant parameter, θ0, is also shown. (A) The zero-sum gauge, in which the additive parameters at each position sum to zero. (B) The
wild-type gauge, in which the additive parameters at each position quantify activity differences with respect to a wild-type sequence, swt. The wild-type sequence used here
(indicated by dots on the heat map) is the CRP binding site present at the E. coli lac promoter. (C) The maximum gauge, in which the additive parameters at each position
quantify differences with respect to the optimal character at that position.

Fig. 1B shows parameters expressed in the “wild-type gauge”172

(9, 23, 33) [also called the “lattice-gas gauge” (28), or the “mis-173

match gauge” (35)]. In the wild-type gauge, the constant174

parameter is equal to the activity of a chosen wild-type se-175

quence (denoted swt), and additive parameters are the changes176

in activity that result from mutations away from the wild-type177

sequence. The wild-type gauge is commonly used to visualize178

the results of mutational scanning experiments on proteins179

(44–48) or on long DNA regulatory sequences (49–54). As we180

will see, wild-type gauges are also readily defined for models181

with pairwise and higher-order interactions.182

Fig. 1C shows parameters expressed in what we call the183

“maximum gauge”. In the maximum gauge, the constant pa-184

rameter is equal to the activity of the highest-activity sequence,185

and additive parameters are the changes in activity that re-186

sult from mutations away from the highest-activity sequence.187

The maximum gauge is less common in the literature than188

the zero-sum and the wild-type gauge, but has been used in189

multiple publications (55, 56).190

Gauge spaces. We now turn our attention to strategies for fixing191

the gauge. For every parameter vector θ⃗ in RM , there is a192

corresponding “gauge orbit” defined by the set of vectors that193

can be obtained from θ⃗ by adding a vector g⃗ in the space194

of gauge freedoms G. We remove the gauge freedoms of a195

model (a process called “fixing the gauge”) by restricting valid196

parameter vectors to a specified “gauge space” Θ, a subset of197

RM that intersects the gauge orbit of each possible parameter198

vector θ⃗ at exactly one point. That one point, denoted by199

θ⃗fixed, is called the “gauge-fixed” value of θ⃗.200

For any model of a sequence-function relationship with201

gauge freedoms, there are an infinite number of possible choices202

for the gauge space Θ. Fig. 2 illustrates the three gauge spaces203

corresponding to the three different gauges (zero-sum, wild- 204

type, and maximum) used in Fig. 1. In the zero-sum gauge 205

(Fig. 2A), the α additive parameters at each position are 206

restricted to a linear subspace of dimension α − 1 in which the 207

sum of the parameters is zero. In the wild-type gauge (Fig. 208

2B), the additive parameters at each position are restricted 209

to a linear subspace in which the parameters that contribute 210

to the activity of the wild-type sequence are zero. In the 211

maximum gauge (Fig. 2C), the additive parameters at each 212

position are restricted to a nonlinear subspace in which all 213

parameters are less than or equal to zero and, at every point 214

in the subspace, at least one parameter is equal to zero. 215

Linear gauges. Here and throughout the rest of this paper we 216

focus on linear gauges, i.e., choices of Θ that are linear sub- 217

spaces of feature space (as in Fig. 2A,B). Linear gauges are 218

the most mathematically tractable family of gauges. Linear 219

gauges also have the attractive property that the difference 220

between any two parameter vectors in Θ is also in Θ. This 221

property makes the comparison of models within the same 222

gauge straight-forward. 223

Parameters can be fixed to any chosen linear gauge via a 224

corresponding linear projection. Formally, for any linear gauge 225

Θ there exists an M ×M projection matrix P that projects any 226

vector θ⃗init along the gauge space G to an equivalent vector 227

θ⃗fixed that lies in Θ, i.e. 228

θ⃗fixed = P θ⃗init. [9] 229

See SI Sec. 3 for a proof. We emphasize that P depends on 230

the choice of Θ, and that P is an orthogonal projection only 231

for the specific choice Θ = S. 232

Parameters can also be gauge-fixed through a process of 233

constrained optimization. Let Λ be any positive-definite M × 234
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Fig. 2. Geometry of gauge spaces for additive one-hot models. (A-C) Geometric representation of the gauge space Θ to which the additive parameters at each position l are
restricted in the corresponding panel of Fig. 1. Each of the four sequence features (θA

l , θC
l , θG

l , and θT
l ) corresponds to a different axis. Note that the two axes for θG

l and θT
l

are shown as one axis to enable 3D visualization. Black and gray arrows respectively denote unit vectors pointing in the positive and negative directions along each axis. G

indicates the space of gauge transformations.

M matrix, and let y⃗ = Xθ⃗init be the N -dimensional vector of235

model predictions on all sequences. Then Λ specifies a unique236

gauge-fixed set of parameters that preserves y⃗ via237

θ⃗fixed = argmin
θ⃗ : Xθ⃗=y⃗

∥θ⃗∥2
Λ, where ∥θ⃗∥2

Λ = θ⃗⊤Λθ⃗. [10]238

The resulting gauge space comprises the set of vectors that239

minimize the Λ-norm in each gauge orbit. The corresponding240

projection matrix is241

P = Λ−1/2(XΛ−1/2)+X, [11]242

where ‘+’ indicates the Moore-Penrose pseudoinverse. See SI243

Sec. 3 for a proof. In what follows, the connection between244

the penalization matrix Λ and the projection matrix P will be245

used to help interpret the constraints imposed by the gauge246

space Θ.247

One consequence of Eq. (10) is that parameter inference248

carried out using a positive-definite L2 regularizer Λ on model249

parameters will result in gauge-fixed model parameters in the250

specific linear gauge determined by Λ (see SI Sec. 3). While it251

might then seem that L2 regularizing parameter values during252

inference solves the gauge fixing problem, it is important253

to understand that regularizing during model inference will254

also change model predictions, whereas gauge-fixing proper255

influences only the model parameters while keeping the model256

predictions fixed. In addition, we show in SI Sec. 3 that, for any257

desired positive-definite regularizer on model predictions and258

choice of linear gauge Θ, we can construct a positive-definite259

penalization matrix for model parameters Λ that imposes the260

desired regularization on model predictions and yields inferred261

parameters in the desired gauge. Thus while L2 regularization262

during parameter inference can simultaneously fix the gauge263

and regularize model predictions, the regularization imposed264

on model predictions does not constrain the choice of gauge.265

Unified approach to gauge fixing. We now derive strategies for266

fixing the gauge of the all-order interaction model. We first267

introduce a geometric formulation of the all-order interaction268

model embedding. We then construct a parametric family of269

gauges for the all-order interaction model, and derive formulas270

for the corresponding projection and penalizing matrices. Next,271

we highlight specific gauges of interest in this parametric272

family. We focus in particular on the “hierarchical gauges,”273

which can be applied to a variety of commonly used models274

in addition to the all-order interaction model. The results 275

provide explicit gauge-fixing formulae that can be applied to 276

diverse quantitative models of sequence-function relationships. 277

All-order interaction models. To aid in our discussion of the all- 278

order interaction model [Eq. (4)], we define an augmented 279

alphabet A′ = {∗, c1, . . . , cα}, where c1, . . . , cα are the char- 280

acters in A and ∗ is a wild-card character that is interpreted 281

as matching any character in A. Let S ′ denote the set of 282

sequences of length L comprising characters from A′. For each 283

augmented sequence s′ ∈ S ′, we define the sequence feature 284

xs′ (s) to be 1 if a sequence s matches the pattern described 285

by s′ and to be 0 otherwise. In this way, each augmented 286

sequence s′ serves as a regular expression against which bona 287

fide sequences are compared. 288

Assigning one parameter θs′ to each of the M = (α + 1)L
289

augmented sequences s′, the all-order interaction model can 290

be expressed compactly as 291

fall(s; θ⃗) =
∑

s′∈S′

θs′ xs′ (s). [12] 292

In this notation, the constant parameter θ0 is written θ∗···∗, 293

each additive parameter θc
l is written θ∗···c···∗, each pairwise- 294

interaction parameter θcc′

ll′ is written θ∗···c···c′···∗, and so on. 295

(Here c occurs at position l, c′ occurs at position l′, and · · · 296

denotes a run of ∗ characters). We thus see that augmented 297

sequences provide a convenient way to index the features and 298

parameters of the all-order interaction model. 299

Next we observe that xs′ can be expressed in a form that 300

factorizes across positions. For each position l, we define 301

x∗
l (s) = 1 for all sequences s and take xc1

l , . . . , xc1
l to be the 302

standard one-hot sequence features. xs′ can then be written 303

in the factorized form, 304

xs′ (s) =
L∏

l=1

x
s′

l
l (s). [13] 305

From this it is seen that the embedding for the all-order 306

interaction model, x⃗all(s), can be formulated geometrically as 307

a tensor product: 308

x⃗all(s) =
L⊗

l=1

x⃗′
l(s), where x⃗′

l(s) =


x∗

l (s)
xc1

l (s)
...

xcα
l (s)

 . [14] 309
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See SI Sec. 4 for details.310

Parametric family of gauges. We now define a useful parametric311

family of gauges for the all-order interaction model. Each312

gauge in this family is defined by two parameters, λ and p. λ313

is a non-negative real number that governs how much higher-314

order versus lower-order sequence features are penalized [in the315

sense of Eq. (10)]. p is a probability distribution on sequence316

space that governs how strongly the specific characters at each317

position are penalized. This distribution is assumed to have318

the form319

p(s) = ps1
1 ps2

2 · · · psL
L , [15]320

where pc
l denotes the probability of character c at position l.321

As we show below, choosing appropriate values for λ and p322

recovers the most commonly used linear gauges, including the323

zero-sum gauge, the wild-type gauge, and more.324

Gauges in the parametric family have analytically tractable325

projection matrices because they can be expressed as tensor326

products of single-position gauge spaces. Let Θλ,p
l be the327

α-dimensional subspace of Rα+1 defined by328

Θλ,p
l = Vλ ⊕ V

pl
⊥ , [16]329

where Vλ (a 1-dimensional subspace) and V
pl

⊥ [an (α − 1)-330

dimensional subspace] are defined by331

Vλ = span




λ
1
...
1


 , V

pl
⊥ =




0
vc1
...

vcα

:
α∑

i=1

pci
l vci = 0

 .

[17]332

The full parametric gauge, denoted by Θλ,p, is defined to be333

the tensor product of these single-position gauges:334

Θλ,p =
L⊗

l=1

Θλ,p
l . [18]335

As detailed in SI Sec. 5, the corresponding projection matrix336

P λ,p is found to have elements given by337

P λ,p
s′t′ =

∏
l s.t.
s′

l
∈A

t′
l
∈A

(
δs′

l
t′

l
− p

t′
l

l η
)

×
∏

l s.t.
s′

l
=∗

t′
l
∈A

(
p

t′
l

l η
)

×
∏

l s.t.
s′

l
∈A

t′
l
=∗

(1 − η)×
∏

l s.t.
s′

l
=∗

t′
l
=∗

η, [19]338

where η = λ/(1+λ) and where the augmented sequences s′ and339

t′ index rows and columns. We thus obtain an explicit formula340

for the projection matrix needed to project any parameter341

vector into any gauge in the parametric family.342

Gauges in the parametric family also have penalizing matri-343

ces of a simple diagonal form. Specifically, if 0 < λ < ∞ and344

p(s′) > 0 everywhere, Eq. (10) is satisfied by the penalization345

matrix Λ having elements346

Λs′t′ = p(s′)λo(s′)δs′t′ , [20]347

where o(s′) denotes the order of interaction described by s′
348

(i.e., the number of non-star characters in s′) and p(s′) is349

defined as in Eq. (15) but with p
s′

l
l = 1 when s′

l = ∗. See SI350

Sec. 5 for a proof. Note that, although Eq. (20) does not hold351

when λ = 0, λ = ∞, or any pc
l = 0, one can interpret Θλ,p

352

[which is well-defined in Eq. (18) and Eq. (19)] as arising from353

Eq. (10) under a limiting series of penalizing matrices.354

Trivial gauge. Choosing λ = 0 yields what we call the “trivial 355

gauge”. In the trivial gauge, θs′ = 0 if s′ contains one or 356

more star characters (by Eq. (19)), and so the only nonzero 357

parameters correspond to interactions of order L. As a result, 358

fall(s, θ⃗) = θs [21] 359

for every sequence s ∈ S. Note in particular that the trivial 360

gauge is unaffected by p. Thus, the trivial gauge essentially 361

represents sequence-function relationships as catalogs of ac- 362

tivity values, one value for every sequence. See SI Sec. 6 for 363

details. 364

Euclidean gauge. Choosing λ = α and choosing p to be the 365

uniform distribution recovers what we call the “Euclidean 366

gauge”. In the Euclidean gauge, the penalizing norm in Eq. 367

(10) is the standard euclidean norm, i.e. 368

||θ⃗||2Λ =
∑

s′

θ2
s′ . [22] 369

It is readily seen that the euclidean gauge is orthogonal to 370

the space of gauge freedoms G and therefore equal to the 371

embedding space S. It is also readily seen that parameter 372

inference using standard L2 regularization (i.e. choosing Λ 373

to be a positive multiple of the identity matrix) will yield 374

parameters in the Euclidean gauge. See SI Sec. 6 for details. 375

Equitable gauge. Choosing λ = 1 and letting p vary recovers 376

what we call the “equitable gauge”. In the equitable gauge, 377

the penalizing norm is 378

||θ⃗||2Λ =
∑

s′

p(s′)θ2
s′ =

∑
s′

〈
f2

s′
〉

p
=

∑
s′

||fs′ ||2p, [23] 379

where fs′ = θs′ xs′ denotes the contribution to the activity 380

landscape corresponding to the sequence feature s′, ⟨·⟩p de- 381

notes an average over sequences drawn from p, and ||f ||2p = 382∑
s∈S p(s)f(s)2 is the squared norm of a function f on se- 383

quence space with respect to p. The equitable gauge thus 384

penalizes each parameter θs′ in proportion to the fraction of 385

sequences that parameter applies to. Equivalently, the equi- 386

table gauge can be thought of as minimizing the sum of the 387

squared norms of the landscape contributions ||fs′ ||2p rather 388

than the squared norm of the parameter values themselves. 389

Unlike the euclidean gauge, the equitable gauge accounts for 390

the fact that different model parameters can affect vastly differ- 391

ent numbers of sequences and can thereby have vastly different 392

impacts on the activity landscape. See SI Sec. 6 for details. 393

Hierarchical gauge. Choosing p freely and letting λ → ∞ yields 394

what we call the “hierarchical gauge”. When expressed in the 395

hierarchical gauge, model parameters obey the marginalization 396

property, 397∑
ck

p
ck
lk

θc1...cK
l1...lK

= 0. [24] 398

This marginalization property has important consequences 399

that we now summarize. See SI Sec. 7 for proofs of these 400

results. 401

A first consequence of Eq. (24) is that, when parameters 402

are expressed in the hierarchical gauge, the mean activity 403
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among sequences matched by an augmented sequence s′ can404

be expressed as a simple sum of parameters. For example,405

⟨fall⟩p = θ0, [25]406

⟨fall | c at l⟩p = θ0 + θc
l , [26]407 〈

fall | c at l, c′ at l′〉
p

= θ0 + θc
l + θc′

l′ + θcc′

ll′ , [27]408

and so on. Consequently, the parameters themselves can also409

be expressed in terms of differences of these average values.410

For instance, θc
l = ⟨fall | c at l⟩p − ⟨fall⟩p. Because p factorizes411

by position, conditioning on having particular characters in a412

subset of positions is equivalent to the probability distribution413

produced by drawing sequences from p and then fixing those414

positions in the drawn sequences to those specific characters.415

Thus, θc
l can also be interpreted as the average effect of mutat-416

ing position l to character c when sequences are drawn from417

p. Similarly, θcc′

ll′ is the average effect of fixing positions l to418

c and l′ to c′ when drawing from p beyond what would be419

expected based on the effects of changing l to c and l′ to c′
420

individually (i.e. epistasis), and higher-order coefficients have421

a similar interpretation. The hierarchical gauge thus provides422

an ANOVA-like decomposition of activity landscapes.423

A second consequence of Eq. (24) is that the activity land-424

scape, when expressed in the hierarchical gauge, naturally425

decomposes into mutually orthogonal components. Let σ de-426

note a set comprising all augmented sequences that have427

the same pattern of star and non-star positions, and let428

fσ =
∑

s′∈σ
θs′ xs′ be the corresponding component of fall.429

These landscape components are p-orthogonal when expressed430

in the hierarchical gauge:431

⟨fσfτ ⟩p = δστ

∑
s′∈σ

p(s′) θ2
s′ , [28]432

where σ and τ represent any two such sets of augmented433

sequences. One implication of this orthogonality relation is434

that the variance of the landscape (with respect to p) is the435

sum of contributions from interactions of different orders:436

varp[f ] =
L∑

k=0

varp[fk], [29]437

where fk denotes the sum of k-order terms that contribute to438

fall. Another implication is that the hierarchical gauge mini-439

mizes the variance attributable to different orders of interaction440

in a hierarchical manner: higher-order terms are prioritized441

for variance minimization over lower-order terms, and within442

a given order parameters are penalized in proportion to the443

fraction of sequences they apply to.444

A third consequence of Eq. (24) is that hierarchical gauges445

preserve the form of a large class of one-hot models that are446

equivalent to all-order interaction models with certain pa-447

rameters fixed at zero (specifically, these models satisfy the448

condition that if a parameter for a sequence feature is fixed449

at zero, all higher-order sequence features contained within450

that sequence feature also have their parameters fixed at zero).451

These models, which we call the “hierarchical models,” include452

all-order interaction models in which the parameters above a453

specified order are zero (e.g., additive models and pairwise-454

interaction models), but also include other models, such as455

nearest-neighbor interaction models. Projecting onto the hi-456

erarchical gauge (but not other parametric family gauges) is457

guaranteed to produce a parameter vector where the appro-458

priate entries are still fixed to be zero.459

Zero-sum gauge. The zero-sum gauge (illustrated in Figs. 1A 460

and 2A) is the hierarchical gauge for which p is the uniform 461

distribution. The name of this gauge comes from the fact that, 462

when p is uniform, Eq. (24) becomes 463∑
ck

θc1...cK
l1...lK

= 0. [30] 464

Prior studies (12, 15) have characterized the zero-sum gauge 465

for the all-order interaction model. Our formulation of the hi- 466

erarchical gauge extends those findings and generalizes them to 467

gauges defined by non-uniformly weighted sums of parameters. 468

Wild-type and generalized wild-type gauges. The wild-type gauge 469

(illustrated in Figs. 1B and 2B) is a hierarchical gauge that 470

arises in the limit as p approaches an indicator function for 471

some “wild-type sequence,” swt. In the wild-type gauge, only 472

the parameters θs′ for which s′ matches swt receive any penal- 473

ization, and all these penalized θs′ (except for θ0) are driven to 474

zero. Consequently, θ0 quantifies the activity of the wild-type 475

sequence, each θc
l quantifies the effect of a single mutation 476

to the wild-type sequence, each θcc′

ll′ quantifies the epistatic 477

effect of two mutations to the wild-type sequence, and so on. 478

However, seeing the wild-type gauge as a special case of the 479

hierarchical gauge provides the possibility of generalizing the 480

wild-type gauge by using a p that is not the indicator function 481

on a single sequence but rather defines a distribution over 482

one or more alleles per position that can be considered as 483

being “wild-type” (equivalently, the frequencies of some subset 484

of position-specific characters are set to zero). These gauges 485

all inherit the property from the the hierarchical gauge that 486

their coefficients relate to the average effect of taking draws 487

from the probability distribution defined by p and setting a 488

subset of positions to the characters specified by that coeffi- 489

cient. More rigorously, these gauges are defined by considering 490

the limit limϵ→0+ of the hierarchical gauge with factorizable 491

distribution 492

pϵ(s) =
∏

l

[
(1 − ϵ)psl

l + ϵ

α

]
, [31] 493

where the p
sl
l ≥ 0 are the position-specific factors of the desired 494

nonnegative vector of probabilities p. 495

Applications. We now demonstrate the utility of our results 496

on two example models of complex sequence-function relation- 497

ships. First, we study how the parameters of the all-order 498

interaction model behave under different parametric gauges in 499

the context of a simulated landscape on short binary sequences. 500

We observe that model parameters exhibit nontrivial collec- 501

tive behavior across different choices of gauge. Second, we 502

examine the parameters of an empirical pairwise-interaction 503

model for protein GB1 using the zero-sum and multiple gen- 504

eralized wild-type gauges. We observe how these different 505

hierarchical gauges enable different interpretations of model 506

parameters and facilitate the derivation of simplified models 507

that are approximately correct in different localized regions of 508

sequence space. The results provide intuition for the behavior 509

of the various parametric gauges, and show in particular how 510

hierarchical gauges can be used to explore and interpret real 511

sequence-function relationships. 512
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Fig. 3. Binary landscape expressed in various parametric family gauges. (A) Sim-
ulated random activity landscape for binary sequences of length L = 3. (B) Pa-
rameters of the all-order interaction model for the binary landscape as functions of
η = λ/(1 + λ). Values of η corresponding to different named gauges are indicated.
Note: because the uniform distribution is assumed in all these gauges, the hierarchical
gauge is also the zero-sum gauge.

Gauge-fixing a simulated landscape on short binary sequences. To513

illustrate the consequences of choosing gauges in the paramet-514

ric family, we consider a simulated random landscape on short515

binary sequences. Consider sequences of length L = 3 built516

from the alphabet A = {0, 1}, and assume that the activities517

of these sequences are as shown in Fig. 3A. The corresponding518

all-order interaction model has (α + 1)L = 27 parameters,519

which we index using augmented sequences: 1 constant param-520

eter (θ∗∗∗), 6 additive parameters (θ0∗∗, θ1∗∗, θ∗0∗, θ∗1∗, θ∗∗0,521

θ∗∗1), 12 pairwise parameters (θ00∗, θ01∗, θ10∗, θ11∗, θ0∗0, θ0∗1,522

θ1∗0, θ1∗1, θ∗00, θ∗01, θ∗10, θ∗11), and 8 third-order parameters523

(θ000, θ001, θ010, θ011, θ100, θ101, θ110, θ111).524

We now consider what happens to the values of these 27525

parameters when they are expressed in different parametric526

gauges, Θλ,p. Specifically, we assume that p is the uniform527

distribution and vary the parameter λ from 0 to ∞ (equivalent,528

η varies from 0 to 1). Note that each entry in the projection 529

matrix P λ,p (Eq. 19) is a cubic function of η, due to L = 3. 530

Consequently, each of the 27 gauge-fixed model parameters 531

is a cubic function of η [Fig. 3B]. In the trivial gauge (λ = 532

0, η = 0), only the 8 third-order parameters are nonzero, and 533

the values of the 8 third-order parameters correspond to the 534

values of the landscape at the 8 corresponding sequences. In 535

the equitable gauge (λ = 1, η = 1/2), the spread of the 8 536

third-order parameters about zero is larger than that of the 537

12 pairwise parameters, which is larger than that of the 6 538

additive parameters, which is larger than that of the constant 539

parameter. In the euclidean gauge (λ = 2, η = 2/3), the 540

parameters of all orders exhibit a similar spread about zero. 541

In the hierarchical gauge (λ = ∞, η = 1), the spread of 542

the 8 third-order parameters about zero is smaller than that 543

of the 12 pairwise parameters, which is smaller than that 544

of the 6 additive parameters, which is smaller than that of 545

the constant parameter. Moreover, the marginalization and 546

orthogonality properties of the hierarchical gauge fix certain 547

parameters to be equal or opposite to each other, e.g. we must 548

have θ1∗∗ = −θ0∗∗ and the third order parameters are all 549

equal up to their sign, which depends only on whether the 550

corresponding sequence feature has an even or odd number of 551

“1”s. 552

This example illustrates generic features of the parametric 553

gauges. For any all-order interaction model on sequences 554

of length L, the entries of the projection matrix P λ,p will 555

be L-order polynomials in η. Consequently, the values of 556

model parameters, when expressed in the gauge Θλ,p, will also 557

be L-order polynomials in η. In the trivial gauge, only the 558

highest-order parameters will be nonzero. In the equitable 559

gauge, the spread about zero will tend to be smaller for lower- 560

order parameters relative to higher-order parameters. In the 561

euclidean gauge, parameters of all orders will exhibit similar 562

spread about zero. In the zero-sum gauge, the spread about 563

zero will tend to be minimized for higher-order parameters 564

relative to lower-order parameters. The nontrivial quantitative 565

behavior of model parameters in different parametric gauges 566

thus underscores the importance of choosing a specific gauge 567

before quantitatively interpreting parameter values. 568

Hierarchical gauges of an empirical landscape for protein GB1. Pro- 569

jecting model parameters onto different hierarchical gauges 570

can facilitate the exploration and interpretation of sequence- 571

function relationships. To demonstrate this application of 572

gauge fixing, we consider an empirical sequence-function re- 573

lationship describing the binding of the GB1 protein to im- 574

munoglobulin G (IgG). Wu et al. (59) performed a deep mu- 575

tational scanning experiment that measured how nearly all 576

204 = 160, 000 amino acid combinations at positions 39, 40, 41, 577

and 54 of GB1 affect GB1 binding to IgG. These data report 578

log2 enrichment values for each assayed sequence relative to 579

the wild-type sequence at these positions, VDGV (Fig. 4A,B). 580

Using these data and least-squares regression, we inferred a 581

pairwise interaction model for log2 enrichment as a function of 582

protein sequence at these L = 4 variable positions. The result- 583

ing pairwise interaction model comprises 1 constant parameter, 584

80 additive parameters, and 2400 pairwise parameters. Fig. 585

S1 illustrates the performance of this model. To understand 586

the structure of the activity landscape described by the pair- 587

wise interaction model, we now examine the values of model 588

parameters in multiple hierarchical gauges. Explicit formulas 589
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Fig. 4. Landscape exploration using hierarchical gauges. (A) NMR structure of GB1, with residues V39, D40, G41, and V54 shown [PDB: 3GB1, from (58)]. (B) Distribution of
log2 enrichment values measured by (59) for nearly all 160,000 GB1 variants having mutations at positions 39, 40, 41, and 54. (C) Pairwise interaction model parameters
inferred from the data of (59), expressed in the uniform hierarchical gauge (i.e., the zero-sum gauge). Boxes indicate parameters contributing to the wild-type sequence, VDGV.
(D) Probability logos (57) for uniform, region 1, region 2, and region 3 sequence distributions. Distributions of pairwise interaction model predictions for each region are also
shown. (E) Model parameters expressed in the region 1, region 2, and region 3 hierarchical gauges. Dots and tick marks indicate region-specific constraints. Probability
densities (panels B and D) were estimated using DEFT (41). Pairwise interaction model parameters were inferred by least-squares regression using MAVE-NN (57). Regions 1,
2, and 3 were defined based on (60). NMR: nuclear magnetic resonance. GB1: domain B1 of protein G.

for implementing hierarchical gauges for pairwise-interaction590

models are given in SI Sec. 8.591

Fig. 4C shows the parameters of the pairwise interaction592

model expressed in the hierarchical gauge corresponding to 593

a uniform probability distribution on sequence space (i.e., 594

the zero-sum gauge). In the zero-sum gauge, the constant 595

p. 8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.12.593772doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.12.593772
http://creativecommons.org/licenses/by/4.0/


parameter θ0 equals the average activity of all sequences. We596

observe θ0 = −4.68, indicating that a typical random sequence597

is depleted approximately 20-fold relative to the wild-type598

sequence, which the pairwise interaction model assigns a score599

of −.21. This finding confirms the expectation that a random600

sequence should be substantially less functional than the wild-601

type sequence.602

The additive parameters in the zero-sum gauge are shown603

in the rectangular heat map in Fig. 4C, and each additive pa-604

rameter is equal to the difference between the mean activity of605

the set of sequences containing the corresponding amino acid606

at the relevant position relative to the mean activity of random607

sequences. We observe that the wild-type sequence receives608

positive or near-zero contributions at every position, includ-609

ing a contribution from the most positive additive parameter,610

corresponding to G at position 41. The additive parameters611

at positions 39, 40, and 54 that contribute to the wild-type612

sequence, however, are not the largest additive parameters613

at these positions. Moreover, the additive parameters that614

contribute to the wild-type sequence only sum to 2.32, mean-615

ing that, of the total difference (4.47) between the wild-type616

sequence score and the average sequence score, almost half617

(2.15) is due to contributions from pairwise parameters. This618

finding quantifies the importance of epistatic interactions at619

positions 39, 40, 41, and 54 for the IgG binding activity of620

wild-type GB1.621

The pairwise parameters in the zero-sum gauge are shown622

in the triangular heat map in Fig. 4C, where each pairwise pa-623

rameter is equal to the difference between the observed mean624

of the sequences containing the specified pair of characters at625

the specified pair of conditions and the expected mean activity626

based on the the mean activity of sequences containing the627

individual characters and the grand mean activity. We ob-628

serve that the three largest-magnitude pairwise contributions629

to the wildtype sequence are from the pair G41V54 (1.25),630

V39G41 (0.91), and D40G41 (-0.44), indicating that position631

41 is a major hub of epistatic interactions contributing to the632

wild-type sequence. Moving to the landscape as a whole, we633

observe that the largest magnitude pairwise interactions link634

positions 41 and 54. Moreover, the strongest positive pairwise635

contributions are obtained when a small amino acid (G or A)636

is present at position 54, and a G, C, A, L, or P is present at637

position 41 (see also 45). This finding provides insight into638

the chemical nature of the epistatic interactions that facilitate639

wild-type GB1 binding to IgG.640

Previous work (60, 61) identified three disjoint regions of641

high-activity sequences (region 1, region 2, and region 3) in642

the GB1 landscape measured by Wu et al. (59). Region 1 com-643

prises sequences with G at 41; region 2 comprises sequences644

with L or F at position 41 and G at position 54; and region645

3 comprises sequences with C or A at position 41 and A at646

position 54. To investigate the structure of the GB1 landscape647

within the three regions, we defined probability distributions648

that were uniform in each region of sequence space and zero649

outside (Fig. 4D; see SI Sec. 8 for formal definitions of these650

regions). We then examined the values of the parameters of651

the pairwise-interaction model, with the parameters expressed652

in the hierarchical gauges corresponding to the probability653

distribution p(s) for each of the three regions (the “region 1654

hierarchical gauge”, “region 2 hierarchical gauge”, and “region655

3 hierarchical gauge”). Since some characters at positions 41656

and 54 have had their frequencies set to zero, these hierarchi- 657

cal gauges are in fact generalized wild-type gauges, and the 658

additive and pairwise parameters can be interpreted in terms 659

of the mean effects of introducing mutations to these specific 660

regions of sequences space. 661

In the region 1 hierarchical gauge (Fig. 4E, top), the addi- 662

tive parameters for position 41 quantify the effect of mutations 663

away from G, and the additive parameters for positions 39, 40, 664

and 54 quantify the average effect of mutations conditional on 665

G at position 41. From the additive parameters at position 666

54, we observe that cysteine (C) and hydrophobic residues 667

(A, V, I, L, M, or F) increase binding, and that proline (P) 668

and charged residues (E, D, R, K) decrease binding. From 669

the additive parameters at position 40, we observe that amino 670

acids with a 5-carbon or 6-carbon ring (H, F, Y, W) increase 671

binding, suggesting the presence of structural constraints on 672

side chain shape, rather than constraints on hydrophobicity or 673

charge. The largest pairwise parameters all involve mutations 674

from G at position 41 to another amino acid, and careful 675

inspection of these pairwise parameters show that the pairwise 676

parameters are roughly equal and opposite to the additive 677

effects of mutations at the other three positions. This indicates 678

a classical form of masking epistasis, where the typical effect 679

of a mutation at position 41 results in a more or less complete 680

loss of function, after which mutations at the remaining three 681

positions no longer have a substantial effect . 682

In the region 2 hierarchical gauge (Fig. 4E, middle), the 683

additive parameters at position 54 quantify the average effect 684

of mutations away from G contingent on L or F at position 41, 685

the additive parameters at position 41 quantify the average 686

effects of mutations away from L or F contingent on G at 687

position 54, and the additive parameters at positions 39 and 688

40 quantify the average effects of mutations contingent on L 689

or F at position 41 and on G at position 54. From the values 690

of the additive parameters, we observe that mutations away 691

from L or F at position 41 in the presence of G at position 54 692

are typically strongly deleterious (mean effect -3.39), and that 693

mutations away from G at position 54 in the presence of L or F 694

at position 41 are also strongly deleterious (mean effect -3.75). 695

However, the pairwise parameters linking positions 41 and 54 696

are strongly positive (mean effect 2.85), again indicating a 697

masking effect where the first deleterious mutation at position 698

41 or 54 results in a more or less complete loss of function, so 699

that an additional mutation at the other position has little 700

effect (note the similar but less extreme pattern of masking 701

between the large effect mutations at positions 41 and 54 with 702

the milder mutations at positions 40 and 41, whose interaction 703

coefficients are of the opposite sign of the additive effects at 704

positions 40 and 41). Similar results hold for the region 3 705

hierarchical gauge, where mutations at positions 41 and 54 706

have masking effects on each other as well as on mutations 707

in the other two positions (Fig. 4E, bottom). However, we 708

can also contrast patterns of mutational effects between these 709

regions. For example, mutating position 54 to G (a mututation 710

leading towards region 2) on average has little effect in region 711

1 but would be deleterious in region 3. Similarly, if we consider 712

mutations leading from region 2 to region 3, we can see that 713

mutating 41 to C in region 2 typically has little effect whereas 714

mutating 41 to A is more deleterious . 715

Besides using the interpretation of hierarchical gauge pa- 716

rameters as average effects of mutations to understand how 717
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Fig. 5. Model coarse-graining using hierarchical gauges. Predictions of additive models for GB1 derived by model truncation using region-specific zero-sum gauges (from Fig.
4C,E), plotted against predictions of the full pairwise-interaction model, are shown for 500 sequences randomly sampled from each of the four distributions listed in Fig. 4D (i.e.,
uniform, region 1, region 2, and region 3). Diagonals indicate equality. GB1: domain B1 of protein G.

mutational effects differ in different regions of sequence space,718

we hypothesised that by applying different hierarchical gauges719

to the pairwise interaction model, one might be able to obtain720

simple additive models that are accurate in different regions721

of sequence space. Our hypothesis was motivated by the fact722

that the parameters of all-order interaction models in the723

zero-sum gauge are chosen to maximize the fraction of vari-724

ance in the sequence-function relationship that is explained725

by lower-order parameters. To test our hypothesis, we defined726

an additive model for each of the four hierarchical gauges727

described above (uniform, region 1, region 2, and region 3)728

by projecting pairwise interaction model parameters onto the729

hierarchical gauge for that region then setting all the pairwise730

parameters to zero. We then evaluated the predictions of each731

additive model on sequences randomly drawn from each of the732

four corresponding probability distributions (uniform, region733

1, region 2, and region 3). The results (Fig. 5) show that the734

activities of sequences sampled uniformly from the sequence735

space are best explained by the additive model derived from736

the zero-sum gauge, that the activities of region 1 sequences737

are best explained by the additive model derived from the738

region 1 hierarchical gauge, and so on for regions 2 and 3.739

This shows that projecting a pairwise interaction model (or 740

other hierarchical one-hot model) onto the hierarchical gauge 741

corresponding to a specific region of sequence space can some- 742

times be used to obtain simplified models that approximate 743

predictions by the original model in that region. 744

Discussion 745

Here we report a unified strategy for fixing the gauge of com- 746

monly used models of sequence-function relationships. First 747

we defined a family of analytically tractable gauges for the all- 748

order interaction model. We then derived explicit formulae for 749

imposing any of these gauges on model parameters, and used 750

these formulae to investigate the mathematical properties of 751

the these gauges. The results show that these gauges include 752

multiple commonly used gauges, and that a subset of these 753

gauges (the hierarchical gauges) can be applied to diverse lower- 754

order models (including additive models, pairwise-interaction 755

models, and higher-order interaction models). 756

Next, we demonstrated the family of gauges in two contexts: 757

a simulated all-order interaction landscape on short binary 758

sequences, and an empirical pairwise-interaction landscape for 759

the protein GB1. The GB1 results, in particular, show how ap- 760
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plying different hierarchical gauges can facilitate the biological761

interpretation of complex models of sequence-function relation-762

ships and to derive simplified models that are approximately763

correct in localized regions of sequence space.764

Our study was limited to linear models of sequence-function765

relationships. Although linear models are used in many com-766

putational biology applications, more complex models are767

becoming increasingly common. For example, linear-nonlinear768

models [which include global epistasis models (9, 62–64) and769

thermodynamic models (56, 57, 65–68)] are commonly used770

to describe fitness landscapes and/or sequence-dependent bio-771

chemical activities. In addition to the gauge freedoms of their772

linear components, linear-nonlinear models can have addi-773

tional gauge freedoms, such as diffeomorphic modes (69, 70),774

that also need to be fixed before parameter values can be775

meaningfully interpreted.776

Sloppy modes are another important issue to address when777

interpreting quantitative models of sequence-function relation-778

ships. Sloppy modes are directions in parameter space that779

(unlike gauge freedoms) do affect model predictions but are nev-780

ertheless poorly constrained by data (71, 72). Understanding781

the mathematical structure of sloppy modes, and developing782

systematic methods for fixing these modes, is likely to be more783

challenging than understanding gauge freedoms. This is be-784

cause sloppy modes arise from a confluence of multiple factors:785

the mathematical structure of a model, the distribution of786

data in feature space, and measurement uncertainty. Neverthe-787

less, understanding sloppy modes is likely to be as important788

in many applications as understanding gauge freedoms. We789

believe the study of sloppy modes in quantitative models of790

sequence-function relationships is an important direction for791

future research.792

Deep neural network (DNN) models present perhaps the793

biggest challenge for parameter interpretation. DNN models794

have had remarkable success in quantitatively modeling bio-795

logical sequence-function relationships, most notably in the796

context of protein structure prediction (73, 74), but also in the797

context of other processes including gene regulation (75–77),798

epigenetics (78–80), and mRNA splicing (81, 82). It remains799

unclear, however, how researchers might gain insights into the800

molecular mechanisms of biological processes from inferred801

DNN models. DNNs are by nature highly over-parameterized802

(83–85), making the direct interpretation of DNN parameters803

infeasible. Instead, a variety of attribution methods have804

been developed to facilitate DNN model interpretations (86–805

89). Existing attribution methods can often be thought of806

as providing additive models that approximate DNN models807

in localized regions of sequence space (90), and the presence808

of gauge freedoms in these additive models needs to be ad-809

dressed when interpreting attribution method output [as in810

(91, 92)]. We anticipate that, as DNN models become more811

widely adopted for mechanistic studies in biology, there will812

be a growing need for attribution methods that provide more813

complex quantitative models that approximate DNN models in814

localized regions of sequence space (16). If so, a comprehensive815

mathematical understanding of gauge freedoms in parametric816

models of sequence-function relationships will be needed to817

aid in these DNN model interpretations.818

Materials and Methods819

See Supplemental Information detailed derivations of mathematical820

results. All data and Python scripts used to generate the figures 821

are available at https://github.com/jbkinney/23_posfai. 822
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