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SUMMARY

Two commonly used approaches to study interactions among neurons are spike count correlation,

which describes pairs of neurons, and dimensionality reduction, applied to a population of

neurons. Although both approaches have been used to study trial-to-trial neuronal variability

correlated among neurons, they are often used in isolation and have not been directly related. We

first established concrete mathematical and empirical relationships between pairwise correlation

and metrics of population-wide covariability based on dimensionality reduction. Applying these

insights to macaque V4 population recordings, we found that the previously reported decrease in

mean pairwise correlation associated with attention stemmed from three distinct changes in

population-wide covariability. Overall, our work builds the intuition and formalism to bridge
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between pairwise correlation and population-wide covariability and presents a cautionary tale

about the inferences one can make about population activity by using a single statistic, whether it

be mean pairwise correlation or dimensionality.

In brief

Pairwise correlations and dimensionality reduction are widely used approaches for measuring how

neurons covary. Umakantha, Morina, Cowley, et al. establish concrete mathematical relationships

between the two approaches and empirically investigate these relationships for visual cortical

neurons. The findings provide a cautionary tale for summarizing population-wide covariability

using any single activity statistic.

Graphical Abstract

INTRODUCTION

A neuron can respond differently to repeated presentations of the same stimulus. These

variable responses are often correlated across pairs of neurons from trial to trial, measured

using spike count correlations (rsc, also referred to as noise correlation; Cohen and Kohn,

2011). Studies have reported changes in spike count correlation across various experimental
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manipulations and cognitive phenomena, including attention (Cohen and Maunsell, 2009;

Mitchell et al., 2009; Herrero et al., 2013; Gregoriou et al., 2014; Ruff and Cohen, 2014a;

Snyder et al., 2018), learning (Gu et al., 2011; Jeanne et al., 2013; Ni et al., 2018), task

difficulty (Ruff and Cohen, 2014b), locomotion (Erisken et al., 2014), stimulus drive

(Maynard et al., 1999; Kohn and Smith, 2005; Smith and Kohn, 2008; Miura et al., 2012;

Ponce-Alvarez et al., 2013; Ruff and Cohen, 2016b), decision making (Nienborg et al.,

2012), task context (Bondy et al., 2018), anesthesia (Ecker et al., 2010), adaptation (Adibi et

al., 2013), and more (Figure 1A). Spike count correlation also depends on timescales of

activity (Bair et al., 2001; Kohn and Smith, 2005; Smith and Kohn, 2008; Mitchell et al.,

2009; Runyan et al., 2017), neuromodulation (Herrero et al., 2013; Minces et al., 2017), and

properties of the neurons themselves, including their physical distance from one another

(Lee et al., 1998; Smith and Kohn, 2008; Smith and Sommer, 2013; Ecker et al., 2014;

Solomon et al., 2015; Rosenbaum et al., 2017), tuning preferences (Lee et al., 1998; Romo

et al., 2003; Kohn and Smith, 2005; Huang and Lisberger, 2009), and neuron type (Qi and

Constantinidis, 2012; Snyder et al., 2016). Theoretical work has posited that changes in

correlations affect neuronal computations and sensory information coding (Zohary et al.,

1994; Shadlen and Newsome, 1998; Abbott and Dayan, 1999; Averbeck et al., 2006;

Moreno-Bote et al., 2014; Sharpee and Berkowitz, 2019; Rumyantsev et al., 2020; Bartolo et

al., 2020). Given such widespread empirical observations and theoretical insight, spike count

correlation has been and remains instrumental in our current understanding of how neurons

interact.

Most studies compute the average spike count correlation over pairs of recorded neurons for

different experimental conditions, periods of time, neuron types, etc. A decrease in this

mean correlation is commonly attributed to a reduction in the size (or gain) of shared co-

fluctuations (Shadlen and Newsome, 1998; Rabinowitz et al., 2015; Lin et al., 2015; Ecker et

al., 2016; Huang et al., 2019; Ruff et al., 2020), e.g., a decrease in the strength of “common

shared input” that drives each neuron in the population. However, other distinct changes at

the level of the entire neuronal population can manifest as the same decrease in mean

pairwise correlation (Figure 1B). For example, a common input that drives the activity of all

neurons up and down together could be altered to drive some neurons up and other neurons

down. Alternatively, that first common input signal might remain the same, but a second

input signal could be introduced that drives some neurons up and others down. It is difficult

to differentiate these distinct possibilities using a single summary statistic, such as mean

spike count correlation.

Distinguishing among these changes to the population-wide covariability might be possible

by considering additional statistics that measure how the entire population of neurons co-

fluctuates together. In particular, one may use dimensionality reduction to compute statistics

that characterize multiple distinct features of population-wide covariability (Cunningham

and Yu, 2014). Dimensionality reduction has been used to investigate decision making

(Harvey et al., 2012; Mante et al., 2013; Kiani et al., 2014; Kaufman et al., 2015), motor

control (Churchland et al., 2012; Gallego et al., 2017), learning (Sadtler et al., 2014; Ni et

al., 2018; Vyas et al., 2018), sensory coding (Mazor and Laurent, 2005; Pang et al., 2016),

spatial attention (Cohen and Maunsell, 2010; Rabinowitz et al., 2015; Snyder et al., 2018;

Huang et al., 2019), interactions between brain areas (Perich et al., 2018; Ruff and Cohen,
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2019a; Ames and Churchland, 2019; Semedo et al., 2019; Veuthey et al., 2020), and network

models (Williamson et al., 2016; Mazzucato et al., 2016; Recanatesi et al., 2019), among

others. As with mean spike count correlation, the statistics computed from dimensionality

reduction can also change with attention (Rabinowitz et al., 2015; Huang et al., 2019),

stimulus drive (Churchland et al., 2010; Cowley et al., 2016; Snyder et al., 2018), motor

output (Gallego et al., 2018), learning (Athalye et al., 2017), and anesthesia (Ecker et al.,

2014). However, unlike mean spike count correlation (henceforth referred to as a “pairwise

metric”), which averages across pairs of neurons, the statistics computed from

dimensionality reduction (henceforth referred to as “population metrics”) consider the

structure of population-wide covariability (Figure 1C). Although dimensionality reduction is

often applied to trial-averaged activity (removing trial-to-trial variability), here, we focus on

using dimensionality reduction to study trial-to-trial variability (around the trial-averaged

mean). An example of a commonly reported population metric is dimensionality (Yu et al.,

2009; Rabinowitz et al., 2015; Cowley et al., 2016; Williamson et al., 2016; Mazzucato et

al., 2016; Gao and Ganguli, 2015; Gallego et al., 2017; Stringer et al., 2019a; Recanatesi et

al., 2019). Dimensionality is used to assess whether the number of population co-fluctuation

patterns (possibly reflecting the number of common inputs) changes across experimental

conditions (Figure 1B, condition 1 versus condition 2, right panel). Thus, population metrics

could help to distinguish among the distinct ways in which population-wide covariability

can change, especially those that lead to the same change in mean spike count correlation

(Figure 1B).

Both pairwise and population metrics aim to characterize how neurons covary, and both can

be computed from the same spike count covariance matrix (Figure 1C). Still, studies rarely

report both, and the relationship between the two is not known. In this study, we establish

the relationship between pairwise metrics and population metrics both analytically and

empirically using simulations. We find that changes in mean spike count correlation could

correspond to several distinct changes in population metrics, including (1) the strength of

shared variability (e.g., the strength of a common input), (2) whether neurons co-fluctuate

together or in opposition (e.g., how similarly a common input drives each neuron in the

population), or (3) the dimensionality (e.g., the number of common inputs). Furthermore, we

show that a rarely reported statistic—the standard deviation of spike count correlation—

provides complementary information to the mean spike count correlation about how a

population of neurons co-fluctuates. Applying this understanding to recordings in area V4 of

macaque visual cortex, we found that the previously reported decrease in mean spike count

correlation with attention stems from multiple distinct changes in population-wide

covariability. Overall, our results demonstrate that common ground exists between the

literatures of spike count correlation and dimensionality reduction and provides a cautionary

tale for attempting to draw conclusions about how a population of neurons covaries using

one, or a small number of, statistics. Our framework builds the intuition and formalism to

navigate between the two approaches, allowing for a more interpretable and richer

description of the interactions among neurons.
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RESULTS

Defining pairwise and population metrics

We first define the metrics that we will use to summarize (1) the distribution of spike count

correlations (i.e., pairwise metrics) and (2) dimensionality reduction of a population

covariance matrix (i.e., population metrics). For pairwise metrics, we consider the mean and

standard deviation (SD) of rsc across all pairs of neurons, which summarize the rsc

distribution (Figure 1C, bottom left panel). For population metrics, which are derived from

factor analysis (FA), we consider loading similarity, percent shared variance (abbreviated to

%sv), and dimensionality (described below and in more detail in STAR Methods). These

metrics each describe some aspect of population-wide covariability and thus represent

natural, multivariate extensions of rsc.

To illustrate these three population metrics, consider the activity of a population of neurons

over time (Figure 2A, spike rasters). If the activity of all neurons goes up and down together,

we would find the pairwise spike count correlations between all pairs of neurons to be

positive. A more succinct way to characterize this population activity is to identify a single

time-varying latent co-fluctuation that is shared by all neurons (Figure 2A, blue line). The

way in which neurons are coupled to this latent co-fluctuation is indicated by a loading for

each neuron. In this example, because the latent co-fluctuation describes each neuron’s

activity going up and down together, the loadings have the same sign (Figure 2A, green

rectangles). We refer to the latent co-fluctuation’s corresponding set of loadings as a co-

fluctuation pattern. A co-fluctuation pattern can be represented as a direction in the

population activity space, where each coordinate axis corresponds to the activity of one

neuron (Figure 2A, right panel). The first population metric is loading similarity, a value

between 0 and 1 that describes to what extent the loadings differ across neurons within a co-

fluctuation pattern. A loading similarity close to 1 indicates that the loadings have the same

sign and are of similar magnitude (Figure 2A, green rectangles). A loading similarity close

to 0 indicates that many of the loadings differ, either in magnitude, sign, or both (Figure 2B,

green and pink squares). In this case, some neurons may have positive loadings and co-

fluctuate in the same direction as the latent co-fluctuation (Figure 2B, top rows of neurons

show high firing rates when blue line is high and low firing rates when blue line is low),

whereas other neurons may have negative loadings and co-fluctuate in the opposite direction

as the latent co-fluctuation (Figure 2B, bottom rows of neurons show low firing rates when

blue line is high and high firing rates when blue line is low). One can view changing the

loading similarity as rotating the direction of a co-fluctuation pattern in population activity

space (Figure 2B, bottom plot).

The second population metric is percent shared variance or %sv, which measures the

percentage of spike count variance explained by the latent co-fluctuation. This percentage is

computed per neuron and then averaged across all neurons in the population (Williamson et

al., 2016). A %sv close to 100% indicates that the activity of each neuron is tightly coupled

to the latent co-fluctuation, with a small portion of variance that is independent to each

neuron (Figure 2A). A %sv close to 0% indicates that neurons fluctuate almost

independently of each other and their activity weakly adheres to the time course of the latent
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co-fluctuation (Figure 2C). By changing %sv, one does not change the co-fluctuation pattern

in population activity space (Figure 2, blue lines are the same in panels A and C) but rather

the strength of the latent co-fluctuation (Figure 2C, blue line has smaller amplitude than in

panel A).

The third population metric is dimensionality. We define dimensionality as the number of

co-fluctuation patterns (or dimensions) needed to explain the shared variability among

neurons (see STAR Methods). The variable activity of neurons may depend on multiple

common inputs, e.g., top-down signals like attention and arousal (Rabinowitz et al., 2015;

Cowley et al., 2020) or spontaneous and uninstructed behaviors (Stringer et al., 2019b;

Musall et al., 2019). Furthermore, these common inputs may differ in how they modulate

neurons. This may result in two or more dimensions of the population activity (Figure 2D,

blue and orange latent co-fluctuations). For illustrative purposes, each dimension might

correspond to a single group of tightly coupled neurons (Figure 2D, neurons in top rows

have non-zero loadings for pattern 1, whereas neurons in bottom rows have non-zero

loadings for pattern 2). However, in general, each neuron can have non-zero loadings for

multiple patterns. In population activity space, adding a new dimension adds a new axis

along which neurons covary (Figure 2D, orange line). We use the term “dimension” to refer

either to a latent co-fluctuation or its corresponding co-fluctuation pattern, depending on

context.

Varying population metrics to assess changes in pairwise metrics

Given that both pairwise and population metrics are computed from the same spike count

covariance matrix (Figure 1C), a connection should exist between the two. We establish this

connection by deriving mathematical relationships and carrying out simulations. In

simulations, we assessed how systematically changing one of the population metrics (e.g.,

increasing loading similarity; Figure 3A) changes the spike count covariance matrix (Figure

3B) and the corresponding rsc distribution (Figure 3C), which we summarized using its mean

and standard deviation (Figure 3D). The covariance matrix was parameterized in a way that

allowed us to create covariance matrices with specified population metrics (see STAR

Methods). Thus, our simulation procedure does not simulate neuronal activity but rather

creates covariance matrices that are consistent with the specified population metrics.

Loading similarity has opposing effects on rsc mean and SD—We first asked how

the loading similarity of a single co-fluctuation pattern (i.e., one dimension) affected rsc

mean and SD. Intuitively, a high loading similarity indicates that the activity of all neurons

increases and decreases together (Figure 2A), resulting in values of rsc that are all positive

and similar in value. Indeed, in simulations, we found that high loading similarity

corresponded to large rsc mean and rsc SD close to 0 (Figure 3E, green dots near horizontal

axis). On the other hand, a low loading similarity indicates that, when some neurons increase

their activity, others decrease their activity (Figure 2B), resulting in some positive rsc values

(for pairs that change their activity in the same direction) and some negative rsc values (for

pairs that change their activity in opposition). In simulations, a low loading similarity indeed

corresponded to an rsc mean close to 0 and a large rsc SD (Figure 3E, blue dots near vertical

axis). By varying the loading similarity, we surprisingly observed an arc-like trend in the rsc
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mean versus rsc SD plot (Figure 3E). In Math Note A, we derive the analytical relationship

between loading similarity and rsc. In Math Note B, we show mathematically why the rsc

mean versus rsc SD relationship follows a circular arc.

Decreasing %sv reduces rsc mean and SD—We next asked how %sv, which

measures the percentage of each neuron’s variance that is shared with other neurons in the

population, is related to rsc mean and SD. Intuitively, one might expect % sv and rsc mean to

be closely related because rsc measures the degree to which the activity of two neurons is

shared (Cohen and Kohn, 2011). We investigated this in simulations and found that how

closely %sv and rsc mean were related depended on the loading similarity. When loading

similarity was high (Figure 3F, green dots), there was a direct relationship between %sv and

rsc mean (specifically, %sv equals rsc mean). However, when loading similarity was low

(Figure 3F, blue dots), the relationship between %sv and rsc mean was less direct. Namely,

rsc mean remained close to zero, regardless of %sv. This illustrates that rsc mean and %sv are

not the same. It is possible for a population of neurons with high %sv (e.g., Figure 3F, blue

dots in outer arc) to have smaller rsc mean than a population with lower %sv (e.g., Figure 3F,

green dots in inner arc).

These relationships that we have shown through simulation can be captured mathematically.

First, if we have knowledge of the loading weights in the co-fluctuation pattern, the rsc

between a pair of neurons can be expressed in terms of the %sv and loading values of the

two neurons (Math Note A),

ρij = ϕiϕ jsign wiw j , (Equation 1)

where ρi j is the rsc between neurons i and j, ϕi and ϕ j are the %sv of each neuron (expressed

as a proportion per neuron, in contrast to %sv in Figure 3F, which shows the average %sv

across all neurons), and wi and wj are the loadings of the neurons in the co-fluctuation

pattern. The rsc mean is the average of ρi j values across all neuron pairs. From Equation 1,

we observe that, when loading similarity is high (i.e., most loading weights have the same

sign), %sv and rsc mean are directly related (i.e., ρi j = ϕiϕ j). However, when loading

similarity is low (i.e.,some loading weights are positive and others are negative), rsc mean is

small, regardless of %sv, because some pairs have sign wiw j = + 1 and others have

sign wiw j = − 1.

Second, if we have information about the rsc SD (instead of loading weights), we can

establish the following relationship between %sv, rsc mean, and rsc SD (Math Note B):

%sv ≈ rsc mean 2 + rsc s.d. 2 .

In other words, in the rsc mean versus rsc SD plot, %sv is reflected in the distance of a point

from the origin (Figure 3F). This relationship holds, regardless of the loading similarity. The
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intuition is that the %sv corresponds to the magnitude of rsc values (i.e., the ρi j  from

Equation 1).

These findings highlight the pitfalls of considering a single statistic (e.g., rsc mean) on its

own and the benefits of considering multiple statistics (e.g., both rsc mean and SD) when

trying to draw conclusions about how neurons covary. By considering rsc mean and SD

together, one can gain insight into the loading similarity (Figure 3E) and the %sv (Figure

3F) of a neuronal population. Thus far, we have only considered the specific case where

activity co-fluctuates along a single dimension in the firing rate space. We next considered

how pairwise metrics change in the more general case where neuronal activity co-fluctuates

along multiple dimensions.

Adding more dimensions tends to reduce rsc mean and SD—We sought to assess

how dimensionality (i.e., the number of co-fluctuation patterns) is related to pairwise

metrics. In simulations, we increased the number of co-fluctuation patterns (compare Figure

2A to 2D; see STAR Methods), while sweeping loading similarity and fixing the total %sv.

We found that increasing dimensionality tended to reduce rsc mean and SD (Figure 3G, dots

for larger dimensionalities lay closer to the origin than dots for smaller dimensionalities).

It seems counterintuitive that adding a new way in which neurons covary reduces the

magnitude of rsc. The intuition is that, if multiple distinct (i.e., orthogonal) dimensions exist,

then a neuron pair interacts in opposing ways along different dimensions. For example,

consider two neurons with loadings of the same sign in one co-fluctuation pattern and

opposite sign in the second pattern. If only the first dimension exists, the two neurons would

go up and down together and be positively correlated. If only the second dimension exists,

the two neurons would co-fluctuate in opposition and be negatively correlated. When both

dimensions exist, the positive correlation from the first dimension and the negative

correlation from the second dimension offset, and the resulting correlation between the

neurons would be smaller than if only the first dimension were present. We formalize the

above intuition in Math Note C. We also show analytically that increasing dimensionality

tends to move points closer to the origin in the rsc mean versus rsc SD plot (i.e., decrease rsc

mean and SD; Math Note D).

An increase in dimensionality does not imply that both rsc mean and rsc SD necessarily

decrease. For example, in the case where the first dimension has high loading similarity,

adding more dimensions means it is less likely for rsc SD to be 0 (Figure 3G, compare dot

closest to horizontal axis for “1 dim.” to that for “2 dims.”). The intuition is that, if the first

dimension has a loading similarity of 1, the loading weights for all neurons are the same and

thus rsc values between all pairs are the same, resulting in rsc SD of 0. Adding an orthogonal

dimension to this pattern necessarily means adding a pattern with low loading similarity

(Math Note E), making it less likely for rsc across all pairs to be the same. Therefore, rsc SD

is unlikely to be 0 for two dimensions (Figure 3G; the smallest rsc SD for 2 dims. is around

0.2). Still, in Figure 3G, the dots for 2 dims. are closer to the origin than the dots for 1 dim.,

implying that, even if rsc SD increases with an increase in dimensionality, the rsc mean must

decrease to a larger extent (Math Note D). As another example, in the case where the first

dimension has low loading similarity, adding a second dimension with high loading
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similarity would increase rsc mean. The rsc SD would decrease to a larger extent than the

increase in rsc mean such that the dot for two dimensions is closer to the origin than that for

one dimension (Math Note D).

The relative strength of each dimension impacts pairwise metrics—In the

previous simulation (Figure 3G), we assumed that each dimension explained an equal

proportion of the overall shared variance (e.g., for two dimensions, each dimension

explained half of the shared variance; see STAR Methods). However, it is typically the case

for recorded neuronal activity that some dimensions explain more shared variance than

others; in other words, neuronal activity co-fluctuates more strongly along some patterns

than others (Sadtler et al., 2014; Williamson et al., 2016; Mazzucato et al., 2016; Gallego et

al., 2018; Huang et al., 2019; Stringer et al., 2019a; Ruff et al., 2020). We sought to assess

the influence of the relative strength of each dimension on pairwise metrics.

We reasoned that stronger dimensions would play a larger role than weaker dimensions in

determining the rsc distribution and pairwise metrics. Extending Equation 1 to multiple

dimensions, we show that the rsc between a pair of neurons can be expressed as the sum of a

contribution from each constituent dimension (Math Note C). The stronger a dimension, the

larger the magnitude of its contribution to rsc and thus the larger its impact on rsc mean and

SD.

To test this empirically, we performed a simulation with two dimensions while

systematically varying the relative strength of each dimension. We considered two scenarios:

(1) one dimension has a pattern with high loading similarity and one dimension has a pattern

with low loading similarity (Figure 4A) and (2) both dimensions have patterns with low

loading similarity (Figure 4B). Note that both dimensions cannot have patterns with high

loading similarity because they would not be orthogonal (Math Note E).

In scenario (1), where one dimension’s pattern has high loading similarity and the other has

low loading similarity, rsc mean and rsc SD reflect the loading similarity of the dominant

dimension (Figure 4A). When the dimension with a high loading similarity pattern

dominated, rsc mean was large and rsc SD was small (Figure 4A, red dots are close to

horizontal axis). When the dimension with a low loading similarity pattern dominated, rsc

mean was small and rsc SD was large (Figure 4A, black dots are close to vertical axis).

When the two dimensions were of equal strength (i.e., neither dimension dominated), rsc

mean and rsc SD were both intermediate values (Figure 4A, light gray dots are between red

and black dots). Thus, the dimensions along which neuronal activity co-fluctuates more

strongly have a greater influence on pairwise metrics (Figure S1).

In scenario (2), where both dimensions have patterns of low loading similarity, rsc mean was

low and rsc SD was high (Figure 4B), similar to when there is one dimension with low

loading similarity (Figure 3E, blue dots). When we made one dimension stronger than the

other, rsc mean remained low and rsc SD remained high (Figure 4B, light gray dots and black

dots are both close to vertical axis) because both patterns had low loading similarity.

However, the radius of the arc increased (Figure 4B, black dots farther from the origin than

light gray dots) and was close to the arc that would have been produced with a single
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dimension (Figure 3G, 1 dim.). Thus, whereas changing the number of dimensions causes

discrete jumps in the arc radius (Figure 3G), changing the relative strength of each

dimension allows for rsc mean and rsc SD to vary continuously between the arcs for different

dimensionalities. Put another way, changing the relative strength of each dimension varies

the “effective dimensionality” of population activity in a continuous manner. Neuronal

activity for which one dimension dominates another (Figure 4B, black dots) has a lower

effective dimensionality than when both dimensions have equal strength (Figure 4B, light

gray dots).

Reporting only a single statistic provides an incomplete description of population
covariability

Figure 5 summarizes the relationships that we have established between pairwise metrics

and population metrics. Rotating a co-fluctuation pattern from a low loading similarity to a

high loading similarity increases rsc mean and decreases rsc SD along an arc (Figure 5, arrow

outside pink arc). Decreasing %sv decreases both rsc mean and SD (Figure 5, arrow pointing

toward origin), and increasing dimensionality also tends to decrease rsc mean and SD

(Figure 5, pink to yellow shaded regions).

These results provide a cautionary tale that using a single statistic on its own provides an

opaque description of population wide covariability. For example, a change in rsc mean

could correspond to changes in loading similarity, %sv, dimensionality, or a combination of

the three. Likewise, reporting dimensionality on its own would be incomplete because the

role of a dimension in explaining population-wide covariability depends how much shared

variance it explains and the loading similarity of its co-fluctuation pattern. For example,

consider a decrease in dimensionality by 1. This would have little impact on population-

wide covariability if the removed dimension explains only a small amount of shared

variance, whereas it could have a large impact if the removed dimension explains a large

amount of shared variance.

Considering multiple statistics together provides a richer description of population-wide

covariability. For example, in the case where population activity co-fluctuates along a single

dimension, rsc mean and rsc SD can be used together to approximate %sv (using distance

from the origin) and deduce whether loading similarity is low (rsc SD > rsc mean) or high

(rsc mean > rsc SD), whereas rsc mean alone would not provide much information about %sv

or loading similarity (cf. Figure 5). In the next section, we further demonstrate using

neuronal recordings how relating pairwise and population metrics using the framework we

have developed (Figure 5) provides a richer description of how neurons covary than using a

single statistic (e.g., rsc mean) alone.

Case study: V4 neuronal recordings during spatial attention

When spatial attention is directed to the receptive fields of neurons in area V4 of macaque

visual cortex, rsc mean among those neurons decreases (Cohen and Maunsell, 2009; Mitchell

et al., 2009; Gregoriou et al., 2014; Snyder et al., 2016, 2018). This decrease has often been

attributed to a reduction in shared modulations among the neurons. However, we have shown

both mathematically and in simulations that several distinct changes in population metrics
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(e.g., decrease in loading similarity, decrease in %sv, or an increase in dimensionality) could

underlie this decrease in rsc mean (Figure 5). Here, we sought to assess which aspects of

population-wide covariability underlie, and how each of them contribute to, the overall

decrease in rsc mean.

We analyzed activity recorded simultaneously from tens of neurons in macaque V4 while the

animal performed an orientation-change detection task (Figure 6A; previously reported in

Snyder et al., 2018). To probe spatial attention, we cued the animal to the location of the

stimulus that was more likely to change in orientation. As expected, perceptual sensitivity

increased for orientation changes in the cued stimulus location (Figure 6A, inset, red dot

above black dot). “Attend-in” trials were those in which the cued stimulus location was

inside the aggregate receptive fields (RFs) of the recorded V4 neurons, whereas “attend-out”

trials were those in which the cued stimulus location was in the opposite visual hemifield.

For pairwise metrics, rsc mean decreased when attention was directed into the RFs of the V4

neurons (Figure 6B, left panel), consistent with previous studies (Cohen and Maunsell,

2009; Mitchell et al., 2009; Gregoriou et al., 2014; Snyder et al., 2016, 2018). We further

found that rsc SD was lower for attend-in trials than for attend-out trials, an effect not

reported previously (Figure 6B, right panel).

The decrease in both rsc mean and rsc SD could arise from several different types of distinct

changes in population-wide covariability (Figure 5). To compute the population metrics, we

applied FA separately to attend-out and attend-in trials (see STAR Methods). FA is the most

basic dimensionality reduction method that characterizes shared variance among neurons

(Cunningham and Yu, 2014) and is consistent with how we created covariance matrices in

Figures 3 and 4. We found three distinct changes in population metrics. First, neuronal

activity during attend-in trials had lower %sv than during attend-out trials (Figure 6C, left),

consistent with previous interpretations that attention reduces the strength of shared

modulations (Rabinowitz et al., 2015; Ecker et al., 2016; Huang et al., 2019; Ruff et al.,

2020). Second, we also found lower loading similarity for attend-in trials than attend-out

trials for the dominant dimension (i.e., the dimension that explains the largest proportion of

the shared variance; Figure 6C, middle; see also Figure S2B). This implies that, with

attention, neurons in the population co-fluctuate in a more heterogeneous manner (i.e., more

pairs of neurons co-fluctuate in opposition and fewer pairs co-fluctuate together). Third, we

found that dimensionality was slightly lower for attend-in than attend-out trials (Figure 6C,

right). Thus, on average, a smaller number of distinct shared signals were present when

attention was directed into the neurons’ RFs. The small change in dimensionality is

consistent with the relative strength of each dimension (i.e., eigenspectrum shape) being

similar for attend-in and attend-out (Figure S2A). Taken together, this collection of

observations of both pairwise and population metrics leads to a more refined view of how

attention affects population-wide covariability.

The pairwise (Figure 6B) and population (Figure 6C) metrics are computed based on the

same recorded activity, and each represents a different view of population activity. The

central contribution of our work is to provide a framework by which to understand these two

perspectives and five different metrics in a coherent manner. Using the relationships between

Umakantha et al. Page 11

Neuron. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pairwise and population metrics we have established in the rsc mean versus rsc SD space

(Figure 5), we can decompose the decrease in rsc mean and SD into (1) a small decrease in

dimensionality (Figure 6D, small dashed arrow), (2) a decrease in loading similarity (Figure

6D, medium dashed arrow), and (3) a substantial decrease in %sv (Figure 6D, large dashed

arrow). We quantify these contributions in Figure S3. The rsc mean and SD decreased

despite the decrease in dimensionality (which alone would have tended to increase rsc mean

and SD) because of the larger contributions of loading similarity and %sv to pairwise

metrics in these V4 recordings. We have also applied the same analysis to population

recordings in visual area V1 (Zandvakili and Kohn, 2015; available on http://crcns.org) and

found that, although rsc mean and SD both decreased (like in the V4 recordings), the

population metrics changed in a different way compared to the V4 recordings (Figure S4).

Together, these analyses demonstrate the need for considering both pairwise and population

metrics together when studying correlated variability, with a bridge that allows one to

navigate between the two.

DISCUSSION

Coordinated variability in the brain has long been linked to the neural computations

underlying a diverse range of functions, including sensory encoding, decision making,

attention, learning, and more. In this study, we sought to relate two major bodies of work

investigating the coordinated activity among neurons: studies that measure spike count

correlation between pairs of neurons rsc  and studies that use dimensionality reduction to

measure population-wide covariability. We considered three population metrics and

established analytically and empirically that (1) increasing loading similarity corresponds to

increasing rsc mean and decreasing rsc SD, (2) decreasing %sv corresponds to decreasing

both rsc mean and SD, and (3) increasing dimensionality tends to decrease rsc mean and SD.

Applying this understanding to recordings in macaque V4, we found that the previously

reported decrease in mean spike count correlation associated with attention stemmed from a

decrease in %sv, a decrease in loading similarity, and decrease in dimensionality. This

analysis revealed that attention involves multiple changes in how neurons interact that are

not well captured by a single statistic alone. Overall, our work demonstrates that common

ground exists between the literatures of spike count correlation and dimensionality reduction

approaches and builds the intuition and formalism to navigate between them.

Our work also provides a cautionary tale for attempting to summarize population-wide

covariability using one, or a small number of, statistics. For example, reporting only rsc

mean is incomplete because several distinct changes in population-wide covariability can

correspond to the same change in rsc mean. In a similar vein, reporting only dimensionality

is incomplete because it does not indicate how strongly the neurons covary or their co-

fluctuation patterns. For this reason, we recommend reporting several different pairwise and

population metrics (e.g., the five used in this study along with the eigenspectrum of the

shared covariance matrix), as long as they can be reliably measured from the data available.

This not only allows for a deeper and more complete understanding of how neurons covary,

but also it allows one to make tighter connections to previous literature that uses the same

metrics. Future work may seek to revisit previous results of correlated neuronal variability
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that are based on a single statistic (e.g., rsc mean) and reinterpret them within a framework

that considers multiple perspectives and statistics of population-wide covariability, such as

that presented here.

There are some situations where it is not feasible to reliably measure population statistics,

such as recording from a small number of neurons in deep brain structures (Nevet et al.,

2007; Liu et al., 2013) or when the number of trials is small relative to the number of

neurons recorded (Wainwright, 2019). In such situations, the rsc can be measured between

pairs of neurons recorded in each session and then averaged across sessions to obtain the rsc

mean. Based on our findings, we recommend that studies that report rsc mean also report rsc

SD because the latter provides additional information about population-wide covariability.

For example, in the special case of one latent dimension (typically not known in advance for

real data), measuring rsc mean and rsc SD allows one to estimate the loading similarity and

%sv (cf. Figures 3E and 3F). In general, even when there is more than one latent dimension

in the population, rsc SD provides value in situating the data in the rsc mean versus rsc SD

plot (Figure 5). Changes in rsc mean and SD can then inform changes in population metrics

based on the relationships established in this work (cf. Figure 6D).

The reason that our work, and many previous studies, have focused on trial-to-trial

variability is that it has important implications for information coding. Early work on

information-limiting correlations typically focused on rsc mean (e.g., Zohary et al., 1994;

Shadlen and Newsome, 1998; Cohen and Maunsell, 2009; Cohen and Kohn, 2011), which

reflects the strength of shared variability among neurons. Recent theoretical work (Averbeck

et al., 2006; Moreno-Bote et al., 2014; Kohn et al., 2016) and experimental evidence (Ni et

al., 2018; Ruff and Cohen, 2019a; Cowley et al., 2020; Rumyantsev et al., 2020; Bartolo et

al., 2020) have shown that it is not only the strength of shared trial-to-trial variability but

also the directions of shared variability relative to stimulus tuning (Figure 7A) that need to

be considered for information coding. These properties of shared trial-to-trial variability are

precisely what are measured by the population metrics used here. In particular, the %sv

measures how strongly trial-to-trial variability is shared among neurons (Figure 7B), loading

similarity measures the direction(s) of variability (Figure 7C), and dimensionality measures

how many different directions of variability exist in the data (Figure 7D). By considering

these three population metrics together, along with the way in which mean population

responses vary across conditions (i.e., the stimulus-encoding directions), we can more

incisively characterize how trial-to-trial variability impacts information coding than by using

rsc mean alone. Understanding how patterns of shared variability are related to (e.g., align

with or are orthogonal to) patterns of stimulus encoding and downstream readouts will be

likely critical for understanding information coding in the brain.

We considered three population metrics—dimensionality, % sv, and loading similarity—that

summarize the structure of population-wide covariability and are rooted in well-established

concepts in existing literature. First, dimensionality has been used to describe how neurons

covary across conditions (i.e., an analysis of trial-averaged firing rates; Churchland et al.,

2012; Rigotti et al., 2013; Mante et al., 2013; Cowley et al., 2016; Kobak et al., 2016; Sohn

et al., 2019), as well as how neurons covary from trial to trial (Yu et al., 2009; Santhanam et

al., 2009; Sadtler et al., 2014; Rabinowitz et al., 2015; Mazzucato et al., 2016; Williamson et
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al., 2016; Bittner et al., 2017; Athalye et al., 2017; Williams et al., 2018; Stringer et al.,

2019a; Recanatesi et al., 2019). We focused on the latter in our study to connect with the rsc

literature, which also seeks to understand the shared trial-to-trial variability between

neurons. To focus on the shared variability among neurons, we used FA to measure

dimensionality. Another commonly used dimensionality reduction method, principal-

component analysis (PCA), although appropriate for studying trial-averaged activity, does

not distinguish between variability that is shared among neurons and variability that is

independent to each neuron. Second, investigating the loading similarity has provided

insight about whether shared variability among neurons arises from a shared global factor

that drives neurons to increase and decrease their activity together (Ecker et al., 2014; Okun

et al., 2015; Lin et al., 2015; Rabinowitz et al., 2015; Williamson et al., 2016; Huang et al.,

2019) or whether the co-fluctuations involve a more intricate pattern across the neuronal

population (Snyder et al., 2018; Insanally et al., 2019; Cowley et al., 2020). Third, we have

previously reported %sv for area V1 (Williamson et al., 2016), area M1 (Hennig et al.,

2018), and network models (Williamson et al., 2016; Bittner et al., 2017). Conceptually, %sv

and rsc mean are both designed to capture the strength of shared variability in a population of

neurons. Thus, we might initially think that there should be a one-to-one correspondence

between the two quantities. Indeed, if the population activity is described by one co-

fluctuation pattern with a high loading similarity, there is a direct relationship between %sv

and rsc mean (Figure 3F). However, in general, %sv and rsc mean do not have a one-to-one

correspondence between them (Figure 3F, moderate or low loading similarity).

We focus here on studying trial-to-trial activity fluctuations that are shared between neurons.

Many studies have considered the source of these shared fluctuations in the context of

pairwise correlations (Cohen and Kohn, 2011). Most commonly, pairwise correlations have

been suggested to originate through common input (Zohary et al., 1994; Shadlen and

Newsome, 1998). However, there are, in fact, numerous mechanisms that can shape the trial-

by-trial shared variability of neuronal populations, including neuromodulation (Harris and

Thiele, 2011; Herrero et al., 2013; Minces et al., 2017), coupled inhibition (Haider et al.,

2006), or distinct patterns of neuronal connectivity (Mazzucato et al., 2016; Williamson et

al., 2016; Huang et al., 2019; Recanatesi et al., 2019). These mechanisms likely produce

distinct signatures in population metrics, such as %sv, loading similarity, and dimensionality.

The framework that we have developed here can be applied to spiking network models with

different underlying mechanisms of shared cortical variability to identify signatures in

population metrics (Mazzucato et al., 2016; Williamson et al., 2016; Huang et al., 2019;

Recanatesi et al., 2019). We can then assess whether any of those signatures are present in

neuronal recordings to gain insight into the underlying mechanisms of shared variability in

the brain.

Although pairwise correlation and dimensionality reduction have most commonly been

computed based on spike counts, several studies have also computed these metrics on

neuronal activity recorded using other modalities, such as calcium imaging (Harvey et al.,

2012; Ahrens et al., 2012; Dechery and MacLean, 2018; Stringer et al., 2019a; Rumyantsev

et al., 2020). The relationships that we established here between pairwise and population

metrics are properties of covariance matrices in general and do not rely on or assume
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recordings of neuronal spikes. Thus, the intuition built here can be applied to other recording

modalities.

Our work here focused on studying interactions within a single population of neurons.

Technological advances are enabling recordings from multiple distinct populations

simultaneously, including neurons in different brain areas, neurons in different cortical

layers, or different neuron types (e.g., Ahrens et al., 2013; Jiang et al., 2015; Jun et al.,

2017). Studies are dissecting the interactions between these distinct populations using

pairwise correlation (Smith et al., 2013; Pooresmaeili et al., 2014; Oemisch et al., 2015;

Zandvakili and Kohn, 2015; Ruff and Cohen, 2016a; Snyder et al., 2016) and dimensionality

reduction (Semedo et al., 2014; Buesing et al., 2014; Bittner et al., 2017; Perich et al., 2018;

Semedo et al., 2019; Ames and Churchland, 2019; Ruff and Cohen, 2019a; Veuthey et al.,

2020; Cowley et al., 2020). As we have shown here for a single population of neurons,

considering a range of metrics from both the pairwise correlation and dimensionality

reduction perspectives and understanding how they relate to one another will provide rich

descriptions of how different neuronal populations interact.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and

will be fulfilled by the Lead Contact, Byron M. Yu (byronyu@cmu.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Original code has been deposited at Zenodo and is publicly

available as of the date of publication. DOIs are listed in the key resources table. Additional

information or data are available upon request from the lead contact (byronyu@cmu.edu).

METHOD DETAILS

Spike count covariance matrix—Both pairwise metrics and population metrics are

computed directly from the spike count covariance matrix Σ of size n × n for a population of

n neurons. Each entry in Σ is the covariance between the activity of neuron i and neuron j:

Σi j = cov xi, x j = E xi − μi x j − μ j (Equation 2)

where xi and xj represent the activity of neurons i and j, respectively, and μi and μ j represent

the mean activity of neurons i and j, respectively. The variance of the ith neuron is equal to

Σi j.

Pairwise metrics—We computed the spike count correlation rsc  between neurons i and j

directly from the spike count covariance matrix:
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ρi j =
Σi j

∑ii ∑ j j
(Equation 3)

We then summarized the distribution of rsc values across all pairs of neurons in the

population with two pairwise metrics: the rsc mean and rsc standard deviation (SD).

Population metrics—The metrics we use for characterizing population-wide covariability

are based on factor analysis (FA; Santhanam et al., 2009; Yu et al., 2009; Churchland et al.,

2010; Harvey et al., 2012; Williamson et al., 2016; Bittner et al., 2017; Athalye et al., 2017;

Huang et al., 2019), a dimensionality reduction method. We chose FA because it is the most

basic dimensionality reduction method that explicitly separates variance that is shared

among neurons from variance that is independent to each neuron. This allows us to relate the

population metrics provided by FA to spike count correlation, which is designed to measure

shared variability between pairs of neurons. One might consider using principal component

analysis (PCA), but it does not distinguish shared variance from independent variance. Thus,

FA is more appropriate than PCA for studying the shared variability among a population of

neurons.

Decomposing the spike count covariance matrix—FA decomposes the spike count

covariance matrix Σ into a low-rank shared covariance matrix, which captures the variability

shared among neurons in the population, and an independent variance matrix, which

captures the portion of variance of each neuron unexplained by the other neurons (Figure

S5A):

Σ = Σshared + Ψ (Equation 4)

where Σshared ∈ ℝn × n is the shared covariance matrix for n neurons, and Ψ ∈ ℝn × n is a

diagonal matrix containing the independent variance of each neuron. The low-rank shared

covariance matrix can be expressed using the eigendecomposition as (Figure S5A):

Σshared = UΛUT
(Equation 5)

where U ∈ ℝn × d and Λ ∈ ℝd × d, with d < n. The rank (i.e., dimensionality) of the shared

covariance matrix, d, indicates the number of latent variables. Each column of U is an

eigenvector and represents a co-fluctuation pattern containing the loading weights of each

neuron (i.e., how much each neuron contributes to that dimension). The matrix Λ is a

diagonal matrix where each diagonal element is an eigenvalue and represents the amount of

variance along the corresponding co-fluctuation pattern (e.g., in Figure 2A has larger

eigenvalue than 2C).

Based on this matrix decomposition, we defined the three metrics that describe the

population-wide covariability:
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• Loading similarity: the similarity of loading weights across neurons for a given

co-fluctuation pattern. Scalar value between 0 (the weights are maximally

dissimilar, defined precisely below) and 1 (all weights are the same).

• Percent shared variance (%sv): the percentage of each neuron’s variance that

is explained by other neurons in the population. Percentage between 0% and

100%.

• Dimensionality: the number of dimensions (i.e., co-fluctuation patterns). Integer

value.

We give the precise definitions of these population metrics below and in Figure S5B.

Loading similarity—We sought to define loading similarity such that, for a given co-

fluctuation pattern, if the weights for all neurons are the same, we would measure a loading

similarity of 1. When the weights are as different as possible, we would measure a loading

similarity of 0. We define the loading similarity based on the variance across the n weights

(for n neurons) in a co-fluctuation pattern uk. The smallest possible variance is 0; the largest

possible variance, for a unit vector uk, is 1/n (Math Note F). Thus, we define loading

similarity for a co-fluctuation pattern uk ∈ ℝn as:

loading similarity uk = 1 −
var uk

maxvk
var vk

= 1 −
var uk

1/n (Equation 6)

where the loading similarity is computed on unit vectors (i.e., uk has a norm of 1). The

notation var uk  denotes that the variance is being taken across the n elements of the vector

uk. The denominator of Equation 6 acts as a normalizing factor, bounding the loading

similarity value between 0 and 1.

The loading similarity distinguishes between a co-fluctuation pattern along which all

neurons in the population have the same weight in which case they change their activity up

and down together (Figure 2A; loading similarity of 1), from one in which weights are

different and some neurons increase their activity when others decrease their activity (Figure

2B; loading similarity of 0). The loading weights we use here are closely related to

‘population coupling’ (Okun et al., 2015) and ‘modulator weights’ (Rabinowitz et al., 2015).

For some types of shared fluctuations, these weights are similar across neurons in a

population (i.e., high loading similarity; Okun et al., 2015; Rabinowitz et al., 2015; Huang et

al., 2019). For other types of shared fluctuations, the weights vary substantially across

neurons in the population (i.e., low loading similarity; Snyder et al., 2018; Cowley et al.,

2020).

We show in Math Note E why, if one dimension has high loading similarity, the other

dimensions must have low loading similarity. The reason is that co-fluctuation patterns are

defined to be mutually orthogonal. If one co-fluctuation pattern has all weights close to the

same value (i.e., high loading similarity), then all other co-fluctuation patterns must have

substantial diversity in their weights (i.e., low loading similarity) to satisfy orthogonality.
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Percent shared variance—The percent shared variance (%sv) measures the percentage

of each neuron’s spike count variance that is explained by other neurons in the population

(Williamson et al., 2016; Bittner et al., 2017; Hennig et al., 2018). Equivalently, we can

think of %sv in terms of latent co-fluctuations. Because latent co-fluctuations capture the

shared variability among neurons, the %sv measures how much of each neuron’s variance is

explained by the latent co-fluctuations. The activity of neurons may be tightly linked to the

latent co-fluctuation (e.g., Figure 2A), in which case a large percentage of each neuron’s

variance is shared with other neurons, or may only be loosely linked to the latent co-

fluctuation (e.g., Figure 2C), in which case a small percentage of each neuron’s variance is

shared with other neurons. Mathematically, we define the %sv for a neuron i:

%sv for neuron i =
Σshared, ii

Σii
⋅ 100% =

si
si + ψ i

⋅ 100% (Equation 7)

where si is the ith entry along the diagonal of the shared covariance matrix (Figure S5A,

Σshared), and ψ i is the ith entry along the diagonal of the independent covariance matrix

(Figure S5A, Ψ). A %sv of 0% indicates that the neuron does not covary with (i.e., is

independent of) other neurons in the population, whereas a %sv of 100% indicates that the

neuron’s activity can be entirely accounted for by the activity of other neurons in the

population. To compute %sv for an entire population of neurons, we averaged the %sv of the

individual neurons. All %sv values reported in this study are the %sv for the neuronal

population.

Dimensionality—Dimensionality refers to the number of latent co-fluctuations needed to

describe population-wide covariability. For example, the population-wide covariability can

be described by one latent co-fluctuation (Figure 2A) or by several latent co-fluctuations

(Figure 2D). In the population activity space, dimensionality corresponds to the number of

axes along which the population activity varies (see Figure 2D, bottom inset).

Mathematically, the dimensionality is the rank of the shared covariance matrix (i.e., the

number of columns in U, Figure S5A).

Creating the spike count covariance matrices with specified population
metrics—To relate pairwise and population metrics, we created spike count covariance

matrices of the form in Equation 4 with specified population metrics. Importantly, we did

not simulate spike counts, nor fit a factor analysis model to simulated data. Rather, we

created covariance matrices using (4) and computed pairwise correlations directly from the

entries of the covariance matrix, as shown in (3). Across simulations (Figures 3 and 4), we

simulated with n = 30 neurons and set independent variances (i.e., diagonal elements of Ψ in

Equation 4) to 1.

Specifying co-fluctuation patterns to obtain different loading similarities—
Each co-fluctuation pattern uk is a vector with n = 30 entries (one entry per neuron). We

generated a single co-fluctuation pattern by randomly drawing 30 independent samples from

a Gaussian distribution with a mean of 2.5. We choose a nonzero mean so that we could

obtain co-fluctuation patterns with loading similarities close to 1 when drawing from the
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Gaussian distribution (i.e., a mean of 0 would have resulted in almost all co-fluctuation

patterns having a loading similarity close to 0). To get a range of loading similarities

between 0 and 1, we used different standard deviations for the Gaussian. For a small

standard deviation value, all entries in the co-fluctuation pattern are close to 2.5, resulting in

a high loading similarity. For larger standard deviations, some loading weights are positive

and some negative, with large variability in their values, resulting in co-fluctuation patterns

with low loading similarity. We increased the Gaussian standard deviation from 0.1 to 5.5

with increments of size 0.1. For each increment, we generated 50 patterns and normalized

them to have unit norm. In total, we created a set of 2,750 random patterns.

The following procedure describes the construction of shared covariance matrices with one

co-fluctuation pattern. We chose a single pattern u1 ∈ ℝ30 × 1 (i.e., U has only 1 column)

from the set of 2,750. We constructed the shared covariance matrix by computing UΛU⊤,

where Λ was chosen to achieve a desired percent shared variance (see below). The

covariance matrix was then computed according to Equation 4. We created a covariance

matrix, yielding a spread of loading similarities between 0 and 1 (Figures 3E and 3F). In the

next section, we describe the procedure for creating a covariance matrix with more

dimensions.

Specifying the percent shared variance—To achieve a given %sv, either the

independent variance or the amount of shared variability (i.e., the eigenvalues) of each

dimension can be adjusted. In the main text, we set the independent variance of each neuron

to Ψi = 1, and changed the total amount of shared variability by multiplying each eigenvalue

(each diagonal element in Λ from Equation 5) by the same constant value, a. To obtain a

specified %sv, we identified a by searching through a large set of possible values (from 10−4

to 103 with step size 10−3). We allowed for a tolerance of ε = 10−3 between the desired %sv

and the %sv that was achieved after scaling the eigenvalues by a. In other analyses (not

shown), we allowed the independent variances to be different across neurons (e.g., drawn

from an exponential distribution), and the relationships between pairwise and population

metrics were qualitatively similar to those in the main text.

Increasing dimensionality—To assess how changing dimensionality affects pairwise

metrics, we created covariance matrices whose shared covariance matrix comprised more

than 1 dimension. To create a shared covariance matrix with d dimensions, we randomly

chose d patterns from the set of 2,750 we had generated above (see ‘Specifying co-

fluctuation patterns to obtain different loading similarities’). We then orthogonalized the

chosen patterns using the Gram-Schmidt process to obtain d orthonormal (i.e., orthogonal

and unit length) co-fluctuation patterns U ∈ ℝ30 × d. We formed the shared covariance matrix

using UΛU⊤, where Λ ∈ ℝd × d is a diagonal matrix containing the eigenvalues (i.e., the

strength of each dimension; see ‘Specifying the relative strengths of each dimension’

below). We repeated this procedure to produce 3,000 sets of d orthonormal patterns (i.e.,

3,000 different U matrices), each of which was used to create a shared covariance matrix.

The spike count covariance was computed according to Equation 4.
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Specifying the relative strengths of each dimension—In simulating shared

covariance matrices with more than one dimension, we chose the relative strength of each

dimension by specifying the eigenspectrum (diagonal elements of Λ in Equation 5). We

worked with three sets of eigenspectra. First, a flat eigenspectrum had eigenvalues that were

all equal (Figure 3G). Second, for two dimensions, we varied the ratio of the two

eigenvalues between 95:5, 80:20, 50:50, 20:80, and 5:95 (Figure 4). Third, we considered an

eigenspectrum in which each subsequent eigenvalue falls off according to an exponential

function (Figure S1). Only the relative (and not the absolute) eigenvalues (i.e., the shape of

the eigenspectrum) affect the results, because the eigenspectrum was subsequently scaled to

achieve a desired %sv (see ‘Specifying the values of percent shared variance’).

Analysis of V4 neuronal recordings from a spatial attention task

Electrophysiological recordings: We analyzed data from a visual spatial attention task

reported in a previous study (Snyder et al., 2018). Briefly, we implanted a 96-electrode

“Utah” array (Blackrock Microsystems; Salt Lake City, UT) into visual cortical area V4 of

an adult male rhesus macaque monkey (data from two monkeys were analyzed; in our study,

monkey 1 corresponds to “monkey P” and monkey 2 corresponds to “monkey W” from

Snyder et al., 2018). After recording electrode voltages (Ripple Neuro.; Salt Lake City, UT),

we used custom software to perform offline spike sorting (Kelly et al., 2007, freely available

at https://github.com/smithlabvision/spikesort). This yielded 93.2 ± 8.9 and 61.9 ± 27.4

candidate units per session for monkey 1 and 2, respectively. Experiments were approved by

the Institutional Animal Care and Use Committee of the University of Pittsburgh and were

performed in accordance with the United States National Research Council’s Guide for the

Care and Use of Laboratory Animals.

To further ensure the isolation quality of recorded units, we removed units from our analyses

according to the following criteria. First, we removed units with a signal-to-noise ratio of the

spike waveform less than 2.0 (Kelly et al., 2007). Second, we removed units with overall

mean firing rates less than 1 Hz, as estimates of rsc for these units tends to be poor (Cohen

and Kohn, 2011). Third, we removed units that had large and sudden changes in activity due

to unstable recording conditions. For this criterion, we divided the recording session into ten

equally-sized blocks and for each unit computed the difference in average firing rate

between adjacent blocks. We excluded units with a change in average firing rate greater than

60% of the maximum firing rate (where the maximum is taken across the ten equally-sized

blocks). Fourth, we removed an electrode from each pair of electrodes that were likely

electrically-coupled. We identified the coupled electrodes by computing the fraction of

threshold crossings that occurred within 100 μs of each other for each pair of electrodes. We

then removed the fewest number of electrodes to ensure this fraction was less than 0.2 (i.e.,

pairs with an unusually high number of coincident spikes) for all pairs of electrodes. Fifth,

we removed units that did not sufficiently respond to the visual stimuli used in the

experiment. Evoked spike counts (i.e., a neuron’s response after stimulus presentation) were

taken between 50 ms to 250 ms after stimulus onset, and spontaneous spike counts (i.e., a

neuron’s response during a blank screen) were taken in a 200 ms window that ended 50 ms

before stimulus onset. For each unit, we computed a sensitivity measure d′ between evoked

and spontaneous activity:
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d′ =
μevoked − μspontaneous

1
2 σevoked

2 + σspontaneous
2

for mean spike counts μevoked and μspontaneous and spike count variances σevoked
2  and

σspontaneous
2 . We removed units with d′ < 0.5 from analyses, as these units had spontaneous

and evoked responses that were difficult to distinguish.

After applying these five criteria, 44.5 ± 11.3 and 18.8 ± 6.7 units per session (mean ± s.d.

over sessions) remained for monkeys 1 and 2, respectively. Although these remaining units

likely contained both single-unit and multi-unit activity, we refer to each unit as a neuron for

simplicity. In this study, we restricted analyses to sessions with at least 10 neurons

remaining after applying the above criterion (23 sessions for monkey 1, and 14 sessions for

monkey 2).

Visual stimulus change-detection task—Animals were trained to perform a change-

detection task with a spatial attention cue to the location of the visual stimulus that was more

likely to change (Snyder et al., 2018). In the visual change-detection task (Figure 6A),

animals fixated a central dot while Gabor stimuli were presented in two locations on a

computer screen. One location was chosen to be within the aggregate receptive fields (RFs)

of the recorded V4 neurons (mapped prior to running the experiment), and the other location

was placed at the mirror symmetric location in the opposite hemifield. Animals maintained

fixation while a sequence of Gabor stimuli were presented. Each drifting Gabor stimulus

(oriented at either 45° or 135°) was presented for 400 ms, followed by a blank screen

presented for a random interval (between 300 and 500 ms). The sequence continued, with a

fixed probability for each presentation, until one of the two stimuli changed orientation

when presented (i.e., the ‘target’). Upon target presentation, animals were required to make a

saccade to the target to earn a juice reward. We manipulated spatial attention in the

experiment by cueing the more probable target location in blocks. At the beginning of each

block, the cue was denoted by presenting only one Gabor stimulus at the more probable

target location (90% likely), and requiring animals to detect orientation changes at this

location for 5 trials. Consistent with the results of previous studies, we found that animals

had greater perceptual sensitivity for orientation changes at the cued (i.e., attended) location

than the uncued location (Figure 6A, inset in the bottom right) and shorter reaction times

(Snyder et al., 2018).

Data processing and computing spike counts—We first separated the trials into two

groups: (1) “attend in” trials, for which the cued stimulus was inside the recorded neurons’

RFs and (2) “attend out” trials, for which the cued stimulus was outside the RFs. Since the

initial orientation of the stimulus at the cued location could be one of two values (i.e., 45° or

135°), we further divided trials, resulting in a total of 4 groups of trials per session (attend in

& 45°, attend out & 45°, attend in & 135°, attend out & 135°). Each combination of cued

location and stimulus orientation was treated as an independent sample. The same neurons
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were used for each of the 4 groups within each session, ensuring a fair comparison between

the attend-in and attend-out conditions.

We analyzed all stimulus presentations for which the target stimulus did not change. For

each stimulus presentation, we took spike counts in a 200 ms window starting 150 ms after

stimulus onset. For each of the 4 groups, we formed a spike count matrix X ∈ ℝn × t,

containing the spike counts of the n recorded neurons for the t trials belonging to that group.

These spike count matrices were then used to compute both the pairwise and population

metrics (described below). For all analyses (Figure 6), we excluded recording sessions with

fewer than 10 neurons. Additionally, because population metrics depend on the number of

trials (Williamson et al., 2016), for each session we equalized the number of trials across the

4 groups by randomly subsampling from groups with larger numbers of trials.

Computing pairwise metrics for V4 spike counts—We computed pairwise metrics

on each combination of attention state (‘attend in’ and ‘attend out’) and stimulus orientation.

We computed the correlation as described above in ‘Pairwise metrics’ and then computed rsc

mean and rsc SD For each attention state, we averaged the rsc mean and rsc SD over sessions

and different stimulus orientations.

Computing population metrics for V4 spike counts—We fit the parameters of a

factor analysis model (see Figure S5A) to each spike count matrix X (as described above)

using the expectation-maximization (EM) algorithm (Dempster et al., 1977). For each

session, this was performed separately for each attention state and stimulus orientation.

Using the FA parameters, we then computed the three population metrics (Figure S5B). For

dimensionality, we first found the number of dimensions d that maximized the cross-

validated data likelihood. We fit an FA model with d dimensions, and then found the number

of dimensions required to explain 95% of the shared variance, termed dshared (Williamson et

al., 2016). We report dshared because it tends to be a more reliable estimate of dimensionality

than the number of dimensions that maximizes the cross-validated data likelihood. We

computed %sv as described by Equation 7. We report the loading similarity as defined in

Equation 6 for the co-fluctuation pattern that explained the most shared variability (i.e., the

eigenvector with the largest eigenvalue; see Figure S1 for why the loading similarity of this

dimension is most informative), since it contributes most to describing the population-wide

covariability. For ‘attend in’ and ‘attend out’ conditions, we averaged the population metrics

across sessions and stimulus orientations.

Much of our work focuses on systematically changing a single population metric and

assessing changes in pairwise metrics (Figures 3A–3D). When analyzing neuronal

recordings, one needs to fit factor analysis to the recordings in order to estimate the

population metrics. When estimating the population metrics together, it could be the case

that changes in one population metric impacts or biases the estimation of another population

metric. We characterized these estimation errors in Figure S6. Moreover, in Figure S7, we

show that our main findings (Figure 5) are the same when estimating population metrics

from Poisson simulated data, which resembled realistic neuronal activity.
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Statistics—We employed paired permutations tests for all statistical comparisons of

pairwise metrics and population metrics between ‘attend-in’ and ‘attend-out’ conditions

(Figures 6B and 6C). First, for a given metric, we computed its value separately for each

stimulus type (i.e., 45° or 135°), condition (i.e., attend-in or attend-out), and session. We

then averaged the difference between attend-in and attend-out across stimulus types and

sessions. To compute a null distribution, we randomly permuted the pair of attend-in and

attend-out labels for each stimulus type and condition combination and recomputed the

average difference. We ran 10, 000 permutations to obtain a null distribution of 10, 000

samples. We computed p-values as the proportion of samples in the null distribution that

were more extreme than the average difference in the data, corresponding to p < 0:0001 as

the highest attainable level of significance in our statistical analyses.

Math Notes

A) Relationship between correlation, loading similarity, and %sv (one latent
dimension): We establish here the mathematical relationship between rsc, loading similarity,

and %sv. This will provide the formalism for understanding why decreasing %sv decreases

both rsc mean and SD (Figure 3F), that a high loading similarity corresponds to large rsc

mean and low rsc SD (Figure 3E), and that a low loading similarity corresponds to small rsc

mean and large rsc SD (Figure 3E).

Let n be the number of neurons, and let w be the co-fluctuation pattern (i.e., loading vector

w1, w2, …, wn
T ∈ ℝn × 1), λ ∈ ℝ+ be the strength of the co-fluctuation pattern (i.e.,

eigenvalue of the shared covariance matrix), and Ψ ∈ ℝn × n be a diagonal matrix specifying

the independent variance of each neuron ψ1, ψ2, …, ψn . Then the covariance matrix of the

population activity is (see STAR Methods and Figure S5):

Σ = Σshared + Ψ = wλwT + Ψ

From this, we observe that Σi j = Σshared, i j = λwiw j for the off-diagonal entries (i.e., if i ≠ j).

Along the diagonal, Σshared, ii = λwi
2 and Σii = λwi

2 + ψ i. The correlation (i.e., rsc if Σ is a spike

count covariance matrix) between neurons i and j can be written as:

ρi j =
Σi j

ΣiiΣ j j
=

λW iW j

λwi
2 + ψ i λw j

2 + ψ j

=
λwi

2

λwi
2 + ψ i

λw j
2

λw j
2 + ψ j

sign wiw j

= ϕiϕ jsign wiw j

(Equation 8)
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where ϕi and ϕ j represent the %sv (as proportions) for neurons i and j, respectively, and

sign wiw j = + 1 if wiw j > 0 or −1 if wiw j < 0. The last line follows from the fact that %sv for

neuron i is defined in Equation 7 as:

ϕi =
Σshared, i j

∑ii
=

λwi
2

λwi
2 + ψ i

(Equation 9)

Equations 8 and 9 provide a basis for understanding the relationships between rsc, %sv, and

loading similarity. The rsc mean and SD are computed across all pairs of neurons ρi j, for i <

j.

For establishing a relationship between pairwise metrics and %sv, consider decreasing the

overall %sv of the population while keeping the loadings wi fixed. This corresponds to

decreasing λ in Equation 9, which implies ϕi for each neuron decreases, and thus the product

ϕiϕ j decreases for all pairs. The magnitude of each ρi j decreases (i.e., each ρi j moves closer

to 0). As such, decreasing %sv of the population decreases the distance of a point from the

origin in the rsc mean versus rsc SD plot, all else being equal (Figure 3F).

For establishing a relationship between pairwise metrics and loading similarity, consider two

extreme cases: 1) when loading similarity is 1 (as high as possible) 2) when it is 0 (as low as

possible). We first assume that each neuron has the same independent variance ψ i for

simplicity, as we did in Figure 3. A loading similarity of 1 corresponds to each wi = + 1
n  or

each wi = − 1
n . In either case, sign wiw j  is always + 1. Furthermore, ϕi is the same for every

neuron and ϕiϕ j = %sv (i.e., the %sv of the population, expressed as a proportion) for every

pair of neurons. Thus, all ρi j = %sv for all pairs of neurons i and j. In this case, rsc mean =

%sv and rsc SD = 0. If the independent variances ψ i are different across neurons, we can still

get each sign wiw j = + 1 and each ϕi to be the same by setting each wi = + ψ i or each

wi = − ψ i. This would also result in ρi j = %sv for all pairs of neurons i and j, and thus rsc

mean = %sv and rsc SD = 0. In this case, the loading similarity is still high (all wi are the

same sign; we can show that load. sim.>0:5), but not equal to 1.

Now, consider a scenario in which half the loadings are + 1
n  and the other half are − 1

n  (and

assume again that ψ i are the same for every neuron). This is one way to obtain a loading

similarity of 0. In this case, ϕi are still the same for every neuron, so ϕiϕ j = %sv for all

pairs. However, sign wiw j = − 1 for n2
4  pairs, and sign wiw j = + 1 for n2

4 − n
2  pairs. We can

show that rsc mean = − %sv
n − 1  and, by using Equation 10 from Math Note B below, rsc

SD = %sv 1 − 1
(n − 1)2

. Thus, for a large number of neurons n, this case (where loading
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similarity = 0) corresponds to small negative rsc mean (close to 0), and large rsc SD (close to

the %sv). As an example, for 30 neurons and %sv = 50%, this corresponds to rsc mean =

−0.0172 and rsc SD = 0.4997. With this analysis, we have established that for one latent

dimension:

• Decreasing %sv decreases the magnitudes of correlations (i.e., each ρi j closer to

0). rsc mean and SD both decrease (as seen empirically in Figure 3F).

• Starting from a loading similarity near 1, a decrease in loading similarity

involves flips in the signs of some correlations (i.e., some ρi j become −ρi j). rsc

mean decreases but rsc SD increases (as seen empirically in Figure 3F).

• Both rsc mean and %sv measure shared variance among neurons, but they are not

always equal. Equation 8 shows that the two quantities are equal if all sign wiw j

are the same (i.e., when loading similarity is high). However, in general rsc mean

and shared variance (%sv) are not the same—e.g., when loading similarity is

low, or when there are multiple dimensions (Math Note C).

In this section, we consider the extremes of loading similarity. In the next section, we

analyze how gradual changes in loading similarity affect rsc mean and SD for a fixed %sv.

B) Circular arc in rsc mean versus rsc SD plot for one latent dimension and fixed
%sv: We establish here mathematically that gradually varying the loading similarity for one

latent dimension and fixed %sv results in an arc-like relationship between rsc mean and rsc

SD, and that the radius of the arc is approximately equal to the %sv (Figures 3E and 3F).

We use the same notation as in Math Note A. Let E[ . ] and Var( . ) denote the mean and

variance across all neurons or all pairs of neurons, depending on context. In particular, we

are interested in E[ρ] = rsc mean, Var(ρ) = rsc SD, where the expectation and variance are

computed across ρi j for all pairs of neurons in a given population (i.e., the upper triangle of

the correlation matrix, ρi j for i > j).

Let c be the distance of a point (corresponding to one instance of the population activity

covariance matrix) from the origin in the rsc mean versus rsc SD plot (i.e.,

c = rsc mean 2 + rsc s.d. 2. We want to know whether c is the same for all population

activity covariance matrices with one latent dimension and fixed %sv. This would

correspond to a point being equidistant from the origin, and thus a circular arc. We can write

c as:

c2 = rsc mean 2 + rsc s.d. 2

= E[ρ]2 + Var(ρ)

= E[ρ]2 + E ρ2 − E[ρ]2

= E ρ2
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Thus, the squared distance (i.e., squared radius) is equal to E ρ2 , the mean of ρi j
2  across all

pairs in the population. Let m be the number of pairs (i.e., m = n(n − 1)
2 ). Now, using

Equations 8 and 9 derived in Math Note A:

E ρ2 = 1
m ∑

i = 1

n − 1
∑

j = i + 1

n
ρi j

2

= 1
m ∑

i = 1

n − 1
∑

j = i + 1

n λwi
2 λw j

2

λwi
2 + ψi λw j

2 + ψ j

= 1
m ∑

i = 1

n − 1
∑

j = i + 1

n
ϕiϕ j

where ϕi and ϕ j are the %sv of neurons i and j (expressed as proportions), as defined in

Math Note A. We can show that 2∑i = 1
n − 1 ∑ j = i + 1

n ϕiϕ j = ∑i = 1
n ∑ j = 1

n ϕiϕ j − ∑i = 1
n ϕi

2.

Intuitively, if we have a symmetric matrix Φ with entries Φ(i, j) = ϕiϕ j, and we want to find

the sum of the off-diagonal elements 2∑i = 1
n − 1 ∑ j = i + 1

n ϕiϕ j , then we can take the sum of all

elements and subtract the diagonal ∑i = 1
n ∑ j = 1

n ϕiϕ j − ∑i = 1
n ϕi

2 . Using this equivalence, it

follows:

E ρ2 = 1
m ∑

i = 1

n − 1
∑

j = i + 1

n
ϕiϕ j

= 1
2m ∑

i = 1

n
∑
j = 1

n
ϕiϕ j − ∑

i = 1

n
ϕi

2

= 1
2m ∑

i = 1

n
ϕi ∑

j = 1

n
ϕ j − ∑

i = 1

n
ϕi

2

= 1
2m n2E[ϕ]2 − ∑

i = 1

n
ϕi

2

= 1
n − 1 nE[ϕ]2 − E ϕ2

= 1
n − 1 nE[ϕ]2 − Var(ϕ) − E[ϕ]2

= 1
n − 1 (n − 1)E[ϕ]2 − Var(ϕ)

= E[ϕ]2 − 1
n − 1Var(ϕ)

= (%sv)2 − 1
n − 1Var(ϕ)

(Equation 10)
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This provides an equation for the squared radius (i.e., squared distance from the origin) of a

point in the rsc mean versus rsc SD plot. In the above derivation, E[ϕ] and Var(ϕ) are taken

across the percent shared variance of each neuron in the population ϕi. Thus, E[ϕ] is equal to

our population metric %sv. Now, we will bound Var(ϕ), which by definition is greater than

or equal to 0. Since 0 ≤ ϕi ≤ 1, one instance where the maximum variance occurs is when

there are an equal number of ϕi = 0 and ϕi = 1 (and E[ϕ] = 0.5). Then,

Var(ϕ) = 1
n ∑

i = 1

n
ϕi − 0.5 2

= 1
n

n
2(1 − 0.5)2 + n

2(0 − 0.5)2

= 1
n (0.25n)

= 0.25

So 0 ≤ Var(ϕ) ≤ 0.25. For a small number of neurons n, the second term in Equation 10 is

non-negligible. For example, for a model with 6 neurons and %sv = 50%, the radius of the

data points may vary between 0.4472 and 0.5. As the number of neurons increases, the

second terms becomes negligible, and data points lie approximately along an arc with radius

equal to %sv. For example, for 30 neurons as in our simulations and a %sv of 50%, the

radius only varies between 0.4913 and 0.5.

To summarize, Equation 10 computes the distance from the origin of a point for a given

population of neurons. For a fixed %sv, Var(ϕ) can be the same or differ across many

simulation runs. If Var(ϕ) = 0 or is the same across runs, then the points will lie perfectly

along an arc, with radius specified by Equation 10. However, if Var(ϕ) is different across

runs, the distances of each point from the origin will differ slightly, so they will lie close to,

but not exactly along, an arc.

With this analysis, we have shown that in the case of one latent dimensions:

• A point (i.e., corresponding to a given population of neurons, simulated or real)

on the rsc mean versus rsc SD plot has distance from the origin (i.e., radius) less

than or equal to %sv.

• If the %sv for individual neurons ϕi  are all the same (see Math Note A), then

the radius equals %sv.

• As the number of neurons increases, the radius becomes asymptotically closer to

%sv.

C) Relationship between correlation, loading similarity, and %sv (multiple latent
dimensions): In Math Note A, we established a mathematical relationship between rsc,

loading similarity, and %sv in the case of one latent dimension. Here, we generalize

Equation 8 to include multiple dimensions in order to better understand the relationship
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between rsc and dimensionality. We demonstrate here that the general relationships between

rsc, %sv, and loading similarity for one latent dimension also hold true for multiple latent

dimensions. For multiple latent dimensions, the relative strengths of each dimension is an

important consideration—a stronger dimension plays a bigger role in determining the rsc

distribution. Finally, we consider the relationship between dimensionality itself and rsc. We

will discover below that increasing dimensionality tends to decrease the magnitude of rsc

values.

First, consider the case of two latent dimensions. Again, let n be the number of neurons, let

w be the co-fluctuation pattern (i.e., loading vector w1, w2, …, wn
T ∈ ℝn × 1) with eigenvalue

λw, let v be another pattern orthogonal to w v1, v2, …, vn
T ∈ ℝn × 1; v ⊥ w , with eigenvalue

λv, and let Ψ ∈ ℝn × n be a diagonal matrix specifying the independent variance of each

neuron ψ1, ψ2, …, ψn . Then the covariance is

Σ = Σshared + Ψ = Σw + Σv + Ψ = wλwwT + vλvvT + Ψ. On the off-diagonals entries (i.e., if

i ≠ j), Σi j = λwwiw j + λvviv j. Along the diagonal, Σshared ji = Σw, ii + Σv, ii = λwwi
2 + λvvi

2 and

Σii = λwwi
2 + λvvi

2 + ψ i.

Because the shared covariance matrix Σshared can be expressed as a sum of two component

matrices Σw + Σv, we can express the %sv of neuron i ϕi  as

ϕi =
Σshared, ii

Σii
=

Σw, ii
Σii

+
Σv, ii
Σii

=
λwwi

2

λwwi
2 + λvvi

2 + ψi
+

λvvi
2

λwwi
2 + λvvi

2 + ψi

= ϕi
(w) + ϕi

(v)

where ϕi
(w) is the %sv variance of neuron i explained by dimension w and ϕi

(v) is the %sv

variance of neuron i explained by dimension v.

With this decomposition of ϕi, and following similar steps as in Equation 8:

ρi j = ϕi
(w)ϕ j

(w)sign wiw j + ϕi
(v)ϕ j

(v)sign viv j (Equation 11)

where %sv values (ϕ) are represented as proportions. Equation 11 relates rsc, %sv, and

loading similarity for the case of two latent dimensions. Next, we compare these

relationships for one versus two latent dimensions.

We will show that, for two latent dimensions, the relative strength of each dimension (i.e.,

the ratio λw : λv) is an important consideration. For two latent dimensions, decreasing the
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overall %sv by decreasing both ϕ(w) and ϕ(v) equally (e.g., λw = λv and both decrease

equally) pushes each ρi j closer to 0; rsc mean and SD will decrease. This is similar to what

happens for one latent dimension when %sv is decreased. On the other hand, even if the

overall %sv is held constant, but ϕ(w) increases relative to ϕ(v) (i.e., increase the strength of

w relative to v), pairwise correlations could change. Each ρi j will largely be determined by

ϕ(w) and w; rsc mean and SD will be more similar to what they would be if only w existed

(Figure 4A). In other words, each ρi j for two latent dimensions is the sum of the ρi j that

would have been produced by each of the two constituent dimensions on their own. The

dimension with larger relative strength λ will have larger ϕ; the stronger dimension will play

a larger role in determining each value of ρi j and thus the resulting rsc distribution.

Using this logic, we can deduce that increasing the loading similarity of one of the

dimensions would increase rsc mean and decrease rsc SD for the same reasons as for one

latent dimension (Math Note A). Doing so for a relatively stronger dimension would result

in larger changes in rsc than doing so for a relatively weaker dimension.

We have shown how having multiple latent dimensions can affect the relationship between

rsc, %sv, and loading similarity. Now, we show that dimensionality itself and rsc are related

—a larger dimensionality tends to decrease rsc mean and SD. To see this, we can generalize

Equation 11 for d < n orthogonal latent dimensions u1, …, ud ∈ ℝn.

ρi j = ∑
k = 1

d
ϕi

uk ϕ j
uk sign uki

uk j

Considering the sign of one term, ρi j could have the same sign for sign uki
uk j

 across all

dimensions u1, …, ud; in this case, a larger dimensionality acts to increase the correlation

between neurons i and j ρi j  above the level corresponding to a single dimension. However,

because the loading vectors u1, …, ud are orthogonal, a pair of neurons i and j is likely to

have many sign uki
uk j

 of opposite sign across dimensions; in this case, a larger

dimensionality pushes the correlation between neurons i and j ρi j  closer to 0. Thus, we

would expect the magnitude of correlations to decrease as more dimensions are added (i.e., a

tendency for rsc mean and SD to decrease; Figure 3G). In the next section, we show this

relationship mathematically.

D) Increasing dimensionality decreases arc radius: We establish here that increasing

dimensionality results in a decrease in the radius of the arc in the rsc mean versus rsc SD plot

(Figure 3G). We extend the math for an arc for one latent dimension (Math Note B) to
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multiple latent dimensions. We will refer to the one latent dimension as the ‘1-d case’ and

multiple (k) latent dimensions as the ‘k-d case’.

We use the same notation as in Math Note C. Consider the distance c of a point

(corresponding to one instance of the population activity covariance matrix) from the origin

in the rsc mean versus rsc SD plot. From Math Note B, c2 = E ρ2 . For this 2-d case, the

correlation between neurons i and j is ρi j =
Σi j

ΣiiΣ j j
=

λwwiw j + λvviv j

λwwi
2 + λvvi

2 + ψi λww j
2 + λvv j

2 + ψ j

.

Thus we can write ρi j
2  as:

ρi j
2 =

λwwiw j + λvviv j
2

λwwi
2 + λvvi

2 + ψi λww j
2 + λvv j

2 + ψ j

=
λw
2 wi

2w j
2 + λwλv2wiw jviv j + λv

2vi
2v j

2

λwwi
2 + λvvi

2 + ψi λww j
2 + λvv j

2 + ψ j

= ϕiϕ j −
λwλv wi

2v j
2 − 2wiw jviv j + w j

2vi
2

λwwi
2 + λvvi

2 + ψi λww j
2 + λvv j

2 + ψ j

= ϕiϕ j −
λwλv wiv j − w jvi

2

λwwi
2 + λvvi

2 + ψi λww j
2 + λvv j

2 + ψ j

where the % shared variance of neuron i in this 2-d case is ϕi =
Σshared, ii

Σii
=

λwwi
2 + λ2vi

2

λwwi
2 + λvvi

2 + ψi
.

Then letting m be the number of pairs in the population, and following similar steps to

Equation 10 in Math Note B, we arrive at:

E ρ2 = 1
m ∑

i = 1

n − 1
∑

j = i + 1

n
ρi j

2

= (%sv)2 − 1
n − 1Var(ϕ)

− 1
m ∑

i = 1

n − 1
∑

j = i + 1

n λwλv wiv j − w jvi
2

λwwi
2 + λvvi

2 + ψ i λww j
2 + λvv j

2 + ψ j

(Equation 12)

Not including the negative sign in front, note that this final term is non-negative (given that

λw and λv are non-negative, as for any covariance matrix). Thus, comparing the final line in

Equation 12 to the final line from Equation 10, we observe that the distance of the point for

the 2-d case in the rsc mean versus rsc SD plot is necessarily smaller than or equal to the

distance for the corresponding 1-d case.

More generally, for a k-dimensional case we can show that:
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E ρ2 = (%sv)2 − 1
n − 1Var(ϕ) − 1

m ∑
w, v

∑
i = 1

n − 1
∑

j = i + 1

n λwλv wiv j − w jvi
2

λwwi
2 + λvvi

2 + ψ i λww j
2 + λvv j

2 + ψ j

(Equation 13)

where the sum ∑w, v is taken over all unique pairs of loading vectors (w, v). Indeed, as more

latent dimensions are subsequently added, the radius of the rsc mean versus rsc SD plot

decreases (Figure 3G). Intuitively, this final term accounts for how population activity

covaries along many different dimensions in the high-d firing rate space. As more

orthogonal dimensions are added, population activity is further pulled in different directions

in the high-d space, more interaction terms come into play, and the magnitude of

correlations is further decreased. This tends to decrease both rsc mean and rsc SD, explaining

why the radius of the arc in the rsc mean versus rsc SD plot tends to decrease as

dimensionality increases.

We note that rsc mean and rsc SD do not necessarily both need to decrease. For example,

consider a pattern with a loading similarity of 1; loading weights for all neurons would have

the same value, rsc across all pairs would be the same value, and thus rsc SD would be 0 (see

Math Note A). When a second pattern of necessarily low loading similarity (see Math Note

E) is added, rsc values across pairs of neurons would differ, and rsc s.d. would be larger than

0. Therefore, rsc SD can increase when going from the 1-d case to the 2-d case. However, the

corresponding decrease in rsc mean would be larger in magnitude than the increase in rsc SD,

resulting in an overall decrease in arc radius (Figure 3G, 1 to 2 dimensions, data points

closest to the horizontal axis).

The third term in Equation 13 can also help explain variability of the radius E ρ2  across

different random instantiations with the same population metrics (Figures 3G and 4).

Consider a fixed %sv. For the 1-d case, the radius is determined by the first two terms of the

above equation, and any variability in radius will be caused by different values of Var(ϕ)
across different instantiations. For the 2-d case, the third term also plays a factor in

determining the radius, and this term varies across different random instantiations, typically

to a larger degree than the second term for large numbers of neurons n (see Math Note B).

Thus, the 2-d and k-d cases have greater variability in E ρ2  than 1-d cases (Figures 3G and

4). Other subtle factors can affect the variability of E ρ2 . For example, variability in E ρ2

can increase or decrease depending on the relative strengths of each dimension and their

corresponding loading similarities (Figures 4 and S1). This can be explained by the third

component of Equation 13, in particular by the terms involving λw and λv.

E) Properties of loading similarities across different co-fluctuation patterns: We asked

whether there was a relationship between the loading similarities of different co-fluctuation

patterns in the same model. In our simulations and V4 data analysis, we ensured that we

obtain unique co-fluctuation patterns by constraining dimensions to be orthogonal. Thus, we
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might conjecture that if one pattern has high loading similarity (e.g., [1, …, 1]), then another

pattern in the same model necessarily has low loading similarity (e.g.,

[1, − 1, 1, − 1, …, − 1, 1]). Indeed, this is true because the sum across the loading similarities

of each pattern in a model is at most 1. We show this property of loading similarity here.

Let w and v be vectors representing two co-fluctuation patterns in the same model. We use

the notation w ⋅ v to refer to the elementwise product between w and v, resulting in a vector

that is the same size as w and v. Furthermore, we use E[w], Var(w) and Cov(w) as shorthand

to refer to computations across the elements of a vector (and not as operations on a random

variable): e.g E[w] = 1
n ∑i = 1

n wi, and

Cov[w, v] = E[w ⋅ v] − E[w]E[v] = 1
n ∑i = 1

n wivi − 1
n ∑i = 1

n wi
1
n ∑i = 1

n vi . Also, in this section

we refer to the loading similarity of vector w as Is(w) for shorthand.

We first show a constraint on loading similarities for a model with two co-fluctuation

patterns (i.e., loading vectors for each dimension). Let n be the number of neurons and let

w, v ∈ ℝn be two loading vectors. As in our simulations and data analysis (see Methods), w

and v are orthogonal unit vectors: ∑i = 1
n wi

2 = 1, ∑i = 1
n vi

2 = 1, and ∑i = 1
n wivi = 0. Then, using

these constraints,

Cov(w, v) = E[w ⋅ v] − E[w]E[v]

= 1
n ∑

i = 1

n
wivi − E[w]E[v]

= − E[w]E[v]

Var(w) = E[w ⋅ w] − E[w]2

= 1
n ∑

i = 1

n
wi

2 − E[w]2

= 1
n − E[w]2

(Equation 14)

Because correlation is bounded between −1 and 1, we know that |Cov(w, v) | ≤ Var(w)Var(v).
It follows that:

Umakantha et al. Page 32

Neuron. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cov2(w, v) ≤ Var(w)Var(v)

E[w]2E[v]2 ≤ 1
n − E[w]2 1

n − E[v]2

0 ≤ 1
n2 − 1

n E[w]2 + E[v]2

nE[w]2 + nE[v]2 ≤ 1

Is(w) + Is(v) ≤ 1

(Equation 15)

The last step follows from the definition of loading similarity:

Is(w) ≡ 1 − Var(w)
1/n = 1 −

1
n − E[w]2

1/n = nE[w]2

The final inequality in Equation 15 proves the intuition provided at the beginning of this

section–if Is(w) is large, then Is(v) must be small (at most 1 − Is(w)). More strongly, if

Is(w) = 1, then Is(v) = 0.

Generally, for a model with d dimensions and patterns u1, …, ud ∈ ℝn, we can show that

∑i = 1
d Is ui ≤ 1. To see this, we can construct a matrix C with entries

ci j = Cov ui, uj = − E ui E uj  for i ≠ j, and cii = Var ui = 1
n − E ui

2 (derived from the

constraints in Equation 14). Note that C ∈ ℝd × d, with variances on the diagonal and

covariances on off-diagonals, is a covariance matrix, which implies det(C) ≥ 0. For a 3-d

model,

det(C) = 1
n2 1 − nE u1

2 − nE u2
2 − nE u3

2 ≥ 0

which implies Is u1 + Is u2 + Is u3 ≤ 1. In general, for a d-dimensional model (with d ≤ n):

det(C) = 1
nd − 1 1 − ∑

i = 1

d
nE ui

2 ≥ 0

∑
i = 1

d
Is ui ≤ 1

(Equation 16)

Equation 16 has several implications:

• If one knows the loading similarities of all dimensions u1, …, ud in a model, then

the maximum possible loading similarity of any new dimension is
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1 − ∑i = 1
d Is ui . It follows that two dimensions with high loading similarity

cannot co-exist in the same model.

• If one dimension has ls = 1, then all other dimensions in the model (or that would

be added to the model) necessarily have Is = 0. Note that there is only one

possibility for a pattern to have Is = 1 (i.e., u = 1
n , …, 1

n
T

, such that

Var(u) = 0). This implies that there are many possibilities for a pattern to have

Is(u) = 0. More loosely, there are relatively few ways for a pattern to have high

loading similarity, but many more ways for a pattern to have low loading

similarity.

F) Maximum variance of a unit vector: We defined loading similarity for a co-

fluctuation pattern u (normalized to have norm 1) of n neurons to be 1 − var(u)
1/n , where the

variance is computed along the elements of u. This value lies between 0 and 1 because the

maximum variance across the elements of u is 1/n. We now show this mathematically.

Let u ∈ Rn be a unit vector. Because u is a unit vector, ∑i = 1
n ui

2 = 1. Using these facts

Var(u) = E u2 − E[u]2

= 1
n ∑

i = 1

n
ui
2 − E[u]2

= 1
n − E[u]2

≤ 1
n

This holds with equality when E[u] = 0 (i.e., when the mean across the elements in a co-

fluctuation pattern is 0). This implies that the smallest loading similarity is 0 (when

Var(u) = 1/n), and the largest loading similarity is 1 (when Var(u) = 0).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Pairwise correlation and dimensionality reduction characterize how neurons

covary

• Pairwise and population metrics are closely related mathematically and

empirically

• Decrease in V4 pairwise correlation corresponds to multiple population-level

changes

• Multiple activity statistics should be used when describing population

covariability
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Figure 1. How do spike count correlations between pairs of neurons (i.e., pairwise metrics) relate
to how the entire population co-fluctuates (i.e., population metrics)?
(A) Four example experiments in which mean spike-count correlation (rsc mean) has been

observed to change between experimental conditions. These include spatial attention

(macaque visual area V4; Cohen and Maunsell, 2009; Mitchell et al., 2009; Gregoriou et al.,

2014; Luo and Maunsell, 2015; Snyder et al., 2018), perceptual learning (macaque dorsal

medial superior temporal area; Gu et al., 2011), locomotion (mouse visual area V1; Erisken

et al., 2014), and stimulus drive (rat anterior piriform cortex; Miura et al., 2012).
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(B) The same change in rsc mean (from 0.2 to 0.1 between conditions 1 and 2) could

correspond to multiple distinct changes in the activity of the population of neurons.

Condition 2, left: a decrease in rsc mean could correspond to some neurons becoming anti-

correlated with others in the population; in this case, some neurons that were previously

positively correlated are now anti-correlated with the rest of the population (bottom rows of

raster plot). Condition 2, middle: a decrease in rsc mean could correspond to a decrease in

how strongly neurons co-fluctuate together; in this case, neurons covary as in condition 1,

but each neuron does not co-fluctuate with other neurons as strongly. Condition 2, right: a

decrease in rsc mean could correspond to the introduction of another “mode” of covariation

(i.e., an increase in the dimensionality of population activity); in this case, neurons in the top

half of the raster covary as in condition 1, but neurons in the bottom half of the raster covary

in a manner independent from those in the top half.

(C) Pairwise (rsc) and population (dimensionality reduction) metrics both arise from the

same spike count covariance matrix, but the precise relationship between these two sets of

metrics remains unknown. Top row: each element of the spike count covariance matrix

corresponds to the covariance across responses to repeated presentations of the same

stimulus for two simultaneously recorded neurons (e.g., neurons i and j, left inset). Bottom

row: pairwise metrics (left) typically summarize the distribution of spike count correlation

with the mean (rsc mean); in this work, we propose additionally reporting the standard

deviation (rsc SD). Population metrics (right) of the spike count covariance matrix are

identified by applying dimensionality reduction to the population activity (e.g., gray plane

depicts a low-dimensional space describing how neurons covary; see also Figure S5). By

understanding the relationship between pairwise and population metrics, we can better

interpret how changes in pairwise statistics (e.g., experiments in A) correspond to changes in

population metrics and vice versa.
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Figure 2. Intuition about population metrics: loading similarity, percent shared variance (%sv),
and dimensionality
(A) Population activity (where each row is the spike train for one neuron over time;

simulated data) is characterized by a latent co-fluctuation (blue) and a co-fluctuation pattern

made up of loadings (green rectangles). Each neuron’s time-varying firing rate is a product

of the latent co-fluctuation and that neuron’s loading (which may either be positive or

negative). One may also view population activity through the lens of the population activity

space (right plot), where each axis represents the activity of one neuron (n1; n2; n3 represent

neuron 1, neuron 2, and neuron 3). In this space, a co-fluctuation pattern corresponds to an

axis whose orientation depends on the pattern’s loadings (right plot, blue line).

(B) Population activity with a lower loading similarity than in (A). The loadings have both

positive and negative values (i.e., dissimilar loadings), leading to neurons that are anti-

correlated (compare top rows with bottom rows of population activity). Changing the

loading similarity will rotate a pattern’s axis in the population activity space (bottom plot,

“rotate axis”).

(C) Population activity with a lower %sv than in (A). The latent co-fluctuation shows

smaller amplitude changes over time than in (A), which leads to a lower %sv. Changing %sv

leads to no changes of the co-fluctuation pattern (bottom plot, axis is same as that in A).

(D) Population activity with a dimensionality of 2, compared to a dimensionality of 1 in (A).

Adding a new dimension leads to a new latent co-fluctuation (orange line) and a new co-

fluctuation pattern (“added new pattern”). Each neuron’s time-varying firing rate is

expressed as a weighted combination of the latent co-fluctuations, where the weights

correspond to the neuron’s loadings in each co-fluctuation pattern. Here, each dimension
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corresponds to a distinct subset of neurons (top rows versus bottom rows); in general, this

need not be the case, as each neuron typically has non-zero weights for both dimensions. In

the population activity space (bottom plot), the activity varies along the two axes (i.e., a 2D

plane) defined by the two co-fluctuation patterns. See also Figure S5. The spike trains shown

in this figure were created for the sole purpose of illustrating the population metrics in this

figure and were not used in subsequent analyses. The spike trains were generated by first

creating latent co-fluctuations using Gaussian processes. These latent co-fluctuations were

then linearly combined using loading weights (drawn from a standard normal distribution),

yielding a time-varying firing rate for each neuron. Spike trains were generated according to

an inhomogeneous Bernoulli process based on the time-varying firing rates. The intended

duration of each spike train plotted is around 10 s.
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Figure 3. Relationship between population metrics and pairwise metrics
(A–D) The simulation procedure to assess how systematic changes in population metrics

lead to changes in pairwise metrics.

(A) We first systematically varied one of the population metrics while keeping the others

fixed. For example, we can increase the loading similarity from a low value (left, blue) to a

high value (right, green), while keeping %sv and dimensionality fixed.

(B) Then, we constructed covariance matrices corresponding to each value of the population

metric in (A) (see STAR Methods), without generating synthetic data.

(C) For each covariance matrix from (B), we directly computed the correlations (i.e., the rsc

distributions).

(D) We computed rsc mean and rsc SD from the rsc distributions in (C) and then assessed

how the change in a given population metric from (A) changed pairwise metrics. In this

case, the increase in loading similarity increased rsc mean and decreased rsc SD (blue dot to

green dot).

(E) Varying loading similarity with a fixed %sv of 50% and dimensionality of 1. Each dot

corresponds to the rsc mean and rsc SD of one simulated covariance matrix with specified

population metrics (dots are close together and appear to form a continuum). The color of

each dot corresponds to the loading similarity (see STAR Methods), where a value of 1

indicates that all loading weights have the same value.

(F) Varying %sv. The same setting as in (E), except we consider two different values of

percent shared variance (50% and 30%).

(G) Varying dimensionality (i.e., number of co-fluctuation patterns) while sweeping loading

similarity between 0 and 1 and keeping %sv fixed at 50%. In this simulation, the relative
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strengths of each dimension uniform across dimensions (i.e., flat eigenspectra; see STAR

Methods).

See also Figure S7.
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Figure 4. Relative strengths of dimensions affect rsc distributions
With dimensionality of 2, we systematically varied the relative strengths of the two

dimensions with a fixed total %sv of 50%. We considered two scenarios: (1) one dimension

has high loading similarity and the other dimension has low loading similarity (A) and (2)

both dimensions have low loading similarity (B). Each dot represents one simulated

covariance matrix and rsc distribution. The colors of the dots indicate different relative

strengths between the two dimensions, and numbers next to each cloud of dots indicate the

ratio between the relative strength associated with each dimension. For example, in (A), red

dots correspond to the high loading similarity dimension being 19 times stronger (95:5) than

the low loading similarity dimension. Black dots correspond to the low loading similarity

dimension being 19 times stronger (5:95) than the high loading similarity dimension. In (B),

because both patterns have low loading similarity, clouds for 80:20 and 95:5 are very similar

to clouds for 20:80 and 5:95, respectively, and are thus omitted for clarity. See also Figure

S1.
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Figure 5. Summary of relationship between pairwise and population metrics
A change in rsc mean and rsc SD may correspond to changes in loading similarity, %sv,

dimensionality, or a combination of the three. Shaded regions indicate the possible rsc mean

and rsc SD values for different dimensionalities; increasing dimensionality tends to decrease

rsc mean and rsc SD (shaded regions for larger dimensionalities become smaller). Within

each shaded region, decreasing %sv decreases both rsc mean and SD radially toward the

origin. Finally, rotating co-fluctuation patterns such that the loadings are more similar (going

from low to high loading similarity) results in moving clockwise along an arc such that rsc

mean increases and rsc SD decreases. We also note two subtle trends. First, there are more

possibilities for loading similarity to be low than high (Math Note E), suggesting that rsc SD

will generally tend to be larger than rsc mean if neuronal activity varied along a randomly

chosen co-fluctuation pattern (shading within each region is darker near the vertical axis

than the horizontal axis). Second, this effect becomes exaggerated for higher dimensional

neuronal activity, as many dimensions can have low loading similarity but only one
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dimension can have high loading similarity (Math Note E). Thus, it becomes progressively

unlikely for rsc SD to be 0 as dimensionality increases (shaded regions for larger

dimensionalities lifted off the horizontal axis).
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Figure 6. An observed decrease in rsc mean of macaque V4 neurons during a spatial attention
task corresponds to changes in multiple population metrics
(A) Experimental task design. On each trial, monkeys maintained fixation while Gabor

stimuli were presented for 400 ms (with 300–500 ms in between presentations). When one

of the stimuli changed orientation, animals were required to saccade to the changed stimulus

to obtain a reward. At the beginning of a block of trials, we performed an attentional

manipulation by cuing animals to the location of the stimulus that was more likely to change

for that block (dashed circle denotes the cued stimulus and was not presented on the screen).

The cued location alternated between blocks. Animals were more likely to detect a change in
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stimulus at cued rather than uncued locations (inset in bottom right, p < 0.002 for both

animals; data for monkey 1 are shown). During this task, we recorded activity from V4

neurons whose receptive fields (RFs) overlapped with one of the stimulus locations.

(B) rsc mean (left panel) and rsc SD (right panel) across recording sessions for two animals.

Black denotes “attend-out” trials (i.e., the cued location was outside the recorded V4

neurons’ RFs), and red denotes “attend-in” trials (i.e., the cued location was inside the RFs).

Data were pooled across both animals to compute p values reported in titles for comparison

of attend-out (black) and attend-in (red). For individual animals, rsc mean was lower for

attend-in than attend-out (p < 0.001 for each animal). rsc SD was also lower for attend-in

than attend-out (p < 0.05 for monkey 1 and p = 0.148 for monkey 2).

(C) Population metrics identified across recording sessions for two animals (same data as in

B). Black denotes attend-in trials; red denotes attend-out trials. Data were again pooled

across animals to compute p values reported in titles for comparing attend-out and attend-in.

%sv was lower for attend-in than attend-out (p < 0.001 for monkey 1 and p < 0.02 for

monkey 2). Loading similarity was lower for attend-in than attend-out (p < 0.001 for

monkey 1 and p = 0.162 for monkey 2). Dimensionality was lower for attend-in than attend-

out (p = 0.113 for monkey 1 and p = 0.174 for monkey 2). In (A)–(C), dots indicate means

and error bars indicate 1 SEM, both computed across recording sessions. See also Figure S2.

(D) Summary of the real data results. Attention decreases both rsc mean and rsc SD (black

dot to red dot). These decreases in pairwise metrics correspond to a combination of

decreases in %sv, loading similarity, and dimensionality (dashed arrows).

See also Figures S3, S4, and S6.

Umakantha et al. Page 51

Neuron. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Population metrics and information coding
For illustrative purposes, we consider the responses of two neurons to two different stimuli.

(A) In “condition 1” (e.g., attend-out in our V4 analyses), the two neurons have positively

correlated trial-to-trial variability (blue and orange clouds each have positive correlation)

and a stimulus encoding space (black arrow) defined by the span of the trial-averaged

responses (blue and orange dots). Then, we consider how changes in trial-to-trial neuronal

variability (i.e., shapes of the clouds) from one experimental condition to another (e.g.,

spatial attention) can influence decoding of the two stimuli. For simplicity, we construct

examples in which the stimulus encoding space remains constant between the two

conditions. We illustrate here the changes in population metrics that we observed in our V4

data (Figure 6D).

(B) First, a decrease in percent shared variance (both clouds are smaller in size) results in

more accurate decoding of the population responses to the two stimuli (the blue and orange

ellipses are less overlapping here than in A).

(C) Second, a decrease in the loading similarity of the strongest dimension (both clouds have

been rotated to have negative correlation) also leads to an improvement in decoding

performance. In this case, the improvement stems from the fact the stimulus encoding space

(black arrow) and the strongest dimension of trial-to-trial variability (negative correlation)

are misaligned (Averbeck et al., 2006; Moreno-Bote et al., 2014; Ruff and Cohen, 2019a).

(D) Third, a decrease in dimensionality (the less dominant dimension has been squashed for

both clouds) could either improve or have no impact on decoding performance. Here, the
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dimension that was squashed (negative correlation direction) was orthogonal to the stimulus

encoding dimension (black arrow), leading to no impact on decoding performance. In

general, all else being equal, higher dimensional trial-to-trial variability (distinct from high-d

signal; Rigotti et al., 2013) is more likely to overlap with stimulus encoding dimensions and

thus limit the amount of information encoded.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Rhesus macaque (Macaca mulatta) 1 animal from Covance, 1 from Tulane
National Primate Research Center

N/A

Software and algorithms

MATLAB MathWorks RRID: SCR_001622; https://www.mathworks.com/products/
matlab.html

Custom spike-sorting software Kelly et al., 2007 https://github.com/smithlabvision/spikesort

Code to reproduce simulations Original code https://zenodo.org/record/5028023

Code to compute activity statistics Original code https://zenodo.org/record/5028018

Other

96-electrode array Blackrock Microsystems http://www.blackrockmicro.com/neuroscience-research-
products/neural-data-acquisition-systems/

Eyelink 1000 eye tracker SR research RRID: SCR_009602; https://www.sr-research.com/
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