
 

 

 

Transcriptomic approaches for investigating developmental lineage: 

exploiting the X-chromosome as a marker for lineage specification and 

quantifying the lineage fidelity of neural organoid systems 

 

A dissertation presented by  

Jonathan Werner 

to the 

School of Biological Sciences 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

in 

Biological Sciences 

at 

Cold Spring Harbor Laboratory 

September 2023 

 

 

 

 
 
 



 1 

Acknowledgements 
 
 It is an immense privilege to have been given the opportunity for graduate study at 

CSHL; one that I do not take lightly and view as arising largely from the efforts of those who, 

for whichever reason, decided I was worth a moment of their time and invested into my 

future. I stand where I am today due to the actions of a large collection of friends, family, and 

colleagues, to all of whom I sincerely say thank you. 

 

 I would like to thank my research advisor, Jesse Gillis, for his time and thoughts over 

the years; one of the most rewarding aspects of my time at CSHL has been the continual 

intellectual challenges I’ve faced working in your lab, not just in my own research but in 

thinking about many areas of science. My experience in the Gillis lab was greatly enhanced 

thanks to my fellow lab members, whom I thank for all the conversations over the years. I’d 

particularly like to acknowledge Sara Ballouz, Maggie Crow, and Stephan Fischer for their 

patience in being bothered with questions and their willingness to help me get started in the 

lab. I would also like to thank the members of my thesis committee, Camila dos Santos, Dan 

Levy, and Adam Siepel for their guidance and offer my thanks to Christine Disteche for 

agreeing to be my external committee member.  

 

 To the staff of the CSHL School of Biological Sciences, thank you for the support 

and flexibility in my non-traditional tenure at CSHL. The ability to move back home to 

Baltimore in my last year was incredibly helpful and I am extremely grateful. Thank you for 

also giving me the chance to be a CSHL graduate student, the support we receive from the 

school is unparalleled in my opinion and I am very grateful to have benefitted from the care 

and dedication you all bring to CSHL. And to the Class of 2018, you inspire me as friends 

and colleagues and I look forward to seeing all of your future success. Especially to Alexa, 

Amritha, Marie, and Mo, CSHL would have been a much duller experience without you all.    



 2 

 

 My journey through CSHL would not have been nearly as smooth or even possible 

without my time at UMBC as an undergraduate, chiefly due to the Meyerhoff Scholars 

program. I learned a great many valuable lessons and was presented numerous opportunities 

as a Meyerhoff Scholar that I wouldn’t have otherwise and would like to thank the program 

staff for their continued support. I credit the basis of my current research interests to the 

experience gained during my time in Rachel Brewster’s lab at UMBC. I would like to thank 

Rachel for providing my first research experience and fostering a deep curiosity about 

developmental biology. And to Eudorah Vital, sitting next to you during selection weekend 

was one of the best happenstances of my life, it is a joy to count you as one of my greatest 

friends.      

 

 To my partner, Colin, thank you for your seemingly immeasurable patience and 

kindness. I am continually striving to be the partner you deserve and am deeply grateful for 

what we’ve built together. And, perhaps more importantly, I’d like to thank my cat, Pickles. 

Because of you, I’ve been able to give up alarm clocks and a peaceful night’s sleep. Who 

knew such a small cat could make so much noise, all the time, at any given moment.   

 

 And finally, I’d like to thank all the experimentalists who make their data publicly 

available, without whom, none of my work presented here would be possible.  

 
 
 
 
 
 
 
 
 



 3 

Table of Contents 
Acknowledgements……………………………………………………………………..….....1 
Table of Contents……………………………………………………………………………..3 
List of Abbreviations………………………………………………………………………....5 
List of Figures………………………………………………………………………………...6 
 
1. Introduction…………………………………………………………………………..........7 
    1.1. X-chromosome inactivation…………………………………………………………….........8 
    1.2. XCI as a marker for developmental lineage………………………………………....10 
    1.3. Unknowns of human development………………………………………………......13 
    1.4 Utility of cross-tissue analysis of XCI ratios………………………………………....14 
    1.5. Modeling XCI ratios from bulk RNA-sequencing data…………………………......15 
    1.6. Genetic considerations for variability in XCI ratios…………………………….......16 
    1.7. Utility of cross-species analysis of XCI ratios…………………………………….…18 
    1.8. Summary for Aims 1 and 2……………………………………………………….......18 
    1.9. Organoid systems for in vitro modeling of developmental lineage……………….....19 
    1.10. Gene co-expression for functional comparisons across biological systems…….....20 
    1.11. Neural organoids……………………………………….……………………….......21 
    1.12. Summary for Aim 3…………………………………………………………......…..22 
 
2. Variability of cross-tissue X-chromosome inactivation characterizes timing of human 
embryonic lineage specification events………………………………………………….....23 
    2.1. Citation…………………………………………………………………………..…....23 
    2.2. Author contributions and Acknowledgements…………………………………….....23 
    2.3. Results summary…………………………………………………………..……....….23 
    2.4. Graphical abstract…………………………………………………………………....25 
    2.5. Introduction………………………………………………………………………..…26 
    2.6. Results 
        2.6.1. The folded -normal model accurately estimates XCI ratios from unphased  
 data…………………………………………………………………….....……....….29 
        2.6.2. Escape genes exhibit consistent cross-tissue biallelic expression……………......33 
        2.6.3. XCI is completed prior to germ layer specification……………………….....…..37 
        2.6.4. Specific tissue lineages have increased probability for switching the   
 parental direction of XCI…………………………………………………….....……40 
        2.6.5. Cell population estimate at the time of embryonic epiblast lineage   
 specification.................................................................................................................43 
        2.6.6. Cell population estimates at the time of tissue-specific lineage commitment........46 
       
    2.7. Methods 
        2.7.1. Data and code availability......................................................................................47 
        2.7.2. GTEx and EN-Tex data..........................................................................................48 
        2.7.3. RNA-seq alignment and SNP identification...........................................................48 
        2.7.4. SNP quality control................................................................................................49 
        2.7.5. Gene filtering (reference bias and XCI escape).....................................................49 
        2.7.6. Folded normal model for estimating XCI ratios.....................................................50 
        2.7.7. Modeling read sampling error when estimating XCI ratios...................................51 
        2.7.8. Gene-tissue XCI ratio correlations.........................................................................51 
        2.7.9. Testing for escape from XCI..................................................................................51 
        2.7.10. Tissue XCI ratio predicting donor XCI ratio........................................................52 
        2.7.11. Cross-tissue XCI ratio correlations.......................................................................53 
        2.7.12. CIBERSORTx deconvolution and germ layer-specific marker identification.....53 



 4 

        2.7.13. Inference on direction of XCI ratios.....................................................................54 
        2.7.14. Evaluating XCI cell number estimates.................................................................55 
        2.7.15. Evaluating tissue-specific lineage cell number estimates....................................55 
        2.7.16. Data analysis and visualization............................................................................57 
        2.7.17 Quantification and statistical analysis...................................................................57 
    2.8. Supplemental Figures..................................................................................................58 
    2.9. Chapter 2 Summary......................................................................................................63 
 
3. Population variability in X-chromosome inactivation across 9 mammalian species 
    3.1. Author contributions and Acknowledgements.............................................................64 
    3.2. Results summary...........................................................................................................64 
    3.3. Introduction..................................................................................................................65 
    3.4. Results 
        3.4.1. Reference aligned RNA-sequencing data enables scalable modeling of XCI 
           ratios.......................................................................................................................69 
        3.4.2. Models of embryonic stochasticity explain adult population XCI variability........73 
        3.4.3. XCI ratios are not associated with X-linked heterozygosity..................................76 
        3.4.4. Low frequency variants exhibit moderate associations with XCI ratios................78 
    3.5. Methods 
        3.5.1. Snakemake pipeline for RNA-seq alignment and variant identification................81 
        3.5.2. SNP filtering...........................................................................................................82 
        3.5.3. Identifying and excluding chromosomal regions that escape XCI.........................83 
        3.5.4. Modeling XCI ratios with the folded-normal distribution.....................................83 
        3.5.5. Modeling autosomal imbalances............................................................................84 
        3.5.6. Modeling population XCI variability with models of embryonic stochasticity.....85 
        3.5.7. Measuring sample X-linked heterozygosity...........................................................86 
        3.5.8. Quantifying variant associations with extreme XCI ratios.....................................86 
        3.5.9. Software..................................................................................................................88 
        3.5.10. Data and code availability....................................................................................88 
    3.6. Supplemental Figures..................................................................................................89 
    3.7. Chapter 3 Summary......................................................................................................97 
 
4. Preservation of co-expression defines the primary tissue fidelity of human neural 
organoids 
    4.1. Citation..........................................................................................................................98 
    4.2. Author contributions and Acknowledgements.............................................................98 
    4.3. Results summary...........................................................................................................98 
    4.4. Introduction................................................................................................................100 
    4.5. Results 
        4.5.1. Meta-analytic framework for primary tissue/organoid comparisons...................105 
        4.5.2. Cross-temporal and -regional primary tissue cell-type markers...........................107 
        4.5.3. Broad primary tissue cell-type markers capture organoid temporal variation.....109 
        4.5.4. Broad primary tissue cell-type markers capture organoid protocol variation......110 
        4.5.5. Aggregate organoid co-expression preserves primary tissue cell-type co-           
      expression.............................................................................................................111 
        4.5.6. Organoid datasets vary in primary tissue cell-type marker set co-expression......114 
        4.5.7. Organoid datasets vary in preserving gene-level primary tissue co-expression...116 
        4.5.8. Temporal variation in organoid preservation of primary tissue co-expression....121 
        4.5.9. Organoids preserve developing brain co-expression over adult brain co-        
      expression.............................................................................................................122 
        4.5.10. Variability in organoid co-expression is driven by marker gene expression......124 



 5 

        4.5.11. Preservation of primary tissue co-expression as a generalizable quality control
        metric..................................................................................................................125 
    4.6. Methods 
        4.6.1. Dataset download and scRNA-seq pre-processing...............................................126 
        4.6.2. Primary tissue MetaMarker generation and cross-validation...............................127 
        4.6.3. Cross-regional primary tissue MetaMarker expression........................................129 
        4.6.4. Organoid PCA......................................................................................................130 
        4.6.5. Generating co-expression networks from scRNA-seq data..................................130 
        4.6.6. Hierarchical clustering of primary tissue MetaMarkers by co-expression...........131 
        4.6.7. Co-expression module learning analysis..............................................................131 
        4.6.8. Preservation of co-expression...............................................................................132 
        4.6.9. Preservation of GO term co-expression...............................................................133 
        4.6.10. Computing correlation significance...................................................................134 
        4.6.11. Comparing co-expression of normal vs. perturbed organoids............................135 
        4.6.12. Organoid temporal analysis................................................................................135 
        4.6.13. GO enrichment analysis.....................................................................................136 
        4.6.14. R and R packages...............................................................................................136 
    4.7 Supplemental Figures.................................................................................................137 
    4.8. Chapter 4 summary....................................................................................................145 
 
5. Conclusions and Perspectives 
    5.1. General summary.......................................................................................................146 
    5.2. Discussion for Results chapter 2: cross-tissue variability in human XCI ratios.....146 
    5.3. Discussion for Results chapter 3: cross-species population variability in XCI 
          ratios.............................................................................................................................149 
    5.4. Discussion for Results chapter 4: meta-analysis of preserved co-expression between 
 primary neural tissue and neural organoids...........................................................153 
    5.5. Future directions........................................................................................................157 
 
6. References.........................................................................................................................160 
 
7. Appendix 1 – Supplementary tables...............................................................................173 
 
8. Appendix 2 – References for Supplemental Table 4.1...................................................203 
 
List of Abbreviations 
 
AUROC  Area under receiver operating curve 
EN-TEx Epigenome and Tissue Expression dataset 
eQTL   Expression quantitative trait loci 
GO   Gene Ontology 
GTEx  Genotype-Tissue Expression dataset 
PCA  Principal Component Analysis 
RME  Random monoallelic expression 
RNA-seq RNA-sequencing 
scRNA-seq single-cell RNA-sequencing 
SNPs  Single Nucleotide Polymorphisms 
SRA  Sequencing Read Archive 
XCE  X-chromosome controlling element 
XCI  X-chromosome inactivation 



 6 

List of Figures 
Chapter 2 graphical abstract……………………………………………………………………......…25 
Figure 2.1 Timing of XCI determines lineage-specific XCI ratio probability……………………..…28 
Figure 2.2 The folded-normal model accurately estimates XCI ratio from unphased bulk RNA-
sequencing 
data…………………………………………….....……………………………………………….…..31 
Figure 2.3 Genes that escape XCI exhibit balanced biallelic expression across XCI skewed tissues..35 
Figure 2.4 XCI ratios are shared across germ layer lineages………………………….....……….…..39 
Figure 2.5 Individual tissue lineages exhibit increased variance in XCI ratios....................................42 
Figure 2.6 XCI and tissue lineage specification can be timed to a pool of cells by exploiting observed 
variability...............................................................................................................................................45 
Figure S2.1 Estimating robust XCI ratios from GTEx tissue samples..................................................58 
Figure S2.2 XCI escape genes exhibit balanced allelic expression in skewed XCI tissues..................60 
Figure S2.3 All tissues strongly predict skewed donors and are correlated in XCI ratios....................61 
Figure S2.4 Bulk tissue samples represent a mix of germ layer lineages.............................................62 
Figure 3.1 Reference aligned RNA-sequencing data enables scalable modeling of XCI ratios...........71 
Figure 3.2 Models of embryonic stochasticity explain adult population XCI variability.....................75 
Figure 3.3 XCI ratios are not associated with X-linked heterozygosity................................................78 
Figure 3.4 Low frequency variants exhibit moderate associations with XCI ratios..............................80 
Figure S3.1 Reference bias varies across individual SNPs...................................................................89 
Figure S3.2 Escape from XCI is enriched in chromosomal ends..........................................................90 
Figure S3.3 Reference allelic expression distributions exhibit bi-parental haplotype expression 
signatures expected of the X-chromosome............................................................................................91 
Figure S3.4 Comparing autosomal and X-chromosome allelic imbalances..........................................92 
Figure S3.5 Estimating embryonic cell counts from population XCI ratio variance............................93 
Figure S3.6 Species with no association between sample heterozygosity and variance in X-linked 
allelic expression...................................................................................................................................94 
Figure S3.7 Low frequency variants are powered to detect significant associations with XCI ratios..96 
Figure 4.1 Using meta-analysis to quantify preserved primary tissue co-expression in organoids....104 
Figure 4.2 Meta-analytic primary tissue cell-type markers.................................................................106 
Figure 4.3 Neural organoids vary in recapitulating primary tissue cell-type marker set co-    
     expression...........................................................................................................................113 
Figure 4.4 Neural organoids vary in their preservation of primary tissue gene-level co-expression..117 
Figure 4.5 Neural organoids capture temporal dynamics in primary tissue co-expression.................122 
Figure 4.6 The preservedCoexp R package enables fast computation of preserved co-expression....126 
Figure S4.1 MetaMarkers as temporally robust primary tissue cell-type markers..............................137 
Figure S4.2 MetaMarkers as regionally robust primary tissue cell-type markers...............................138 
Figure S4.3 Primary tissue MetaMarkers consistently predict organoid cell-types across    
        timepoints........................................................................................................................139 
Figure S4.4 Intra-marker set MetaMarker co-expression varies over organoid protocols..................140 
Figure S4.5 Preservation of MetaMarker set co-expression varies over organoid protocols..............141 
Figure S4.6 Neural organoid preserve co-expression of developing neural tissue over adult neural            
        tissue................................................................................................................................142 
Figure S4.7 Strength of MetaMarker co-expression in organoids is related to expression levels......144 
Table S2.1 Escape annotations. Related to Figure 2.3.........................................................................173 
Table S2.2 Germ layer-specific marker genes. Related to Figure 2.4.................................................179 
Table S4.1 Primary tissue and neural organoid dataset download and metadata................................190 
Table S4.2 Class-level grouping of author provided cell-type annotations.........................................196 
 
 



 7 

1. Introduction 

Complex multicellular organisms are composed of an immense diversity of cellular 

phenotypes distributed among cells sharing nearly identical genetic material. Exactly how 

such variation in cellular phenotypes arises from identical genomes is rooted in the 

developmental lineage relationships that link all cells. When daughter cells inherit a copy of 

the genome after cellular division, their functional genomic outputs can significantly diverge, 

both from each other and from the original ancestral genome, generating phenotypic 

diversity. C.H. Waddington formalized a mechanism linking the production of cellular 

diversity through developmental lineage with the term ‘epigenetics’ (Waddington 1942b), 

defined as effects inherited through cell divisions that direct the functional output of the 

genome (gene expression) without altering the DNA sequence. This progressive modulation 

of functional genomic output via developmental lineage defines the multitude of canalized 

routes a genome takes when transitioning from totipotency to differentiated phenotypes 

(Waddington 1942a), extracting vast cellular diversity from a single originating totipotent 

stem cell. Many investigative paths surround the study of developmental lineage and this 

thesis focuses on two distinct themes; 1.) exploiting a large-scale, developmentally early 

epigenetic event (X-Chromosome Inactivation, XCI) as a marker of developmental lineage to 

investigate early lineage specification events in mammals, and 2.) the venture of modeling 

developmental lineage in vitro (organoid systems). This thesis is structured around 3 specific 

research aims, each addressed with a separate manuscript: 

• Aim 1: Characterize early lineage events in human development through assessments 

of cross-tissue variability in XCI 

• Aim 2: Investigate stochastic and genetic factors contributing to population 

variability in XCI across mammalian species 
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• Aim 3: Quantify the fidelity of human neural organoid systems to primary neural 

tissue    

 

The introduction begins with a description of XCI along with an assessment of the field’s 

current understanding of the interplay between XCI and developmental lineage, outlining 

how cross-tissue and cross-species analyses of XCI variability can answer outstanding 

questions. This is followed by a description of organoid technologies with a focus on neural 

organoids and current challenges relating in vivo and in vitro biology.  

 

1.1. X-chromosome inactivation 

    Mammalian females and males differ genetically via their sex chromosomes, where 

females carry 2 X-chromosomes and males carry an X- and a Y-chromosome (Barr and 

Bertram 1949; Barr and Carr 1960). The Y-chromosome is extremely gene poor compared to 

the X-chromosome, containing only ~70 protein-coding genes to the ~850 X-linked genes 

(O’Leary et al. 2016). This large genetic imbalance produces a gene dosage discrepancy 

across the sexes, where females have twice the number of X-linked genes compared to males, 

theoretically generating a double dose of X-linked gene expression. Yet, for the most part, 

mammalian female cells do not produce twice the amount of X-linked gene product 

compared to male cells (Heard and Disteche 2006). This is due to X-chromosome 

inactivation (XCI), an epigenetic event that silences transcription from a single X-allele in all 

female cells, resulting in equivalent X-linked gene dosage across the sexes (Lyon 1961; 

Dossin and Heard 2021). 

 

 X-chromosome inactivation describes the massive epigenetic reconfiguration of a 

single X-allele in female cells to silence transcription (Dossin and Heard 2021), orchestrated 

through the long non-coding RNA XIST (Brown et al. 1992). XIST operates in cis, physically 
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coating its associated allele and triggering a cascade of epigenetic modifications that 

transform the allele into a highly condensed heterochromatic state, inhibiting gene expression 

(Fang et al. 2019; Dixon-McDougall and Brown 2022). XCI occurs developmentally early, 

typically in the first days/weeks of embryogenesis prior to implantation into the uterine lining 

(van den Berg et al. 2009), with the exact timing variable across species (Lyon 1972). XCI is 

also random and permanent (Evans et al. 1965; Wu et al. 2014). Each cell makes an 

independent choice for which allele to inactivate, with the inactivated allele inherited through 

cell divisions. This propagates the initial random choice of allelic inactivation down each 

cell’s subsequent lineage. As a combination of the early, random, and permanent nature of 

XCI, all female mammals are mosaics for X-linked gene expression (Migeon 2013), an 

enduring phenotypic consequence connecting all cells of an individual back to one of the 

earliest embryonic developmental milestones.  

 

An additional significant characteristic of XCI is that XCI ratios, the ratio of 

inactivated parental X-alleles, are highly variable within adult populations, ranging from 

balanced to completely skewed (Amos-Landgraf et al. 2006; Shvetsova et al. 2019). The XCI 

ratio of an individual becomes highly consequential in the presence of disease-causing X-

linked genetic variants, where the allelic direction and magnitude of XCI can directly 

influence manifestation of disease phenotypes (Migeon 2013). As such, it is a long-standing 

scientific effort to understand how population variability in XCI arises, with contemporary 

opinion favoring either direct or indirect genetic mechanisms (Belmont 1996; Migeon 1998; 

Brown and Robinson 2000).  

 

This is derived from several lines of evidence, that extreme XCI ratios are 

consistently associated with disease phenotypes of genetic X-linked disorders in 

heterozygous female carriers (Migeon 1971; Migeon et al. 1981; Devriendt et al. 1997; 
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Plenge et al. 2002) and that in mice, there is a strong genetic basis of variable XCI across 

laboratory strains (Simmler et al. 1993; Calaway et al. 2013; Sun et al. 2021). However, in 

the disease context, it remains difficult to prove whether disease variants generally cause 

skewed XCI or whether it is the combination of a disease variant and skewed XCI that result 

in disease phenotypes. When considering genetic mechanisms for variable XCI in mice, 

strong evidence for comparable mechanisms in human populations remains to be found 

(Peeters et al. 2016). Taken together, genetic explanations are poor general models for the 

observed population variability in XCI ratios and overlook the fundamental characteristics of 

XCI that naturally produce variability across individuals: the early, permanent, and random 

nature of allelic-inactivation during XCI.  

 

This thesis outlines how our current understanding of XCI variability is derived from 

an extremely narrow biological consideration, typically limited to data from single 

lineages/tissues (whole blood) and few mammalian species (human and mouse). The work 

presented here broadly extends analysis of XCI variability across numerous lineages/tissues 

in humans and across diverse mammalian species, addressing long-standing questions 

surrounding XCI variability. In Aim 1, extensive cross-tissue analysis of XCI in humans is 

performed and, through the lens of XCI as a marker for developmental lineage, characteristics 

of lineage specification are derived both at a broad organismal level and in a lineage-specific 

manner. In Aim 2, analysis of population XCI ratio variability is extended to 9 mammalian 

species, evaluating conserved aspects of XCI and exploring both stochastic and genetic 

models for explaining observed population XCI variability. 

 

1.2. XCI as a marker for developmental lineage 

Quickly following the initial hypothesis of random inactivation put forth by Mary 

Lyon in 1961 (Lyon 1961), it was recognized that the permanence of variable X-linked allelic 
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expression within an individual could be exploited to infer developmental lineage 

characteristics from adult data. The simplest instance of this is inferring whether a lineage 

had a single or multiple cell origin (Linder and Gartler 1965; Fialkow et al. 1967, 1971; 

Gartler et al. 1966). Lineages with a single cell origin would always have the same active 

parental X-allele, whereas both active parental alleles could be present for multi-cellular 

lineages. This approach was used effectively in the study of cellular origins for tumors 

(Linder and Gartler 1965; Fialkow et al. 1967, 1971; Gartler et al. 1966) and is largely 

responsible for our current understanding that many tumors are derived from single starting 

cells. The essential idea is associating variance of XCI ratios within a lineage to the number 

of cells that must have been selected earlier in development for that lineage.  

 

 Extending beyond the question of single or multi-cellular origins of a lineage, the 

variance of XCI ratios can be used to infer the exact number of cells that must have been 

present at the time of lineage specification (Gartler et al. 1969). Take a population of cells 

that has an equal mix of inactivated parental alleles, where a subset of these cells is selected 

for a specific lineage. If only a single cell was selected for the lineage, only a single active 

parental allele would be present within the lineage. If two cells were selected for the lineage, 

X-linked allelic expression can either be completely skewed with both cells carrying an active 

paternal or maternal X-allele, or completely balanced with the cells carrying different active 

X-alleles. The more cells that are sampled for the lineage, the less variable XCI ratios will be 

within that lineage. This relationship, perfectly described through binomial sampling 

distributions, has been used to estimate the size of progenitor pools for tissues for decades, 

typically limited to accessible tissues like blood and skin in humans (Gandini and Gartler 

1969; Gartler et al. 1969). Originally, heterozygotes with a clear phenotypic distinction 

between the X-alleles (G6PD deficiency) were used to estimate the XCI ratio of individuals 

in the 1960’s. More recent molecular approaches have removed the requirement for 
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observably distinct X-alleles, quantifying the XCI ratio of tissue samples through allele-

specific methylation(Amos-Landgraf et al. 2006; Allen et al. 1992) or expression patterns 

(Shvetsova et al. 2019; Szelinger et al. 2014). Importantly, most studies in humans are limited 

to accessible tissues and the vast majority of analysis for variance in XCI ratios is derived 

from whole blood samples. Not only is variance in XCI ratios informative for individual 

lineages, but it also is informative for inferring relationships across lineages and has yet to 

fully be exploited for large-scale lineage analysis within human data. 

 

   Inferring relationships across lineages from XCI ratio variability comes down to 

assessing the degree of shared variance in XCI ratios (Gandini et al. 1968; Nesbitt 1971; 

Fialkow 1973; McMahon et al. 1983). If two lineages are highly correlated in their XCI 

ratios, it can be inferred they likely shared a progenitor pool after XCI. The XCI ratios of the 

individual lineages would be sampled from the initial stochastically determined XCI ratio at 

the time of inactivation, establishing dependence across the lineages for XCI variability. If 

two lineages are largely uncorrelated and never share XCI ratios, XCI must have occurred 

independently across the lineages, i.e., after their specification. The first instance of assessing 

cross-tissue variability in XCI ratios to infer lineage relationships of non-accessible tissues 

was reported in 1971 through the work of Muriel Nesbitt (Nesbitt 1971). The work relied on a 

cytologically visible translocation (Cattanach’s translocation) on the mouse X-chromosome 

to distinguish cells that carried a normal or translocated inactivated X-chromosome, thus 

enabling XCI ratios to be computed. Co-variance in XCI ratios across 5 different tissues were 

computed revealing substantial shared variability in XCI ratios across all lineages. As only 

tissues from the ectodermal and mesodermal germ-layers were sampled (germ-layer 

specification is introduced more thoroughly in section 1.3.), the conclusion was reached that 

XCI precedes the separation of ectoderm and mesoderm tissues, in a pool of approximately 

13-21 progenitors. While limited in scale by the technologies at the time, the underlying logic 



 13 

and approaches for interrogating lineage relationships through XCI ratio variability presented 

within this early work are applicable to any measure of XCI ratios. Excitingly, more modern 

molecular approaches for estimating XCI ratios bring dramatic increases in scalability (see 

section 1.4.). A key scientific advance presented within this thesis is coupling these 

foundational ideas of characterizing developmental lineage through XCI variability with 

modern scalable measures of XCI ratios, to comprehensively map organism-wide lineage 

relationships in humans and, more broadly, perform extensive cross-species comparisons of 

population XCI variability.     

 

1.3. Unknowns of human development 

A hugely consequential lineage decision that may overlap with the timing of XCI is 

germ-layer specification (Ghimire et al. 2021). The ectodermal, endodermal, and mesodermal 

germ layers are specified from the inner cell mass of the blastocyst and go on to form all the 

tissues of the eventual individual, distinct from the extra-embryonic lineages that go on to 

form placental tissues. If germ-layer specification occurs after XCI, it is expected that XCI 

ratios will be shared across the germ-layers and subsequently across all tissues. If any degree 

of tissue specification occurs before XCI, XCI ratios across those lineages specified will be 

independent and are not expected to be shared. Presently, current evidence indicates XCI is 

initiated early in human development (van den Berg et al. 2009; Petropoulos et al. 2016; 

Moreira de Mello et al. 2017) , but the exact overlap in the completion of XCI and early 

lineage specification events, specifically embryonic tissue specification, is unclear. This can 

be attributed to the difficulty in studying human embryos, both ethically and technically, and 

the restriction to accessible tissues in adults. As it currently stands, the vast majority of our 

understanding relating XCI, developmental lineage, and adult XCI variability in humans 

stems from a single lineage, whole blood, which may not be generalizable when taking into 

account the developmental context of XCI.  



 14 

1.4. Utility of cross-tissue analysis of XCI ratios 

Several studies assessing XCI of whole blood samples in humans established XCI 

ratios are highly variable across individuals and are largely responsible for our understanding 

that XCI varies generally within adult populations (Amos-Landgraf et al. 2006; Shvetsova et 

al. 2019). However, as outlined above, the temporal relationship between XCI and early 

lineage specification has significant impacts on the variability of XCI across lineages, where 

observations from a single lineage may not be generalizable. This is clinically relevant as it is 

common practice to quantify an individual’s XCI ratio through a blood sample to assess one’s 

risk for X-linked disorder phenotypes. Typical approaches for comparing XCI ratios across 

tissues in humans are usually limited in the number of tissues assessed (Bittel et al. 2008; 

Hoon et al. 2015). While these studies report correlated XCI ratios across tissues, indicating 

XCI ratios are shared across lineages to an extent, a comprehensive assessment across 

lineages with extensive sampling of all germ-layer lineages is lacking.   

 

 Cross-tissue analysis of XCI ratios, when sampling across the three germ-layers, 

stands to address fundamental questions as to the timing of XCI and how XCI ratios present 

across lineages, revealing characteristics of developmental lineage at multiple scales. 

Assessments of shared XCI variance can reveal the temporal ordering of XCI and germ-layer 

specification and assessments of lineage-specific variance can infer lineage-specific 

progenitor cell counts. Such broad cross-tissue data for humans is present within the 

Genotype-Tissue Expression dataset (Lonsdale et al. 2013), which samples bulk RNA-

sequencing (RNA-seq) data from numerous tissues across hundreds of individuals. A key 

component of this thesis is the development of an approach to model XCI ratios from bulk 

RNA-seq data, enabling extensive cross-tissue analysis of XCI in humans and cross-species 

assessments. 
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1.5. Modeling XCI ratios from bulk RNA-sequencing data 

Bulk RNA-seq approaches sample gene expression across millions of cells within a 

tissue, where allele-specific expression across the X-chromosome can be extracted to model 

the XCI ratio of the sample. Take a tissue where 75% of cells carry an active maternal X-

allele, the other 25% carry an active paternal X-allele. When sampling gene expression in 

aggregate across this cell population, it is expected approximately 75% of sequencing reads 

will align to the maternal X-chromosome for any given heterozygous locus. However, there 

are many factors that can influence the allele-specific expression of any given individual 

gene, where the allelic expression ratio of a single gene may not reflect the true XCI ratio of 

the bulk tissue.  

 

Lowly expressed genes will have increased variability at the read-sampling level, 

identical to the relationship between small cell counts and increased XCI ratio variance 

(binomial sampling). Expression quantitative trait loci (eQTLs) can also cause deviations in 

allelic-expression from the underlying XCI ratio. And, escape from inactivation can also 

affect allele-specific expression of individual genes, a phenomenon where some genes are 

expressed from the inactive X-allele, producing biallelic expression in cells (Carrel and 

Willard 2005; Tukiainen et al. 2017). Luckily, XCI occurs on a chromosome-wide scale and 

aggregating allele-specific expression across numerous well-expressed genes averages in 

favor of the underlying XCI ratio of the tissue. Special attention is given to escape from 

inactivation, which may affect between 15-30% of the X-chromosome and also may be 

individual and/or tissue-specific (Berletch et al. 2015; Tukiainen et al. 2017; Zito et al. 2021). 

In Aim 1, previously annotated human escape genes are excluded from analysis and in Aim 2, 

regions of the X-chromosome that exhibit escape signal are excluded across species. 
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The central approach for modeling XCI ratios from allele-specific gene expression is 

to first identify heterozygous loci and then determine the number of reads that align to each 

parental allele. This typically requires the use of additional genetic information in the form of 

personal and/or parental DNA-sequencing to identify heterozygous variants and determine 

the phasing of each read (allelic identity of each read). Such approaches are costly and do not 

enable scalable analysis of XCI ratios, a requirement for cross-species assessments 

specifically. Instead, the combination of identifying heterozygous variants from RNA-

sequencing reads and using a reference genome for alignment and quantifying allele-specific 

expression would allow XCI ratios to be extracted from any bulk RNA-seq sample. Specific 

methodological details for this approach are provided in the methods sections pertaining to 

Aim 1 and Aim 2 (pages 48-50, pages 82-83). Briefly, we utilize folded statistical 

distributions (Urbakh 1967; Gart 1970) to estimate the magnitude of XCI ratios through 

aggregated allelic-expression of numerous X-linked genes. This represents a scalable method 

of assessing XCI ratios applicable to any bulk RNA-seq sample, enabling both large-scale 

cross-tissue and cross-species analysis of XCI ratios. 

 

1.6. Genetic considerations for variability in XCI ratios 

So far, variability in XCI ratios has been introduced through the lens of 

developmental lineage and stochasticity. However, there exists credible evidence for genetic 

influences on XCI ratios that may impact XCI ratio variability outside of developmental 

stochasticity. These can be summarized as either direct genetic effects on XIST that can 

influence the initial choice of allelic inactivation or mechanisms of allelic-selection through 

genetic variability that can operate across development and introduce variability into XCI 

ratios (Migeon 1998; Brown and Robinson 2000). 
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The primary example of clear genetic influence on XCI ratios is the well-described 

preferential inactivation of specific X-alleles in heterozygous laboratory mice. Extensive 

genetic and molecular analysis of XCI in mice have revealed a specific X-linked locus 

involved in the regulation of XIST expression and subsequently XCI, termed the X-

chromosome controlling element (XCE) (Simmler et al. 1993; Calaway et al. 2013; Sun et al. 

2021). Heterozygous crosses exhibit preferential allelic X-inactivation dependent on the XCE 

alleles carried by the parental strains. To date, there is evidence for 6 such XCE-alleles that 

together form an allelic series of inactivation (Sun et al. 2021). The presence of a genetic 

locus with direct influence on the choice of allelic-inactivation in mice suggests the same 

may be true in human populations, due to the fact XCI is a highly conserved feature across 

mammalian species. However, evidence for a comparable XCE-locus in humans is so far 

non-existent (Peeters et al. 2016), with the strongest evidence for direct genetic effects on 

XCI in humans limited to select variants found in/around XIST, typically restricted to small 

family studies (Plenge et al. 1997). It remains an open question whether XCE-like effects 

exist in other mammalian species, as the vast majority of XCI data is derived from human and 

mouse populations. 

 

A separate case for genetic influence over XCI ratios is the active selection for or 

against specific X-alleles over developmental timespans, instigated through genetic 

variability across the X-alleles (Migeon 1998; Belmont 1996). Such genetic variability can be 

disease-related, with a disease variant imparting a selective effect, or through an aggregate 

effect of chromosome-wide heterozygosity across the alleles, though evidence for the latter is 

weak. For the disease-case, there is extensive evidence for such selection in humans across 

distinct X-linked diseases. Genetic disorders that impact the proliferation rates of carrier cells 

can drive skewing in favor of the mutant allele, manifesting in disease phenotypes for 

heterozygous carriers (Migeon 1971; Migeon et al. 1981; Devriendt et al. 1997). Similarly, if 
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not always disease associated, large-scale structural aberrations, such as X-autosome 

translocations, have evidence for instigating allelic selection and result in skewed XCI 

(Schmidt and Sart 1992). Typically, such cases of allelic-selection manifest through 

extremely skewed XCI ratios. While this association has linked genetic influence to XCI 

ratios within the literature, it cannot explain the observed continuous nature of XCI ratios in 

normal populations.   

 

1.7. Utility of cross-species analysis of XCI ratios 

For assessing the relative influences of stochastic or genetic effects on XCI ratios, 

cross-species analysis is particularly powerful. To date, the vast majority of data on 

population XCI ratio variability is derived from human and mouse populations, making it 

difficult to distinguish between species-specific or conserved aspects of XCI. Our approach 

for modeling XCI ratios from RNA-seq reads exploits naturally occurring genetic variability, 

enabling broad assessments of genetic associations with XCI ratios, relevant to any species 

analyzed. In Aim 2, we first establish population distributions of XCI ratios across 9 

mammalian species and assess the explanatory power of stochastic models. We then explore 

potential genetic associations with XCI ratios, at both a broad chromosomal and variant-

specific level. 

 

1.8. Summary for Aims 1 and 2 

In summary for aims 1 and 2, variability in XCI is highly informative for inferring 

characteristics of developmental lineage at multiple scales, but has yet to be fully exploited 

for the study of human development and cross-species assessments. Utilizing an approach for 

estimating XCI ratios from reference aligned bulk RNA-seq data, extensive cross-tissue 

assessments of XCI variability are performed using the GTEx dataset and population 

variability in XCI ratios is computed across 9 mammalian species. This work characterizes 
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early lineage specification events during human development and explores the stochastic and 

genetic basis of XCI variability across mammals, extending our understanding of XCI and its 

developmental consequences on multiple fronts.    

 

1.9. Organoid systems for in vitro modeling of developmental lineage 

Experimental study of in vivo developmental processes is challenging due to the 

technical difficulties in accessing developing tissues and, specifically for humans, the ethical 

limitations for performing experiments on embryonic material. In vitro cell culture 

approaches have been an instrumental tool in the experimental study of developmental 

lineage, where the process of differentiation can be captured and interrogated within a dish. 

An exciting recent methodological development was the advent of 3-dimensional cell 

culturing systems, where stem cells are cultured within a 3D scaffold of extracellular matrix 

(Eiraku et al. 2008; Sato et al. 2009). The shift to a 3D culture environment brought 

remarkable changes to the behavior and lineage production of stem cells, which were able to 

now produce multi-cellular structures composed of a variety of cell types with spatial 

organization resembling endogenous tissues (Lancaster et al. 2013; Corrò et al. 2020). These 

self-organized structures are termed organoids and present the opportunity for experimental 

in vitro study of developmental lineage in a medium much closer to in vivo development 

compared to traditional 2D cell culture. An impressive array of tissue-specific organoids has 

been established over the years, including lung (Sachs et al. 2019), kidney (Takasato et al. 

2015), liver (Huch et al. 2013), intestinal (Sato et al. 2009), and neural organoids (Watanabe 

et al. 2005; Lancaster et al. 2013) to name a few. This diversity in model systems holds 

promise to rapidly expand our understanding across an extensive range of developmental 

phenomenon. However, observations in organoids are only applicable to in vivo 

developmental processes depending on how accurately these models recapitulate primary (in 

vivo) tissue development, an area of active investigation across organoid systems.   
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The practice of comparing in vivo and in vitro data to assess similarities and 

differences (Camp et al. 2015; Velasco et al. 2019; Bhaduri et al. 2020; Gordon et al. 2021; 

Feng et al. 2022) is technically challenging, as these comparisons are inherently confounded 

by batch (Leek et al. 2010). This makes it difficult to disentangle batch effects from the 

underlying primary tissue and organoid biology, raising concerns on the generalizability of 

findings from such comparisons. While numerous batch integration techniques exist for a 

variety of batch scenarios (Cheroni et al. 2022), integration can strip away meaningful 

biological variation in the effort to standardize across batches (Zhang et al. 2023). An 

independent approach to integration is the meta-analytic assessment of replicability across 

batches (Tanaka et al. 2020; Cheroni et al. 2022; Kim et al. 2023), identifying the biological 

signal that is robust to batch effects and likely a more comprehensive representation of the 

underlying biology. For primary tissue and organoid comparisons, this would entail first 

identifying replicable signal across batches independently for primary tissue and organoid 

datasets and then assessing the degree organoids recapitulate primary tissue biology. An 

informative biological signal for this purpose that also enables the assessment of 

developmental lineage across primary tissue and organoids is gene co-expression (Zhang and 

Horvath 2005). 

 

1.10. Gene co-expression for functional comparisons across biological systems 

A long-standing observation is that genes which are functionally related are 

expressed together, where the strength of correlated gene expression defines the co-

expression relationship between genes (Stuart et al. 2003). Gene co-expression is particularly 

amenable to meta-analysis as it defines a shared genomic space that can be aggregated across 

batches (Lee et al. 2020), identifying the functional genomic output that is robust to batch 
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effects. This is especially relevant to primary tissue and organoid comparisons, where gene 

co-expression can quantify functional similarities and differences between the systems. 

 

The co-expression relationships of genes are ultimately a product of the epigenetic 

configuration of the genome, which directs which portions of the genome are active to 

produce some phenotype. This in turn is a product of the developmental lineage of the 

genome, the carefully orchestrated genomic reconfigurations that transition from a pluripotent 

state to some specific phenotypic end-state. Taken together, comparisons of gene co-

expression across primary tissue and organoid systems can be interpreted as a measure of 

comparable developmental lineage, quantifying whether lineages in vitro were successful in 

producing the same endo-phenotypes as primary tissue.  

 

1.11. Neural organoids 

A particularly challenging developmental process to study is the development of the 

brain, by large the most complex tissue in terms of the diversity of cell-types produced and 

their spatial arrangements. It follows that neural organoids are one of the more diverse 

organoid systems, with immense variability across protocols attempting to model ever 

increasingly specific brain regions or cell-types/lineages (Mayhew and Singhania 2023; 

Lancaster and Knoblich 2014; Sakaguchi et al. 2015; Qian et al. 2016; Xiang et al. 2017; 

Birey et al. 2017; Xiang et al. 2019; Miura et al. 2020; Eura et al. 2020; Andersen et al. 2020; 

Huang et al. 2021; Sozzi et al. 2022). This technical diversity across neural organoids 

complicates assessments of fidelity to primary tissues, where each protocol is assessed ad hoc 

in a study-specific manner with few considerations for generalizability across protocols. 

Meta-analytic approaches stand to be particularly useful for neural organoids, potentially 

identifying replicable features that can be exploited for generalizable quality control metrics. 

A more detailed introduction to neural organoids is provided in section 4.4.   
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There are many axes of variation to consider when comparing primary neural tissue 

and neural organoids, which are often approached with attempts to isolate specific biological 

variability as much as possible to make controlled observations. In other words, the goal of 

neural organoids is to accurately model the regional, temporal, and genetic dynamics that 

produce specific cell-types, so regional, temporal, and genetic cell-type controls are typically 

employed when comparing to primary neural tissues. Rather than ever increasingly specific 

controls that might be difficult to define or capture in primary neural tissues, more general 

representations of cell-types across brain regions, timepoints, and individuals would facilitate 

a more generalizable framework for in vivo/in vitro comparisons. 

 

1.12. Summary for Aim 3 
 

 In the third aim of this thesis, meta-analytic co-expression of specific cell-types is 

derived across highly diverse primary tissue and organoid datasets, sampling across the first 

two trimesters of neural development, numerous brain regions and individuals, and sampling 

numerous organoid differentiation protocols. We argue primary tissue cell-type specific co-

expression relationships that are robust to temporal, regional, and technical variation 

constitute a quality control benchmark applicable to any neural organoid dataset for in vivo/in 

vitro assessments of fidelity. Specifically, we focus on quantifying the preservation of co-

expression across systems, which provides quantifications of fidelity at the gene, cell-type, 

and whole genome scales. In summary, this work presents a field-wide assessment of fidelity 

between in vitro models of neural development and primary neural tissues, deriving a 

generalizable quantitative benchmark applicable to highly heterogeneous neural organoid 

systems.  
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2. Variability of cross-tissue X-chromosome inactivation characterizes timing of 

human embryonic lineage specification events 
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2.3. Results summary 

In this work, human cross-tissue variability of XCI ratios is assessed using bulk 

RNA-seq samples from the GTEx dataset, sampling across 49 different tissues from 311 

individuals, representing all 3 germ layer lineages. Quantifying the degree of variance in XCI 
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ratios within lineages or shared variance across lineages is informative for inferring 

progenitor pool cell counts and lineage relationships. The breadth of tissue sampling within 

the GTEx dataset presents the opportunity for investigating organism-wide lineage 

relationships and for resolving characteristics of early developmental lineage in humans, 

which are otherwise difficult to assess. First, using phased data from the EN-TEx consortium, 

we demonstrate the accuracy of our approach for estimating XCI ratios from bulk reference-

aligned RNA-seq samples. We then explore the consequences of escape from XCI on our 

modeling results, revealing negligible impacts, and provide novel evidence of escape for 19 

genes.  We compute correlations of XCI ratios across all tissues, demonstrating that XCI 

ratios are comparably shared across tissues derived from all three germ-layers. We 

additionally deconvolve the bulk RNA-seq samples into germ-layer specific contributions 

using single-cell RNA-seq from the GTEx dataset, revealing XCI ratios are correlated across 

germ-layer specific markers, corroborating results from the non-deconvolved data. We 

estimate the number of cells that must have been present during XCI in the embryonic 

epiblast to be between 6-16 cells to produce the observed variance in XCI ratios across 

tissues. We additionally explore lineage-specific variability in XCI ratios to model cell counts 

for tissue-specific lineage specification. We demonstrate a subset of tissues are enriched for 

switching the dominant parental direction of inactivation. This suggests increased variance in 

XCI ratios within specific lineages, which we explain through a model of small cell number 

sampling during lineage specification. In conclusion, this work demonstrates XCI ratios are 

generally shared across all tissues, providing evidence that XCI occurs before any tissue 

specification in human development and the stochastic embryonically determined XCI ratio is 

propagated through development to all tissues. While additional cell sampling events can 

contribute to XCI variability for specific tissues, we conclude much of the observed variation 

in XCI ratios within human populations can be explained by the inherent stochasticity of 

XCI. This work resolves early organism-wide lineage relationships and infers lineage-specific 
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characteristics during human development by exploiting the early, random, and permanent 

nature of XCI.  

 

2.4 Graphical abstract: 
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2.5 Introduction: 

Every cell within female mammalian embryos undergoes the process of X-

chromosome inactivation (XCI), which silences expression from a single randomly chosen X-

allele via epigenetic mechanisms (Migeon 2013; Lyon 1961; Dossin and Heard 2021). The 

random choice of which allele to inactivate occurs early in development and is permanent 

thereafter with the inactivated allele propagated through each cell’s developmental 

lineage(Lyon 1972). As a result, adult females exhibit mosaic X-linked allelic expression 

throughout every tissue within the body, an enduring phenotypic consequence of an early 

embryonic milestone. The random, permanent, and developmentally early nature of XCI 

positions the whole-body mosaicism of X-linked allelic expression as a lineage marker 

reaching back to the earliest embryonic stages (Mclaren 1972; Nesbitt 1971). Careful analysis 

of X-linked allelic expression across individuals and tissues can thus reveal whole-body 

lineage relationships stemming from some of the first lineage decisions made during 

embryogenesis (Nesbitt 1971; Fialkow 1973; Bittel et al. 2008; Monteiro et al. 1998).   

 

While the probability for inactivation is equal between the X-alleles in humans, 

variation in XCI allelic ratios across individuals is a salient feature of XCI. Deviation from 

the expected XCI allelic ratio of 0.5 can arise through various mechanisms (Brown and 

Robinson 2000; Schmidt and Sart 1992; Naumova et al. 1996; Wu et al. 2014) with the most 

basic being the inherent stochasticity of the initial choice of allelic inactivation (Shvetsova et 

al. 2019). The variability of the initial XCI ratio within the embryo is directly linked to the 

number of cells present during inactivation where smaller cell numbers result in increased 

variability of XCI ratios (Nesbitt 1971). In fact, one can estimate the number of cells present 

at the time of inactivation by analyzing the variance of XCI ratios across a population. 

Several studies using this approach (Shvetsova et al. 2019; Amos-Landgraf et al. 2006) , as 
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well as studies utilizing in vitro embryonic models (Moreira de Mello et al. 2017; Petropoulos 

et al. 2016; van den Berg et al. 2009), have estimated that XCI occurs in a small stem cell 

pool within the human embryo with estimates as little as 8 cells. The combination of the 

random nature and small pool of cells present during XCI imparts an ever-present basal-level 

of variability in XCI ratios within adult human populations. 

 

The stability of XCI down lineages means that minor cell sampling variation can be 

used as a marker for any process involving selection of a set of cells, i.e., lineage 

specification (Nesbitt 1971; Fialkow 1973). While growing evidence indicates XCI is 

initiated early (Moreira de Mello et al. 2017; Petropoulos et al. 2016; van den Berg et al. 

2009) , the exact timing of XCI as it relates to early lineage specification is unclear (Geens 

and Chuva De Sousa Lopes 2017) and has important implications for the variance in XCI 

ratios across early lineages. Specifically, the extent of variability in XCI across adult tissues, 

those derived from the embryonic lineage during embryogenesis, is a long-standing question 

(Bittel et al. 2008; Hoon et al. 2015) and directly linked to the timing of XCI and early 

lineage events. Germ layer specification is the first lineage decision made for all future 

embryonic tissues and occurs during post-implantation embryonic development (Ghimire et 

al. 2021), a similar timeframe to XCI. If XCI is completed before germ layer specification 

each germ layer would be specified from the same pool of cells with a set XCI ratio (Fig. 

2.1A). The germ layer-specific XCI ratio would be dependent on the initial XCI ratio 

resulting in shared XCI ratios across germ layers (Fig. 2.1A) and the subsequently derived 

adult tissues. In contrast, if XCI is completed after germ layer specification, germ layer-

specific XCI ratios are set independently and are not expected to be shared across the 

different germ layers (Fig. 2.1B), producing variance in XCI ratios across adult tissues. 

Consequently, comparing XCI ratios for tissues within either the same or different germ layer 

lineages can reveal the temporal ordering of XCI and germ layer specification.  
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Figure 2.1: Timing of XCI determines lineage-specific XCI ratio probability 
 
A, Schematic representing completed XCI before germ layer specification. Each germ layer 
inherits the same randomly determined XCI ratio set prior to germ layer lineage specification. 
The probability distribution of XCI is determined by the number of cells present during 
inactivation. B, Schematic representing completed XCI after germ layer specification. The 
XCI ratio for each germ layer is set independent of one another, together along with variation 
in cell numbers fated for each germ layer results in variable XCI ratios across the germ layer 
lineages. 
 

An additional early lineage event that may overlap with XCI is 

extraembryonic/embryonic lineage specification (Moreira de Mello et al. 2017; Petropoulos 

et al. 2016), which precedes germ layer lineage specification. If XCI occurs before or during 

extraembryonic/embryonic lineage specification, variance in XCI ratios across adult tissues 

will be influenced by the initial stochasticity of XCI and the subsequent cell selection for the 

embryonic lineage. In other words, variance in XCI ratios across the germ layer lineages is 

tied to their last developmental common denominator: the specification of the embryonic 

epiblast. Since extraembryonic tissues do not contribute to adult tissues, the timing of XCI 
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and extraembryonic/embryonic lineage specification provides the developmental context that 

variance in adult tissues is potentially tied to the specification of the embryonic epiblast. 

 

In this study, we develop an approach to determine the tissue XCI ratio from 

unphased bulk RNA-sequencing data, allowing us to assess XCI ratios from any publicly 

available RNA-sequencing dataset. Utilizing the tissue sampling scheme of the Genotype-

Tissue Expression (GTEx v8) project (Lonsdale et al. 2013), we analyze XCI ratios for 49 

tissues both within and across individuals for 311 female donors (Fig. S2.1). We establish that 

XCI ratios are shared for tissues both within and across germ layers demonstrating that XCI 

is completed before any significant lineage decisions are made for embryonic tissues. 

Additionally, we extend population-level modeling of variance in XCI ratios to all well-

powered tissues, deriving estimates for the number of cells present at the time of embryonic 

epiblast and tissue-specific lineage commitment. By providing cell counts, temporal ordering 

of lineage events, and lineage relationships across tissues, capturing the statistical 

commonalities that underlie the inherently stochastic nature of XCI is a powerful approach 

for resolving questions of early developmental lineage specification.  

 

2.6 Results 

2.6.1 The folded-normal model accurately estimates XCI ratios from unphased data 

A practical consequence of bulk RNA-sequencing is that the XCI ratio of a tissue can 

be estimated from the direction and magnitude of X-linked allele-specific expression. For a 

tissue with 75% of cells carrying an active maternal X-allele, approximately 75% of RNA-

sequencing reads for heterozygous loci are expected to align to the maternal X-allele (Fig. 

2.2A). However, allelic expression for any given gene is affected by a variety of factors both 

biological (e.g., eQTLs) and technical (e.g., read sampling). To derive robust estimates, we 
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aggregate allelic expression ratios across well-powered intra-genic heterozygous SNPs for a 

given tissue, providing a chromosome-wide estimate of the tissue XCI ratio (Fig, 2.2A).  

 

When aligned to a reference genome, reference alleles will be composed of both 

maternal and paternal alleles for a given sample. It follows that reference allelic expression 

ratios represent the expected expression ratios from both the maternal and paternal alleles 

given the XCI ratio of the tissue (Fig. 2.2A). To account for this, folding the reference allelic 

expression ratios about 0.5 aggregates the imbalanced allelic expression within the tissue 

across the two alleles. This enables the magnitude of the XCI ratio to be estimated from 

unphased expression data by fitting a folded distribution (Gart 1970; Urbakh 1967) (see 

methods, Fig. 2.2A-B).  

 

To assess the accuracy of the folded-normal model in estimating XCI ratios, we test 

our approach with phased bulk RNA-sequencing data from the EN-TEx (Rozowsky et al. 

2021) consortium, a total of 49 tissue samples from 2 female donors spanning 26 different 

tissues. Comparing the unphased estimates derived with the folded-normal model to the 

phased median allelic expression per sample, we find nearly perfect XCI ratio estimate 

correspondence for ratios greater than 0.6 (Fig. 2.2C). For samples skewed closer to the 

folding point of 0.5, model misspecification of the underlying distribution makes the estimate 

overconservative.  
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Figure 2.2: The folded-normal model accurately estimates XCI ratios from unphased bulk 
RNA-sequencing data 
 
A, Schematic demonstrating how allelic expression of heterozygous SNPs reflect the XCI 
ratio of bulk tissue samples. Aligning expression data to a reference genome scrambles the 
parental haplotypes. Folding the reference allelic expression ratios captures the magnitude of 
the tissue XCI ratio. B, Distributions of reference allelic expression ratios for identified 
heterozygous SNPs across tissue samples exhibiting a range of bulk XCI ratios. Both the 
unfolded (top row) and folded distributions with the fitted folded normal model (bottom row) 
are shown. C, For the EN-TEx tissue samples, the phased median gene XCI ratio is plotted 
against the unphased XCI ratio estimate from the folded normal model. The folded normal 
model produces near identical XCI ratio estimates for samples with XCI ratios greater than or 
equal to 0.60. D, Deviation of the folded normal model from the phased median gene XCI 
ratio when excluding or including known escape genes. E, Aggregated folded reference 
allelic expression distributions for known escape and inactive genes in EN-TEx tissues with 
XCI ratios >= 0.70. F, Root mean squared error distributions for GTEx tissue samples binned 
by their original estimated XCI ratio as read depth per SNP is gradually reduced. See also 
Figure S2.1. 

 

Our approach for estimating XCI ratios aggregates allelic expression across 

numerous heterozygous loci, averaging away mechanisms outside of XCI that may impact X-

linked allelic expression. A widespread mechanism that may still impact our XCI ratio 

estimates is escape from inactivation, where a gene is biallelically expressed from the active 

and inactive X-alleles (Tukiainen et al. 2017). Between 15-30% of genes on the X-

chromosome have documented evidence for escape (Tukiainen et al. 2017; Carrel and Willard 

2005). While we exclude known escape genes (Tukiainen et al. 2017) from our folded-normal 

XCI ratio estimates, it is very likely unannotated escape genes are present within the data. To 

identify the impact of escape on our XCI ratio estimates, we compare folded-normal XCI 

ratio estimates derived with either excluding or including known escape genes to the phased 

XCI ratio of tissues excluding the known escape genes (Fig. 2.2D). Including known escape 

genes biases the folded-normal XCI ratio estimates towards 0.5 (Fig. 2.2D). By comparing 

allelic ratios of known escape genes to all other genes in EN-TEx tissues with XCI ratios >= 

0.7, we clearly see escape genes trend towards balanced biallelic expression contributing to 

the underestimated XCI ratios when including escape genes (Fig. 2.2E).  
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To assess variance in XCI and escape more broadly, we capitalize on the tissue sampling 

structure of the Genotype-Tissue Expression (GTEx v8) dataset (Fig. S2.1). From an average 

of 56 +- 23.5 (SD) well-powered heterozygous SNPs (genes, see methods) per sample (Fig. 

S2.1), we derive robust XCI ratio estimates for 4658 GTEx tissue samples spanning 49 

different tissues (Fig. S2.1).  

 

 In addition to biological sources of variation (escape), read depth is a critical source 

of technical variation to assess when analyzing allelic expression. Sampled allelic expression 

is the result of a binomial sampling event dependent on the number of reads sampled and the 

probability of allelic expression. While we employ stringent read count requirements (see 

methods), we additionally explore how robust our tissue-level XCI ratio estimates are in the 

face of global decreases in read depths across genes (Fig. 2.2F). As read depths per gene are 

decreased (10%, 20%, 30%, etc.), the vast majority of increased error in the XCI ratio 

estimates is constrained to the estimates below 0.6 (Fig. 2.2F), whereas the most skewed 

tissue samples (XCI ratio estimates above 0.9) display nearly zero additional error even up to 

an 80% reduction in read depth (Fig. 2.2F). These results are in line with our phased vs 

unphased comparisons demonstrating XCI ratio estimates above 0.6 (Fig. 2.2C) are highly 

accurate. Additionally, these results appear to be independent of the number of genes used to 

estimate the tissue XCI ratio (Fig. S2.1), where we use a minimum of 10 genes per sample. 

This suggests that aggregating allelic expression over even a modest number of genes is 

powered to accurately estimate tissue XCI ratios above 0.6 from bulk RNA-sequencing data. 

 

2.6.2 Escape genes exhibit consistent cross-tissue biallelic expression 

Our method to quantitatively determine the tissue XCI ratio via aggregating signal 

across genes is especially well-suited to explore escape from XCI within the GTEx dataset 

(Fig. 2.2E). Our basic strategy for detecting escape genes is to calculate each gene’s 
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consistency with the aggregate chromosomal inactivation ratio. Assessing all X-linked genes 

utilized in our GTEx XCI ratio estimates (Fig. 2.3A) and previously annotated constitutively 

escape genes (Tukiainen et al. 2017) results in a wide range of correlations between gene and 

tissue XCI ratios, exemplified by the genes SHROOM4 and TCEAL3 (Fig. 2.3B). As 

expected, the transcripts associated with XCI, namely, XIST and TSIX, show some of the 

highest correlations to the tissue XCI ratio (i.e., top 8.7%, Fig. 2.3B). Similarly, known 

escape genes exhibit some of the smallest correlations (Fig. 2.3B). Interestingly, several 

genes previously annotated as escape do exhibit rather strong correlations to the XCI ratio of 

tissues. We find that increased gene expression is linked to increased correlation to the tissue 

XCI ratio (Fig. 2.3C) suggesting that some gene variation with respect to the tissue XCI ratio 

is technical, reflecting read sampling at low expression. At matched expression levels, 

previously annotated escape genes have smaller tissue-gene XCI ratio correlations compared 

to all other genes (Fig. 2.3C), demonstrating that known escape genes are less correlated to 

the tissue XCI ratio as expected by expression levels alone.  

 

From our analysis in the EN-TEx dataset, escape from inactivation trends toward 

balanced biallelic expression rather than achieving completely equal allelic expression (Fig. 

2.2E), explaining how some escape genes retain significant correlations to tissue XCI ratios 

in the GTEx dataset. To comprehensively test the degree to which escape produces balanced 

allelic expression, we construct a one-sided test to detect whether a gene consistently trends 

towards balanced biallelic expression regardless of the XCI ratio of the tissue (see methods, 

Fig. S2.2). Against a null distribution of inactivated genes, we are able to identify genes with 

consistent biallelic expression in opposition to the aggregate imbalanced tissue XCI ratio, 

indicating escape from XCI (Fig. 2.3D).  
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Figure 2.3: Genes that escape XCI exhibit balanced biallelic expression across XCI skewed 
tissues  
A, The genomic location and number of GTEx samples each gene is detected for the 542 
genes that pass our quality control filters. B, All 542 genes and 45 known escape genes 
ranked by the Pearson correlation coefficient for each gene’s allelic expression and the XCI 
ratio of the tissue for samples that detect that gene. C, Distributions of gene-tissue XCI ratio 
correlations for all 542 genes and 45 escape genes, binned by average expression. The range 
of average expression is binned into 4 equally spaced bins. We label the top 50% of ‘all other 
genes’ in each expression bin as ‘inactive genes’ and the bottom 50% as ‘unknown’ genes, as 
they are potentially a mix of inactive and unannotated escape genes. D, An example for how 
the empirical p-values are calculated for a given test gene across tissue samples. For a given 
tissue sample, we calculate each gene’s allelic expression ratio deviation from 0.5, where the 
black histogram represents the deviations from the inactive genes in the sample and the blue 
dotted line represents the deviation of the given test gene in the sample, ARHGAP4 in this 
example. We apply Fisher’s method to aggregate each test gene’s distribution of empirical p-
values to calculate a meta-analytic p-value to determine significance (ARHGAP4 meta-
analytic p-value: 4.44e-21, SLC6A8 meta analytic p-value: 0.997). E, The aggregated 
empirical p-value distributions for inactive, known escape, and the unknown genes now 
classified as confident inactive and novel escape are plotted. The unknown genes are 
classified as either confident inactive or novel escape by using a significance threshold of 
meta-analytic p-value < .001. F, The percent of genes previously annotated for escape per 
sample is plotted against the difference between the sample’s XCI ratio estimates derived 
when either including or excluding the previously annotated escape genes. The inset plot 
compares the XCI ratio estimates derived without the known escape genes (x-axis) or 
including the known escape genes (y-axis). See also Figure S2.2 and Table S2.1.   

 

Testing the known escape genes using this approach results in significant escape 

signal (Fig. 2.3E). Similarly, we are able to identify 19 genes previously unannotated for 

constitutive escape to have significant escape signal (p-value < .001): ARHGAP4, BTK, 

CASK, CHRDL1, CLIC2, COX7B, CTPS2, CXorf36, F8, ITM2A, MECP2, MPP1, 

NLGN4X, PGK1, RPL36A, SASH3, SEPT6, STARD8, VSIG4 (Fig. 2.3E, Fig. S2.4). 

Revisiting these genes within the literature, several have prior evidence for escape, though 

typically limited in the tissues assessed: BTK (Hagen et al. 2020; Zito et al. 2021), CASK 

(Zito et al. 2021), CHRDL1 (Zito et al. 2021), CLIC2 (Tukiainen et al. 2017; Zito et al. 

2021), COX7B (Larsson et al. 2019), CTPS2 (Balaton et al. 2021), CXorf36 (Winham et al. 

2019), MPP1 (Zito et al. 2021), NLGN4X (Tukiainen et al. 2017; Zito et al. 2021), SASH3 

(Zito et al. 2021), SEPT6 (Zhang et al. 2013), VSIG4 (Berletch et al. 2015). Our results 

suggest these genes escape inactivation more broadly than previously reported. In addition, 
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our analysis provides supporting evidence of escape for 34 previously annotated escape genes 

and supporting evidence of inactivation for 143 genes (Table S2.1). While in this analysis we 

are powered to identify more constitutively escape genes, variability in escape across tissues 

and individuals is well documented. As such, our escape annotations are robust to the GTEx 

data we sample over and will benefit greatly from future experimental follow up.   

 

To test the impact of including escape genes on our GTEx tissue XCI ratio estimates, 

we compare our original tissue XCI ratio estimates to estimates calculated while including the 

known escape genes (Fig. 2.3F). The inclusion of escape genes results in slightly 

underestimated XCI ratios (Fig. 2.3F), though the impact is minimal with an average absolute 

deviation of 0.0088 (± 0.010 SD) between XCI ratio estimates including/excluding the known 

escape genes. This demonstrates our folded aggregation of allelic expression across genes to 

estimate XCI ratios is robust to noise generated by escape from inactivation.   

  

2.6.3 XCI is completed prior to germ layer specification 

Having developed a robust approach to measure XCI ratios from unphased data, we 

turn to assessing the degree XCI ratios are shared across tissues within individuals. As an 

initial visualization of XCI ratios across tissues, we order all female GTEx donors by their 

average XCI ratio and plot the ratio for all tissues grouped by germ layer (Fig. 2.4A). XCI 

ratios qualitatively appear consistent across all tissues and the three germ layers (Fig. 2.4A). 

We then ask how well do individual tissues predict all other tissues’ XCI ratios, which we 

quantify with the AUROC (area under receiver operating characteristic curve) metric (Fig. 

S2.3). For a given tissue, we take the average XCI ratio of all other tissues for each donor and 

use this average to classify the donors as low/high XCI ratio donors. If the given tissue’s XCI 

ratio can recapitulate the same low/high classifications of the donors, this indicates that 

tissue’s XCI ratio is in concordance with the average of all other tissues and would result in 
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an AUROC close to 1. Across various thresholds for defining low/high donors, we see that 

performance is high and consistent across all tissues, suggesting XCI ratios are generally 

shared across all tissues for an individual (Fig. S2.3).  

 

Stratifying tissue comparisons of XCI ratios by germ layer lineage relationships 

should resolve the temporal ordering of XCI and germ layer specification within the human 

embryo. If XCI occurs before germ layer specification, tissue XCI ratios are expected to 

positively covary across tissues from different germ layer lineages (Fig. 2.1A). In contrast, if 

XCI occurs after germ layer specification, the XCI ratio of each germ layer is set 

independently and there is little expected covariance in XCI ratios for tissues from different 

germ layers (Fig. 2.1B). We compute correlations of the XCI ratio for combinations of tissues 

derived from either the same or different germ layers, exemplified in Figure 2.4 panel B. 

Tissues sharing the same germ layer lineage produce strictly positive significant correlation 

values ranging from 0.25 to 0.90 (Fig. 2.4C), demonstrating XCI ratios are shared within 

individual germ layer lineages. Strikingly, significant positive ratio correlations for tissues 

derived from different germ layers are on the same order as the within germ layer 

comparisons, ranging from 0.24 to 0.87 (Fig. 2.4C, Fig. S2.3). The fact tissues derived from 

different germ layers covary for their XCI ratio strongly suggests XCI is completed prior to 

germ layer specification and the initial embryonic XCI ratio is propagated through all germ 

layer lineages. 
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Figure 2.4: XCI ratios are shared across germ layer lineages 
A, Heatmap of all estimated XCI ratios for the tissues of each donor, with donors ordered by 
their mean XCI ratio across tissues and tissues grouped by germ layer lineage. Black 
indicates no tissue donation for that donor-tissue pair. B, Examples of within and across germ 
layer lineage comparisons of XCI ratios. Each data point represents the estimated XCI ratios 
of the two indicated tissues for a single donor. C, All significant (FDR corrected p-value <= 
0.05, permutation test n = 10000) Pearson correlation coefficients for within and across germ 
layer lineage comparisons. D, Stacked bar plots for the germ layer percentage composition 
for each sample in the Lung, Esophagus Mucosa, and Skin Lower Leg GTEx tissues. The 
deconvolved cell type percentages and their germ layer annotations are provided in Fig. S2.2. 
E-G, the folded allelic expression ratios for germ layer markers and all other genes (Not 
markers) are plotted for several example donors per tissue, E: Lung, F: Skin Lower Leg, G: 
Esophagus Mucosa. The adjacent scatter plots compare the median folded allelic expression 
between germ layer markers for all donors. E: Lung mesodermal and endodermal markers, 
Pearson correlation of 0.626 (p-value < .001), F: Skin Lower Leg mesodermal and 
ectodermal markers, Pearson correlation of 0.621 (p-value < .001), G: Esophagus Mucosa 
endodermal and ectodermal markers, Pearson correlation 0.603 (p-value < .001), mesodermal 
and ectodermal markers, Pearson correlation 0.360, (p-value < .001), mesodermal and 
endodermal markers Pearson correlation 0.537 (p-value < .001). See also Figure S2.3-2.4 and 
Table S2.2. 
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While we annotate individual tissues to belong to a single primary germ layer, tissues 

are compositions of cell types derived from different germ layers. This may impact the 

observed variance in XCI ratios across tissues if there is a strong germ layer-specific effect in 

XCI ratio variance. We take advantage of the recently released single-nucleus RNA-

sequencing (Eraslan et al. 2022) GTEx data to deconvolve (Newman et al. 2019) several of 

the bulk tissues into their germ layer components, allowing us to explore variance in XCI 

ratios across germ layers within single tissues. Figure 2.4D provides examples of the 

deconvolved germ layer proportions of three tissues with the remaining 6 tissues provided in 

Figure S2.4, demonstrating there is variation in germ layer composition within tissues. We 

extract germ layer-specific markers for the lung, skin, and esophagus mucosa tissues (Table 

S2.2, see methods) to explore variance in XCI ratios across germ layers within single tissues. 

The XCI ratios of germ layer-specific markers positively covary in each tissue (Fig. 2.4E-G, 

Pearson correlations: lung mesoderm and endoderm 0.626, skin mesoderm and ectoderm 

0.621, esophagus endoderm and ectoderm 0.603, esophagus mesoderm and ectoderm 0.360, 

esophagus mesoderm and endoderm 0.537), recapitulating the result of shared XCI ratios 

across germ layers we demonstrate with the non-deconvolved tissues. 

 

2.6.4 Specific tissue lineages have increased probability for switching the parental 

direction of XCI 

In addition to demonstrating that XCI ratios are broadly shared across all tissues, our 

cross-tissue analysis reveals there is a degree of variability in XCI ratios across tissues within 

individuals. Comparing distributions of gene-level allelic expression across tissues for 

individual donors reveals there are often individual tissues that exhibit divergence in XCI 

ratios in opposition to the general trend of shared XCI ratios (Fig. 2.5A-B). This is evidenced 

by the divergent distributions of gene-level allelic-expression for the Whole Blood, Vagina, 

and Skin tissues in donor 11P81 (Fig. 2.5A), and the Esophagus – Mucosa, Vagina, and Skin 
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tissues in donor 1J1OQ (Fig. 2.5B). The presence of individual tissues exhibiting divergent 

XCI ratios within an individual suggests there may be lineage-specific effects contributing to 

variance in XCI ratios across tissues.  

 

To further investigate the degree of variation in XCI ratios across tissues, we take 

advantage of the cross-tissue sampling of individual donors to determine the parental 

direction of XCI. If an expressed heterozygous SNP is captured for two different tissues of an 

individual, the reference allele is on the same haplotype and maintains directional allelic 

information. Thus, calculating the correlation of reference SNP allelic ratios for shared SNPs 

between two tissues can reveal whether those tissues share the same XCI direction (Fig. 

2.5C-D, see methods). When examining a donor with generally high XCI ratios across all 

tissues (Fig. 2.5C Donor 11P81), we find that all tissues share the same parental direction in 

allelic inactivation. Whereas a less skewed donor (Fig. 2.5D Donor 1J1OQ, Ovary and 

Vagina tissues) exhibits a subset of tissues with opposite parental inactivation compared to 

the majority of tissues for that donor. Across all donors, as the average XCI ratio of their 

tissues increases, the proportion of their tissues exhibiting switched parental XCI decreases 

(Fig. 2.5E), with the most skewed donors exhibiting zero tissues with switched parental XCI 

(Fig. 2.5E). Interestingly, switching parental direction of XCI is in fact concentrated in a 

subset of tissues, with 12 out of 49 tissues being significantly enriched for instances of 

switched XCI (Fig. 2.5F, fisher’s exact test, p-value <= 0.5). The existence of individual 

tissues with increased probability for switching parental directions of XCI is indicative of 

increased variance in XCI ratios for those particular tissue lineages. We explore this model 

further in the Results section ‘Cell population estimates at the time of tissue-specific lineage 

commitment’.     
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Figure 2.5: Individual tissue lineages exhibit increased variance in XCI ratios 
A, Folded allele-specific expression distributions for individual tissues from the 11P81 donor 
with the aggregated germ layer distributions in the top panel. B, Folded allele-specific 
expression distributions for individual tissues from the 1J1OQ donor with the aggregated 
germ layer distributions in the top panel. C, Pearson correlation distributions calculated from 
all pairwise comparisons of shared heterozygous SNPs between two tissues for all of donor 
11P81’s tissues. Positive correlations indicate the same parental direction of XCI, negative 
correlations indicate opposite parental directions of XCI. D, Similar to C, displaying results 
for donor 1J1OQ’s tissues. E, Box plots of the per donor proportion of tissues that switched 
parental XCI directions with donors binned by their mean XCI ratio across tissues. F, Bar 
plot indicating the proportion of donors where the specified tissue switched directions 
compared to other tissues. Asterisks indicate significance from Fisher’s Exact test (FDR 
corrected p-value <= .05), identifying tissues enriched for switching XCI directions.   
 

2.6.5 Cell population estimate at the time of embryonic epiblast lineage specification 

The fact XCI ratios are broadly shared across tissues suggests the initial embryonic 

XCI ratio determined at the time of inactivation is propagated through development. This is 

strongly evidenced by the consistency of XCI ratios across the developmentally distant germ 

layer lineages (Fig. 2.4, Fig. 2.5A-B). Population level variance in adult XCI ratios thus, in 

part, reflects the sample distribution during XCI, which depends on the number of cells 

present during inactivation. We derive estimates for the number of cells present at the time of 

inactivation by modeling XCI ratio variance from tissue-specific ratio distributions across 

donors (Fig. 2.6A). Using a maximum likelihood approach, we fit estimated models to the 

tails of the empirical XCI ratio distributions to account for the uncertain unfolded XCI ratio 

estimates between 0.4 and 0.6 (Fig. 2.6A, see methods). The cell number estimates derived 

from all well-powered tissues range from 6 to 16 cells (Fig. 2.6B), i.e., approximately within 

a single cell division, demonstrating a striking degree of similarity in population level XCI 

ratio variance across the assessed tissues. We model variance in XCI ratios as a random 

binomial sampling event that is then propagated through development. The consistency in 

XCI ratios across developmentally distant tissues supports this model, though there are likely 

additional contributors to the observed variance in XCI ratios, such as genetic variation which 

might drive allelic selection (Brown and Robinson 2000; Schmidt and Sart 1992) as well as 
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stochastic deviations during development (Sun et al. 2021). In the simplest case, observed 

variance in XCI ratios is derived from the initial stochasticity of XCI, positing our cell 

number estimates as lower bounds for the number of cells that must be involved in XCI.     

 

Notably, we sample variance in XCI of tissues derived from the embryonic lineage. If 

XCI occurs before extraembryonic/embryonic lineage specification, the variance we observe 

in adult tissues is a combination of the initial variance at the time of XCI and additional 

sampling variance linked to the lineage specification of the embryonic epiblast. This 

contextualizes our 6-16 cell number estimate as a potential lower bound for the number of 

cells present during embryonic epiblast lineage specification in the human embryo.  
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Figure 2.6: XCI and tissue lineage specification can be timed to a pool of cells by 
exploiting observed variability 
 
A, Example tissue demonstrating the model for estimating cell numbers at the time of XCI 
using the population-level variance in XCI ratios. We fit normal distributions, as a continuous 
approximation of the underlying binomial distribution of XCI ratios, to the tails of tissue-
specific XCI ratio distributions (shaded in blue), which accounts for the uncertain 0.40-0.60 
unfolded XCI ratio estimates (shaded in grey). B, The resulting estimated cell numbers 
present during XCI derived from the XCI ratio variance of all tissues with at least 10 donors. 
Error bars are 95% confidence intervals and tissues are grouped by germ layer lineage. C, 
Schematic for our model of tissue lineage specification and the implications for tissue-
specific XCI ratios. The XCI ratio of a tissue is dependent on the prior XCI ratio of the 
embryo and the number of cells selected for that tissue lineage. These two features define the 
binomial distribution for that tissue’s XCI ratio. D, Estimated number of cells selected for 
individual tissue lineage specification of 46 different tissues. Error bars represent 95% 
confidence intervals. The top bar graph plots the variance in the distribution of tissue XCI 
ratio deviation from the average XCI ratio of each donor for that tissue. The inset plot 
compares the estimated number of cells present at the time of tissue specification to the 
proportion of that tissue’s samples that switched parental XCI directions, Pearson correlation 
-0.663 (p-value < .001). 
 

2.6.6 Cell population estimates at the time of tissue-specific lineage commitment 

Tissue-specific lineage commitment can be modeled as a random sampling event 

from a pool of unspecified progenitor cells. In the context of XCI, the XCI ratio of the newly 

specified tissue is dependent on the prior XCI ratio of the progenitor pool and the number of 

cells fated for that tissue and can be modeled as a binomial sampling event (Fig. 2.6C). As 

such, the GTEx dataset offers a unique opportunity to capture this tissue-specific XCI 

variance and model the lower bound for the number of cells present at the time of tissue-

specific lineage commitment across a broad range of human tissues. 

 

To capture the tissue-specific variance in XCI as it relates to the prior embryonic XCI 

ratio, we model the deviation of tissue-specific XCI ratios from the average donor XCI ratios 

for all donors of a given tissue (see methods, Fig. 2.6D, 46 well-powered tissues). Our model 

follows the logic that tissues with large variation in their deviation from average donor XCI 

ratios are derived from a smaller pool of cells, a consequence of increased variability due to 

small sample size effects. On the low end of the estimated cell numbers, we have liver, whole 
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blood, and adrenal tissues with ~20 estimated cells compared to the brain tissues which 

occupy most of the higher estimated cell numbers, ranging from ~40-140 estimated cells. In 

line with our model that tissues derived from smaller stem cell pools are subject to increased 

variability in XCI ratios, we find a strong negative relationship between our estimated tissue 

lineage-specific cell numbers and the probability of a tissue switching the direction of 

parental XCI (Fig. 2.6D inset, Pearson correlation: -0.663, p-value < .001). A tissue derived 

from a small number of cells is more likely to result in a sample of oppositely skewed cells 

compared to the parental XCI ratio of the unspecified progenitor pool simply through 

increased sampling variance. Our estimated lineage-specific cell numbers and lineage-

specific probability for switching parental XCI are internally consistent with a model of 

lineage-specific variance in XCI ratios being driven by cell sampling variation at the time of 

lineage specification.  

 

2.7 Methods 

2.7.1 Data and code availability 

This paper analyzes existing, publicly available data. Links to access these datasets are 

listed in the key resources table. The generated allele-specific expression information per 

sample (variant information removed) and the CIBERSORTx deconvolution results are made 

available at the FTP site: 

http://labshare.cshl.edu/shares/gillislab/people/werner/werner_et_al_Dev_Cell_2022 /data. 

Descriptions of the data are available at 

github.com/JonathanMWerner/human_cross_tissue_XCI 
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All original code has been deposited at figshare (DOI: 10.6084/m9.figshare.20216816) 

and at Github (github.com/JonathanMWerner/human_cross_tissue_XCI) and is publicly 

available as of the date of publication.  

 

2.7.2 GTEx and EN-TEx data 

Fastq files for all female donors from the GTEx project v7 release (Lonsdale et al. 

2013) were obtained from dbGaP accession number phs000424.vN.pN. BAM files for 

additional female samples from the v8 release were obtained from the associated AnVIL 

repository (gtexportal.org/home/protectedDataAcccess). All GTEx v7 data files can also be 

accessed in the GTEx v8 AnVIL repository. Phased expression data from the EN-TEx project 

(Rozowsky et al. 2021) were obtained in collaboration with the ENCODE consortium. EN-

TEx data is available on the online portal. Expression data and annotations for the GTEx 

single nucleus RNA-sequencing data were obtained from the GTEx data portal. 

 

2.7.3 RNA-seq alignment and SNP identification 

For aligning RNA-sequencing data, the GRCh38.p7 human reference genome using 

GENCODE v.25 (Frankish et al. 2021) annotations was generated with STAR v2.4.2a (Dobin 

et al. 2013) and data was aligned with STAR v2.4.2a or STAR v2.5.2b. STAR was run using 

default parameters with per sample 2-pass mapping. BAM files for the additional GTEx v8 

samples (originally aligned to GRCh38.p10 with GENCODE v.26 annotations) were sorted 

using samtools v1.9 (Li et al. 2009) and converted to fastq files using bedtools v.2.26.0 

(Quinlan and Hall 2010). For each sample, alignment to the X-chromosome was extracted 

using samtools and passed to GATK (McKenna et al. 2010) for SNP identification. Using 

GATK v.4.1.3.0 and following the best practices workflow for RNAseq short variant 

discovery (GATK best practices), we utilized the following pipeline of GATK tools using 

default parameters unless otherwise stated: AddorReplaceReadGroups -> MarkDuplicates -> 

https://doi.org/10.6084/m9.figshare.20216816
https://www.encodeproject.org/entex-matrix/?type=Experiment&status=released&internal_tags=ENTEx
https://gtexportal.org/home/datasets
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-
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SplitNCigarReads -> HaplotypeCaller (-stand-call-conf 0.0) -> SelectVariants (-select-type 

SNP) -> VariantFiltration. The following filters were used in VariantFiltration to set flags for 

downstream filtering: QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, 

MQRankSum < -12.5, and ReadPosRankSum < -8.0. These filters were determined from 

GATK recommendations and empirical evaluation of the identified SNPs’ metrics.  

 

2.7.4 SNP quality control 

SNPs identified through GATK were further filtered on various metrics to increase 

confidence in SNPs identified from RNA-sequencing data and ensure well-powered SNPs for 

allele-specific expression analysis. The resulting .vcf files from GATK were filtered to only 

contain SNPs present within dbSNP (Sherry et al. 2001). The remaining SNPs were filtered to 

be heterozygous with 2 identified alleles and at least 10 reads mapped to each allele for a 

minimum threshold of 20 reads per SNP. Additionally, SNPs were required to pass the SOR, 

FS, and ReadPosRankSum filters set in the GATK pipeline. Only SNPs located within 

annotated genes (excluding the PAR regions of the X-chromosome) were considered and in 

the case of multiple identified SNPs in the same gene for a sample, the SNP with the highest 

total read count was taken as the max-powered representative for that gene. SNPs with a total 

read count above 3000 were excluded as they demonstrated a uniform distribution of allelic 

expression. 

  

2.7.5 Gene filtering (reference bias and XCI escape) 

From the observation of a heavy tail towards allelic expression in the reference 

direction across all called SNPs in the GTEx dataset, we compiled gene specific distributions 

of allelic expression to determine if a select few genes/SNPs were at fault. The majority of 

genes demonstrated distributions of relative allelic expression centered around 0.5 with 

several considerable exceptions, some genes exhibited bimodal or extremely biased 
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distributions. We excluded genes that failed the dip test for unimodality as well as the top and 

bottom 5% of genes ranked by the deviation of their mean reference expression ratio from 

0.5. Additionally, we excluded genes previously annotated to constitutively escape XCI 

(Tukiainen et al. 2017). In total, we end up with well-powered SNPs from 542 genes along 

the X-chromosome for modeling XCI ratios.  

 

2.7.6 Folded normal model for estimating XCI ratios 

We aggregate the allelic expression imbalance of the X-chromosome over both 

alleles by folding the reference allelic expression ratios about 0.5 (Fig 2.2A-B). To obtain our 

XCI ratio estimates we fit a folded normal distribution to the folded reference allelic 

expression ratios of each sample, using the maximum log likelihood estimate as the estimated 

XCI ratio. Theoretically, the captured bulk allelic expression for a heterozygous X-linked 

SNP follows a binomial distribution characterized by the read depth of the SNP and the XCI 

ratio of the sample. Without phasing information, the allelic expression of heterozygous X-

linked SNPs can be characterized by the folded-binomial model (Gart 1970; Urbakh 1967). 

Since SNPs vary in read depth and various biological factors (e.g. eQTLs) are not accounted 

for in the binomial model, we take the folded normal model as a continuous approximation. 

We require samples to have XCI ratio estimates derived from at least 10 filtered SNPs for 

downstream analysis, resulting in 4659 samples with a mean of 56 well-powered SNPs per 

sample (Fig. S2.1). Additionally, we calculate 95% confidence intervals (CI) for each XCI 

ratio estimate via a nonparametric bootstrap percentile approach (n = 200), excluding XCI 

ratio estimates with a CI width >= .15 from downstream analysis. For donors with multiple 

samples for the same tissue, we average the XCI ratio estimates together, duplicated tissue 

samples have minor differences in estimated XCI ratios (mean difference in XCI ratios for 

duplicate tissue samples: 0.018 +- 0.023 SD).  
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2.7.7 Modeling read sampling error when estimating XCI ratios   

The sampled allelic reads for any expressed heterozygous loci will follow a binomial 

distribution defined by the total number of reads sampled (n) and the probability for allelic 

expression (p). For a given GTEx sample, we define SNP-specific binomial distributions as 

Binomial(n = total number of reads, p = sampled reference allelic expression ratio). For each 

individual GTEx tissue sample, we randomly sample a single instance from each SNP-

specific binomial distribution to simulate SNP expression ratios with noise from allelic read 

sampling. We estimate the XCI ratio using the folded normal model on the simulated SNP 

expression ratios and repeat the simulation 50 times to generate a distribution of estimated 

tissue XCI ratios. We compute the root mean squared error of the simulated tissue XCI ratios 

about the original estimated tissue XCI ratio. We repeat the entire analysis with a percent 

reduction in each SNP’s total read count (10%, 20%, 30%, etc.) to model variance in our 

estimated XCI ratios as read depth decreases. 

 

2.7.8 Gene-tissue XCI ratio correlations 

To test individual gene’s propensity to follow the aggregate chromosomal XCI ratio, 

we calculate Pearson correlations between a gene’s reference allelic expression ratio and the 

estimated XCI ratio leaving out that gene for all samples the gene is detected. We calculate 

these correlations for each of the 542 filtered genes described above and for 45 previously 

annotated constitutively escape genes detected in our dataset. We only consider genes 

detected in at least 30 samples and with an FDR corrected (Benjamini-Hochberg) correlation 

p-value <= .05 determined by a permutation test (n = 10000) for further investigation of 

escape status, resulting in 380 putative inactive genes and the 45 previously annotated escape 

genes.  

 

2.7.9 Testing for escape from XCI 
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To detect escape genes, it is necessary to compare against genes that undergo 

complete inactivation and do not escape. After stratifying by mean expression, we reason the 

genes most likely to undergo complete inactivation are genes with high gene-tissue XCI ratio 

correlations within each expression bin (Fig. 2.3C). Accordingly, we take the top 50% of 

putative inactive genes within each bin to define the null distribution of allelic expression 

under the hypothesis of complete inactivation (191 genes). The remaining 189 putative 

inactive genes and the 45 known escape genes comprise our test set. We reason a gene that 

escapes XCI will be biased for balanced biallelic expression regardless of the XCI ratio of the 

tissue. Using only tissues with an estimated XCI ratio >= 0.70, we compute the deviation 

from 0.5 (balanced allelic expression) for all inactive genes and the test gene. We rank the 

gene deviations and calculate the empirical p-value as the rank of the test gene divided by the 

total number of ranks i.e. the number of null inactive genes + 1 (Fig. S2.2). We only consider 

empirical p-values derived from samples with at least 20 null inactive genes detected. 

Additionally, we only consider test genes with at least 50 empirical p-values. For each 

remaining test gene, we aggregate the distribution of empirical p-values using Fisher’s 

method and apply an FDR correction (Benjamini-Hochberg) to the resulting meta-analytic p-

values. We use a threshold of meta-analytic p-value < .001 to call significance for escape. For 

Fisher’s method, under the null hypothesis, the log sum of all p-values follows a chi-squared 

distribution with 2k degrees of freedom, where k is the number of independent tests being 

combined. We use R’s pchisq function to compute the meta-analytic p-value for the following 

test statistic: 

 

𝑋𝑋2𝑘𝑘2  ~ − 2∑ log (𝑝𝑝𝑖𝑖)𝑘𝑘
𝑖𝑖=1 . 

 

2.7.10 Tissue XCI ratio predicting donor XCI ratio 
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For the donors that contribute to a given tissue, we calculate the mean XCI ratio 

across all other tissues for each donor and use that mean as an approximation for the true XCI 

ratio for each donor. We classify donors as low/high XCI ratio donors if they have a mean 

XCI ratio greater than or equal to various thresholds (0.65, 0.7, 0.75). We calculate the 

AUROC of a given tissue’s XCI ratio predicting the low/high donors via the Mann-Whitney 

U test statistic where 

𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑈𝑈
𝑛𝑛ℎ𝑖𝑖𝑖𝑖ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 . 

 

2.7.11 Cross-tissue XCI ratio correlations 

For all pairwise combinations of the 49 tissues present within the GTEx dataset, we 

take the subset of donors that contribute both tissues for a given comparison and calculate the 

Pearson correlation for the folded XCI ratio of the tissues. Figure 2.4c1-c2 depicts only the 

correlation values derived with a sample size of at least 20 donors and an FDR corrected 

(Benjamini-Hochberg) p-value <= .05 derived from a permutation test (n = 10000). 

Supplemental Figure 2.6 depicts all computed correlations regardless of sample size or p-

value. 

 

2.7.12 CIBERSORTx deconvolution and germ layer-specific marker identification 

CIBERSORTx (https://cibersortx.stanford.edu, (Newman et al. 2019)) was run using 

the recommended settings following the “Build a signature matrix file from single-cell RNA 

sequencing data” and “Impute cell fractions” tutorials, batch correction was enabled when 

imputing cell fractions. Briefly, the annotated single-cell RNA sequencing data from GTEx is 

used to build a signature matrix that identifies genes that define the annotated cell types. This 

signature matrix is used to impute the cell type composition of bulk RNA sequencing 

samples. We extract germ layer-specific marker genes from the signature matrices identified 

https://cibersortx.stanford.edu/
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from CIBERSORTx, classifying a gene as a germ layer marker if it is a gene that identifies 

cell types exclusively from a single germ layer. Our annotated germ layer markers, the cell 

types they define, and the tissue they are derived from are available in Supplementary Table 

2.2. The signature matrices and imputed cell types per tissue with associated statistics from 

CIBERSORTx are made available on the FTP site 

http://labshare.cshl.edu/shares/gillislab/people/werner/werner_et_al_Dev_Cell_2022 /data.  

 

2.7.13 Inference on direction of XCI ratios 

 To infer the direction of XCI ratios from unphased data, we look at allelic expression 

of heterozygous SNPs captured in multiple tissues for an individual donor. The reference 

allele of a heterozygous SNP captured in two different tissues of a single donor represents the 

same parental X-allele in both tissues. If the direction of XCI is the same for both tissues, the 

heterozygous SNP is expected to exhibit the same degree of reference allelic expression 

across the two tissues (positive correlation). If the direction of XCI is different, reference 

allelic expression will be inverted for one of the tissues resulting in a negative correlation. 

For each donor, for all pairwise combinations of their donated tissues with XCI ratios >= 0.6, 

we calculate Pearson correlations for unfolded reference allelic expression ratios using only 

SNPs detected in both tissues (Fig. 2.5). We only use SNPs that are within the previously 

filtered 542 genes described above and only consider correlations derived from tissue 

comparisons with at least 30 shared SNPs. Using positive or negative correlations as a 

readout for switched XCI direction between tissues, we perform Fisher’s exact test with a 

Benjamini-Hochberg correction to identify any tissue significantly enriched for switching 

XCI directions. We use the hypergeometric distribution to calculate raw p-values for Fisher’s 

Exact Test. For a given tissue, we input the number of times that tissue switched XCI 

directions minus 1, the total number of switched XCI cases across all tissues, the total number 

of non-switched XCI cases across all tissues, and the sample size for the given tissue.     
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2.7.14 Evaluating XCI cell number estimates 

XCI is a binomial sampling event defined by the number of cells present during 

inactivation and the equal probability of inactivation between the alleles Binomial(N = # of 

cells, p = 0.5). As such, the variance in XCI ratios within a population is directly linked to the 

number of cells present during XCI. We derive estimates for the number of cells present 

during XCI by fitting a normal model to tissue-specific XCI skew distributions as a 

smoothened estimate for the underlying binomial distribution. We take the theoretical 

variance from the binomial model as the variance for the normal approximation.  

 

𝑣𝑣𝑣𝑣𝑣𝑣𝑋𝑋𝑋𝑋𝑋𝑋 = 𝑣𝑣𝑣𝑣𝑣𝑣 �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁,𝑝𝑝,𝑞𝑞)
𝑁𝑁

� =  𝑝𝑝𝑝𝑝
𝑁𝑁

=  .5(1−.5)
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, where p,q = probability of allelic 

inactivation. 

 

For a range of cell numbers (N = 2:50), we select the normal model with minimum 

error between its CDF and the empirical XCI ratio CDF of a given tissue for the tails of the 

distribution (XCI ratio <= 0.4 and XCI ratio >= 0.6). This accounts for the uncertain folded 

0.5 – 0.6 XCI ratios estimates in the unfolded space. We calculate 95% CIs for each estimated 

cell number via a nonparametric bootstrap percentile approach (n = 2000). We only consider 

cell number estimates from tissues with at least 10 donors.   

 

2.7.15 Evaluating tissue-specific lineage cell number estimates 

We model tissue-specific lineage specification as a cell sampling event from a large 

pool of cells. As such, the XCI ratio of a tissue will follow a binomial model defined by the 

number of cells fated for that tissue and the XCI ratio of the embryo (Fig. 2.6c). 
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𝑋𝑋𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  ~ 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁,𝑝𝑝, 𝑞𝑞)

𝑁𝑁
 =  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 1 − 𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢

 

 

𝑣𝑣𝑣𝑣𝑣𝑣𝑋𝑋𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣𝑣𝑣𝑣𝑣 �
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁, 𝑝𝑝, 𝑞𝑞)

𝑁𝑁
� =  

𝑝𝑝𝑝𝑝
𝑁𝑁

=  
𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 − 𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

 

𝑆𝑆𝑆𝑆𝑋𝑋𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  �
𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 − 𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

 

For a given tissue, across donors with variable XCI ratios (𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) the variation in the 

tissue XCI ratio is defined by the constant 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the number of cells fated for that tissue. To 

estimate this constant, we calculate z-scores for each tissue-donor pair of a given tissue using 

the mean XCI ratio of all other tissues for each donor as an approximation for the 𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

 

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  
𝑋𝑋𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
=  

𝑋𝑋𝑋𝑋𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 − 𝑋𝑋𝑋𝑋𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
�𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

=  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 

 

As the standard deviation of a distribution of z-scores is 1, we solve for 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: 

 

              𝑆𝑆𝑆𝑆(𝑍𝑍)  =  � 1
𝑚𝑚−1

∑ (𝑍𝑍𝑖𝑖 −  𝑍̅𝑍)2𝑚𝑚
𝑖𝑖=1 = 1 , where m = number of donors for a given tissue 

 

 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑚𝑚−1
∑ (𝑡𝑡𝑖𝑖−𝑡𝑡̅)2𝑚𝑚
𝑖𝑖=1
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We calculate 95% CIs for each 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 via a nonparametric bootstrap percentile approach (n = 

2000) using the  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 distribution. We require a tissue to have at least 10 donors in order to 

calculate 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

 

2.7.16 Data analysis and visualization 

All analysis was conducted in R version 4.0.5 (R Core Team 2021). Graphs were 

generated using the ggplot2 (Wickham 2016), ComplexHeatmap (Gu et al. 2016), 

karyoploteR (Gel and Serra 2017), and base R packages. 

 

2.7.17 Quantification and statistical analysis 

When correcting p-values, we use the Benjamini-Hochberg procedure implemented 

by R's p.adjust function with “method = BH” parameter. Significance is determined with p-

value <= 0.05 unless otherwise stated. We use the R dip.test function from the diptest package 

to perform Hartigan’s dip test of unimodality. For Fisher’s method of aggregating p-values, 

we use the R function pchisq with ‘lower.tail = FALSE’ parameter to compute the meta-

analytic p-value from the calculated chi-square test statistic. All confidence intervals are 

computed using a nonparametric bootstrap percentile approach, where the underlying data is 

sampled with replacement to generate a bootstrapped distribution of the variable in question 

(tissue XCI ratio estimates, cell number estimates). The 95% confidence interval is defined 

by the 2.5th and 97.5th percentile of the bootstrapped distribution. We determine if tissues are 

enriched for switching parental XCI directions using the hypergeometric implementation of 

Fisher’s Exact Test, using R’s phyper function.  When fitting normal distributions to tissue 

XCI ratio distributions, we use the R quantile function with parameter “type = 1” to compute 

the empirical CDF and the R qnorm function to compute the theoretical normal CDF. For any 

given correlation calculated, we permute the underlying data to get a null distribution of 

correlations under the hypothesis of independence, using R’s cor function with “method = 
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pearson” parameter. We derive a raw p-value for the original correlation value from the 

empirical null distribution of correlations (permutation test). In the analyses where we 

generate many correlations, we apply a Benjamini-Hochberg FDR correction to the 

associated distribution of raw p-values to call significance, using a threshold of p-value <= 

0.05. 

2.8 Supplemental Figures 
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Figure S2.1: Estimating robust XCI ratios from GTEx tissue samples. Related to Figure 
2.2  
 
A, Binary heatmap of female donor tissue contributions in the GTEx dataset for samples that pass our 
quality control filters. Data from cell lines was excluded in the final analysis.  
B, Scatter plot with 2d density overlay of all XCI ratio estimates for 5046 GTEx samples and the 
number of filtered heterozygous SNPs used to estimate the sample XCI ratio.  
C, Scatter plot with 2d density overlay of all XCI ratio estimates for 5046 GTEx samples and the 
width of the 95% confidence interval around the XCI ratio estimate (bootstrap sampling, n = 200).  
D, Scatter plot with 2d density overlay of the number of filtered heterozygous SNPs used to estimate 
the sample XCI ratio and the width of the 95% confidence interval around the XCI ratio estimate. Red 
lines indicate thresholds for XCI ratio estimate filtering, requiring >= 10 heterozygous SNPs and a CI 
width < 0.15.  
E, Matrix of root mean squared error for estimated XCI ratios per GTEx sample as read depth per 
SNP is gradually reduced. Tissue sample annotations for the confidence interval about the original 
XCI ratio estimate (CI), the original XCI ratio estimate (XCI ratio), and the number of SNPs used to 
estimate the original XCI ratio estimate (# of snps) are provided as column annotations.    
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Figure S2.2: XCI escape genes exhibit balanced allelic expression in skewed XCI tissues. Related 
to Figure 2.3 
 
A, Histogram of gene reference allelic expression ratio deviations from 0.5 for a sample with an 
estimated XCI ratio >= 0.70. An example known escape gene in the sample is colored red, an 
example putative inactive gene is colored blue, and the inactive genes are colored in grey. After 
ranking the allelic expression ratio deviations, the empirical p-value for the given test gene is 
calculated as the rank of the test gene divided by the total number of ranks, i.e. the number of inactive 
genes plus one.  
B, Central histograms are the same plots as in Figure 2.3E.  
C, empirical p-value distributions for the 19 genes that we classify as novel escape genes, each gene 
has a FDR corrected meta-analytic p-value (Fisher’s method) < .001.   
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Figure S2.3: All tissues strongly predict skewed donors and are correlated in XCI ratios.  
Related to Figure 2.4 
 
A, ROC curves for individual tissue XCI ratios predicting skewed donors at various thresholds for 
classifying skewed donors (top row). 2d density estimations across all tissue ROC curves (bottom 
row).  
B, AUROC distributions at each skewed donor threshold.  
C, All pairwise tissue-tissue XCI ratio correlations regardless of sample size or significance, grouped 
by germ layer lineage. The global trend is a positive correlation. 
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Figure S2.4: Bulk tissue samples represent a mix of germ layer lineages.  
Related to Figure 2.4  
 
A, Violin plots of the deconvolved cell type percentages across all bulk breast tissue samples.  
B, Violin plots of the deconvolved cell type percentages across all bulk esophagus mucosa tissue 
samples.  
C, Violin plots of the deconvolved cell type percentages across all bulk esophagus muscularis tissue 
samples.  
D, Violin plots of the deconvolved cell type percentages across all bulk heart atrial appendage tissue 
samples.  
E, Violin plots of the deconvolved cell type percentages across all bulk heart left ventricle tissue 
samples.  
F, Violin plots of the deconvolved cell type percentages across all lung breast tissue samples.  
G, Violin plots of the deconvolved cell type percentages across all skeletal muscle breast tissue 
samples.  
H, Violin plots of the deconvolved cell type percentages across all skin lower leg breast tissue 
samples.  
I, Violin plots of the deconvolved cell type percentages across all bulk skin suprapubic tissue 
samples. 
Cell types are color coded according to their developmental germ layer origin: Ectoderm (red), 
Endoderm (yellow), Mesoderm (blue)  
 

2.9. Chapter 2 Summary: 

 In this work, we model XCI ratios across numerous human tissue lineages within and 

across individuals, revealing XCI ratios are shared across all three germ-layer lineages. This 

demonstrates that XCI is completed prior to any tissue specification within the human 

embryo and the stochastically determined XCI ratio at the time of inactivation is propagated 

through development to all tissues. We estimate that between 6-16 cells must have been 

present within the embryonic epiblast at the time of inactivation to explain the observed 

degree of population XCI ratio variance. We also exploit tissue-specific XCI ratio variability 

to estimate the number of cells that must have been present during tissue lineage 

specification, reaching estimates ranging from 20-140 cells. In summary, the analysis of 

variance in XCI ratios across tissues and individuals is informative for inferring 

characteristics of early developmental lineage decisions in humans.   
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3. Population variability of X-chromosome inactivation across 9 

mammalian species 

 

3.1. Author contributions and Acknowledgements 

 J.G. conceived the project. J.M.W. and J.G. designed the experiments and wrote the 

manuscript. J.M.W. performed the experiments. J.H. and J.M.W performed data management and data 

processing. 

 

 J.G., J.M.W., and J.H. were supported by NIH grants R01MH113005. We thank all members 

of the Gillis lab and particularly John Lee for assisting in some of the initial data downloading. 

 

3.2. Results summary 

We apply our model for estimating XCI ratios from reference aligned bulk RNA-seq 

across data from 9 mammalian species, utilizing publicly available data from the Sequencing 

Read Archive (SRA). This work extends beyond previous analyses restricted to human and 

mouse data, providing a broader evolutionary context for a fundamental feature of 

mammalian development. We reveal that population variability in XCI ratios is a conserved 

characteristic of XCI and can be explained through models of embryonic stochasticity rather 

than genetic factors consistently across all species. In total, after extensive filtering for 

reference bias, global allelic imbalances, and the number of well-powered heterozygous 

SNPs, we obtain 130 Macaca, 328 Rat, 624 Pig, 383 Goat, 275 Horse, 731 Sheep, 1328 Cow, 

and 269 Dog samples with 4877 Human samples from the GTEx dataset. Samples that 

exhibited consistent allelic imbalances in aggregate on 2 autosomes (global allelic 

imbalances) were excluded due to presumed effects outside of XCI influencing allele-specific 

expression. We compile population distributions of XCI ratios and reveal species vary 
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substantially in population XCI ratio variability. We demonstrate that models of embryonic 

XCI stochasticity explain the observed population XCI variability exceptionally well across 

species, estimating the number of cells that must have been present in the embryonic epiblast 

to produce the observed population variability. We then quantify the relationship between 

XCI ratios and X-linked heterozygosity, revealing chromosome-wide genetic variability has 

no association with XCI ratios. We additionally quantify the relationship between individual 

variants and XCI ratios, identifying only a select few variants in each species present in low 

frequencies with modest associations. Taken together, our results demonstrate a pervasive 

lack of genetic associations with XCI ratios across mammalian species. Instead, models of 

stochasticity offer a more general explanation for population XCI ratio variability across 

mammals. In conclusion, assessments of population XCI ratio variability reveal the 

population-scale consequences of a conserved stochastic feature of mammalian development. 

 

3.3. Introduction 

 X-chromosome inactivation (XCI) is an early embryonic milestone every female 

mammalian embryo must achieve for successful development(Lyon 1961; Migeon 2016; 

Okamoto et al. 2011). XCI evolved to correct the genetic imbalance resulting from the 

presence of two X-chromosomes in females compared to the single X-chromosome in male 

mammals(Ohno 1966). While the exact timing can vary across species(Lyon 1972), XCI 

typically initiates during preimplantation embryonic development(van den Berg et al. 2009). 

During this process, one of the two X-alleles in each female cell is independently, randomly, 

and permanently chosen for transcriptional silencing to match the single X-allele in male 

embryos(Lyon 1961; Evans et al. 1965; Wu et al. 2014; Mutzel et al. 2019). The inactivated 

X-allele is inherited through cell divisions, propagating the random choice of allelic 

inactivation down each cell’s subsequent lineage. This produces whole-body mosaicism for 
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allelic X-chromosome expression in each adult mammalian female that originates from the 

very first days/weeks of embryonic development(Migeon 2013). 

 

 In humans, both X-alleles have an equal probability of being inactivated; however, 

population variability in XCI has been widely observed among adult female populations with 

individuals ranging from balanced to highly skewed allelic inactivation(Amos-Landgraf et al. 

2006; Shvetsova et al. 2019). The allelic XCI ratio of an individual becomes highly 

consequential in the presence of X-linked disease variants, where the allelic-direction and 

magnitude of XCI can either confer protection or contribute to disease phenotypes(Migeon 

2013; Fang et al. 2021). The interplay between variability in XCI ratios and X-linked genetic 

disorders has prompted extensive research on the underlying factors that contribute to 

population variability in XCI, primarily restricted to mouse and human data. Well-supported 

sources of XCI variability within a population include the inherent stochasticity of 

XCI(Shvetsova et al. 2019) and various genetic factors(Migeon 1998; Plenge et al. 1997; 

Belmont 1996), though their relative contributions are widely debated(Brown and Robinson 

2000). The limited cross-species data on population XCI variability make it difficult to 

distinguish between generalizable features of XCI or species-specific mechanisms. For 

example, copious evidence exists for a general genetic basis of XCI variability across lab 

mouse strains(Cattanach and Isaacson 1965; Simmler et al. 1993; Sun et al. 2021), prompting 

hypotheses the same holds true in humans(Peeters et al. 2016). However, evidence for general 

genetic determinants of XCI in humans is lacking(Brown and Robinson 2000; Peeters et al. 

2016; Bolduc et al. 2008), albeit more difficult to capture and assess compared to genetically 

controlled model organisms. Expanding assessments of population XCI variability across 

mammalian species stands to elucidate generalizable principles of XCI variability, where 

models of stochasticity or genetic factors can be tested in the face of evolution. 
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 Considering first a stochastic model for XCI variability, each cell within an embryo 

at the time of XCI independently selects an X-allele to inactivate, resulting in ratios of allelic-

inactivation across embryos varying purely by chance (Fig. 3.1A). Closely following Mary 

Lyon’s discovery of XCI in 1961(Lyon 1961), it was recognized that the inherent embryonic 

stochasticity and permanence of XCI is the simplest explanation for the observed variability 

in XCI among adults and positions this adult variability as a window into embryonic 

events(Gandini et al. 1968; Gandini and Gartler 1969; Nesbitt 1971; Fialkow 1973; 

McMahon et al. 1983). With flipping coins as an example, it is much more probable to get 8 

heads when flipping 10 coins than it is to get 80 heads when flipping 100 coins, i.e., the 

variability in heads-to-tails ratios is directly related to the number of coins flipped. In other 

words, the variability of XCI ratios in a population of female mammalian embryos is 

determined by the number of cells present at the time of XCI (Fig. 3.1A). Combined with the 

inheritance of allelic-inactivation through each cell’s lineage, quantifying XCI variability in 

adults can be taken as an approximation of embryonic XCI variability and used to infer cell 

counts at the time of XCI or other early lineage decisions(Nesbitt 1971; Werner et al. 2022) 

(Fig. 3.1D). Models of stochasticity have been used to infer cell counts during embryonic 

events in human and mice populations for decades(Sun et al. 2021; Gandini et al. 1968; 

Nesbitt 1971; McMahon et al. 1983; Werner et al. 2022; Bittel et al. 2008), with opportunities 

to assess the merits of stochastic models so far lacking in other mammalian species.  

 

 In addition to stochasticity, genetic effects can influence the choice of allelic 

inactivation and contribute to population variability in XCI ratios. The choice of allelic-

inactivation during XCI is determined by the cis-acting long non-coding RNA (lncRNA) 

XIST(Brown et al. 1992), which coats its corresponding X-allele and initiates various 

transcriptionally silencing epigenetic modifications(Dossin and Heard 2021; Dixon-

McDougall and Brown 2022). Heterozygous variants that impact XIST expression can bias 
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the choice of allelic inactivation(Plenge et al. 1997). An extensively documented example of 

such an effect is the preferential inactivation of specific X-alleles in heterozygous laboratory 

mice(Cattanach and Isaacson 1965). Depending on the parental strains, inbred mice genomes 

exhibit a specific order of preferential allelic X-inactivation that is dependent on the X-

chromosome controlling element (XCE) allele carried by each parent(Sun et al. 2021; 

Calaway et al. 2013). In humans, evidence for genetic influence on XCI is largely derived 

from small family studies and difficult to differentiate from potential disease effects, with no 

robust evidence supporting the broader allelic effects observed in mouse populations(Peeters 

et al. 2016; Bolduc et al. 2008). Another form of genetic influence on XCI is allelic selection, 

whereby natural genetic variation or disease-causing variants exert a selective effect on the 

X-alleles(Belmont 1996; Migeon 1998). Evidence supporting allelic selection in human 

populations is primarily limited to disease cases(Migeon 1971; Migeon et al. 1981; Devriendt 

et al. 1997; Plenge et al. 2002) or large genetic aberrations(Schmidt and Sart 1992), with 

broader evidence of allelic selection through natural variation remaining elusive. In general, 

the relative merits of genetic influences or models of stochasticity for explaining population 

XCI variability in mammals are difficult to resolve with available data currently limited to 

mouse and human populations. 

 

 While molecular studies of XCI enjoy cross-species comparisons enabled via 

embryonic models(Ramos-Ibeas et al. 2019; Magaraki et al. 2019; Yu et al. 2020; Okamoto et 

al. 2021), evaluations of XCI variability in adult populations across species is historically 

absent, largely due to prior technological limitations. Traditional methods for assessing XCI 

ratios typically rely on known polymorphic heterozygous X-linked regions(Amos-Landgraf et 

al. 2006; Allen et al. 1992) or personalized genetic information(Shvetsova et al. 2019; 

Szelinger et al. 2014), both methodological bottlenecks when studying population XCI 

variability at scale. Recently, we developed a method to estimate XCI ratios from bulk RNA-
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sequencing samples aligned to a reference genome(Werner et al. 2022) (Fig. 3.1B). Our 

approach leverages natural genetic variation to sample X-linked heterozygosity and 

eliminates the requirement for costly phased or strain specific genetic information. 

Importantly, our method is applicable to any bulk RNA-sequencing sample and reference 

genome, enabling us to utilize the vast amount of publicly available mammalian data (Fig. 

3.1C), making cross-mammalian analysis of population XCI variability at scale feasible.       

  

 In this study, we source female annotated bulk RNA-sequencing samples across 8 

non-human mammals from the Sequencing Read Archive (SRA), resulting in a total of 

19,180 initial samples (Fig. 3.1C), including human samples from the GTEx(Lonsdale et al. 

2013) dataset. We employ a rigorous sample processing pipeline for deriving high confidence 

calls of heterozygous SNPs from RNA-sequencing data controlling for reference bias and 

gene expression (Fig. 3.1C, see methods). We use X-linked sample heterozygosity to model 

the XCI ratio of individual samples (Fig. 3.1B) and investigate potential genetic correlates 

with XCI ratio variability across our mammalian populations. We start by establishing the 

population-level XCI ratio distributions for all nine mammalian species and use models of 

embryonic stochasticity to predict the number of cells fated for embryonic lineages (Fig. 

3.1D, Fig. 3.2). We then investigate how broad genetic diversity, as indicated by measures of 

inbreeding (Fig. 3.3), as well as specific individual variants (Fig. 3.4), may impact population 

XCI variability. Overall, our analyses explore how both models of stochasticity and genetic 

factors can explain population XCI variability across 9 mammalian species.          

 

3.4. Results 

3.4.1. Reference aligned RNA-sequencing data enables scalable modeling of XCI ratios 
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 X-linked allelic expression in a bulk RNA-sequencing (RNA-seq) sample is expected 

to reflect the XCI ratio of the sampled tissue (Fig. 3.1B). Explicitly, the sampled X-linked 

allelic reads are expected to follow a binomial distribution dependent on the number of 

sampled reads and the XCI ratio of the sample (see methods). We employ a maximum-

likelihood approach to fit distributions to the observed allelic ratios of multiple heterozygous 

single nucleotide polymorphisms (SNPs, minimum of 10) per sample to compute estimates of 

XCI ratios, with special considerations when using reference-aligned data (Fig. 3.1B).  

 

 A reference genome includes both paternal and maternal SNPs for any given 

individual RNA-seq sample, leading to reference allelic expression ratios that represent 

allelic expression of both parental X-alleles (Fig. 3.1B). Folding the distribution of reference 

allelic-expression ratios around 0.50 aggregates data across both alleles and enables a robust 

estimate of the XCI ratio magnitude for the bulk RNA-seq sample (Fig. 3.1B). We fit folded-

normal distributions to the reference allelic expression ratios, which serve as a continuous 

approximation of the underlying folded-binomial distribution. The mean of the fitted 

distribution is considered the estimate of the XCI ratio (Fig. 3.1B). We also incorporate 

specific steps to address confounding factors that can impact X-linked allelic expression, 

including reference bias and escape from XCI(Bonora and Disteche 2017; Fang et al. 2019) 

(Supp. Figs. 3.1-3.2, see methods). Of note, we find the strongest signals of escape from XCI 

near chromosomal ends across all species (Supp. Fig. 3.2), suggesting escape within pseudo-

autosomal regions is conserved across mammals(Bonora and Disteche 2017; Posynick and 

Brown 2019). Previously, we validated our SNP filtering and XCI modeling approach using 

phased RNA-seq data (where haplotype information is known for each variant) from the EN-

TEx consortium(Rozowsky et al. 2023), achieving nearly perfect agreement in XCI ratio 

estimates for samples with folded XCI ratios of 0.60 or higher, demonstrating the robustness 

of our approach. 
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Figure 3.1: Reference aligned RNA-sequencing data enables scalable modeling of XCI ratios 
A Schematic demonstrating the relationship between the number of cells present at the time of XCI 
and the probability of all possible XCI ratios. Increased cell numbers result in decreased XCI ratio 
variance. 
B Schematic for modeling XCI ratios from bulk reference-aligned RNA-seq data. The reference SNPs 
will contain both maternal and paternal SNPs, representing allelic expression from both parental 
haplotypes. Folded normal models are fit to the folded reference allelic expression ratios (like folding 
a book closed), with the mean of the maximum-likelihood distribution as the sample XCI ratio 
estimate. 
C Schematic for sample processing (genome alignment and variant identification) and a bar graph 
depicting the number of annotated female samples initially downloaded for each species (bold color), 
with the number of samples per species with at least 10 well-powered SNPs for XCI ratio modeling 
after processing (faded color). 
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 By calling SNPs from RNA-seq reads and employing folded distributions to model 

reference-aligned allelic expression, we can estimate the magnitude of XCI in any female 

mammalian bulk RNA-seq sample. We source female annotated bulk RNA-seq samples of 8 

non-human mammalian species from the SRA database (Fig. 3.1C), additionally including 

cross-tissue human samples from the GTEx dataset. After processing, the number of samples 

with a minimum of 10 well-powered SNPs for estimating XCI ratios are 130 macaca (mean 

of 28 SNPs +- 17 SD), 275 horse (mean of 54 SNPs +- 36 SD), 269 dog (mean of 29 SNPs +- 

13 SD), 328 rat (mean of 26 SNPs +- 13 SD), 383 goat (mean of 34 SNPs +- 14 SD), 624 pig 

(mean of 50 SNPs +- 28 SD), 731 sheep (mean of 79 SNPs +- 42 SD), 1328 cow (mean of 32 

SNPs +- 19 SD), and 4877 human (mean of 56  SNPs +- 23 SD, 314 total individuals) 

samples (Fig. 3.1C, Supp. Fig. 3.1). Aggregating reference allelic expression ratios for 

samples with similar estimated XCI ratios (0.05 bins) clearly reveals the expected haplotype 

expression distributions, demonstrating the applicability of folded models (Supp. Fig. 3.3). 

Following XCI ratio modeling, we then generate population-level distributions by unfolding 

the distribution of folded XCI ratio sample estimates per species (Fig. 3.1D). 

 

 To ensure the allelic variability we report from X-linked SNPs is specific to XCI, we 

estimate autosomal allelic imbalances for all samples using the same pipeline and approach as 

for the X-chromosome analysis (Supp. Fig. 3.4, see methods). Comparing allelic imbalances 

across the two autosomes closest in size to the X-chromosome reveals the vast majority of 

samples across all species are biallelically balanced for autosomal expression, as expected 

(Supp. Fig. 3.4). Several species (Pig, Cow, Goat, Rat, Sheep, and Dog) exhibit small subsets 

of samples that are consistently imbalanced across the two autosomes and the X-

chromosome, indicative of a global influence on allelic-expression independent of XCI 

(Supp. Fig. 3.4). When comparing the SNP allelic-expression ratios across samples that 

exhibit autosomal imbalances or not, we identify pervasive reference bias at the SNP-level as 
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the cause for the global allelic imbalances (Supp. Fig. 3.4B). The samples with global allelic 

imbalances are excluded from all downstream analysis, ensuring the population distributions 

of XCI ratios reflect variability specific to XCI. 

 

3.4.2. Models of embryonic stochasticity explain adult population XCI variability 

 After generating population distributions of XCI ratios for the 9 mammalian species, 

we next explore how well models of embryonic stochasticity explain the observed adult XCI 

ratio variability. The initial variability in XCI ratios among mammalian embryos is dependent 

on the number of cells present during XCI (Fig. 3.1A), where adult variability can be 

modeled to infer embryonic cell counts. An important consideration when estimating 

embryonic cell counts from adult XCI variability is the lineage specification of extra-

embryonic and embryonic tissues, which may coincide with the timing of XCI and vary 

depending on the species. If XCI occurs after the lineage decision, the variability in XCI 

ratios within the embryonic lineage is determined by the number of cells fated for embryonic 

development at the time of XCI. On the other hand, if the order of events is reversed, XCI 

variability within the embryonic lineage is influenced by both the initial stochasticity of XCI 

and the stochasticity associated with cell sampling during the extra-embryonic/embryonic 

lineage decision. The ordering of these lineage events cannot be resolved without cross-tissue 

sampling of both the extra-embryonic and embryonic tissues. Therefore, estimating cell 

counts based solely on adult tissues provides an approximation of the number of cells fated 

for the embryonic lineage, representing the last common lineage decision for all the sampled 

adult cells. 

 

 Figure 3.2 A presents the unfolded population distributions of XCI ratios in the 9 

mammalian species we sampled, ranging from the least variable (macaca) to most variable 

(dog). We fit normal distributions as continuous approximations to the underlying binomial 
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distribution that defines the relationship between cell counts and XCI ratio variability (Fig. 

3.1A, see methods). We focus on the tails of the distributions, as our previous validation 

using phased data indicated increased uncertainty for folded XCI ratio estimates between 0.5-

0.6, which translates to unfolded estimates between 0.4-0.6.  At a broad level, population XCI 

ratio variability varies substantially across the sampled mammalian species. Our estimates for 

the number of cells fated for embryonic lineages include 65 (macaca), 31 (rat), 23 (pig), 16 

(goat), 15 (horse), 14 (sheep), 14 (cow), 13 (human) and 8 (dog) cells, with associated 95% 

confidence intervals presented in figure 3.2B. The error between the empirical XCI ratio 

distributions and the normal fitted distributions is strikingly small, with a mean of 0.00538 

(+- 0.0101 SD) across the species (Supp. Fig. 3.5). This demonstrates models of embryonic 

stochasticity can explain observed XCI ratio variability in adult populations exceptionally 

well. 

 

 For the least and most variable species (macaca and dog), the estimated autosomal 

imbalances offer additional context for the reported XCI population variability. The reported 

X-linked variability in macaca is in excess to the reported autosomal allelic variability (Supp. 

Fig. 3.4). This demonstrates the X-linked population variability for macaca, while strikingly 

small, is specific to XCI and informative for estimating cell counts. On the other hand, the 

dog population is the only one that contains samples with strong allelic imbalances on only 

one autosome, where autosomal imbalances in all other species are global (Supp. Fig. 3.4). 

This is suggestive of broader genomic incompatibilities within the dog population. The 

reported X-linked population variability in dog is likely a combination of XCI and broader 

allelic incompatibilities, positioning our estimate of 8 cells as a likely underestimate due to 

excess variability outside of XCI.  
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Figure 3.2: Models of embryonic stochasticity explain adult population XCI variability 
A Unfolded distributions of XCI ratios per species, with the maximum-likelihood normal distribution 
depicted in bold, fitted to the tails of the distributions (shaded in sections of the distributions).  
B Phylogenetic tree of the sampled mammalian species with their estimated embryonic cell counts on 
a log-2 scale, depicting the number of cell divisions that separate the estimated cell counts between 
the species. Error bars are 95% confidence intervals around the cell number estimate. 
 

 Modeling XCI ratio variability across numerous species allows comparisons in light 

of evolution for determining generalizable or species-specific characteristics in XCI. Broadly, 

we demonstrate XCI ratios are variable in each species we assess, revealing variability in XCI 
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ratios itself as a conserved characteristic of XCI. The exact variance in XCI ratios varies 

across the species, with differences in the timing of XCI and/or embryonic/extra-embryonic 

lineage specification (differences in cell counts) as one putative explanation. We compare our 

estimated cell counts to the evolutionary relationships among the species we assess (Fig. 

3.2B), suggesting that variability in timing for these early embryonic events are recent 

evolutionary adaptations. This is highlighted by the large differences in cell counts between 

macaca and humans. When viewed through the lens of cell divisions (log2 of the estimated 

cell counts, Fig. 3.2B), the differences in XCI ratio variability among the species can be 

explained by differences in only 1 to 3 cell divisions, a narrow developmental window. This 

demonstrates even slight changes in the timing of XCI or embryonic/extra-embryonic lineage 

specification across mammalian species can produce large differences in population XCI ratio 

variability, as explained through the inherent stochasticity of XCI.   

 

3.4.3. XCI ratios are not associated with X-linked heterozygosity 

 After determining stochastic models can explain population XCI ratio variability 

across mammalian species, we turn to testing whether we can identify any genetic correlates 

with XCI ratios. Our approach leveraging natural genetic variation to quantify XCI ratios 

enables the opportunity to assess an expansive catalog of genetic variants for associations 

with XCI ratios across mammalian species (10,735 macaca SNPs, 12,024 rat SNPs, 23,603 

pig SNPs, 16,123 goat SNPs, 10,281 horse SNPs, 53,505 sheep SNPs, 18,509 cow SNPs, 

16,168 human SNPs, and 10,050 dog SNPs). One putative genetic contribution to XCI ratio 

variability is allelic selection during development, where increased X-linked heterozygosity 

(i.e., genetic distance), is more likely to produce selective pressures between the two X-

alleles. It follows that samples with higher X-linked heterozygosity would be expected to 

exhibit more extreme XCI ratios. 
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 We score X-linked heterozygosity per sample as the ratio of the detected SNPs within 

a sample to the number of unique SNPs identified across all samples, relative for each species 

(Fig. 3.3A). This quantification also serves as a measure of inbreeding, with decreased 

heterozygosity associated with a higher degree of inbreeding(Miller et al. 2014). The trend in 

heterozygosity across species is as expected, with rats (likely laboratory strains) as the most 

inbred (Fig. 3.3A). Next, we examine the correlations between sample heterozygosity and the 

estimated XCI ratio, as well as the estimated variability in allelic expression per sample 

(mean and standard deviation of the fitted folded-normal distribution per sample, Fig. 3.3B). 

Across all species, X-linked heterozygosity showed a near-zero correlation with the estimated 

XCI ratio, indicating a lack of association between X-linked genetic variability and XCI ratio 

variability (Fig. 3.3B). However, we observe moderate correlations between sample 

heterozygosity and the estimated variability in allelic expression in three species: rat (corr: 

0.576), macaca (corr: 0.459), and cow (corr: 0.364), notably the most inbred species (Fig. 

3.3A, Supp. Fig. 3.6). The increased variability in allelic expression present only within the 

most inbred species could potentially reflect genomic incompatibility between parental 

haplotypes(Shorter et al. 2017) rather than a direct genetic effect on XCI.  
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Figure 3.3: XCI ratios are not associated with X-linked heterozygosity 
A Distributions of sample X-linked heterozygosity per species ordered by the median value. The y-
axis is in log-10 scale, depicting the ratio of SNPs per sample to all unique identified SNPs per 
species. Boxplots depict the distributions’ quartiles.  
B The spearman correlation coefficients between sample X-linked heterozygosity and either the 
estimated standard deviation (SD) in X-linked allelic expression or the estimated XCI ratio of the 
sample (the SD and mean of the maximum-likelihood folded-normal model per sample). 
C 2D Scatter plots of sample heterozygosity compared to the sample estimated X-linked allelic 
expression SD for the three species with moderate correlation coefficients. Color bars represent the 
number of samples in each 2D bin. Plots for the other species are in Supp. Fig. 3.6. 
 

3.4.4. Low frequency variants exhibit moderate associations with XCI ratios 

 After investigating relationships between genetic variation and XCI ratios at a broad 

level across the whole X-chromosome, we next asked if individual variants might be 

associated with extreme XCI ratios. Variants that affect the expression and/or function of the 
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genetic elements that control XCI can result in highly skewed XCI ratios, as documented in 

human studies(Plenge et al. 1997). This can also occur in other X-linked genes, if the 

resulting differential in gene activity exerts a selective pressure across the X-alleles, as 

documented in disease cases(Migeon 1998; Belmont 1996). We test the association between 

XCI ratios and individual variants for all variants detected in each species with a minimum of 

10 samples, quantified through the area-under-the-receiver-operating-curve statistic 

(AUROC). For each species, we rank the samples based on their estimated XCI ratio and 

score the placement of samples carrying a given variant within the ordered list (Fig. 3.4A). If 

all the samples with that variant are at the top of the ordered list, the XCI ratio can be said to 

have perfectly predicted the presence of that variant, quantified with an AUROC of exactly 1. 

An AUROC of 0.50 indicates the XCI ratio performs no better than random chance for 

predicting the presence of the variant.  

 

 The distribution of AUROCs for each species show striking similarities to a null 

comparison (Fig. 3.4B, see methods), indicating a pervasive lack of association between XCI 

ratios and individual variants. However, a small subset of variants in each species exhibits 

moderate associations (AUROCs >= 0.75). By comparing each variant's AUROC with its 

frequency in the species, we find that the variants with moderate associations occur at low 

frequencies within the sampled populations (Fig. 3.4C, Supp. Fig. 3.7). We investigate 

whether this relationship is simply due to a lack in power with bootstrap simulations, 

demonstrating moderate AUROCs (>= 0.75) are not produced purely through small sample 

sizes (Supp. Fig. 3.7). Figure 3.4D displays these variants along with their gene annotations 

for each species. Notably, several genes in humans with moderate AUROCs have prior 

evidence for associations with skewed XCI, namely MECP2(Knudsen et al. 2006), 

IDS(Kloska et al. 2011) (also identified in macaca), IRAK1(Morcillo et al. 2020), and 

FLNA(Robertson et al. 2003). This suggests our analysis is able to recover putative examples 
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of selection impacting XCI ratios via disease-variants, though with small effect sizes and low 

frequencies in our sampled population. In general, we are unable to identify strong 

associations between genetic variation and XCI ratios across all 9 mammalian species, both 

along the whole X-chromosome and for individual variants.   
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Figure 3.4 Low frequency variants exhibit moderate associations with XCI ratios 
A Schematic depicting the AUROC quantification for testing the association between individual 
variants and extreme XCI ratios. Samples are ranked by their estimated XCI ratio, with the dark 
shaded red squares representing samples with more extreme XCI ratios. The position of samples with 
a given individual variant (grey squares) within the ranked list is used to compute the AUROC 
statistic. A variant with an AUROC value of 1 means all samples with that variant were at the top of 
the ranked list, whereas an AUROC value of 0.5 represents a random ordering of samples within the 
ranked list. 
B Distributions of variant AUROCs for each species compared to a species-specific null distribution 
of AUROC values (faded distributions, see methods), ordered by the mean value of the empirical 
distributions. The red dotted line depicts an AUROC of 0.50, performance due to random chance. 
C Scatter plot of variant AUROCs compared to each variant’s prevalence (percent of samples with 
that variant, relative for each species) for all variants across all species. The red dotted line depicts an 
AUROC of 0.50, performance due to random chance. A threshold of AUROC >= 0.75 was used to 
identify SNPs with moderate associations with XCI ratios.  
D Scatter plots depicting the same information as in C for the variants with moderate associations 
with XCI ratios, but split by each species and including gene annotations. SNPs not within annotated 
genes are unlabeled. Gene labels not present due to overlapping labels are Macaca: ZBED1, Sheep: 
LOC101108113, LOC101115509, LOC101117055, LOC105605313, LOC121818231, PPP2R3B, 
PRKX) 
 

3.5. Methods 

3.5.1. Snakemake pipeline for RNA-seq alignment and variant identification 

 All non-human mammalian fastq data was downloaded from the Sequencing Read 

Archive (SRA, https://www.ncbi.nlm.nih.gov/sra ), where only samples annotated as female 

were selected, using the metadata provided through SRA. Details for download and 

processing of the GTEx(Lonsdale et al. 2013) data can be found here(Werner et al. 2022). 

The entire sample processing pipeline uses a standard collection of bioinformatics software 

tools, all available for installation via Conda (STAR(Dobin et al. 2013) v2.7.9a, 

GATK(McKenna et al. 2010) v4.2.2.0, samtools(Li et al. 2009) v1.13, igvtools(Robinson et 

al. 2011) v2.5.3, and sra-tools 2.11.0).  All Snakemake workflow rules, environment setup 

procedure, analysis commands and options, and underlying libraries are available on Github 

at https://github.com/gillislab/cross_mammal_xci , and https://github.com/gillislab/xskew. 

Briefly, a .fastq file acts as input, for either single- or pair-end sequencing experiments, and a 

.vcf and .wig file are produced as outputs for subsequent compiling of allele-specific read 

https://www.ncbi.nlm.nih.gov/sra
https://github.com/gillislab/cross_mammal_xci
https://github.com/gillislab/xskew
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counts in R v4.3.0. The R script used for combining the .vcf and .wig information is also 

made available at https://github.com/gillislab/cross_mammal_xci/tree/main/R. Genome 

generation and alignment was performed with STAR, with the addition of the WASP(van de 

Geijn et al. 2015) algorithm for identifying and excluding reference biased reads. We extract 

chromosome-specific alignments from the .bam file (X chromosome or specific autosomes) 

and use GATK tools to identify heterozygous SNPs from that chromosome. The suite of 

GATK tools for identifying heterozygous variants from RNA-sequencing data was used 

following the GATK Best Practices recommendations. Specifically, the tools utilized include 

AddOrReplaceReadGroups -> MarkDuplicates -> SplitNCigarReads -> HaplotypeCaller -> 

SelectVariants -> VariantFiltration.   

 

 Reference genomes and gene annotations (.gtf files) for each species were sourced 

from the NCBI Refseq database (https://www.ncbi.nlm.nih.gov/refseq/ ). In each case the 

latest assembly version path was used, and the genomic.fna and genomic.gtf was 

downloaded. Annotated and indexed genomes were generated with STAR using --runMode 

genomeGenerate with default parameters. 

 

3.5.2. SNP filtering 

 Only SNPs with exactly two identified genotypes were included for analysis and 

indels were excluded. We required each SNP to have a minimum of 10 reads mapped to both 

alleles for a minimum read depth of 20 reads per SNP. Gene annotations for all SNPs were 

extracted from the species-specific .gtf files. For XCI ratio modeling, we only used SNPs 

found within annotated genes. For any sample with multiple SNPs identified in a gene, we 

took the SNP with the highest read count to be the max-powered representative of that gene, 

so each individual SNP is representative of a single gene. In addition to implementing the 

WASP algorithm for excluding reference biased reads, we filter out SNPs within each species 

https://github.com/gillislab/cross_mammal_xci/tree/main/R
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-
https://www.ncbi.nlm.nih.gov/refseq/
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whose mean expression ratios across samples deviate strongly from 0.50 (mean allelic ratio < 

0.40 and > 0.60, Supp. Fig. 3.1). This SNP filtering also excludes potential eQTL effects that 

may impact allelic-expression outside of the underlying XCI ratio.    

 

3.5.3. Identifying and excluding chromosomal regions that escape XCI 

 We reasoned robust escape from XCI would produce more balanced biallelic 

expression in samples with skewed XCI. We performed an initial pass at XCI ratio modeling 

including all well-powered SNPs in a sample to identify samples with skewed XCI ratios 

(XCI ratios >= 0.70 for all species except rat and macaca, where a threshold of 0.60 was used 

due to a reduced incidence of skewed XCI in these species). Using the subset of skewed 

samples for each species, we averaged the folded allelic-expression ratios for all SNPs 

present in 1 mega-base (MB) bins across the X-chromosome (Supp. Fig. 3.2). Chromosomal-

bins that displayed balanced allelic expression in opposition to the clearly skewed allelic 

expression of the rest of the chromosome were excluded from analysis. Specifically, 

chromosomal bins with an average allelic-expression < 0.65 for pig, goat, horse, sheep, and 

cow, < 0.60 in rat and macaca, and <0.675 in dog were excluded (Supp. Fig. 3.2) The ends of 

the X-chromosome in all species, except rat, demonstrated strong balanced biallelic 

expression, indicative of escape within putative pseudo-autosomal regions. We excluded any 

bin within these putative pseudo-autosomal regions regardless of average allelic expression. 

The escape threshold for dog was increased to exclude all bins within the dog putative 

pseudo-autosomal region.         

 

3.5.4. Modeling XCI ratios with the folded-normal distribution 

 Starting with a single parental allele, the sampled maternal allelic-expression of a 

heterozygous X-linked SNP can be modeled with a binomial distribution, dependent on the 

ratio of active maternal X-alleles in the sample and the read depth of the SNP. 
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𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

;  𝐸𝐸 � 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� =  𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚;   𝑉𝑉𝑉𝑉𝑉𝑉 � 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� =  𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚(1−𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 , 

 

where 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 is the number of maternal allelic reads, 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the read depth of the SNP, and 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 is the ratio of active maternal X-alleles. When aligned to a reference genome, the 

parental phasing information is lost and the allelic-expression of X-linked SNPs can instead 

be modeled with the folded-binomial model(Urbakh 1967; Gart 1970). We utilize the folded-

normal model as a continuous approximation of the underlying folded-binomial distribution 

due to various factors not accounted for in the binomial model (varying SNP expression 

levels and potential eQTL effects). The probability of allelic-expression under the folded-

normal model is defined as: 

 

Pr(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟;µ,𝜎𝜎2) =  
1

√2𝜋𝜋𝜎𝜎
𝑒𝑒−

(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜇𝜇)2
2𝜎𝜎2 +

1
√2𝜋𝜋𝜎𝜎

𝑒𝑒−
(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟+𝜇𝜇−1)2

2𝜎𝜎2 , for 𝜇𝜇 ∈  [0.50, 1] ,  

 

where 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the folded allelic-expression ratio of a SNP, 𝜇𝜇 is the folded XCI ratio of the 

sample, and 𝜎𝜎 is the standard deviation of the folded-normal distribution. We utilize a 

maximum-likelihood approach (negative log-likelihood minimization of eq. 2) to fit folded-

normal distributions to the observed folded allelic-expression ratios of at least 10 filtered 

SNPs per sample, taking the 𝜇𝜇 parameter of the maximum-likelihood folded-normal 

distribution as the folded XCI ratio estimate of the sample. 

 

3.5.5. Modeling autosomal imbalances    

 The folded-normal model can also be applied to autosomal data to estimate allelic-

imbalances. For each species, we extract chromosome-specific alignments from the .bam file 
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for the two autosomes closest in size to the X-chromosome (Supp. Fig. 3.4). We employ the 

exact same processing pipeline and thresholds as used for the X-chromosome. Any sample 

that displayed an autosomal imbalance greater than or equal to a folded estimate of 0.60 

(dotted lines in Supp. Fig. 3.4) on either autosome was excluded from downstream analysis. 

 

3.5.6. Modeling population XCI variability with models of embryonic stochasticity 

 XCI is a binomial sampling event, where the number of cells choosing to inactivate 

the same X-allele follows a binomial distribution defined as: 

 

𝑋𝑋 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑖𝑖𝑖𝑖𝑎𝑎𝑐𝑐𝑐𝑐), 

 

where 𝑋𝑋 is the number of cells inactivating the same X-allele, 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the number of cells 

present at the time of XCI, and 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the probability of inactivation (0.50).  

 

Embryonic XCI ratios can be modeled as: 

 

𝑋𝑋
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 ~ 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

 

We estimate 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 by fitting normal distributions to the unfolded population XCI ratio 

distributions of each species, as a continuous approximation for the underlying binomial 

distribution. The variance of the normal distribution is defined as: 

 

𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑉𝑉𝑉𝑉𝑉𝑉 �
𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
� =  

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1 − 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=  
. 5(1 − .5)
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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We model population XCI ratios as:  

 

𝑋𝑋
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝜇𝜇,�𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  �,  

 

where 𝜇𝜇 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.50 and 𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is computed for 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ [2, 200]. 

 

 We identify the normal distribution with minimal sum-squared error between its CDF 

and the empirical population XCI ratio CDF, minimizing error over the tails of the 

distributions with percentiles <= 0.40 or >= 0.60 (Supp. Fig. 3.5). We compute 95% 

confidence intervals about the cell number estimate 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 through bootstrap simulations. We 

sample with replacement from the empirical population XCI ratio distribution, matching the 

sample size of the original empirical population distribution, and fit a normal model to derive 

a bootstrap estimate of 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. We repeat this for 2000 simulations to generate a bootstrapped 

distribution of 𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, from which we derive the 95% confidence intervals, defined as the 

interval where 2.5% of the bootstrapped distribution lies outside either end.  

 

3.5.7. Measuring sample X-linked heterozygosity 

 We compute sample heterozygosity as the ratio of SNPs detected in a sample (20 read 

minimum) to the total number of unique SNPs identified across all samples for a given 

species. We quantify associations between X-linked heterozygosity and XCI ratios as the 

spearman correlation coefficient between the sample X-linked heterozygosity ratio and the 

fitted mean and variance of the maximum-likelihood folded-normal distribution of the sample 

(Fig. 3.3B-C, Supp. Fig. 3.6). We only consider samples with at least 10 detected SNPs.    

 

3.5.8. Quantifying variant associations with extreme XCI ratios 



 87 

 We quantify the strength of XCI ratios as a predictor for the presence of a given 

variant through the AUROC metric. Given a ranked list of data (XCI ratios) and an indicator 

of true positives (samples with a given variant), the AUROC quantifies the probability a true 

positive is ranked above a true negative. An AUROC of 1 indicates all true positive samples 

were ranked above all true negative samples, demonstrating XCI ratios were a perfect 

predictor for the presence of that variant. An AUROC of 0.50 indicates random placement of 

true positives and negatives in the ranked list, demonstrating XCI ratios performed no better 

than random chance for predicting the presence of that variant. We compute the AUROC 

through the Mann-Whitney U-test, defined as: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑈𝑈
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

, 

 

where 𝑈𝑈 is the Mann-Whitney U-test test statistic, computed in R with wilcox.test(alternative 

= ‘two.sided’), 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 is the number of true positive samples and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of true 

negative samples. We generate a null AUROC per variant by randomly shuffling the true 

positive and negative labels. The variant frequency is defined as the number of samples that 

carry a given variant over the total number of samples for a given species. The p-value for a 

given AUROC is the p-value associated with the Mann-Whitney U-test test statistic (𝑈𝑈), 

where we determine significance as an FDR-corrected p-value <= 0.05. We perform FDR 

correction for all p-values computed for all variants across the 9 species through the 

Benjamini-Hochberg method, implemented in R via p.adjust(method = ‘BH’). 

 

 We estimate the power of each variant through bootstrap simulations. We randomly 

sample with replacement the XCI ratios of the true positive and true negative samples, those 

that either carry or do not carry a given variant. We match the sample size of the original true 
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positive and negative labels. We compute a bootstrapped AUROC and p-value from the 

simulated data, repeating for 2000 simulations to compute a bootstrapped distribution of 

AUROCs. The AUROC power (Supp. Fig. 3.7B) is defined as the fraction of bootstrapped 

AUROCs that are significant, using a significance threshold of p-value <= 0.05. The AUROC 

effect size power (Supp. Fig. 3.7C) is defined as the fraction of bootstrapped AUROCs that 

are >= 0.75. We also report the variance of the bootstrapped AUROC distribution per variant 

in Supp. Fig. 3.7D. We exclude all variants classified as reference biased from Supp. Fig. 3.1, 

with the distributions of AUROCs for the reference biased and non-reference biased SNPs 

presented in Supp. Fig. 3.7E.    

 

3.5.9. Software 

 All analysis was performed in R(R Core Team 2023) v4.3.0. All plots were generated 

using ggplot2(Wickham 2016) v3.4.2 functions. The phylogenetic tree in Fig. 3.2B was 

generated from TimeTree http://www.timetree.org/. 

 

3.5.10. Data and Code availability 

 All associated code can be found at https://github.com/gillislab/cross_mammal_xci. 

This includes the snakemake pipeline used for processing the non-human mammalian data as 

well as all R notebooks used for data analysis and figure generation.  

 

 

 

 

 

 

 

http://www.timetree.org/
https://github.com/gillislab/cross_mammal_xci
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3.6. Supplemental figures 

 

Figure S3.1: Reference bias varies across individual SNPs 
A Top histogram depicts the distribution of mean reference ratios for all detected SNPs in 
each species. The bottom scatter plot depicts the mean reference ratio against the sample size 
for each SNP. We exclude all SNPs from XCI ratio modeling whose mean reference ratio is < 
0.40 or > 0.60 (blue lines), indicating consistent bias in allelic expression for either the 
alternate or reference allele. 
B Violin plots depicting the distribution of the number of filtered SNPs (see methods) per 
sample for each species, where we require a minimum of 10 SNPs for XCI ratio modeling. 
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Figure S3.2: Escape from XCI is enriched in chromosomal ends 
A Scatter plots comparing the chromosomal location (1 mega-base bins) and the mean folded 
allelic expression ratio for all SNPs within each 1MB bin, derived from samples with skewed 
XCI (see methods). The marginal histogram depicts the distribution of mean folded allelic 
expression ratios per 1MB bin. The size of the data points corresponds to the number of SNPs 
in each 1MB bin. Red data points indicate 1MB bins that were excluded from analysis as 
probable escape regions, due to balanced allelic expression in samples with skewed XCI 
ratios. The chromosomal ends of all species, except rat, exhibit large clusters of SNPs with 
escape signal, likely pseudo-autosomal regions. The red lines depict the threshold of allelic-
expression used to classify 1MB bins as escape or not. 
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Figure S3.3: Reference allelic expression distributions exhibit bi-parental haplotype 
expression signatures expected of the X-chromosome 
A Density distributions of reference allelic expression ratios aggregated across samples 
binned by their estimated XCI ratio, ordered from balanced to more extreme XCI ratios (top 
to bottom). For samples with balanced XCI, the parental haplotypes cannot be distinguished, 
with clear separation of the parental haplotypes as the XCI ratio increases. 
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Figure S3.4: Comparing autosomal and X chromosome allelic imbalances 
A Each data point is a single individual sample. For each species, the first scatter plot compares the 
aggregated allelic imbalance of two autosomes (see methods). The following two scatter plots 
compare the aggregated allelic imbalance of an autosome and the X chromosome. Samples that 
exhibited imbalanced allelic expression on an autosome were excluded from analysis, using a 
threshold of an imbalance >= 0.60 (dotted lines). 
B Histogram of the reference allelic-expression ratios of all chromosome 1 SNPs from the Cow 
samples with a chromosome 1 autosomal imbalance either < 0.60 (left) or >= 0.60 (right). The large 
autosomal imbalances can be attributed to extensive reference bias in allele-specific expression ratios. 
Cow results are representative of all other species. 
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Figure S3.5: Estimating embryonic cell counts from population XCI ratio variance 
A Plots comparing the normal model associated with the estimated number of cells present 
during embryonic lineage specification (x-axis, see methods) to the sum of squared error 
between the percentiles of the tails of the empirical population XCI ratio distribution and the 
theoretical normal model (y-axis, see methods). The red lines depict the normal model with 
minimum error and the associated cell number estimate for each species. 
 
 

 

 

 

 

 

 

 

 

 



 94 

 

 
 
 
 
 
 
 
 
 
 



 95 

Figure S3.6: Species with no association between sample heterozygosity and variance in X-
linked allelic expression 
A Binned scatter plots comparing the sample heterozygosity (log-10 of the number of SNPs 
per sample divided by the number of unique SNPs detected per species) to the estimated 
standard deviation (SD) in X-linked allelic expression (SD of the maximum-likelihood 
folded-normal distribution per sample). Spearman correlation coefficients are presented next 
to the species’ names. Color bars represent the number of datapoints per 2D bin. 
B Binned scatter plots comparing the sample heterozygosity (log-10 of the number of SNPs 
per sample divided by the number of unique SNPs detected per species) to the estimated XCI 
ratio (mean of the maximum-likelihood folded-normal distribution per sample). Spearman 
correlation coefficients are presented next to the species’ names. Color bars represent the 
number of datapoints per 2D bin. 
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 97 

Figure S3.7: Low frequency variants are powered to detect significant associations with 
XCI ratios 
A Scatter plot comparing the initial AUROC against variant frequency for all variants across 
all species. Statistical significance of AUROCs is determined by an FDR-corrected p-value 
<= 0.05. The red dotted line in all 4 figure panels represents the AUROC threshold used to 
determine individual variants with a moderate association with XCI ratios. 
B Scatter plot comparing the initial AUROC against the estimated power to detect a 
significant effect for each variant. Power was estimated through bootstrap simulations using a 
significance threshold of p-value <= 0.05, see methods. 
C Scatter plot comparing the initial AUROC against the estimated power to detect an 
AUROC with effect size 0.75 or greater. Power was estimated through bootstrap simulations, 
see methods.  
D Scatter plot comparing the initial AUROC against the variance of the bootstrapped 
distribution of AUROCs for each variant, see methods. 
E Violin and boxplots depicting the distributions of AUROCs for the SNPs classified as 
either reference biased or not from the analysis in Supp. Fig. 1. Boxplots depict the quartiles 
of the distributions. 
 

3.7. Chapter 3 summary: 

 In this work, we compile population distributions of XCI ratios across 9 mammalian 

species and assess both stochastic and genetic factors for explaining the observed population 

variability in XCI ratios. We reveal that mammalian populations generally vary in XCI ratios, 

with species ranging from very low variability (Macaca) to very high variability (Dog). We 

demonstrate that models of embryonic XCI stochasticity explain population XCI ratio 

variability exceptionally well across all species and provide estimates for the number of cells 

that must have been present in the embryonic epiblast during XCI for each species assessed. 

We explore genetic associations with XCI by computing correlations between X-linked 

heterozygosity and XCI ratios, finding extremely low correlations, and by computing the 

strength of XCI ratios as a predictor for individual X-linked variants, revealing only a small 

collection of variants with moderate associations to large XCI ratios across the species. In 

summary, our work fails to find pervasive genetic correlates with XCI ratios and instead 

presents the inherent stochasticity of XCI as a general model for explaining population XCI 

ratio variability and inferring early developmental lineage decisions across mammalian 

species.   
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4. Preservation of co-expression defines the primary tissue fidelity of 

human neural organoids 
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4.3. Results summary 

 In this work, we compile a broad collection of scRNA-seq data from primary neural 

tissue and neural organoid datasets, spanning gestational weeks 5-25, sampling from 15 

different brain regions and 12 different organoid differentiation protocols, for a total of 2.95 

and 1.63 million cells for primary tissue and organoid datasets respectively. This broad 
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sampling of primary tissue variation enables us to identify universal primary tissue signatures 

that constitute a generalizable benchmark for quantifying successes and failures of neural 

organoid systems. Specifically, quantifying the strength of preserved gene co-expression 

relationships across in vivo and in vitro datasets enables a functional, field-wide assessment 

of the current capabilities for modeling human brain development in vitro. We first compute 

meta-analytic primary tissue cell-type markers (MetaMarkers), deriving sets of markers that 

are expressed in a cell-type specific manner across all primary tissue datasets, timepoints and 

brain regions, constituting universal primary tissue cell-type signatures. We then construct co-

expression networks from independent primary tissue data and the neural organoid datasets 

and quantify the strength of co-expression within the MetaMarker gene sets. Intra-gene set 

co-expression is high and comparable across all primary tissue data. Neural organoids exhibit 

extensive variance in performance, ranging from comparable to a complete lack of signal 

next to primary tissue data. We next measure the preservation of co-expression between 

primary tissue and organoid data within the MetaMarker gene sets, quantifying the degree the 

top-ten co-expressed partners of any given gene are preserved across systems. Using a meta-

analytic primary tissue co-expression network as the reference, we demonstrate preservation 

of primary tissue co-expression is universally high across all primary tissue cell-types, with 

neural organoids again exhibiting high variability in performance. At a genome-wide level, 

we reveal that organoids consistently fail to preserve co-expression of ECM-related genes, 

suggesting ECM regulation is a strong and persistent failure of neural organoid models. In 

conclusion, we derive universal primary tissue cell-type signatures that are robust to 

temporal, regional, and technical variation, constituting a general benchmark for quantifying 

the fidelity of any neural organoid dataset. Specifically, our approach provides gene-, cell-

type, and genome-wide quantification of the successes and failures of in vitro neural organoid 

differentiation. In line with the broader theme of developmental lineage for this thesis, this 
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work presents a field-wide functional assessment of the current technical capabilities for 

modeling human neural development in vitro.       

 

4.4 Introduction 

 Pluripotent stem cells create self-organized multi-cellular structures, termed 

organoids, when cultured in a 3D in vitro environment(Eiraku et al. 2008; Sato et al. 2009). 

The advantage of organoid models over 2D cell culture counterparts is their ability to 

generate structures that resemble endogenous tissues both in the differentiated cell-types 

produced and their 3D spatial organization(Lancaster et al. 2013; Corrò et al. 2020). The 

ability to model organogenesis in a controlled in vitro environment creates opportunities to 

study previously inaccessible developmental tissues from both humans and a range of model 

organisms(Pollen et al. 2019),(Kanton et al. 2019; Benito-Kwiecinski et al. 2021). As such, 

organoids are genetically accessible(Fleck et al. 2022) and environmentally 

perturbable(Sarieva and Mayer 2021) models enabling the study of molecular, cellular, and 

developmental mechanisms behind tissue construction. However, the applicability of studies 

in organoids to in vivo biology hinges on how well these in vitro models recapitulate primary 

tissue developmental processes, which remains an open question.    

 

 Quantifying the degree to which organoid systems replicate primary tissue biological 

processes is a critical step toward understanding the strengths and limitations of these in vitro 

models(Camp et al. 2015; Velasco et al. 2019; Bhaduri et al. 2020; Gordon et al. 2021; Feng 

et al. 2022). However, studies that perform such primary tissue/organoid comparisons are 

inherently confounded by batch(Leek et al. 2010) (in vivo vs in vitro), making it difficult to 

disentangle batch effects from underlying primary tissue and organoid biology. Meta-analytic 

approaches across many primary tissue and organoid datasets offer a route around these 
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confounds, enabling the discovery of replicable primary tissue and organoid signatures 

independent of batch, which can then be interrogated for how well organoids recapitulate 

primary tissue biology(Tanaka et al. 2020; Cheroni et al. 2022; Kim et al. 2023). An 

important biological signature for this purpose is gene co-expression(Zhang and Horvath 

2005). Genes that are functionally related tend to be expressed together, resulting in 

correlated gene expression dynamics that can define functionally relevant gene 

modules(Zhang and Horvath 2005). Gene co-expression relationships represent a shared 

genomic space that can be aggregated across experiments (e.g.,(Lee et al. 2020)) in either in 

vivo or in vitro systems, thus providing a useful framework for quantifying functional 

similarities and differences. Excitingly, coupling meta-analytic comparisons of primary tissue 

and organoid co-expression with single-cell RNA-sequencing data (scRNA-seq) stands to 

deliver cell-type specific quantifications of organoids’ current capacity for producing 

functionally equivalent cell-types to primary tissues(Crow et al. 2016),(Mead et al. 2018).  

 

 Among organoid systems, human neural organoids are particularly well suited for 

meta-analytic evaluation due to well-described broad cell-type annotations and their known 

lineage relationships(Agboola et al. 2021), the wide variety of differentiation protocols in 

use(Mayhew and Singhania 2023), and the increasing amount of single-cell primary brain 

tissue and neural organoid data publicly available. In particular, the diversity of 

differentiation protocols for human neural organoids poses a unique challenge for organoid 

quality control that can be met by meta-analytic approaches. Neural organoids can either be 

undirected(Lancaster and Knoblich 2014) (multiple brain region identities) or directed 

(specific brain region identity) with an increasing number of protocols striving to produce a 

wider variety of region-specific organoids(Velasco et al. 2019; Muguruma et al. 2015; 

Sakaguchi et al. 2015; Qian et al. 2016; Xiang et al. 2017; Birey et al. 2017; Xiang et al. 

2019; Miura et al. 2020; Eura et al. 2020; Andersen et al. 2020; Huang et al. 2021; Nayler et 
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al. 2021; Sozzi et al. 2022). Meta-analytic primary tissue/organoid comparisons across 

differentiation protocols stand to derive generalizable quality control metrics applicable to 

any differentiation protocol, fulfilling a currently unmet need for unified quality control 

metrics across heterogeneous neural organoids. 

 

 Prior comparisons between primary brain tissues and neural organoids demonstrated 

that organoids have the capacity to produce diverse cell-types that capture both regional and 

temporal variation similar to primary tissue data as assayed through transcriptomic(Camp et 

al. 2015),(Velasco et al. 2019; Gordon et al. 2021; Tanaka et al. 2020; Cheroni et al. 2022), 

(Uzquiano et al. 2022), epigenomic(Luo et al. 2016; Amiri et al. 2018), 

electrophysiologic(Fair et al. 2020), and proteomic studies(Nascimento et al. 2019). At the 

morphological level, neural organoids can produce cellular organizations structurally similar 

to various in vivo brain regions, including cortical layers(Qian et al. 2020) and 

hippocampus(Sakaguchi et al. 2015), as well as modeling known inter-regional interactions 

like neuromuscular junctions(Andersen et al. 2020) and interneuron migration(Xiang et al. 

2017). Additionally, several prior studies have compared primary tissue/organoid co-

expression and concluded that neural organoids recapitulate primary brain tissue co-

expression(Pollen et al. 2019; Gordon et al. 2021; Luo et al. 2016), but these assessments are 

highly targeted to study-specific properties, limiting potential generalization or potential 

assessment across the field. Typically, only a single organoid differentiation protocol is used 

in these assessments and it remains unclear whether organoids across different protocols will 

produce similar results. This lack of breadth also affects the use of primary tissue data used as 

a reference, with the primary tissue datasets utilized being treated as gold-standard datasets 

with little consideration for the extent one primary tissue reference may generalize to another. 

While prior meta-analytic comparisons of primary tissue/organoid co-expression have been 

performed(Cheroni et al. 2022), these were done at the bulk level (lack cell-type resolution) 
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and included a small number of cortical organoid protocols, limiting the biological resolution 

and generalizability of these findings.   

 

 In this study, we perform a meta-analytic assessment of primary brain tissue (2.95 

million cells, 50 datasets, Fig. 4.1A) and neural organoid (1.63 million cells, 130 datasets, 12 

protocols, Fig. 4.1B) scRNA-seq datasets, constructing robust primary tissue cell-type 

specific markers and co-expression to query how well neural organoids recapitulate primary 

tissue cell-type specific biology. We sample primary brain tissue data over the first and 

second trimesters and across 15 different developmentally defined brain regions, extracting 

lists of cell-type markers that define broad primary tissue cell-type identity regardless of 

temporal, regional, or technical variation (Fig. 4.1A). We derive co-expression networks from 

individual primary tissue and organoid datasets as well as aggregate co-expression networks 

across datasets (Fig. 4.1C). From these networks, we assess the strength of co-expression 

within primary tissue cell-type marker sets as well as the preservation of co-expression 

patterns between primary tissue and organoid data (Fig. 4.1D-E). We also provide an R 

package to download our primary tissue reference co-expression network and assay new 

neural organoid data using simple, meaningful, and fast statistics (Fig. 4.1F). By constructing 

robust primary tissue cell-type representations through meta-analytic approaches, we 

demonstrate the preservation of primary tissue cell-type co-expression provides both specific 

and generalizable characterization of the primary tissue fidelity of human neural organoids.   

 



 104 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 105 

Figure 4.1: Using meta-analysis to quantify preserved primary tissue co-expression in 
organoids 
A Collection of annotated primary tissue brain scRNA-seq datasets, ranging from gestational 
week (GW) 5 to 25 and sampling from 15 developmentally defined brain regions. The 
primary tissue datasets are annotated at broad cell-type levels (Neural Progenitor, Dividing 
Progenitor, Intermediate Progenitor, Glutamatergic, GABAergic, and Non-neuronal) and 
these annotations are used to compute MetaMarkers, cell-type markers identified through 
recurrent differential expression. 
B Collection of human neural organoid scRNA-seq datasets, sampling from 12 different 
differentiation protocols. Included is an annotated temporal forebrain organoid dataset. 
C Example of a sparse co-expression network derived from a scRNA-seq data and an 
example of an aggregate co-expression network averaged over many scRNA-seq datasets. 
The aggregate network enhances the sparse signal from the individual network. 
D Schematic showing a quantification of intra-marker set co-expression 
E Schematic showing a quantification for the strength of preserved co-expression between 
two co-expression networks, measuring the replication of the top 10 co-expressed partners of 
an individual gene across the networks. 
F Example plot from the preservedCoexp R library, placing cell-type specific preserved co-
expression scores of an example forebrain organoid dataset in reference to scores derived 
from primary tissue datasets. Red lines denote the percentile of the organoid cell-type scores 
within the primary tissue distributions. 
 

4.5. Results 

4.5.1. Meta-analytic framework for primary tissue/organoid comparisons 

 We reason that, if they exist, primary tissue cell-type specific signals robust to 

temporal, regional, and technical variation will constitute in vivo standards applicable to any 

organoid dataset regardless of time in culture or differentiation protocol. We first show it is 

possible to learn sets of marker genes that define broad primary tissue cell-types (Fig. 4.1A, 

Supp. Table 4.1) across timepoints (gestational weeks GW5-GW25) and brain regions (15 

developmentally defined brain regions) through a meta-analytic differential expression 

framework (Fig. 4.1A, Fig. 4.2A-B). We then compare co-expression within these marker sets 

between primary tissue and organoid data to quantify the degree organoids preserve primary 

tissue cell-type specific co-expression. An important aspect of our analysis is our cross-

validation of primary tissue differential expression and co-expression. We employ a leave-

one-out cross-validation approach when learning robust differentially expressed marker genes 

from our annotated primary tissue datasets (2,174,934 cells, 37 datasets) and we interrogate 
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co-expression of our primary tissue marker genes within a large cohort of unannotated 

primary tissue datasets (776,343 cells, 14 datasets). This approach ensures we are extracting 

primary tissue markers and co-expression relationships independent of temporal, regional, 

and technical variation, a powerful approach for deriving broad primary tissue signatures 

appropriate for comparison to a wide range of organoid datasets.  
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Figure 4.2: Meta-analytic primary tissue cell-type markers 
A Annotated UMAPs of the annotated primary tissue brain scRNA-seq datasets. 
B Example of our leave-one-out cross-validation approach for learning primary tissue 
MetaMarkers and testing the markers’ capacity for predicting annotations in the left-out 
dataset, quantified with the AUROC statistic. 
C Meta-analytic primary tissue markers have high performance in predicting primary tissue 
cell-type annotations. Boxplot distributions of the AUROC statistic for predicting cell-type 
annotations across all leave-one-out combinations of our annotated primary tissue datasets, 
with an increasing number of MetaMarkers used for predicting cell-type annotations on the x-
axis. 
D MetaMarkers have the highest performance in predicting primary tissue cell-type 
annotations. Boxplots of marker gene-set performances. Gene-sets are the top 100 cell-type 
markers from individual primary tissue datasets compared to the MetaMarker performance. 
Performances for each cell-type in individual primary tissue datasets are presented in Supp. 
Fig. 4.1A. Datasets are ordered by their median performance.   
E Averaged distributions of gene expression for the top 100 MetaMarkers demonstrating 
clear cell-type specificity. This is performed with a leave-one-out cross-validation, with 
individual dataset distributions reported in Supp. Fig. 4.1B. 
 

4.5.2. Cross-temporal and -regional primary tissue cell-type markers 

 To learn markers that define broad primary tissue cell-types, we apply the 

MetaMarkers(Fischer and Gillis 2021) framework to our cross-temporal and -regional 

annotated primary tissue datasets (Fig. 4.2A-B). MetaMarkers uses robust differential 

expression statistic thresholds (log2 fold-change >= 4 and FDR-adjusted p-value <= 0.05) for 

determining whether a gene is differentially expressed (DE) within individual datasets, then 

ranks all genes via the strength of their recurrent DE across datasets (see methods). We test 

the generalizability of our primary tissue MetaMarker gene sets in predicting primary cell-

types by employing a leave-one-out primary tissue cross-validation (Fig. 4.2A-B). We 

construct an aggregate expression predictor in the left-out dataset using MetaMarkers learned 

from the remaining datasets (see methods), quantifying how well the MetaMarker gene sets 

predict the left-out cell-type annotations with the area-under-the-receiver-operating-

characteristic curve statistic (AUROC, Fig. 4.2B-C). The AUROC is the probability of 

correctly prioritizing a true positive (e.g., cell of the right type) above a negative, (e.g., cell of 

the wrong type), given some predictor of the positive class, in this case, aggregate cell-type 

marker expression.  
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 Starting with just the top 10 primary tissue MetaMarkers per cell-type, we achieve a 

mean AUROC across all primary tissue datasets of 0.944 ± 0.0280 SD, 0.865 ± 0.0653 SD, 

0.873 ± 0.0676 SD, 0.937 ± 0.0669 SD, 0.879 ± 0.0535 SD, and 0.863 ± 0.0768 SD, for 

dividing progenitors, neural progenitors, intermediate progenitors, GABAergic neurons, 

glutamatergic neurons, and non-neuronal cell-types respectively (Fig. 4.2C). These extremely 

high performances demonstrate that even a small number of meta-analytically derived 

primary tissue cell-type markers have high utility in predicting primary tissue cell-type 

annotations regardless of temporal and regional variability. For all following analysis, we 

take the top 100 MetaMarkers per cell-type as robust representations of our 6 broad primary 

tissue cell-type annotations (average AUROC >= 0.90 except for intermediate progenitors: 

0.897 ± 0.0777 SD), with the 100 MetaMarkers achieving modest increases in performance 

over the top 10 MetaMarkers for all cell-types except GABAergic cells (Fig. 4.2C, mean 

AUROC for 100 GABAergic MetaMarkers: 0.922 ± 0.0777 SD). When comparing 

MetaMarkers to markers derived from individual primary tissue datasets, we find the 

MetaMarkers are consistently top performers in predicting primary tissue annotations (Fig. 

4.2D), with MetaMarkers producing the top results for intermediate progenitors, 

glutamatergic neurons, and GABAergic neurons (Supp. Fig. 4.1), as well as comparable 

performance to top individual datasets for dividing progenitors, neural progenitors, and non-

neuronal cell-types (Supp. Fig. 4.1).  

 

 We explore the primary tissue MetaMarker sets further by computing the average 

expression of the top 100 MetaMarkers for our 6 annotated cell-types across all cells within 

our 37 annotated primary tissue datasets (Fig. 4.2E), continuing our leave-one-out approach. 

Each annotated primary tissue cell-type expresses the corresponding matched MetaMarker set 

over all other MetaMarker sets, with the exception of some off-target expression for the 
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neural progenitor MetaMarkers in dividing progenitors and non-neurons (aggregated over all 

datasets Fig. 4.2E, individual datasets Supp. Fig. 4.1B). This demonstrates our MetaMarker 

gene sets act as robust cell-type markers in aggregate across all first and second trimester 

timepoints (Fig. 4.2E, Supp. Fig. 4.1B). Additionally, we investigate the expression of the top 

100 MetaMarker gene sets across annotated primary brain regions, demonstrating each 

primary tissue cell-type maximally expresses the corresponding primary tissue MetaMarker 

set across all annotated brain regions (Supp. Fig. 4.2A-B). Overall, we are able to meta-

analytically extract cell-type markers that define broad primary tissue cell-types independent 

of temporal and regional variation. 

 

4.5.3. Broad primary tissue cell-type markers capture organoid temporal variation 

 After extracting meta-analytic cell-type markers that capture broad primary tissue 

temporal and regional variation, we can test how well these markers also capture organoid 

temporal and regional (protocol) variation. We start with a large-scale temporal organoid 

atlas(Uzquiano et al. 2022) derived from a forebrain differentiation protocol containing 

timepoints ranging from 23 days to 6 months in culture. When comparing primary tissue and 

organoid data along a temporal axis, one might expect younger primary tissue expression data 

to be a better reference for younger organoid cell-types (better able to predict cell-types) and 

vice-versa for older primary and organoid data (Supp. Fig. 4.3A). We test this relationship 

using the same AUROC quantification as in Figure 4.1C, but now using the top 100 primary 

tissue cell-type markers per primary tissue dataset to predict organoid cell-type annotations 

across all organoid timepoints (Supp. Fig. 4.3B, see methods). 

 

 We observe highly consistent performance across all primary tissue datasets (GW5 – 

GW25) when predicting organoid cell-types regardless of the organoid timepoint (Supp. Fig. 

4.3B). The average difference in AUROC scores when predicting organoid cell-types using 
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either our youngest (GW5) or oldest (GW25) primary data is 0.000382 ± 0.0357 SD, 0.132 ± 

0.188 SD, 0.141 ± 0.0980 SD, 0.0379 ± 0.130 SD and 0.0845 ± 0.209 SD for dividing 

progenitors, neural progenitors, glutamatergic neurons GABAergic neurons, and non-

neuronal cells respectively (No annotated intermediate progenitors in the GW25 primary 

tissue dataset). This demonstrates strikingly consistent performance across primary tissue 

timepoints, highlighting that broad primary tissue cell-type signatures are applicable as 

reference for organoid cell-types regardless of the primary tissue or organoid timepoint. The 

one exception is for neural progenitors, where there seemingly is a temporal shift in 

performance with younger primary tissue datasets predicting younger organoid annotations 

over older organoid annotations and vice-versa for older primary tissue/organoid data (Supp. 

Fig. 4.3B). However, a subset of the young GW6-8 primary tissue datasets report sharp 

increases in performance predicting older organoid timepoints in opposition to other GW6-8 

primary tissue datasets, suggesting variance in performance is driven by intersections 

between the quality of individual organoid and primary tissue datasets rather than 

overarching temporal variability. Importantly, our lists of top 100 primary tissue 

MetaMarkers perform comparably to marker sets from individual primary tissue datasets, 

with less variance in performance across the organoid timepoints for the differentiated cell-

types (mean AUROC variance across organoid timepoints for individual primary tissue 

datasets vs. primary MetaMarker variance; glutamatergic: 0.0142, 0.00477, GABAergic: 

0.00921, 0.00199, non-neuronal: 0.00901, 0.00670, Supp. Fig. 4.3B). This demonstrates our 

meta-analytic primary tissue cell-type markers robustly capture organoid temporal variation. 

 

4.5.4. Broad primary tissue cell-type markers capture organoid protocol variation 

 We assess whether our primary tissue MetaMarker gene sets capture organoid 

variation outside the annotated forebrain temporal organoid atlas by performing principal-

component analysis (PCA) across all organoid datasets, representing data from 12 different 
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differentiation protocols. Our lists of 100 primary tissue MetaMarkers are consistently 

heavily weighted in the first PC across organoid datasets (Supp. Fig. 4.3C-D). While a large 

portion of PC1-weighted genes are dividing progenitor MetaMarkers (representing cell-cycle 

signal), markers for non-dividing fetal cell-types also comprise those genes consistently 

heavily weighted in PC1 across organoid datasets (Supp. Fig. 4.3C-D).    

 

4.5.5. Aggregate organoid co-expression preserves primary tissue cell-type co-expression 

 Our primary tissue MetaMarkers that capture both primary tissue and organoid 

temporal/regional variation enable assessments of cell-type specific co-expression between 

arbitrary primary tissue and organoid datasets. One normally would need matched cell-type 

annotations across datasets to compare cell-type specific biology, but here we couple our 

meta-analytically derived cell-type markers with gene co-expression quantifications, which 

do not rely on cell-type annotations, to extract cell-type specific co-expression from any 

given scRNA-seq dataset. Practically, if organoids are producing cell-types functionally 

identical to primary tissue cell-types, we would expect near identical co-expression 

relationships within our primary tissue MetaMarker gene sets across primary tissue and 

organoid datasets. 

 

 Deriving co-expression relationships from single-cell data is challenging due to 

inherent sparsity of the expression data (Fig. 4.3A). We overcome this sparsity with 

straightforward standardization and aggregation approaches (Fig. 4.3A, see methods), which 

prioritize replicable signal across datasets. We first explore marker set co-expression within 

our unannotated primary tissue datasets, which were not included in deriving our primary 

tissue MetaMarker sets. The aggregate unannotated primary tissue co-expression network 

nearly perfectly constructs cell-type specific co-expression modules when hierarchically 

clustering the co-expression of our top 100 primary tissue MetaMarker gene sets (Fig. 4.3B). 
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Turning to the aggregated organoid co-expression network, while the intra- and inter-

MetaMarker gene set co-expression appears dysregulated compared to the unannotated 

primary tissue co-expression network, the overall clustering of MetaMarker genes by co-

expression still largely captures cell-type specific clustering (Fig. 4.3B). We quantify this 

through the Adjusted Rands Index (ARI) metric, comparing the MetaMarker clustering 

through co-expression in any given network to the perfect clustering of MetaMarker gene sets 

by cell-type. We perform this quantification for both the aggregated co-expression networks 

(diamond, triangle, and square special characters, Fig. 4.3C) and for all individual primary 

tissue and organoid co-expression networks (boxplots, Fig. 4.3C). While individual organoid 

networks perform worse than individual primary tissue networks on average, the aggregated 

organoid network is largely comparable to individual primary tissue networks (Fig. 4.3C, 

median annotated and unannotated primary tissue network ARI: 0.403, 0.437, aggregated 

organoid network ARI: 0.381). In aggregate, organoid co-expression largely captures broad 

primary tissue cell-type specific co-expression. 
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Figure 4.3: Neural organoids vary in recapitulating primary tissue cell-type marker set co-
expression 
A Example of a sparse co-expression network derived from a scRNA-seq data and an 
example of an aggregate co-expression network averaged over many scRNA-seq datasets. 
The aggregate network enhances the sparse signal from the individual network.  
B Marker gene-sets show clear cell-type clusters via their co-expression relationships in 
primary tissue and organoid networks. The aggregated co-expression networks for the 
unannotated primary tissue datasets and organoid datasets, showing the hierarchically 
clustered co-expression of the primary tissue MetaMarkers for the 6 cell-types.  
C Organoid cell-type clustering via co-expression is notable lower compared to all primary 
tissue datasets. Distributions of the Adjusted Rands Index (ARI) for individual annotated 
primary tissue, unannotated primary tissue, and organoid datasets. The ARI scores for the 
aggregate networks are denoted with the special characters.  
D Schematic for the co-expression module learning framework, measuring the co-expression 
strength within an arbitrary gene-set compared to the rest of the genome, quantified with the 
AUROC statistic. 
E Distributions of co-expression module AUROCs for individual annotated primary tissue, 
unannotated primary tissue, and organoid datasets for the co-expression strength of the 
MetaMarker gene-sets for the 6 cell-types. The grey ‘All GO terms’ distributions report the 
average co-expression module AUROC across all GO terms for each individual dataset. Co-
expression module AUROCs for the aggregate co-expression networks are denoted with the 
special characters. 
F Top and bottom organoid co-expression networks based on Glutamatergic performance. 
Heatmaps depict the hierarchically clustered co-expression of the primary tissue MetaMarker 
gene-sets for the 6 cell-types. Cell-type specific clusters are apparent in the top network, but 
are more mixed in the bottom network. Pie-charts depict the percentage of MetaMarker gene-
sets that make up an example cluster in each network determined via the hierarchical 
clustering.    
 

4.5.6. Organoid datasets vary in primary tissue cell-type marker set co-expression 

 Having broadly assessed co-expression across our MetaMarker gene sets, we then 

asked how well do organoids recapitulate primary tissue co-expression within each cell-type 

specific MetaMarker gene set. We score intra-gene set co-expression strength through a 

simple machine learning framework(Ballouz et al. 2017),(Skinnider et al. 2019), which 

quantifies whether genes in a given set are more strongly co-expressed with each other 

compared to the rest of the genome (Fig. 4.3D).  

 

 Co-expression module scores across the annotated and unannotated primary tissue 

datasets are largely comparable with the exception of a sharp decrease in intermediate 

progenitor performance for the unannotated primary tissue datasets (Fig. 4.3E). Six out of the 
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fourteen unannotated datasets are sampled from either the ganglionic eminences or the 

hypothalamus, potentially explaining this decrease in performance and suggesting our 

intermediate progenitor MetaMarkers are enriched for signal from cortical areas. In contrast, 

performance is much more variable across the individual organoid datasets for all cell-types 

except the dividing progenitors, ranging from no signal (AUROC <= 0.50) to comparable 

results with primary tissue networks (Fig. 4.3E). We visualize the top and bottom performing 

organoid co-expression networks for glutamatergic co-expression to highlight the extreme 

variability across organoid datasets in recapitulating primary tissue co-expression (Fig. 4.3F). 

In the top performing organoid network, we find cell-type specific co-expression modules 

with a clear glutamatergic module (Fig. 4.3F). While co-expression for dividing progenitor 

markers constructs a clear module in the bottom performing organoid network, non-dividing 

primary tissue cell-type co-expression is clearly dysregulated with clusters composed of all 

primary tissue cell-type markers (Fig. 4.3F). By quantifying the intra-gene set co-expression 

of our primary tissue MetaMarkers, we are able to place organoid datasets on a spectrum 

ranging from complete failure to primary tissue-level recapitulation of primary tissue co-

expression.  

 

 Importantly, organoid datasets vary strongly by protocol type in recapitulating 

primary tissue cell-type specific co-expression (Supp. Fig. 4.4). The undirected differentiation 

protocols (cerebral and cortical, Supp. Fig. 4.4) produce highly variable results across the 

primary tissue cell-types, in line with previous reports of high variability for undirected 

organoids. Intriguingly, the vascularized cortical organoid protocol produces consistently 

high performance across all primary tissue cell-types (Supp. Fig. 4.4), suggesting 

vascularized models increase organoids’ capacity to produce comparable primary tissue cell-

types in vitro. We also find the vascularized cortical, dorsal patterned forebrain, and 

undirected cortical protocols produce some of the highest co-expression module scores for 
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our GABAergic primary tissue MetaMarkers (Supp. Fig. 4.4). These results agree with 

previous observations of in vitro production of inhibitory cell-types within these cortical 

models previously expected to produce exclusively excitatory lineages. 

 

4.5.7. Organoid datasets vary in preserving gene-level primary tissue co-expression 

 We take our primary tissue/organoid co-expression comparisons a step further and 

ask how well individual organoid datasets preserve gene-level primary tissue co-expression 

relationships. For any given individual gene, we can quantify whether that gene’s top co-

expressed partners are preserved in one co-expression network compared to another (Fig. 

4.4A). We use the aggregated co-expression network from the annotated primary tissue 

datasets as our reference co-expression network and test how well individual co-expression 

networks, either primary tissue or organoid, perform in preserving primary tissue gene-level 

co-expression patterns (Fig. 4.4A, top 10 co-expressed neighbors). We start by quantifying 

the preserved co-expression of genes within our primary tissue MetaMarker gene sets, using 

the average preserved co-expression AUROC as a measure of preserved co-expression for 

any given gene set (Fig. 4.4A). Across our 6 annotated primary tissue cell-types, primary 

tissue co-expression networks deliver consistently high performance for preserved co-

expression scores of our primary tissue MetaMarker gene sets (Fig. 4.4B, mean preserved co-

expression score across cell-types and primary tissue datasets: annotated 0.971 ± 0.0227 SD, 

unannotated 0.963 ± 0.00957 SD). This indicates the top 10 co-expressed partners are highly 

preserved for the vast majority of genes within each MetaMarker gene set across all primary 

tissue datasets.  
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Figure 4.4: Neural organoids vary in their preservation of primary tissue gene-level co-
expression 
A Schematic showing the quantification for gene-level preserved co-expression. The 
preserved co-expression score for any given gene-set is the average preserved co-expression 
AUROC across all genes within that gene set. 
B Organoids strongly vary in preserved primary tissue cell-type specific co-expression in 
comparison to fetal data. Boxplot distributions show the preserved co-expression scores for 
the primary tissue MetaMarker gene-sets of the 6 cell-type annotations across all individual 
networks.  
C The majority of cell-types are significantly correlated in preserved co-expression within 
organoid networks. Spearman correlation matrix for the preserved co-expression scores for all 
6 cell-type annotations across all individual organoid datasets. 
D Scatter plots summarizing the semantic distances of GO terms that are significantly 
preserved or non-preserved between the aggregate annotated primary tissue and organoid co-
expression networks. 
E Organoids globally fail to preserve primary tissue co-expression of ECM and vascular 
related genes. Bar plot detailing the top 10 GO terms from a GO enrichment test of the 76 
genes with high and low preserved co-expression AUROCs within primary tissue networks 
and organoid networks respectively. The preserved co-expression for each individual gene 
from primary tissue networks and organoid networks is reported in Supp. Fig. 4.6E. 
 

 In contrast, individual organoid datasets vary substantially in preserved co-expression 

scores across our primary tissue MetaMarker gene sets (Fig. 4.4B). As before with our 

quantification of intra-gene set co-expression, quantifying preserved gene-level co-expression 

places organoid datasets on a spectrum of near zero to indistinguishable preserved co-

expression to primary tissue data. Organoid datasets vary substantially by protocol in 

preserving primary tissue cell-type specific co-expression, echoing similar trends as observed 

from our co-expression module analysis (Supp. Fig. 4.5). Since the majority of our organoid 

protocols are designed for producing excitatory lineages, it is encouraging we report a higher 

average preservation of glutamatergic primary tissue co-expression over non-neuronal or 

GABAergic primary tissue co-expression across our organoid datasets (Fig. 4.4B). 

Unsurprisingly, preservation of dividing progenitor co-expression is universally high with a 

preserved co-expression score of approximately 1 in nearly every primary tissue and organoid 

dataset, representing consistent co-expression of cell-cycle marker genes across systems (Fig. 

4.4B, Supp. Fig. 4.5). A subset of organoid datasets are clear outliers to this trend (Fig. 4.4B, 

Supp. Fig. 4.5), suggesting that cell-cycle co-expression is not preserved, indicating basic 
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cellular functions may be dysregulated in these datasets. One intriguing observation came 

from a study that compared organoids grown in a vertical shaker versus an orbital 

shaker(Suong et al. 2021). We show that organoids grown in an orbital shaker produce higher 

preserved primary tissue co-expression scores for intermediate progenitors and glutamatergic 

cell-types whereas organoids grown in a vertical shaker produce higher scores for 

GABAergic cell-types (3 replicates each, glutamatergic, intermediate progenitor, 

GABAergic; Orbital: 0.896 ± 0.00102 SD, 0.795 ± 0.00148 SD, 0.665 ± 0.0308 SD. Vertical: 

0.644 ± 0.0125 SD, 0.686 ± 0.0161 SD, 0.763 ± 0.00731 SD). This suggests the mechanical 

conditions of organoid growth can distinctly impact lineage and cell-type production in 

organoids.  

 

 With measures of preserved primary tissue co-expression for multiple cell-types 

within organoids, we can additionally assess variation in preserved co-expression across cell-

types within individual organoid datasets. We compute correlations of preserved co-

expression scores between the 6 MetaMarker sets across all organoid datasets and find 

significantly positive correlations (FDR-adjusted p-value < .001) across all comparisons with 

the exception of the non-neuronal cell-type (Fig. 4.4C, non-neuronal FDR-adjusted p-values 

range from < 0.001 to 0.745). This indicates preserved primary tissue co-expression is a 

global feature of organoid datasets. For example, if an organoid is producing neural 

progenitors that preserve primary tissue co-expression, that organoid is likely producing other 

cell-types that preserve primary tissue co-expression. Similarly, we asked if preserved co-

expression varies across normal or perturbed organoids. A subset of our organoid datasets 

come from studies that performed various perturbations (22q11.2 deletion, SMARCB1 

knockdown, exposure to Alzheimer’s serum, SETBP1 point mutations, amyotrophic lateral 

sclerosis patient-derived organoids). We compare the MetaMarker preserved co-expression 

scores between normal and perturbed organoids and find only a single significant difference 
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across all cell-type MetaMarker sets (intermediate progenitor normal vs. mutant preserved 

co-expression score FDR-adjusted p-value: 0.0287, Supp. Fig. 4.6). This demonstrates our 

broad primary tissue cell-type co-expression signatures are also applicable for comparison 

with organoids in perturbation experiments.   

 

 After revealing cell-type specific variation for preserving primary tissue co-

expression within organoids, our co-expression networks additionally allow genome-wide 

assessments of preserved co-expression. We extend our analysis via GO terms to quantify 

preserved primary tissue co-expression within organoids across the whole genome. GO terms 

with significantly preserved primary tissue co-expression (see methods) in organoids are 

mostly related to basic cellular functions like response to DNA damage and protein 

translation, as well as GO terms related to neurodevelopment (Fig. 4.4D). GO terms that 

significantly lack preservation of primary tissue co-expression are almost exclusively related 

to angiogenesis or immune function (Fig. 4.4D), concordant with the fact that organoids lack 

vasculature and an immune system.    

 

 While GO terms are useful for partitioning the genome into functional units for 

comparison, our co-expression networks also enable assessments of preserved co-expression 

for individual genes. As a particular use-case, we search for genes with exceptionally high 

preserved primary tissue co-expression across primary tissue datasets that also have poor 

preserved primary tissue co-expression across organoid datasets. We only consider genes that 

have some measurable expression in every organoid and primary tissue dataset and compute 

the average preserved co-expression AUROC for each gene across the organoid and primary 

tissue datasets (Supp. Fig. 4.6). The top 10 enriched GO terms for genes (76 in total) with 

high primary tissue (average AUROC >= 0.99) and low organoid (average AUROC < 0.70) 

preserved co-expression are related to extra-cellular matrix (ECM) and vascular 
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characterizations (Fig. 4.4E). The poor conservation of genes related to vasculature can be 

explained by the absence of vascularization in the vast majority of our organoid datasets. The 

subset of these 76 genes in the ECM GO terms are CAV1, CAV2, COL4A1, CTSK, ENG, 

LAMB1, LAMC1, NID1, NID2, DDR2, and VWA1. Notably, these genes produce collagen 

and laminins, components of Matrigel, the artificial ECM typically included in organoid 

cultures. These results highlight preserved primary tissue co-expression of ECM-related 

genes as a particularly consistent deficit across neural organoids, suggesting that 

investigations into the signaling between artificial ECM and cells in organoid cultures may be 

a route forward for general improvements of organoid fidelity.   

 

 In summary, we interrogate co-expression in organoids at multiple levels, revealing 

organoids vary in preserving primary tissue co-expression at gene-, cell-type, and whole 

genome resolutions through the use of a robust aggregate primary tissue co-expression 

network. 

 

4.5.8 Temporal variation in organoid preservation of primary tissue co-expression 

 We score preserved co-expression in organoids using the aggregate primary tissue co-

expression network (GW5-25), which by design aims to capture signal robust to temporal 

variation. To investigate temporal trends in organoid co-expression, we employ a similar 

approach as when predicting organoid cell-type annotations (Supp. Fig. 4.3), this time 

quantifying the preservation of primary tissue co-expression for the top 100 cell-type markers 

per individual primary tissue dataset across all organoid timepoints (Fig. 4.5A-B). We 

uncover a broad temporal shift in the preservation of primary tissue co-expression within 

organoids across all cell-types, with younger organoids (23 days – 1.5 months) as the top 

performers for mostly first trimester primary tissue co-expression transitioning to older 

organoids (2 – 6 months) as top performers for mostly second trimester primary tissue co-
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expression (Fig. 4.5B). This temporal shift is broadly consistent across the cell-types, 

beginning around GW9-10 (Fig. 4.5B). Our approach in predicting organoid annotations in 

Figure 4.2 is based on aggregate marker expression and did not produce temporally variable 

results, whereas our approach here comparing preserved co-expression of the same marker 

genes does produce temporally variable results. This indicates that the co-expression 

relationships of genes rather than their expression levels better capture temporal variation in 

developing systems.  

 

Figure 4.5: Neural organoids capture temporal dynamics in primary tissue co-expression 
A Schematic showing two potential outcomes when comparing the preserved co-expression 
between primary tissue and organoid data on a temporal axis. There may be a temporal 
relationship, with younger organoids recapitulating younger primary tissue co-expression 
over older primary tissue co-expression and vice versa for older organoids, or there may be 
no temporal relationship. 
B Organoid co-expression models temporal trends in primary tissue co-expression. Line plots 
showing the preserved co-expression scores computed from individual organoid co-
expression networks for cell-type markers of individual primary tissue datasets. Primary 
tissue datasets on the x-axis are ordered from youngest to oldest.  
 

4.5.9. Organoids preserve developing brain co-expression over adult brain co-expression 

 We demonstrate temporal variation in developing brain co-expression relationships is 

captured by organoids, but only from the single forebrain organoid protocol used in the 
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temporal organoid atlas. In order to extend analysis across all our organoid datasets and 

assess broad temporal variation in co-expression, we next investigate the preserved co-

expression within organoids of both developing and adult brain co-expression relationships. 

 

 We construct an aggregate adult co-expression network from a medial temporal gyrus 

scRNA-seq dataset(Jorstad et al. 2022) (157,508 cells) sampling 7 adult individuals. We 

compare the preserved co-expression scores of organoids for either developing or adult 

glutamatergic, GABAergic, and non-neuronal cell-types. Organoids unanimously preserve 

developing brain co-expression over adult co-expression (Supp. Fig. 4.6) for glutamatergic 

and GABAergic cell-types with equally poor performance for the non-neuronal cell-type, 

suggesting organoids generally fail to produce non-neuronal cell-types. We extend this 

analysis genome-wide and place organoids in context between developing and adult data by 

computing the average preservation of co-expression AUROC across all genes for organoid, 

developing, and adult co-expression using the annotated primary developing brain tissue 

network as the reference. The adult co-expression network produces a global preserved 

developing brain co-expression score of 0.591, indicating very poor performance across the 

genome in preserving developing co-expression relationships (Supp. Fig. 4.6). Organoids 

vary substantially in their global preservation of developing brain co-expression with some 

organoid datasets performing comparably to the adult data. This result is largely influenced 

by the number of cells present within individual organoid datasets (Supp. Fig. 4.6, corr 0.647, 

p-value < .001), suggesting a cell-sampling limitation for uncovering developing brain co-

expression within organoids. However, organoid datasets report more variable global 

preserved co-expression scores compared to down-sampled developing brain data (Supp. Fig. 

4.6), indicating a remaining biological gap between primary developing brain tissue and 

organoid data not explained through technical means.  
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 An intriguing study generated data from human cortical organoids either transplanted 

or not into developing rat brains to test the limits of maturation organoids can achieve in 

vitro(Revah et al. 2022). We compare the preservation of developing and adult co-expression 

between these age-matched non-transplanted and transplanted human cortical organoids. We 

report that while the non-transplanted organoids preserve developing co-expression over 

adult for glutamatergic and GABAergic markers (Supp. Fig. 4.6, non-transplanted 

glutamatergic and GABAergic mean developing brain AUROCs: 0.797 ± 0.0281 SD, 0.697 ± 

0.0212 SD. Non-transplanted glutamatergic and GABAergic mean adult AUROCs: 0.672 ± 

0.0234 SD, 0.586 ± 0.0309 SD), the transplanted organoids have increased preservation of 

adult co-expression for glutamatergic and non-neuronal cell-types (Supp. Fig. 4.6, 

transplanted glutamatergic and non-neuronal mean developing brain AUROCs: 0.759 ± 

0.00908 SD, 0.501 ± 0.0127 SD. Transplanted glutamatergic and non-neuronal mean adult 

AUROCs: 0.849 ± 0.0332 SD, 0.738 ± 0.00779 SD). This indicates the transplanted human 

organoids are adopting adult human glutamatergic and non-neuronal co-expression, 

concordant with the original authors’ conclusions of increased maturation in transplanted 

organoids.  

 

4.5.10. Variability in organoid co-expression is driven by marker gene expression 

 We investigate the impact of various technical features in our analysis on our co-

expression results by assessing their correlation with our co-expression module scores and 

preserved co-expression AUROCs, focusing on technical features like sequencing depth, 

number of cells, etc. An important technical consideration for our analysis is ensuring all 

datasets have an identical gene namespace for meaningful comparisons of expression data. 

We fit all datasets to the GO gene universe, dropping gene annotations not in GO or zero-

padding missing GO annotations in individual datasets. Excessive zero-padding of genes 

within our MetaMarker gene sets may artificially lower co-expression module scores or 
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preserved co-expression scores, though we find this relationship to be relatively weak with 

little impact on score variance (Supp. Fig. 4.7, R2 for co-expression module scores and zero-

padding: 0.00123, 0.0165, 0.103, 0.0284, 0.0337, 0.052, R2 for preserved co-expression and 

zero-padding: 0.0825, 0.321, 0.149, 0.0302, 0.0409, 0.000769 for neural prog., dividing 

prog., intermediate prog., glutamatergic, GABAergic, and non-neuronal cell-types 

respectively). Sequencing depth is also similarly found to have little impact on our co-

expression module scores or preserved co-expression scores (Supp. Fig. 4.7). Rather, the 

features strongly related to performance are the number of cells in a dataset and the strength 

of marker set expression, all significantly strongly correlated with co-expression module 

scores and preserved co-expression scores (Supp. Fig. 4.7, range of significant (p-value < 

.001) correlations between marker set expression or cell number and co-expression module 

scores or preserved co-expression scores: 0.351 – 0.808, with the exception of dividing 

progenitors having a significant negative correlation of -0.453 between marker set expression 

and co-expression module scores).  

 

4.5.11. Preservation of primary tissue co-expression as a generalizable quality control 

metric 

 As a general summary, our approach for quantifying preserved primary tissue co-

expression across numerous organoid protocols revealed the axes on which organoids lie for 

recapitulating primary tissue co-expression relationships at gene, cell-type, and whole-

genome resolutions. These assessments provide powerful quality control information, 

identifying which genes and/or cell-types organoids can or cannot currently model on par 

with primary tissue data. We make our methods accessible through an R package to aid in 

future organoid studies and protocol development, providing means for rapidly constructing 

co-expression networks from scRNA-seq data (Fig. 4.6A) as well as querying preserved co-

expression of users’ data with our aggregate primary tissue brain co-expression network (Fig. 
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4.6A). Additionally, we make the results of our meta-analysis across primary tissue and 

organoid datasets available for users to place their data in reference to a field-wide collection 

(Fig. 4.6B). 

 

Figure 4.6: The preservedCoexp R package enables fast computation of preserved co-
expression 
A The preservedCoexp R package can compute co-expression networks and genome-wide 
preservation of co-expression in a few minutes even for low-memory computers. Line plots 
showing the computational time to either compute co-expression networks or preserved co-
expression as the number of cells or genes increases. Points are the mean value from 10 
replicates, with error bars depicting ± 1 standard deviation. 
B Example plot from the preservedCoexp R package, placing cell-type specific preserved co-
expression scores of an example forebrain organoid dataset in reference to scores derived 
from primary tissue datasets or organoid datasets. Red lines denote the percentile of the 
forebrain organoid cell-type scores within either the primary tissue distributions or organoid 
distributions. 
 
4.6. Methods 

4.6.1 Dataset download and scRNA-seq pre-processing 

 Links for all downloaded data (GEO accession numbers, data repositories, etc.) are 

provided in Supp. Table 1. All scRNA-seq data was processed using the Seurat v4.2.0 R 

package. Data made available in 10XGenomics format (barcodes.tsv.gz, features.tsv.gz, 
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matrix.mtx.gz) were converted into Seurat objects using the Read10X() and 

CreateSeuratObject() Seurat functions. Data made available as expression matrices were 

converted into sparse matrices and then converted into Seurat objects using the 

CreateSeuratObject() function. Ensembl gene IDs were converted into gene names using the 

biomaRt v2.52.0(Durinck et al. 2009) package.  

 

 Where metadata was made available, we separated data by batch (Age, Donor, Cell 

line, etc.) for our final total of 130 organoid and 51 primary tissue datasets (Supp. Table 1). 

We processed and analyzed each batch independently without integration. We used consistent 

thresholds for filtering cells across all datasets, keeping cells that had less than 50% of reads 

mapping to mitochondrial genes and had between 200 and 6000 detected genes. Several 

datasets provided annotations for potential doublets; we excluded all cells labeled as doublets 

when annotations were made available. All data made available with raw expression counts 

were CPM normalized with NormalizeData(normalization.method = 'RC', scale.factor = 1e6), 

otherwise normalizations were kept as author supplied.  

 

 For primary tissue and organoid data made available with cell-type annotations, we 

provide our mapping between author provided annotations and our broad cell-type 

annotations in Supp. Table 2. 

 

4.6.2. Primary tissue MetaMarker generation and cross-validation 

 MetaMarkers were computed using the MetaMarkers v0.0.1(Fischer and Gillis 2021) 

R package, which requires shared cell-type and gene annotations across datasets to derive a 

ranked list of MetaMarkers. Gene markers for individual datasets were first computed using 

the compute_markers() function on the CPM normalized expression data for our annotated 

primary tissue datasets (Supp. Table. 1). A ranked list of MetaMarkers was then computed 
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using the make_meta_markers() function using all 37 individual annotated primary tissue 

dataset marker lists. Genes are first ranked through their recurrent differential expression (the 

number of datasets that gene was called as DE using a threshold of log2 FC >= 4 and FDR p-

value <= .05) and then through the averaged differential expression statistics of each gene 

across individual datasets. When we take the top 100 markers per individual dataset as in Fig. 

4.2D, Fig. 4.5, Supp. Fig. 4.1A, and Supp. Fig. 4.3B, we rank markers for each dataset by 

their AUROC statistic as computed with the compute_markers() MetaMarkers function.   

 

 For the cross-validation of our primary tissue MetaMarkers, we excluded a single 

annotated primary tissue dataset, computed MetaMarkers from the remaining 36 annotated 

primary tissue datasets, and then used those MetaMarkers to predict the cell-type annotations 

of the left-out dataset. We construct an aggregate expression predictor to quantify the 

predictive strength a list of genes has, in this case our MetaMarker lists, in predicting cell-

type annotations. Taking any arbitrary number of genes (10, 20, 50, 100, 250, or 500 

MetaMarkers), we sum the expression counts for those genes within each cell and then rank 

all cells by this aggregate expression vector. We compute an AUROC using this ranking and 

the cell-type annotations for a particular cell-type through the Mann-Whitney U test. 

Formally: 

 

     𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑈𝑈

𝑛𝑛0 ∗ 𝑛𝑛1
 

 

where U is the Mann-Whitney U test statistic, 𝑛𝑛0 is the number of positives (cells with a 

given cell-type annotation) and 𝑛𝑛1 is the number of negatives (cells without that cell-type 

annotation). 
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𝑈𝑈 = 𝑅𝑅0 −
𝑛𝑛0(𝑛𝑛0 + 1)

2
 

 

where 𝑅𝑅0 is the sum of the positive ranks. 

 

 As an example, if there are 10 genes that are perfect glutamatergic markers (only 

glutamatergic cells express these genes), then ranking cells by the summed expression of 

these genes will place all glutamatergic cells (positives) in front of all other cells (negatives), 

producing an AUROC of 1. The violin plots in Supp. Fig. 4.1B and in Figure 4.2E visualize 

our aggregate expression approach, where datapoints per cell-type are the aggregated 

expression counts for the given top 100 MetaMarkers across all cells per dataset (Supp. Fig. 

4.1B) or aggregated across all datasets (Fig. 4.2E). 

 

 For Supp. Fig. 4.1A, we took the top 100 cell-type markers per individual primary 

tissue dataset (x-axis) and used those genes to predict cell-type annotations as described 

above for all other annotated primary tissue datasets, reported as the AUROC boxplot 

distributions. The MetaMarker distribution was computed using a leave-one-out approach as 

described above. We ranked the individual primary tissue datasets by their median AUROC 

performance per cell-type to derive the distributions of ranks presented in Figure 4.2D, 

excluding the dividing progenitor data as performance was highly consistent across all 

primary tissue datasets. 

 

4.6.3. Cross-regional primary tissue MetaMarker expression 

 We investigated the aggregate expression of our top 100 MetaMarkers per cell-type 

across annotated brain regions separately for the annotated first-trimester and second-

trimester primary tissue atlases due to differing regional annotations. MetaMarkers were 
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computed with a leave-one-out approach as described above using all 37 of the annotated 

primary tissue datasets. For the heatmaps in Supp. Fig. 4.2, rows represent the annotated cells 

present within the given dataset, columns represent the aggregated expression for the top 100 

given cell-type MetaMarkers and each annotated region present. We average the aggregated 

expression for each cell-type per region and then normalize each region (column) by the 

maximum average expression value across the cell-types. A value of 1 indicates that cell-type 

is the one maximally expressing the given MetaMarker set for that brain region. The 

heatmaps are ordered by cell-type and region and are not clustered. 

 

4.6.4. Organoid PCA 

 PCA analysis was performed using the Seurat function RunPCA() with the top 2000 

variable features, determined using the Seurat function 

FindVariableFeatures(selection.method = ‘vst’, nfeatures = 2000). For each organoid dataset, 

we took the eigenvector for the first principal component, computed the absolute value, and 

then divided by the maximum value to compute a normalized vector between 0 and 1. We 

visualized the normalized eigenvectors for each organoid dataset in Supp. Fig. 4.3C, keeping 

primary tissue MetaMarker genes that were detected in the top 2000 variable genes of at least 

10 organoid datasets. Genes missing from any given dataset’s top 2000 variable genes were 

given a value of 0. The heatmap was produced using the ComplexHeatmap v2.12.1(Gu et al. 

2016) package and was hierarchically clustered using the ward.D2 method for both rows and 

columns. 

 

4.6.5. Generating co-expression networks from scRNA-seq data 

 To generate a shared gene annotation space across all datasets, we fit each dataset to 

the GO gene universe before computing co-expression matrices. Using human GO 

annotations (sourced 2022-03-10 using the org.Hs.eg.db v3.15.0(Carlson 2019) and 
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AnnotationDbi v1.58.0(Pagès et al. 2022) R packages), we excluded gene expression from a 

dataset if the gene annotation was not present in GO and we zero-padded missing GO genes 

for each dataset. 

 

 We compute a gene-by-gene co-expression matrix per dataset using the spearman 

correlation coefficient computed across all cells in a given dataset. We then rank the 

correlation coefficients in the gene-by-gene matrix and divide by the maximum rank to obtain 

a rank-standardized co-expression matrix. All results reported using individual dataset co-

expression networks (Fig. 4.3C-F, Fig. 4.4B, Figs. 4.5-4.6, Supp. Figs. 4.4-4.7) were obtained 

using the rank-standardized co-expression networks.  

 

 We compute the aggregated co-expression networks by taking the average of the rank 

standardized co-expression networks for each gene-gene index.  

 

4.6.6. Hierarchical clustering of primary tissue MetaMarkers by co-expression 

 We visualize the co-expression of primary tissue MetaMarker genes using the 

ComplexHeatmap package and the ward.D2 algorithm for hierarchical clustering. We use the 

fossil v0.4.0 package(Vavrek 2020) to compute the adjusted Rands Index with the 

adj.rand.index() function. To compute the adjusted Rands Index, we calculate a consensus 

clustering of MetaMarkers per co-expression network across 100 k-means clusterings (using 

the arguments row_km = 6, column_km = 6, row_km_repeats = 100, column_km_repeats = 

100 within the Heatmap function) to compare to the perfect grouping of MetaMarkers by 

cell-type.  

 

4.6.7. Co-expression module learning analysis  
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 EGAD v1.24.0(Ballouz et al. 2017) is a machine learning framework that quantifies 

the strength of co-expression within an arbitrary gene-set compared to the rest of the genome 

with an AUROC quantification (Fig. 4.3D). We compute co-expression module AUROCs for 

all GO gene-sets (between 10 and 1000 genes per GO term) and our top 100 primary tissue 

MetaMarker gene-sets for each individual primary tissue and organoid co-expression network 

as well as the aggregated annotated, unannotated and organoid networks. For the annotated 

primary tissue co-expression networks, we employ a leave-one-out approach, learning 

MetaMarkers from 36 of the annotated datasets and computing co-expression module 

AUROCs for these MetaMarkers in the left-out dataset’s co-expression network. We compute 

co-expression module AUROCs using the EGAD run_GBA() function with default 

parameters. In Figure 4.3E, the ‘All GO terms’ distributions report the average co-expression 

module AUROC across all GO terms for each individual network.   

 

4.6.8. Preservation of co-expression 

 To compute our preservation of co-expression AUROC, we take the top 10 co-

expressed partners for gene A in a reference co-expression network as our positive gene 

annotations. In a test co-expression network, we rank all genes through their co-expression 

with gene A and compute an AUROC using this ranking and the positive annotations derived 

from the reference network. If gene A in the test network has the exact same top 10 co-

expressed partners as in the reference network, that would result in an AUROC of 1. To 

summarize a given gene-set’s preserved co-expression, we take the average preserved co-

expression AUROC across all genes in that gene set as the preservation of co-expression 

score for that gene set. We use the aggregated annotated primary tissue co-expression matrix 

as our reference network. 
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 The preserved co-expression scores for the annotated primary tissue data in Figure 

4.4B were computed with a leave-one-out approach. MetaMarkers and an aggregated co-

expression matrix were computed from 36 of the annotated primary tissue datasets and then 

preserved co-expression scores were computed using the co-expression network of the left-

out annotated primary tissue dataset. 

 

4.6.9. Preservation of GO term co-expression 

 We compute p-values for the preservation of co-expression of GO terms using a 

mean sample error approach. Using the aggregated annotated primary tissue co-expression 

network as the reference and the aggregated organoid network as the test network, we first 

compute the preserved co-expression AUROCs for all individual genes, taking the mean and 

standard deviation value as the population mean and population standard deviation. For any 

given GO term, we first compute the preserved co-expression score for the term (the average 

of the preserved co-expression AUROCs for the genes in the term) and then compute the 

sample error for that score with: 

 

𝑆𝑆𝑆𝑆 =  
𝑆𝑆𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝
�𝑛𝑛𝐺𝐺𝐺𝐺

 

 

where 𝑆𝑆𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝is the population standard deviation and 𝑛𝑛𝐺𝐺𝐺𝐺 is the number of genes in the GO 

term. We then compute a z-score through: 

 

𝑍𝑍𝐺𝐺𝐺𝐺 =  
𝑚𝑚𝑢𝑢𝐺𝐺𝐺𝐺 − 𝑚𝑚𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝

𝑆𝑆𝑆𝑆
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where 𝑚𝑚𝑢𝑢𝑔𝑔𝑔𝑔 is the preserved co-expression score for the GO term and 𝑚𝑚𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 is the 

population mean preserved co-expression AUROC. We compute left-sided p-values using the 

standard normal distribution: 

 

𝑝𝑝𝐿𝐿 =  𝑃𝑃( 𝑋𝑋 ≤ 𝑍𝑍𝐺𝐺𝐺𝐺) 

 

Where X is a normal distribution with mean = 0 and standard deviation = 1. We use the R 

function pnorm(𝑍𝑍𝐺𝐺𝐺𝐺) to compute this p-value. 

 

We then compute the right-sided p-value as: 

 

𝑝𝑝𝑅𝑅 = 1 −  𝑝𝑝𝐿𝐿 

 

 We adjust p-values using the R function p.adjust(method = ‘BH’). We filter for GO 

terms that have between 20 and 250 genes per term and use a threshold of FDR-corrected p-

value <= 0.0001 to call significance. Significant left-sided p-values are interpreted as GO 

terms with significantly smaller preserved co-expression scores (significantly not preserved) 

than expected through sampling error and right-sided p-values are interpreted as GO terms 

with significantly larger preserved co-expression scores (significantly preserved) than 

expected through sampling error. We use the R package rrvgo to visualize the significant GO 

terms in Fig. 4.4D. 

 

4.6.10. Computing correlation significance 

 We employ a permutation test to compute p-values for any given correlation 

coefficient. We permute data-pairs and compute a correlation coefficient, repeating for 10,000 
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random permutations to generate a distribution of correlation coefficients under the null 

hypothesis of independence. We calculate a two-sided p-value for the original correlation 

coefficient as the number of permuted correlation coefficients whose absolute value is greater 

than or equal to the absolute value of the original correlation coefficient, divided by 10,000. 

We adjust p-values using the R function p.adjust(method = ‘BH’) and use a FDR-corrected p-

value threshold of <= .05 to call significance. 

 

4.6.11. Comparing co-expression of normal vs. perturbed organoids 

 For both the co-expression module AUROCs and the preserved co-expression scores 

of normal and perturbed organoids, we test for significant differences per cell-type using the 

Mann Whitney U test, adjusting p-values with the R function p.adjust(method = ‘BH’) and 

using a FDR-corrected p-value threshold of <= .05 to call significance. 

 

4.6.12. Organoid temporal analysis 

 The organoid temporal analysis for both predicting organoid annotations with 

primary tissue markers (Supp. Fig. 4.3B) and scoring the preserved co-expression of organoid 

co-expression using primary tissue networks as reference (Fig. 4.5) were performed for all 

pair-wise combinations of the 37 annotated primary tissue datasets and the 26 temporally 

annotated forebrain organoid datasets. We excluded the GW7-28 annotated primary tissue 

dataset from the temporal preserved co-expression analysis (Fig. 4.5) due to the wide 

temporal range sampled. For predicting organoid annotations with primary tissue markers, we 

used the top 100 markers per primary tissue dataset to construct aggregate expression 

predictors in the organoid datasets as described above. The MetaMarkers performance was 

calculated using MetaMarkers derived from all 37 annotated primary tissue datasets. For 

scoring preserved co-expression, individual primary tissue networks were used as the 

reference with individual organoid networks as the test networks. We computed the preserved 
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co-expression scores of the top 100 primary tissue cell-type markers per individual primary 

dataset for each individual organoid network.  

 

4.6.13. GO enrichment analysis 

 We compute enrichment for GO terms using Fisher’s Exact Test as implemented 

through the hypergeometric test. We compute raw p-values for GO terms with between 10-

1000 genes and compute FDR-adjusted p-values using p.adjust(method = ‘BH’). We only 

consider GO sets with between 20 and 500 when choosing the top 10 GO sets in Figure 4.4E, 

ranked by FDR-adjusted p-value. 

 

4.6.14. R and R packages 

 All analysis was carried out in R v4.2.2. Colors with selected using the MetBrewer 

v0.2.0 R library. Plots were generated using ggplot2 v3.3.6(Wickham 2016). Spearman 

correlation matrices for co-expression networks were computed using a python v3.6.8 script, 

implemented in R with the reticulate v1.26 R package, as well as using functions from the 

matrixStats v0.62.0 R library. All code used in generating results and visualizations will be 

made public at the time of publication. The preservedCoexp R library is made available at 

https://github.com/JonathanMWerner/preservedCoexp.   

 

 

 

 

 

 

 

 



 137 

4.7. Supplemental Figures 

 
Figure S4.1 MetaMarkers as temporally robust primary tissue cell-type markers 
A MetaMarkers are consistent top performers in predicting primary tissue cell-type annotations. 
Boxplots of AUROCs for predicting cell-type annotations across all primary tissue datasets using the 
top 100 marker genes per individual primary tissue dataset compared to MetaMarkers (red). Datasets 
are ordered by their median performance, providing the rank distributions in Figure 2D. 
B MetaMarkers exhibit cell-type specificity across all primary tissue datasets. Averaged distributions 
of gene expression for the top 100 MetaMarkers across all annotated primary tissue datasets with 
leave-one-out cross-validation. Figure 2E is the aggregate over these individual dataset distributions. 
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Figure S4.2. MetaMarkers as regionally robust primary tissue cell-type markers 
A MetaMarkers exhibit cross-regional cell-type specificity. Heatmaps of maximum normalized 
average MetaMarker expression for cell-types and brain regions of the first trimester annotated 
primary tissue atlas. Cell-types comprise the rows with MetaMarker gene expression for cells from 
each annotated brain region comprising the columns. Data is maximum normalized per 
region/column. 
B MetaMarkers exhibit cross-regional cell-type specificity. Heatmaps of maximum normalized 
average MetaMarker expression for cell-types and brain regions of the second trimester annotated 
primary tissue atlas. Cell-types comprise the rows with MetaMarker gene expression for cells from 
each annotated brain region comprising the columns. Data is maximum normalized per 
region/column. 
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Figure S4.3. Primary tissue MetaMarkers consistently predict organoid cell-types across 
timepoints 
A Schematic showing two potential outcomes when comparing cell-type marker expression between 
primary tissue and organoid data on a temporal axis. There may be a temporal relationship, with 
younger organoids recapitulating younger primary tissue marker expression over older primary tissue 
marker expression and vice versa for older organoids, or there may be no temporal relationship. 
B Broad primary tissue cell-type markers have consistent performance predicting organoid 
annotations independent of temporal variation. Line plots showing the cell-type prediction AUROCs 
using top 100 markers from individual primary tissue datasets for all organoid time points. Primary 
tissue datasets on the x-axis are ordered from youngest to oldest. 
C Primary tissue MetaMarkers define the first organoid principal component. Heatmap of normalized 
eigenvalues for primary tissue MetaMarkers within the first principal component of each organoid 
dataset.  
D MetaMarker gene-set distributions of normalized PC1 eigenvalues across all organoid datasets.   
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Figure S4.4. Intra-marker set MetaMarker co-expression varies over organoid protocols 
A Organoids vary by protocol type for their primary tissue cell-type co-expression module scores. 
Boxplot distributions of co-expression module scores for the primary tissue MetaMarkers computed 
from organoid co-expression networks. Scores for organoid networks are grouped by organoid 
protocol type and ordered by their median score. 
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Figure S4.5. Preservation of MetaMarker set co-expression varies over organoid protocols 
A Organoids vary by protocol type for their primary tissue cell-type preserved co-expression scores. 
Boxplot distributions of preserved co-expression scores for the primary tissue MetaMarkers computed 
from organoid co-expression networks. Scores for organoid networks are grouped by organoid 
protocol type and ordered by their median score. 
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Figure S4.6. Neural organoids preserve co-expression of developing neural tissue over adult 
neural tissue 
A Normal and treated organoids exhibit no differences in their recapitulation of primary tissue co-
expression. Boxplots comparing either the co-expression module scores or preserved co-expression 
scores by cell-type between normal and treated organoids. 
B Organoids preserve developing neuronal co-expression over adult co-expression. Scatterplots 
showing the preserved co-expression scores of either the top 100 developing brain MetaMarkers (x-
axis) or the top 100 adult MetaMarkers (y-axis). 
C Organoids lie between adult and developing brain data for global preservation of developing brain 
co-expression. Distributions of average preserved developing brain co-expression AUROCs across all 
genes for organoid and developing brain networks. The redline shows the performance of the adult 
co-expression network. The scatterplot plots the data in the histogram (y-axis) against the number of 
cells in each organoid dataset (x-axis). The blue line shows performance for a cell down-sampled 
developing brain dataset, with points representing the average performance over 10 random samples 
and the error bars showing ± 1 standard deviation. 
D Transplanted organoids preserve adult co-expression over developing brain co-expression. Points 
represent the log2-fold change over the mean performance of the non-transplanted organoids for 
preserved co-expression scores. 
E Organoids globally have low preserved developing brain co-expression of individual genes across 
the genome. Points show the average preserved developing brain co-expression AUROC of individual 
genes, comparing the average across developing brain networks (x-axis) against the average across 
organoid networks (y-axis). The points colored in red are genes with developing brain scores >= 0.99 
and organoid scores < 0.70. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 144 

 

 

Figure S4.7. Strength of MetaMarker co-expression in organoids is related to expression levels 
A Marker set expression and cell number are strongly correlated with co-expression performance 
across organoid datasets. Heatmaps of spearman correlations between either co-expression module 
scores or preserved co-expression scores and various technical features of each network/dataset, like 
marker set expression, dataset sequencing depth, number of cells in each dataset, and the zero-
padding ratio of each marker set. 
B Scatterplots of either the zero-padded ratio (top row) or marker set expression (bottom row) against 
the co-expression module scores for each cell-type across the organoid datasets.   
C Scatterplots of either the zero-padded ratio (top row) or marker set expression (bottom row) against 
the preserved co-expression scores for each cell-type across the organoid datasets.   
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4.8. Chapter 4 summary: 

 In this work, we extract universal cell-type specific signatures from primary neural 

tissue data for use as a benchmark against highly heterogeneous neural organoid systems. We 

first identify genes that act as strong cell-type markers for primary neural tissue across 

extensive developmental timepoints (gestational weeks 5-25) and brain regions (15 regions), 

constituting universal primary tissue signatures. We then compare the co-expression 

relationships of these primary tissue markers in independent primary tissue data and across 

neural organoid systems, revealing that primary tissue samples recover consistently strong 

marker-set specific co-expression modules whereas organoids present highly variable marker 

set co-expression. We quantify the strength of preserved primary tissue co-expression in 

neural organoids for individual genes, marker sets, and genome-wide measures, 

demonstrating that while primary tissue has universally high performance, neural organoids 

range from zero to comparable primary tissue signal. In summary, this work presents a 

generalizable quantitative benchmark for grading the fidelity of neural lineage production 

within neural organoid models.  
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5. Conclusions and Perspectives 

5.1. General summary 

 The work presented in this thesis investigates developmental lineage through several 

fronts: exploiting XCI as a marker for developmental lineage to characterize early lineage 

specification events during human development and 8 other non-human mammalian species, 

and employing meta-analytic approaches for benchmarking the primary tissue fidelity of in 

vitro neural differentiation. Broadly, this work revealed XCI is completed prior to any tissue 

differentiation in humans and the stochastically determined XCI ratio during embryogenesis 

is propagated through development to all tissues, with additional cell sampling events 

injecting lineage-specific XCI variability. We extended analysis of XCI variability to 8 other 

mammalian species, demonstrating models of embryonic stochasticity explain population 

XCI ratio variability consistently across species as opposed to genetic factors. Finally, we 

developed a quantitative benchmark for measuring the fidelity of neural organoid systems to 

primary neural tissues at gene, cell-type, and genome-wide scales applicable to a wide-range 

of heterogeneous neural organoid models. In summary, this work characterizes early 

developmental lineage events at an organismal scale across tissues in humans, puts forth a 

general model for explaining observed population-scale XCI ratio variability across 

mammalian species, and derives a generalizable benchmark for grading the successes and 

failures of current in vitro models for neural developmental lineages.   

 

5.2. Discussion for Results chapter 2: cross-tissue variability in human XCI ratios 

 In this work, we exploited the random, permanent, and developmentally early nature 

of XCI to investigate characteristics of early lineage specification events during human 

development. By analyzing variance in XCI ratios across tissues and individuals, we showed 

human XCI is completed before tissue specification and the stochastically determined XCI 
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ratio set during embryogenesis is a shared feature across all tissue lineages. We estimate a 

lower bound of 6-16 cells are fated for the embryonic epiblast lineage based on population-

level variance in XCI ratios. Additionally, we provide lower bound estimates of the number 

of cells present during tissue-specific lineage specification for 46 different tissues. To conduct 

this analysis, we developed a method to estimate the ratio of XCI using unphased allele-

specific expression, a highly scalable approach applicable to any bulk RNA-sequencing 

sample. 

 

 This work provides insight into the observed variance of XCI ratios in normal female 

populations, an area of ongoing debate (Brown and Robinson 2000; Migeon 1998; Clerc and 

Avner 2006; Peeters et al. 2016). Our results indicate that the initial embryonic XCI ratio is 

propagated through development and is a shared feature across all tissue lineages. This 

demonstrates the stochasticity of the initial choice for inactivation within the embryo has a 

measurable impact on XCI ratios in adult females. Importantly, GTEx donors presumably 

represent a phenotypically normal population; as such, our analysis captures XCI variance in 

the absence of potential drivers (X-linked diseases) of allelic-selection, representing the null 

distribution of XCI variation in adult females. 

 

 Additional contributors to the observed variance in XCI ratios across tissues may be 

genetic variation that can drive allelic selection over development (Brown and Robinson 

2000; Schmidt and Sart 1992) or stochastic deviations in XCI ratios caused by developmental 

proliferation (Sun et al. 2021). In contrast to these models, we report strikingly consistent 

XCI ratios across tissues for individual donors, and, importantly, across tissues derived from 

different germ layers. If allelic-selection or stochastic deviations from proliferation were 

strong contributors to variance in XCI, we would not expect consistent XCI ratios across 

developmentally distant adult tissues. Nevertheless, it is unlikely that the initial embryonic 
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XCI ratio is propagated through development with perfect fidelity, which contextualizes our 

cell number estimates as lower bound estimates for the number of cells that must have been 

involved in XCI or lineage specification events. In general, our results suggest XCI ratios are 

broadly shared across tissues with lineage-specific stochasticity due to cell sampling effects 

during lineage-specification.  

 

 For the timing of XCI, there is a wealth of complimentary research on the exact 

molecular mechanisms (Dossin and Heard 2021; Vallot et al. 2017) that define the highly 

complex biological process of XCI. XCI is a continuous molecular process and recent studies 

from human embryos suggest the timing of XCI may overlap the lineage specification of the 

extraembryonic and embryonic tissues (Moreira de Mello et al. 2017; Petropoulos et al. 

2016), which precedes germ layer specification. In this study, we aimed to interrogate timing 

of XCI as it relates to germ layer specification within the embryonic lineage. Any overlap in 

timing for the molecular process of XCI and extraembryonic/embryonic lineage specification 

will have no impact on our results and conclusions of shared variance in XCI within the 

embryonic lineage. The consideration of extraembryonic tissues provides the developmental 

context that XCI ratio variance within the germ layer lineages may be a combination of XCI 

stochasticity and cell sampling during embryonic epiblast specification.  

 

 One alternative model consistent with our results is the potential for rapid allelic 

changes in the time between XCI and germ layer specification, allowing for selection or drift 

to occur, with the XCI ratio then stabilized after germ layer specification. While possible, we 

find this improbable due to the small number of cell divisions estimated to occur between 

XCI and germ layer specification, as well as the lack of evidence for any continued effects 

after germ layer specification. 
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 Our work is part of a broader history of using X-linked mosaicism as a useful tool for 

studying lineage relationships, with studies ranging from investigations of early lineage 

events in mice (Nesbitt 1971) to ascertaining tumor clonality (Linder and Gartler 1965). 

Typically, these approaches will capitalize on a single locus of the X-chromosome to 

determine XCI status (Boudewijns et al. 2007). One of our methodological contributions is 

demonstrating the allelic expression imbalance generated via XCI can be aggregated across 

multiple loci to provide near-perfect estimates of XCI ratios, even in the absence of phased 

information.  

 

 While the GTEx dataset aims to sample non-diseased tissues, we cannot rule out 

potential disease-states, genetic or otherwise, for all tissue samples, where disease may 

impact allelic selection and contribute to variance inn XCI ratios. When assessing escape 

from XCI, we focus on genes with constitutive rather than facultative signal and cannot make 

conclusions on likely tissue- or donor-specific escape. Our tissue-specific cell count 

estimations depend on the sample size of the given tissue and the number of tissues sampled 

for individual donors, both of which vary considerably across tissues and individuals. As 

such, these estimates are likely rough approximations that can be improved with additional 

tissue and donor sampling.   

 

5.3. Discussion for Results chapter 3: cross-species population variability in XCI ratios 

 We utilized bulk RNA-seq samples to model tissue XCI ratios, establishing 

population-level distributions of XCI ratios across 9 mammalian species. Our analysis 

revealed substantial variation in XCI ratios among different mammalian populations, likely 

reflecting differences in the timing of XCI or embryonic/extra-embryonic lineage 

specification during development. We demonstrated models of embryonic stochasticity 

explain population-level XCI variability exceptionally well, providing estimates for the 
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number of cells present during embryonic events. These cell count estimates represent either 

the number of cells present at the time of embryonic lineage specification or at the time of 

XCI, depending on the temporal ordering of extra-embryonic/embryonic lineage specification 

and XCI, which may vary across species. Furthermore, we examined the potential genetic 

correlates of XCI ratios and found a consistent lack of associations both at a broad level 

across the entire X-chromosome and for individual variants. This suggests that the inherent 

stochastic nature of XCI, rather than genetic factors, primarily drives population-level XCI 

variability across mammals. 

 

 The lack of cross-mammalian comparisons of population XCI variability has 

previously limited our understanding on the sources of XCI variability in mammals. The 

existence of XCE-alleles in laboratory mice(Cattanach and Isaacson 1965; Simmler et al. 

1993; Sun et al. 2021; Calaway et al. 2013) has supported the hypothesis that a similar 

genetic mechanism can exist in humans and drive population XCI variability(Peeters et al. 

2016), though evidence for XCE-alleles in human populations remains inconclusive(Bolduc 

et al. 2008) and data from other mammalian species is historically absent. Although genetic 

influences on XCI, particularly variants affecting XIST(Plenge et al. 1997) or disease-

associated variants(Migeon 1971; Migeon et al. 1981; Devriendt et al. 1997; Plenge et al. 

2002), have been identified, they do not constitute a general mechanism that can fully 

account for observed population-level XCI variability. Comprehensive assessment of genetic 

influence on XCI would require combined DNA and RNA sequencing data, which is 

challenging to perform at a large scale across mammalian populations. Our approach for 

extracting heterozygous variants from RNA-seq data(Werner et al. 2022), while providing a 

sample of genetic variability, is still able to assess hundreds of X-linked genes per species for 

associations with XCI and culminated in only weak evidence for limited genetic influence on 

XCI ratios. In contrast, we demonstrated models of embryonic stochasticity can explain 
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population XCI variability with exceedingly small amounts of error consistently across 

mammalian species, providing a much more general explanation for population XCI 

variability. 

 

 Other potential contributors to XCI ratio variability other than those already 

discussed (X-linked disorders and XIST-variants) include genomic incompatibilities(Shorter 

et al. 2017) and stochastic allelic drift during development(Sun et al. 2021). We identified an 

association between the variance in X-linked allelic expression and the degree of inbreeding 

among several of the sampled species (Fig. 3.2B) as well as autosome-specific allelic 

imbalances in dog (Supp. Fig. 3.4). This suggests variability in X-linked allelic expression 

may be a combination of the sampled bulk XCI ratio along with broader genomic 

incompatibilities between the parental genomes(Shorter et al. 2017), dependent on the 

species. Our approach for excluding samples that exhibit global allelic imbalances (Supp. Fig. 

3.4) is a powerful control that demonstrates the allelic-expression variability we sample from 

the X-chromosome is highly specific to XCI. Additionally, stochastic allelic drift through 

development(Sun et al. 2021) may potentially inject variability in XCI ratios outside of the 

initial random choice of allelic inactivation. While our previous cross-tissue analysis of XCI 

ratios in humans(Werner et al. 2022) revealed consistency in XCI ratios across 

developmentally distant tissues, suggesting allelic drift is not a strong influencing factor in 

XCI ratio variability, similar cross-tissue data for non-human mammals is lacking. Overall, 

these potential contributing factors to XCI variability contextualize our cell count estimates 

as lower bound estimates for the number of cells required to produce the observed XCI ratio 

variability as explained purely through embryonic stochasticity.   

 

 We revealed population variability in XCI ratios itself is conserved across adult 

mammalian populations, raising the question as to why stochasticity in XCI evolved in the 
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first place. An alternative route for achieving dosage compensation of the X-chromosome is 

the non-random inactivation of a specific allele, as evidenced by imprinted inactivation of the 

paternal X-allele in marsupial species(Deakin et al. 2009) and in the extra-embryonic lineages 

of rodents(Takagi and Sasaki 1975; Wake et al. 1976). One putative explanation for both the 

random inactivation in mammals and imprinted inactivation in marsupials is a general lack of 

selective pressure for the expression of either parental allele; both X-alleles are largely 

identical in terms of fitness. It is well known the X-chromosome is depleted of genetic 

variability compared to the autosomes(Sachidanandam et al. 2001), suggesting the X-

chromosome is under higher rates of evolution (models of increased positive or purifying 

selection are widely debated(Payseur et al. 2002; Avery 1984; Casto et al. 2010; Veeramah et 

al. 2014)). These routes for genetic homogeneity of the X-chromosome could favor the 

evolution of either imprinted or random inactivation in the face of selective pressure to 

achieve dosage compensation.  

 

 As a general model, the depletion of X-linked genetic variability also explains the 

lack of evidence we observe for broad allelic-selection or individual variants driving XCI 

ratio variability in mammalian populations, as both parental alleles are principally equivalent. 

This is of course not the case in the presence of disease variants, but X-linked disease 

genetics cannot explain the pervasive XCI ratio variability we report across mammalian 

species. While we are able to identify genes associated with increased XCI ratios that have 

prior evidence for contributing to highly skewed XCI in disease cases, the effect sizes and 

population frequencies of these variants are small in our sample populations. In conclusion, 

the general lack of X-linked genetic variability positions the inherent stochasticity of XCI 

during embryogenesis as the basis for the observed XCI ratio variability in mammalian 

populations.  
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5.4. Discussion for Results chapter 4: meta-analysis of preserved co-expression between 

primary neural tissue and neural organoids 

 Through the use of meta-analytic differential expression and co-expression, we are 

able to provide cell-type specific measurements of human neural organoids’ current capacity 

to replicate primary tissue biology. We extracted broad cell-type markers that define primary 

brain tissue cell-types across a large temporal axis (GW5 – 25) and across numerous 

heterogenous brain regions to act as a generalizable primary tissue reference for organoids 

that also vary temporally and regionally (by protocol). By quantifying intra-marker set co-

expression and the preservation of co-expression across networks, we revealed human neural 

organoids lie on a spectrum of near-zero to near-identical recapitulation of primary tissue 

cell-type specific co-expression in comparison to primary tissue data. We made our aggregate 

primary tissue reference data and methods for measuring preserved co-expression publicly 

available as an R package to aid in the quality control and protocol development of future 

human neural organoids. 

 

 Prior work comparing primary brain tissue and neural organoid systems demonstrated 

organoids can produce cell-types(Velasco et al. 2019; Bhaduri et al. 2020) and morphological 

structures(Sakaguchi et al. 2015; Qian et al. 2020) similar to primary tissues and are capable 

of modeling temporal(Gordon et al. 2021; Uzquiano et al. 2022; Amiri et al. 2018) and 

regional(Lancaster et al. 2013; Bhaduri et al. 2020; Qian et al. 2016; Xiang et al. 2017) 

primary tissue variation. Multiple lines of evidence support these findings such as 

assessments of cytoarchitecture and cell-type proportions(Lancaster et al. 2013; Velasco et al. 

2019; Tanaka et al. 2020; Agboola et al. 2021), whole transcriptome and marker gene 

expression correlations(Camp et al. 2015; Bhaduri et al. 2020), and comparisons of co-

expression modules(Pollen et al. 2019; Gordon et al. 2021; Cheroni et al. 2022; Luo et al. 

2016). Our meta-analytic approach is able to quantify these field-wide observations within a 



 154 

generalizable framework, recapitulating that organoids model broad primary tissue biology 

with our specific approach offering several key advancements for primary tissue/organoid 

comparisons. First, we derive quantifications of preserved primary tissue co-expression that 

can be extended from individual genes to the entire genome and, second, we place organoid 

co-expression in reference to robust meta-analytic primary tissue performance providing a 

general benchmark for protocol development and quality control across heterogeneous 

organoid systems.    

 

 A key aspect of our study design is our cross-validation of primary tissue differential 

expression and co-expression. We demonstrated that temporally and regionally heterogenous 

primary tissue data are able to strongly recapitulate our meta-analytic primary tissue marker 

gene expression and co-expression relationships. This meta-analytic primary tissue 

performance defines a clear benchmark for gauging the fidelity of organoid models, where 

organoids that produce functionally equivalent primary tissue cell-types are expected to 

perform comparably to primary tissue data. In our assessment across 12 different organoid 

differentiation protocols, we showed a subset of protocols produce organoids with 

comparable cell-type specific co-expression to primary tissue data, demonstrating high 

primary tissue fidelity is possible with current methods. While we employ a broad approach 

sampling across temporal and regional variation to optimize for generalizability, more 

precisely matched primary tissue data for specific organoid timepoints or protocols is better 

suited for comparisons studying more subtle variation. 

 

 Certainly, while comparisons between primary tissue and organoid systems at a high-

resolution of cell-type annotation are of interest, our results centered on broad cell-types at 

the cell-class level constitute a critical foundation for these more fine-tuned investigations of 

organoids. Cell-type specification within the brain involves complex spatial and temporal 
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mechanisms(Nowakowski et al. 2017) to produce the high cellular heterogeneity we observe, 

with the exact resolution of meaningful cell-type annotations still being actively debated and 

posing a general conceptual challenge within the field of single-cell genomics(Zeng 2022). 

We focus here on establishing methods for assessing consistent and accurate production of 

primary tissue cell-types at the class-level within organoids as a critical actionable first step 

towards increasing primary tissue fidelity across variable organoid differentiation protocols, 

with meta-analysis at a higher resolution of cell-type annotations (e.g., MGE and CGE 

interneurons, layer-specific excitatory neurons, progenitor subtypes) as an exciting future 

venture once class-level fidelity in organoids is consistently achieved. 

 

 One exciting application for the use of neural organoid systems is the study of a 

wide-range of human neurological diseases using human in vitro models(Chen et al. 2019; 

Eichmüller and Knoblich 2022), which critically depends on the in vivo fidelity of cell-types 

produced in organoids. Neural organoids have been used to model and investigate human 

disorders of neurodevelopmental (Lancaster et al. 2013; Mariani et al. 2015), 

neuropsychiatric(Notaras et al. 2022; Stachowiak et al. 2017; Dixon and Muotri 2023), and 

neurodegenerative(Smits et al. 2019; Chen et al. 2021; Szebényi et al. 2021) nature, as well as 

infectious diseases(Qian et al. 2016; Garcez et al. 2016; Pellegrini et al. 2020). It is essential 

that organoid systems model in vivo cell-types with extreme fidelity to fully realize the 

therapeutic potential of human organoids and ensure findings in these in vitro models are not 

specific to potential artifactual or inaccurate in vitro biology. While our results demonstrate 

that high primary tissue fidelity in organoids is currently methodologically possible, we also 

report a high degree of variability across organoids and studies/protocols indicating a 

remaining methodological gap. The broad applicability of our meta-analytic approach offers 

the potential for benchmarking primary tissue fidelity across numerous organoid protocols, 
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aiding in increasing the quality of neural organoids for use in a wide-range of human health-

related translational investigations.  

 

 The generalizable and flexible nature of our analysis is well suited to aid in the 

development of organoid differentiation protocols and the general quality control of neural 

organoids. Our results demonstrate the type of experiments possible through comparing 

preserved co-expression across organoid experimental variables, such as the differences in 

preserved co-expression between organoids grown in vertical or orbital shakers, as well as 

between transplanted or non-transplanted organoids. Importantly, our broad sampling across 

organoid protocols enabled clear identification of promising avenues for increasing organoid 

primary tissue fidelity. The strong performance across cell-types for the vascularized protocol 

we assessed suggests vascularized protocols as a route forward for global increases in 

primary fidelity. Additionally, our findings of specific ECM-related genes with consistent 

poorly preserved primary tissue co-expression in organoids suggests investigations into the 

interactions between Matrigel or other ECM-substrates and organoids may lead to general 

protocol adjustments for increasing primary tissue fidelity(Kozlowski et al. 2021). Looking 

beyond neural organoids, our framework for quantifying preserved co-expression can be 

applied to other organoid systems granted there is sufficient annotated primary tissue data to 

act as a reference.   
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5.5. Future directions 

 A large component of this thesis explores the utility in assessments of allelic-

imbalances for the study of developmental lineage, an approach that can be extended beyond 

the X-chromosome and within organoid systems for more comprehensive and targeted 

investigations of developmental lineage. 

 

Autosomal allelic imbalances for studying causal lineage events 

 The allelic imbalance of the X-chromosome via XCI is useful in studying 

developmental lineage because it occurs early and affects an entire chromosome, but most 

importantly, it is permanent and inherited down lineages. The early timing and broad 

chromosomal effect of XCI produces a strong, robust signal of allele-specific expression that 

is easy to detect, situating XCI as a natural starting point for investigating developmental 

lineages through allelic imbalances. Importantly, any inherited allele-specific effect can also 

be utilized in the study of developmental lineage; the X-chromosome simply being the one 

with the largest effect size. The methods established in this thesis for detecting and modeling 

X-chromosomal allelic imbalances are equally applicable to autosomal loci and can be used 

to investigate the interplay between allelic imbalances and developmental lineage on a 

genome-wide scale. 

 

 The observation of autosomal random monoallelic expression (RME) in various 

contexts (tissue-specific and/or cell-type specific) is long-standing, yet its functional 

relevance remains unclear in most cases (allele-specific expression of olfactory receptors as 

one notable exception). One hypothesis is RME is a mechanism for modulating expression 

levels of genes in a lineage-specific manner. If a particular gene dosage is required for a given 

cell fate, the epigenetic regulation of allele-specific expression, or RME in other words, is 

one route that canalizes gene dosage within a lineage. In the same way that variability in X-
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chromosome allelic-expression is informative for characteristics surrounding the time of XCI 

and ordering lineage events, variability in autosomal allelic-expression can also be 

informative for lineage specification events, with the addition of identifying genes that were 

causal for imparting functionality within a lineage. Taking a similar cross-tissue and cross-

species approach as the XCI work presented in this thesis, expanding analysis to autosomal 

allelic imbalances stands to provide a genome-wide interrogation of lineage specification 

events at multiple scales. 

 

Combining organoid systems with the study of allelic imbalances for investigating lineage 

specification events 

 The power of using autosomal imbalances for investigating lineage specification is 

fully realized when sampling over known distinct lineages, such as cross-tissue comparisons 

or, in a more controlled manner, organoids. Autosomal loci with variability in allelic-

expression specific to an individual lineage are likely instances of epigenetic regulation 

required for that specific lineage. While enriching for specific lineages to sample over is 

difficult when working with in vivo tissues, in vitro organoids offer the opportunity for the 

scalable production of specific lineages. For example, with neural organoids there are 

numerous protocols to generate excitatory cortical organoids as well as inhibitory subpallial 

organoids, representing the lineage split between excitatory and inhibitory neurons. 

Identifying allelic imbalances specific to these lineages will be informative for identifying 

likely causal epigenetic regulation in the formation of excitatory or inhibitory neurons. A 

similar experimental design can be used over any set of lineages, with organoid systems 

offering a high degree of experimental control over the production of specific lineages. 

 

 Organoids that fail to produce comparable lineages to in vivo tissues are also 

potentially informative for identifying causal genes in lineage production. The generalizable 
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benchmark for measuring primary tissue fidelity of neural organoids presented in this thesis 

will be particularly useful for such approaches. As one example, out of the variety of 

differentiation protocols claiming to produce excitatory neurons within neural organoids, our 

quantification of preserved co-expression demonstrates not all organoid excitatory neurons 

are equal to primary neural tissues. Exploring epigenetic landscapes via allelic imbalances 

between organoids with and without successful generation of excitatory neurons stands to 

again identify likely causal epigenetic regulation required for proper excitatory neuron 

production.  
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7. Appendix 1 – Supplementary tables 
 
Supplemental Table S2.1. Escape annotations. Related to Figure 2.3. 

Assigned labels of inactive, known escape, confident inactive, or novel escape for the 189 

genes powered enough to investigate cross-tissue XCI escape.  

gene escape_label 

OPHN1 confident inactive 

ATRX confident inactive 

MAMLD1 confident inactive 

RP11-1148L6.5 confident inactive 

CXorf40B confident inactive 

WDR45 confident inactive 

TREX2 confident inactive 

ACOT9 confident inactive 

ARMCX5-
GPRASP2 

confident inactive 

EMD confident inactive 

PIR confident inactive 

PLXNA3 confident inactive 

GPC4 confident inactive 

DMD confident inactive 

RGN confident inactive 
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HEPH confident inactive 

PRPS2 confident inactive 

SRPK3 confident inactive 

SLC6A8 confident inactive 

TMEM47 confident inactive 

EFNB1 confident inactive 

MIR503HG confident inactive 

PNMA3 confident inactive 

RP5-972B16.2 confident inactive 

ZNF185 confident inactive 

BEX2 confident inactive 

SAT1 confident inactive 

USP11 confident inactive 

PDZD4 confident inactive 

COL4A6 confident inactive 

TCEAL2 confident inactive 

TSPYL2 confident inactive 

PLS3 confident inactive 

BEX1 confident inactive 

TSC22D3 confident inactive 

PCSK1N confident inactive 

MSN confident inactive 

PLP1 confident inactive 

SYN1 confident inactive 

TMSB4X confident inactive 

ARSD known escape 

CA5B known escape 

CDK16 known escape 

CXorf38 known escape 

DDX3X known escape 

EIF1AX known escape 

EIF2S3 known escape 

GEMIN8 known escape 

GPM6B known escape 

GYG2 known escape 

IQSEC2 known escape 

KDM5C known escape 

KDM6A known escape 

MAOA known escape 
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MED14 known escape 

MSL3 known escape 

MXRA5 known escape 

NAP1L3 known escape 

PLXNB3 known escape 

PNPLA4 known escape 

PRKX known escape 

RENBP known escape 

RP11-706O15.1 known escape 

SMC1A known escape 

STS known escape 

SYAP1 known escape 

SYTL4 known escape 

TRAPPC2 known escape 

TXLNG known escape 

UBA1 known escape 

USP9X known escape 

XG known escape 

ZFX known escape 

ZRSR2 known escape 

CTPS2 novel escape 

CASK novel escape 

STARD8 novel escape 

NLGN4X novel escape 

MECP2 novel escape 

CLIC2 novel escape 

F8 novel escape 

PGK1 novel escape 

SEPT6 novel escape 

MPP1 novel escape 

CXorf36 novel escape 

ARHGAP4 novel escape 

BTK novel escape 

COX7B novel escape 

RPL36A novel escape 

ITM2A novel escape 

CHRDL1 novel escape 

VSIG4 novel escape 

SASH3 novel escape 
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YIPF6 verified inactive 

RLIM verified inactive 

TBC1D25 verified inactive 

ZBTB33 verified inactive 

PHF6 verified inactive 

ZNF75D verified inactive 

THOC2 verified inactive 

PHKA2 verified inactive 

MORC4 verified inactive 

GAB3 verified inactive 

MTMR1 verified inactive 

RPS6KA3 verified inactive 

MED12 verified inactive 

INTS6L verified inactive 

SCML1 verified inactive 

WDR13 verified inactive 

APEX2 verified inactive 

ATP11C verified inactive 

ARHGAP6 verified inactive 

ELF4 verified inactive 

PHF8 verified inactive 

TAF9B verified inactive 

MAP7D3 verified inactive 

FAM122B verified inactive 

SLC25A43 verified inactive 

SMIM10 verified inactive 

ABCD1 verified inactive 

RBBP7 verified inactive 

DLG3 verified inactive 

C1GALT1C1 verified inactive 

SLC25A53 verified inactive 

LINC01278 verified inactive 

TBL1X verified inactive 

ZNF275 verified inactive 

TMEM164 verified inactive 

PRPS1 verified inactive 

ARMCX1 verified inactive 

FMR1 verified inactive 

HUWE1 verified inactive 
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ZMAT1 verified inactive 

AIFM1 verified inactive 

SLC9A6 verified inactive 

PJA1 verified inactive 

HCFC1 verified inactive 

NSDHL verified inactive 

FAM127C verified inactive 

OCRL verified inactive 

GRIPAP1 verified inactive 

RBM10 verified inactive 

APOO verified inactive 

ZDHHC9 verified inactive 

ARMCX3 verified inactive 

ZMYM3 verified inactive 

UBL4A verified inactive 

GS1-358P8.4 verified inactive 

EBP verified inactive 

REPS2 verified inactive 

CLCN4 verified inactive 

WWC3 verified inactive 

LAGE3 verified inactive 

DOCK11 verified inactive 

DKC1 verified inactive 

ARMCX2 verified inactive 

SLC9A7 verified inactive 

IL13RA1 verified inactive 

VBP1 verified inactive 

MAGEH1 verified inactive 

TAZ verified inactive 

TSPAN6 verified inactive 

HDAC6 verified inactive 

SNX12 verified inactive 

GABRE verified inactive 

TFE3 verified inactive 

TSR2 verified inactive 

HTATSF1 verified inactive 

TIMM17B verified inactive 

LINC01420 verified inactive 

FAM3A verified inactive 
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RBMX verified inactive 

PDHA1 verified inactive 

FAM127B verified inactive 

XIST verified inactive 

G6PD verified inactive 

PRAF2 verified inactive 

CD99L2 verified inactive 

BEX4 verified inactive 

HNRNPH2 verified inactive 

NONO verified inactive 

LDOC1 verified inactive 

ATP6AP2 verified inactive 

TCEAL3 verified inactive 

MAGED1 verified inactive 

MAOB verified inactive 

SH3BGRL verified inactive 

GDI1 verified inactive 

IDS verified inactive 

ATP6AP1 verified inactive 

MORF4L2 verified inactive 

RBM3 verified inactive 

MAGED2 verified inactive 

TSIX verified inactive 

TCEAL4 verified inactive 

SLC25A5 verified inactive 
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Supplemental Table S2.2. Germ layer-specific marker genes. Related to Figure 2.4.  

Extracted germ layer-specific markers from the CIBERSORT deconvolution. Germ layer-

specific markers are defined as genes that are identified through CIBERSORT as gene 

signatures exclusively for cell types of a single germ layer. 

ensemblID name germlayer_mark
er 

tissue celltype 

ENSG000001021
25 

TAZ Mesoderm breast Immune..DC.macrophage. 
Endothelial.cell..lymphatic. 

ENSG000001022
87 

GABRE Mesoderm breast Adipocyte 

ENSG000001331
42 

TCEAL4 Mesoderm breast Myoepithelial..basal. 

ENSG000002038
79 

GDI1 Mesoderm breast Pericyte.SMC 

ENSG000000136
19 

MAMLD1 Mesoderm breast Adipocyte 

ENSG000000636
01 

MTMR1 Mesoderm breast Myoepithelial..basal. 

ENSG000001253
54 

44810 Mesoderm breast Immune..DC.macrophage. 
Endothelial.cell..lymphatic. 

ENSG000001317
24 

IL13RA1 Mesoderm breast Immune..DC.macrophage. 

ENSG000001470
65 

MSN Mesoderm breast Endothelial.cell..vascular. Pericyte.SMC 

ENSG0000014711
3 

CXorf36 Mesoderm breast Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000001792
22 

MAGED1 Mesoderm breast Myoepithelial..basal. 

ENSG000001850
10 

F8 Mesoderm breast Endothelial.cell..vascular. 

ENSG000002042
72 

LINC0142
0 

Mesoderm breast Myoepithelial..basal. Endothelial.cell..vascular. 

ENSG000001231
30 

ACOT9 Mesoderm breast Immune..DC.macrophage. 

ENSG000001556
59 

VSIG4 Mesoderm breast Immune..DC.macrophage. 

ENSG000001576
00 

TMEM164 Mesoderm breast Adipocyte 

ENSG000001020
24 

PLS3 Mesoderm breast Myoepithelial..basal. Endothelial.cell..vascular. 
Pericyte.SMC 

ENSG000001583
52 

SHROOM
4 

Mesoderm breast Endothelial.cell..vascular. 

ENSG000001023
59 

SRPX2 Mesoderm breast Adipocyte Fibroblast 

ENSG000001472
57 

GPC3 Mesoderm breast Adipocyte Fibroblast 

ENSG000000030
96 

KLHL13 Mesoderm breast Myoepithelial..basal. 

ENSG000001588
13 

EDA Mesoderm breast Immune..DC.macrophage. 

ENSG000000476
48 

ARHGAP6 Mesoderm breast Immune..DC.macrophage. Fibroblast 
Pericyte.SMC 

ENSG000001301
50 

MOSPD2 Mesoderm esophagusMucosa Immune..DC. 

ENSG000001331
42 

TCEAL4 Mesoderm esophagusMucosa Myofibroblast 

ENSG000001556
59 

VSIG4 Mesoderm esophagusMucosa Immune..DC.macrophage. 

ENSG0000014711
3 

CXorf36 Mesoderm esophagusMucosa Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 
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ENSG000001296
75 

ARHGEF6 Mesoderm esophagusMucosa Immune..DC.macrophage. Immune..T.cell. 
Immune..B.cell. Immune..DC. Immune..NK.cell. 
Immune..mast.cell. 

ENSG000001653
59 

INTS6L Mesoderm esophagusMucosa Immune..mast.cell. 

ENSG000001975
65 

COL4A6 Mesoderm esophagusMucosa Myofibroblast 

ENSG000002042
72 

LINC0142
0 

Mesoderm esophagusMucosa Immune..DC. Immune..mast.cell. 

ENSG000001231
30 

ACOT9 Mesoderm esophagusMucosa Myofibroblast Immune..DC. 

ENSG000001817
04 

YIPF6 Mesoderm esophagusMucosa Immune..NK.cell. 

ENSG000001559
62 

CLIC2 Mesoderm esophagusMucosa Immune..DC. 

ENSG0000010211
9 

EMD Mesoderm esophagusMucosa Immune..NK.cell. 

ENSG000001472
51 

DOCK11 Mesoderm esophagusMucosa Myofibroblast Endothelial.cell..vascular. 
Fibroblast Immune..DC.macrophage. 
Immune..T.cell. Immune..B.cell. Immune..DC. 
Immune..NK.cell. Immune..mast.cell. 

ENSG000001253
54 

SEPT6 Mesoderm esophagusMucosa Myofibroblast Endothelial.cell..lymphatic. 
Immune..DC.macrophage. Immune..T.cell. 
Immune..B.cell. Immune..DC. Immune..NK.cell. 

ENSG0000017110
0 

MTM1 Mesoderm esophagusMucosa Myofibroblast Endothelial.cell..vascular. 
Immune..T.cell. Immune..mast.cell. 

ENSG000001842
05 

TSPYL2 Mesoderm esophagusMucosa Myofibroblast 

ENSG000000946
31 

HDAC6 Mesoderm esophagusMucosa Myofibroblast 

ENSG000000695
35 

MAOB Mesoderm esophagusMucosa Immune..mast.cell. 

ENSG000001470
10 

SH3KBP1 Mesoderm esophagusMucosa Fibroblast Pericyte.SMC 
Immune..DC.macrophage. Immune..T.cell. 
Immune..B.cell. Immune..DC. Immune..NK.cell. 
Immune..mast.cell. 

ENSG000000106
71 

BTK Mesoderm esophagusMucosa Immune..B.cell. Immune..mast.cell. 

ENSG000001583
52 

SHROOM
4 

Mesoderm esophagusMucosa Endothelial.cell..vascular. 

ENSG000000476
48 

ARHGAP6 Mesoderm esophagusMucosa Myofibroblast Fibroblast Pericyte.SMC 
Immune..mast.cell. 

ENSG000001221
22 

SASH3 Mesoderm esophagusMucosa Immune..NK.cell. 

ENSG000001850
10 

F8 Mesoderm esophagusMucosa Endothelial.cell..lymphatic. 

ENSG000001988
14 

GK Mesoderm esophagusMucosa Immune..DC. 

ENSG000001019
74 

ATP11C Mesoderm esophagusMucosa Endothelial.cell..vascular. 
Immune..DC.macrophage. Immune..DC. 
Immune..NK.cell. 

ENSG000000659
23 

SLC9A7 Mesoderm esophagusMucosa Immune..B.cell. Immune..DC. 

ENSG000001602
19 

GAB3 Mesoderm esophagusMucosa Immune..DC.macrophage. Immune..T.cell. 
Immune..DC. Immune..NK.cell. 
Immune..mast.cell. 

ENSG000001022
21 

JADE3 Mesoderm esophagusMucosa Immune..B.cell. Immune..DC. 

ENSG000001019
35 

AMMECR
1 

Endoderm esophagusMucosa Epithelial.cell..suprabasal. 

ENSG000001471
40 

NONO Endoderm esophagusMucosa Epithelial.cell..basal. 

ENSG000001473
94 

ZNF185 Endoderm esophagusMucosa Epithelial.cell..squamous. 
Epithelial.cell..suprabasal. 

ENSG000001576
25 

TAB3 Endoderm esophagusMucosa Epithelial.cell..squamous. 

ENSG000001848
31 

APOO Endoderm esophagusMucosa Epithelial.cell..suprabasal. Epithelial.cell..basal. 
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ENSG000000824
58 

DLG3 Endoderm esophagusMucosa Mucous.cell 

ENSG000001022
87 

GABRE Endoderm esophagusMucosa Epithelial.cell..squamous. 
Epithelial.cell..suprabasal. Epithelial.cell..basal. 
Mucous.cell 

ENSG000001308
21 

SLC6A8 Endoderm esophagusMucosa Epithelial.cell..squamous. 

ENSG000001833
37 

BCOR Endoderm esophagusMucosa Epithelial.cell..squamous. 

ENSG000001023
49 

KLF8 Endoderm esophagusMucosa Epithelial.cell..squamous. 
Epithelial.cell..suprabasal. 

ENSG000000715
53 

ATP6AP1 Endoderm esophagusMucosa Epithelial.cell..squamous. 

ENSG000001828
72 

RBM10 Endoderm esophagusMucosa Epithelial.cell..squamous. 

ENSG000001655
91 

FAAH2 Endoderm esophagusMucosa Epithelial.cell..suprabasal. Epithelial.cell..basal. 
Mucous.cell 

ENSG000001729
43 

PHF8 Ectoderm esophagusMucosa Neuroendocrine 

ENSG000001308
27 

PLXNA3 Ectoderm esophagusMucosa Neuroendocrine 

ENSG000000718
59 

FAM50A Ectoderm esophagusMucosa Neuroendocrine 

ENSG000001469
38 

NLGN4X Ectoderm esophagusMucosa Neuroendocrine Schwann.cell 

ENSG000002697
43 

SLC25A53 Ectoderm esophagusMucosa Neuroendocrine 

ENSG000001331
31 

MORC4 Ectoderm esophagusMucosa Neuroendocrine 

ENSG000000671
77 

PHKA1 Ectoderm esophagusMucosa Neuroendocrine 

ENSG000001588
13 

EDA Ectoderm esophagusMucosa Schwann.cell 

ENSG000001843
43 

SRPK3 Ectoderm esophagusMucosa Neuroendocrine 

ENSG000000767
16 

GPC4 Mesoderm esophagusMuscularis Myocyte..smooth.muscle. 

ENSG000000878
42 

PIR Mesoderm esophagusMuscularis Endothelial.cell..vascular. ICCs 

ENSG000001018
49 

TBL1X Mesoderm esophagusMuscularis Myocyte..smooth.muscle. ICCs Pericyte.SMC 

ENSG000001331
42 

TCEAL4 Mesoderm esophagusMuscularis Myocyte..smooth.muscle. 

ENSG0000014711
3 

CXorf36 Mesoderm esophagusMuscularis Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000001556
59 

VSIG4 Mesoderm esophagusMuscularis Immune..DC.macrophage. 

ENSG000001975
65 

COL4A6 Mesoderm esophagusMuscularis Myocyte..smooth.muscle. 

ENSG000001317
24 

IL13RA1 Mesoderm esophagusMuscularis Immune..DC.macrophage. 

ENSG000001472
51 

DOCK11 Mesoderm esophagusMuscularis Myocyte..smooth.muscle. Fibroblast 
Immune..DC.macrophage. Immune..mast.cell. 
Immune..T.cell. 

ENSG000001653
59 

INTS6L Mesoderm esophagusMuscularis ICCs 

ENSG000001842
05 

TSPYL2 Mesoderm esophagusMuscularis Myocyte..smooth.muscle. ICCs 

ENSG000002503
49 

RP5-
972B16.2 

Mesoderm esophagusMuscularis Endothelial.cell..vascular. Adipocyte 
Immune..B.cell. 

ENSG000000867
58 

HUWE1 Mesoderm esophagusMuscularis ICCs Pericyte.SMC Adipocyte 

ENSG000001881
53 

COL4A5 Mesoderm esophagusMuscularis Myocyte..smooth.muscle. ICCs Pericyte.SMC 

ENSG000002042
72 

LINC0142
0 

Mesoderm esophagusMuscularis Endothelial.cell..vascular. 
Immune..DC.macrophage. 

ENSG000001850
10 

F8 Mesoderm esophagusMuscularis Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. Adipocyte 
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ENSG0000013117
1 

SH3BGRL Mesoderm esophagusMuscularis Myocyte..smooth.muscle. 
Immune..DC.macrophage. Pericyte.SMC 

ENSG000001296
75 

ARHGEF6 Mesoderm esophagusMuscularis Immune..mast.cell. 

ENSG000001576
00 

TMEM164 Mesoderm esophagusMuscularis Immune..mast.cell. 

ENSG000001221
22 

SASH3 Mesoderm esophagusMuscularis Immune..B.cell. 

ENSG000001583
52 

SHROOM
4 

Mesoderm esophagusMuscularis Endothelial.cell..vascular. 

ENSG000001736
98 

ADGRG2 Mesoderm esophagusMuscularis ICCs Adipocyte 

ENSG000001656
75 

ENOX2 Mesoderm esophagusMuscularis Fibroblast Immune..DC.macrophage. Adipocyte 

ENSG0000017110
0 

MTM1 Mesoderm esophagusMuscularis Immune..DC.macrophage. 

ENSG000001018
71 

MID1 Mesoderm esophagusMuscularis Myocyte..smooth.muscle. 
Endothelial.cell..lymphatic. ICCs Fibroblast 

ENSG000000104
04 

IDS Ectoderm esophagusMuscularis Neuronal 

ENSG000001235
60 

PLP1 Ectoderm esophagusMuscularis Neuronal Schwann.cell 

ENSG000001269
70 

ZC4H2 Ectoderm esophagusMuscularis Neuronal 

ENSG000001021
09 

PCSK1N Ectoderm esophagusMuscularis Neuronal 

ENSG000001986
89 

SLC9A6 Ectoderm esophagusMuscularis Neuronal 

ENSG000001469
38 

NLGN4X Ectoderm esophagusMuscularis Neuronal Schwann.cell 

ENSG000000671
77 

PHKA1 Ectoderm esophagusMuscularis Neuronal 

ENSG000001331
69 

BEX1 Ectoderm esophagusMuscularis Neuronal 

ENSG000000878
42 

PIR Mesoderm heartAtrialAppendage Myocyte..cardiac. Endothelial.cell..vascular. 
Fibroblast Adipocyte 

ENSG000001021
44 

PGK1 Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. 

ENSG000001022
87 

GABRE Mesoderm heartAtrialAppendage Adipocyte 

ENSG000001023
49 

KLF8 Mesoderm heartAtrialAppendage Adipocyte 

ENSG000001253
54 

44810 Mesoderm heartAtrialAppendage Immune..DC.macrophage. Immune..B.cell. 
Immune..T.cell. Immune..NK.cell. 

ENSG000001308
21 

SLC6A8 Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. Myocyte..cardiac. 

ENSG0000013117
1 

SH3BGRL Mesoderm heartAtrialAppendage Immune..mast.cell. Pericyte.SMC 
Immune..DC.macrophage. Adipocyte 
Immune..B.cell. 

ENSG0000013117
4 

COX7B Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. 

ENSG000001317
24 

IL13RA1 Mesoderm heartAtrialAppendage Immune..DC.macrophage. 

ENSG0000014711
9 

CHST7 Mesoderm heartAtrialAppendage Fibroblast 

ENSG000001653
59 

INTS6L Mesoderm heartAtrialAppendage Immune..mast.cell. 

ENSG000001850
10 

F8 Mesoderm heartAtrialAppendage Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000002042
72 

LINC0142
0 

Mesoderm heartAtrialAppendage Myocyte..cardiac. Endothelial.cell..vascular. 
Adipocyte Immune..B.cell. 

ENSG000000785
96 

ITM2A Mesoderm heartAtrialAppendage Endothelial.cell..vascular. 

ENSG000001021
25 

TAZ Mesoderm heartAtrialAppendage Myocyte..cardiac. 

ENSG0000014711
3 

CXorf36 Mesoderm heartAtrialAppendage Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 
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ENSG000000444
46 

PHKA2 Mesoderm heartAtrialAppendage Myocyte..cardiac. 

ENSG000001018
49 

TBL1X Mesoderm heartAtrialAppendage Myocyte..cardiac. Pericyte.SMC 
Immune..DC.macrophage. Adipocyte 
Immune..B.cell. Immune..T.cell. 
Immune..NK.cell. 

ENSG000001576
00 

TMEM164 Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..mast.cell. 
Immune..DC.macrophage. Adipocyte 

ENSG000001602
19 

GAB3 Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..mast.cell. 
Immune..B.cell. 

ENSG000001848
31 

APOO Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. Adipocyte 

ENSG000001023
17 

RBM3 Mesoderm heartAtrialAppendage Myocyte..cardiac. Adipocyte 

ENSG000001318
28 

PDHA1 Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. 

ENSG000000683
66 

ACSL4 Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..mast.cell. 
Immune..DC.macrophage. Adipocyte 
Immune..B.cell. 

ENSG000001020
24 

PLS3 Mesoderm heartAtrialAppendage Myocyte..cardiac. Endothelial.cell..vascular. 
Fibroblast Pericyte.SMC 
Endothelial.cell..lymphatic. Adipocyte 

ENSG000001472
51 

DOCK11 Mesoderm heartAtrialAppendage Immune..mast.cell. Immune..DC.macrophage. 
Adipocyte Immune..B.cell. Immune..T.cell. 
Immune..NK.cell. 

ENSG000001472
57 

GPC3 Mesoderm heartAtrialAppendage Adipocyte 

ENSG000001690
83 

AR Mesoderm heartAtrialAppendage Myocyte..cardiac. Adipocyte 

ENSG000001858
25 

BCAP31 Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. 
Endothelial.cell..lymphatic. Adipocyte 

ENSG000001556
59 

VSIG4 Mesoderm heartAtrialAppendage Immune..DC.macrophage. 

ENSG000001651
92 

ASB11 Mesoderm heartAtrialAppendage Myocyte..cardiac. 

ENSG000001690
57 

MECP2 Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..mast.cell. 
Endothelial.cell..lymphatic. Adipocyte 
Immune..T.cell. Immune..NK.cell. 

ENSG000001253
51 

UPF3B Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..mast.cell. 

ENSG000001471
23 

NDUFB11 Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. 

ENSG000001221
22 

SASH3 Mesoderm heartAtrialAppendage Immune..B.cell. Immune..NK.cell. 

ENSG000001969
98 

WDR45 Mesoderm heartAtrialAppendage Immune..B.cell. 

ENSG000001253
56 

NDUFA1 Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. 

ENSG000000914
82 

SMPX Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. 

ENSG000001317
25 

WDR44 Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..B.cell. 
Immune..T.cell. 

ENSG000000476
34 

SCML1 Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..mast.cell. 
Immune..DC.macrophage. Adipocyte 

ENSG000001345
90 

FAM127A Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. Adipocyte 

ENSG000001666
81 

BEX3 Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. 

ENSG000001884
19 

CHM Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..mast.cell. 

ENSG000000867
58 

HUWE1 Mesoderm heartAtrialAppendage Myocyte..cardiac..cytoplasmic. Myocyte..cardiac. 
Immune..mast.cell. Endothelial.cell..lymphatic. 
Adipocyte Immune..T.cell. 

ENSG000001018
71 

MID1 Mesoderm heartAtrialAppendage Myocyte..cardiac. Fibroblast Adipocyte 

ENSG000001988
14 

GK Mesoderm heartAtrialAppendage Myocyte..cardiac. 
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ENSG000000080
86 

CDKL5 Mesoderm heartAtrialAppendage Myocyte..cardiac. Immune..B.cell. 

ENSG000001583
52 

SHROOM
4 

Mesoderm heartAtrialAppendage Endothelial.cell..vascular. 

ENSG000001698
91 

REPS2 Mesoderm heartAtrialAppendage Endothelial.cell..lymphatic. 

ENSG000000476
48 

ARHGAP6 Mesoderm heartAtrialAppendage Immune..mast.cell. Fibroblast Pericyte.SMC 
Endothelial.cell..lymphatic. 
Immune..DC.macrophage. 

ENSG000001235
72 

NRK Mesoderm heartAtrialAppendage Fibroblast 

ENSG000001881
53 

COL4A5 Mesoderm heartAtrialAppendage Myocyte..cardiac. 

ENSG000001565
31 

PHF6 Mesoderm heartAtrialAppendage Immune..B.cell. 

ENSG000001977
79 

ZNF81 Mesoderm heartAtrialAppendage Myocyte..cardiac. 

ENSG000001235
60 

PLP1 Ectoderm heartAtrialAppendage Schwann.cell 

ENSG000000785
96 

ITM2A Mesoderm heartLeftVentricle Endothelial.cell..vascular. 

ENSG000000878
42 

PIR Mesoderm heartLeftVentricle Myocyte..cardiac. Endothelial.cell..vascular. 
Fibroblast Adipocyte 

ENSG000000914
82 

SMPX Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. 

ENSG000001021
25 

TAZ Mesoderm heartLeftVentricle Myocyte..cardiac. 

ENSG000001022
87 

GABRE Mesoderm heartLeftVentricle Adipocyte 

ENSG000001308
21 

SLC6A8 Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. Myocyte..cardiac. 

ENSG000001317
25 

WDR44 Mesoderm heartLeftVentricle Myocyte..cardiac. Immune..B.cell. 
Immune..T.cell. 

ENSG0000014711
3 

CXorf36 Mesoderm heartLeftVentricle Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000001576
00 

TMEM164 Mesoderm heartLeftVentricle Myocyte..cardiac. Immune..mast.cell. 
Immune..DC.macrophage. Adipocyte 

ENSG000001602
19 

GAB3 Mesoderm heartLeftVentricle Myocyte..cardiac. Immune..mast.cell. 
Immune..B.cell. 

ENSG000001848
31 

APOO Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. Adipocyte 

ENSG000001850
10 

F8 Mesoderm heartLeftVentricle Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000001023
17 

RBM3 Mesoderm heartLeftVentricle Myocyte..cardiac. Adipocyte 

ENSG000001318
28 

PDHA1 Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. 

ENSG000001556
59 

VSIG4 Mesoderm heartLeftVentricle Immune..DC.macrophage. 

ENSG000000867
58 

HUWE1 Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. Myocyte..cardiac. 
Immune..mast.cell. Endothelial.cell..lymphatic. 
Adipocyte Immune..T.cell. 

ENSG000001471
23 

NDUFB11 Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. 

ENSG000001651
92 

ASB11 Mesoderm heartLeftVentricle Myocyte..cardiac. 

ENSG000001858
25 

BCAP31 Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. 
Endothelial.cell..lymphatic. Adipocyte 

ENSG000002042
72 

LINC0142
0 

Mesoderm heartLeftVentricle Myocyte..cardiac. Endothelial.cell..vascular. 
Adipocyte Immune..B.cell. 

ENSG000001253
56 

NDUFA1 Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. 

ENSG0000013117
1 

SH3BGRL Mesoderm heartLeftVentricle Immune..mast.cell. Pericyte.SMC 
Immune..DC.macrophage. Adipocyte 
Immune..B.cell. 

ENSG000001317
24 

IL13RA1 Mesoderm heartLeftVentricle Immune..DC.macrophage. 
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ENSG000001018
49 

TBL1X Mesoderm heartLeftVentricle Myocyte..cardiac. Pericyte.SMC 
Immune..DC.macrophage. Adipocyte 
Immune..B.cell. Immune..T.cell. 
Immune..NK.cell. 

ENSG000001021
44 

PGK1 Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. 

ENSG0000013117
4 

COX7B Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. 

ENSG000001690
83 

AR Mesoderm heartLeftVentricle Myocyte..cardiac. Adipocyte 

ENSG000001472
51 

DOCK11 Mesoderm heartLeftVentricle Immune..mast.cell. Immune..DC.macrophage. 
Adipocyte Immune..B.cell. Immune..T.cell. 
Immune..NK.cell. 

ENSG000001690
57 

MECP2 Mesoderm heartLeftVentricle Myocyte..cardiac. Immune..mast.cell. 
Endothelial.cell..lymphatic. Adipocyte 
Immune..T.cell. Immune..NK.cell. 

ENSG000001969
98 

WDR45 Mesoderm heartLeftVentricle Immune..B.cell. 

ENSG000001020
24 

PLS3 Mesoderm heartLeftVentricle Myocyte..cardiac. Endothelial.cell..vascular. 
Fibroblast Pericyte.SMC 
Endothelial.cell..lymphatic. Adipocyte 

ENSG000001583
52 

SHROOM
4 

Mesoderm heartLeftVentricle Endothelial.cell..vascular. 

ENSG000000444
46 

PHKA2 Mesoderm heartLeftVentricle Myocyte..cardiac. 

ENSG000001253
54 

44810 Mesoderm heartLeftVentricle Immune..DC.macrophage. Immune..B.cell. 
Immune..T.cell. Immune..NK.cell. 

ENSG000000683
66 

ACSL4 Mesoderm heartLeftVentricle Myocyte..cardiac. Immune..mast.cell. 
Immune..DC.macrophage. Adipocyte 
Immune..B.cell. 

ENSG0000014711
9 

CHST7 Mesoderm heartLeftVentricle Fibroblast 

ENSG000001666
81 

BEX3 Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. 

ENSG000001884
19 

CHM Mesoderm heartLeftVentricle Myocyte..cardiac. Immune..mast.cell. 

ENSG000001253
51 

UPF3B Mesoderm heartLeftVentricle Myocyte..cardiac. Immune..mast.cell. 

ENSG000001221
22 

SASH3 Mesoderm heartLeftVentricle Immune..B.cell. Immune..NK.cell. 

ENSG000001345
90 

FAM127A Mesoderm heartLeftVentricle Myocyte..cardiac..cytoplasmic. Adipocyte 

ENSG000000476
34 

SCML1 Mesoderm heartLeftVentricle Myocyte..cardiac. Immune..mast.cell. 
Immune..DC.macrophage. Adipocyte 

ENSG000001565
31 

PHF6 Mesoderm heartLeftVentricle Immune..B.cell. 

ENSG000001653
59 

INTS6L Mesoderm heartLeftVentricle Immune..mast.cell. 

ENSG000001018
71 

MID1 Mesoderm heartLeftVentricle Myocyte..cardiac. Fibroblast Adipocyte 

ENSG000001235
72 

NRK Mesoderm heartLeftVentricle Fibroblast 

ENSG000001977
79 

ZNF81 Mesoderm heartLeftVentricle Myocyte..cardiac. 

ENSG000001988
14 

GK Mesoderm heartLeftVentricle Myocyte..cardiac. 

ENSG000001651
97 

VEGFD Mesoderm heartLeftVentricle Myocyte..cardiac. Fibroblast 

ENSG000001472
57 

GPC3 Mesoderm heartLeftVentricle Adipocyte 

ENSG0000017110
0 

MTM1 Mesoderm heartLeftVentricle Immune..DC.macrophage. Immune..B.cell. 
Immune..T.cell. 

ENSG000001235
60 

PLP1 Ectoderm heartLeftVentricle Schwann.cell 

ENSG000000684
00 

GRIPAP1 Mesoderm lung Immune..NK.cell. 

ENSG000000695
35 

MAOB Mesoderm lung Fibroblast Immune..mast.cell. 
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ENSG000000898
20 

ARHGAP4 Mesoderm lung Immune..mast.cell. Immune..B.cell. 

ENSG000001021
44 

PGK1 Mesoderm lung Immune..DC.macrophage. 

ENSG000001221
22 

SASH3 Mesoderm lung Immune..mast.cell. Immune..B.cell. 

ENSG0000014711
3 

CXorf36 Mesoderm lung Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000001602
19 

GAB3 Mesoderm lung Immune..alveolar.macrophage. 
Immune..mast.cell. 

ENSG000002503
49 

RP5-
972B16.2 

Mesoderm lung Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000000476
48 

ARHGAP6 Mesoderm lung Immune..alveolar.macrophage. Pericyte.SMC 
Fibroblast Immune..mast.cell. 
Immune..DC.macrophage. 

ENSG000001019
74 

ATP11C Mesoderm lung Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. Immune..NK.cell. 

ENSG000001023
59 

SRPX2 Mesoderm lung Fibroblast 

ENSG000001253
54 

44810 Mesoderm lung Immune..alveolar.macrophage. Pericyte.SMC 
Immune..mast.cell. Immune..T.cell. 
Immune..DC.macrophage. Immune..B.cell. 
Immune..NK.cell. 

ENSG000001988
14 

GK Mesoderm lung Immune..alveolar.macrophage. 
Immune..mast.cell. Immune..DC.macrophage. 

ENSG000002042
72 

LINC0142
0 

Mesoderm lung Immune..alveolar.macrophage. 
Immune..mast.cell. 

ENSG000001331
42 

TCEAL4 Mesoderm lung Pericyte.SMC Fibroblast 

ENSG000001651
97 

VEGFD Mesoderm lung Fibroblast 

ENSG000001317
24 

IL13RA1 Mesoderm lung Immune..alveolar.macrophage. 
Immune..DC.macrophage. 

ENSG000001471
68 

IL2RG Mesoderm lung Immune..NK.cell. 

ENSG000001850
10 

F8 Mesoderm lung Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000001556
59 

VSIG4 Mesoderm lung Immune..alveolar.macrophage. 
Immune..DC.macrophage. 

ENSG000001021
72 

SMS Mesoderm lung Immune..DC.macrophage. 

ENSG000001309
88 

RGN Mesoderm lung Pericyte.SMC 

ENSG000001841
94 

GPR173 Mesoderm lung Fibroblast 

ENSG000001020
96 

PIM2 Mesoderm lung Immune..B.cell. 

ENSG000001559
66 

AFF2 Mesoderm lung Pericyte.SMC Immune..mast.cell. 
Immune..B.cell. 

ENSG000001588
13 

EDA Mesoderm lung Fibroblast Immune..DC.macrophage. 

ENSG000001656
75 

ENOX2 Mesoderm lung Immune..alveolar.macrophage. 
Immune..DC.macrophage. Immune..B.cell. 

ENSG000001296
75 

ARHGEF6 Mesoderm lung Immune..alveolar.macrophage. 
Immune..mast.cell. Immune..T.cell. 

ENSG000000767
16 

GPC4 Endoderm lung Epithelial.cell..alveolar.type.II. 
Epithelial.cell..club. 
Epithelial.cell..alveolar.type.I. 
Epithelial.cell..basal. 

ENSG000001019
40 

WDR13 Endoderm lung Epithelial.cell..ciliated. 

ENSG000001021
81 

CD99L2 Endoderm lung Epithelial.cell..basal. 

ENSG000000080
86 

CDKL5 Endoderm lung Epithelial.cell..alveolar.type.II. 
Epithelial.cell..club. 
Epithelial.cell..alveolar.type.I. 
Epithelial.cell..basal. 
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ENSG000001817
04 

YIPF6 Endoderm lung Epithelial.cell..basal. 

ENSG000001023
16 

MAGED2 Endoderm lung Epithelial.cell..basal. 

ENSG000000299
93 

HMGB3 Endoderm lung Epithelial.cell..basal. 

ENSG000001833
37 

BCOR Endoderm lung Epithelial.cell..alveolar.type.II. 

ENSG000001975
65 

COL4A6 Endoderm lung Epithelial.cell..basal. 

ENSG000001651
64 

CFAP47 Endoderm lung Epithelial.cell..ciliated. 

ENSG000000896
82 

RBM41 Endoderm lung Epithelial.cell..ciliated. 

ENSG000001296
82 

FGF13 Endoderm lung Epithelial.cell..club. 

ENSG000000695
35 

MAOB Mesoderm skeletalMuscle Adipocyte 

ENSG000000878
42 

PIR Mesoderm skeletalMuscle Endothelial.cell..vascular. Myocyte..sk Adipocyte 
Myocyte..NMJ.rich. 

ENSG0000014711
3 

CXorf36 Mesoderm skeletalMuscle Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000001576
00 

TMEM164 Mesoderm skeletalMuscle Myocyte..sk Adipocyte Myocyte..NMJ.rich. 

ENSG000001317
24 

IL13RA1 Mesoderm skeletalMuscle Immune..DC.macrophage. 

ENSG000001556
59 

VSIG4 Mesoderm skeletalMuscle Immune..DC.macrophage. 

ENSG000002503
49 

RP5-
972B16.2 

Mesoderm skeletalMuscle Endothelial.cell..lymphatic. 

ENSG000000785
96 

ITM2A Mesoderm skeletalMuscle Immune..T.cell. 

ENSG000001020
24 

PLS3 Mesoderm skeletalMuscle Endothelial.cell..vascular. Pericyte.SMC 
Endothelial.cell..lymphatic. 

ENSG000001850
10 

F8 Mesoderm skeletalMuscle Endothelial.cell..vascular. 
Endothelial.cell..lymphatic. 

ENSG000001755
56 

LONRF3 Mesoderm skeletalMuscle Myocyte..NMJ.rich. 

ENSG000000671
77 

PHKA1 Mesoderm skeletalMuscle Myocyte..sk Myocyte..NMJ.rich. 

ENSG000001296
75 

ARHGEF6 Mesoderm skeletalMuscle Immune..T.cell. Myocyte..NMJ.rich. 

ENSG000001651
97 

VEGFD Mesoderm skeletalMuscle Myocyte..sk Myocyte..NMJ.rich. 

ENSG000001792
22 

MAGED1 Mesoderm skeletalMuscle Adipocyte Immune..T.cell. 
Immune..DC.macrophage. 

ENSG0000001120
1 

ANOS1 Mesoderm skeletalMuscle Fibroblast 

ENSG000001651
75 

MID1IP1 Mesoderm skeletalMuscle Fibroblast 

ENSG000001690
83 

AR Mesoderm skeletalMuscle Fibroblast Adipocyte 

ENSG000001881
53 

COL4A5 Mesoderm skeletalMuscle Myocyte..sk Pericyte.SMC Myocyte..NMJ.rich. 

ENSG000001253
51 

UPF3B Mesoderm skeletalMuscle Endothelial.cell..vascular. 

ENSG0000013117
1 

SH3BGRL Mesoderm skeletalMuscle Pericyte.SMC Immune..DC.macrophage. 

ENSG000001022
87 

GABRE Mesoderm skeletalMuscle Adipocyte 

ENSG000001975
65 

COL4A6 Mesoderm skeletalMuscle Myocyte..NMJ.rich. 

ENSG000001795
42 

SLITRK4 Mesoderm skeletalMuscle Fibroblast Myocyte..NMJ.rich. 

ENSG000001296
82 

FGF13 Mesoderm skeletalMuscle Myocyte..sk Adipocyte Satellite.cell 
Myocyte..NMJ.rich. 

ENSG000001470
10 

SH3KBP1 Mesoderm skeletalMuscle Adipocyte Immune..T.cell. 
Immune..DC.macrophage. Immune..NK.cell. 
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ENSG000000683
66 

ACSL4 Mesoderm skeletalMuscle Immune..DC.macrophage. 

ENSG000001713
65 

CLCN5 Mesoderm skeletalMuscle Myocyte..sk Satellite.cell Myocyte..NMJ.rich. 

ENSG000000780
61 

ARAF Mesoderm skeletalMuscle Immune..T.cell. 

ENSG000001023
59 

SRPX2 Mesoderm skeletalMuscle Fibroblast Adipocyte Satellite.cell 

ENSG000001852
22 

TCEAL9 Mesoderm skeletalMuscle Fibroblast 

ENSG000001018
68 

POLA1 Mesoderm skeletalMuscle Immune..T.cell. Myocyte..NMJ.rich. 

ENSG000001588
13 

EDA Mesoderm skeletalMuscle Satellite.cell Immune..DC.macrophage. 

ENSG000000837
50 

RRAGB Mesoderm skeletalMuscle Fibroblast Satellite.cell 

ENSG000000777
13 

SLC25A43 Mesoderm skeletalMuscle Adipocyte 

ENSG000001019
01 

ALG13 Mesoderm skeletalMuscle Endothelial.cell..lymphatic. 

ENSG000001472
51 

DOCK11 Mesoderm skeletalMuscle Fibroblast Pericyte.SMC Adipocyte 
Immune..DC.macrophage. Immune..NK.cell. 

ENSG000002039
50 

FAM127B Ectoderm skeletalMuscle Schwann.cell 

ENSG000000136
19 

MAMLD1 Mesoderm skinLowerLeg Adipocyte 

ENSG000001020
24 

PLS3 Mesoderm skinLowerLeg Unknown Endothelial.cell..vascular. 

ENSG000001470
65 

MSN Mesoderm skinLowerLeg Unknown Adipocyte Endothelial.cell..vascular. 

ENSG000001576
00 

TMEM164 Mesoderm skinLowerLeg Adipocyte 

ENSG000001713
65 

CLCN5 Mesoderm skinLowerLeg Endothelial.cell..vascular. 

ENSG000001852
22 

TCEAL9 Mesoderm skinLowerLeg Unknown Pericyte.SMC Adipocyte 
Endothelial.cell..vascular. 

ENSG000002055
42 

TMSB4X Mesoderm skinLowerLeg Unknown Endothelial.cell..vascular. 

ENSG000001022
87 

GABRE Mesoderm skinLowerLeg Adipocyte Fibroblast 

ENSG000001559
62 

CLIC2 Mesoderm skinLowerLeg Endothelial.cell..vascular. 

ENSG000001828
72 

RBM10 Mesoderm skinLowerLeg Unknown Pericyte.SMC Adipocyte Fibroblast 

ENSG000001472
51 

DOCK11 Mesoderm skinLowerLeg Adipocyte Fibroblast 

ENSG000001690
57 

MECP2 Mesoderm skinLowerLeg Pericyte.SMC Adipocyte 
Endothelial.cell..vascular. 

ENSG000001583
52 

SHROOM
4 

Mesoderm skinLowerLeg Endothelial.cell..vascular. 

ENSG000001655
91 

FAAH2 Ectoderm skinLowerLeg Sweat.gland.cell 
Epithelial.cell..basal.keratinocyte. 

ENSG000000472
30 

CTPS2 Ectoderm skinLowerLeg Melanocyte 

ENSG0000013117
1 

SH3BGRL Ectoderm skinLowerLeg Melanocyte 

ENSG000001235
60 

PLP1 Ectoderm skinLowerLeg Melanocyte 

ENSG000001019
28 

MOSPD1 Ectoderm skinLowerLeg Melanocyte 

ENSG000001018
50 

GPR143 Ectoderm skinLowerLeg Melanocyte 

ENSG000001022
87 

GABRE Mesoderm skinSuprapubic Adipocyte Fibroblast 

ENSG000001576
00 

TMEM164 Mesoderm skinSuprapubic Adipocyte 

ENSG000002055
42 

TMSB4X Mesoderm skinSuprapubic Unknown Endothelial.cell..vascular. 
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ENSG000001472
51 

DOCK11 Mesoderm skinSuprapubic Adipocyte Fibroblast 

ENSG000001828
72 

RBM10 Mesoderm skinSuprapubic Unknown Pericyte.SMC Adipocyte Fibroblast 

ENSG000001470
65 

MSN Mesoderm skinSuprapubic Unknown Adipocyte Endothelial.cell..vascular. 

ENSG000001690
57 

MECP2 Mesoderm skinSuprapubic Pericyte.SMC Adipocyte 
Endothelial.cell..vascular. 

ENSG000000136
19 

MAMLD1 Mesoderm skinSuprapubic Adipocyte 

ENSG000001020
24 

PLS3 Mesoderm skinSuprapubic Unknown Endothelial.cell..vascular. 

ENSG000001852
22 

TCEAL9 Mesoderm skinSuprapubic Unknown Pericyte.SMC Adipocyte 
Endothelial.cell..vascular. 

ENSG000001559
62 

CLIC2 Mesoderm skinSuprapubic Endothelial.cell..vascular. 

ENSG000001713
65 

CLCN5 Mesoderm skinSuprapubic Endothelial.cell..vascular. 

ENSG000000472
30 

CTPS2 Ectoderm skinSuprapubic Melanocyte 

ENSG0000013117
1 

SH3BGRL Ectoderm skinSuprapubic Melanocyte 

ENSG000001655
91 

FAAH2 Ectoderm skinSuprapubic Sweat.gland.cell 
Epithelial.cell..basal.keratinocyte. 

ENSG000001235
60 

PLP1 Ectoderm skinSuprapubic Melanocyte 

ENSG000001019
28 

MOSPD1 Ectoderm skinSuprapubic Melanocyte 

ENSG000001018
50 

GPR143 Ectoderm skinSuprapubic Melanocyte 
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Supplemental Table S4.1 

Primary tissue and neural organoid dataset download and metadata 

Table containing the study origin and download links for all primary tissue and organoid scRNA-seq 

datasets. The batch variable column details the meta-data used in determining batch. The 

region/protocol column details the sampled primary tissue brain regions or the organoid 

differentiation protocol. 

Colum
n1 

Study Batch 
variable 

Dataset Region/protocol Download 

annota
ted 
fetal 

Polioudak
is et. al. 

Library Geschwind (GW17-18) cortical anlage http://solo.bmap.ucla.edu/shiny/webapp/ 

   
Plath (GW17-18) cortical anlage 

 

 
Fan et al. NA GW7-28 cerebral cortex 

and pons 
GEO: GSE120046, 
GSE120046_brain_all_UMIcounts.txt, 
GSE120046_metadata.txt   

Bhaduri 
et al. 

Donor/Age GW14 Multi-region NeMO Archive RRID: SCR_002001, 
Metadata from Supp. Table 1 of 
publication    

GW18_2 Multi-region 
 

   
GW19 Multi-region 

 

   
GW19_2 Multi-region 

 

   
GW20 Multi-region 

 

   
GW20_31 Multi-region 

 

   
GW20_34 Multi-region 

 

   
GW25 Multi-region 

 

 
Braun et 
al. 

Donor/Age XDD:348 (GW5) Multi-region https://github.com/linnarsson-
lab/developing-human-brain/    

XDD:400 (GW5.5) Multi-region 
 

   
XDD:326 (GW6) Multi-region 

 

   
XDD:395 (GW6) Multi-region 

 

   
BRC2073 (GW6.6) Multi-region 

 

   
BRC2106A (GW6.6) Multi-region 

 

   
BRC2147 (GW6.7) Multi-region 

 

   
BRC2061 (GW6.9) Multi-region 

 

   
BRC2110 (GW6.9) Multi-region 

 

   
BRC2114 (GW6.9) Multi-region 

 

   
BRC2191 (GW6.9) Multi-region 

 

   
XDD:398 (GW7) Multi-region 

 

   
XHU:305 (GW7.5) Multi-region 

 

   
BRC2006 (GW8) Multi-region 

 

   
BRC2021 (GW8) Multi-region 
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XDD:334 (GW8) Multi-region 

 

   
BRC2057 (GW8.1) Multi-region 

 

   
XDD:313 (GW8.5) Multi-region 

 

   
XDD:342 (GW8.5) Multi-region 

 

   
XHU:307 (GW9.2) Multi-region 

 

   
XHU:292 (GW9.5) Multi-region 

 

   
XHU:297 (GW10) Multi-region 

 

   
XDD:358 (GW11.5) Multi-region 

 

   
XDD:351 (GW12) Multi-region 

 

   
XDD:359 (GW13 Multi-region 

 

   
XDD:385 (GW14) Multi-region 

 

unanno
tated 
fetal 

Shi et al. NA NA ganglionic 
eminences/subpal
lium 

GEO: GSE135827, 
GSE135827_GE_mat_raw_count_with_w
eek_info.txt  

Zhou et 
al. 

NA NA hypothalamus GEO: GSE169109 
 

Yu et al. Donor/Age GSM5032680 (GW9) ganglionic 
eminences/subpal
lium 

GEO: GSE165388 

   
GSM5032681 (GW10) ganglionic 

eminences/subpal
lium 

 

   
GSM5032682 (GW11) ganglionic 

eminences/subpal
lium 

 

   
GSM5032683 (GW12) ganglionic 

eminences/subpal
lium 

 

 
Trevino et 
al. 

Donor/Age GW16 cerebral cortex  GEO: GSE162170, 
GSE162170_rna_counts.tsv.gz, 
GSE162170_rna_cell_metadata.txt.gz    

GW20 cerebral cortex  
 

   
GW21 cerebral cortex  

 

   
GW24 cerebral cortex  

 

 
Bhaduri 
et al. 

Donor/Age GW16 Multi-region NeMO Archive RRID: SCR_002001, 
Metadata from Supp. Table 1 of 
publication    

GW18 Multi-region 
 

   
GW20 Multi-region 

 

   
GW22T Multi-region 

 

adult Jorstad et 
al. 

NA NA Medial temporal 
gyrus 

from collaborators 

organo
id 

Uzquiano 
et al. 

Dataset/Cel
l line 

Mito210c1 (23 days) dorsal patterned 
forebrain 

https://singlecell.broadinstitute.org/single_
cell/study/SCP1756/cortical-organoids-
atlas    

PGP1 (23 days) dorsal patterned 
forebrain 

 

   
dataset 1 (1 month) dorsal patterned 

forebrain 

 

   
dataset 2 (1 month) dorsal patterned 

forebrain 

 

   
dataset 3 (1 month) dorsal patterned 

forebrain 

 

   
dataset 4 (1 month) dorsal patterned 

forebrain 
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Mito210c1 (1.5 months) dorsal patterned 

forebrain 

 

   
PGP1 (1.5 months) dorsal patterned 

forebrain 

 

   
Mito210c1 (2 months) dorsal patterned 

forebrain 

 

   
PGP1 (2 months) dorsal patterned 

forebrain 

 

   
dataset 1 (3 months) dorsal patterned 

forebrain 

 

   
dataset 2 (3 months) dorsal patterned 

forebrain 

 

   
dataset 3 (3 months) dorsal patterned 

forebrain 

 

   
dataset 4 (3 months) dorsal patterned 

forebrain 

 

   
dataset 5 (3 months) dorsal patterned 

forebrain 

 

   
dataset 7 (3 months) dorsal patterned 

forebrain 

 

   
Mito210c1 (4 months) dorsal patterned 

forebrain 

 

   
PGP1 (4 months) dorsal patterned 

forebrain 

 

   
Mito210c1 (5 months) dorsal patterned 

forebrain 

 

   
PGP1 (5 months) dorsal patterned 

forebrain 

 

   
dataset 1 (6 months) dorsal patterned 

forebrain 

 

   
dataset 2 (6 months) dorsal patterned 

forebrain 

 

   
dataset 3 (6 months) dorsal patterned 

forebrain 

 

   
dataset 4 (6 months) dorsal patterned 

forebrain 

 

   
dataset 5 (6 months) dorsal patterned 

forebrain 

 

   
dataset 7 (6 months) dorsal patterned 

forebrain 

 

 
Fiddes et 
al., Field 
et al., 
Sanders 
et al.  

Cell 
line/Age 

GSM2867931 cortical   GEO: GSE106245 

   
GSM2867932 cortical   

 

   
GSM2867933 cortical   

 

   
GSM2867934 cortical   

 

   
GSM2867935 cortical   

 

   
GSM2867936 cortical   

 

   
GSM2867937 cortical   

 

 
Xiang et 
al. 

NA NA thalamus GEO: GSE122342 
 

Khan et 
al. 

Control/Pat
ient 

GSM4306931 cortical GEO: GSE145122 
   

GSM4306932 cortical 
 

   
GSM4306933 cortical 

 

   
GSM4306934 cortical 

 

 
Nayler et 
al. 

Matrigel 
encapsulate
d 

GSM4524697 cerebellum GEO: GSE150153 
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unencapsul
ated 

GSM4524699 cerebellum 
 

 
Fair et al. Age GSM4750931 cerebral GEO: GSE157019 

   
GSM4750932 cerebral 

 

 
Parisian 
et al. 

Control/SM
ARCB1 
knockdown 

GSM4769380 cerebral GEO: GSE157525 

   
GSM4769381 cerebral 

 

   
GSM4769382 cerebral 

 

   
GSM4769383 cerebral 

 

   
GSM4769384 cerebral 

 

   
GSM4769385 cerebral 

 

 
Chen et 
al. 

Control/Ser
um exposed 

GSM4996460 cerebral GEO: GSE164089 
   

GSM4996461 cerebral 
 

   
GSM4996462 cerebral 

 

   
GSM4996463 cerebral 

 

 
Dailamy 
et al. 

Induction/
No 
induction 

GSM5005486 neural_induced_
blood_vessel 

GEO: GSE164268 

   
GSM5005487 neural_induced_

blood_vessel 

 

   
GSM5005488 neural_induced_

blood_vessel 

 

 
Banfi et 
al. 

Control/SE
TBP1 
mutant 

GSM5221533 cerebral GEO: GSE171263 

   
GSM5221534 cerebral 

 

 
Popova et 
al. 

Batch    GSM5478754 cortical GEO: GSE180945 
   

GSM5478755 cortical 
 

   
GSM5478756 cortical 

 

 
Suong et 
al. 

orbital/verti
cal mixing 

GSM5587100 cerebral GEO: GSE184409 
   

GSM5587101 cerebral 
 

   
GSM5587102 cerebral 

 

   
GSM5587103 cerebral 

 

   
GSM5587104 cerebral 

 

   
GSM5587105 cerebral 

 

 
Xiang 
and 
Tanaka et 
al. 

NA NA MGE_and_cortic
al 

GEO: GSE98201 

 
Kronenbe
rg et al. 

NA NA cerebral GEO: GSE113931 
 

Pollen et 
al. 

NA NA cerebral GEO: GSE124299 
 

Velasco et 
al. 

Cell 
line/age 

GSE129519_expression_11
a.6mon.txt 

dorsal patterned 
forebrain 

GEO: GSE129519 
   

GSE129519_expression_H
UES66.3mon.txt 

dorsal patterned 
forebrain 

 

   
GSE129519_expression_PG
P1.3mon.txt 

dorsal patterned 
forebrain 

 

   
GSE129519_expression_PG
P1.6mon.txt 

dorsal patterned 
forebrain 
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GSE129519_expression_G
M.6mon.txt 

dorsal patterned 
forebrain 

 

   
GSE129519_expression_PG
P1.3mon.batch2.txt 

dorsal patterned 
forebrain 

 

   
GSE129519_expression_PG
P1.6mon.batch3.txt 

dorsal patterned 
forebrain 

 

 
Shi et al. NA NA vascularized_cort

ical 
GEO: GSE131094 

 
Qian et 
al. 

NA NA cortical GEO: GSE137941 
 

Eura et al. NA NA brainstem GEO: GSE145306 
 

Huang et 
al. 

Age/Batch GSM4996689 hypothalamic_ar
cuate 

GEO: GSE164102 
   

GSM4996690 hypothalamic_ar
cuate 

 

   
GSM4996691 hypothalamic_ar

cuate 

 

   
GSM4996692 hypothalamic_ar

cuate 

 

   
GSM4996693 hypothalamic_ar

cuate 

 

   
GSM4996694 hypothalamic_ar

cuate 

 

   
GSM4996695 hypothalamic_ar

cuate 

 

   
GSM4996696 hypothalamic_ar

cuate 

 

   
GSM4996697 hypothalamic_ar

cuate 

 

   
GSM4996698 hypothalamic_ar

cuate 

 

   
GSM4996699 hypothalamic_ar

cuate 

 

   
GSM4996700 hypothalamic_ar

cuate 

 

   
GSM4996701 hypothalamic_ar

cuate 

 

 
Fiorenzan
o et al. 

Age GSM5136255 ventral_midbrain GEO: GSE168323 
   

GSM5136256 ventral_midbrain 
 

   
GSM5136257 ventral_midbrain 

 

   
GSM5136258 ventral_midbrain 

 

   
GSM5136259 ventral_midbrain 

 

   
GSM5136260 ventral_midbrain 

 

   
GSM5136261 ventral_midbrain 

 

   
GSM5136262 ventral_midbrain 

 

   
GSM5136263 ventral_midbrain 

 

   
GSM5136264 ventral_midbrain 

 

   
GSM5136265 ventral_midbrain 

 

   
GSM5136266 ventral_midbrain 

 

   
GSM5136267 ventral_midbrain 

 

   
GSM5136268 ventral_midbrain 

 

   
GSM5136269 ventral_midbrain 

 

   
GSM5136270 ventral_midbrain 

 

   
GSM5136271 ventral_midbrain 
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GSM5136272 ventral_midbrain 

 

   
GSM5136273 ventral_midbrain 

 

   
GSM5136274 ventral_midbrain 

 

   
GSM5136275 ventral_midbrain 

 

   
GSM5136276 ventral_midbrain 

 

   
GSM5136277 ventral_midbrain 

 

   
GSM5136278 ventral_midbrain 

 

   
GSM5136279 ventral_midbrain 

 

   
GSM5136280 ventral_midbrain 

 

   
GSM5136281 ventral_midbrain 

 

 
Fernando 
et al. 

NA NA cortical_and_neu
ral_retina 

GEO: GSE174232 
 

Szebényi 
et al. 

Batch GSE180122_C9_batch1_dat
a.csv 

cortical GEO: GSE180122 
   

GSE180122_C9_batch2_dat
a.csv 

cortical 
 

 
Quadrato 
et al. 

Age GSM2295945 cerebral GEO: GSE86153 
   

GSM2295946 cerebral 
 

 
Revah et 
al. 

Age/Transp
lanted 

GSM5732392 cortical   GEO: GSE190815 
   

GSM5732393 cortical   
 

   
GSM5732394 cortical   

 

   
GSM6225773 cortical   

 

   
GSM6225774 cortical   

 

   
GSM6225775 cortical   
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Supplemental Table S4.2 

Class-level grouping of author provided cell-type annotations 

Table containing our mapping between author provided annotations (Author annotations column) and 

our broad cell-type annotations (Class annotations column). 

System Study Author annotations Class 
annotations     

organoid Uzquiano 
et al. 

aRG Neural 
Progenitor   

oRG Neural 
Progenitor   

oRG II Neural 
Progenitor   

Subcortical progenitors Neural 
Progenitor   

IN progenitors Neural 
Progenitor   

IP Intermediate 
Progenitor    
Dividing 
Progenitor   

CFuPN Glutamatergic 
  

CPN Glutamatergic 
  

FOXG1-EMX1-neurons Glutamatergic 
  

Newborn CFuPN Glutamatergic 
  

Newborn CPN Glutamatergic 
  

Newborn DL PN Glutamatergic 
  

Newborn PN Glutamatergic 
  

PN Glutamatergic 
  

Subcortical neuronal precursors Glutamatergic 
  

Subcoritcal neurons Glutamatergic 
  

Preplate/Subplate Glutamatergic 
  

Immature IN GABAergic 
  

Subcortical interneurons GABAergic 
  

Astroglia Non-neuronal 
  

oRG/Astroglia Non-neuronal 
  

Glial precursors Non-neuronal 
  

Mesenchyme Non-neuronal 
  

Unknown other 
  

Cajal Retzius other 
  

Cortical hem other 
  

Neural crest other 
  

Neural placode other 
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Pre-delaminating neural crest other 

annotated 
fetal 

Polioudakis 
et. al. 

vRG Neural 
Progenitor   

oRG Neural 
Progenitor   

OPC Neural 
Progenitor   

IP Intermediate 
Progenitor   

PgG2M Dividing 
Progenitor   

PgS Dividing 
Progenitor   

ExDp1 Glutamatergic 
  

ExDp2 Glutamatergic 
  

ExM Glutamatergic 
  

ExM-U Glutamatergic 
  

ExN Glutamatergic 
  

InMGE GABAergic 
  

InCGE GABAergic 
  

End Non-neuronal 
  

Mic Non-neuronal 
  

Per Non-neuronal 
 

Fan et al. NPC Neural 
Progenitor    
Dividing 
Progenitor   

EX_cor Glutamatergic 
  

IN_cor GABAergic 
  

Endo Non-neuronal 
  

Astro Non-neuronal 
  

Blood Non-neuronal 
  

Immune Non-neuronal 
  

Oligo Non-neuronal 
  

CR other 
  

PONS_neu other 
 

Bhaduri et 
al. 

RG Neural 
Progenitor   

IPC Intermediate 
Progenitor   

Dividing Dividing 
Progenitor   

Neuron Glutamatergic 
  

Interneuron GABAergic 
  

Astrocyte Non-neuronal 
  

Endo Non-neuronal 
  

Microglia Non-neuronal 
  

Vascular Non-neuronal 
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Oligo Non-neuronal 

 
Braun et al. 

 
Dividing 
Progenitor   

RGL | O-HEM Neural 
Progenitor   

RGL | GBL | O-HEM | S-CC Neural 
Progenitor   

RGL | GBL | O-HEM | P-FPL Neural 
Progenitor   

RGL | GBL | O-HEM Neural 
Progenitor   

RGL | GBL | S-CC | S-G1S Neural 
Progenitor   

RGL | GBL | O-HEM | S-CC | S-G1S Neural 
Progenitor   

RGL | GBL | S-CC Neural 
Progenitor   

RGL | GBL Neural 
Progenitor   

RGL | P-FPL Neural 
Progenitor   

RGL Neural 
Progenitor   

RGL | GBL | P-FPL Neural 
Progenitor   

RGL | O-HEM | P-FPL Neural 
Progenitor   

RGL | P-FP1 | P-FPL Neural 
Progenitor   

RGL | P-FP1 Neural 
Progenitor   

RGL | S-CC Neural 
Progenitor   

RGL | S-CC | S-G1S Neural 
Progenitor   

RGL | O-COP | S-CC | S-G1S Neural 
Progenitor   

RGL | O-COP | O-HEM | S-CC | S-G1S Neural 
Progenitor   

RGL | O-HEM | S-CC | S-G1S Neural 
Progenitor   

RGL | M-CHRP | O-HEM Neural 
Progenitor   

NBL | NEUR | RGL | S-CC | S-G1S Neural 
Progenitor   

NEUR | RGL | S-CC | S-G1S Neural 
Progenitor   

NBL | RGL Neural 
Progenitor   

RGL | M-PER | S-CC | S-G1S Neural 
Progenitor   

RGL | M-PER Neural 
Progenitor   

RGL | P-TEL | S-CC Neural 
Progenitor   

RGL | P-PALL-M | P-PALL | P-TEL | S-CC | S-G1S Neural 
Progenitor   

RGL | GBL | P-PALL | P-TEL | S-CC | S-G1S Neural 
Progenitor   

RGL | P-PALL | P-TEL | S-CC | S-G1S Neural 
Progenitor   

RGL | P-PALL | P-TEL Neural 
Progenitor   

RGL | GBL | P-PALL-M | P-PALL | P-TEL | S-CC | S-G1S Neural 
Progenitor   

NBL | RGL | S-CC Neural 
Progenitor 
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NBL | RGL | P-PALL-M | P-PALL Neural 

Progenitor   
NBL | RGL | P-PALL-M | P-PALL | P-TEL Neural 

Progenitor   
NBL | S-CC | S-G1S Intermediate 

Progenitor   
NBL | NEUR | S-CC | S-G2M Intermediate 

Progenitor   
NBL | NEUR | S-CC | S-G1S Intermediate 

Progenitor   
NBL | NEUR | NT-GABA | S-CC | S-G1S Intermediate 

Progenitor   
S-CC | S-G1S | S-G2M Intermediate 

Progenitor   
NBL | NEUR | M-PER | S-CC | S-G2M Intermediate 

Progenitor   
NEUR | NT-GABA | P-VLGE | P-SUBPALL | P-TEL | S-CC | 
S-G2M 

Intermediate 
Progenitor   

NT-GABA | P-VLGE | P-SUBPALL | P-TEL | S-CC | S-G2M Intermediate 
Progenitor   

NEUR | NT-GABA | P-VLGE | P-SUBPALL | P-TEL | S-CC | 
S-G1S 

Intermediate 
Progenitor   

NEUR | NT-GABA | P-DLGE | P-SUBPALL | P-TEL | S-CC | 
S-G2M 

Intermediate 
Progenitor   

NEUR | NT-GABA | P-DLGE | P-SUBPALL | P-TEL | S-CC | 
S-G1S 

Intermediate 
Progenitor   

NEUR | NT-GABA | P-DLGE | P-SUBPALL | P-TEL Intermediate 
Progenitor   

NBL | NEUR | S-CC | S-G1S | S-G2M Intermediate 
Progenitor   

NBL | NEUR | S-CC Intermediate 
Progenitor   

NBL Intermediate 
Progenitor   

NBL | NEUR | NT-VGLUT2 | P-PALL | P-TEL Intermediate 
Progenitor   

NBL | NEUR | P-PALL-M | P-PALL | P-TEL | S-CC | S-G1S | 
S-G2M 

Intermediate 
Progenitor   

NBL | P-PALL-M | P-PALL | P-TEL Intermediate 
Progenitor   

NBL | P-PALL | P-TEL | S-CC | S-G1S Intermediate 
Progenitor   

NBL | NEUR | P-PALL | P-TEL | S-CC | S-G1S | S-G2M Intermediate 
Progenitor   

NBL | NEUR | NT-VGLUT2 | P-PALL | P-TEL | S-CC | S-
G2M 

Intermediate 
Progenitor   

TH-RETN | NEUR | NT-GABA | P-DLGE | P-SUBPALL | P-
TEL | S-CC | S-G2M 

Intermediate 
Progenitor   

TH-RETN | NEUR | RGL | NT-GABA | P-DLGE | P-
SUBPALL | P-TEL | S-CC | S-G1S 

Intermediate 
Progenitor   

NBL | NEUR | M-PER Intermediate 
Progenitor   

NBL | NEUR Intermediate 
Progenitor   

NEUR | S-CC | S-G1S | S-G2M Intermediate 
Progenitor   

RGL | GBL | P-TEL Glutamatergic 
  

RGL | GBL | NT-VGLUT3 Glutamatergic 
  

RGL | GBL | M-CHRP | O-HEM | P-PALL-M | P-PALL Glutamatergic 
  

RGL | O-HEM | P-PALL-M | P-PALL | S-CC | S-G1S Glutamatergic 
  

RGL | O-COP | P-TEL | S-CC | S-G1S Glutamatergic 
  

RGL | GBL | O-HEM | P-PALL-M | P-PALL Glutamatergic 
  

RGL | P-PALL-M | P-PALL | S-CC | S-G1S Glutamatergic 
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RGL | P-TEL | S-CC | S-G1S Glutamatergic 

  
RGL | NT-VGLUT3 | S-CC Glutamatergic 

  
NBL | NEUR | NP-TRH | NT-VGLUT2 | P-PALL-M | P-PALL 
| S-CC 

Glutamatergic 
  

NBL | NEUR | NT-VGLUT2 | P-PALL-M | P-PALL | P-TEL Glutamatergic 
  

NBL | NEUR | NT-VGLUT1 | NT-VGLUT2 | P-PALL | P-TEL Glutamatergic 
  

NEUR | NT-VGLUT1 | NT-VGLUT2 | P-PALL | P-TEL Glutamatergic 
  

NEUR | NT-VGLUT1 | P-PALL | P-TEL Glutamatergic 
  

NBL | NEUR | RGL | NT-VGLUT1 | NT-VGLUT2 | P-PALL-
M | P-PALL | P-TEL | S-CC | S-G1S 

Glutamatergic 
  

NBL | NEUR | NT-VGLUT1 | NT-VGLUT2 | P-PALL-M | P-
PALL | P-TEL 

Glutamatergic 
  

NBL | NEUR | NT-VGLUT1 | P-PALL | P-TEL Glutamatergic 
  

NEUR | NT-VGLUT2 Glutamatergic 
  

NBL | NEUR | NT-VGLUT2 Glutamatergic 
  

NEUR | NP-TRH | NT-VGLUT2 Glutamatergic 
  

NEUR | RGL | NP-TRH | NT-VGLUT2 Glutamatergic 
  

NEUR | NT-SER | NT-VGLUT3 Glutamatergic 
  

NEUR | NT-VGLUT3 Glutamatergic 
  

NEUR | NT-VGLUT2 | NT-VGLUT3 Glutamatergic 
  

NBL | NEUR | NP-TRH | NT-VGLUT2 | P-TEL Glutamatergic 
  

NBL | NEUR | NP-TRH | NT-VGLUT2 | P-PALL-M | P-PALL Glutamatergic 
  

NBL | NEUR | NP-TRH | NT-VGLUT2 | O-HEM | P-PALL-M 
| P-PALL 

Glutamatergic 
  

NEUR | NT-VGLUT2 | P-TEL Glutamatergic 
  

NEUR | NP-TRH | NT-VGLUT2 | P-TEL Glutamatergic 
  

NBL | NEUR | NT-VGLUT2 | P-TEL Glutamatergic 
  

NBL | NEUR | NP-AVP | NP-POMC | NP-TRH | NT-
VGLUT2 | P-TEL 

Glutamatergic 
  

NEUR | NP-POMC | NT-VGLUT2 Glutamatergic 
  

NEUR | NP-HCRT | NT-VGLUT3 Glutamatergic 
  

NBL | NEUR | M-PER | NT-VGLUT2 Glutamatergic 
  

NBL | NEUR | M-PER | NP-TRH | NT-VGLUT2 Glutamatergic 
  

NBL | NEUR | M-PER | NP-HCRT | NT-VGLUT2 Glutamatergic 
  

NBL | NEUR | NP-HCRT | NT-VGLUT2 Glutamatergic 
  

NBL | NEUR | NP-TRH | NT-VGLUT2 Glutamatergic 
  

HB-OTV | NBL | NEUR | NT-VGLUT1 | NT-VGLUT2 Glutamatergic 
  

HB-OTV | NBL | NEUR | GBL | NT-VGLUT1 Glutamatergic 
  

HB-OTV | NBL | NEUR | NT-VGLUT2 | P-TEL Glutamatergic 
  

HB-OTV | NBL | NEUR | NT-VGLUT1 | NT-VGLUT2 | P-
TEL 

Glutamatergic 
  

HB-OTV | NEUR | RGL | NT-VGLUT1 | NT-VGLUT2 | P-
TEL 

Glutamatergic 
  

HB-OTV | NBL | NEUR | NP-POMC | NT-VGLUT1 | NT-
VGLUT2 

Glutamatergic 
  

NBL | NEUR | NP-TRH | NT-VGLUT1 | NT-VGLUT2 Glutamatergic 
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NEUR | RGL | NT-GABA | O-HEM | P-DLGE | P-PALL-M | 
P-PALL | P-SUBPALL | P-TEL | S-CC | S-G1S 

GABAergic 
  

NBL | NEUR | NT-GABA GABAergic 
  

RGL | P-DLGE | P-PALL-M | P-PALL | P-SUBPALL | P-TEL 
| S-CC | S-G1S 

GABAergic 
  

RGL | GBL | P-DLGE | P-SUBPALL | P-TEL | S-CC | S-G1S GABAergic 
  

RGL | NT-GABA | P-PALL | P-TEL | S-CC | S-G1S GABAergic 
  

RGL | GBL | P-VLGE | P-SUBPALL | P-TEL | S-CC | S-G1S GABAergic 
  

RGL | GBL | NT-GABA | P-DLGE | P-SUBPALL | P-TEL | S-
CC | S-G1S 

GABAergic 
  

NEUR | NT-GABA | P-VLGE | P-SUBPALL | P-TEL GABAergic 
  

NT-GABA | P-SUBPALL | P-TEL | S-CC GABAergic 
  

TH-RETN | P-VLGE | P-SUBPALL | P-TEL GABAergic 
  

TH-RETN | NEUR | NT-GABA | P-VLGE | P-SUBPALL | P-
TEL 

GABAergic 
  

TH-RETN | NEUR | NT-GABA | P-DLGE GABAergic 
  

NEUR | NT-GABA GABAergic 
  

TH-RETN | NEUR | NT-GABA | P-VLGE GABAergic 
  

TH-RETN | NEUR | NT-GABA GABAergic 
  

NEUR | NT-GABA | P-TEL GABAergic 
  

NEUR | NT-GABA | P-SUBPALL | P-TEL GABAergic 
  

TH-RETN | NEUR | NT-GABA | P-DLGE | P-SUBPALL | P-
TEL 

GABAergic 
  

NEUR | NP-GNRH | NT-GABA | P-TEL GABAergic 
  

NEUR | NP-GNRH | NT-GABA | P-DLGE | P-SUBPALL | P-
TEL 

GABAergic 
  

TH-RETN | NEUR | NP-GNRH | NT-GABA | P-VLGE | P-
SUBPALL | P-TEL 

GABAergic 
  

NEUR | NP-TRH | NT-GABA GABAergic 
  

NEUR | NT-GABA | P-PALL GABAergic 
  

NEUR | NT-GABA | P-DLGE GABAergic 
  

NEUR | NT-GABA | P-VLGE GABAergic 
  

TH-RETN | NEUR | NP-GNRH | NT-GABA | P-DLGE | P-
SUBPALL | P-TEL 

GABAergic 
  

NEUR | NP-GNRH | NT-GABA | P-VLGE | P-SUBPALL | P-
TEL 

GABAergic 
  

NEUR | M-PER | NP-POMC | NT-GABA GABAergic 
  

NEUR | M-PER | NT-GABA | P-VLGE GABAergic 
  

NEUR | M-PER | NT-GABA GABAergic 
  

NBL | NEUR | M-PER | NT-GABA GABAergic 
  

RGL | M-CHRP | M-PER | O-HEM | S-CC | S-G1S Non-neuronal 
  

M-ERY Non-neuronal 
  

M-ERY | NP-POMC | S-CC Non-neuronal 
  

M-IMMUNE | M-MGL | M-PVM | S-CC Non-neuronal 
  

M-IMMUNE | M-MGL | M-PVM Non-neuronal 
  

RGL | M-IMMUNE | M-MGL | M-PVM | NP-POMC | S-CC Non-neuronal 
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M-IMMUNE | M-MGL Non-neuronal 

  
M-IMMUNE Non-neuronal 

  
RGL | M-PER | M-ENDO | NP-TRH Non-neuronal 

  
RGL | M-ENDO Non-neuronal 

  
RGL | M-PER | M-ENDO | NP-TRH | S-CC Non-neuronal 

  
RGL | M-ENDO | NP-TRH Non-neuronal 

  
RGL | M-PER | M-FBL Non-neuronal 

  
RGL | M-PER | M-FBL | M-VSMC Non-neuronal 

  
RGL | M-MGL | M-PER | M-FBL | S-CC | S-G1S Non-neuronal 

  
RGL | M-PER | M-FBL | NP-POMC | P-FP1 | S-CC | S-G1S Non-neuronal 

  
RGL | M-FBL | P-VLGE | S-CC | S-G1S Non-neuronal 

  
RGL | M-PER | M-FBL | P-VLGE | S-CC | S-G1S Non-neuronal 

  
RGL | M-FBL | S-CC | S-G1S Non-neuronal 

  
RGL | M-FBL | NP-POMC | S-CC | S-G1S Non-neuronal 

  
RGL | M-PER | M-FBL | NP-POMC | S-CC Non-neuronal 

  
RGL | M-PER | M-FBL | NP-POMC | P-FP1 | S-CC Non-neuronal 

  
RGL | M-PER | M-FBL | S-CC Non-neuronal 

  
RGL | M-FBL | NP-TRH Non-neuronal 

  
RGL | M-FBL | P-FP1 Non-neuronal 

  
RGL | M-PER | M-FBL | NP-POMC | P-VLGE | S-CC | S-
G1S 

Non-neuronal 
  

E-SCHWL | RGL | NP-POMC | P-VLGE | S-CC | S-G1S Non-neuronal 
  

E-SCHWL | RGL | M-FBL Non-neuronal 
  

NEUR | OPC Non-neuronal 
  

OPC Non-neuronal 
  

RGL | OPC Non-neuronal 
  

NEUR | RGL | OPC Non-neuronal 
  

RGL | OPC | P-TEL Non-neuronal 
  

NBL | NEUR | RGL | GBL | S-CC | S-G1S other 
  

NBL | RGL | S-CC | S-G1S other 
  

RGL | GBL | P-TEL | S-CC | S-G1S other 
   

other 
  

NBL | NEUR | NT-VGLUT1 | NT-VGLUT2 | NT-GABA | P-
PALL | P-VLGE | P-SUBPALL | P-TEL 

other 
  

TH-RETN | NEUR | NT-VGLUT2 | NT-GABA | P-DLGE | P-
SUBPALL | P-TEL 

other 
  

NEUR other 
  

HB-OTV | NEUR other 
  

NEUR | NT-SER other 
  

NEUR | NT-GLY other 
  

NBL | NEUR | NT-GLY other 
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NEUR | NT-VGLUT3 | NT-GABA | P-FP1 other 

  
NBL | NEUR | M-PER | NT-GLY other 

  
HB-OTV | NBL | P-TEL | S-CC other 

  
NBL | NEUR | NP-TRH other 
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