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Therich variety of behaviours observed in animals arises through the interplay
between sensory processing and motor control. To understand these sensorimotor
transformations, it is useful to build models that predict not only neural responses

to sensory input'®but also how each neuron causally contributes to behaviour®”.
Here we demonstrate a novel modelling approach to identify a one-to-one mapping
between internal units in a deep neural network and real neurons by predicting the
behavioural changes that arise from systematic perturbations of more than adozen
neuronal cell types. Akey ingredient that we introduce is ‘knockout training’, which
involves perturbing the network during training to match the perturbations of the
real neurons during behavioural experiments. We apply this approach to model the
sensorimotor transformations of Drosophila melanogaster males during acomplex,
visually guided social behaviour®™., The visual projection neurons at the interface
between the optic lobe and central brain form a set of discrete channels®, and prior
work indicates that each channel encodes a specific visual feature to drive a particular
behaviour®*. Our model reaches a different conclusion: combinations of visual
projection neurons, including those involved in non-social behaviours, drive

male interactions with the female, forming a rich population code for behaviour.
Overall, our framework consolidates behavioural effects elicited from various neural
perturbations into asingle, unified model, providing a map from stimulus to neuronal
cell type to behaviour, and enabling future incorporation of wiring diagrams of the

brain®into the model.

To understand how the brain transforms sensory information into
behaviouralaction, anemerging and popular approachis tofirsttrain
adeep neural network (DNN) model onabehavioural task performed
by an animal (for example, recognizing an object in animage) and then
compare the neural activity of the animal to the internal activations of
the DNN'"*>*¢V7_ A shortcoming of this approach is that the DNN does not
predict how an individual neuron causally contributes to behaviour,
makingitdifficult tointerpret therole of the neuroninthe sensorimo-
tor transformation. Here we overcome this drawback by perturbing
the internal units of a DNN model while predicting the behaviour of
animals whose neurons have also been perturbed, a method that we
call knockout training. This approach places a strong constraint on
the model: each model unit must contribute to behaviourinaway that
matches the causal contribution of the corresponding real neuron to
behaviour. An added benefit is that the model infers neural activity from
(perturbed) behaviour alone. This is especially useful when studying
complex, natural behaviours, for whichit can be challenging (orimpos-
sible in some systems) to obtain simultaneous recordings of neural
activity. Here we use this approach to investigate the sensorimotor
transformations of Drosophila males during natural socialbehaviours,
including pursuit of and singing to a female’.

A deep network model of vision to behaviour

The Drosophilavisual system contains abottleneck between the optic
lobes and the central brain in the form of visual projection neurons,
which comprise approximately 200 different cell types'®?. The primary
celltypes of this bottleneck (Fig.1a) are the 57 lobula columnar (LC) and
lobulaplate (LPLC) neuron typesidentified so far (we use ‘LC types’ to
refer both to LC and LPLC neuron types), making up about 3.5% of all
neuronsinthebrain. The LC neurontypesreceive input fromthe lobula
and lobula plateinthe opticlobe and send axons to opticglomeruliin
the central brain'>*°. Neurons of a single LC type innervate only one
opticglomerulusin the posterior lateral protocerebrum, posterior ven-
trolateral protocerebrum or anterior optic tubercle neuropils, and prior
studies have uncovered mappings between specific LC types, visual
features and specific behaviours' "%, For example, LPLC2 neurons
respond to alooming object and synapse onto the giant fibre neuron
to drive an escape take-off?. LC11 neurons respond to small, moving
spotsand contribute to freezing behaviour??, For courtship, the LC10a
neurons (and LC9 neurons, to a lesser extent) of a male participate
in tracking the position of the female and driving turns towards the
female™?*?, butitis not yet known whether other LC types contribute
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Fig.1|Identifying aone-to-one mapping betweenreal neurons and internal
units of aDNN with knockout training. a, We model the transformation from
visionto behaviour in male flies with a DNN that comprises a bottleneck of
model units tomatch the bottleneck of optic glomeruliin the visual system of
the fly. We seek a one-to-one mappingin which one model unit corresponds to
oneopticglomerulus (innervated by asingle LC neuron type) bothin activity
andin contribution to behaviour (for example, movement and song produced
by wing vibration). b, We designed knockout training to fit this 1-to-1 network.
AftersilencinganLCneurontypeandrecordingthe resulting behaviour, during
training we ‘knocked out’ the model LC unit (thatis, we setits activity value to

0 (red crosses)) corresponding to the silenced LC type. ¢, We (bilaterally)
genetically inactivated males for each of 23 LC neurontypes and thenrecorded
theinteractions of each male with afemale during natural courtship.d, Courtship
behaviour noticeably changed between control and LC-silenced male flies.
Example sessions are shown. e, Changes in the average male-to-female distance
following silencing of each LC type in males (top) and changesin the proportion

to male social behaviours. As recordings from LC neurons reveal that
even simple stimuli can drive responses in multiple LC types®~', we
explored whether the representation of the female during courtship
might be distributed across the LC population, and similarly whether
multiple LC types might be required to drive behaviour.

We designed a novel DNN modelling approach for identifying the
functional roles of LC neuron types using behavioural data from geneti-
cally altered flies. The DNN model has three components: (1) a front-end
convolutional vision network that reflects processing in the opticlobe;
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of song that was sine versus pulse (bottom). Each dot denotes one courtship
session. Shortlines denote means; horizontal dashed line denotes mean of
control sessions. Asterisks denote significant deviation from control. P< 0.05,
permutation test, false discovery rate-corrected for multiple comparisons;
n>12.f, Thel-to-1network takes asinput animage sequence of the 10 most
recent time frames (approximately 300 ms) of the visual experience of the
male. Eachimageisareconstruction of what the male fly observed based on
male and female joint positions of that time frame (for example, ¢). The 1-to-1
network reliably predicts forward velocity (right, top), lateral velocity (right,
bottom) and other behavioural variables (Extended Data Fig. 3) of the male fly.
R?values are from held-out frames across control sessions. g,h, The 1-to-1
networkalso reliably predicts overall mean changesinbehaviour across
males with different silenced LC neuron types, such as forward velocity (g)
andsine song (h). Correlation p values were significant (P < 0.002, permutation
test;n=23).

(2) abottlenecklayer of LC unitsinwhich each model LC unit represents
the summed activity of neurons of the same LC type (that s, the overall
activity level of an optic glomerulus); and (3) a decision network with
dense connections that maps LC responses to behaviour, reflecting
downstream processing in the central brain and ventral nerve cord
(Fig.1a). Weimposed the bottleneck layer to have the same number of
unitsas LC neuron types we manipulated, and our goal was to identify
aone-to-one mapping between model LC units and LC neuron types.
We did notincorporate biological realisminto the vision and decision



networks, opting instead for highly expressive mappings to ensure
accurate prediction; we focused on explaining LC function. We col-
lected training data to fit the model by blocking synaptic transmis-
sion*in each of 23 different LC types in male flies'*** and recorded
the movements of the LC-silenced male and song production during
natural courtship (Methods). We then devised afitting procedure called
knockout training, which involves training the model using the entire
behavioural dataset of both perturbed and unperturbed sets of males.
Critically, when training the model on data from amale with a particular
LCtypesilenced (Fig.1b), we set to O (that is, we knocked out) the activ-
ity of the corresponding model LC unit (correspondence was arbitrarily
chosen at initialization; see Methods). The resulting model captures
the behavioural repertoire of each genetically altered fly when the
corresponding model LC unit is silenced, thereby aligning the model
LC units to the real LC neurons. In simulations (Extended Data Fig. 2),
knockout training correctly identified the activity and contribution
to behaviour of each silenced neuron type (a one-to-one mapping)
for neurontypesthat, whensilenced, led to changes in behaviour. We
refer to the resulting DNN model as the ‘1-to-1 network’.

Before fitting the model with courtship data (Fig. 1c), we quanti-
fied the extent to which (bilaterally) silencing each LC neuron type
changes behaviour of the male fly (Extended Data Fig. 1). Consist-
ent with previous studies™?, we found that silencing LC10a neurons
resulted in failures to initiate chasing, as male-to-female distances
remained large over time (Fig. 1d, middle, 1e, top); we found similar
results with silencing LC9?2 We also found strong effects on both chas-
ing and singing whensilencing other LC types. For example, silencing
LC6 and LC26 neuronsresultedin stronger and more persistent chasing,
as male-to-female distances remained small over time (Fig. 1d, bot-
tom, le, top). We observed alarge number of LC types (LC4, LC6, LC11,
LPLCI1, LPLC2 and LC10bc) that, after silencing, significantly increased
the amount of sine song relative to pulse song (Fig. 1e, bottom)—sine
songtypically occurs near the female®. Across behavioural measures,
we found that the silencing of any single LC type did not match the
behavioural deficits of blind flies (Extended Data Fig. 1). This suggests
thatmany LC types would need to be silenced together to uncover large
effects oncourtship. We therefore modelled the perturbed behavioural
data with the 1-to-1 network, enabling us to silence any possible com-
bination of LC typesinsilico.

We performed knockout training to fit the parameters of the 1-to-1
network. The modelinputs were videos of the visual input of the male fly
during natural courtship (Methods and Fig. 1f, left); the model outputs
comprised the male movements (forward, lateral and angular veloc-
ity) and song production, which included sine song and two forms of
pulse song (Pfast and Pslow®). The 1-to-1 network reliably predicted
thesebehavioural variablesin held-out data (Fig. 1f, right and Extended
Data Fig. 3). Notably, the 1-to-1 network also predicted differences in
behaviour observed across silenced LC types (Fig. 1g,h and Extended
DataFig.4). We confirmed that knockout training outperformed other
possible training procedures, such as dropout training® and training
without knockout (thatis, an unconstrained network) (Extended Data
Figs.3 and 4), and that results were largely consistent for different
random initializations of the 1-to-1 network (Extended Data Fig. 5).
Thus, the 1-to-1 network reliably estimated the behaviour of the male
fromvisual input alone, even for male flies with a silenced LC type.

Comparing real and model neural activity

One prediction from our simulations (Extended Data Fig. 2) is that the
knockout training procedure, which leverages natural behavioural data
only, should nonetheless learn the visual responses of real LC neurons.
We recorded LC calcium dynamics in head-fixed, passively viewing
male flies walking on an air-supported ball (Fig. 2a and Methods). We
targeted 5 different LC neuron types (LC6, LC11,LC12,LC15and LC17),
chosenbecausesilencing each oneledto noticeable changesin courting

behaviour (Fig. 1e and Extended Data Fig. 1). We first presented artificial
stimuli (Fig. 2b,c and Methods) used to characterize LC responses in
previousstudies® !, Despite the fact that the 1-to-1 network never had
access to neural data, we found that its predicted responses largely
matched their corresponding real LC responses for artificial stimuli
(Fig. 2b,c, compare top and bottom, and Extended Data Fig. 7).

Wethentested the predictions of the 1-to-1 network on more natural-
istic stimulus sequences (that is, afictive female varying her position,
sizeandrotation; Supplementary Video1). We found that the recorded
LCneurons responded to many of these naturalistic stimulus sequences
(Fig. 2d, colour traces, and Extended Data Fig. 8) and found reliable
matches between real LC responses and their corresponding model LC
responses (Fig. 2d, black traces versus colour traces, and Extended Data
Fig. 8), yielding an average noise-corrected R* of approximately 0.35.
Thiswasasignificantimprovement over other networks with the same
architecture but trained with dropout or without knockout procedures
(Fig. 2e); training on behaviour was important for prediction, as these
networks outperformed an untrained network (Fig. 2e, untrained). The
prediction performance of the 1-to-1 network was consistent with our
expectations—exact matches were unlikely owing to differencesin
behavioural state during courtship (on which the 1-to-1 network was
trained) and during imaging™*.,

We further tested the predictions of the 1-to-1 network by assessing
the extent towhichthel-to-1network predicted response magnitudes
across both natural and artificial stimuli and found reasonable matches
(Fig. 2f and Extended Data Fig. 7). We also gave the 1-to-1 network par-
tialaccessto neural databy using real LC responses tofitalinear map-
ping between allmodel LC unitsand onereal LC neurontype. We found
that held-out prediction improved to a noise-corrected R? of approxi-
mately 0.65 (Extended Data Fig. 8), suggesting that better alignments
between the model LC units and real LC types exist, at least for neural
prediction. The 1-to-1 network was the most consistent in its neural
predictions (across ten different random initializations) compared
with other training procedures (Extended Data Fig. 6), suggesting that
knockout training converges to a similar solution despite a different
initialization. There are yet additional ways to test the model: by silenc-
ing or activating combinations of LC types predicted by the model to
actin concert or by recording from LC types under conditions more
similar to natural courtship. Nevertheless, we interpret our tests of
the model to suggest that the 1-to-1 network has learned areasonable
mapping between visual stimulus and an individual LC type as well as
the contribution of an individual LC type to behaviour. The sections
that follow examine the 1-to-1 network that led to the best prediction
of both behaviour and neural responses (of the ten different initializa-
tions; Extended Data Figs. 3 and 8).

Visual feature encoding of the model LC units

We next tested how the population of 23 model LC units encodes the
movements of the female. We found that the majority of model LC units
inthel-to-1network responded to changesin female position, size and
rotation (Fig.3a). Moreover, almost nomodel LC unit directly encoded
any single visual parameter (Fig. 3b, low R*values for any one LC type,
but high R*for a linear mapping of all LC types).

Males pursue females at arange of distances and positions, and we
canuse the1-to-1network to uncover how the LC population encodes
these contexts by examining 3D ‘tuning maps’ (Fig. 3¢, Extended Data
Fig.9 and Methods). Some model LC units, such as LC31, were driven by
the position of the female (in front of the male), independent of female
size and rotation (Fig. 3d, top), whereas other model LC units, such as
LPLC2, were driven by large female sizes, consistent with its known
response to looming stimuli”?**?*', Model LC10a was driven by female
position (in front of the male), consistent with prior work™?, but we
found this was only true for conditionsin which heis close and directly
behind her (Fig.3d, bottom). Model LC9 and LC22 were similarly driven
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Fig.2|ModelLCresponses from the1-to-1network matchreal LCneural
responses.a, Werecorded LC responses using calcium imaging while a head-
fixed male fly viewed dynamic stimulus (stim) sequences. We fed the same
stimuliinto thel-to-1network and tested whether the predicted responses
(black trace) for agiven model LC unit matched the real response of the
corresponding LC neuron (orange trace, summed calcium dynamics within
theregion occupied by the glomerulus ‘imaged region’) by computing the
noise-corrected R*between the two (normalized) traces over time (Methods).
Thel-to-1network never hadaccesstoreal LCresponses during training, and
only one pre-specified model LC unit was used to predict responses of each LC
type.b, Real (top) and model (bottom) responses of LC11to amoving spot with
differentspeeds.a.u., arbitrary units. ¢, Realand model responses of LC15toa

by females in front of and facing away from the male, but at larger dis-
tances (Extended Data Fig. 9).

To quantify these interactions, we decomposed the response vari-
ance” of each model LC unit into four components (Fig. 3e). Most
model LC units encoded changes in female position (Fig. 3e, orange
bars), roughly halfencoded female size (Fig. 3e, blue bars), and female
rotation was weakly encoded (Fig. 3e, green bars are small). However,
almost allmodel LC units encoded some nonlinear interaction among
the three visual parameters (Fig. 3e, black bars; on average around 25%
of the response variance for each model LC unit).

We next considered non-naturalistic stimulus sequences, varying one
visual parameter at a time (Fig. 3f, dashed lines, and Supplementary
Video 2).For example, we varied the size of the female over time at dif-
ferent speeds, while keeping her position and rotation constant (Fig. 3f,
top, dashed lines). For this stimulus, some model LC units perfectly
encoded female size (Fig. 3f, top left, LC10a), some model LC units
encoded a time-delayed version of size (Fig. 3f, top, middle, LC17),
whereas other model LC units encoded the speed at which female size
changed (Fig. 3f, top right, LC13). Similar relationships were present for
other stimulus sequences and model LC units (Fig. 3f, bottom two rows);
wenote that the 1-to-1network was predictive of real LC responses for
similar types of stimulus sequences (Fig. 2d,e and Extended Data Fig. 8).

Compiling these results, we find that most model LC units encode
some aspect of female size, position and rotation (Fig.3g). Our results
were consistent with previous studies, such as LC11 encoding the posi-
tion of asmall moving spot*? (Fig. 3g, LC11 has highest R*for ‘position’
in ‘vary female position’ than in other stimulus sequences) and LPLC2
encoding loom* (Fig. 3g, LPLC2 has highest R*for ‘size’in ‘vary female
size’). Recently, LPLC2 has also been found to encode the speed of a
moving spot>s, consistent with the predictions of our model (Fig. 3g,
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A

spotwithlinearly increasingsize. d, Real (colour traces) and model (black
traces) LC responses to stimulus sequences of afictive female changing in
positionand size (dashed traces). Shaded regions denote 90% bootstrapped
confidenceintervals of the mean; noise-corrected R?>values are indicated.

e, Average noise-corrected R?across all stimulus sequences and LC types for
different networks (bars). Each dot denotes one LC type and stimulus pair.
Dotswithlow R?*values primarily corresponded to weakly driving stimuli
(Extended DataFig. 8). The knockout network outperformed all other networks
(*P<0.05, paired, one-sided permutation test; n=27).f, Real (colour traces,
repeat-averaged responses) and model LC (black traces, unnormalized)
responses across all presented artificial and natural stimuli. LC17 and LC15 are
shownhere;LC6,LCl1and LC12responsesare shownin Extended DataFig.7.

LPLC2 has high R? for ‘speed’ in ‘vary female position’). Model units
LC4,LCé6,LC15,LC16,LC17,LC18,LC21and LC26 all encode female size
(Fig.3g, top), matching recent findings that these LC neurons respond
tolooming objects of various sizes®*; our 1-to-1 network also uncovers
that these LC types probably encode other visual features as well. Of
note, results differed between varying a single female parameter versus
combinations of parameters (compare with Fig. 3b,g); this highlights the
importance of using more naturalistic stimuli to probe the visual system.

We conclude that the model LC units encode visual stimuliin a
distributed way: each visual stimulus feature is encoded by multiple
model LC units (Fig. 3g, rows each have multiple red squares), and
eachmodel LC unit encodes multiple visual stimulus features (Fig. 3g,
columns each have multiple red squares). Consistent with this, the
response-maximizing stimulus sequence for each model LC unit
strongly drove responses of other model LC units, even when opti-
mized for these other responses tobe suppressed (a‘one hot activation’;
Extended Data Fig. 11).

Linking model LC units to behaviour

Given that visual features appeared to be distributed across the LC
population (Figs.2 and 3), we tested the hypothesis that combinations
of LC types drive the male’s singing and pursuit of the female. We sys-
tematically inactivated model LC units in different combinations (or
alone)—experiments that are not easily performed in areal flies, even
with excellent genetic tools—and then examined which model LC units
were necessary and sufficient to guide behaviour (Fig. 4a).

We began by testing which model LC unit, when inactivated, main-
tained the best performance in predicting the behaviour of control
flies. In agreedy and cumulative manner, we repeatedly inactivated
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Fig.3|Visual features of female motion are distributed across the
population of model LCunits. a, Almost allmodel LC unitsrespondedtoa
fictive female changingin size, position and rotation. b, Cross-validated R?
betweeneach primary visual parameter and model LC responses for natural
stimulus sequences. Columns aresorted based on female size (top). The end
columnofeach row (all) is the cross-validated R between alinear combination
(identified viaridge regression) between all model LC units and asingle visual
parameter.c, We characterized the tuning preferences of each model LC unit
by systematically varying the three visual parameters and computing a heat
map ofthe model LCresponses. Eachinput sequence was static (thatis, all ten
frames were repeats of the same image). d, Tuning heat maps for example
model LC units (see Extended DataFig. 9 for all LC types). e, We used variance
decomposition (Methods) to decompose the response variance V[y] of each
model LC unitinto components solely due to either female size V¥l

(blue), position V[yposmn] (orange) or rotation V[y, ... 1 (green) as well as

the model LC unit that maintained the best performance while keeping
all previously chosen LCs inactivated (Fig. 4b); eventually prediction
performance had to decrease because of the bottleneckimposed by the
model LC units. The inactivated model LC units that led to the largest
dropsinperformance were the strongest contributors to each behav-
iour (Fig. 4b, rightmost dots). Separately inactivating each model LC
unitresultedinlittle tonodrop in prediction performance (Extended
DataFig.12).

We performed this cumulative inactivation procedure for all six
behavioural outputs (Fig. 4c and Extended Data Fig. 12), and found
that most model LC units contributed to multiple behavioural outputs
(Fig. 4c, multiple red squares per column) and that each behavioural
output was driven by multiple LC units. The 1-to-1network enabled us to
characterize the behavioural role of many previously uncharacterized
LC types. It uncovered arole for LC31in all types of song production,
for LC22in male forward velocity and Pfast song production (the song
type produced when males move quickly®), and for LC13 in turning and
the production of sine song. We also found anew role for LC10ain the
production of sine song, consistent with the role of P1aneurons, whose

interactionsbetween these visual parameters V[ Vinceractions] (black). Alarge
fraction of response variance for agiven parameter indicates that amodel
LCunit more strongly changesits responseyto variationsin this parameter
relative to those in other parameters. Because the 1-to-1 network is deterministic,
allresponse variance canbe attributed to variations of the parameters (that

is, thereis no repeat-to-repeat variability). f, Example model LC responses to
dynamicstimulussequences in which the fictive female solely varied either her
size, position or rotation angle over time (dashed traces). Different model LC
units appear either to directly encode a visual parameter (for example, LC10a
encodessize) or encode features derived from the parameter, such as a delay
(LC17,arrows) or speed at which female size changes (LC13). Responses for all
model LC unitsare in Extended DataFig.10.g, R*between model responses and
visual parameter features for the stimulus sequencesin f. Columns arein the
sameorder asthoseinb.

activity directly gates LC10a activity", in enabling sine song produc-
tion®*. All of these predictions can be tested in future experiments,
guided by the 1-to-1 network.

As we did for examining visual stimulus encoding (Fig. 3f,g), we
considered the behavioural responses to stimulus sequencesin which
only one parameter of female motion varied at a time. Using system-
atic inactivation, we again identified the model LC units that were
both necessary and sufficient to produce the output of the model
to these stimuli. For example, we found that when we varied female
size only (Fig. 4d, top, dashed line), inactivating 10 different model
LC units (Fig. 4d, middle, squares with red crosses, identified via
cumulative inactivation; Methods) resulted in no change in forward
velocity (Fig. 4d, middle, green trace overlays black trace). This sug-
gests that the other model LC units (Fig. 4d, middle, squares without
ared cross) were sufficient to drive behaviour. We then inactivated
these ‘sufficient’ model LC units (keeping all other model LC units
activated) and found alarge behavioural deficit (Fig. 4d, bottom, red
trace does not overlay black trace), indicating that these inactivated
model LC units were also necessary. That alarge number of LC types
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Fig. 4| Combinations of model LC units arerequired for behaviour. a, We
assess whether agroup of model LC units are sufficient and necessary for
behaviourifweinactivate allmodel LC units notin that group (middle, sufficient)
orinactivate only that group of model LC units (right, necessary). b, We identify
whichmodel LCunits contribute to forward velocity by cumulatively inactivating
model LC unitsin a greedy manner (that s, inactivate the next model LC unit
that, onceinactivated, maintains the best prediction performance R?.The
model LC units with the largest changesin performance (for example, LC13 and
LC22) contribute the most. ¢, Results for cumulative inactivation for all six
behavioural outputs; forward velocity (top) is the same asinb. Columns of each
row are ordered based on the ordering of forward velocity (top). d, For adynamic

were required for behaviour remained true for other stimuli and
behaviours (Fig. 4e).

Across all behavioural outputs, even for these simple stimulus
sequences, we found that multiple LC units contributed to each behav-
iour (Fig. 4f, multiple red squares per row) and that most model LC units
each contributed to multiple behaviours (Fig. 4f, multiple red squares
per column). We also found consistencies between these results and
prior work on specific LC types—for example, LC16, LC17, and LPLC1
contribute to the angular velocity of the male in our model (Fig. 4f, ‘vary
femalesize’), and, if optogenetically activated, also drive turns'>*. The
results for these simple stimuli differed slightly from those for natural
courtship stimuli (for example, white squares for LC12in Fig.4fand red
squares for LC12 in Fig. 4c), suggesting that LC contributions change
with context. Overall, our results support the notion that amajority of
model LC units are required for the courtship behaviour of the male.

Distributed connections of the LC population

We aggregated results both from how the model LC neurons encode
visual input (Fig. 3) and contribute to behaviour (Fig. 4) and outline
these relationships withsome thresholding (Fig. 5a and Methods). The
pictureis complicated: model LC units encode multiple visual features
of the female (Fig. 5a, left connections) and contribute to multiple
behavioural outputs (Fig. 5a, right connections). Even LC typesinvolved
innon-social behaviours (forexample, escape), such as LC4,LC6, LPLC1
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stimulus sequence of afictive female only varying her size, we used our
approachinatoidentify the sufficient and necessary model LC units for the
male forward velocity of the male (top). Red crosses denote inactivation; each
squarerepresents amodel LC unit; colours match thoseinFig.3a. Theactive
model LCunitsinthe middle row are the same asthose inactivated in the bottom
row. e, Other example behavioural outputs and stimulus sequences to assess
necessity and sufficiency. Same formatasind. For predicting Pslow song
(right column), allbut LC11and LC25wererequired, althoughnotevery LC type
contributed as strongly. f, Results of cumulative inactivation for the dynamic
stimulus sequencesind,e.Same format, colour legend and ordering of columns
asinc.

and LPLC2%+263840 narticipate in encoding the movements of the
female and driving the courtship actions of the male.

Akey prediction of our 1-to-1 network is that LC neuron types share
commoninputsintheopticlobe (creating shared feature tuning across
the LC population) and converge onto shared downstream targets to
drive behaviour. Totest this prediction, we analysed arecently released
whole-brain connectome™* (FlyWire) with exhaustive cell typingin
the opticlobe™and central brain'®, and inwhich 57 LCand LPLC neuron
types have beenidentified so far. We computed the synaptic connectiv-
ity matrix for LC neuron types silenced in our experiments and their
presynaptic cell types (Fig. 5b) as well as their postsynaptic cell types
(Fig.5c). We found that 60.2% of presynaptic neuron types projected to
2 ormore LC types and 45.7% projected to 3 or more LC types (Fig. 5b,
celltypeLi32 projected to 27 out of 28 LC types considered). Similarly,
55.6% of downstream neurons of the same type received input from 2
or more LC types and 32.5% received input from 3 or more LC types
(Fig. 5¢, descending neuron type DNp35 read out from 7 out of 28 LC
types considered). Thus, the LC types do share inputs and converge
ontoshared targets. Anadditional observationis that many LCand LPLC
types connect directly with other LC and LPLC typesin the lobulaand
lobulaplate (Fig.5b,c, LC and LPLC columns). Such recurrence muddles
theideathateach LCtypeisanindependentfeature detector, although
these lateral connections may implement a divisive normalization
mechanism*. Animportant caveat is that this connectome dataset is
from a female fruit fly; once the connectome of a male is generated,
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differencesin predictions across different training runs (Extended Data Figs. 5
and 6).b, Synaptic connectivity matrix for presynaptic neuron types projecting
toLCorLPLC neurons.Eachrowis forone LC or LPLC typethat wesilencedin
our experiments. Each columnis forapresynaptic partner neurontype; columns
aregrouped into classes of neurontypes or brain areas based on the naming
conventionsinthe FlyWire connectome dataset® (see Methods for full names)

we can further test the predictions of the 1-to-1 network by examining
putative information flow from the LCs to downstream circuits known
to control chasing and singing.

Discussion

Here we develop knockout training, a novel solution to identify a
one-to-one mappingbetweeninternal unitsina DNN and real neurons
inthebrain of a fly. The model makes predictions about how neurons
respond to sensory stimuli and drive behaviour. Although silencing
each LC neuron type on its own may have a small to medium effect
on behaviour (Fig. 1e and Extended Data Fig. 1), our 1-to-1 network
infers how the LC types work together as a population to drive the
courtship behaviour of the male. We show that the model extends
beyond findings from direct recordings of LC neurons®?°, evenin
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and further sorted within class such that the neurontype with connections
tothelargest number of LC or LPLC typesis the leftmost column. A tick line
indicates atleast five synaptic connections were identified between neurons
ofanLC or LPLC neuron type and neurons of a presynaptic neuron type. We
include synaptic connections for LC10a-f, LC20a-b and LC33a-c for which we
have finer granularity in FlyWire than that of our geneticlines. Presynaptic
neurontypes with connections tolarge numbers of LC or LPLC neurontypes
arelabelled—for example, Li32 (27) indicates neuron type Li32 projects to 27
outof28different LC neurontypes considered here. Rows are sorted based

on clustering LC types by their connections to presynaptic partners (Methods).
¢, Synaptic connectivity matrix for postsynaptic neuron typesreceivinginput
fromLC or LPLC neurons. Same format asinb. We re-clustered LC types based
ontheir connections to postsynaptic partners (rows differ from the ordering
inb). Because thisconnectome dataset is from a female fruit fly, it may miss
important sexually dimorphic, courtship-relevant connections to downstream
areas of the male fruit fly.

behaving flies™*. The 1-to-1 network provides information on LC visual
responses in freely behaving flies (not head-fixed, as is required for
recordings) engaging in natural social interactions and can gener-
ate LC responses to any arbitrary visual stimulus. In fact, we demon-
stratethat the1-to-1network predicts actual responses to stimuli that
the model had not seen during training (for example, Fig. 2b,c). The
model also makes testable predictions about which combinations
of LC types are both necessary and sufficient for specific courtship
behaviours (Fig. 4). A major new finding of our work is which and to
what extent LC neuron types contribute to song production, aninte-
gral part of courtship guided by visual feedback®. Given that the same
visual stimulus sequence can drive multiple LC types (Extended Data
Fig. 7), this neuron-to-behaviour relationship is not readily inferred
from LC recordings alone. The 1-to-1 network is the first large-scale
hypothesis of how the LC types work together to encode stimuli and
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contribute tobehaviour; we share our model and code (https://github.
com/murthylab/one2one-mapping) with the community to inspire
future experiments and models.

A main conclusion of this study is that the complex courtship
behaviour of the male relies on combinations of visual projections
neurons—including those also involved in non-social behaviours.
However, we do not yet know the extent to which other behaviours
beyond those observed during courtship also rely on a population
code. Knockout training on the LC types could easily be applied to
other visuomotor behaviours (for example, escape responses or
flight) to make direct comparisons. Given the extent of interconnec-
tivity between LC types and convergence of LC types onto common
downstream cell types (Fig. 5b,c), we posit that population coding
for behaviour, particularly in natural contexts, might be the norm.
By contrast, for behaviours thatrely on quick and robust processing,
such as escape from a predator, the arrangement of LC types into
optic glomeruli may facilitate the fast readout of specific channels®.
Oneissueraised by the use of amultiplexed code is how the fly brain
produces the correct behaviour at the correct time. For example,
LPLC2 neurons synapse onto the giant fibre neuron to drive an escape
take-off?, but our 1-to-1 network predicts that this same cell type
encodes female size and contributes to the forward velocity of the
male during courtship (Fig. 5a); recent work has also found LPLC2
contributes to evasive flight turns®. Future experiments are needed
to understand how the same LC cell type can contribute to different
behaviours in different contexts.

Our modelling approach comes with limitations. For example, if
silencing an LC type does not lead to a noticeable change in behav-
iour, the 1-to-1 network cannot infer the tuning of that LC type. In
addition, many silenced LC types resulted in stronger—not weaker—
courtship (Fig. 1d,e), suggesting that these LC neurons may act par-
tially as distractors to prevent relentless pursuit of the female***,
We also found some mismatches between real LC responses and the
responses of the 1-to-1 network (Fig. 2); although this may be owing
to differences in internal state between freely moving males during
natural courtship (training data for the model) versus head-fixed
males passively viewing stimuli (neural recordings), training on neural
dataand behavioural datatogether may help toimprove both neural
and behavioural prediction (Extended Data Fig. 8). An experimental
limitation of using natural behaviour arises because the statistics of
the visual experience cannot be matched between LC-silenced and
control males (for example, an LC9-silenced male spends much less
time near the female); future experiments can use virtual reality" or
robotic females* to presentidentical stimulus sequences to control
and silenced males.

Following recent studies using DNNs to predict responses of vis-
ual neurons'?, we used DNNs in our 1-to-1 network that are highly
expressive function approximators but lack biological realism. Our
model-agnostic knockout training procedure can be used to train more
biologically inspired models** thatincorporate constraints from the
FlyWire connectome’® and emerging male brain wiring diagrams®to
includerecurrent connections, lateral connections between LC types
(Fig. 5b,c) and delays*®. An intriguing future direction is to apply this
framework to other bottlenecks within the Drosophila brain, such as
the descending and ascending neurons that link the brain and nerve
cord®”, and in more complex systems for which we also have genetic
control over cell types**%, Our work shows that constraining models
with causal perturbations of neurons during complex behaviouris an
importantingredientinrevealing the relationships between stimulus,
neurons and behaviour.
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Methods

Flies

For all experiments, we used four- to seven-day-old virgin flies col-
lected from density-controlled bottles seeded with eight males and
eight females. Fly bottles were kept at 25 °C and 60% relative humidity.
Virgin flies were housed individually and kept in behavioural incuba-
tors under a12 h:12 hlight:dark cycling; individual males were paired
with a pheromone insensitive and blind (PIBL) female to encourage
longer courtship sessions—see Supplementary Table 1for more info
on genotype. UAS-TNT-C was obtained from the Bloomington Stock
Center. All LC split-GAL4 lines and the spGAL4 control line®**’ were
generously provided by M. Reiser, A. Nern and G. Rubin—see Supple-
mentary Table 2 for more information. We note that LC10 has seven
different types (LC10a-g) whose genetic lines have not all beenisolated;
their names come from prior cell typing based on light microscopy™.
LC10 genetic line names have not yet been mapped to these new types
identified in the connectome.

Courtship experiments

Behavioural chambers were constructed as previously described®*®.
Each recording chamber had a floor lined with white plastic mesh
and equipped with 16 microphones (Extended Data Fig. 1). Video was
recorded from above the chamber at a 60 Hz frame rate; features
for behavioural tracking were extracted from the video and down-
sampled to 30 Hz for later analysis. Audio was recorded at 10 kHz.
Flies were introduced gently into the chamber using an aspirator.
Recordings were timed to be within 150 min of the behavioural
incubator lights switching on to catch the morning activity peak.
Recordings were stopped either after 30 min or after copulation, which-
ever came sooner. All flies were used; we did not use any criteria (for
example, if males sang during the first 5 min of the experiment or not)
to drop fly sessions from analyses. In total, behaviour was recorded
and analysed from 459 pairs; the number of flies per condition were
as follows:

LC type LC4 LC6 LC9 LCl10a LC10ad LC10bc LC10d LC11 LC12
number 17 19 18 13 15 16 16 14 14
of pairs

LCtype LC13 LC15 LC16 LC17 LC18 LC20 LC21 LC22 LC24

number 17 16 19 14 14 16 15 22 18
of pairs

LCtype LC25 LC26 LC31 LPLC1 LPLC2 control total
number 16 18 24 16 17 75 459
of pairs

Joint positions for the male and female for every frame were tracked
withaDNN trained for multi-animal pose estimation called SLEAP®', We
used the default values for the parameters and proofread the result-
ing tracks to correct for errors. We estimated the presence of sine,
Pfast and Pslow song for every frame using a song segmenter on the
audio signals recorded from the chamber’s microphones according
toa previous study™.

Fromthe tracked joint positions and song recordings, we extracted
the following six behavioural variables of the male fly that represented
his moment-to-moment behaviour. (1) ‘Forward velocity’ was the dif-
ference between the male’s current position and his position one frame
inthe past; this difference in position was projected onto his heading
direction (that is, the vector from the male’s thorax to his head).
(2) ‘Lateral velocity’ was the same difference in position as computed
for forward velocity except this difference was projected onto the direc-
tion orthogonal to the male’s heading direction; rightward movements

were taken as positive. (3) ‘Angular velocity’ was the angle between the
male’s current heading direction and the male’s heading direction one
frame in the past; rightward turns were taken as positive, and angles
werereportedindegrees (thatis,aturntoamale’srightis90°,aturnto
hisleftis—90°). (4) ‘Probability of sine song’ was computed asabinary
variable for each frame, where avalue of 1was reported if sine song was
present during that frame, else O was reported. (5) ‘Probability of fast
pulse (Pfast) song’and (6) ‘probability of slow pulse (Pslow) song’ were
computed inthe same manner as that for the probability of sine song.

These sixbehavioural output variables described the male’s movements

(forward, lateral, and angular velocity) as well as his song production

(probability of sine, Pfast and Pslow song).

Oftenamale fly spends periods of time without noticeable courtship
of the female (for example, the ‘whatever’ state as defined in ref. 52).
During these periods, the male probably does not rely much on the
visual feedback of the female to guide his behaviour; this makes pre-
dicting his behaviour only from visual input difficult. In addition, these
time periods can make up alarge enough fraction of the training data
to bias models to output ‘do nothing’ owing to the imbalanced train-
ing data. To mitigate these effects, we devised a set of loose criteria to
identify ‘courtship frames’in which the maleislikelyinacourtship state
(for example, chasing or singing to the female); we then only trainand
test on these courtship frames.

We devised the following four criteria to determine if aframeis a
courtship frame:

(1) Themaleand female distance (takenbetween the joint positions of
their thoraxes) averaged over the time window is less than 5 mm.

(2) Theproportionofframesinwhich the male produced song (Pfast,
Pslow, or sine) during the time window is greater than O.1.

(3) Theangle ofthe female’s location from the male’s heading direction
(withrespect to the male’s head), averaged over the time window,
isno more than 45 visual degrees.

(4) Themaleistravelingatleast4.5mm/stowardsthe female, averaged
over the time window.

Thetimewindow was 20 s long, centred onthe candidate frame. Only
one criterionneeded to be metto classify aframeas a courtship frame.
Giventhese criteria, roughly 70% of all frames in control sessions were
considered as courtship frames. Although silencing an LC type likely
alterstheamountof courtship duringasession, we ensured thatenough
courtship frames were present for training the model. LC9-silenced
males had the lowest percentage of courtship frames over the entire
session at42% (consistent with its high male-to-female distance, Fig. 1e,
top); the average across LC types was roughly 70% and similar to that
of control sessions.

Visual input reconstruction

To best mimic how a male fly transforms his retina’s visual input into
behaviour, we desired an image-computable model (that is, one that
takes as input an image rather than abstract variables determined by
the experimenter, such as female size or male-to-female distance).
We approximately reconstructed the male’s visual input based on
pose estimation of both the male and female fly during courtship,
as described in the following process. For each frame, we created a
64-pixel x 256-pixel greyscaleimage with awhite background. Giventhe
femalerotation, size and location (see below), we placed animage patch
of agreyscale fictive female (composed of ellipses that represented
the head, eyes, thorax and tail of the female; no wings were included)
occluding the white background. Because male flies perceive roughly
160 visual degrees on either side®, we removed from the image the
40 visual degrees directly behind the male, leading to images with
64 x 228 pixels. Example input images are shown in Fig. 1f, where the
reconstructed female flies were coloured and on grey background for
illustrative purposes. Example videos of input image sequences are
presentin Supplementary Videos1and 2.



We computed the female’s rotation, size and location in the following
way. For female rotation, we computed the angle between the direc-
tion of the male head to female body and the direction of the female’s
heading. A rotation angle of 0° indicates the female is facing away
from the male, +180° indicates the female is facing towards the male,
and -90° or +90° indicates the female is facing to the left or right of
the male, respectively. We pre-processed a set of 360 image patches
(25 x 25 pixels) that depicted a rotated female for each of 360 visual
degrees. Given the computed rotation angle, we accessed the image
patch correspondingto that rotation angle. For female size, we treated
the female fly as asphere (whose diameter matched the average length
of afemale fly from head to wing tips, ~4 mm) and computed as size
the visual angle between the two vectors of the male’s head position
to the two outermost points on the sphere that maximize the visual
angle (thatis, the two furthest points along the horizontal centre line);
thisangle was normalized so that asize of 1 corresponded to 180 visual
degrees. This size determined the width (and height, equal to the width)
ofthe selectedimage patchtobe placedintothe 64 x 228-pixel image.
Here, size indicates the size of the image patch, not the actual size of
the fictive female (which may vary because a female facing away is
smaller than a female facing to the left or right). For reference, for a
fictive female with a size of 1.0 and facing away from the male in the
centre of his visual field, her body subtends 65 visual degrees. For
female position, we computed the visual angle between the male’s
heading direction and the direction between the male’s head and the
female’s body position. We normalized this angle such that a posi-
tion of O is directly in front of the male, a position of either -1 or1is
directly behind the male fly, and a position of 0.5 or +0.5is 90 visual
degreestotheleft orright, respectively. We then used this position to
place the image patch (with its chosen rotation and size) at a certain
pixel location along the horizontal centre line of the image. Because
the male and female flies did not have roomto fly in the experimental
chamber, we assumed that only the female’s lateral position (and not
vertical position) could change.

Description of 1-to-1 network

We designed our 1-to-1 network to predict the male fly’s behaviour
(that is, movement and song production) only from his visual input.
Although the male can use other sensory modalities such as olfaction
ormechanosensation to detect the female, we chose to focus solely on
visualinputs because: (1) the male relies primarily on his visual feedback
for courtship chasing and singing®**; and (2) we wanted the model to
have arepresentation solely based on vision to match the representa-
tions of visual LC neurons.

The 1-to-1 network comprised three parts: a vision network, an LC
bottleneck, and a decision network (Fig. 1a). Hyperparameters, such as
the number of filtersin each layer, the number of layers, and the types
oflayers were chosen based on prediction performance assessed ona
validation set of the control sessions separate from the test set. Unless
specified, each convolutional or dense layer was followed by a batch-
normoperation®*and arelu activation function. The 1-to-1 network took
asinput theimages of the 10 most recent time frames (corresponding
to~-300 ms)—longer input sequences did not lead to an improvement
inpredictingbehaviour. Each greyscaleimage was 64 x 228 pixels (with
values between 0 and 255) depicting afictive female fly on a white back-
ground (see ‘Visual input reconstruction’). Before being fed into the
network, the input was first re-centred by subtracting 255 from each
pixel intensity to ensure the background pixels had values of 0. The
model’s output was six behavioural variables of the male fly: forward
velocity, lateral velocity, angular velocity, probability of sine song,
probability of Pfast song, and probability of Pslow song (see ‘Court-
ship experiments’).

Vision network. The first layer of the vision network was spatial con-
volutions with 32 filters (kernel size 3 x 3) and a downsampling stride

of 2. The second and third layers were identical to the first except with
separable 2D convolutions®. The final layer was a two-stage linear
mapping>® which first spatially pools its input of activity maps and
then linearly combines the pooled outputs across channels into 16
embedding variables; pooling the spatial inputs in this manner greatly
reduced the number of parameters for this layer. Batchnorm and relus
did not follow this two-stage layer. The vision network processed each
ofthe10 inputimages separately; in other words, the vision network’s
weights were shared across time frames (that is, a 1D convolutionin
time). Allowing for 3D convolutions of the visual inputs (that is, 3D
kernels for the two spatial dimensions and the third time dimension)
did notimprove prediction performance (Extended DataFig. 3), likely
because of the increase in the number of parameters. For simplicity,
the vision network’sinput was the entire image (that is, the entire visual
field); wedid notinclude two retinae. We found that incorporating two
retinae into the model, while more biologically plausible, made it more
difficult tointerpret the tuning of each LC neurontype. For example, for
atwo-retinaemodel, itis difficult to determineif differencesin tuning
for two model units of the same LC type butin different retinae are true
differences in real LC types or instead differences due to overfitting
between the two retinal vision networks. The 1-to-1network avoids this
discrepancy through the simplifying assumption thateach LC type has
asimilar response across both retinae.

LC bottleneck. The next component of the DNN model was the LC
bottleneck, which received 10 16-dimensional embedding vectors
corresponding to the past 10 time frames. These embedding vectors
were passed through a dense layer with 64 filters followed by another
dense layer with number of filters equal to the number of silenced LC
types (23 in total). We call the 23-dimensional output of this layer the
‘LCbottleneck’. Eachmodel LC unit represents the summed activity of
all neurons of the same LC type (that is, projecting to the same optic
glomerulus), which makes it easy to compare to calcium imaging
recordings of LC neurons which track the overall activity level of asingle
glomerulus. We found that adding additional unperturbed ‘slack’ model
LC units to match the total number of LC types (for example, 45 model
LC unitsinstead of 23 units) did notimprove prediction performance;
in the extreme case, adding a large number slack variables encour-
ages the network toignore the ‘unreliable’ knocked-out units in favor
of predicting shared behaviour across silenced and control sessions
(that is, similar to training without knockout). For two perturbations
(LC10ad and LC10bc), the genetic lines silenced two LC neuron types
together. For simplicity, we assigned each of these to its own model
LC unit, which represented the summed activity of all neurons from
both types (for example, LC10a and LC10d for LC10ad). Because the
LC bottleneck reads from all 10 past time frames, each model LC unit
integratesinformation over time (for example, for motion detection).
Additionally, the model LC responses are guaranteed to be nonnegative
because of the relu activation functions.

Decision network. The decision network took as input the activations
of the 23 LC bottleneck units and comprised 3 dense layers, where
each layer had 128 filters. The decision network predicted the move-
ment output variables (forward velocity, lateral velocity, and angular
velocity) each withalinear mapping and the song production variables
(probability of sine, Pfast and Pslow song) each with a linear mapping
followed by asigmoid activation function.

Knockout training

We sought a one-to-one mapping between the model’s 23 LC units in
itsbottleneck and the23 LC neurontypesin our silencing experiments
(Fig. 1a). To identify this mapping, we devised knockout training. We
first describe the high-level training procedure and then give details
about the optimization. For a randomly initialized 1-to-1 network, we
arbitrarily assigned model LC unitstoreal LC types (thatis, innumerical
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order). For each training sample, we knocked out (that is, set to O via
amask) the model LC unit that corresponded to the silenced LC type;
no model units were silenced for control data (Fig. 1b). This is similar
to dropout training® except that hidden units were purposefully—not
randomly—chosen. Theintuition behind knockout trainingis that the
remaining unperturbed model LC units must encode enough infor-
mation or ‘pick up the slack’ to predict the silenced behaviour; any
extra information will not be encoded in the unperturbed units
(astheback-propagated error would not contain this information). For
example, let usassume that female size isencoded solely by LPLC1and
that this cell type contributes strongly to forward velocity. To predict
the forward velocity of LPLC1-silenced males (which would not rely
on female size), the other model LC units would need only to encode
other features of the fictive female (for example, her position or rota-
tion). Infact, any other model LC unitencoding female size would hurt
prediction because forward velocity of LPLC1-silenced males does not
depend onit. Another view of knockout training is that we optimize
the model to predict behaviour while also constraining the model on
which internal representations it may use. These constraints are set
by the perturbations (for example, genetic silencing) we use in our
experiments.

The optimization details are as follows. The model was trained
end-to-end using stochastic gradient descent with learning rate 10
and momentum 0.7. Each training batch had 288 samples, where each
sample was a sequence of 10 images and 6 output values. Each batch
was balanced across LC types (24 in total including control), where
each LC type had12 samples. The batch was also balanced for types of
song (sine song, pulse song, or no song), as different flies sang differ-
ent amounts of song. The model treated different flies for the same
silenced LC type as the same to capture overall trends of an ‘average’
silenced fly. We z-scored the movement behavioural variables (forward,
lateral, and angular velocity) based on the mean and standard devia-
tion of the control datain order to have similarly sized gradients from
each output variable. The loss functions were mean squared error for
forward, lateral, and angular velocity and binary cross-entropy for
the probabilities of sine, Pfast, and Pslow song. The model instantia-
tion and optimization was coded in Keras (https://keras.io/) on top of
Tensorflow”’; we used the default randomiinitialization parameters to
initialize weights. We stopped training when prediction performance
for forward velocity (evaluated on a validation set, see below) began
to decrease (that is, early stopping).

Training and test data. Afteridentifying courtship frames (see ‘Court-
ship experiments’), we split these framesinto train, validation and test
sets. To form a test set for a given LC type (or control), we randomly
selected 3-swindows across all flies until we had 15 min of data (27,000
frames). Selecting windows instead of randomly choosing time frames
ensured that no frame in the visual input of the test data overlapped
with any training frames. For control sessions, after selecting the test
set, we also randomly sampled from the remaining frames to forma
validation set (27,000 frames) in the same way as we did for the test
set; the validation set was used for hyperparameter choices and early
stopping. All remaining frames were used for training. To balance the
number of frames for each LC type and control, we randomly sampled
at most 600,000 frames (~5.5 h) across sessions for each LC type and
control. Thisensured no single LC type or control was over-represented
inthetraining data (thatis, aclassimbalance). Intotal, our training set
had ~11.6 million training samples. To account for the observation that
flies tend to prefer to walk along the edge of the chamber in either a
clockwise or counter-clockwise manner—biasing lateral and angular
velocitiesto one direction—we augmented the training set by flipping
the visual input from left to right and correspondingly changing the
sign of the lateral and angular velocities; each training sample had a
random 50% chance of being flipped. No validation or test data were
augmented.

Dropout and no knockout training. For comparison to knockout (KO)
training, we considered three networks with the same architecture as
the 1-to-1 network but trained with other procedures (Extended Data
Fig.3).Firstis the untrained network for which no trainingis performed
(thatis, all parameters remain at their randomized initial values). Sec-
ond, we performed a version of dropout (DO) training® by settingto O a
randomly chosenmodel LC unit for each training sample independent
of the sample’s silenced LC type; no model LC unit’s values are set to O
for samples from control sessions. This training procedure knocks out
the exact same number of units as that of knockout training. No dropout
is performed during inference. Third, we consider training a network
without knocking out (noKO) any model LC units. We trained the DO
and noKO networks with the exact same data as that for KO training
(acombined dataset of courtship sessions from 23 different LC types and
control), but the DO and noKO networks were not given any information
about which LC type was silenced for a training sample. This makes the
DO and noKO fair null hypotheses: The DO and noKO networks assume
thatno changeinbehaviour occurs between LC-silenced males and con-
trol males, whereas the KO network attempts to find these differences.
The DO and noKO networks helped us to ground the prediction per-
formance of knockout training when predicting moment-to-moment
behaviour (Extended DataFigs. 3 and 4) and real LC responses (Fig. 2e)
as well as consistency in training (below).

Consistency across different training runs. Because DNNs are opt-
imized via stochastic gradient descent, the training procedure of a
DNNis not deterministic; different randominitializations and different
orderings of the training data may lead to DNNs with different predic-
tion performances. To assess whether the 1-to-1 network is consistent
across training runs, we trained 10 runs of the 1-to-1 network with dif-
ferent randomiinitializations and different random orderings of train-
ing samples. For comparison, we also trained 10 networks either with
dropout training or without knockout training (above) as well as 10
untrained networks. For afair comparison across training procedures
(knockout, dropout, without knockout and untrained), each run had
the same parameter initialization and ordering of training samples.
We compared the 1-to-1 network to these three networks by assessing
prediction performance of moment-to-moment behaviour (Extended
DataFig.3), overall mean changes to behaviour across silenced LC types
(Extended Data Fig. 4), consistency both in behavioural predictions
(Extended Data Fig. 5) and neural predictions (Extended Data Fig. 6),
prediction performance of real LC responses for aone-to-one mapping
(Fig.2e and Extended Data Fig. 8) and prediction performance of real
LC responses for a fitted linear mapping (Extended Data Fig. 8). We
opted to investigate the inner workings of a single 1-to-1 network in
Figs.3and 4 bothforsimplicity and because some analyses canonly be
performed on asingle network (for example, the cumulative ablation
experiments in Fig. 4). Different runs of the 1-to-1 networks had some
differences in their predictions (Extended Data Figs. 5and 6), but the
overall conclusion that the LC bottleneck in the1-to-1 network revealed
acombinatorial requirement for multiple LC types to drive the male’s
courtship behaviours remained true over all runs. For our analyses in
Figs.3 and 4, we chose the 1-to-1 network that had the best prediction
for both behaviour and neural responses (model 1in Extended Data
Fig.3,and in Extended DataFig. 8).

Two-photon calciumimaging

Werecorded LCresponses of a head-fixed male fly using a custom-built
two-photon microscope with a 40x objective and a two-photon laser
(Coherent) tuned to 920 nm for imaging of GCaMPé6f. A 562 nm dichroic
split the emission light into red and green channels, which were then
passed through ared 545-604 nm and green 485-555 nm bandpass
filter, respectively. Werecorded the imaging data from the green chan-
nel withasingle plane at 50 Hz. Before head fixation, the male’s cuticle
above the brain was surgically removed, and the brain was perfused
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with anextracellular saline composition. The male’s temperature was
controlled at 30 °Cby flowing saline through a Peltier device and meas-
ured viaawater bath with athermistor (BioscienceTools TC2-80-150).
We targeted LC neuron types LC6, LC11, LC12, LC15 and LC17 (Fig. 2a)
for their proximity to the surface (and thus better imaging signal),
prior knowledge about their responses from previous studies”*, and
because they showed changes to male behaviour whensilenced (Fig.le
and Extended Data Fig.1).

Each head-fixed male fly walked on an air-supported ball and viewed
atranslucent projection screen placed in the right visual hemifield
(matching our recording location in the right hemisphere). The flat
screenwas slanted 40 visual degrees fromthe heading direction of the
fly and perpendicular to the axis along the direction between the fly’s
head and the centre of the screen (with adistance of 9 cmbetween the 2).
AnLED-projector (DLP Lightcrafter LC3000-G2-PRO) witha Semrock
FF01-468/SP-25-STR filter projected stimulus sequences onto the back
of the screen at a frame rate of 180 fps. A neutral density filter of opti-
caldensity1.3wasaddedtothe output of the projectortoreducelight
intensity. The stimulus sequences (described below) comprised amov-
ing spotand afictive female that varied her size, position and rotation.

We recorded a number of sessions for each targeted LC type: LC6
(5flies), LC11 (5 flies), LC12 (6 flies), LC15 (4 flies) and LC17 (5 flies). We
imaged eachglomerulus at the broadest cross-section, typically at the
midpoint, given that we positioned the head of the fly to be flat (tilted
down 90°, with the eyes pointing down). We hand selected regions of
interest (ROIs) that encompassed the shape of the glomerulus within
the 2D cross-section. We computed AF/F, for these targeted ROIs using
abaseline ROIfor Fythat had no discernible response and was far from
targeted ROIs. For each LC and stimulus sequence, we concatenated
repeatsacross flies. Toremove effects due to adaptation across repeats
and differences among flies, we de-trended responses by taking the
z-score across time for each repeat; we then scaled and re-centred
each repeat’s z-scored trace by the standard deviation and mean of
the response trace averaged across all the original repeats (that is,
the original and denoised repeat-averaged trace had the same overall
mean and standard deviation over time). To test whether an LC was
responsive to astimulus sequence or not, we computed a metric akin
to asignal-to-noise ratio for each combination of LC type and stimulus
sequence in the following way. For a single run, we split the repeats
into two separate groups (same number of repeats per group) and
computed the repeat-averaged response for each group. We then com-
puted the R?between the two repeat-averaged responses by computing
the Pearson correlation over time and squaring it. We performed 50
runs with random split groups of repeats to establish a distribution
of R? values. We compared this distribution to a null distribution of
R*values that retained the timecourses of the responses but none
of the time-varying relationships among repeats. To compute this
null distribution, we sampled 50 runs of split groups (same number
of repeats as the actual split groups) from the set of repeats for all
stimulus sequences; in addition, the responses for each repeat were
randomly reversed in time or flipped in sign, breaking any possible
co-variation across time among repeats. For each combination of LC
type and stimulus, we computed the sensitivity® d’ between the actual
R distributionand the null R? distribution. We designated a threshold
d’ >1toindicate thatan LC wasresponsive for agiven stimulus sequence
(thatis, we had areliable estimate of the repeat-averaged response).
After this procedure, atotal of 27 combinations of stimulus sequence
and LC type out of a possible 45 combinations remained (Extended
DataFig. 8).

We considered two types of stimulus sequences: amoving spot and
amoving fictive female. The moving spot (black on isoluminant grey
background) had three different stimulus sequences (Fig. 2b,c). The
first stimulus sequence was ablack spot with fixed diameter of 20° that
moved from the left to right with a velocity chosen from candidate
velocities {1, 2, 5,10, 20, 40, 80} °s%; each sequence lasted 2 s. The

second stimulus sequence was a spot that loomed from a starting
diameter of 80° to a final diameter of 180° according to the formula
0(t) =- 2tan"}(-r/v-1/t), where r/vis the radius-to-speed ratio with
unitsinmsand ¢is the time (in ms) until the object reaches its maximum
diameter® (thatis, ¢ = tgny — tourent)- Alarger r/v corresponds with aslower
object loom. We presented different loom speed ratios chosen from
candidater/v € {10,20,40,80} ms. Once adiameter of 180° was reached,
the diameter remained constant. The third stimulus sequence was a
spot that linearly increased its size from a starting diameter of 10°
according to the formula@=10 + v - ¢, where vis the angular velocity
(in°s™) and tis the time from stimulus onset (in seconds). The final
diameter of the enlarging spot for each velocity (30°,50°,90° or 90°,
respectively) was determined based on the chosen angular velocity
v e{10,20, 40, 80} °s™. Once adiameter of 90° was reached, the diam-
eter remained constant.

The second type of stimulus sequence was a fictive female varying
her size, position, and rotation. The fictive female was generated in
thesame manner as that for the input of the 1-to-1 network (see ‘Visual
input reconstruction’). We took the angular size of the fictive female
(65 visual degrees for a size of 1.0, where the female faces away from
the male at the centre of the image) and used it to set the angular size
of the fictive female on the projection screen. We considered three
kinds of fictive female stimulus sequences with 9 different sequences
in total (Supplementary Video 1 and Extended Data Fig. 8); we first
describe them at a high level and then separately in more detail. The
first kind consisted of sequences in which the female varied only one
visual parameter (for example, size) while the other two parameters
remained fixed (for example, position and rotation); we varied this
parameter with three different speeds. Second, we generated sequences
that optimized a model output variable (for example, maximizing or
minimizing forward velocity). Third, we used a natural image sequence
taken froma courtship session. Each stimulus sequencelastedfor10 s
(300 frames).

Details of the fictive female sequences are as follows. For reference, a
size of 1.0is ~65 visual degrees, and a position of 0.5is 90 visual degrees
to theright from centre.

« Vary female position: the female varied only her lateral position (with
afixed size of 0.8 and a rotation angle of 0° facing away from the
male) from left toright (75 frames) thenright to left (75 frames). Posi-
tions were linearly sampled in equal intervals between the range of
-0.1and 0.5. This range of positions was biased to the right side of
thevisualfield to account for the fact that the projection screen was
oriented in the male’s right visual hemifield. After the initial pass of
left torightand right to left (150 frames total), we repeated this same
pass two more times with shorter periods (100 frames and 50 frames
intotal, respectively), interpolating positionsin the same manner as
theinitial pass.

Vary female size: the same generation procedure as for ‘vary female
position’ except thatinstead of position, we varied female size from
0.4t0 0.9 (sampled in equal intervals) with a fixed position of 0.25
and arotation angle of 0° facing away from the male.

Vary female rotation: the same generation procedure as for ‘vary
female position’ except thatinstead of position, we varied the female
rotation angle from-180°t0180° (sampled in equal intervals) with a
fixed position of 0.25 and a fixed size of 0.8.

Optimize for forward velocity: we optimized a10-s stimulus sequence
inwhichfemalesize, position, and rotation were chosen to maximize
thel-to-1network’s output of forward velocity for 5 s and then mini-
mize forward velocity for 5 s. In a greedy manner, the next image in
the sequence was chosen from candidate images to maximize the
objective. We confirmed that this approach did yield large variations
in the model’s output. To ensure smooth transitions, the candidate
images were images ‘nearby’in parameter space (thatis, if the current
size was 0.8, we would only consider candidate images with sizes in
the range of 0.75to0 0.85). Images were not allowed to be the same in
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consecutive frames and had to have a female size greater than 0.3

and afemale position between-0.1and 0.5.
- Optimize for lateral velocity: the same generation procedure as for
‘Optimize for forward velocity’ except that we optimized for the model
output of lateral velocity. In this case, maximizing or minimizing
lateral velocity is akin to asking the model to output the action of
moving to the right or left.
Optimize for angular velocity: the same generation procedure as for
‘Optimize for forward velocity’ except that we optimized for the model
output of angular velocity. In this case, maximizing or minimizing
angular velocity is akin to asking the model to output the action of
turning to the right or left.
Optimize for forward velocity with fixed position: the same generation
procedure as for ‘Optimize for forward velocity’ except that we limited
female position p tobe within the tight range of 0.225 < p < 0.275. This
ensured that most changes of the female stemmed from changes in
either female size or rotation, not position.
Optimize for lateral velocity with multiple transitions: the same gen-
eration procedure as for ‘Optimize for lateral velocity’ except that we
had four optimization periods: maximize for 2.5 s, minimizefor2.5s,
maximize for 2.5 s and minimize for2.5s.
Natural stimulus sequence: a10-s stimulus sequence taken from a
real courtship session. This sequence was chosen to ensure large
variationin the visual parameters and that the female fly was mostly
in the right visual field between positions —0.1and 0.5.

Foreachrecording session, we presented the stimuliinthe following
way. For the moving spot stimuli, each stimulus sequence was preceded
by 400 ms of a blank, isoluminant grey screen. For the fictive female
stimuli, astimulus sequence of the same kind (for example, ‘Vary female
size’) was presented in three consecutive repeats for a total of 30 s;
this stimulus block was preceded by 400 ms of a blank, isoluminant
grey screen. All stimulus sequences (both moving spot and the fictive
female) were presented one time eachin arandom ordering. Another
round (with the same ordering) was presented if time allowed; usually,
we presented 3 to 4 stimulus rounds before an experiment concluded.
Thistypically provided 9 or more repeats per stimulus sequence per fly.

Predicting real neural responses
To obtain the model predictions for the artificial moving spot stimuli
(Fig. 2b,c), we generated a fictive female facing away from the male
and whose size and position matched that of the moving spot. This was
doneto preventany artifacts from presenting a stimulus (for example,
ahigh-contrast moving spot) on which the model had notbeen trained,
as the model only observed a fictive female. We matched the angular
size of the fictive female to that of the presented stimulus by using the
measured conversion factor of 65 visual degrees for a fictive female
size of 1.0. For the stimulus of the moving spot with varying speed
(Fig. 2b), the fictive female translated from left to right (that is, same
as the stimuli presented to the male fly). Because the 1-to-1 network’s
responses could remain constantand not returnto O for different static
stimuli (thatis, noadaptation mechanism), we added asimple adapta-
tion mechanism to the model’s responses such that if responses were
the same for consecutive frames, the second frame’s response would
returntoitsinitial baseline response with a decay rate of 0.1. To obtain
model predictions for the fictive female stimuli (Fig. 2d,e), we input the
same stimulus sequences presented to the fly except that we changed
the greyscale background to white (to match the training images).
To evaluate the extent to which the 1-to-1 network predicted the
repeat-averaged LC responses for each stimulus sequence of the mov-
ing fictive female, we sought an R? prediction performance metric
that accounted for the fact that our estimates of the repeat-averaged
responses were noisy. Any metric not accounting for this repeat noise
would undervaluethe true prediction performance (thatis, the predic-
tion performance between amodeland arepeat-averaged response with

aninfinite number of repeats). To measure prediction performance, we
chose a noise-corrected R? metric recently proposed® that precisely
accounts for noise across repeats and corrects for bias in estimating
the ground truth normalized R%. A noise-corrected R* =1 indicates
that our model perfectly predicts the ground truth repeat-averaged
responses up to the amount of noise across repeats. We note that our
noise-corrected R’ metric accounts for differences in mean, standard
deviation, and sign between model and real responses, as these dif-
ferences do not represent the information content of the responses.

We computed this noise-corrected R? between the 1-to-1 network
and real responses for each LC type and stimulus sequence (Fig. 2e)
for which the LC was responsive (that is, d’ > 1, see ‘“Two-photon cal-
ciumimaging’). Importantly, the 1-to-1 network never had access to
any neural datainits training; instead, for agiven LC type, we directly
took the response of the corresponding model LC unit as the 1-to-1
network’s predicted response. Thisis astronger criterion than typical
evaluations of DNN models and neural activity, where alinear mapping
from DNN features (10,000 feature variables) to neural responses is
fit. Toaccount for the smoothness of real responses due to the imaging
of calcium dynamics, we causally smoothed the predicted responses
with a linear filter. We fit the weights of the linear filter (filtering the
10 past frames) along with the relu’s offset parameter (accounting
for trivial mismatches due to differences in thresholding) to the real
responses. This fitting only used responses of one model LC unit, keep-
ing in place the one-to-one mapping; we also relaxed this constraint
by fitting a linear mapping using all model LC units (Extended Data
Fig.8). We performed the same smoothing procedure not only for the
1-to-1 network but also for an untrained network, a network trained
with dropout training, and a network trained without knockout (see
‘Knockout training’ above). This procedure was only performed for
predicted responsesin Fig.2d,e and Extended Data Fig. 8. For analysing
response magnitudes (Fig. 2f and Extended DataFig.7), theresponses
came directly from model LC units (that is, no smoothing or fitting of
therelu’s offset was performed).

Analysing model LC responses to visual input

To better understand how each model LC unit responds to the visual
input, we passed natural stimulus sequences (taken from courtship
sessions with control males) into the 1-to-1 network and computed
the cross-validated R? between model LC responses and each visual
parameter (Fig.3b). Because female position and rotation are circular
variables, we converted each variable x to a 2D vector [cos(x),sin(x)]
and took the maximum R*across both variables for each model LC unit.
We further investigated model LC tuning by systematically varying
female size, position, and rotation to generate a large bank of stimulus
sequences. Weinput these stimulus sequences into the 1-to-1 network
and formed heat maps out of the model LC responses (Fig. 3c,d). For
eachinputstimulus sequence, each of its 10 images was arepeat of the
same image of a fictive female with a given size, lateral position, and
rotation angle (that is, the fictive female remained frozen over time
for each 10-frame input sequence). Across stimulus sequences, we
varied female size (50 values linearly interpolated between 0.3 to1.1),
lateral position (50 values linearly interpolated between -1to 1), and
rotation angle (50 values linearly interpolated between -180 and 180
visual degrees), resulting in 50 x 50 x 50 = 125,000 different stimulus
sequences that enumerated all possible combinations. To understand
the extent to which each visual parameter contributed to a model LC
unit’s response, we decomposed the total response variance into dif-
ferent components® (Fig. 3e). The first three components represent
the variance of the marginal response to each of the 3 visual param-
eters (which we had independently varied). We computed these mar-
ginalized variances by: (1) taking the mean response for each value
of a given visual parameter by averaging the other two parameters
over all stimulus sequences; and (2) taking the variance of this mean
response over values of the marginalized parameter (50 valuesin total).



Any remaining variance (subtracting the three marginalized variances
fromthe total response variance) represents response variance arising
frominteractionsamongthe three visual parameters (for example, the
model LC response depends on female position but only if the female
islarge and faces away from the male, see Fig. 3d, ‘LC10a’). Because the
1-to-1network was deterministic, no response variance was attributed
tonoise across repeats (unlike trial-to-trial variability observed in the
responses of real neurons).

Analysing the model LC responses to a large bank of static stimuli
is helpful to understand LC tuning (Fig. 3c-e). However, we may miss
important relationships between the features of the visual input and
model LC responses without considering dynamics (for example, the
speed at which female size changes). To account for these other tempo-
ral features, we devised three dynamic stimulus sequences that varied
intime for roughly 10 s each (Fig. 3fand Supplementary Video 2); these
stimuli were similar to a subset of stimuli we presented to real male
flies (see ‘Two-photon calciumimaging’). For each stimulus sequence,
we varied one visual parameter while the other two remained fixed at
nominal values chosen based on natural sequence statistics.

Thefirst 2.5 s of each stimulus were the following:

(1) vary female size: linearly increase from 0.5 to 0.9 with fixed posi-
tion =0 and rotation =0°

(2) varyfemale position:linearly increase from -0.25to 0.25 with fixed
size = 0.8 and rotation = 0°

(3) vary female rotation: linearly increase from —45° to 45° with fixed
size = 0.8 and position=0

Thenext2.5 swerethesameasthefirst 2.5 sexceptreversedintime
(for example, if the female increased in size the first 2.5 s, then the
female decreased in size at the same speed for the next 2.5s). Thus,
thefirst5 swasone period in which the female increased and decreased
one parameter. The stimulus sequence contained 4 repeats of this
period with different lengths (that is, different speeds):5,3.33,1.66,and
0.66 s (corresponding to 150,100, 50, and 10 time frames, respectively).
We passed these stimulus sequences as input into the 1-to-1 network
(thatis, for each time frame, the 10 most recent images were passed
into the model) and collected the model LC responses over time. We
directly computed the squared correlation R*between each model LC
unit’sresponses and the visual parameters (and features derived from
thevisual parameters, such as speed) for all three stimulus sequences
(Fig. 3g). Velocity and speed were computed by taking the difference
of the visual parameter between two consecutive time frames.

Analysing how model LCs contribute to behaviour

Because the 1-to-1network identifies a one-to-one mapping, the model
predicts not only the response of an LC neuron but also how that LC
neuron causally relates to behaviour. We wondered to what extent
each model LC unit causally contributed to each behavioural output
variable. We designed an ablation approach (termed the cumulative
inactivation procedure (CLIP)) to identify whichmodel LCs contributed
the most to each behavioural output. The first step in CLIP is to inac-
tivate each model LC unitindividually by setting amodel LC’s activity
value for all time frames to a constant value (chosen to be the mean
activity value across all frames). We found that setting the activity to
0 (as we do during knockout training) obscures nuanced but impor-
tant relationships because a value of 0 may be far from the working
regime of activity for a given stimulus, resulting in large deviations
in predicted output. Instead, we focus on how variationinamodel LC
unit’s response contributes to variations in predicted behaviour. We
test to what extent the 1-to-1 network with the inactivated model LC unit
predicts the behavioural output of held-out test data from control flies
(from the test set). We choose the model LC unit that, once inactivated,
leads to the least drop in prediction performance (that is, the model
LC unit that contributes the least to the behavioural output). We then
iteratively repeat this step, keeping all previously inactivated model LC

units stillinactivated. In this way, we greedily ablate model LC units until
only one model LC unit remains. After performing CLIP, we obtain an
ordering of model LC units from weakest to strongest contributor of a
particular behavioural output (Fig. 4b,c). We measure the contribution
tobehaviour as the normalized change in performance. For movement
variables, normalized change in performance is the difference in R*
between nosilencing (‘none’) and silencing K model LC units, normal-
ized by the R? of no silencing. For song variables, normalized change
in performance is the same as for the movement variables except we
use1-cross-entropy. We then use this ordering (and prediction perfor-
mance) toinfer whichmodel LC units contribute to which behavioural
outputs. We performed CLIP to predict held-out behaviour from con-
trol flies (Fig. 4c). Because different behavioural outputs had differ-
ent prediction performances (Extended Data Fig. 3), we normalized
eachmodel LC unit’s change in performance by the maximum change
in performance (that is, prediction performance for no inactivation
minus that of inactivating all model LC units); for model LC units for
whichinactivationled to anincreasein performance due to overfitting
(Extended Data Fig. 12), we clipped their change in performance to
be 1. We also performed CLIP to predict the model output to simple,
dynamic stimulus sequences (Fig. 4d-f). Because we did not have real
behavioural data for these dynamic stimulus sequences, we used the
model output when nosilencing occurred as ground truth behaviour.

Connectome analysis

To obtain the pre- and postsynaptic partners of LC and LPLC neuron
types, we leveraged the recently released FlyWire connectome of an
adult female Drosophila™>", for which opticlobe intrinsic neurons were
recently typed™. We downloaded the synaptic connection matrix at
https://codex.flywire.ai/ of the public release version 630. We isolated
thefollowing 57 LC and LPLC types: LC4,LC6,LC9,LC10a-f,LC11,LC12,
LC13,LCl4al, LC14a2,LCl14b, LC15,LC16,LC17,LC18,LC19,LC20a-b,LC21,
LC22,LC24,LC25,1LC26,LC27,LC28a,LC29,LC31a-c,LC33a,LC34,LC35,
LC36,LC37a,LC39,LC40,LC41,LC43,LC44,LC45,LC46,LCe01-LCe09,
LPLC1,LPLC2,and LPLC4. Wereportindividual cell types LC10a, LC10b,
LC10c, and LC10d which have beenidentified in FlyWire, but we do not
yet know how the driver lines LC10ad and LC10bc map onto these indi-
vidual types. We summed the number of synaptic connections across
all neurons of the same type that were either inputs or outputs of one
oftheLC and LPLC neuron types. We denoted a connection (Fig. 5b, tick
lines) if at least 5 synaptic connections existed betweenan LC or LPLC
neuron type and another neuron type. We identified 538 presynaptic
celltypes and 956 postsynaptic cell types. We categorized partner cell
types into classes based on the naming conventions in FlyWire’s con-
nectome dataset® and sorted cell types within each class based on the
number of connections to the LC types. To see if LC types with similar
inputs project to similar outputs—in other words, identify groupings
of LCtypes, we performed agglomerative clustering separately onthe
pre- and postsynaptic connections. Specifically, we summed up con-
nections across partner cell types withina class and used these summed
connections as features for clustering (complete linkage with cosine
similarity as affinity). LC types within a cluster are listed in numerical
order. The following classes were used: LC, lobula columnar; LPLC,
lobula plate-lobula columnar; AOTU, anterior optic tubercle; AVLP,
anterior ventrolateral protocerebrum; CB, cross brain; CL, clamp; cL,
centrifugal lobula; cM, centrifugal medulla; DN, descending neuron;
Dm, distal medulla; Li, lobulaintrinsic; LLPC, lobula-lobula plate colum-
nar; LM, lobula medulla; LT, lobula tangential; mAL, medial antenna
lobes; ML, medial lobe; MT, medulla tangential; OA, octopaminergic;
PLP, posterior lateral protocerebrum; Pm, proximal medulla; PS, poste-
rior slope; PVLP, posterior ventrolateral protocerebrum; SMP, superior
medial protocerebrum; T2-T5, optic intrinsic; Tlp, translobula plate;
Tm, transmedullary; TmY, transmedullary; Y, opticintrinsic; IB, inferior
bridge; LAL, lateral accessory lobe; SAD, saddle; SLP, superior lateral
protocerebrum; WED, wedge.


https://codex.flywire.ai/
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Statistical analysis

Unless otherwise stated, all statistical hypothesis testing was con-
ducted with permutation tests, which do not assume any parametric
form of the underlying probability distributions of the sample. All
tests were two-sided and non-paired, unless otherwise noted. Each
test was performed with 1,000 runs, where P < 0.001 indicates the
highest significance achievable given the number of runs performed.
When comparing changesinbehaviour due to genetic silencing versus
controlflies (Fig.1e), we accounted for multiple hypothesis testing by
correcting the false discovery rate with the Benjamini-Hochberg pro-
cedure with a = 0.05. Paired permutation tests were performed when
comparing prediction performance between models (Fig. 2e) for which
paired samples were randomly permuted with one another. Error bars
oftheresponse tracesin Fig. 2b~d were 90% bootstrapped confidence
intervals of the means, computed by randomly sampling repeats with
replacement. No statistical methods were used to predetermine sample
sizes, but our sample sizes are similar to those of previous studies™2?%*°,
Experimenters were not blinded to the conditions of the experiments
during data collection and analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data are available at https://dandiarchive.org/dandiset/000951/.
Source data are provided with this paper.

Code availability

The code for extracting fly body positions (SLEAP) is available at
https://sleap.ai/. Song segmentation was performed with code found at
https://github.com/murthylab/MurthyLab_FlySongSegmenter. Model
weights, example stimuli and code are available at https://github.com/
murthylab/one2one-mapping. The FlyWire connectome is available at
https://codex.flywire.ai/.
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Extended DataFig.1|See next page for caption.
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Extended DataFig.1|Different changesinbehavior whensilencing
different LCneuron types of the male’s visual system. The main finding is
thatnosingle LC type showed a substantial change relative to control compared
tothechange observed betweenblind and control flies—suggesting no single
LCtypeisthesole contributor to courtship behaviors. a. Image of circular
behavioral chamber used to estimate the positions of amale (blue) and female
(red) fruit fly during courtship. Joint positions for each frame were identified
with the behavioral tracking software SLEAP>.. Audio waveforms of song were
detected with16 microphones tiling the chamber (white boxes). b. Density of
female positionrelative to the male’s egocentric view, conditioned onwhich LC
type was silenced in the male as well as control-spGAL (‘control’) and blind-
CSTul (‘blind’) males (multiple sessions per heatmap). Silencing any single
LCneurontypedid not extinguish courtship chasing (compare LC-silenced
heatmapsto that of blind males); however, silencing some LC types didleadtoa
noticeable decreaseinthe amount of time females were positioned in front of
the male versus control sessions (e.g., compare LC9, LC10a, LC10ad, and LC21
to control). c. Male-female distance averaged across the entire session for
eachsilenced LCtype (reproduced fromFig. 1e, top panel). Each dotis for one
session; lines denote means and dashed line denotes the mean for control
sessions. Statistically significant changes from control flies are indicated by an
asterisk (p <0.05, permutation test, corrected for the false discovery rate of
multiple hypothesis testing by the Benjamini-Hochberg procedure, n>12forn
sessions per LC type). We note that the spread across sessions (i.e., scatter of
dots) per LCtypeislarge; onelikely reason for this spread is that the females
were PIBL (pheromoneinsensitive and blind)—PIBL females tend to show larger
individual differences in copulation time than wildtype females’. We also
considered changes to behavior between control and blind male fliesin CSTul
flies (right, datafromrefs. 9,52 recorded inan 8-microphone arena, asterisks
denote p <0.05, permutation test, n>15); the change in male-female distance
between control and blind flies (an average of +4.80 mm) was substantially
larger than the largest change betweenan LC type and control (for LC10a, an
average of +1.03 mm; for LC6, -2.15 mm). Differences between our control-
spGAL flies and control-CSTul flies are most likely due to the criteria for
keeping asession (CSTul sessions were stopped and discarded if the male failed
tobegin courtship inthe first 5 minutes; we did not have such restrictions for
our control or LC-silenced sessions). Thus, only the relative changes between
control-spGAL and LC-silenced sessions and the relative changes between
control-CSTul and blind-CSTul should be compared. d. Proportion of sine
songgivensong production. Same dataasin Fig. le (bottom panel) except the

LCtypesareordered based onincreasing proportions. Same formatasin a.
e.Mean changesin movement, including forward velocity (top panel), lateral
velocity (middle panel), and angular velocity (bottom panel), averaged over
theentiresession. The absolute value was taken for lateral and angular velocity
(i.e.,speed), aswe were interested in changes away from the male’s heading
direction (e.g.,alargeturntotherightorleft bothindicated alarge deviance).
Sameformatasina.f. Changesinthe male’s song production, including the
probability of sine, Pfast, and Pslow song. Same format asina. Although we
observed some significant changes inbehavior (asterisks), overall we did not
observeanyLCtypesthat, aftersilencing, resulted in changes to behavior on
parwith the changes observed between control and blind flies—opposite

of what we were expectingif only one ortwo LC types were the dominant
contributorsto courtship. This suggests that multiple LC types need to be
silenced together to obtain large deficits in behavior, consistent with our
modelingresults (Fig. 4). Previous studies have identified LC types LC10aand
LC9 as contributing to courtship™?*?,and our results are consistent: LC10a
and LC9 show anincrease in male-to-female distance (¢, LC10aand LC9), as
previously reported. Anewimplication for LC10aand LC9is for song production:
Both LC types tend towards areductioninsong production for all three song
types (f,LC10aand LC9). The metrics we use here (e.g., taking the mean forward
velocity across an entire session) are coarse summary statisticsand donot
represent all possible ways in which behavior may change due to silencing.In
addition, variability across sessions per LC type was large, making it difficult to
identify true changes. This motivated us to use the 1-to-1 network to model the
LC-silenced and control behavior, as the 1-to-1network can be used to directly
identify the largest changes to the sensorimotor transformation due to LC
silencing. In particular, we can use a metric—the coefficient of determination
R?>—that considers more possible changes than simply a change in mean offset.
We use R when comparing changes to behavior for the 1-to-1 network (Fig. 4),
but we cannot use R?for the data here, as the visual inputs were not the same
acrosssilenced behavioral datasets. g. Our behavioral experiments comprised
two sets of data collection that were 4 years apart, and we wondered if large
deviations occurred for control-spGAL sessions between the two sets (both
setshad the same geneticlines). We separated the control sessions into two
groups (‘control 2017’ and ‘control 2021, named for the year of collection)

and found no significant difference between themacross the movement and
songstatistics (n.s. denotes p > 0.05, permutation test) except for Pfast song
(asterisk, p < 0.05, permutation test, n >10). Thus, we felt confident in merging
thetwo sets of data collection for further analysis.
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Extended DataFig. 2| Testing the efficacy of knockout training with
simulations. We tested the ability of knockout training to correctly identify
the one-to-one mapping of silenced neuron types with two simulations. We
compare anetwork trained with knockout (‘KO network’) to anetwork trained
withoutknockout (‘noKO network’) for which no model units areinactivated
(i.e.,the noKO network has no knowledge that any silencing occurred).
a.Asimple simulation with 2layer linear networks. The ground truth network
(top) isarandomly-initialized, untrained 2 layer linear network with 48 input
variables (x € R** where x; - A0, 1)), 8 hidden units (h,fori=1, ..., 8), and
loutput unit (y). We use the same network architecture for the KO network
(bottom). We seek aone-to-one mapping between the ground truth hidden
units h;and the model’s estimated hidden units ﬁ,—. We generated training data
by silencing each hidden unit of the ground truth network (i.e., setting h; = 0)
andrecording theresulting silenced outputyas well as observing control data
(forwhichnosilencing occurred). Foreach case, we drew1,000 inputsamples,
whichyielded 9, 000 training samples in total. We then trained the model
either using knockout training (‘KO network’) or without it (‘(noKO network’).
Wegenerated atestsetinthe same way as butindependent of the training set;
thetestsetalsohad 9,000 testsamplesintotal.b. We tested the KO network’s
ability to correctly predict the silenced output y of the ground truth network.
We collected the KO network’s predicted output y to1, 000 test samples for
eachsilenced hidden unit of the ground truth network by knocking out the
corresponding hidden unitin the KO network. We then computed the R?
(coefficient of determination) betweenyand y for eachsilenced unit as well as
control (red dots). We evaluated the noKO network with the same test set but
did not knockout any hidden units during training or evaluation (black dots).
We found that the KO network better predicted silenced output than that of
the noKO network for most of the hidden units (red dots above black dots) but
performance was roughly equal for control data (‘control’ red and black dots
overlap). The KO and noKO networks had similar prediction performance for
some of thessilenced hidden units (i =5and 6, arrows); these units contributed
little to the output of the ground truth network and, whensilenced, led to
outputs similar to those observed during control sessions. c. We then tested
the KO network’s ability to correctly predict the hidden unit activity h;for the
ith hidden unit of the ground truth network (i.e., its “neural” responses). For
thesametestsetasinb, wecollected the KO network’s responses ofits hidden
units ﬁ,» and computed the R? (Pearson’s correlation squared) between h;and ﬁ,-
(red dots). We performed the same evaluation for the noKO network (black
dots) and found that the KO network substantially better predicted the activity
ofthe ground truth’s hidden units versus the noKO network’s predictions (red
dotsaboveblack dots). We observed some hidden units with low prediction
performance both for the KO and noKO networks (i=5and 6, arrows). As
expected, knockout training cannot identify mappings for these hidden units
that contributelittle to the ground truth network’s output (b, i=5and 6).
Takingband ctogether, we conclude that knockout training successfully
identified the one-to-one mapping. d. We wondered to what extent does
knockout training recover the one-to-one mapping when notall ground truth
hiddenunits are silenced. This setting is more similar to our modeling of the
fruit fly visual system, where we cannot silence all possible LC types. To test
this, we gave the ground truth network and the model network each 16 hidden
units (instead of 8 units) but only silenced the first 8 hidden units of the ground
truthnetwork (i=1,2, ..., 8). Wegenerated the training and test sets in the same
mannerasina, ignoringthe extralast 8 hidden units (i=9,10, ..., 16), and trained
the network withknockout training. The KO network correctly predicted
outputyforthefirst8silenced units (i=1, 2, ..., 8) but not for output resulting

fromsilencing one of the last 8 units on which the KO network was not trained
(i=9,10,...,16,red and black dots overlap). The noKO network had worse
prediction than that of the KO network for hidden units that contributed to
theoutput(i=1,2, ..., 8,black dots below red dots for most hidden units);
inactivated hidden units with similar performance between KO and noKO
networks (red dots and black dots overlap, i =5) are due to the same reasons as
thatinb (arrows). e. Same as cexcept for 16 hidden units. Asexpected, the KO
network recovers the activity for most of the first 8 hiddenunits (i=1, 2, ..., 8,
red dots above black dots) but fails to recover the activity of the last 8 hidden
units (i=9,10, ..., 16, red and black dots close to R* = 0). We note that the KO and
noKO networks have similar poor performance Rz(h,-, ﬁ,-)for hiddenunit5for
thesamereasonsasthe hiddenunitsi=5and 6inc. Takingd and e together, we
conclude that knockout training still works to identify a one-to-one mapping
(predicting both output/behavior and response) for hidden units that have
beensilenced—eveniftheremainingunitsinthe bottleneck are never silenced.
This motivates usto train the 1-to-1network on behavioral data fromssilencing
23 LCtypesindividually eventhough we do not have accessto behavioral data
fromsilencing the other remaining LC typesinthebottleneck (57 LC types total
inthe bottleneck). f. Given that knockout training works in asimple simulation
setting (a-e), we moved to testing knockout training for the 1-to-1 network used
tomodelthe fruit fly visual system (Fig. 1a). Although we could simulate data
comingfromatrained1-to-1 network as ground truth, we were more interested
inthe case where there was amismatch between the model and the real
system—almost certainly the case using the 1-to-1network to predict LC neuron
types. Still, we sought some way to assess aground truth change in behavior for
the LC-silenced data and devised the following approach. For the ith LC type,
we scale its forward velocity by a;, where a;decreases from 5 tolasindexi
increasesincrementally. We then train aKO network on this scaled datain the
same manner asthat of the 1-to-1 network; we also trainanoKO network that has
noknowledgeifits training sample comes from LC-silenced or control males.
We only train the networks to predict forward velocity (no other behavioral
outputs). g. We computed prediction performance R? (coefficient of
determination) between predicted and actual forward velocity on held-out
frames for each LC-silenced behavior. The KO network had better prediction
thanthat of the noKO network both for the most scaled and least scaled LC
types (red dotsabove black dots for leftmost and rightmost dots). h. This
change in performance between KO and noKO networks for the mostand least
scaled LC typesingcanbeexplained by how the KO and noKO networks each
predict the standard deviation of forward velocity. As expected from our
scaling of the real data (f), the standard deviation of the simulated datalinearly
falls as we consider the later LC types (green dots, compare with black dotsin
f). We find that the standard deviations predicted by the KO network also
linearly decrease (red dots) while those predicted by the noKO network remain
relatively flat (black dots). Because the noKO network has no information
aboutwhichLCtype wassilenced, the noKO network must predict roughly the
same standard deviation for all LC types, choosing anintermediate standard
deviation (around 2s.d.). Thisalso helps to explain why the KO and noKO
networks differed in prediction more for the rightmost LC types (g, ‘LC26’ to
‘control’) because the noKO network overestimated the standard deviation
forthese LC types (black dots above green dots for ‘LC26’ to ‘control’) leading
tolargererrors (and a negative coefficient of determination) versus
underestimating the standard deviation which does notlead to aslarge drops
inR?(g, LC4 to LC10d). These simulations show that knockout training can
reliably identify one-to-one mappings between model units and internal units
givenbehaviorresulting fromsilencing those internal units.



0.6

angular
velocity

lateral
velocity

O3|
0 I

forward
velocity

0.1

OI

P(Pfast song)

better
prediction

5085

1—c.e.

P(Pslow song) P(sine song)

0.85

0.65 I I I 0.65 I I I

0.85

DOER 0.65
CREAERNR Predttion
oé' od Od L D&
FEE AN
@é‘%oo?\%& é‘o@o N~ (models trained and tested on control-data only)
& Q&Q’c
b knockout network dropout network no-knockout network
silenced + control data silenced + control data silenced + control data
2 3 3 3 IR NI 3 3
¥ ¥ ¥
train with train with train without
knockout dropout knockout
C T
C%irlreers‘cpé’gﬁé ttc))/pe randomly chosen
C predicting movement betier predicting song production
s prediction s o
9 055 !l.i ‘et $e8 075 ¢
R ' § . 1-cosss ¥ Ve . S N
forward *°| "ges : s . Sn'EVOPy 0(')62 . LR o o0 ¥ o
velocity 045 KO network s (sine song) 055 ®
DO network ° - .
0
04| noKO network : worse 05 .
035 prediction
03 ¢ : 09 :
R2 ) . . ° 1 - cross- ()
i 025 . L | *s *'_ e, o entropy  os .. ‘e, .
ateral o2 ¢ . g ¢ °q P(Pfast song) . °° . o° .
velocity 15 :, 08 o . e
0.1 L ©
L 0.75 L
] 08 ®
018| o U . R . o3 R
R2 06| © 4 g °8 . °s ° 1-cross- 075 ., " .o, .
s 3 entropy * o e .
0.14 s §8e s 0.7 . .
anIQJU!?r o 0 . PPsowsong) | ,4 ¢ . o,
velocity ., § 065
[
01 - S 06 © 0D o & Voo 0N D VY9 o !\:\
% o ~ ~ ~ w R NS ~ ~
Yo N R Y VN
d KO vs. DO networks KO vs. noKO networks
06 * * * * * * * * 06 * * * }' *
R2 055 % g é é % é é E R2 055 g § E % é % é E =
forward *° .E ? A 2 & = é % forward %% 2 == =i g %
velocity 045 — — 7 “ / = o e velocity o045 / — e 2 s % /
04| — - 04| — ,/' b
- <7 S — - e 7

035

networkrun 1 2

Extended DataFig.3|See next page for caption.

035

networkrun 1

N
w
N
v
(o)}
~N
oo)
©



Article

Extended DataFig. 3 |Predicting behavior frame-by-frame. Here we compare
the extent to which the 1-to-1network better predicts frame-by-frame behavior
versus other network architectures and baseline models as well as other
training procedures. a. We considered different network architectures for the
1-to-1network and compared their prediction performance to baseline models.
We trained each model on control sessions only and tested on held-out test
frames of control sessions. For baseline models, we considered ageneralized
linear model (GLM) that took as input the last 300 ms of movement history,
including forward, lateral, and angular velocity (‘movement history GLM’);
pastsong history, including Pfast, Pslow, and sine song (‘song history GLM’);
aswell as the male’s past visual history represented by female size, position,
androtation (‘visual history GLM’). The movement-history-GLM had good
prediction of forward and lateral velocity (two leftmost plots), as expected, but
failed at predicting angular velocity and song production. Its good prediction
(R*> 0.6 for forward velocity) stems from the fact that an animal’s forward
velocity attime step tis likely similar toits forward velocity at timestep t -1
based on the physics of movement. Likewise, the song history GLM best
predicted song production (three rightmost plots), as songs often occur in
bouts, but failed at predicting moment-to-moment movement (three leftmost
plots). Also expected was the poor prediction performance of the visual-
history-GLM, whose inputs of the fictive female’s parameters likely must pass
through astrong nonlinear transformation to accurately recover behavior (all
orangebarsare low). Next, we considered the DNN architecture of the 1-to-1
network (Fig.1a). We trained the 1-to-1network on control data only (i.e., no
knockout training was performed) for this analysis. The 1-to-1network’s
prediction performance was better than any GLM model for angular velocity
and showed good performance for song production (red bars). The 1-to-1
network did not outperform the movement-history-GLM on forward and lateral
velocity; providing past movement history to the 1-to-1network is an intriguing
direction notinvestigated in this work. We confirmed that an untrained
network with thesame architecture as the1-to-1network (‘'untrained DNN’, only
itslast readout layer was trained) had little prediction ability. Finally, we trained
amore complicated version of the1-to-1 network which had 3-d convolutions in
bothspace (2-d) and time (1-d) in the vision network (‘time-convolutional DNN’
with 3 x 3 x 3 convolutional kernels). This greatly increased the number of
parametersbutultimately did notimprove prediction performance versus the
1-to-1network (pink versus red bars). We suspect that with more data, the time-
convolutional DNN will outperform the current architecture of the 1-to-1
network, as motion processing occurs before the LC bottleneck*. b. As a test of
thel-to-1network’s ability to uncover a one-to-one mapping between model LC
unitsand real LC neurons, we tested the extent to which the 1-to-1network
accurately predicts behavior on held-out courtship frames for each silenced LC
type.Animportant comparisonis to measure the 1-to-1 network’s prediction
performance relative to networks with the same architecture and training data
butwith different training procedures. Here, we illustrate three different
training procedures. Knockout training (left, red) sets to O the model LC unit
that corresponds to the LC neuron type silenced for that training frame (no
model LC units’ values are set to O for frames from control sessions). We refer to
theresulting trained network as the knockout (KO) network or, interchangeably,
asthel-to-1network. Dropout training® (middle, blue) sets to 0 arandomly-
chosen model LC unit for each training frame, independent of the frame’s
silenced LC type (no model LC units’ values are set to O for frames from control
sessions). In this case, the number of ‘dropped out’ units equals that of the
‘knocked out’ units. Werefer to the resulting trained network as the dropout
(DO) network. Finally, we train a network without knocking out any of the model
LC units andrefer toitas the noKO network (right, black). The DO and noKO

networks are appropriate controls (i.e., null hypotheses) for the KO network.
The DO and noKO networks have no knowledge that any LC silencing has
occurred;in other words, the DO and noKO networks assume all male flies,
regardlessof anLC type beingsilenced or not, have the same behavioral output
tothe sameinputstimulus. Thus, the DO and noKO networks cannot reliable
detectchangesinbehavior for different silenced LC types unless the statistics
ofthevisualinputitselfdiffers across silenced LC types. The latter may occur if,
forexample, silenced flies do not chase the female, the female will be visually
smaller for most frames, leading DO and noKO networks to correctly predicta
decreaseinsongproduction (assongis produced in close proximity to the
female). c. We tested the KO, DO, and noKO network’s performance of predicting
the male fly’s movement (left) and song production (right) for the next frame
giventhe 10 past frames of visual input (a period of 300 ms) across many LC-
silenced and control flies (459 sessions in total). All test frames were held out
fromany training or validation sets and sampled randomly in 3 s time periods
acrosssessions (27,000 test frames per each LC type and control, see Methods).
We computed the coefficient of determination R*for behavioral outputs of
movement (forward, lateral, and angular velocity) and 1- binary cross-entropy
(whereavalueclosetolindicates good prediction) for behavioral outputs of
song production (probabilities of Pfast, Pslow, and sine song). We found that
overall, the KO network better predicts forward velocity than the DO and noKO
networks (top left, red dots above black and blue dots) as well as the probability
of sine song (top right). Changes in prediction performance between KO and
DO/noKO networks across LC types were relatively small, suggesting changes
inbehavior were subtle, consistent with overall mean changesin behavior
(Extended Data Fig.1). In addition, R? may change little for large second-order
changesinbehavior, such as variance (Extended DataFig. 2g, leftmost dots).
We confirmed in Fig.1g-h and Extended Data Fig. 4 that the KO network
accurately predicted mean changesin behavior better than DO and noKO
networks. We note that R? values for movement (left column, R?= 0.5 for
forward velocity, R*= 0.15 for lateral and angular velocity) were not close to 1
because we predict rapid changes to movement variables frame-to-frame
(withaframerate of 30 Hz). Because the 1-to-1 network is deterministic (i.e.,
returning the same output for the same visual input), it fails to account for

the fact thata male fly’s moment-to-moment decisionis stochastic—in other
words, the male responds differently to repeats of the same stimulus sequence.
To take this stochasticity into account, one would need to presentidentical
repeats of the same visual stimulus sequence and record the resulting behavior.
Thisisnot possible for our natural courtship experiments, where amale fly’s
visual experienceis determined by his behavior. However, this may be possible
infuture experiments using virtual reality, where the experimenter has greater
control overamale fly’s visual input. d. Results in c were for aKO network with
onerandominitialization. To seeif this effect holds for differentinitializations,
wetrained 10 runs of the KO network, each with adifferent randominitialization
andrandomordering of training samples. We found that for 8 of the 10 runs,

KO networks outperformed DO networks (left); 5 of the 10 runs, KO networks
outperformed noKO networks (right) in predicting forward velocity. For
eachrun (i.e., ‘networkrunl’), the same randomly initialized network and
randomized order of training samples was used as a starting point for the KO,
DO, and noKO network. Each connected pair of dots denotes one LC type with
the coloroftheline connecting two dots denoting the LC type identity (same
colorsasinc). Anasterisk denotes asignificant differencein means (p < 0.05,
paired, one-sided permutation test, n =23). Network run1was chosen as the
1-to-1networkin cas well as Figs.1-4 due toits high prediction for both behavior
and neural responses.
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Extended DataFig. 4 |Assessing model predictions of mean changesin
behavior. Given the mean changesinbehavior duetosilencing (where the
meanis taken over the entire session, Extended Data Fig. 1), we wondered to
what extent the knockout (KO) network predicted these overall changes versus
trainingadropout (DO) network, for which arandomly-chosen model LC unit
wasinactivated duringtraining, and anoKO network, for which noinactivation
ofany model LC unit was performed during training. a. For each LC neurontype,
we computed the average behavior across all held-out courtship framesin the
testset (‘real data’). We then computed the mean behavior as predicted by the
KO network across the same frames (‘KO network’). Each dot denotesone LC
type (color dots) or control session (black dot); colors areindicated at left.
Dashed lines arethe best linear fit; the correlation pis takenacrossall LC types
excluding the controlsessions. The KO network haslarge p’s across behavior
outputs, indicating good prediction of overall changes. b. Same asinaexcept
for the DO network; for evaluation, no model LC units were inactivated

(i.e., dropout was used for regularization®). Correlations were smaller for the
DO network than for the KO network (compare p’sbetween aandb). However,
for the movement variables, correlations for the DO network were only slightly
smaller than those of the KO network. Because the DO network had no access
towhich LC type wassilenced, this suggests that the statistics of visual inputs
differed acrossLCtypes. Forexample,imagineifthe DO network accurately
predicted the behavior of control male flies, including that the male does not
sing when the female is far away. Then, if silencing LC10a resulted in the male

notbeinginterested in courting the female, the female would be far away in
most frames, and the DO network would correctly predict adecreaseinsong
production, even thoughthe DO network has no knowledge LC10awas
silenced. Thus, DO training is an appropriate control to ask whether the
sensorimotor transformation has changed or if the male has altered his desire
to pursue courtship. Thisalso motivates future experiments with virtual reality
where the male’s visual statistics can be matched between LC-silenced and
control males. c.Same asinaand b except for the noKO network. Correlations
were substantially smaller than for the KO and DO networks (compare p’s
betweenaandc), indicating that the noKO network could not recover behavior
from LC-silenced flies.d. We trained 10 networks each for KO, DO, and noKO
training. Each of the 10 networks had different random initializations and
differentrandom orderings of training samples. For a fair comparison, the
same initialized network and ordering was shared across KO, DO, and noKO
training for each of the 10 runs. We then computed the p’s of overall mean
behaviors for each network and real data. For each of the six behavioral outputs,
we found that the KO network predicted the changes in behavior acrossLC
typesbetter than the predicted changes for the DO and noKO networks (red
dotsabove blueand black dots). Each dot denotes one network, and each
asterisk denotes that the mean of the KO network is significantly greater
thanthe mean of either the DO or noKO network (p < 0.05, paired, one-tailed
permutation test, n=10). Network run1was chosen as the exemplar network
ina-c (aswellasinFigs.1-4).



S

S)

/

N
k] -
=]
=1 |
2
=1
s
©

= £ >
< 5 =<
o € <
N B
F=EAN =
[TREEAN 17}
c N c
o h o
< <
—_ —_ o
3 S o
vc o<
cO co
£2 £8
a a
(g0]

mean residual (KO network j)

[=2]
{4 2 I~ 0
A8 so I / 3 2
N — l ° | S o
N ~ ' - Il
AN ) I ! ~ Q
N B3 U H =
/l - \ Q
~ Q W
A c /) T T T
= S o & c ° T
: AN <
s 2. | < 9
Il > R °
Q K g
2 e g g " 3 E
- 2 2 o 2
S 6>40MI2uU OY < e < 6 10MIaU Oyou <
6 10M1BU O
< "
\ ° =) N
\ - .
N = S I - /
/ = © S o Peg S0 AN
\ Il X e ~ N
(S B et .
\ & o o N
‘e 2 2 /
\ - — N
9 9 AN
& c < Al e
B, o o 3 L N A
\ ~ N
N o I .
. A 3 .
< oY o m T - %
S 8 g S S g
S /yomwuQy S S B /lomidu Oyou
£ Y10M1du Oa
o N . ‘
N S ° 5 =1 /
N So S K
" ) ~ | /
N X T-esgy 5 I ,
. e o o TT--le B3 Q /
N B - 2 ;
N =
= Lo |9} = c . &
= ¥ c 3 o .
N o S o
Il AN ~ I 3D /.
Q . 3 /
ol Q g /
S /
= g s ES o 8
10MIDU S © S S ¢lomiau Oyou <
§IOMISU O) S lomIBu Oq S U 0N
°, o = ERN
: = ] .
Se 2 3 .
R ~ | <+ N
. S < .
NS
" M BN nwv .
e & € .- 2 %o ©
2 . R [} N
) Wa | O -€-- ° c PN
H 1A g o} g8 &
Il N - a IS N
U N I .
\ 3 < N
© = o 0, =< ©
3 2 3 3 3 3
s J0MIBU . S s S £jIomdu Oyou <
g &) (0)/] = € }lomiau 0q £>J0M3au OY
=z <
v N .
Y < O ©
g “le®e . RS ! 3 S /
N Ft q i S S i
Le AN 9 n,v ' ~N | '
~ < 1 x !
~8 I ' e Il ’
N ©] 1 o a K
~ = = ; 2 :
0 ~ -_— [ »
. o~ ) 9]
2 N S ois c REX)
I AN , e ) ;
wv
Q o h e ./
3 c K o !
° 5 / g /
= 5 g 8 3 g g
N c s s

(1 31omizu OY) |enpisas ueaw

Ne)

Bujuiesy Inoydouy

L 3domiau g

Huluiesy 1anodoip

S | jpiomiau Oyou

0.06 -0.06 0.1 -0.04 0.1 -0.04 0.06
noKO network 6 noKO network 8 noKO network 710

noKO network 4

0.08
noKO network 2

-0.06

Bujuresy INoxPOUN-OU

4@p vary female rotation

y female position

€8 var

& vary female size

" 2y
< o=
o 29
< =
= v
g o<
o
2 $a
c -
* o = \QQ
) S Os 3,
3 ss)
(o4
* e \o,eo
4] o hz\s o,
° 7s.
/)
. - By, v
M S b,mv
P &L )
—— (4
* e e / @A ‘o
2 S by
3 78
* RS \nw\_
N as =) \Q.\%N
g G
* —
= ° =] b\m.\x
3 /0,
o
., . 15,
~ S O%@Q
o -\Q
(o4
g
*
M. 0Iol \Q«\ OW\SO
° s
),
*_y % 15, v
3 = Os 250
S %)
e (4
* - e \@A
] S xmv\om,
© U,
* e ) :

— \_\@o,c

° 6,
* = /

- e \wA

= S b&m.\x.\

© O,

o
. (6,
* . co QO%@Q
3 © Us)
(v
-
” - olu \QQO%\SO
° 75,
),
* > 5, v
M S Oﬁ&,@
3 %)
* . e \QA.\ v
5 S @\09\@
* —— I
— \@0&
S © &
* =y
= = Lre,

S —~ C \:.\O
QUG 4
T20B
S £=0
S88€

Extended DataFig.5|See next page for caption.
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Extended DataFig. 5| Consistency inbehavioral predictions across
networks with different random initializations. Deep neural networks with
thesamearchitecture and trained on the same data may converge to different
internal representations depending on their parameter initializations and the
ordering of training samples observed by stochastic gradient descent. We
wondered to what extent the solution identified by knockout (KO) training
changes for different randominitializations and different orderings of training
data.IfKO trainingis consistent for the 1-to-1 network’s architecture, then we
wouldexpect tosee that different training runs of aKO network should converge
tosimilar predictions in behavior. See Extended Data Fig. 6 for asimilar analysis
ofthe 1-to-1 network’s consistency in neural predictions. a. To test this, we
trained 10 KO networks, each with adifferent random initialization and different
ordering of training samples. We then passed as input a dynamic stimulus
sequenceinwhich the fictive female varied her size over time (dashed trace in
top left plot; female position and rotation remained fixed). Inactivating LC25
(orangeline, top left plot) resulted in an overall decrease in the probability of
songrelative to that of noinactivation (blackline, top left plot); we can compute
the overall change in behavior by taking the mean residual between the two
(orange shade, top left plot). If two KO networks were consistent, we would
expect that this KO network ishould match its mean residual if we were to
performthe same procedure for another KO networky; indeed, thisis what we
saw (compare top and bottom panelson the left). Inactivating LC6 resulted in
anincrease in probability of song for both KO networks (rightmost plots). We
quantified the consistency between the two KO networks by computing the
correlationacross LC types of the time-averaged residuals (middle scatter
plot); acorrelation p close tolindicates that both KO networks consistently
have the same predictions of behavior for different silenced LC types.

b. Scatter plots for 5 pairings of the 10 KO networks (top row) of the time-
averaged residuals of probability of sine song for the stimulus inwhich the
fictive female variesinsize (sameasina). Each dot denotes one LC type,and
colorscorrespond to LC namesin Extended DataFig. 4. Dashed lines denote
bestlinear fit. We also assessed the consistency of DO networks (middle row)
and noKO networks (bottom row), which were substantially lower than the p’s
for the KO network. c. Correlations of time-averaged residuals for the three
dynamic stimulus sequences and all six behavioral outputs. Each dot is the
mean across all 45 pairs of networks; error bars denote1s.e.m. The KO networks
hadsignificantly larger mean pairwise correlations (asterisk denotes p < 0.05,
paired permutation test, n=45) than those for the DO and noKO networks

(red dots above blue and black dots) for all stimulus sequences and behavioral
outputs. We conclude that the KO networks are consistent in behavioral
predictions. Animportant use of the ensemble of 10 KO networks is for
estimating model uncertainty for a particular stimulus sequence. Asingle KO
network canonly give one prediction for astimulus sequence (Fig.4d,e); one
may erroneously conclude that the modelis equally certain aboutall stimulus
sequences. Instead, the1-to-1 network may be more uncertain for different
stimulus sequences, especially those thatare rarely observed during natural
courtship. Thus, before experimentally testing the 1-to-1 network’s predictions,
one may first checkifthe 1-to-1 networkis confidentinits prediction by assessing
the extent to which different network runs agree on the same prediction. If
thereislarge agreement (asseen here), thel-to-1 networkis confidentinits
predictions. Onthe other hand, amismatchinits predictions and experimental
datais moreinteresting thanastimulus sequence for which the 1-to-1 network is
uncertain (and thus expected to not agree with experimental data).
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Extended DataFig. 6 | ConsistencyinLCresponse predictions across
networks with different random initializations. We wondered to what
extent knockout training converged to different solutionsin predicting LC
responses given different random initializations and different orderings of
training data. See Extended DataFig. 5 for consistency in behavioral predictions.
a.We performed knockout training on 10 different runs—each runhad a
differentrandominitialization and different random ordering of training data.
Wethen fed into the KO networks as input three dynamic stimulus sequencesin
which thefictive female varied her size (left column), position (middle column),
and rotation (right column) (same sequences as in Figs. 3fand 4d,e). For LC18
(top row), model responses were consistent for female size and rotation but not
position. Eachtraceis from one KO network run; the bold trace is for network
runl(chosenasthel-to-1networkinFigs.1-4). Traces across all three stimulus
sequences were z-scored and then flipped in sign to ensure the largest possible
mean correlation p over time (as signis notidentifiable viaknockout training).
For LC17 (bottom row), model responses were consistent for female position
butnotsize or rotation, suggesting consistency was stimulus dependent. This
isinlinewith theideathat knockout training can only identify aone-to-one
mapping for stimulus sequences that lead to noticeable changesin behavior
from LC-silencing (Extended Data Fig. 2); KO networks disagree on stimulus
sequencesthatleadtolittle tono changeinbehavior,assome changeis needed
inordertoidentifyan LCtype’sroleindriving behavior.b-c. We assessed the
consistency of the dropout (DO) networks for which arandomly-chosen model

LCunitwasinactivated (b) and noKO networks for which noinactivation was
performed (c). Both DO and noKO networks had poor consistency for LC18 and
LC17 across all stimulus sequences (largest p = 0.24).d. We computed the mean
correlation (dots) across all 45 pairs of networks and found that the KO networks
hadsignificantly larger mean correlations than DO networks (blue asterisks,
p<0.05, paired, one-sided permutation test, n =45) and noKO networks (black
asterisks, p <0.05, paired, one-sided permutation test, n = 45) for the three
different stimulus sequences. e. We concatenated the responses for each
network across all three stimulus sequences and re-computed the mean
correlation (dots). Almost all of the LC types show asignificantincreasein
mean correlation for KO network runs versus DO network runs (blue asterisks,
p<0.05, paired, one-sided permutation test, n =45) and noKO network runs
(black asterisks, p <0.05, paired, one-sided permutation test, n=45). Error bars
indand edenote1s.e.m. Taken together, these results indicate that knockout
training identified consistent KO networks that reliably predict neural
responses. That KO networks were more consistent than DO and noKO networks
suggests that knockout training captured meaningful changes in behavior.
Because KO networks may disagree more for different stimulus sequences
(anotion of uncertainty), future experiments should take this uncertainty into
account when testing the 1-to-1 network’s predictions. In fact, presenting
stimulus sequences for which the KO networks disagree the most may be the
mostinformative, as we can use the responsesto these sequencesto rule out
some of the KO networks.
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Extended DataFig.7|Predicting real LCresponses to artificial stimuliand
predicting response magnitude. a.Inaddition to our ownrecordings, we
further tested the 1-to-1 network’s neural predictions on alarge number of LC
neurontypeswhose responses wererecorded inanother study>. One caveat
was that these responses were recorded from females, not males. We considered
responsesto artificial stimuli of laterally moving spots with different diameters
and different movement directions as well aslooming spots with differentloom
accelerations (top row). Traces denote responses averaged over repeats and
flies, shaded regions denote 1s.e.m. (someregions are smallenoughtobehidden
by the meantraces). Datasame asin Fig. 3a of ref.31.b. Model LC responses
fromthel-to-1network. We fed as input the same stimulibut changed the spot
toafictive female facing forward (to better match these artificial stimulito the
fictive female stimulion which the 1-to-1 network was trained). For visual
comparison, we matched the mean and standard deviation (taken across all
stimuli) of each LC type’s model responses to those of the real LC responses;
wealso flipped the sign of amodel LC unit’s responses to ensure a positive
correlation with the real LC type (flipping was only performed for LC6 and
LC21). Toaccount for adaptation effects, model LC unit’sresponses decayed to
theirinitial baseline after no change in the original responses occurred (see
Methods). Overall, itappeared that almost all the real LC neurons and model

LC units respond to these artificial stimuli. Some of the best qualitative
matches were LC11-where the 1-to-1 network correctly identified the object
size selectivity of LC11neurons?”’—LC15,LC17,and LC21. A failure of the model
was predicting LC12 responses; thiswas true of our LC recordings as well (cand
Extended DataFig. 8). This failure may be due to an unlucky randomiinitialization,
asnetworks trained with knockout over 10 training runs were notin strong
agreement of LC12’sresponses (Extended Data Fig. 6). Another explanation is
that LC12 only weakly contributes to behavior for these simplified stimuli. If this
were the case, then KO training would not be able to identify LC12’s contributions
tobehavior norits neural activity. One piece of evidence that this might be the
explanationis thatsolelyinactivating LC12 for simple, dynamic stimulus

sequences did notlead to any change in the model’s behavioral output (Fig. 4f).
For natural stimulus sequences, LC12 does appear to play arole (Fig. 4c),
motivating the use of more naturalistic stimuliwhen recording from LC types
(Fig.2).c.We continued to test the 1-to-1 network’s neural predictions by
comparing the model’s response magnitudes for different types of stimuli. We
wondered whether the relative magnitudes of model LC responses across all
stimulus sequences qualitatively matched that of real LC responses. If so,
itindicates that the model’s selectivity for certain stimuli matches real LC
selectivity. Thisis different from our quantitative comparisons that normalized
model LCresponses for each stimulus separately (Fig. 2d,e and Extended Data
Fig.8). We note that a priori, we would not expect the 1-to-1 network to predict
response magnitude, as downstream weights could re-scale any activity of the
model LC units. However, as found when comparing the internal representations
of deep neural networks to one another®®, the relative magnitudes of internal
units may be animportant part of encoding informative representations. Same
formatasinFig.2ffor the three remainingrecorded LC types (LC6, LC11, and
LC12).ForLC6, the1-to-1network correctly predictsalarger response toloom
thanresponsestoamovingspotand aspotvaryingitssizelinearly (‘linear
size’); however, it overestimates the responses to fictive female stimuli. For
LC11, the model accurately identifies LC11’s object selectivity (‘moving spot’)
and suppression toloom and linear size. Similar to LC6, the 1-to-1 network
overestimates LC11’s response magnitudes to the fictive female stimuli. We
againfound that for LC12, the1-to-1network has overly large responses to the
fictive female stimulibut does predict magnitudes for moving spot,loom, and
linear size. The model LC12 responses toloom and linear size appear tobe
inverted (i.e., flipping model LC12 responses to loom and linear size would
better match thereal LC12 responses)—thisislikely aconsequence of the fact
thatthesignofanLC’sresponseis unidentifiable for the 1-to-1 network, as one
could simply flip the sign of the model LC unit’s response and the readout
weights of downstream units. Other possible reasons are mentionedinb.
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Extended DataFig. 8| Real LCresponses and predicted responses to
stimulus sequences of amoving fictive female. a. We considered 9 different
stimulus sequences in whichafemale varied her rotation, size, and position
(threetop traces foreach stimulus sequence, see Methods for stimulus
descriptions). We found that the 1-to-1 network’s predictions (black traces)
largely predicted the responses of the real LC neurons (color traces), despite
the facts that the 1-to-1 network was never given access to neural data and that
wedirectly read out from asingle model LC unit. The average of all reported
noise-corrected R*s hereis the same as that reported in Fig. 2e. We only
considered stimulus sequences for which the real LC responses reliably varied
across time for the stimulus sequence. To measure this, we computed thed”
betweensplits of repeats (i.e., asignal-to-noise ratio across repeats) and
considered any stimulus sequence withad’ <1asunreliable, removingit from
ouranalyses (translucent traces; see Methods). Forsome LC types, we detected
areliableresponsetoonly one or afew stimuli (e.g., LC15only responded to
‘vary female position’and ‘natural sequence’). We noticed that none of the LC
neurons responded to stimulus sequences for which the fictive female’s
parameters were chosen to optimize the1-to-1 network’s output of lateral
velocity (‘optimize lateral vel.’and ‘optimize lateral vel. (fast)’, see Methods).
This may be due to the fast changes in female position which were not present
inother stimulus sequences. For each stimulusand LC type, we computed a
noise-corrected R*between the realand model predicted responses. This
noise-corrected R?overlooks any differences in mean, standard deviation, and
signof the response, which are unidentifiable by the KO network. For visual
clarity, we centered, scaled, and flipped the sign of the 1-to-1 network
predictions (black traces) to match the mean, standard deviation, and sign of
theLCresponses (color traces) for each stimulus. We accounted for the
smoothness of calcium traces by applying a causal smoothing filter to the
model LC responses as well as fitting the mean offset of the relu thresholding
(seeMethods). Interestingly, all LC types responded reliably to varying female
position (‘'vary female position’, color traces) despite the facts that the optic
glomeruli have weak retinotopy'>® and that the calcium traceisasumof the
activity of almostall neurons for the same LC type (presumably averaging away
any spatial information). This suggests that either our targeted region for
calciumimaging (Fig. 2a) was biased to read out fromasubset of LC neurons
with nearby receptive fields or that these LC neurons have some selectivityin
female position (perhaps as direction selectivity). Thelatter may be more
likely, as the male needs to better estimate female position than canbe done
simply by comparing coarse differences between the two opticlobes.
Consistent with our findings, a previous study hasidentified another LC type—
LC10a—torespond toanobject’s position'. That our 1-to-1 network also
predicted positional selectivityinthe LC types (black traces) supportsthe
notion that some optic glomeruli may track female position despite weak
retinotopy. More work is needed to understand how object positionis encoded
withinasingle optic glomerulus and how that informationis read out®'.
b.Resultsinawere for aKO network with one random initialization. To see if
this effect holds for differentinitializations, we trained 10 runs of the KO
network, each with adifferent randominitialization and random ordering of
training samples. We compared the runs of the KO network to those of the
dropout (DO) network, for which arandomly-chosen model LC unit was
dropped outduringtraining, as well as noKO networks for which no knockout
occurred during training. These are the same networks used to predict
moment-to-moment behavior (Extended Data Fig.3d). Each bar denotes the
mean R? and each dot denotes one combination of LC type and stimulus
(i.e.,non-shaded tracesina). Black asterisks denote asignificantincreasein
meanR?(p<0.05, paired, one-sided permutation test, n = 27), gray asterisks
denoteatrend (p <0.15). We observed that randominitialization played more
ofarolefor neural prediction than for behavioral prediction (Extended Data
Fig.3d). Thisisnotsosurprising, as the networks were never trained to predict
neural responses. Still, the KO networks tended to outperformthe other types
of networks (red bars larger than other bars); combining across all runs, the KO
network performed significantly better (‘all runs’, p < 0.002 for comparisons
between KO and other networks, paired, one-sided permutation test, n = 270).
Inaddition, the untrained networks performed poorly (gray bars), indicating
that training networks onbehavior did improve neural predictions. c. For the
resultsinaandb, we considered aone-to-one mappinginwhich we directly
compared amodel LC unit’sresponse with real LC responses; our 1-to-1 network
never had access to neural data for training. Here, we wondered if we relaxed

this assumption (i.e., trainalinear mapping from allmodel LC unitstoreal LC
responses), to what extent would the model’s prediction of real LC responses
improve. The basic setup was the following. We feed a stimulus sequence into
thel-to-1network (fully trained with knockout training) and collect responses
from all model LC units, denoted as X € R**T for K model LC units (here, K =23)
andthe Ttimepoints of the stimulus sequence. We then define alinear mapping
B e R¥tomaptheKmodel LC responsesto thereal LC response. We usereal LC
responses to train 8. Specifically, for each of the 4 cross-validation folds,
wetrain fon75%ofthereal LC responses (randomly selected) using ridge
regression. Training the linear mapping on responses to other stimuliled to
worse performance, asexpected, because the stimuli were largely different
fromeach other—training onresponsesto afictive female changingin position
was not predictive of responses to afictive female changinginsize. We then
predictthe responses for the remaining held-out timepoints. We concatenate
the predictions across the 4 folds and then compute the noise-corrected R?in
thesameway asinFig.2d,e. Thus, thereported cross-validated noise-corrected
R*sindicate the extent to which the 1-to-1 network, given neural data on which
totrain, canpredict held-outreal LCresponses. Another viewis thatin this
setting, the 1-to-1network s a task-driven model trained on behavioral data with
aninternal representation (the model LC bottleneck) that reflects the activity
of real LC neurons up toalinear transformation'. d. Prediction performance
using the linear mapping for different networks and network runs (see Methods).
For each network, we trained anew linear mapping between the model LC
responsesand thereal LC responses. Overall, prediction performance greatly
increased: The1-to-1network (or KO network) with the linear mapping had a
noise-corrected R*at - 65% (network run 1, averaged over all recorded LCs and
fictive female stimulus sequences), an additive increase of - 30% over that of
thel-to-1network with the one-to-one mapping comparison (- 35%, Fig. 2e).
Wealso found that, for the linear mapping, the performance of the 1-to-1 network
was similar to those of the other networks trained with dropout (DO) or no
knockout (noKO) (leftmost plot, red bar close to black and blue bars). This
similarity in performance was not unexpected and indicates that all 3 networks
(KO, DO, and noKO) have similar internal representations (up to alinear
transformation) at the layer of their LC bottlenecks. However, the 1-to-
1network’srepresentationis better aligned to the LC types alongits coordinate
axes—where eachmodel LC unit corresponds to one axis—thanthose of the
other networks (Fig. 2e). Networks trained with behavioral data (KO, DO, and
noKO) outperformed an untrained network (gray bar), indicating that training
onbehavior was helpful inidentifying LC response properties. That the
untrained network was somewhat predictive of LC responses (bar for
‘untrained’ above 0) stems from aninductive bias in which the network’s
convolutionalfilters, even with randomized weights, can detect large changes
ofthe visual stimulus (e.g., afictive female moving back and forth). That alinear
combination of random features is often predictive inaregression setting is
awell-studied phenomenonin machine learning®and has been observedin
predicting visual cortical responses®. This trend in similarity of performance
held across all10 network runs (same runs asinb) for the different training
procedures: The KO network consistently better predicted real LC responses
than the untrained network but less sowhen compared to the DO and noKO
networks (red bars at similar heights to black and blue bars across network
runs). This trend held when combining across all runs (‘all runs’). Ablack
asterisk indicates aKO network with amean prediction performance
significantly above that of another network (p < 0.05, paired, one-sided
permutation test); agray asteriskindicatesatrend (0.05<p <0.15). Each

bar denotes the mean R?, and each dot denotes one LC type and stimulus
combination (i.e., the non-shaded tracesina); n = 27 for statistical tests for
eachrunandn=270 forallruns. Network run1was the chosen1-to-1network
for Figs.1-4. Theresults here indicate that by simply training anetwork on
courtship behavioral data (i.e., atask-driven approach), we have identified a
highly-predictive image-computable model of LC neurons. To our knowledge,
oursisthe firstimage-computable model of the LC population proposed. An
important pointis that this encoding model (using alinear mapping) does not
identify aone-to-one mapping between model LC units and LC types, as the
modelisunabletorelatethe encoded LC neurons to behavior—this is precisely
thereasonwebuilt the1-to-1 network. Training the 1-to-1 network both on
behavior and neural responsesisaworthwhile goal, but careis needed to
ensure the neural responsesare recorded during natural behavior to achieve
asbestamatchaspossible.
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Extended DataFig.9|Model LC tuning heat maps. Each “pixel”inthe
heatmap corresponds to the response of the model LC unit toone input
stimulus sequence in which astatic fictive female fly has a given size, position,
and rotation (i.e., all10 images of theinput sequence were the same, see

Methods). We then systematically varied female size, position, and rotation
across stimulus sequences (125,000 sequences in total). Same format as in
Fig.3c,dbut for allmodel LC units.
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Extended DataFig.10|Allmodel LCresponses to simple, dynamicstimulus
sequencesinwhichonly one visual parameter of the fictive female varied.
Same dynamic stimulus sequences and format as in Fig. 3f; these responses
were used to compute the R?s in Fig. 3g. We also show the I-to-1 network’s
behavioral output for each dynamic stimulus (top rows, black traces). Stimulus
sequences include the following (see Methods for exact parameter values):

a.Varying female size while the female stays in the middle facing away from the
male. b. Varying female position while the female has afixed, large size and
faces away from the male. c. Varying female rotation while the female has a
fixed, large size and staysin the middle. Each trace’s sign was flipped to have a
positive correlation with the varying visual parameter of the corresponding
stimulus sequence.
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Extended DataFig.11|See next page for caption.
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Extended DataFig. 11| Maximizing visual inputs for eachmodel LC unit.

To better understand the differences in stimulus preference across the model
LC units, we optimized the visual input history that maximized each model LC
unit’s response while minimizing responses of all other model LC units (i.e.,
a‘one-hot’ maximizing stimulus).a. We considered alarge number of candidate
stimulus sequences taken from the training dataset of control sessions
(500,000 stimulus sequencesin total). We fed each stimulus sequence as
inputinto the1-to-1network, extracting the responses of the model LC units.
We chose the stimulus sequence that maximized achosen model LC unit’s
response while minimizing the responses for all other model LC units. We used
the following objective functionf(x) for the ith chosen model LC unit, adopted
from®*: f; (X) = % where xisthevisualinput sequence of 10 frames
and r;istheresponse of the ith model LC unit. The objective function fi(x) is
maximized forlarge responses of the ithmodel LC unitand responses as small
as possible for all other units. Thus, we optimize stimulus sequences as “one-
hot maximizations”. b. Maximizing stimulus sequences for each model LC unit
with the mostrecent frame as the top image. One hot maximization worked for
ahandful of model LC units (LC9, LC10a, LC11,LC12, LC15; top panel shows
responses of allmodel LC units to that stimulus sequence); surprisingly,
one-hot maximization failed to drive a single model LC unit for many of the

other LC types (atleast one black dot has similar value to color dot), indicating
that these model LC units share stimulus preferences with other model LC
units. Some stimulus sequences have smooth changes to the fictive female’s
parameters, suchasLCl0aand theincrease in female size. However, other
maximizing stimulus sequences show large jumps of the fictive female
(e.g.,LC4,LC11,LC12,LC22, etc.); even though these stimulus sequences were
chosen from natural courtship, they likely represent outliers that strongly
driveresponses. Thisis especially true of model LC11that prefers asmall female
movingatafastspeed, consistent with LC11being a small object detector??,
These maximizing stimulus sequences represent predictions of the 1-to-1
network that canbe tested in future experimentstoseeifthey truly elicit large
responses from LC neurons, much like recent work has identified images to
drive visual cortical neurons of macaque monkey®* %, Other objective functions,
suchas maximizing the response variation across time with alonger stimulus
sequence, and other constraints, such asrestrictinghow muchafictive female
may change between consecutive frames or requiring the fictive female to not
remain static, are easily possible with the 1-to-1 network. Our main finding here
isthat many of the one-hot maximizing stimuli failed to only activate the
targeted LCtype; thisis further evidence that visual features are distributed
acrossthe LC population.
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Extended DataFig.12|Inactivating model LC units for each of the 6
behavioral output variables during natural courtship. We inactivated each
model LC unit separately and re-computed the predicted performance R? or
1-c. e. (cross-entropy) on held-out behavioral data from control flies (red dots).
Weinactivated each model LC unit by settingits activity equal toits time-
averaged response; we found this approach better able to tease apart LC
contributions versus setting activity to O (i.e., what is done during knockout
training), as thelatter often leads to changesin mean behavior but does not
alter the moment-by-moment sensorimotor transformation (see Methods).
Inactivating any single model LC unitdid notlead toalarge drop in performance,
consistent with our experimental findings (Extended DataFig.1). Thisindicates
thatonly by inactivating multiple model LC units at the same time willweseea
deficitin prediction;in other words, the behavior relies on reading out from
combinations of LC types. To identify these combinations, we inactivated
model LC unitsinacumulative, greedy manner (black dots) and observed to
what extent the responses for the remaining model LC units predict held-out
behavioral datafrom control flies. Same formatasin Fig. 4b. For each plot,
model LC unitsontheleft contribute the least to the given behavioral output;
model LC units on theright contribute the most. We found that when
inactivating some model LC units, performance actually increased (e.g., LC12
forsinesong, bottomright). Thisisbecause LC10bc and LC12 used excitation
and inhibition to cancel out some of each other’s responses—ablating one
decreases performance while ablating both increases performance as both
excitatory andinhibitory effects are removed via ablation. The LC neurons
themselves need not be either excitatory or inhibitory; readouts by downstream
neurons may rely on positively or negatively weighting the LC responses.

Performancealsoincreased by removing anumber of model LC units for sine
song (bottomright, LC6); thisis possibly due to overfitting by the 1-to-1 network.
By removing “noisy” model LC units that are overfit to the training data, therest
ofthe model LC units better generalize. Interestingly, the strongest contributor
ofthe model LC units, ifinactivated alone, did notlead to alarge decrease in
performance. Forexample, LC22 was the strongest contributor for forward
velocity but, wheninactivated alone, resulted inlittle decrease to R* (red dot
aboveblackdot). Thisis consistent with our finding that silencing LC22led to
little change in mean forward velocity (Extended DataFig.1). We note that
inactivating any single model LC unit will likely lead to changes in forward
velocityin specific contexts which the 1-to-1 network identifies (Extended Data
Fig.3); here, for simplicity we compute R*across aggregated contexts for the
entire courtship session of control males and potentially miss changesin
specific contexts. Thatinactivating any single model LC unitleads tolittle drop
inperformance suggests that the model LC units work together as a population
codetosculptbehavior: Thereis nosole contributor to any particular behavior,
especially when combining across different behavioral contexts (e.g., chasing
the female from far away, singing to anearby female, etc.) asis done here. The
red squares of the heatmapsin Fig. 4c (which condense the information plotted
here) correspond to the differences between the performance value (R?or
1-c.e.) foreachmodel LC unitand noinactivation (‘none’), divided by the
maximum difference (in most cases, the difference between the value for the
rightmost model LC and the value for ‘none’). To avoid the effects of overfitting,
any positive differences (i.e., anincreasein prediction performance) were
clippedtol.
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