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“Those who are clever, who have a Brain, never understand anything.”

Winnie the Pooh
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Chapter 1

Introduction: Brain States, an

Overview

What different states do we embody throughout the day? Most obviously,

we spend part of the day asleep and another larger, part of the day, awake. Going

deeper, different states of sleep may depend on if we are dreaming or not and

different states of wake may depend on our arousal, attentiveness to surrounding

stimuli, and task at hand. These behavioral states all have bases in the brain – they

are controlled by several neuromodulators and expressed through different activity

patterns in the brain, creating differing modes of operation known as brain states

(Vyazovskiy et al., 2009; McNamara, 2019; Mircea M. Steriade and McCarley,

2013).

This chapter establishes a background of sleep and brain states. The chapter

begins by defining brain states and (Chapter 1.1) and establishing their importance

(Chapter 1.2). Then we discuss deviations from these classical brain states and lim-

itations of existing methods of sleep classification (Chapter 1.3). This introduction

contextualizes the work presented in this thesis, including the scientific questions

explored and quantitative methods developed to answer those questions.
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1.1 What is a brain state?

This thesis focuses mainly on the broad brain states of sleep and wake,

which are usually split up into three basic states, Slow-Wave Sleep (SWS), Rapid-

Eye Movement Sleep (REM), and wake, which are characterized by a combination

of psychological, physiological and neural activity features (Fig. 1.1) (Scammell,

Arrigoni, and Lipton, 2017). This neural activity is traditionally measured through

Local Field Potential (LFP) or electroencephalogram (EEG), and is usually paired

by a measure of intrinsic muscle activity (muscle tone) through electromyography

(EMG) (McNamara, 2019; Hernan et al., 2017). SWS, which is also known as non-

REM (NREM), is characterized by unconsciousness and slow-wave oscillations

(1-4 Hz) in neural activity recordings, paired with low muscle tone. REM, on the

other hand, is marked by the presence of rapid-eye movements, vivid dreams, and

theta oscillations (4-8 Hz) in neural activity, along with muscle atonia (McNamara,

2019; Hernan et al., 2017). Wake is characterized by fast oscillations ( > 13 Hz),

and an alert, attentive state, and an increase in muscle tone (Poulet and Crochet,

2019; McNamara, 2019; Hernan et al., 2017).

Several neuromodulators regulate the activation and inactivation of these

different brain states. Norepinephrine, histamine, and serotonin have all been im-

plicated in controlling wakefulness. Serotonin may also play a role in the ratio of

REM to SWS sleep. Acetylcholine is responsible for desynchronization of neu-

ron populations and an increase in acetylcholine corresponds to a decrease in slow

wave rhythm (McNamara, 2019; Mircea M. Steriade and McCarley, 2013).

The daily cycling between these different states is known as the circadian

rhythm. Humans are typically awake for the light period of the day, and then

transition to sleep, aided by melatonin, for the dark period. During sleep, humans
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progress through cycles of SWS and REM every ninety minutes, beginning with

SWS. It is most common to wake after a REM period, although it is possible to

wake from any sleep stage (McNamara, 2019).

There are several interesting deviations of sleep rhythms across species. In

all primates, including humans, sleep is consolidated into one single, long bout

during the dark phase of the day. Smaller non-primate mammals, such as the mice

and rats, instead sleep periodically; this is likely due to their vulnerability as prey.

One of the most interesting deviations in sleep cycles is the adaption of unilateral

or uni-hemispheric sleep in avian animals and cetaceans. These animals are able

to allow one side of the body to enter SWS while keeping the other side active.

This adaption may be evolutionarily advantageous for acts such as swimming and

flying (McNamara, 2019). Understanding the commonalities and differences in

expression of sleep and brain states across species can further understanding of the

usefulness of these states and their deviations.

1.2 Why are different brain states important?

Sleep deprivation can severely impair cognitive function, starting with mem-

ory loss, reduced clarity of thought, and emotional dysregulation. Long periods

without sleep can even lead to visual hallucinations, delusions, and eventually

death (McNamara, 2019). Knowing the dangerous effects of sleep deprivation,

one might ask: Why is sleep so important and why can’t humans live without it?

Why do we have different brain states?

Sleep serves several critical roles in maintaining human health and brain

function. First, during sleep, the body performs a variety of important metabolic,

energy, and immune related functions (McNamara, 2019). Different stages of sleep
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also play different roles in learning and memory. SWS is important for the consol-

idation of short-term memories into long-term storage; subsequently, REM plays

a role in stabilizing these memories through a process called synaptic consolida-

tion (Diekelmann and Born, 2010). Additionally, ongoing variations in brain state

during wake can affect sensory responses and behavior (Harris and Thiele, 2011;

McGinley et al., 2015; Hulsey et al., 2023; Engel et al., 2016). As a result, sleep

disorders and impairment, such as insomnia, sleep apnea or narcolepsy, can have a

profound and debilitating impact on one’s life.

1.3 Classification of brain states

Brain states are traditionally classified from EEG or LFP recordings of

brain activity, sometimes paired with EMG activity. First, raw signal is transformed

to the frequency domain through Fourier transform or wavelet analysis. This fre-

quency information is often sorted into bands, delta (1-4 Hz), theta (4-8 Hz),

beta(13-29 Hz), and gamma (30-80 Hz) (Fig. 1.2A) (Hernan et al., 2017). Dif-

ferent states are then classified by the combination of power from different bands,

often visualized through the power spectral density (PSD) (Fig. 1.2B)(Hernan et

al., 2017; Watson et al., 2016). This basic method of classification involves human-

expert visual labeling of each window of time (often 5 or 30 s). This requires ex-

pert knowledge of raw LFP/EEG data and PSD shapes (Alsolai et al., 2022). This

can become intractable for large recordings over multiple days for many subjects,

which motivates the need for automated methods of brain state labelling.
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1.4 Deviations from traditional brain state definitions

and limitations

The three canonical brain states of SWS, REM, and wake are generally

thought to be (1) discrete, (2) temporally persistent, and (3) spatially uniform

across the cortex. However, each component of this conceptual model has been

challenged by experimental evidence. First, within each canonical state, the pat-

terns of neural activity vary continuously and exhibit signatures of distinct sub-

states, such as quiet wake (QW) and active exploration (AE) substates of the wake

state (Gervasoni et al., 2004; Poulet and Crochet, 2019) or light and deep substates

of SWS (McNamara, 2019) (Fig. 1.3B, D) . These variations in neural activity

within a state may be better captured not as discrete substates but as a continuum,

which also describes transitions between states (Fig. 1.3C) (Gervasoni et al., 2004;

Harris and Thiele, 2011). Second, the temporal persistence of states is often inter-

rupted by microstates, which include short periods of wake-like activity in sleep

(micro-arousal) and vice versa (micro-sleep), and can occur regularly as well as

modulate behavior (Fig. 1.4) (Soltani et al., 2019; Watson et al., 2016). Third,

these states may not be global and uniform across the cortex; instead some cortical

areas may exhibit signatures of a different state of sleep or wake than others at the

same time (Gervasoni et al., 2004; Funk et al., 2016; Vyazovskiy et al., 2011; Nir

et al., 2011; Bernardi et al., 2019), suggesting the existence of local brain states or

heterogeneity in the expression of brain states across areas (Fig. 1.5) . These ob-

servations altogether indicate that the canonical model of brain states is incomplete.

However, no alternative framework exists to comprehensively and systematically

quantify the spatiotemporal dynamics of global brain state. Developing such a

conceptual framework requires large-scale recordings from multiple brain regions

simultaneously during the natural variation of sleep and wake states, along with
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analytical tools to quantify the expression and propagation of brain states across

regions.

Extracting a quantitative description of brain-state dynamics from large-

scale, multi-day neural recordings data is an open challenge. Traditionally, this

classification of brain states into canonical REM, SWS, and wake from short seg-

ments of EMG and EEG/LFP data, known as sleep scoring, has been achieved

through expert hand-labeling from the amplitude of neural oscillations of various

frequencies. Hand-picked thresholds for combinations of these amplitudes are then

used to classify states (Alsolai et al., 2022). These methods require expert intu-

ition and are not robust to potential differences in state expression across subjects

or brain regions. As a consequence, there is only an 63-90% consensus in ex-

pert labels of brain states (Alsolai et al., 2022). Moreover, manual adjustment of

thresholds for different subjects and brain areas is laborious and does not scale

to multi-day recordings from many subjects and multiple brain regions. To ease

these issues, several supervised deep learning methods were developed to automat-

ically classify brain states (Chambon et al., 2018; Gunnarsdottir et al., 2020; Prab-

hudesai, Collins, and Mainsah, 2019; Caldart et al., 2020; Allocca et al., 2019).

However, these methods still treat expert-labels as ground truth for training, even

though expert-labels are subject to inter-rater variability and constrained to three

basic states (Fiorillo et al., 2019; Koch, Jennum, and Christensen, 2019). In ad-

dition, supervised learning models are trained to predict state labels from only a

specific set of data, and are prone to fail when presented with data of a differing

quality or with distributional shift (Barger et al., 2019). This can lead to a lack

of consistency across models and problems in generalizing to recordings from dif-

ferent subjects, brain areas, or disease states (Fiorillo et al., 2019; Alsolai et al.,

2022). Thus, supervised methods are unsuitable to elucidate deviations from the

three canonical brain states.
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In contrast, unsupervised learning methods do not rely on training labels

but instead learn from inherent properties of the data such as statistical structure.

Therefore, they are not constrained by existing expert-labels of three canonical

brain states and can account for continuous variation in neural activity necessary

to capture substates and transition states and have the flexibility to describe hetero-

geneity in expression of states across regions. In particular, unsupervised dimen-

sionality reduction methods, such as variational autoencoders (VAEs) (Kingma and

Welling, 2014) have been used extensively to analyze high-dimensional biological

data (Luxem et al., 2022; Sussillo et al., 2016; Higgins et al., 2021; Wehmeyer

and Noé, 2018) and can produce interpretable low-dimensional representations of

high-dimensional data (Khemakhem et al., 2020b). Thus the VAE can be used to

characterize a continuous low-dimensional representation—a manifold—of brain

states.

In Chapter 2, we will introduce the VAE as a dimensionality technique and

in Chapter 3, we will discuss the challenges produced in validation of VAEs and the

solutions we developed. Finally in Chapter 4, we will use our developed method

to investigate the questions we have posed around brain state characterization.
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FIGURE 1.1: a, Over the night, a typical young adult rapidly en-
ters deep NREM sleep (N3) and then cycles between NREM and
REM sleep about every 90 min. As homeostatic sleep pressure
dissipates across the night, NREM sleep become lighter and REM
sleep episodes become longer. b, Features of wake, NREM sleep,
and REM sleep. Figure from Scammell, Arrigoni, and Lipton, 2017.
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FIGURE 1.2: Oscillations in the thalamocortical system. a, Fre-
quency band of oscillations recorded in the thalamocortical system.
From: Bazhenov and Timofeev b, Above, a segment of local field
potential recorded during slow-wave sleep in a cat’s associative cor-
tex; below, fast Fourier transformation of the signal shown above.

Figure from Hernan et al., 2017.
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FIGURE 1.3: Global brain states and two-dimensional state
space. a, Scatter plot of the two chosen LFP spectral amplitude
ratios, in which four distinct clusters are clearly visible. Each dot
corresponds to a 1 sec window for which the amplitude ratios were
calculated (48 hr recording, rat 1; for clarity, only one-third of data
points, evenly sampled, were plotted). b, When color coded ac-
cording to the behavioral states visually identified, each cluster in
the plot corresponds to a distinct state. c, The amplitude of cortical
LFPs in the delta frequency range (1-4 Hz) is color coded. A fine
distinction can be made between light SWS (high spindle density)
and deep SWS (mostly composed of delta waves). d Transitions
between states can be defined as specific trajectories connecting
different clusters, with characteristic duration and speed. Typical
trajectories are illustrated. Transitions from SWS to REM always
course through the IS region. Trajectories also define the polarity
of the different clusters. Entrance to and exit from the SWS cluster
always occur on one end of the elongated SWS cluster. Figure from

Gervasoni et al., 2004.
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FIGURE 1.4: Microarousal example a, Time-power analysis of
cortical local field potentials (LFPs). Time-resolved fast Fourier
transform-based power spectrum of the LFP recorded from one
site of a 64-site silicon probe in layer 5 of the orbitofrontal cor-
tex. Epochs generated by manually approved automatic brain state
segregation are shown above the spectrum. b, Metrics extracted
for state classification. The first principal component (PC1) of the
LFP spectrogram segregated nonREM packets from “other” epochs.
Non-nonREM epochs with high theta power and low electromyo-
gram (EMG) activity were designated as REM. Remaining epochs
were termed either as WAKE (>40 s) or microarousal. Alternating
epochs of nonREM packets and MAs comprise nonREM episodes.
Integrated power in the delta (0.5–4 Hz), sigma (9–25 Hz) and
gamma (40–100 Hz) bands over time is also shown. Figure from

Watson et al., 2016.
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FIGURE 1.5: Area-specific distribution of electrographic brain
states. a, A segment of 14 LFP channels and muscle (gray) record-
ings during SWS, REM sleep, and again SWS. Signals from elec-
trodes are color coded and the location of electrodes is indicated in
the inserted drawing. b, A short segment that was overall qualified
as REM sleep, but two fronto-laterally located electrodes show clear

slow-wave activity. Figure from Soltani et al., 2019
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Chapter 2

Unsupervised Learning, Variational

Autoencoders and Variations

As noted in Chapter 1, we turn to unsupervised learning methods, methods

that do not rely on ground-truth labels, to analyze brain state data. In this chapter,

we discuss the use of unsupervised learning techniques in characterizing biological

data before defining the models we build on. This chapter serves as a technical

introduction.

2.1 Unsupervised characterization of biological data

Supervised learning requires training a model to predict provided ground-

truth labels. However, these methods are unsuitable when ground-truth labels are

unknown, difficult to obtain, or unreliable. In these instances, unsupervised learn-

ing is useful as it does not rely on training labels but instead learns from inherent

properties of the data such as statistical structure. In this section, we will discuss

two types of unsupervised learning: dimensionality reduction and clustering.
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2.1.1 Dimensionality reduction

Dimensionality reduction is a technique used to transform high-dimensional

data to a low-dimensional representation. Intuitively, a large number (D) of vari-

ables is measured, but some of these variables may be correlated, so the data itself

can be summarized by a smaller number of variables (K) (Cunningham and Yu,

2014). This would be useful in instances when some biological process exists on

a low-dimensional manifold (a mathematical surface) but is measured by scientists

in a high-dimensional manner. Dimensionality reduction allows one to recover and

visualize the shape of that manifold. One example of high-dimensional data in

neuroscience is the combination of activity of neurons in the brain, where each di-

mension corresponds to the activity of one neuron and each data point corresponds

to a window of time. However, the activity of these neurons may be generated by

some low-dimensional latent process that controls firing rate(Cunningham and Yu,

2014; Musall et al., 2019; Mante et al., 2013; Churchland et al., 2012; Gervasoni

et al., 2004). In addition, visualizing the data in a lower-dimensional space may

allow for easier correlation to some behavioral output, such as performance in a

task (Cunningham and Yu, 2014; Musall et al., 2019; Churchland et al., 2012.

The lower-dimensional representation importantly must preserve relation-

ships between data-points. The types of relationships that are preserved depends

on the specific dimensionality reduction technique that is employed. The simplest

method is Principal Components Analysis (PCA), which finds a linear combination

of the high-dimensional features to define the low-dimensional representations.

Other more sophisticated techniques, such as Uniform Manifold Approximation

and Projection (UMAP) (McInnes, Healy, and Melville, 2020) or t-Distributed

Stochastic Neighbor Embedding (t-SNE) Maaten and Hinton, 2008), allow for
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non-linear combinations of variables and seek to preserve various types of dis-

tance between points. However, each of these methods has its own pitfalls. Linear

methods may not be powerful enough to separate points. Nonlinear methods can

be highly sensitive to noise, and the results may vary heavily depending on hy-

perparameters or initial conditions. If such a technique artificially separates points

without a true basis in features of the data, it would be difficult to trust the resulting

low-dimensional representation for future interpretation and analysis (Cunningham

and Yu, 2014). This issue we will be discussed further in Chapter 3.

2.1.2 Clustering Techniques

While the goal of dimensionality reduction is often to simply visualize

high-dimensional data in a lower-dimensional setting, one might also want to ac-

tually assign labels to each data-point. This can also be done in an unsupervised

manner through clustering. The process of clustering generally involves defining

clusters of points depending on their similarity to each other, although there are

many different types of clustering techniques. While it is possible to apply clus-

tering techniques to high-dimensional data, they are generally more effective on

low-dimensional data. In this section, we will discuss two clustering techniques,

Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs).

GMMs seek to define the distribution of data points provided as a mixture

of Gaussian distributions. These distributions can then be treated as clusters, and

if a data point is most probable to fall into a particular distribution, it is labeled as

part of that cluster. These distributions are very flexible, and can be constrained

or unconstrained to have different covariance structures. However, this great flexi-

bility can make it difficult to train the GMM; thus, initialization conditions can be

very important.
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Hidden Markov Models (HMMs) are useful for defining clusters from time-

series data. Markov chains are defined by transition probabilities between a set

of discrete states, and these probabilities are only influenced by the current state,

not any previous state. HMMs allow each of these states in the Markov chain to

be measured through noisy emissions, thus making these states “hidden”. Thus,

a HMM is defined by a set of states, transition probabilities between states, and

emission distributions for each state. Training an HMM on time-series data in-

volves finding the set of states, transition probabilities, and emission distributions

that most probably generated the observed data. Then each data-point can also be

assigned to its most probable state, known as “decoding” states.

Validating a clustering algorithm and choosing the appropriate number of

clusters can be a difficult task. This is often done through cross validation, where

one holds out a proportion of the data as a validation set, and trains several models

from different training and validation set splits. Then, certain metrics are calculated

on the validation set and the model with best performance based on the desired met-

ric is chosen. The choice of a suitable metric can be difficult. In the case of GMMs

and HMMs, which are both probabilistic models, one can use the log likelihood

of the data under the model, which can be thought of as a measure of the prob-

ability the data presented was generated by the model. Often, the log likelihood

increases monotonically with the number of clusters, so it is impossible to choose

the number of clusters based on highest log likelihood. Instead, scientists often

use the “elbow method”, a heuristic method that chooses the number of clusters

based on the percent increase of log likelihood instead. When the log likelihood is

plotted against the number of clusters there is often a sharp increase at first before

the likelihood begins to plateau, and the number of clusters corresponding to the

“elbow” is selected.
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2.2 Variational Autoencoder Definition

One powerful method of dimensionality reduction is the variational autoen-

coder (VAE). The VAE was introduced in 2014 (Kingma and Welling, 2014) as a

solution to a problem in Bayesian statistics of inference of continuous latent vari-

ables. Since, the VAE and its variants, has been used in a plethora of applications

including dimensionality reduction.

The VAE can be thought of as parameterizing a generator of high-dimensional

variables from continuous latent variables of a lower dimension. In particular, we

assume that high-dimensional variables x are generated by some random process

from a latent variable z drawn from prior distribution p(z) (Fig. 2.1). The goal

is to understand the parameters that generate z and x (θ), but doing so directly

is intractable; so we estimate the true posterior (p(z|x)) with q(z|x) and aim to

maximize the Evidence Lower Bound (ELBO):

L(θ, ψ;x(i)) = Eqψ(z|x(i))[log pθ(x
(i)|z)]−DKL(qψ(z|x(i))||pθ(z)) (2.1)

The full derivation for the variational lower bound from Kingma and Welling,

2014; Kingma and Welling, 2019 is presented in Appendix B.

The above definition can be thought of as the Bayesian perspective of the

VAE. However, another, perhaps more intuitive, perspective is the neural network

perspective (Fig. 2.2). In this perspective, we can relate the terms from the above

VLB to an encoder (q(z|x)) and a decoder (p(x|z)). Thus the first term of the

VLB can be thought of the reconstruction loss of x and x̂ produced by the decoder.
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Then, the bottleneck of the autoencoder (z), is the the output of the dimension-

ality reduction achieved by training the VAE, also known as the latent represen-

tation. However, the encoder produces a distribution of z defined by a mean (µ)

and variance(σ), and this distribution is sampled before being passed to the de-

coder, thus making the autoencoder variational. The second term of the VLB is the

Kullback-Leibler (KL) divergence between that distribution and a p(z) (which is

often a normal distribution), and this acts as a regularizer that prevents overfitting.

2.3 β-VAE

The β-VAE (Higgins et al., 2017) is a popular variation of the original VAE.

This variation simply introduces a single hyperparameter beta that weights the KL

divergence of the VLB term. Thus, the VLB becomes:

L(θ, ψ;x(i)) = Eqψ(z|x(i))[log pθ(x
(i)|z)]− βDKL(qψ(z|x(i))||pθ(z)) (2.2)

In Higgins et al., 2017 they motivate that the flexibility afforded by the inclusion

of the β term encourages disentanglement. Disentanglement is the idea that la-

tent variables inferred from the VAE should be disentangled to single, independent

generative factors that represent some true components of the data (Higgins et al.,

2017; Khemakhem et al., 2020a). VAEs are good candidates for disentanglement,

and Higgins et al., 2017 argue that setting β > 1 encourages disentanglement be-

cause the model is pushed to learn a more efficient latent representation. However,

others have posited that true disentanglement can only be achieved with some level

of supervision or strong inductive biases on the models and data (Khemakhem et

al., 2020a; Mita, Filippone, and Michiardi, 2021). The focus on disentanglement

has interesting and important implications for achieving latent representations of

the model that are interpretable. In chapter 3, we will discuss our results exploring
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how VAEs and β-VAE are insufficient in producing interpretable latent representa-

tions for neural data and our solution.

2.4 VAEs in neuroscience

One central goal in neuroscience is to discover underlying latent dynamics

that govern observable outputs, such as spikes, behavior, or brain states (Cunning-

ham and Yu, 2014). This latent to observable can be modeled as a VAE generative

process, and many have leveraged VAEs to uncover these underlying dynamics.

One such example, latent factor analysis via dynamical systems (LFADS) posits

that neural spikes arise from a number of low-dimensional latent factors, and uses

RNN-based sequential autoencoder to uncover these factors (Fig. 2.3) (Pandari-

nath et al., 2018). They and others argue that identifying these underlying latent

factors will allow us to make sense of large amounts of neural activity data and re-

late these interpretable factors to some behavioral outputs. Since then, several oth-

ers have used autoencoder-like architectures to disentangle underlying factors gov-

erning neural activity, some directly incorporating the relationship between these

factors and behavioral output in their models.

These methods have been powerful and useful in furthering our understand-

ing of principles governing neural activity. However, they are also not immune to

the issues of all dimensionality reduction methods. In Chapter 3, we will discuss

some of these issues in more detail and how we propose to solve them for our use

of VAEs.
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FIGURE 2.1: Probabilistic view of the VAE A VAE learns stochas-
tic mappings between an observed x-space, whose empirical distri-
bution qD(x) is typically complicated, and a latent z-space, whose
distribution can be relatively simple (such as spherical, as in this
figure). The generative model learns a joint distribution pθ(x, z)
that is often (but not always) factorized as pθ(x, z) = pθ(z)pθ(x|z),
with a prior distribution over latent space pθ(x, z), and a stochastic
decoder pθ(x|z). The stochastic encoder qψ(z|x), also called infer-
ence model, approximates the true but intractable posterior pθ(z|x)
of the generative model. Figure from Kingma and Welling, 2019.
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FIGURE 2.2: Neural Network view of the VAE In variational au-
toencoders, the loss function is composed of a reconstruction term
(that makes the encoding-decoding scheme efficient) and a regu-
larization term (that makes the latent space regular). Figure from

Rocca, 2021.

FIGURE 2.3: LFADS schematic Schematic overview of the
LFADS architecture. Figure from Pandarinath et al., 2018.
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Chapter 3

Overcoming overfitting for

Variational Autoencoder

representations of time series data

3.1 Abstract

Variational autoencoders (VAEs) have been used extensively to discover

low-dimensional latent factors governing neural activity and animal behavior. How-

ever, without careful model selection, the uncovered latent factors may reflect noise

in the data rather than true underlying features, rendering such representations un-

suitable for scientific interpretation. Existing solutions to this problem involve

introducing additional measured variables or data augmentations specific to a par-

ticular data type. We find that for time-series data, predicting the next point in time

in VAEs mitigates learning of spurious features. In addition, we introduce a model

selection metric based on smoothness over time in the latent space. We show that

together these two constraints on VAEs to be smooth over time produce robust

latent representations and faithfully recover latent factors on synthetic datasets.
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3.2 Introduction

How do we know whether the latent representation obtained from our VAE

is useful? In particular, if we want to draw scientific conclusions from this latent

representation, we would want to make sure that it is interpretable and the features

it learns are real. For example, if different instances of a model produced different

representations from the same data, it would be impossible to meaningfully inter-

pret these representations. Thus, robustness and reproducibility are prerequisites

for interpretability.

However, standard VAEs do not produce robust representations (Locatello

et al., 2019; Keshtkaran and Pandarinath, 2019), indicating that these models can

learn spurious features unrelated to underlying structure of the data. There are

two possible causes of how VAEs may learn spurious features. First, the VAE

might learn a functional mapping that is irrelevant to the low-dimensional structure

but sufficient for reconstructing the data (Keshtkaran and Pandarinath, 2019). The

reconstruction goal of VAEs only requires the model to separate dissimilar points

but does not incentivize the model to keep similar points close in the latent space.

Thus, there may be several local optima in the loss landscape at which the VAE can

map points in the latent space to points in the original space without learning the

correct low-dimensional structure.

Second, the VAE can overfit to noise in the data by trying to separate data

points based on the noise features. Traditional practice to avoid overfitting is regu-

larization, which involves selection of hyperparameters by optimizing the model’s

performance on a held-out validation dataset. However, flexible machine learning

models with many parameters can generalize well on unseen data despite learn-

ing to interpolate perfectly through noise in the training data (Belkin et al., 2018;
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Bartlett et al., 2020). In these instances, many models can generalize equally well

but have different learned features and therefore interpretations (Genkin and Engel,

2020). This type of overfitting is not an issue if generalization performance is the

only goal, but it undermines interpretation of the latent representations learned by

the model.

Solutions proposed to avoid the learning of spurious features involve 1)

adding inductive bias to the model architecture or through regularization (Locatello

et al., 2019; Khemakhem et al., 2020b) and 2) using appropriate model selection

metrics to choose robust features that are reproducible across different model in-

stances (Duan et al., 2016; Genkin and Engel, 2020). Here we extend these solu-

tions to the VAEs applied to time series data. We first show that the standard VAEs

are prone to learning spurious features. We then introduce an inductive bias in the

VAE architecture and a model selection metric which both promote smoothness

of latent factors over time. We show that with these changes, VAEs learn robust

representations that correctly recover latent factors on synthetic datasets.

3.3 Related Work

3.3.1 Benign Overfitting

Keshtkaran and Pandarinath, 2019 showed that autoencoders can learn spu-

rious features when recovering latents used to create a synthetic spiking dataset.

They posit that such overfitting occurs because the model can learn to perform an

identity transformation without extracting relevant low-dimensional information

from the data. Another explanation might be that while autoencoders are incen-

tivized to separate different points in the latent space, they have no incentive to

keep similar points together, which is a problem shared by many dimensionality
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reduction methods (Chari, Banerjee, and Pachter, 2021).

3.3.2 Identifiable VAEs and self-supervision

Efforts to use VAEs to uncover true and interpretable latents overlaps with

efforts in creating identifiable VAEs. Identifiability of a certain model is the con-

straint that a model’s parameterization of a certain set of observations is unique.

Consequently, the goal of identifiable VAEs in representation learning is to re-

cover low-dimensional factors that correspond to meaningful concepts of the orig-

inal high-dimensional data, which is known as disentanglement (Higgins et al.,

2017; Khemakhem et al., 2020b). However, it is nearly impossible to fully dis-

entangle without inductive biases on models and data (Khemakhem et al., 2020b)

As a consequence, there have been several efforts, in neuroscience and otherwise,

to achieve disentangled representation using VAEs with inductive biases. These

biases usually come in one of two forms: leveraging multiple data modalities for

regularization or data augmentation for self-supervision. For instance, both pi-

VAE (Zhou and Wei, 2020) and ID-VAE (Mita, Filippone, and Michiardi, 2021)

introduce an auxillary variable, such as behavior or another neuron, and use the

relationship between the generative latents and auxillary variables to regularize the

model. Similarly, Liu et al., 2021 introduce SwapVAE, which uses both neural

activity and hand dynamics during a monkey performing a reaching task. While

introducing these auxillary variables does allow for better disentanglement, not all

datasets have associated auxillary variables, making this method unsuitable.

In contrast, self-supervised learning in the form of data augmentation has

also been introduced recently to achieve identifiable representations. By asking the

model to predict the augmented data point, it is ensured that the model learns to

preserve features that are shared between original and augmented data. Sinha and
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Dieng, 2021 use a semantic-preserving transformation of an image (such as a rota-

tion) as a self-supervised label, and Liu et al., 2021 drop or swap spikes in a spiking

neural dataset as a form of data augmentation. These types of data augmentation

are specific to the dataset presented and a semantic-preserving augmentation is not

obvious for every type of data. For instance, removing time segments of local field

potential (LFP) data may remove more important information than simply drop-

ping individual spikes in a spiking dataset. Therefore, we were incentivized to find

another type of inductive bias that could be applied broadly to time-series data.

3.3.3 Lack of Model Selection Metrics

Even with inductive biases added that lead to disentanglement, there is still

a need for model selection metrics. In supervised settings, a metric such as vali-

dation classification accuracy can be used for model selection, especially if there

is no need to measure the interpretability of the model. However, it is still com-

mon to use model performance as a model selection metric in unsupervised set-

tings, despite the fact that model performance and interpretability are not neces-

sarily correlated. Some recent work has proposed evaluation metrics that ask for

model performance on predicting to an external variable (Higgins et al., 2017; Pei

et al., 2021); however, these metrics still rely on some external label rather than

evaluating the quality of the latent representations themselves. Thus, there is a

need for metrics that can be used for VAE model selection. Duan et al., 2020

propose that such a metric should be based on similarity of latent representations

between trained models, as disentangled representations should be similar whereas

non-disentangled or overfit representations can have degeneracy. They introduce

Unsupervised Disentanglement Ranking (UDR) which uses pairwise comparison

between representation from models with same hyperparameter settings as a model
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selection metric. However, their proposed metric is computationally complex in or-

der to account for rotations of these representations, so we again leverage time to

find another metric which can be easily computed despite rotations and show that

this metric correlates with representation invariance across models.

3.4 Methods

3.4.1 Datasets

To study how standard VAEs learn spurious features and to test how our ap-

proach overcomes this problem, we use synthetic data with known low-dimensional

structure as well as biological neural recordings data.

Gaussian clusters: We generated synthetic data points from 3 clusters

mimicking the wake, rapid eye movement (REM) and slow wave sleep (SWS) brain

states. Each cluster was modeled as a Gaussian distribution in 33-dimensional

space, where dimensions represent local field potential (LFP) power in 30 fre-

quency bands, total power of the electromyography (EMG) signal, body tempera-

ture, and accelerometer data with mean and variance of the Gaussian distributions

matched to the biological data.

Spiral: We sampled data points uniformly along a two-dimensional spiral,

with time index increasing monotonically along the spiral starting from the inner-

most point. We then nonlinearly embedded these points into 30-dimensional space

and added Gaussian white noise.

Hidden Markov Model (HMM): We generated data points from a three-

state HMM with emissions sampled from 31-dimensional Gaussian distributions

with mean and variance and transition dynamics matched to wake, REM and SWS

states in biological data.
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Visual cortex LFP data: We used combined EMG and LFP data recorded

from the visual cortex of a mouse during continuous 24-hr recordings over 12 days.

Each data point represents a 2 second time window. For this 2-second time window,

we extracted the LFP power in 30 frequency bands and total EMG power to form a

31-dimensional feature vector representing the signals. A subset of data points had

expert-provided labels of wake, REM and SWS brain states.

3.4.2 Model Architecture

We envision that underlying neural dynamics evolve on a low-dimensional

manifold via a Gaussian random walk. Then, these underlying neural dynamics are

measured as spikes or potential, both of which exist in a higher dimensional space

(combination of spikes from many neurons or combination of oscillation power

from many frequency bands).

We add an inductive bias to the VAE architecture that promotes learning the

underlying low-dimensional structure in time-series data. We assume that latent

factors evolve smoothly in time over the latent space. Thus, we constrain the VAE

architecture to be autoregressive by modifying the objective from reconstructing

the original data point to predicting the next point in time. In this way, the function

the model parameters learn encompasses both the generative function that maps

low-dimensional latent factors to observables and the transition probability over

time between points in the latent space. Thus, we minimize the following loss

function:

L = MSE(xt+1, d(e(xt))) + βKL(q(z)||p(z)). (3.1)

Here xt+1 is the data point at time t+1, d(e(xt)) is the result of passing xt through

the encoder (e) and decoder (d), that is prediction of xt+1 from xt. q(z) is the distri-

bution of points zt in the latent space, which is the bottleneck layer of the VAE, and
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p(z) is the prior distribution. We allow for a weight on the KL divergence term β,

which was proposed as the β-VAE Higgins et al., 2017. We call our autoregressive

VAE the Time-Neighbor VAE (TN-VAE).

3.4.3 Model selection metric

To prevent learning spurious features due to overfitting to noise in the train-

ing and validation data, we define a model selection metric based on our assump-

tion that latent factors evolve smoothly over time in the latent space. For each

model instance, we calculate the distance in the latent space between the represen-

tations of each data point and the next point in time (normalized by the overall size

of the latent manifold). We call this metric the Neighbor Loss (NL) defined as:

NL =
N−1∑
t=0

|zt+1 − zt|
z̄

, (3.2)

where z̄ is the average distance from the origin across latent representations of allN

points in the dataset. Theoretically, if transitions between points in the latent space

follow a Gaussian random walk, then minimizing the absolute distance between

latent representations of neighboring points in time is equivalent to maximizing

their log-likelihood

3.4.4 Training Details

For each dataset, we trained a vanilla variational autoencoder and a TN-

VAE. We use 2 layers of 250 units each for the encoder and decoder. We vary

3 hyperparameters: batch size (1000,5000,10000,50000), learning rate (1−2, 1−3,

1−4, 1−5), and β (1−2, 1−3, 1−4, 1−5). For each hyperparameter combination, we

train 4 models with different training/validation splits and initializations. We ad-

ditionally have a held-out test set that we use to evaluate each model. We use the
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procrustes alignment distance between test set encodings as a proxy for similarity

of trained models allowing for rotation.

3.5 Results

3.5.1 VAE learns spurious features

To illustrate that standard VAEs are prone to learning spurious features,

we train a VAE on a synthetic dataset of points drawn from 3 high-dimensional

Gaussian clusters (Fig. 3.1A). Both the training and validation loss decrease mono-

tonically throughout 300 training epochs (Fig. 4.1B). Thus, the standard approach

would be to select the model at the last training epoch that has the lowest valida-

tion loss. However, despite good reconstruction performance on validation data,

the VAE not only fails to correctly separate the 3 clusters in the learned latent

representation, but also learns spurious features. Over training epochs, the latent

representation gradually loses the smooth Gaussian shape and feathers into streak-

like patterns. (Fig. 3.1C). Moreover, separate model instances trained on different

splits of the data achieve similar validation loss but uncover different latent repre-

sentations (Fig. 3.1D), indicating that the VAE learns spurious features that are not

robust.

3.5.2 Priors on smoothness over time promote learning true and

not spurious features

We introduce a modified model architecture TN-VAE and a NL model se-

lection metric which promote smoothness of latent factors over time (Methods).

We use two synthetic datasets with known low-dimensional structure (Fig. 3.3) to

test how these modifications affect the quality of learned latent representations in
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comparison to the standard VAE and standard model selection based on the valida-

tion loss. For both datasets, the standard VAE with validation-loss model selection

fails to uncover meaningful structure from the data and learns spurious features

(Fig. 3.3A,B). TN-VAE introduces an inductive bias that pushes the model to

learn meaningful features, but can still overfit to noise in the data (Fig. 3.3D,E).

Using TN-VAE in combination with NL model selection metric results in most

faithful reconstruction of the original low-dimensional structure in the data with-

out learning spurious features (Fig. 3.3G,H).

We then apply each approach to biological LFP data recorded in the visual

cortex of a mouse over normal day and night activity. While the ground truth

structure in these data is unknown, the domain knowledge suggests the existence of

3 major clusters in these data corresponding to wake, REM, and SWS brain states.

The standard VAE fails to separate the clusters at all and instead learns spurious

features (Fig. 3.3C). The TN-VAE with validation-loss model selection separates

the clusters but shows signs of overfitting to noise (Fig. 3.3F). Finally, TN-VAE

with the NL model selection metric produces a smooth latent representation with 3

clusters that match the human-expert labeling of wake, REM, and SWS brain states

(Fig. 3.3I).

3.5.3 NL metric selects for robust representations

Finally, we tested how our NL model selection metric corresponds with

robustness of learned representations. For the spiral and LFP datasets, we chose

a variety of different hyperparameter configurations and for each configuration,

we trained 4 separate model instances with unique training/validation splits. Each

model instance produces a latent representation of the same held out test dataset.

We then measured the average procrustes distance Gower, 1975 between latent

representations of the test set for each pair of model instances. Lower procrustes
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distance indicates more consistency in representations across model instances and

thus, can be used to assess the robustness of learned latent representations. We find

that NL correlates well with procrustes distance, whereas validation loss is not cor-

related with how consistent the latent representations are across model instances

(Fig. 3.4). Intuitively, if the model is underfit, there would be no correlation be-

tween the structure of the latent representation and time information. If the model

is overfit, the model separates neighboring points in time based on noise features

that are random across training instances. As a result, minimizing the NL metric as

a criterion for model selection leads to selection of robust latent representations.

In this chapter we established that VAEs are prone to benign overfitting and

adding inductive bias using smoothness over time can help avoid this. In addition,

we saw that using the distance between neighboring points in time in the latent

space can be used as an additional model selection metric, and when we do so, we

find latent encodings that are robust over many training epochs. This allows us to

be confident in our use of VAEs in analyzing brain state data.
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FIGURE 3.1: A, Synthetic dataset with 3 Gaussian clusters in 33-
dimensional space, visualized by projecting on the first 3 principle
components. Colors indicate the cluster from which each point was
sampled. B, Training and validation loss for a VAE trained on the
Gaussian clusters dataset. C, Latent representations learned by the
VAE at different training epochs. D, Latent representations after
300 epochs in 3 separately trained VAEs with similar validation loss

show lack of robustness.
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FIGURE 3.2: Adding time as an inductive bias to VAE A, We en-
vision neural data as a random walk on a low-dimensional surface
in a high-dimensional space. B, Neighbor VAE Architecture. High-
dimensional time series data is binned to desired time windows and
represented as a high-dimensional vector. This is passed into a VAE
that predicts the vector for the next point in time. C, The distance
between neighboring points in time on the manifold embedding dis-

covered by the VAE is used as a validation metric.
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FIGURE 3.3: Latent representations on a held-out test set learned by
the standard VAE with validation-loss model selection (A-C), TN-
VAE with validation-loss model selection (D-F), and TN-VAE with
NL model selection (G-I) for three datasets: synthetic spiral (A, D,
G, points colored by the position on the original spiral), synthetic
HMM (B, E, H, points colored by the 3 HMM states), and biological
LFP data (C, F, I, points colored by expert-provided labels of wake,

REM, and SWS brain states).
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instances for each hyperparameter combination. NL correlates more
with procrustes distance than validation loss for synthetic spiral (A)

and LFP data (B).
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Chapter 4

A manifold of heterogeneous

vigilance states across the cortex

4.1 Abstract

Brain states are conventionally divided into wake, slow wave sleep (SWS)

and rapid eye movement (REM) sleep based on distinct patterns of neural activity

and muscle tone. These brain states are conventionally thought to be discrete, tem-

porally sustained, and spatially global. Recent evidence indicates that this conven-

tional definition of brain states may be insufficient, but such analyses have not been

done systematically with large-scale neural recordings. Here we show this insuffi-

ciency using simultaneously recorded multi-day electromyogram (EMG) and local

field potentials (LFP) across the cortex. We developed a computational approach

to place these recordings on a low-dimensional manifold visualization. With this

manifold, we characterized 9 substates of sleep and wake and their differences

in expression and dynamics throughout the cortex. Particularly, we found a lack

of REM-like activity in the lateral somatosensory cortex and an increase in theta
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rhythm in frontal cortex during wake. Our work provides a comprehensive quan-

tification of deviations from canonical brain-state definition with a novel computa-

tional framework for analyzing brain states.

4.2 Introduction

In this study, we visualize brain states on a continuous manifold and sys-

tematically quantify a new conceptual model of brain states across the cortex.

We recorded extracellular LFP recorded continuously across multiple sites in the

mouse cortex for several days during normal wake and sleep cycles. We then de-

veloped a model based on a VAE to discover a continuous manifold from these

recordings. The model not only accurately separated the three canonical brain

states on the manifold, but also captured microstates and transition states. It did so

by uncovering a continuum of states that could be quantified as substates with re-

producible transition dynamics. When applied to LFP activity recorded simultane-

ously on multiple electrodes across the cortex, our model uncovered heterogeneity

of sleep state expression across the cortex, specifically lack of of REM-like sleep in

frontal-lateral regions and increase in AE-like wake in frontal regions of the cortex.

Lastly, we found that further coexistence of differing states across regions occurred

during global state transitions or as spatially local microstates. Through character-

izing brain states on a low-dimensional manifold, we show that brain states are

not always discrete, temporally persistent, and spatially uniform, thus providing a

comprehensive description of spatiotemporal dynamics of brain states across the

cortex.
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4.3 Methods

4.3.1 Data Collection

Surgery, recordings, and canonical state detection are performed as de-

scribed in Soltani et al., 2019. Briefly, mice are implanted with custom-made elec-

trodes 600 um from the cortical surface in either 14 or 3 different cortical regions.

Recordings were collected continuously for 24 hours per day for at least 3 weeks.

Data is recorded at 1000 Hz. Custom-written routine was used to automatically

detect states of the brain, with 5 second windows with a sliding time window of 1s

(Bukhtiyarova et al., 2016; Soltani et al., 2019).

4.3.2 Artifact Removal

Artifacts are common in electrophysiological recordings and need to be

removed before data analysis. Artifacts can arise from mouse movement affecting

electrode recording. To remove artifacts, we highpass filtered the raw LFP data at

0.8 Hz and removed. We also remove any time windows where at any point LFP

amplitude is greater than 1.5 mV.

4.3.3 Data preprocessing

First, we normalized raw LFP and EMG recordings through z-score for

each session, where mean and standard deviation was calculated separately for each

session. Then we performed continuous wavelet transformation using Complex

Morelet Wavelets. The formulation of the complex Morelet wavelets is as follows:

ψ(t) =
1√
πB

exp− t2

B expj2πCt (4.1)
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where B is the normalized bandwidth and C is the normalized center frequency.

We used 30 wavelet bands with center frequencies evenly spaced on a logarithmic

scale between 1 Hz and 50 Hz. For each time step, a wavelet coefficient is ob-

tained for each frequency as a result of the wavelet transformation. The wavelet

coefficients are at the same sample frequency as the original data, 1000 Hz. We

then calculate power spectral density (PSD) through log2(|ct|2), where ct is the

wavelet coefficient at time t. We downsample the PSD to 100 Hz and then bin to

2-second windows. We average the PSD over time within each window. The 30

PSD coefficients of EMG are integrated to obtain the average EMG power. The 30

frequency bands of LFP are combined with the average EMG power to create a 31-

dimensional vector input to our model. We z-score each feature of our input vector

separately, with mean and standard deviation calculated per session. We denote the

feature vector for the 2-second time window t as xt.

4.3.4 Variational Autoencoder (VAE)

We pass our 31-dimensional vector consisting of 30 frequency bands of

LFP and the average EMG power into a type of variational autoencoder(VAE)

known as a β-VAE (Higgins et al., 2017). A variational autoencoder consists of

an encoder, which projects a high dimensional point onto a distribution low dimen-

sional representation and a decoder which decodes a point on the low dimensional

representation back to the high dimensional space. By training the autoencoder

to successfully reconstruct the original high-dimensional data, we ensure that the

low-dimensional representation, also known as the bottleneck layer, contains the

most informative representation to separate dissimilar points. The variational au-

toencoder also adds regularization by enforcing a prior on the low-dimensional

distribution. We modify the β-VAE loss function such that it seeks to predict the

next window in time in order to minimize benign overfitting (citation) and to ensure
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the model learns robust features without creating spurious clusters. We minimize

the following loss function:

L =MSE(xt+1, x̂t+1) + βKL(q(z)||p(z)). (4.2)

Here xt+1 is the feature vector at time t + 1, and x̂t+1 is its prediction from the

feature vector xt at the preceding time t. q(z) is the distribution of points zt in

the latent space, which is the bottleneck layer of the β-VAE, and p(z) is the prior

distribution. The space on which the low-dimensional points lie represents the

low-dimensional manifold that brain states evolve on.

Our encoder consisted of two 250-dimensional fully connected layers and a

2-dimensional latent representation. The decoder architecture also consists of two

250-dimensional fully connected layers, and ReLU activations were used through-

out. We specifically constrain one dimension of this 2-d latent representation to be

the average EMG power and learn the other dimension from the β-VAE. We did so

because average EMG power is the most important factor in determining the wake-

fulness of the animal. Thus, we have one dimension that represents wakefulness

and another that represents cortical LFP activity. Both dimensions are passed to

the decoder during training. We used a β value of 0.001. For VAEs trained on data

from a single electrode, we used learning rate 10−4 and batch size 10, 000. These

models are coded using Tensorflow and Tensorflow-Probability.

4.3.5 Model Validation.

For each subject, we compiled 10–12 sessions (subject 0– 10 sessions, sub-

ject 1 – 12 sessions) of approximately 24-hour recordings (some recordings are

more or less depending on when the experimentalist decided to start or stop the

recording). This dataset was then split randomly into 4 training and validation sets,
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where 80% of datapoints are in the training set and 20% are in the validation set.

One additional session was reserved for testing.

Unsupervised deep learning techniques lack standardized metrics and pro-

cedures for model validation. In particular, a type of overfitting known as benign

overfittingBartlett et al., 2020, where the model learns spurious features while val-

idation loss still decreases, is common. We hypothesized that multiple models

trained on different subsets of data from the same mouse with the same hyperpa-

rameter configuration should achieve the same latent manifold. If these models

achieve diverging manifolds, this is an indication of benign overfitting. Thus, in

order to choose the ideal hyperparameter combination for our model, we trained

multiple models for each hyperparameter configuration on different training/vali-

dation splits. We show that our selected hyperparameter combination finds a ro-

bust manifold across different models (Figure supp.). We trained separate models

on datasets for each subject, but we also found that a model trained on data from

one subject could be applied to data from another subject with the same result as a

model trained on data from that subject.

4.3.6 Frequency Band Calculation

To calculate the power for frequency bands delta (1 to 4 Hz), theta (4 to

12 Hz), alpha (8 to 10 Hz), sigma (10 to 16 Hz), beta (16-29 Hz), and gamma(>

30Hz) (Hernan et al., 2017), we calculated the spectral power of each 2-second

window using Fourier transform. We then integrated the spectral power within the

corresponding range and divided by the total spectral power.
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4.3.7 HMM Fitting

A Hidden Markov Model (HMM) is useful in analyzing time-series data,

such as the data on our latent manifold. A Hidden Markov Model learns the initial

probabilities, transition probabilities, and emissions for any number of states to

define a state sequence corresponding to the data. We trained our model using

Gaussian emissions to fit the sequence of points on the latent manifold. In order

to determine the number of states, we performed 3-fold cross validation for 2-14

states and calculated the average negative log likelihood per number of states. We

chose the the number of states when the negative log likelihood decreased by less

than 5%. For this HMM, we found 8 states by this procedure.

4.3.8 Microstate Identification

We obtain labels fitting a HMM to the encodings, finding eight states. Then,

we obtain a smoothed state sequence by taking the mode of 30 second sliding

windows, in which the mode accounts for at least 20 seconds of that window. We

define microstates as disagreements between the local 2-second window label and

the smoothed label.

4.3.9 Analysis of 14 Electrodes

Next, we aggregated data from all 14 electrodes to obtain a common man-

ifold for each electrode. We trained the model used a learning rate of 10−5 and

batch size of 50, 000. Each model is trained for 300 epochs, where the model sees

the entire training dataset per epoch. We performed the same model validation as

with the single electrode model.
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4.3.10 Multi-HMM

For HMM on the 14-electrode manifold, we trained a modified HMM,

known as a Multi-HMM, that would require the same emissions for different elec-

trodes but allow different initial probability and transition probability matrices for

each electrode. Using the same cross-validation procedure, we find 10 states.

4.4 Results

4.4.1 A VAE for describing a manifold of brain states

We recorded LFP data across the cortex of mice during normal sleep-wake

cycles. To achieve our goal of characterizing non-canonical brain states, we de-

veloped a dimensionality-reduction method based on the VAE. The VAE is more

powerful and robust than other dimensionality-reduction methods, but lacks the

bias and constraints of supervised classification methods. We envision brain states

as traversing a latent manifold slowly over time. To discover this latent manifold,

we first extracted power of different frequency bands for two second time win-

dows of LFP and EMG recordings(Fig. 4.1B). For each time window, we combine

the power from 30 frequency bands of LFP with average EMG power, resulting

in a high-dimensional representation. In order to represent each data point on a

two-dimensional manifold, we presented the high-dimensional representation to a

β-VAE (Higgins et al., 2017) that seeks to predict the next window in time. The β-

VAE learned a two-dimensional embedding, where one dimension is explicitly set

as the average EMG power, which is essential in separating wake states from sleep

states, and the second latent dimension is learned by the model. Thus, our manifold

defines brain states by two axes – 1) EMG, which defines the “wakefulness”, and

2) cortical activity.
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We first used our method to characterize brain states on a single electrode in

the visual cortex. When we did so, we found that the resulting manifold separates

three basic states, corresponding with expert-provided canonical labels (Fig. 4.1C).

In order to further validate that our model is able to separate these states, we used a

Gaussian Mixture Model (GMM) clustering algorithm to find 3 clusters. We found

an average of 82% accuracy of these cluster labels compared to canonical labels by

human experts, echoing inter-expert accuracy (Fig. 4.1D). This was reproducible

across mice (Fig. C.2).

It is important that our models produce interpretable and robust represen-

tations of the brain state space for any further analysis. Because unsupervised

learning techniques generally lack validation metrics, these models can be prone

to benign overfitting, or learning features that are not present in the data due to

noise (Bartlett et al., 2020; Pei et al., 2021). We found that models that learn these

spurious features are often degenerate–these features are not reproducible across

different training instances. Thus, we use the latent representation reproducibility

across different initializations and training/validation set splits to demonstrate that

our model is not overfitting (Fig. C.1B). We found that variability between trained

models is less than the variability between different sessions and subjects, which

are subject to natural variation in the mouse’s daily environment or experiences

(Fig. C.1C). In addition, we found that a model trained on data from one mouse

when applied to a session from another mouse achieves the same representation

as if we had trained on the data from second mouse, further underscoring that our

representation learns real features(Fig. C.1D). Thus, our use of these validation

methods ensures we can continue to interpret results from our manifold.
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One way to interpret the brain state manifold is by understanding the fea-

tures that the VAE finds important in defining the manifold. We can do so by an-

alyzing how different frequency bands tile the latent space (Fig. 4.1E). We found

that our model extracts features that correspond with previous knowledge of states:

Delta power is relatively lower in REM sleep than in SWS, and theta power is rel-

atively higher in REM sleep and active wake than in SWS or in transition regions

(Hernan et al., 2017). Beta and gamma powers are also relatively higher in wake

than in sleep states, with beta power being especially high during sleep to wake

transition regions (Hernan et al., 2017). In addition, theta rhythm is lower in wake

and quiet wake than in active wake or REM sleep (Hernan et al., 2017). Because

the model nonlinearly combines frequency bands to create the low-dimensional

manifold, it is able to capture more information than simply comparing EMG to

any single frequency band.

4.4.2 HMM reveals dynamics of brain states and microstates

Next, we sought to quantify the temporal patterns of brain states for this

electrode. Although our manifold indicates a continuum of states, segmenting the

manifold into substates can be useful for this quantification. In order to do so, we

fit a Hidden Markov Model (HMM) to the encodings. HMMs are a unique type

of clustering algorithm that also learns transitions between the defined clusters.

Using the HMM, we found 8 states corresponding to three substates of SWS, Ac-

tive Exploration (AE), Wake, Quiet Wake (QW), Drowsy Wake (DW) and REM

(Fig. 4.2A, D, Fig. C.3). The number of states was determined by finding the

elbow in the negative log likelihood by number of states, and state labels were

determined corresponding by the frequency bands that are dominant in that state

with known substates (Gervasoni et al., 2004; Hernan et al., 2017). By analyzing

the dynamics of transitions between these 8 states, we found certain transitions do
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not occur (Fig. 4.2B). Consistent with previous literature (Gervasoni et al., 2004),

wake states cannot transition to REM state without passing through SWS. In ad-

dition, transitions from sleep to wake and vice versa consistently pass through an

intermediary quiet or drowsy wake period. Lighter SWS states transition to deeper

SWS states in succession, but deeper SWS only transition to REM or SWS1. These

states are also reproducible in the second mouse (Fig. C.4a,b).

When looking at the duration lengths of each of these 8 states, we found that

most states have a unimodal distribution peaking around 20 seconds(Fig. 4.2C).

However, Drowsy Wake, Quiet Wake, and Wake have a bimodal distribution, with

an additional peak at less than 10 seconds. These short duration states are likely

microstates or short periods of one state within another state (Fig. 4.2E). In order

to verify this, we identify microstate instances throughout the sleep wake cycle.

Microstates are defined as a mismatch between a 2-second local state with a sur-

rounding 30-second global state(Fig. 4.2F, (see Methods)) We found that these

microstates, while rare, do occur consistently, with some types of microstates con-

sistently more present than others(Fig. 4.2G). The majority of microstates occur

within the two transition regions, reflecting the state duration graphs. Other mi-

crostate types reflect the transition graph of the HMM, suggesting that microstates

may be a probing of a possible transition.

These results underscore that brain states are in fact, not persistent but in-

stead can be transient; specifically, certain substates in the transition from sleep to

wake are most transient. One caveat is that when we apply this same analysis to

other electrodes in the cortex, we find there can be differences in the states revealed

by the HMM (Fig. C.9), leading us to investigate further how these states manifest

across the cortex.
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4.4.3 Heterogeneous expression of brain states across the cortex

Next, we wished to understand how brain states may be expressed differ-

ently across the cortex. To do so, we visualized the encodings of different cortical

areas on a shared manifold. Thus, we next fit our model to data from all 14 elec-

trodes across the cortex. We also sought to describe this shared latent space via a

Hidden Markov Model; however the basic HMM is insufficient in this case. In-

stead, we wanted to leverage a HMM that constrains each electrode to have the

same emissions but allows for different initial probability and transition matrices,

which we term a MultiHMM (see methods). Again finding the elbow, we found

the optimal number of states to be 9 for both animals with 14 electrodes. We found

the states to be consistent between animals, further underscoring that any differ-

ences between animals when training on one electrode are due to small differences

in electrode placement. These states are the same as in the single electrode case

– SWS1, SWS2, SWS3, REM, DW, QW, Wake, AE – with an extra SWS state,

SWS4 (Fig. 4.3A).

When we compare the points on the manifold for each of the 14 electrodes,

we found stark differences (Fig. 4.3A). Specifically, the lateral somatosensory cor-

tex completely lacks the REM cloud. Electrodes in the frontal medial area show

more AE than Wake. These differences are highlighted in the percent of time spent

in each state per electrode(Fig. 4.3B), and are reproducible across mice (Fig. C.5).

In order to verify that the lack of REM in somatory sensory cortex was real, we

identified time points of "global REM", where 11 or more electrodes were in REM

as determined by expert labels. We then calculated the average spectrogram for

medial and lateral somatosensory cortex for each of these time points. We saw

clearly that the average spectrogram for lateral somatesensory cortex reflected the

"global SWS" spectrogram (Fig. 4.3C).
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One previously existing notion of local sleep is the presence of local slow-

waves in awake miceVyazovskiy et al., 2011, specifically sleep-deprived mice. In

our results, the presence co-existence of DW in QW or Wake in differing areas

reflected these slow-waves in awake mice, with DW exhibiting more slow waves

(Fig. C.6A). We additionally found that frontal areas spend more time in DW than

other areas (Fig. 4.3B, Fig. C.6B). Lastly, we found that these time periods of

slow waves in wake last no more than 30 seconds, which has not been described

previously (Fig. C.6C).

4.4.4 Spatiotemporal dynamics of sleep and wake

Our results from the previous section indicate that heterogeneity exists in

sleep and wake across the cortex. Some of that heterogeneity is accounted for by

differences in state expression, such as lack of slow waves during REM in lateral

somatosensory cortex or increase in theta power (AE) in frontal area during Wake.

However, there may also be other instances of non-global states across the brain,

instances when different parts of the brain are in different states at the same time.

In fact, when we labeled each time point with 14 labels - one per electrode from

the MultiHMM - we found that only around 60% of time points are global (all 14

electrodes are in the same state) (Fig. 4.4A, Fig. C.7A). In fact, at some points in

time, only 4 electrodes are in the same state. We went on to define "global states"

as 11 or more electrodes being in the same state. We found that non-global states

are largely less than 30 seconds in duration (Fig. 4.4B, Fig. C.7B). We can further

break this down by looking at the globality per state. Not surprisingly, we found

that REM, AE, Wake, and Transition states are the most non-global states, while

SWS states are largely global (Fig. 4.4C, Fig. C.7C). We discussed previously

that REM was non-global because of the differential expression of REM in the lat-

eral area of the cortex, with some electrodes completely missing REM expression.
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In addition, Wake and AE are non-global separately, but together with QW and

DW form a relatively global state (Fig 4.4D). However, the remaining non-global

dynamics have yet to be characterized thus far.

We hypothesized that two contributors to non-global dynamics are transi-

tion states and microstates. It is known that individual slow waves propagate from

one side of the cortex to the order (Tononi, 2009). However, it is unknown whether,

on a larger time scale, brain states start to transition in one area before another. In

order to illustrate this, we found all instances of transitions from any one state

to another state, and visualized the average transitions by coloring each point by

the average position on the manifold. Because it would be intractable to visualize

all transitions between 9 states, we returned to three basic states. We founnd that

specific spatiotemporal patterns arise for each of these transition types. Transition

from SWS to REM sleep arises first from the medial posterior cortex. ransitions

to SWS appear more global. Interestingly, transitions from REM to SWS passes

through Wake for a few seconds. This has been described in previous literature

(reference: need from Jeremy). In addition, we find that microstates occur spa-

tially non-globally. Microstates of REM in SWS or SWS in REM only co-occur

between any two electrodes a maximum of 30% of the time (Fig. C.8). Altogether,

these results provide a complex and rich picture of varying spatiotemporal hetero-

geneity in sleep states across the cortex, which provides an introduction to future

studies further describing the complexity of brain states.

4.5 Main Figures
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Chapter 5

Discussion and perspectives

The work in this thesis was guided by the goal of finding an unbiased char-

acterization of brain states. In Chapter 1, we provided a brief overview on brain

states and their importance before looking at some deviations to canonical brain

states. In Chapter 2, we overviewed some unsupervised methods that are useful

for analyzing biological data including dimensionality reduction and clustering,

and we discuss our decision to use the variational autoencoder (VAE) to describe

our brain states. Motivated to ensure the results from the VAE were suitable for

further scientific interpretation, we explored the relationship between benign over-

fitting and representation learning in VAEs and showed that using consistency over

time prevents overfitting to spurious features (Chapter 3). Lastly, we applied our

modified to brain state data and characterized a manifold of brain states. We com-

prehensive described a non-canonical view of brain states, including transitions,

microstates and heterogeneity in brain states across cortical regions.

5.1 VAEs and representation learning in neuroscience

VAEs and other dimensionality reduction methods have been used to an-

alyze high-dimensional biological data. Specifically in neuroscience it is thought
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that some underlying latent representation generates the high dimensional output

we see as neuron activity. We can recover these underlying latents with VAEs

(Sussillo et al., 2016; Cunningham and Yu, 2014. However, many of the studies

using this approach fail to discuss the model selection process for choosing an ap-

propriate VAE. Without careful model selection, it is difficult to be confident that

in any further scientific interpretation from the inferred latents, as VAEs are prone

to overfitting to spurious noise despite low validation loss (Bartlett et al., 2020;

Belkin et al., 2018). In this work, we showed that we can use consistency of la-

tent representations over time as both an inductive bias on model architecture and

as a model selection metric. The use of time in variational autoencoder architec-

tures is not a novel concept (Schneider, Lee, and Mathis, 2022; Liu et al., 2021;

Sedler, Versteeg, and Pandarinath, 2023), but it has not been explored in depth as a

method to avoid benign overfitting. In addition, current model selection metrics for

VAEs either rely on an external variable as a label (Higgins et al., 2017; Pei et al.,

2021) or measure similarity between trained models (Duan et al., 2020) Thus, our

contributions in this thesis are to 1) show that vanilla VAEs are prone to benign

overfitting 2) show how using time in VAE architecture is an effective inductive

bias and regularizer and 3) introduce a novel model selection metric based also in

smoothness over time of latent embeddings.

One way to recover meaningful and interpretable representations of data by

VAEs is through identifiable VAEs. It is important to note that true identifiability

cannot be achieved without an external label (Khemakhem et al., 2020b), and we

do not try to mathematically prove our methods achieve identifiability. However,

given the idea that identifiability is in opposition to degeneracy (Duan et al., 2020;

Genkin and Engel, 2020) (meaningful representations should be similar and repre-

sentations that overfit to noise can be different), we show that our model selection
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metric (NL) is a suitable metric when such an external label is not sufficient. An-

other caveat to note is that our method relies on the assumption that the data evolves

on some low-dimensional manifold slowly over time. Thus, our method would be

not be suitable where this assumption is does not hold.

5.2 Brain state manifold characterization

We effectively use a modified VAE to describe a manifold of brain states

that corresponds with previously described states of SWS, REM, and Wake. Through

analyzing this manifold, we not only confirm known phenomena about state tran-

sitions and the existence of micro-sleep and micro-wake periods, we also further

characterize stereotyped transitions between substates and the frequency of differ-

ent types of microstates. When we apply our model to data recorded simultane-

ously from 14 electrodes across the cortex, we find hetereogeneous expression of

several states, especially the lack of REM-like activity in lateral somatosensory

and frontal areas and increase in AE in frontal areas.. We also find that the non-

globality of states goes beyond this lack of REM-like activity in certain regions, so

we characterize the spatiotemporal patterns and find stereotyped non-global transi-

tion patterns as well as microstates that are local both in time and space.

Most classification methods, whether by experts or autonomous algorithms,

treat brain states of wake and sleep as discrete categories. In contrast, we model

brain states as continually traversing on a manifold, which allows us to capture the

complexity and heterogeneity of neural activity patterns across sleep and waking,

beyond the simple model of three discrete states. The first proposition of brain

states appearing on a manifold was by Gervasoni et al., 2004; however the field

has mainly continued to rely on the discrete state definition. Previous characteriza-

tions of the manifold relied on simple linear dimensionality reduction approaches
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(Gervasoni et al., 2004); instead we use a novel approach to determine a robust

nonlinear manifold that can be conserved across brain regions. This continuous

manifold also allows us to analyze differences between brain regions not just in

the amount of time spent in various states but in the expression of those states. We

do, however, also recognize that segmenting the manifold into a collection of states

provides a powerful framework for more precise quantification.

The existence of microstates, including micro-arousals and micro-sleeps

has been documented previously (Watson et al., 2016; Soltani et al., 2019); but their

exact definition and purpose remain ambiguous. While some define a conscious

state change to be at least 500 ms (Libet et al., 1967; Edelman, 2003), it is possible

that even longer states (up to 6 seconds) would be undetected by an individual

and certainly shorter than canonical notions of states. In this study, we provide a

novel systemic quantification of the frequency of different micro-states. We find,

surprisingly, the most common types of microstates reflect the transition graph

between states; perhaps micro-states represent a probing of a transition. Other

theories indicate that the frequency of microstates may be related to experience or

stress (Maness et al., 2022; Smith et al., 2022).

Differing types of "local sleep" have been introduced in the past (Rector

et al., 2009; Krueger et al., 2019) - such as local slow waves in awake mice (Vya-

zovskiy et al., 2011) and the presence of slow waves in REM sleep (Soltani et al.,

2019; Nazari et al., 2022). By applying our model to large scale recordings across

the cortex, we provide results that unify and extend previous notions of local sleep.

First, we find the absence of REM in the lateral area of the cortex. Our results are

in accordance with (Nazari et al., 2022) which also found non-uniform presence

of slow-waves during REM sleep in the frontal lateral somatosensory areas. There

are several possible explanations for differential expression of theta rhythm during
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REM sleep. One possibility is that the lateral area is farthest from the hippocam-

pus, where theta rhythm is generated during sleep, and theta rhythm measured in

the cortex is due to volume conductance rather than actual theta rhythm present in

neurons in the cortex. Instead, Nazari et al. (Nazari et al., 2022) found that these

areas were less projected to by cholinergic neurons from the basal forebrain, al-

lowing for one possible explanation of the persistence of slow-waves in these areas

during global REM. In the present study, we further characterize these differences

in the presence of slow-waves during REM sleep as heterogeneity on a shared

manifold across cortical areas. Second, we find heterogeneity in expression of dif-

fering types of wake throughout the cortex. The medial regions seem to express

more theta power in wake. We also find the presence of slow waves (Quiet Wake)

to be in accordance with previous studies of slow waves in wake (Vyazovskiy et

al., 2011). In contrast to previous studies (Vyazovskiy et al., 2011) that studied

these local slow waves in sleep-deprived mice, we show these waves are present in

normal sleep-wake cycles and occur more in the frontal regions. It is unclear what

the function of heterogeneity of brain states may be. Previous studies have shown

that brain regions that are more used during the wake periods may require greater

sleep intensity or duration (Krueger et al., 2019; Rector et al., 2009). Furthermore,

we find that microstates occur heterogeneously, which has been heretofore unde-

scribed. It would be interesting in future studies to further analyze the patterns and

frequencies of these spatially heterogeneous microstates.

5.3 Looking forward

We have provide a flexible and unbiased method for characterizing brain

states. This method, which exists as a publicly available github repository

(https://github.com/engellab/braivest), can be applied to characterize other types
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of brain state heterogeneity. One such type of heterogeneity might be over dis-

ease states. For example, disruption of sleep is an indicator of cancer progression.

Specifically, tumor progression in cancer patients triggers changes in sleep patterns

through the disruption of neuromodulators governing sleep and wake transitions

(Borniger et al., 2018). However, exactly how the sleep expression in the brain

changes throughout cancer progression is yet to be characterized. Additionally,

another type of abnormal brain state is the seizure state. We show in preliminary

results that our model is effective in separating out seizure instances from normal

sleep and wake time periods (Fig. D.1). In the future it may also be possible

to use this method to distinguish different types of seizures (Lüttjohann, Fabene,

and Luijtelaar, 2009). Lastly, this tool can be powerful for understanding more

fine-grained wake states, such as differences in arousal and attention states. We

show that using our model on voltage imaging traces from the parietal cortex of

mice running recovers a latent dimension that correlates with change in pupil size

(Fig. D.2). We can apply the same method to characterize differences in arousal

or attention that may be correlated with performance on some task.

Another avenue for future study is the exploration of different model ar-

chitectures to explore brain states. For instance, we can explore a VAE that takes

in data from all 14 electrodes simultaneously to obtain a manifold that represents

the entire brain’s state. We find even more of a continuous manifold rather than

discrete states with this method, and find areas on the manifold corresponding to

transitions between states (Fig. D.3). We could also explore other architectures

that would take in a sequence of timepoints, such as CNNs with attention or RNNs.

These architectures may be effective in defining substates that are defined not only

on the activity in that moment but also on surrounding activity (i.e. microstates).
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Appendix A

Supplemental Tables

TABLE A.1: Normal hippocampal, neocortical, and thalamocortical
oscillations

Oscillation Behavioral State Known Origin

Infraslow (sec-
onds to minutes)

All states, includ-
ing natural states
and anesthesia

Unknown, possi-
bly metabolic

Slow (0.1–1 Hz)
and delta (1–4
Hz)

SWS, sev-
eral forms
of anesthesia
(e.g., ketamine-
xylazine, ure-
thane)

Intracortical, but
thalamus actively
contributes to
synchronization

Theta rhythm
(4–12 Hz)

Exploration,
REM sleep

Septohippocampal
network (unclear
whether theta
activity recorded
in neocortex also
originates in
septohippocam-
pal network);
theta rhythm in
rodents is more
pronounced than
in other species
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TABLE A.1: Normal hippocampal, neocortical, and thalamocortical
oscillations

Oscillation Behavioral State Known Origin

Alpha rhythm
(8–10 Hz)

In primates and
carnivores dom-
inates occipital
lobe during
wakefulness with
eyes closed

Unknown, but in
vitro data suggest
that thalamus
has sufficient
machinery to
generate continu-
ous alpha rhythm

Spindles (10–16
Hz), transient
waxing and wan-
ing oscillations
usually lasting
0.5–2 s; currently
spindles are sub-
divided into slow
(10–13 Hz) and
fast (13–16 Hz)

Predominantly
recorded during
stage 2 sleep,
can be recorded
during deep sleep

Spindles have
been described as
being generated
in thalamus;
however, several
properties of
slow spindles
raise questions
about involve-
ment of other
brain regions

Sigma rhythm
(10–15 Hz)

All states of
vigilance, but
stronger during
SWS

Unknown;
sometimes the
terms sleep
spindles and
sigma rhythm are
used to describe
the same phe-
nomenon

Mu rhythm (7–14
Hz) and associ-
ated beta rhythm
(20 Hz)

Quiet wake-
fulness, over
somatosensory
cortex; stops
when the move-
ment is present

Unknown; some
suggest that
this rhythm is
generated by
somatosensory
thalamic nuclei
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TABLE A.1: Normal hippocampal, neocortical, and thalamocortical
oscillations

Oscillation Behavioral State Known Origin

Beta rhythm
(16–29 Hz)

Waking and
drowsiness;
may also be
accentuated by
GABAergic
medications, e.g.,
benzodiazepines

Likely cortical

Gamma rhythm;
currently subdi-
vided into low
gamma (30–80
Hz) and high
gamma (90–120
Hz)

Waking or mod-
ulated by sleep
slow waves

Likely local corti-
cal networks, but
can be synchro-
nized with thala-
mic activities

Neocortical rip-
ples (140–200
Hz)

All states of
vigilance, but
different power:
wake < REM
< SWS < anes-
thesia < seizure
onset zone

Intracortical
(for neocortical
ripples), depend
on gap junctions
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Appendix B

Derivations

B.1 VAE ELBO Derivation

This section is adapted from Kingma & Welling’s original paper and accompany-

ing introduction text.

We seek to maximize the marginal likelihood given as log pθ(x).

log pθ(x) = Eqψ(z|x)[log pθ(x)]

= Eqψ(z|x)

[
log

pθ(x, z)

pθ(z|x)
]

]
= Eqψ(z|x)

[
log

pθ(x, z)qψ(z|x)
qψ(z|x)pθ(z|x)

]
= Eqψ(z|x)

[
log

pθ(x, z)

qψ(z|x)

]
+ Eqψ(z|x)

[
log

qψ(z|x)
pθ(z|x)

]

The first term is the ELBO (L(θ, ψ;x)) and the second term isDKL(qψ(z|x)||pθ(z|x)),

which is the KL divergence of the approximate from the true posterior.

Since DKL(qψ(z|x)||pθ(z|x)) >= 0,

log pθ(x) >= L(θ, ψ;x) = Eqψ(z|x)[− log qψ(z|x) + log pθ(x, z=)] (B.1)
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This can be rewritten as:

L(θ, ψ;x(i)) = Eqψ(z|x(i))[log pθ(x
(i)|z)]−DKL(qψ(z|x(i))||pθ(z)) (B.2)

B.2 The likelihood calculation for Neighbor Loss

Assume datapoints traverse a 2-D space via random Gaussian walk, i.e. xt+1 is

drawn from a circular Gaussian distribution centered at xt with standard deviation

σ. The log likelihood of this function is:

log(L) = log(
n∏
t=1

1

2πσ2
exp(−(

(xt+1 − xt)
2 + (yt+1 − yt)

2

2σ2
)))

=
n∑
t=1

log(
1

2πσ2
exp(−(

(xt+1 − xt)
2 + (yt+1 − yt)

2

2σ2
)))

= −n
2
log 2π − n log σ − 1

2σ

∑
[(xt+1 − xt)

2 + (yt+1 − yt)
2]

Thus maximizing the log likelihood is equivalent to minimizing sum of the absolute

distance between each point and its neighboring point in time.
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ject 2. 2 SWS states and 2 REM states are discovered. d, Transition

diagram for HMM for medial somatosensory probe, subject 2.
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FIGURE D.1: VAE separates seizure from normal brain state in
latent representation a-c, Model architecture. For each 2-second
window, we compute EMG power and wavelet spectrogram of
LFPs, which become inputs to the variational auto-encoder (VAE).
The VAE is trained to predict the next point in time. d-e, Latent en-
codings for 24 hours of a normal (d) and undercut (e) mouse. The
undercut mouse shows many time periods with high EMG power
that correspond to epileptic events. f, Raw LFP traces from normal
and undercut mice for Wake (1-2), SWS (3-4), and REM (5-6) data.
Undercut mice show normal activity in these three states but have

additional periods of seizures (7-8).
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FIGURE D.2: VAE uncovers latent dimension of arousal a, We
learn latent dimensions from spectrograms corresponding to two
second windows of Vm. A singular latent dimension learned from
the VAE correlates with pupil dilation (r2 = 0.4, p < 10e−10). An
example two second window with low pupil dilation shows low fre-
quency fluctuations (b), while an example two second window with
high pupil dilation does not (c). d, The spectrograms corresponding
to b and c. e, The latent dimension correlates broadly with running
and pupil dilation. f, Outside of running, an example suggests a re-
lationship between the latent dimension and the derivative of pupil

dilation, which is consistent with previous patch recordings.
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FIGURE D.3: Manifold of spatial brain states a, Data is recorded
in 14 electrodes across the cortex. Each data point fed in the VAE
corresponds to data from all 14 electrodes together for the 2 second
window in time. b, Latent encodings show that 3 clusters are sep-
arated but with more smoothness corresponding to periods where
there is heterogeneity in brain states across the cortex. Each point is
colored from expert labels, with color corresponding to percent of
electrodes in Wake (Red), SWS (green) and REM (blue). A trajec-
tory of transition from SWS to REM is shown. c, The correspond-
ing trajectory from b is shown as individual electrodes in the cortex,
where each electrode is colored based on which state that electrode

is in during that time window.
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