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Abstract 

Background: Single-cell transcriptome sequencing (scRNA-Seq) has allowed new 
types of investigations at unprecedented levels of resolution. Among the primary goals 
of scRNA-Seq is the classification of cells into distinct types. Many approaches build 
on existing clustering literature to develop tools specific to single-cell. However, almost 
all of these methods rely on heuristics or user-supplied parameters to control the num-
ber of clusters. This affects both the resolution of the clusters within the original dataset 
as well as their replicability across datasets. While many recommendations exist, in gen-
eral, there is little assurance that any given set of parameters will represent an opti-
mal choice in the trade-off between cluster resolution and replicability. For instance, 
another set of parameters may result in more clusters that are also more replicable.

Results: Here, we propose Dune, a new method for optimizing the trade-off 
between the resolution of the clusters and their replicability. Our method takes as input 
a set of clustering results—or partitions—on a single dataset and iteratively merges 
clusters within each partitions in order to maximize their concordance between parti-
tions. As demonstrated on multiple datasets from different platforms, Dune outper-
forms existing techniques, that rely on hierarchical merging for reducing the number 
of clusters, in terms of replicability of the resultant merged clusters as well as concord-
ance with ground truth. Dune is available as an R package on Bioconductor: https:// 
www. bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ Dune. html.

Conclusions: Cluster refinement by Dune helps improve the robustness of any clus-
tering analysis and reduces the reliance on tuning parameters. This method provides 
an objective approach for borrowing information across multiple clusterings to gener-
ate replicable clusters most likely to represent common biological features across mul-
tiple datasets.
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Background
Improvements in single-cell RNA sequencing (scRNA-Seq) over the last decade have 
allowed the characterization of gene expression in collections of thousands to hundreds 
of thousands of cells. As datasets have grown in size by several orders of magnitude, cell 
type identification remains a primary step in data analysis [1]. We will focus here on the 
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task of unsupervised clustering, which can be broadly defined as partitioning observa-
tions into clusters based on a set of features, without using any prior knowledge on the 
groupings. In the scRNA-Seq context, clustering aims to identify groups of cells that are 
defined by a unique and consistent transcriptomic signature. Such groups of cells can 
represent either transient features, such as cellular states in a developmental process, or 
more permanent features, such as cellular types.

Many clustering algorithms have been proposed for scRNA-Seq, most of which are 
adaptations from the clustering literature at large. Popular methods include SC3 [2], 
Seurat [3], and Monocle [4]. Duo et al. [5] offer a recent review of some scRNA-Seq clus-
tering algorithms, identifying SC3 and Seurat as the best-performing methods across a 
wide range of benchmark settings. However, clustering remains a complex task. Kise-
lev et  al.  [6] outline the various challenges—both biological and computational—of 
this step, including technical noise, biological heterogeneity, and the impact of tuning 
parameters (or hyper-parameters) for the clustering algorithms. While some methods, 
including SC3, provide a way of selecting the optimal values of their main tuning param-
eters, most do not, leaving the choice to the user. Consensus clustering methods such 
as SC3 [2], scConsensus [7], and RSEC [8] try to bypass this issue, but they also rely on 
meta-parameters which can still have substantial impact on the results. Overall, replicat-
ing clustering results across datasets remains a difficult task. In this work, we deem clus-
ters to be replicable if running the exact same clustering algorithm with the same tuning 
parameters on a related dataset yields similar clusters.

Additionally, the aforementioned clustering algorithms identify a pre-specified num-
ber of clusters either directly, as in k-means, or indirectly, through another tuning 
parameter. They implicitly assume that there is only one relevant level of clustering reso-
lution, i.e., an optimal number of clusters, in the dataset. We argue that this is often not 
the case, since cell types usually have a hierarchy. For example, Tasic et al. [9] propose a 
tree structure for the mouse anterolateral motor (ALM) and primary visual (VISp) corti-
cal areas. At the higher levels, cells can be clustered as neurons and non-neurons. Then, 
neurons can be further split into GABAergic and glutamatergic neurons and so on and 
so forth. This hierarchical structure means that the concept of an “optimal” number of 
clusters is not appropriate. Instead, many datasets can be better characterized by ever-
finer levels of resolution. At the highest level, cells are grouped into broad clusters that 
are quite coarse, but are easily identifiable and very replicable across datasets. As the 
resolution increases, distinguishing between reproducible stable cell types and artifacts 
of the data becomes more challenging. Indeed, these clusters are more likely to reflect 
over-partitioning (cf. overfitting) of the data or the presence of transient states. This res-
olution-replicabilty trade-off is not obvious to quantify and is heavily dataset-dependent: 
it is not only influenced by the biological setting under study and its complexity, but 
also highly dependent on technical properties of the data, such as sequencing depth and 
number of cells [1].

By far the most common method to establish a hierarchy for pre-defined clusters is 
agglomerative hierarchical clustering, a bottom-up method in which clusters are merged 
one-by-one until they are all merged into a single cluster. This procedure yields a tree 
structure linking clusters that are merged together. The tree can also be defined by merg-
ing clusters according to the fraction of differentially expressed (DE) genes between 
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them [8, 9]. While several extensive benchmarks of clustering methods have been pro-
posed [5, 10], these only focus on the resulting partitions rather than the full hierarchical 
structure and generally assume that the correct number of clusters is known. Zappia and 
Oshlack [11] propose a representation of clustering trees to visually describe hierarchies, 
but this type of analysis relies heavily on user supervision.

Here, we present Dune, an ensemble method that aims to reconcile multiple cluster-
ing results and extract the common structure that they all capture. Dune relies on the 
assumption that, while different clustering algorithms run with different tuning param-
eters will naturally provide discrepant clusters, all good clustering methods should be 
able to identify a common higher-level clustering that is robust to the choice of tuning 
parameters. This represents a level of resolution that can be used with high confidence 
given the biology and the dataset’s characteristics. Dune identifies this common higher 
level of resolution shared by all methods without requiring any tuning by the user. 
Examining this level can both provide useful biological insight and help to compare vari-
ous clustering methods.

In this manuscript, we first introduce the Dune algorithm. We then demonstrate that 
Dune outperforms agglomerative merging methods over a variety of simulation scenar-
ios, as well as real scRNA-Seq and snRNA-Seq datasets from different sequencing plat-
forms. We also discuss the value of Dune’s stopping point and assess Dune’s robustness 
and limitations.

Results
Scope of Dune

We wish to delineate at the outset the scope of Dune, i.e., its underlying assumptions, its 
required inputs, and how to interpret and use its outputs. In practice, researchers often 
try multiple clustering algorithms to explore different aspects of their data (e.g., reso-
lution levels) and assess robustness of their clustering results. Dune’s main assumption 
is that there is a common higher-level of clustering that should be identifiable by most 
decent clustering methods. Dune requires as input a set of clusterings, i.e., results from a 
variety of pre-processing steps, clustering algorithms, and associated tuning parameters 
applied to a given dataset, that all somewhat capture this higher level. It returns as out-
put merged versions of each of these clusterings, obtained by producing hierarchies of 
clusters by merging clusters within each partition using information borrowed from the 
other partitions. As such, it is not a new clustering algorithm and it requires the user to 
make a number of subjective choices about both its input and its output. In particular, 
the user needs to select the set of input clusterings. They also need to select which of its 
outputs, i.e., which of the merged clusterings, to retain for downstream analysis. Figure 1 
provides an illustrative example of Dune’s cluster refinement process.

As demonstrated in this manuscript, what Dune accomplishes, however, is to (1) 
improve upon each of the input clusterings (according to a wide-range of measures) and 
(2) lessen the impact of the choice of input clusterings and output clusterings on down-
stream analysis, by reducing the variability in the quality of the output compared to the 
input. In other words, the user is left to choose between improved clusterings and their 
choice is not as critical as if they were to select between the input clusterings.
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In the following sections, we evaluate Dune and compare it to the two hierarchical tree 
merging methods, using five simulated datasets and four real datasets. We use the simu-
lated datasets to investigate the value of Dune’s stopping rule. Then, we demonstrate the 
superiority of Dune on real datasets over a wide range of measures. Finally, we investi-
gate the stability of the Dune algorithm to the clustering inputs and the sample size.

Dune has a natural stopping point

Unlike other merging methods, Dune provides a meaningful unsupervised stopping 
point: it merges clusters until no improvement in average Normalized Mutual Informa-
tion (NMI) can be achieved. This stopping point identifies the level of resolution where 
all clusterings are close to full agreement. By contrast, the two hierarchical merging 
methods may continue to merge until there is only one cluster, which is not biologically 
meaningful or interesting. While various criteria for terminating these merging methods 
may be adopted and produce reasonable numbers of clusters, the resulting partitions 
can easily end up worse than the original inputs (Fig. 2a).

Fig. 1 Overview of Dune ’s cluster merging strategy. Using a simulated 2-dimensional dataset, we show 
how Dune can take two naive clusterings as input and produce refined clusterings that are more appropriate 
to the structure of the data. a The simulated data were generated from 9 independent bivariate normal 
distributions, with centers arranged on a 3-by-3 grid, and 100 points per distribution. b The input data were 
clustered via k-means with k = 20 and via hierarchical clustering with k = 20 , and the resulting partitions 
were provided to Dune for refinement. The initial agreement between the two partitions is measured by 
the normalized mutual information (NMI). Dune then evaluates all possible merges by searching over pairs 
of clusters within each partition to find the pair that will produce the largest increase in NMI when merged. 
After those clusters are merged, the process repeats. At each step, a single pair of clusters from either the 
k-means or hierarchical partition is merged until no beneficial merges can be found within either partition. 
This represents Dune’s natural stopping point and it produces clusters that are largely concordant between 
the two partitions and more accurately reflect the 9-cluster structure of the data
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We investigate the stopping rule on simulated data. Using Splatter  [12], we gener-
ated five simulated datasets of various complexity, each with 30 clusters. Overall, these 
datasets are simpler than in real settings. As such, methods such as Seurat and Monocle 
are able to assign cells to the correct clusters with close-to-perfect accuracy over a wide 
range of simulation parameters. To allow for merging, we therefore relied on simpler 
clustering methods, where we can specify the number of clusters and purposefully over-
cluster. Following [5], we applied SC3 without the sc3_estimate_k function, as well 
as kMeans, using as input three-dimensional representations of the data obtained by 
running either t-SNE or UMAP on the normalized counts.

We compare Dune to two alternative cluster merging strategies, here called DE and 
Dist. Both alternative methods are based on a hierarchical organization of clusters, 
which we construct using Euclidean distances on the cluster medoids. The Dist method 
merges clusters according to this hierarchy and uses Dune’s stopping criterion, when 
the NMI between the input partitions is maximized. We note that this provides the 
Dist method with more information than it would otherwise have when merging clus-
ters from a single partition. The DE method computes the percentage of differentially 
expressed genes between pairs of clusters and merges if this percentage fails to meet 
a certain threshold determined by an additional parameter (default = 0.05), as in the 
RSEC method [8]. See Methods 4.4 “Existing cluster merging methods” for more details.

In Fig. 2a, for example, we merged the clusters obtained from running tsne+kMeans 
on Dataset 2. For all three merging methods, as merging occurs, the resolution (i.e., 
number of clusters) decreases and the concordance with the ground truth increases at 
first, as measured with the adjusted Rand index (ARI, [13, 14]). Dune then stops when 
the agreement between cluster labels is at its peak. In this example, this coincides with 
the maximal agreement with the ground truth. On the other hand, DE and Dist keep on 
merging until there is only one cluster.

This result holds over all clustering methods and simulated datasets, as shown in 
Fig. 2b. Note that the DE method is at an advantage here since it relies on the statistical 
model used to simulate the counts in Splatter. On the other hand, Dune does not assume 

Fig. 2 Dune  stops at a meaningful level. Each of the three merging methods is applied to a simulated 
dataset and the Adjusted Rand Index (ARI) with the ground truth is tracked as the number of clusters 
decreases. a For Dataset 2 and tSNE+kMeans, Dune stops merging right where the concordance is 
maximal, while the other methods do not. b Over all clustering methods and datasets, Dune stops merging 
at one point, which always coincide with high agreement with the ground truth
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such a model, but performs on par with DE until Dune’s stopping point in 14 out of 15 
cases. Using the NMI with ground truth instead of the ARI leads to similar results (see 
Fig. S7).

Dune outperforms other methods on real datasets

We make use of four publicly available single-cell transcriptomics datasets to compare 
various cluster merging strategies. Two datasets, generated by the Allen Institute for 
Brain Science (AIBS) and originally described in [15], are comprised of cells from the 
mouse brain. These datasets make use of different sequencing technologies: the “AIBS 
scRNA” dataset uses single-cell RNA sequencing and the “AIBS snRNA” dataset uses 
single-nucleus RNA sequencing. Two more datasets, comprised of cells from human 
pancreatic samples, were generated by different labs and described in [16] and [17], 
respectively.

Comparison with gold-standard clustering. To evaluate Dune, we first considered how 
well the resulting merged clusters compare to the published labels. At each merge (i.e., 
iteration), we computed the ARI between the gold-standard and the merged clusters. 
This led to curves similar to those in Fig. 2a. The entire ARI curve can be summarized 
by computing the area under it, referred to herein as the area under the curve (AUC), 
as depicted in Fig.  3a. The AUC provides better stability relative to the final ARI and 

Fig. 3 Comparison of methods. a SC3 was run on the AIBS mouse brain scRNA-Smart-Seq dataset for 
θsc3 = 0 and merged with Dune (with θMonocle = 45 and θSeurat = 1.2 , for Dune). The ARI with the labels 
from the original publication, treated as gold standard, was computed at each step of all three merging 
procedures. The area under this ARI curve was then computed. b SC3, Seurat, and Monocle were run on 
mouse brain datasets, for a wide range of tuning parameter values. Then, the MetaNeighbor method was 
used to find the clusters that are replicable between these two datasets and replicability was defined as the 
fraction of cells in replicable clusters. No “gold standard” partitions were used for replicability analysis. There 
is an apparent trade-off between resolution and replicability. c Repeating the procedure from a for three 
clustering methods, each with three different values of their respective tuning parameter θ , and four datasets, 
yields 36 comparisons of AUC. The resulting 36 AUCs are displayed in a pseudocolor image, after being scaled 
to have a column min of zero and column max of 1. This was done to make AUC values comparable across 
datasets, clustering methods, and parameter values, since the AUC can have different scales across scenarios. 
d Similarly, replicability between datasets on the same biological system is tracked as clusters are merged 
and AUCs are computed. This yields 18 comparisons. The color legend is shared between both (c) and (d)
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reflects the entire merging process rather than just the endpoint. This limits the impact 
of our choice of stopping criterion for the DE and Dist methods and reflects the differ-
ence between prioritizing merges based on a pre-determined hierarchy (as in DE and 
Dist) and based on maximizing between-partition NMI (as in Dune).

Measuring clustering replicability across datasets. We then considered the replicability 
of the clusters found by Dune compared to the other two merging strategies. We meas-
ured replicability by evaluating whether the method finds similar clusters for multiple 
independent datasets—for example, datasets on the same biological system but from dif-
ferent labs or technologies. We considered pairwise comparisons of the clusterings for 
each of the two mouse brain datasets and for each of the two human pancreas datasets. 
To measure replicability, we relied on the MetaNeighbor algorithm from [18], which 
identifies replicable clusters between pairs of datasets (see “Supplementary Methods, 
MetaNeighbor” for description). The replicability of a clustering was then defined as the 
fraction of cells in replicable clusters. We used this measure to compare Dune to other 
merging procedures. We note that this comparison does not rely on a “gold standard” 
partition; rather, the cluster merging strategies are evaluated solely on their ability to 
produce replicable clusters across different datasets on the same biological system.

Illustration of the trade-off between cluster resolution and replicability. Figure  3b 
displays replicability vs. resolution for a wide range of clustering results, where three 
clustering methods (SC3, Seurat, and Monocle) were run with a large grid of tuning 
parameter values, on the pair of mouse brain datasets. This clearly demonstrates the 
trade-off between replicability and resolution: as the number of clusters increases, the 
fraction of cells in replicable clusters decreases, regardless of the clustering method 
used. While the actual trade-off is specific to the biological context and the pair of data-
sets that are being considered, it should be stressed that a similar trade-off is clearly vis-
ible when applying the same type of analysis to the human pancreas datasets (Fig. S3). 
Note that although it might be tempting to use this figure to contrast and benchmark 
clustering methods, this would not be appropriate. Indeed, pre-processing steps were 
not identical between the three methods—as described in “Supplementary Methods, 
Data analysis”—and, as such, no direct comparison is possible.

As pairs of clusters are merged, the resolution decreases, so a well-performing merg-
ing method is one that improves the replicability of the clusters. Therefore, a natural way 
to benchmark merging methods is to measure how and if replicability improves as the 
number of clusters is reduced. Similar to the comparison with the gold-standard data-
sets, an area under the replicability curve can be computed to compare all three merging 
methods.

Comparison of merging methods. Figure  3c shows the results of benchmarking the 
three merging methods, Dune, DE, and Dist, using the ARI with respect to the gold-
standard labels, over a multiplicity of scenarios. Dune and the other merging methods 
rely on one or multiple clustering results—in this work, clusterings from SC3, Seurat, 
and Monocle. Because each of these three clustering methods has tuning parameters 
than can affect its performance, we ran each method on a grid of tuning parameter 
values for each of the four datasets, as described in the “Methods, Data analysis” sec-
tion. The AUC for the three merging methods across these 36 scenarios are displayed in 
Fig. 3c, with column-wise scaling to allow for easier display. Dune clearly outperforms 
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the other two merging methods, ranking consistently first. For the replicability bench-
mark, since we considered pairs of datasets, the number of comparisons is halved. In 
Fig.  3d, Dune outperformed the other two merging methods in all 18 comparisons. 
Given these results, we forgo further comparisons and focus on Dune in the remainder 
of the manuscript.

Dune increases the confidence of annotation

While cluster replicability is important in itself, producing robust and replicable clus-
ters has implications for other biologically meaningful tasks, including cell type anno-
tation. We investigated how Dune can be used to improve cell type annotation, which 
is a form of supervised classification, where labels learned on one dataset are used to 
annotate cells from another referred to as target dataset. Here, we relied on the annota-
tion method of [3], since it also scores the confidence of annotation with a value between 
0 and 1, with higher values corresponding to a more confident cell type assignment. 
We could therefore monitor how the average score among all cells of the target dataset 
evolved when using a clustering method before and after merging. Repeating this across 
all clustering methods, choices of tuning parameters, and reference datasets (more detail 
in the “Methods, cell type annotation” section) led to 36 scenarios. We found that merg-
ing with Dune consistently improved the confidence of the annotation: the average score 
increased by 20% for the mouse brain datasets and 10% for the pancreas datasets.

Empirical robustness of Dune

Dune is a semi-supervised method in the sense that it still requires users to select its 
input: which and how many clustering methods to use, and with which tuning param-
eters. While Dune does not entirely alleviate the need to make these choices, it provides 
a higher level of robustness, compared to individual clustering methods. Using both the 
simulated and real datasets, we evaluated how much the output of Dune is impacted by 
upstream choices. As detailed below, Dune not only improves the overall quality of the 
individual clusterings, but, importantly, lessens the impact of the choice of input and 
output clusterings.

Robustness to sample size. Dune is very stable to downsampling. Decreasing the 
number of cells, either before clustering (Fig. S4a) or after clustering but before Dune 
(Fig.  S5b), by up to 90% has little negative effect on the quality of the merged cluster 
labels. For example, on simulated data, the ARI with the ground truth on a dataset with 
n = 500 cells is never less than 97% of its value for a dataset of n = 5000 cells, as shown 
in Fig. S4a. Dune is also very stable to adding more clustering inputs. Using a variety of 
algorithms and associated tuning parameters as input to Dune on the simulated data, 
we can measure the impact of increasing the number of inputs from R = 2 to R = 9 . 
For R ≥ 3 , increasing the number of of clustering inputs does not change the quality of 
the methods (Fig. S4c). Note, however, that computational times are increased, as Dune 
scales as R2 (Section S-1.4). For this reason, we have found that in practice using R = 3 
inputs works best. More details on these evaluations can be found in the   “Methods, 
robustness” section and Section S-2.2.
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Because Dune merges clusters, one might expect that small cell types would be lost, 
since they could easily be merged into larger ones. However, we find (see “Supplemen-
tary Results, rare cell types”) that Dune preserves those cell types 75% of the time. The 
reverse is mostly linked to the quality of inputs.

Robustness to quality of input clusterings. While Dune is able to borrow information 
across multiple partitions, it does rely on the number and quality of the input cluster-
ings. We find that the absolute number of input clusterings does not have a large effect 
on Dune’s cluster refinement process, except in the case of having only two initial parti-
tions (Fig. S4c). Because these results are based on three basic clustering methods with 
various tuning parameter selections, they indicate the importance of diversity amongst 
the input clusterings, so that each may be able to find unique characteristics of the 
dataset.

As shown in Fig. S4b–c, the ranking of clusterings before merging is mostly conserved 
after merging, but the resolution of the initial clusterings does play a role in determining 
the final quality of the clusterings. Dune relies on merging to identify a common level of 
resolution, but if all input clusterings represent an under-partitioning of the data, little 
merging will be done. As such, inputs to Dune should err on the side of over-partitioning 
to allow merging to be effective and this should be taken into consideration when select-
ing tuning parameters. In general, we find that using Dune to refine a poor-quality parti-
tion might improve it enough to outperform a high-quality one without merging, but the 
high-quality partition with Dune merging will nearly always produce better results.

Selection of output clustering.
Finally, Dune merges clusters to improve concordance between its inputs, but it does 

not select one more preferably. At this point, as is the case with any clustering workflow, 
user intervention is needed to select which set of cluster labels to use for downstream 
analysis. Dune ensures that this step is more stable and less critical by increasing con-
cordance between methods. Indeed, we can assess the variability in quality before and 
after merging, as measured by the ARI with the ground truth. Over all 53 simulations 
conducted, the variance in quality after merging with Dune is on average a third of the 
original variance, and is increased only in one case, when n = 100.

Selecting the specific clustering output to retain is outside of the scope of Dune and 
other criteria need to be used. On simulated datasets, selecting the partition based on 
the average silhouette width leads to the best method 80% of the time, as measured by 
ARI or NMI with the ground truth, and never leads to the worst. Likewise, on the mouse 
brain datasets, when evaluating with either replicability or ARI with the gold standard, 
selecting a clustering based on the average silhouette width leads to the best method 75% 
of the time and the second best the remaining 25% . However, for the human pancreas 
datasets, the clustering with the highest average silhouette width has the lowest replica-
bility and concordance with the gold-standard labels.

Overall, there is no single measure that will work all the time. Visual inspection or 
relying on external biological insight, such as known marker genes, is often the best 
guide. To demonstrate this, we provide a full workflow, explaining how to use Dune in 
practice to improve fully off-the-shelf clustering results and illustrating how to select the 
final output.
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Discussion and conclusions
We have introduced Dune, a new ensemble method which aggregates clustering results 
from multiple algorithms. Dune improves upon each of the input clusterings over a 
variety of measures and, in particular, can correctly navigate the resolution-replicabil-
ity trade-off in cluster analysis. In this regard, Dune outperforms more commonly used 
hierarchical merging methods. We stress that Dune is not a new clustering algorithm; 
instead, it relies on different clustering methods to identify the highest resolution at 
which cluster quality (i.e., replicability across datasets) remains high. In doing so, Dune 
identifies the commonalities of the input clusterings and uses them to improve each of 
these clusterings individually. It also lessens the impact of the choice of input clusterings 
and output clusterings on downstream analysis, by reducing the variability in the quality 
of the output compared to the input. That is, the user is left to choose between improved 
output clusterings and their choice is not as critical as if they were to select between the 
input clusterings. Furthermore, as a result of merging clusters, Dune provides a sensible 
hierarchy on the clusters based on their commonality across different methods. As we go 
up in this hierarchy, the number of clusters is reduced, but their replicability improves.

Dune automatically stops at a meaningful resolution level, where all clustering algo-
rithms are in close agreement, while the other methods either keep merging until all 
clusters are merged into one or require user supervision to stop early. This feature helps 
users in identifying reliable structure in their scRNA, snRNA, or similar datasets. In 
contrast, the manual choice of a stopping point is difficult since, in practice, it is often 
impossible to measure replicability given the lack of a second appropriate dataset.

We focused on the normalized mutual information (NMI) to decide which clusters to 
merge. The current implementation of Dune also allows users select the ARI as merging 
criterion; other merging criteria could be implemented. Dune also allows for some cells 
to remain unclustered, such as currently implemented in RSEC [8]. Possible extensions 
include clustering methods that do not cluster all cells unambiguously, e.g., soft or fuzzy 
clustering methods which may assign some cells to multiple clusters based on weights. 
For now, using such methods as input to Dune would require forcing hard assignments 
of the cells to clusters (possibly to their nearest cluster). Extensions of the NMI to fuzzy 
clustering have been proposed [19] and could be evaluated.

One limitation of the current study is its reliance on previously published clusters. 
When evaluating cluster merging strategies on a single dataset, we treat the original 
authors’ clustering as a “gold standard.” We implicitly assume that these partitions rep-
resent some level of meaningful biological signal, as the original publications were con-
cerned with biological mechanisms and contained varying degrees of external validation 
for their findings [15–17]. Similarly, when evaluating replicability across comparable 
datasets, we rely on the veracity of the results produced by the MetaNeighbor algorithm 
[18].

This manuscript concerns the question of unsupervised clustering. Recent work in 
supervised clustering  [20–23] has proposed labeling cells in a new dataset by relying 
on information contained in other datasets or even cell atlases. In practice, these meth-
ods define marker genes for known cell types and build classifiers to assign new cells to 
these cell types. In particular, Garnett [24] allows a hierarchical clustering structure, but 
one that needs to be predefined, and scClassify [25] uses the HOPACH [26] algorithm 
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to establish a hierarchy in the training dataset. Most of these algorithms can also iden-
tify new cell types not present in the reference. It is therefore possible to use Dune in a 
supervised clustering context, where one first identifies the cells that have known cell 
types and, if these do not provide information to help cluster the rest of the cells, one 
removes them and applies unsupervised clustering methods and Dune to the remaining 
cells.

While Dune has only been benchmarked on scRNA-Seq and snRNA-Seq datasets, it is 
a general framework that can be applied in any clustering setting.

Methods
Clustering setup and comparison

Consider a—possibly high-dimensional—dataset of n observations, X = {x1, . . . , xn} , 
where xi ∈ RJ , i = 1, . . . , n . For instance, in scRNA-Seq, xi can correspond to the gene 
expression measures (i.e., normalized read counts) or to the reduced-dimension coordi-
nates of cell i. Represent the results of any (non-fuzzy) clustering method as a partition, 
P , which splits the set of n observations into k disjoint subsets or clusters, {C1, . . . , Ck} , 
where: (1) Ci ∩ Cj = ∅ , ∀i �= j ∈ {1, . . . , k} , and (2) ∪i∈{1,...,k}Ci = X.

Accordingly, a collection of R clustering results may be represented as multiple par-
titions, P1, . . . ,PR , with partition Pr containing kr clusters, r = 1, . . . ,R . This set of R 
clustering results is generally produced by running R clustering algorithms (or the same 
algorithm with different tuning parameter values) on the same dataset. An example 
can be seen in Fig. 4a, where a small subset of the AIBS mouse brain snRNA Smart-Seq 
dataset [15] (see the “Methods, Case Studies” section) is used to demonstrate some of 
the main concepts underlying Dune. The first row displays three examples of cluster-
ings (i.e., sets of cluster labels) produced by three different clustering algorithms applied 
to the same dataset, reduced to two dimensions using t-distributed stochastic neighbor 
embedding (t-SNE)  [27–29]. All three methods identify similar—but not identical—
clusters. Indeed, the algorithms output partitions with different levels of resolution. For 
example, Monocle splits the bottom region (on the t-SNE plot) into two clusters, while 
the other two methods find three clusters. Likewise, Monocle and SC3 find two clusters 
in the top region, while Seurat only finds one.

The discrete joint distribution for two partitions of a dataset can be defined using 
a contingency table  (see Table  S1). Examples of contingency tables can be found in 
Figs. 4a, b, 5a, d, where the overlap between two clusters from any pair of clusterings is 
displayed both in terms of the number of cells in the intersection, and the Jaccard index 
(i.e., the cardinality of the intersection of the two clusters over the cardinality of their 
union; [30]). Rows and columns are ordered so as to maximize, as much as possible, the 
sum of the diagonal entries.

Contingency tables, also known as confusion matrices, can be further summarized 
using the normalized mutual information (NMI). The NMI is defined thus,

where H is the entropy function (see the “Supplementary Methods, NMI” section for 
more details). The NMI is a commonly-used measure for the agreement between two 

(1)NMI(P1,P2) =
2× (H(P2)−H(P2|P1))

H(P1)+H(P2)
,
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sets of clustering labels. As can be seen in the confusion matrices, SC3 and Seurat have 
the highest level of agreement. Indeed, this is also reflected in the fact that they have the 
highest NMI of any pair.

Fig. 4 Measuring and improving the concordance between clusterings. We used a subset of the AIBS 
mouse brain snRNA Smart-Seq dataset [15] as an example. a SC3, Monocle, and Seurat were run on the 
dataset and their results are displayed using scatterplots of the first two t-SNE components, where the color 
of the plotting symbol corresponds to the cluster label. Each pair of clusterings was then compared using a 
confusion matrix, resulting in three such matrices. For a pair of clusterings/partitions, a confusion matrix is a 
contingency table, where each entry corresponds to the number of observations in both a cluster from the 
first partition and a cluster from the second. The size of the dot represents the number of observations in 
both clusters and the color corresponds to the Jaccard index. Each confusion matrix produces one NMI value. 
b Merging Clusters 20 and 21 from SC3 into one cluster changes the confusion matrix and increases the NMI
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Dune with NMI merging

Given R partitions, P1, . . . ,PR , with Pr containing kr clusters ( r = 1, . . . ,R ), Dune seeks 
to improve the overall agreement among these, as measured by the average NMI over all 
pairs of partitions, through an iterative process of merging clusters within partitions. An 
example of the merging is displayed in Fig. 4b. Clusters 20 and 21 from SC3 are merged 
together, resulting in one larger cluster (named 20). Doing so increases the agreement 
between SC3 and Monocle in the confusion matrix, as reflected by an increase in NMI 
from 0.7 to 0.73. This merge also improves the NMI between SC3 and Seurat (from 0.86 
to 0.91) and hence increases the overall agreement among the three clusterings. This is 
the main idea behind Dune.

Specifically, Dune searches over each partition Pr and over each of kr
2

 pairs of clus-

ters in Pr for the pair which produces the largest improvement in NMI when merged, 
i.e.,

Fig. 5 Illustrating Dune  on a dataset with three sets of cluster labels. We used the AIBS mouse brain scRNA 
Smart-Seq dataset [15] as an example. Before any merging, the sets of cluster labels—or partitions—resulting 
from running SC3, Seurat, and Monocle have a moderate agreement. a displays the confusion matrix 
between two of the partitions, where each entry corresponds to the number of observations in both a cluster 
from Partition 1 and a cluster from Partition 2. The confusion matrix shows that while many cells are similarly 
clustered in the two partitions, i.e., along the main diagonal, many others are not. This can be summarized 
by the NMI between Partitions 1 and 2. b displays a pseudocolor image of the matrix of all pairwise NMIs 
between the three partitions. c illustrates that the average NMI between partitions increases as pairs of 
clusters are merged when applying Dune. After running Dune, the confusion matrix in (d) and the pairwise 
NMI matrix in e both show that the partitions are indeed more similar. f shows that, at each merging step, the 
number of clusters in one of the partitions is decreased by one, in Dune’s greedy procedure to improve the 
average NMI by merging pairs of clusters
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where Pi∪j
r  is the partition created by merging clusters Cri  and Crj  in partition Pr.

Thus, the Dune algorithm can be viewed as an iterative algorithm for maximizing the 
average pairwise NMI of a collection of clustering results. Note that the NMI is only one 
of a variety of criteria that could be used to guide merging. The current implementa-
tion of Dune is flexible and allows for other measures. In particular, all benchmarks have 
also been conducted using the adjusted Rand index or ARI [13, 14], see Sections S-1.3 
and S-2.3.

Dune amounts to a greedy algorithm for maximizing the average NMI: at each step, 
we find the pair of clusters that, when merged, lead to the greatest improvement in aver-
age NMI. Once we have identified this pair of clusters, we update the collection of parti-
tions. We continue iterating until no beneficial merge can be identified, that is, we stop 
updating when

This greedy approach means that each update step is constrained to merging a single 
pair of clusters from a single partition. As such, we never merge three clusters together 
in one iteration or two pairs of clusters in the same or in separate partitions. Therefore, 
in all our simulations and case studies, we never converge to the naive optimal solution 
of merging all clusters, which does represent a full agreement between the partitions but 
is of no practical interest. We discuss in greater detail Dune’s greedy search strategy in 
the “Supplementary Methods, Scaling” section.

While Dune provides a natural stopping point for merging, it is also possible to stop 
earlier in the merging process, by tuning the merging parameter mDune , which is defined 
as the fraction of NMI improvement over the total NMI improvement when using 
Dune’s natural stopping point. For example, mDune = .5 means that Dune returns the 
merged partitions that have an average NMI halfway between the average NMI of the 
original partitions and the mean NMI of the final ones.

We demonstrate how the Dune algorithm works in Fig. 5, using the AIBS mouse brain 
scRNA Smart-Seq dataset, a scRNA-Seq dataset of 6,300 mouse brain cells described in 
the “Methods, Case Studies” section. For this example, we ran SC3, Seurat, and Monocle 
to obtain our initial clustering results for input into Dune ( R = 3 ). Figure 5a displays the 
confusion matrix for a pair of clusterings (SC3 and Monocle) before any merging and 
Fig.  5b displays a pseudocolor image of the matrix of all pairwise NMIs for the three 
clusterings before any merging. The agreement between the three methods is moder-
ate. Indeed, the pairwise NMIs vary between 0.75 and 0.85 in Fig. 5b. However, as can 
be seen in the confusion matrix, the clusterings do capture a shared underlying struc-
ture, which will serve as grounding for the Dune merging. Figure 5d shows the confu-
sion matrix for the same two partitions as in 5a, after merging with Dune. We can see 
that we have, by design, fewer clusters in both partitions, but also that the concordance 
between the two partitions is greatly improved (as indicated by the color of the plotting 

(2)
(r∗, i∗, j∗) := arg max

r ∈ {1, . . . ,R}
i, j ∈ {1, . . . , kr}

∑

{s:s∈{1,...,R},s �=r}

NMI(P
i∪j
r ,Ps)−NMI(Pr ,Ps),

max
r,i,j

∑

s  =r

NMI(P
i∪j
r ,Ps)−NMI(Pr ,Ps) < 0.
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symbols, which represents the Jaccard index). This is further evidenced in Fig. 5e, where 
the pairwise NMIs between the three partitions are displayed. The average NMI after all 
merging steps increased from 0.79 to 0.86. Figures 5c and f demonstrate the evolution of 
the average NMI and of the number of clusters per partition through the Dune merging 
process. At each step, we merge the pair of clusters that leads to the greatest increase in 
average NMI. Hence, at each step, the average NMI increases (Fig. 5c) and the number 
of clusters in one of the partitions decreases by one (Fig.  5f ). The final partitions are 
achieved when the average NMI can no longer be improved.

Software implementation and run time

The Dune algorithm is implemented in an open-source R package released through 
the Bioconductor Project (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ Dune. 
html). It is implemented in a fully-parallel and efficient manner. Run time for a large 
dataset of ∼ 130, 000 cells, with 3 partitions of respectively 100, 68 and 45 clusters, is 
under 15 min with 10 CPUs. The package also contains plotting functions, which were 
used to create many of the figures in the present paper and provide options to create 
GIFs and track the evolution of the average NMI or confusion matrices over the merging 
steps.

Existing cluster merging methods

Once a set of clusters has been identified, one can build a hierarchical tree for these 
clusters and then merge clusters that are similar. This involves specifying a measure of 
distance or similarity between individual observations (i.e., cells) as well as between 
clusters. It should be noted that the distance used to build the tree of clusters need not 
be the same as the distance used to merge clusters.

For scRNA-Seq datasets, commonly-used between-cell distance measures include the 
Euclidean distance and one minus the Spearman correlation coefficient. Between-cluster 
distances include classical linkage measures used in hierarchical clustering, e.g., maxi-
mum/minimum/average of all pairwise distances between observations in two clusters 
or distance between the cluster averages or medoids. For scRNA-Seq, another sensible 
between-cluster similarity measure is the proportion of differentially expressed (DE) 
genes between clusters [8, 9]. A detailed discussion of such measures is out of the scope 
of this manuscript [31].

Here, we consider two possible merging approaches. In both cases, we compute the 
cluster medoids (median of observations within the cluster) based on the log-trans-
formed count matrix (adding 1 to avoid taking the log of zero). We then build a hier-
archical tree of clusters using the Euclidean distance between the cluster medoids. The 
first merging approach directly uses this tree to decide how to merge clusters. Specifi-
cally, clusters are merged bottom-up, starting with the two clusters that are closest in 
the tree, and then iteratively until all clusters are merged. The parameter mDist = nmerges , 
the number of merges (between 0 and the initial number of clusters minus one), con-
trols the amount of merging. The second approach follows the method implemented in 
RSEC. It computes the percentage of DE genes between clusters, using the limma pack-
age [32] ( LIMMA,RRID : SCR_010943 ), where a gene is declared DE if its nominal FDR 
adjusted p-value is below 0.05 [33]. The main tunable parameter is mDE = α ∈ [0, 1] , the 

https://bioconductor.org/packages/release/bioc/html/Dune.html
https://bioconductor.org/packages/release/bioc/html/Dune.html
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threshold for the percentage of DE genes below which we merge. We name these two 
methods Dist and DE, respectively.

Simulation study

Simulation study design. To generate simulated datasets with known ground truth, we 
relied on the Splatter package [12]. Datasets of n = 5000 cells and J = 104 genes were 
generated with 30 cell types. The average proportion of differentially expressed genes 
between clusters, DE, was tuned between datasets. Datasets are numbered in order of 
decreasing separation between clusters, from 1 to 5, denoting increasing complexity. 
More details are given in the ‘Supplementary Methods, Simulations‘ section. Note that 
the simulation framework is built on a similar statistical model as the DE method and 
therefore provides it with an a priori advantage.

Data analysis.
Outlier genes and cells were removed and the data were normalized using the Seurat 

workflow. Two-dimensional uniform manifold approximation and projection (UMAP) 
plots of each dataset can be found in the supplementary Figures  S2a–e. The k-means 
clustering algorithm was run with k = 40 on reduced-dimensional coordinates from 
either t-SNE or UMAP. SC3 was also run with k = 40 . Then, clusters were merged using 
either Dune (with ARI or NMI as merging criterion), the DE, or Dist methods.

Case studies

AIBS Smart-Seq mouse brain datasets. We used the two AIBS mouse brain Smart-
Seq datasets produced as part of the Brain Initiative Cell Census Network (BICCN; 
RRID : SCR_015820 ) and described in [15]; one corresponds to single-cell sequencing 
(Zeng sc SSv4, 6300 cells) and the other to single-nucleus sequencing (Zeng sn SSv4, 6278 
cells). We use the original publication’s subclass labels as gold-standard cluster labels for 
these datasets, which were obtained using the iterative hicat method from [9] and then 
manually annotated and produced respectively 17 and 19 clusters. The datasets can be 
downloaded from the Neuroscience Multi-omics Archive ( RRID : SCR_002001 ; nemo-
archive.org). More details on the parent dataset (https:// assets. nemoa rchive. org/ dat- 
ch1nq b7) and data access can be found in [15].

Human pancreas datasets. We focus on two datasets from [16] (8568 cells) and [17] 
(3514 cells), which we name Baron and Segerstople, respectively. Both datasets were 
downloaded from https:// hembe rg- lab. github. io/ scRNA. seq. datas ets/ on October 1st , 
2018. We use the clusters from the original publications as gold-standard clusters. In 
Baron, cells are clustered using hierarchical clustering with a final manual merging step, 
producing 14 clusters. In Segerstople, cells were assigned to manually-defined clusters 
using prior biological knowledge, producing 14 clusters.

Pre-processing. Details on pre-processing are given in the  ‘Supplementary Methods, 
Data Analysis” section. For each of the datasets, we ran R = 3 popular  [1] clustering 
methods: SC3 (version 1.18.0), Seurat (version 3.1.3), and Monocle (monocle3 version 
0.2.2), with various tuning parameters. The first two have been consistently ranked as 
some of the best-performing clustering algorithms in benchmark studies [5, 10], while 
the last relies on the same clustering algorithm as Seurat, but with different pre-process-
ing choices and parameter tuning.

https://assets.nemoarchive.org/dat-ch1nqb7
https://assets.nemoarchive.org/dat-ch1nqb7
https://hemberg-lab.github.io/scRNA.seq.datasets/


Page 17 of 19Roux de Bézieux et al. BMC Bioinformatics          (2024) 25:198  

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05814-6.

Supplementary file 1

Acknowledgements
We thank Quentin Dumont and Frank Herbert [35] for inspiration for the Dune name.

Author contributions
HRB, KS, JN, EP, and SD conceived and designed the study. HRB and KS developed and implemented the method. HRB, 
KS, SF, and DR analyzed the data. RC provided feedback on the biological interpretation of the results and computing 
resources. HRB and SF wrote the initial draft of the manuscript, and KS, KVdB, RC, DR, JG, JN, EP, and SD contributed to 
revisions.

Funding
This work used the Extreme Science and Engineering Discovery Environment or XSEDE (which is supported by National 
Science Foundation grant number ACI-1548562), Bridges Regular and Large Memory at the Pittsburgh Supercomputing 
Center, through allocations TG-IBN180019 and TG-IBN190010 [34]. This work was supported by NIH grants U19MH114830 
(JN), U19MH114821 (JG), and R01MH113005 (JG). KVdB is a postdoctoral fellow of the Belgian American Educational 
Foundation (BAEF) and is supported by the Research Foundation Flanders (FWO), grants 1246220N and G062219N.

Availability of data and materials
The Pancreas datasets were downloaded from the Hemberg group website, https:// hembe rg- lab. github. io/ scRNA. seq. 
datas ets/ human/ pancr eas/, on October 1st, 2018. The AIBS datasets can be obtained from the Neuroscience Multi-omics 
Archive (RRID : SCR_002001; nemoarchive.org), Zeng sn SSv4 at https:// assets. nemoa rchive. org/ dat- k7p82 j4 and Zeng 
sc SSv4 at https:// assets. nemoa rchive. org/ dat- 55mow p9. The results from this paper can be reproduced using code from 
the following GitHub repository: https:// github. com/ Hecto rRDB/ Dune_ Paper. The Dune method is implemented in an 
open-source R package released through the Bioconductor Project (http:// www. bioco nduct or. org/ packa ges/ relea se/ 
bioc/ html/ Dune. html).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Received: 14 September 2023   Accepted: 17 May 2024

References
 1. Svensson V, da Veiga Beltrame E. A curated database reveals trends in single cell transcriptomics. bioRxiv; 2019. pp. 

742304. https:// doi. org/ 10. 1101/ 742304.
 2. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, Barahona M, Green AR, Hem-

berg M. SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 2017;14(5):483–6. https:// doi. org/ 10. 
1038/ nmeth. 4236.

 3. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R. Compre-
hensive integration of single-cell data. Cell. 2019;177(7):1888. https:// doi. org/ 10. 1016/j. cell. 2019. 05. 031.

 4. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, Trapnell 
C, Shendure J. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–
502. https:// doi. org/ 10. 1038/ s41586- 019- 0969-x.

 5. Duò A, Robinson MD, Soneson C. A systematic performance evaluation of clustering methods for single-cell RNA-
seq data. F1000Research. 2018;7:377–82. https:// doi. org/ 10. 5256/ f1000 resea rch. 17093. r36544.

 6. Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data; 2019. http:// 
www. nature. com/ artic les/ s41576- 018- 0088-9.

 7. Ranjan B, Schmidt F, Sun W, Park J, Honardoost MA, Tan J, Arul RN, Prabhakar S. ScConsensus: combining super-
vised and unsupervised clustering for cell type identification in single-cell RNA sequencing data. BMC Bioinform. 
2021;22(1):186. https:// doi. org/ 10. 1186/ s12859- 021- 04028-4.

 8. Risso D, Purvis L, Fletcher RB, Das D, Ngai J, Dudoit S, Purdom E. ClusterExperiment and RSEC: a bioconductor 
package and framework for clustering of single-cell and other large gene expression datasets. PLoS Comput 
Biol. 2018;14(9):e1006378. https:// doi. org/ 10. 1371/ journ al. pcbi. 10063 78.

 9. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E, Economo MN, Viswanathan S, 
Penn O, Bakken T, Menon V, Miller J, Fong O, Hirokawa KE, Lathia K, Rimorin C, Tieu M, Larsen R, Casper T, Barkan 
E, Kroll M, Parry S, Shapovalova NV, Hirschstein D, Pendergraft J, Sullivan HA, Kim TK, Szafer A, Dee N, Groblewski 

https://doi.org/10.1186/s12859-024-05814-6
https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/
https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/
https://assets.nemoarchive.org/dat-k7p82j4
https://assets.nemoarchive.org/dat-55mowp9
https://github.com/HectorRDB/Dune_Paper
http://www.bioconductor.org/packages/release/bioc/html/Dune.html
http://www.bioconductor.org/packages/release/bioc/html/Dune.html
https://doi.org/10.1101/742304
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.5256/f1000research.17093.r36544
http://www.nature.com/articles/s41576-018-0088-9
http://www.nature.com/articles/s41576-018-0088-9
https://doi.org/10.1186/s12859-021-04028-4
https://doi.org/10.1371/journal.pcbi.1006378


Page 18 of 19Roux de Bézieux et al. BMC Bioinformatics          (2024) 25:198 

P, Wickersham I, Cetin A, Harris JA, Levi BP, Sunkin SM, Madisen L, Daigle TL, Looger L, Bernard A, Phillips J, Lein E, 
Hawrylycz M, Svoboda K, Jones AR, Koch C, Zeng H. Shared and distinct transcriptomic cell types across neocor-
tical areas. Nature. 2018;563(7729):72–8. https:// doi. org/ 10. 1038/ s41586- 018- 0654-5.

 10. Freytag S, Tian L, Lönnstedt I, Ng M, Bahlo M. Comparison of clustering tools in R for medium-sized 10x genom-
ics single-cell RNA-sequencing data. F1000Research. 2018;8:9. https:// doi. org/ 10. 12688/ f1000 resea rch. 15809.1.

 11. Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. GigaS-
cience. 2018;7(7):1–9. https:// doi. org/ 10. 1093/ gigas cience/ giy083.

 12. Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 
2017;18(1):174. https:// doi. org/ 10. 1186/ s13059- 017- 1305-0.

 13. Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66(336):846–50. 
https:// doi. org/ 10. 1080/ 01621 459. 1971. 10482 356.

 14. Lawrence H, Phipps A. Comparing partitions. J Classif. 1985;2(1):193–218. https:// doi. org/ 10. 1007/ BF019 08075.
 15. Yao Z, Liu H, Xie F, Fischer S, Adkins RS, Aldrige AI, Ament SA, Ann Bartlett M, Behrens M, Van den Berge K, 

Bertagnolli D, Tommaso Biancalani A, Booeshaghi S, Bravo HC, Casper T, Colantuoni C, Crabtree J, Creasy H, 
Crichton K, Crow M, Dee N, Dougherty EL, Doyle WI, Dudoit S, Fang R, Felix V, Fong O, Giglio M, Goldy J, Haw-
rylycz M, Roux H, de Bezieux BR, Herb RH, Hou X, Qiwen H, Josh Huang Z, Kancherla J, Kroll M, Lathia K, Li YE, 
Lucero JD, Luo C, Mahurkar A, McMillen D, Nadaf NM, Nery JR, Nguyen TN, Niu S-Y, Ntranos V, Orvis J, Osteen 
JK, Pham T, Pinto-Duarte A, Poirion O, Preissl S, Purdom E, Rimorin C, Risso D, Rivkin AC, Smith K, Street K, Sulc J, 
Svensson V, Tieu M, Torkelson A, Tung H, Vaishnav ED, Vanderburg CR, van Velthoven C, Wang X, White O, Gillis 
J, Kharchenko PV, Ngai J, Pachter L, Regev A, Tasic B, Welch JD, Ecker JR, Macosko E, Ren B, BRAIN Initiative Cell 
Census Network (BICCN), Hongkui Z, Eran AM. An integrated transcriptomic and epigenomic atlas of mouse 
primary motor cortex cell types. bioRxiv. 2020. https:// doi. org/ 10. 1101/ 2020. 02. 29. 970558.

 16. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, Melton 
DA, Yanai I. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell 
population structure. Cell Syst. 2016;3(4):346–60. https:// doi. org/ 10. 1016/j. cels. 2016. 08. 011.

 17. Segerstolpe Å, Palasantza A, Eliasson P, Andersson EM, Andréasson AC, Sun X, Picelli S, Sabirsh A, Clausen M, 
Bjursell MK, Smith DM, Kasper M, Ämmälä C, Sandberg R. Single-cell transcriptome profiling of human pancre-
atic islets in health and type 2 diabetes. Cell Metabol. 2016;24(4):593–607. https:// doi. org/ 10. 1016/j. cmet. 2016. 
08. 020.

 18. Crow M, Paul A, Ballouz S, Huang ZJ, Gillis J. Characterizing the replicability of cell types defined by sin-
gle cell RNA-sequencing data using MetaNeighbor. Nat Commun. 2018;9(1):884. https:// doi. org/ 10. 1038/ 
s41467- 018- 03282-0.

 19. Bagherinia A, Minaei-Bidgoli B, Hossinzadeh M, Parvin H. Elite fuzzy clustering ensemble based on clustering diver-
sity and quality measures. Appl Intell. 2019;49(5):1724–47. https:// doi. org/ 10. 1007/ s10489- 018- 1332-x.

 20. Zhang AW, O’Flanagan C, Chavez EA, Lim JLP, Ceglia N, McPherson A, Wiens M, Walters P, Chan T, Hewitson B, Lai 
D, Mottok A, Sarkozy C, Chong L, Aoki T, Wang X, Weng AP, McAlpine JN, Aparicio S, Steidl C, Campbell KR, Shah 
SP. Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling. Nat Methods. 
2019;16(10):1007–15. https:// doi. org/ 10. 1038/ s41592- 019- 0529-1.

 21. Zhang Z, Luo D, Zhong X, Choi JH, Ma Y, Wang S, Mahrt E, Guo W, Stawiski EW, Modrusan Z, Seshagiri S, Kapur P, Hon 
GC, Brugarolas J, Wang T. Scina: semi-supervised analysis of single cells in silico. Genes. 2019;10(7):531. https:// doi. 
org/ 10. 3390/ genes 10070 531.

 22. Domanskyi S, Szedlak A, Hawkins NT, Wang J, Paternostro G, Piermarocchi C. Polled digital cell sorter (p-DCS): 
automatic identification of hematological cell types from single cell RNA-sequencing clusters. BMC Bioinform. 
2019;20(1):369. https:// doi. org/ 10. 1186/ s12859- 019- 2951-x.

 23. Wagner F, Yanai I. Moana: a robust and scalable cell type classification framework for single-cell RNA-Seq data. 
bioRxiv. 2018, pp. 456129. https:// doi. org/ 10. 1101/ 456129.

 24. Pliner HA, Shendure J, Trapnell C. Supervised classification enables rapid annotation of cell atlases. Nat Methods. 
2019;16(10):983–6. https:// doi. org/ 10. 1038/ s41592- 019- 0535-3.

 25. Lin Y, Cao Y, Kim HJ, Salim A, Speed TP, Lin D, Yang P, Jean YHY. scClassify: hierarchical classification of cells. bioRxiv. 
2019, pp. 776948. https:// doi. org/ 10. 1101/ 776948.

 26. van der Laan Mark, Pollard K. Hybrid clustering of gene expression data with visualization and the bootstrap. 
2001;117:01.

 27. van der Maaten LJP, Hinton GE. Visualizing high-dimensional data using t-sne. J Mach Learn Res. 2008;9:2579–605.
 28. van der Maaten LJP. Accelerating t-sne using tree-based algorithms. J Mach Learn Res. 2014;15:3221–45.
 29. Krijthe JH. Rtsne: T-distributed stochastic neighbor embedding using barnes-hut implementation; 2015. https:// 

github. com/ jkrij the/ Rtsne. R package version 0.15.
 30. Jaccard P. Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bulletin de la 

Societe Vaudoise des Sciences Naturelles. 1901;37:241–72. https:// doi. org/ 10. 5169/ seals- 266440.
 31. Taiyun K, Rui CI, Yingxin L, Andy Y-YW, Jean YHY, Pengyi Y. Impact of similarity metrics on single-cell RNA-seq data 

clustering. Brief Bioinform. 2019;20(6):2316–26. https:// doi. org/ 10. 1093/ bib/ bby076.
 32. Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for 

RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47. https:// doi. org/ 10. 1093/ nar/ 
gkv007.

 33. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple test-
ing. J Roy Stat Soc Ser B Methological. 1995;57(1):289–300. https:// doi. org/ 10. 2307/ 23461 01.

 34. Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies 
R, Scott JR, Wilkins-Diehr N. Xsede: accelerating scientific discovery. Comput Sci Eng. 2014;16(5):62–74. https:// doi. 
org/ 10. 1109/ MCSE. 2014. 80.

 35. Herbert F. Dune. Philadelphia: Chilton Books; 1965.
 36. Bell ET. The iterated exponential integers. Ann Math. 1938;39(3):539. https:// doi. org/ 10. 2307/ 19686 33.

https://doi.org/10.1038/s41586-018-0654-5
https://doi.org/10.12688/f1000research.15809.1
https://doi.org/10.1093/gigascience/giy083
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1007/BF01908075
https://doi.org/10.1101/2020.02.29.970558
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1016/j.cmet.2016.08.020
https://doi.org/10.1016/j.cmet.2016.08.020
https://doi.org/10.1038/s41467-018-03282-0
https://doi.org/10.1038/s41467-018-03282-0
https://doi.org/10.1007/s10489-018-1332-x
https://doi.org/10.1038/s41592-019-0529-1
https://doi.org/10.3390/genes10070531
https://doi.org/10.3390/genes10070531
https://doi.org/10.1186/s12859-019-2951-x
https://doi.org/10.1101/456129
https://doi.org/10.1038/s41592-019-0535-3
https://doi.org/10.1101/776948
https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
https://doi.org/10.5169/seals-266440
https://doi.org/10.1093/bib/bby076
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.2307/2346101
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.2307/1968633


Page 19 of 19Roux de Bézieux et al. BMC Bioinformatics          (2024) 25:198  

 37. Blondel Vincent D, Loup GJ, Renaud L, Etienne L. Fast unfolding of communities in large networks. J Stat Mech 
Theory Exp. 2008;10:P10008. https:// doi. org/ 10. 1088/ 1742- 5468/ 2008/ 10/ P10008.

 38. Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell EW. Dimensionality reduction for 
visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37(1):38–44. https:// doi. org/ 10. 1038/ nbt. 4314.

 39. McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. arxiv 
2018. http:// arxiv. org/ abs/ 1802. 03426.

 40. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 
2019;9(1):5233. https:// doi. org/ 10. 1038/ s41598- 019- 41695-z.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1038/nbt.4314
http://arxiv.org/abs/1802.03426
https://doi.org/10.1038/s41598-019-41695-z

	Improving replicability in single-cell RNA-Seq cell type discovery with Dune
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Scope of Dune
	Dune has a natural stopping point
	Dune outperforms other methods on real datasets
	Dune increases the confidence of annotation
	Empirical robustness of Dune

	Discussion and conclusions
	Methods
	Clustering setup and comparison
	Dune with NMI merging
	Software implementation and run time
	Existing cluster merging methods
	Simulation study
	Case studies

	Acknowledgements
	References


