Investigating the role of changes to the mammary gland immune microenvironment in pregnancy-induced oncoprotection

A dissertation presented by

Amritha Varshini Hanasoge Somasundara

to the

School of Biological Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Biological Sciences

at

Cold Spring Harbor Laboratory

November 2022

"...it's fine to fake it till you make it 'til you do, 'til it's true"

Taylor Swift

Summary

Pregnancy is the physiological stimulus that induces complete mammary gland development. Epidemiological, clinical, and experimental data have shown that one factor that affects the risk of developing breast cancer is pregnancy. More specifically, an early age of first pregnancy has been associated with a long-term protective effect against breast cancer development. Subsequent pregnancies can extend this protection even further. This protective effect seems to have an evolutionary root, given that even in a variety of rodent models, parity has been reported to reduce the frequency of mammary tumor development. While many hypotheses have been developed to address why post-pregnancy epithelial cells are less likely to be engaged in cancer initiation, the contribution of mammary resident immune cells in post-pregnancy cancer protection remains mostly unknown.

Mammary-resident cells of the adaptive and innate immune system play a critical role during mammary gland development. Changes to the immune microenvironment have been described to influence, and in some cases, guide pregnancy-induced mammary development. In this study, we set out to define the link between pregnancy, immune microenvironment, and oncogenesis to better understand the effect of pregnancy on breast cancer development.

We used single cell RNA-sequencing to define the diversity of epithelial and non-epithelial cells in mammary tissues from nulliparous and parous female mice. Our analysis supports the conclusion that pregnancy epigenetically reprograms mammary epithelial cells (MECs) - marked by an upregulation of immune communication signaling pathways. We identified a population of Natural Killer T-cells (NKT) that are expanded in healthy, post-involuted mammary glands, and a corresponding elevation in the expression of CD1d, an antigen presenting molecule, on the surface of MECs that has the potential to induce NKT maturation. Loss of CD1d expression or an overall lack of activated NKT cells in various mouse strains leads to increased tissue hyperplasia in response to cMyc overexpression or Brca1 loss, in a pregnancy-independent manner, pointing to a role for this immune sub-population in restricting oncogenic transformation in the post-pregnancy mammary gland. Natural killer T-cells (NKT) are a rare subset of T cells that exhibit characteristics of both innate and adaptive immune cells. Like adaptive immune cells, they express antigen specific T-cell receptors (TCR) generated by VDJ recombination, but like innate cells, they do not develop immunological memory and react rapidly to antigen exposure. This makes NKT cells uniquely capable of mounting a rapid response in response to activation by specific antigens. We used flow cytometry to assess any changes to the TCR repertoire of NKT cells and found that post-pregnancy NKT cells predominantly expressed $\gamma\delta$ -TCRs on their surface, unlike typical NKTs that express $\alpha\beta$ -TCRs, indicating a role in specialized antigen recognition.

While a loss of CD1d and activated NKT cells promotes oncogenesis in our mouse models, we observe that in post-pregnancy mice that do not develop signs of hyperplasia, the tumor-free mammary glands are enriched in NKT cells that express $\gamma\delta$ -TCRs, and the MECs have elevated CD1d on their surface. We found that by culturing healthy, pre-pregnancy mammary gland organoids with pregnancy hormones *in vitro*, we are able to increase the expression of CD1d on the MECs. By implanting these high-CD1d MECs into pregnancy naïve recipient female mice, we found that NKT cell abundance is transiently increased in the glands injected with pregnancy hormone treated organoids, compared to those injected with untreated control organoids. This points us to the potential of reprogramming MECs to exhibit post-pregnancy properties and to explore opportunities to extend pregnancy-induced protection to never-pregnant recipients in future rodent studies.

Collectively, our findings illustrate how pregnancy-induced changes modulate the communication between MECs and the immune microenvironment, and establish a causal link between pregnancy, the immune microenvironment, and mammary oncogenesis. Given the emerging role of immunotherapy in blocking cancer progression, this study sets the ground for understanding pregnancy-induced changes in the context of oncoprotection.

Acknowledgements

They say it takes a village. My village has been closer to the scale of a small metropolitan city. It would take an entire thesis to express my gratitude to everyone who has been by my side through this crazy journey, but I will give it my best shot.

First and foremost, I thank my parents, Lalitha and Somasundara Hanasoge. Even though you never understood why I wanted to spend so many years of my life in school, you continued to support me and believe in me. I cannot imagine how hard it must have been for you to let your only child move across the world to pursue her dreams. You sent me off with smiles on your faces, I cannot express in words how much that helped me in my first few months of learning to be an adult in a foreign country. Thank you for being so excited about my curiosity and indulging me since childhood. For instilling in me the core values of being a good human being and the value of hard work and dedication. For being so proud of all my little achievements and making sure I knew it. I could not have done this without you.

I am incredibly lucky to have been mentored by my research advisor, Camila dos Santos. I have made many good choices in my life, but joining Camila's lab is undoubtedly the best choice I have ever made. Not only is Camila an incredibly smart and driven scientist from whom I have learned innumerable scientific skills, she is one of the kindest and most genuine human beings I have ever known. Camila, I knew that doing a PhD would be hard, but I was definitely unprepared for the kinds of hardship I would face during these four years. I can honestly say that I may have quit if it weren't for your unwavering support and understanding. You made sure that I knew you were there during the darkest times, and continued to believe in me when I did not. Your faith in me made me want to push myself to be better, to work harder, to not let you down. You have made me not only a better scientist, but a better person. Thank you for everything, I'm really proud to have been your first grad student and I will always treasure that! Thank you also for trusting me to take care of Xuxa every now and then, it has been an absolute joy to be one of her favorite people in lab. Nothing brightens up my day more than hearing her dog collar jingling as she runs through the halls!

I am grateful to my academic mentor, Leemor Joshua-Tor, and my thesis committee members, David Spector, Lloyd Trotman, and Semir Beyaz, for their guidance, support, and critical feedback during and outside my committee meetings. I also thank my external committee member, Jose Silva, for being such a dedicated judge of this thesis.

I would not be here today without the support of the staff of the CSHL School of Biological Sciences. I am forever grateful to Alex Gann for taking a chance on me, despite my not stellar grades. I will always remember interviewing with him during recruitment. Even though he asked me about my grades, he said "...we understand that grades aren't reflective of your ability to be a good scientist. Besides, you have great recommendation letters". I want to thank Alyson, Monn, Kim, and Kim for all of the behind-the-scenes work they do every day to make sure that we can focus on research and not get lost in the details of things like planning and scheduling thesis committee meetings and completing academic requirements. I have felt very spoiled and cared for during my grad school years, and that is a very special feeling that I will carry with me for the rest of my life.

Being a member of the dos Santos lab is an unforgettable experience. I have looked forward to going to lab every day because of the extremely special group of people that I have had the privilege to work with over the last 4 years. When I joined the lab in 2019, we were a much smaller group in a smaller lab space. But even as the lab has grown and expanded over the years, the friendships and experiences I have shared in the lab have really shaped me as a person. From group Halloween costumes, ugly holiday sweaters, to karaoke nights out in the city, everything about the lab makes everyone feel included in a tightknit and highly supportive community. Mary, Sam, Chen, City, and Mike - thank you for welcoming me into the fold from day one! Even though the school insists that the students should not make decisions about which lab we join until the end of all 3 rotations, I told Sam on the second day of my rotation that I had made up my mind to join the lab (I will never live this one down). Marygrace, Sam Henry, James, Steven, Mackenzie, Deep, Dhivyaa, Lucia – all of you bring so much joy to my life, in and out of the lab! And of course, our honorary dos Santos lab members and a natural extension of the friend group over the years -Kaarina, Nim, Tania, Dennis, Percy, and Francesca, thank you for making my time in grad school memorable and so much fun! I thank Sabrina Boettcher and Nancy Bolanos for all the administrative and technical support. I am grateful beyond words for all the love and support, and much needed confidence you have all placed in me through all these years!

I thank Akshitha Sriraman, my biggest inspiration and fiercest friend. Akshitha, thank you for always being there, for never once doubting that I could do this, for always bringing out the best in me, for being the big sister I never had, and for everything that you are, exactly as you are.

I thank Janhavi Pandurangi for being my constant support system and biggest cheerleader. Janu, CSHL was your dream first. Thank you for sharing it with me, I would not be here without you. I can't wait for the day when you finally make it to this side of the pond so that I can show you around!

A big shout-out to my friend Karen Wei – you remind me to take care of myself first and help me fight my imposter syndrome. I'm excited to be able to see you more often once I'm back in the city!

One of the many special things about the CSHL-SBS is that it comes with a built-in support system in the form of classmates that you live with for at least one year. I consider myself the luckiest person alive to have found a family. Marie, Alexa, Jonathan, and Mo (Team Roxy, as we fondly call ourselves), thank you all for always being there, for your steadfast love, friendship, and loyalty, for taking care of me when I couldn't do it myself. From being trapped in the house during a blackout, and then a pandemic, nobody else will know the joy and (sometimes literal) pain of our time together. Pickles, the cutest, most clumsy little kitty in all the world, thank you for giving me a reason to take hundreds of photos that we can all look back on. I also thank my classmates and friends for all the fun times and fond memories.

Moving across the world was hard, but it would have been infinitely harder without my family on this side of the world. Shekhar chikkappa, Shalini akka, Shreya, and Leelu ajji – thank you for always making sure I knew I wasn't alone and sending me off with more home-cooked food than I could carry after every visit! Rajanna, who is now in California, for checking in, keeping me grounded, and all the love and support. I thank my family and friends back home for always wanting the best for me, and for being there for my parents. For being more excited about the things I do than I am, and for being so proud of me.

This work was completed with financial support from the CSHL School of Biological Sciences and the Bristol-Myers Squibb Fellowship.

Table of Contents

Su	ımmary	1
A	cknowledgements	3
Ta	able of Contents	8
Li	ist of Abbreviations	10
Li	ist of Figures	14
Li	ist of Tables	15
1.	Introduction	16
	 1.1 An overview of mammary gland development	17 17 19 24 esis25 30 32 34 36 39 41 45 50
2.	Parity induced changes to the mammary enithelial and immune composition	
4.	2.1 Author contributions	52
	2.2 Possible	
	 2.2 Results 2.2.1 Single cell analysis identifies changes to the transcriptional programs and immune composition of the post-pregnancy mammary gland 2.2.2 Pregnancy induces the expansion of a specific population of NKT cells in the mammar 	
	2.2.3 NK1 expansion requires CD1d expression on post-pregnancy MECs	12
3.	Pregnancy and oncoprotection in genetic models of mammary cancer	77
	3.1 Author contributions	77
	 3.2 A brief introduction to the GEMMs used in this section. 3.2.1 The CAGMYC mouse model. 3.2.2 The K5-CreERT2 Brca1^{fl/fl} p53^{-/+} (Brca1 KO) mouse model. 	77 77 78
	3.3 Results	80

	3.3.1 Lack of mammary oncogenesis is marked by NKT expansion and CD1d+ MECs in CAGMYC and Brca1 KO parous mice 80 3.3.2 Functionally active NKT cells are required to block malignant progression of post-pregnancy MECs 88
4.	Establishing an <i>in vitro</i> system to reprogram and assay pregnancy naïve MECs96
4	.1 Author contributions
4	.2 Introduction
4	4.3.1 Pregnancy hormones are the most effective inducers of CD1d expression on MECs and may increase NKT abundance <i>in vivo</i>
5.	Conclusions and Perspectives104
5	.1 Highlights
5	
6.	Experimental Procedures
6	.1 Data and Code Availability
6	2 Experimental Model and Subject Details
6	.3 Method Details
7.	References
8.	Appendix 1 – Supplementary tables
9.	Appendix 2 – List of publications

List of Abbreviations

ACT	Adoptive Cell Therapy
AR	Androgen Receptor
ATAC-seq	Assay for Transposase-Accessible Chromatin with high throughput sequencing
ATM	Ataxia Telangiectasia Mutated
BC	Breast Cancer
BCL11B	BAF Chromatin Remodeling Complex Subunit BCL11B
BLG	Beta Lactoglobulin
BM	Basement Membrane
BRCA1	BRCA1 DNA Repair Associated
BRCA2	BRCA2 DNA Repair Associated
CAF	Cancer Associated Fibroblast
CAR	Chimeric Antigen Receptor
CBX3	Chromobox 3
CCL2	C-C Motif Chemokine Ligand 2
CCL5	C-C Motif Chemokine Ligand 5
CCR5	C-C Motif Chemokine Receptor 5
CD	Cluster of Differentiation
CDX	Cell line-Derived Xenograft
CHEK2	Checkpoint Kinase 2
cMYC	MYC proto-oncogene
CNV	Copy Number Variation
CSC	Cancer Stem Cell
CTLA-4	Cytotoxic T-Lymphocyte Associated Protein 4
CXCR6	C-X-C Motif Chemokine Receptor 6
DEG	Differentially Expressed Gene
DMBA	7,12-Dimethylbenz(a)anthracene
DNA	Deoxyribonucleic Acid
DOX	Doxycycline
E2	Estrogen
ECM	Extracellular Matrix
EGFR	Epidermal Growth Factor Receptor
EGR2	Early Growth Response 2
EMT	Epithelial to Mesenchymal Transition
EPCAM	Epithelial Cell Adhesion Molecule
EPP	Estrogen, Progesterone, Prolactin
ER	Estrogen Receptor

ERK1/2	Extracellular signal Regulated Kinase 1/2
EZH2	Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit
FACS	Fluorescence Activated Cell Sorting
FAS	Fas Cell Surface Death Receptor
FOXP3	Forkhead Box P3
GATA3	Globin Transcription Factor binding protein 3
GEMM	Genetically Engineered Mouse Model
GFP	Green Fluorescent Protein
GH	Growth Hormone
GLI2/3	GLI Family Zinc Finger 2/3
GO	Gene Ontology
GSEA	Gene Set Enrichment Analysis
GVHD	Graft Versus Host Disease
GZMA	Granzyme A
GZMB	Granzyme B
H&E	Hematoxylin and eosin stain
HER2	Human Epidermal growth factor Receptor 2
Hh	Hedgehog pathway
HOX	Homeobox family
ICI	Immune checkpoint inhibition
IF	Immunofluorescence
IFN-γ	Interferon Gamma
IHC	Immunohistochemistry
IL-1β	Interleukin 1 Beta
IL-6	Interleukin 6
ITGAX	Integrin Subunit Alpha X
JAK2	Janus Kinase 2
K14/KRT14	Cytokeratin 14
K5/KRT5	Cytokeratin 5
K8/KRT8	Cytokeratin 8
KI	Knock In
KLRK1	Killer Cell Lectin Like Receptor K1
КО	Knock Out
LYPLA1	Lysophospholipase 1
MACS	Magnetic-Activated Cell Sorting
MAF	Avian Musculoaponeurotic Fibrosarcoma (MAF) Protooncogene
MAGED1	MAGE Family Member D1
MAIT	Mucosal Associated Invariant T-cells
MDSC	Myeloid Derived Suppressor Cell

MEC	Mammary Epithelial Cells
MET	Mesenchymal to Epithelial Transition
MHC	Major Histocompatibility Complex
MMPs	Matrix Metalloproteinases
MMTV	Mouse Mammary Tumor Virus
MR1	Major Histocompatibility Complex, Class I-Related
mTOR	Mechanistic Target Of Rapamycin Kinase
NK	Natural Killer cell
NKG7	Natural Killer Cell Granule Protein 7
NKT	Natural Killer T cell
OXT	Oxytocin
P4	Progesterone
p53	Tumor Protein P53
PABC	Pregnancy Associated Breast Cancer
PALB2	Partner And Localizer Of BRCA2
PARP	Poly(ADP-Ribose) Polymerase
PD-1	Programmed death-1
PD-L1	Programmed death-ligand 1
PDK4	Pyruvate Dehydrogenase Kinase 4
PDX	Patient-Derived Xenograft
PIK3CA	Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
PR	Progesterone Receptor
Prl	Prolactin
PTEN	Phosphatase And Tensin Homolog
RAG1	Recombination Activating Gene 1
RAS	Rat Sarcoma oncogene
RNA	Ribonucleic acid
RORγT	Retinoic acid receptor-related Orphan Receptor gamma 2
RSG5	Regulator of G-protein Signaling 5
scRNA-seq	Single Cell RNA Sequencing
SLUG	Snail Family Transcriptional Repressor 2
STK11	Serine/Threonine Kinase 11
TAA	Tumor Associated Antigen
TAM	Tamoxifen
TAMs	Tumor Associated Macrophages
Tbet/TBX21	T-Box Transcription Factor 21
TCR	T Cell Receptor
TEB	Terminal End Bud
TF	Transcription Factor

TGF-β	Transforming Growth Factor Beta
Th17	T helper 17 cell
TIL	Tumor Infiltrating Lymphocytes
TNBC	Triple Negative Breast Cancer
TNF-α	Tumor Necrosis Factor Alpha
TRAIL	TNF-related apoptosis-inducing ligand
T-reg	Regulatory T cell
TWIST	Twist Family Base-Helix-Loop-Helix Transcription Factor
UMAP	Uniform Manifold Approximation and Projection for Dimension Reduction
UTX	Ubiquitously transcribed tetratricopeptide repeat, X chromosome
VEGF	Vascular Endothelial Growth Factor
WAP	Whey Acidic Protein
WNT	Wingless-Type
WT	Wild-Type
ZBTB16/PLZF	Zinc Finger And BTB Domain Containing 16
ZEB1	Zinc Finger E-Box Binding Homeobox 1
α-GalCer	alpha-Galactosylceramide
α-SMA	Alpha Smooth Muscle Actin

List of Figures

Figure 1-1 Simplistic model of mammary epithelial cell differentiation hierarchy	. 18
Figure 1-2 The stages of mammary gland development.	. 20
Figure 1-3 Molecular mutations in breast cancer	. 31
Figure 1-4 Effect of pregnancy and age at first birth on breast cancer risk in humans	.36
Figure 2-1 Single cell level classification of pre- and post-pregnancy MECs	. 54
Figure 2-2 Single cell analysis identifies post-pregnancy biased epithelial cells in mammary tissue fron	n
parous female mice.	. 56
Figure 2-3 Pathway analysis of post-pregnancy biased epithelial cells indicates changes to immune	
communication signatures	. 57
Figure 2-4 Single cell analysis identifies transcriptional programs and immune cellular heterogeneity in	1
mammary tissue from parous female mice.	. 59
Figure 2-5 Characterization of pre- and post-pregnancy mammary resident immune cells	.60
Figure 2-6 Single cell analysis identifies post-pregnancy biased immune cell identity as NKT cells	.61
Figure 2-7 scRNA-seq identification of post-pregnancy NKT cells	. 63
Figure 2-8 Pregnancy induces expansion of specific populations of NKT cells	. 65
Figure 2-9 Cellular characterization of post-pregnancy mammary immune microenvironment	.66
Figure 2-10 Cellular characterization of post-pregnancy NKT cells shows altered TCR expression	. 68
Figure 2-11 The molecular signature of post-pregnancy NKT cells	.70
Figure 2-12 The epigenetic signature of post-pregnancy NKT cells.	.71
Figure 2-13 Pregnancy alters CD1d transcription and expression on the surface of MECs	.73
Figure 2-14 The effects of pregnancy in controlling CD1d expression	.74
Figure 2-15 NKT expansion depends on CD1d expression on post-pregnancy MECs.	.76
Figure 3-1 Characterization of Krt5 ^{CRE-ERT2} Brca1 ^{ko} p53 ^{het} (Brca1 KO) mouse model	.79
Figure 3-2 The effects of cMYC-overexpression on pregnancy-induced immune changes and CD1d+	
post-pregnancy MECs	. 81
Figure 3-3 Lack of mammary oncogenesis is marked by NKT expansion and CD1d+ MECs in CAGM	YC
parous female mice.	. 83
Figure 3-4 Pregnancy decreases the frequency of Brca1 KO mammary tumor development	. 84
Figure 3-5 Lack of mammary oncogenesis is marked by increased CD1d expression on MECs in Brca1	L
KO parous mammary tissue	. 86
Figure 3-6 Lack of mammary oncogenesis is marked by NKT expansion in Brca1 KO parous mammary	У
tissue.	. 87
Figure 3-7 cMYC-overexpression induces oncogenesis of post-pregnancy MECs transplanted into	
NOD/SCID mammary fatpads.	. 90
Figure 3-8 Functionally active NKT cells are required to block malignant progression of post-pregnanc	y
MECs.	. 92
Figure 3-9 Loss of CD1d expression supports the malignant transformation and oncogenesis of post-	~ -
pregnancy CAGMYC MECs.	. 95
Figure 4-1 Pregnancy hormones induce an increased CD1d expression on the surface of MECs in	~ ~
mammary organoid cultures derived from healthy Balb/C mice.	. 99
Figure 4-2 2D co-culture of primary tumor organoids with primary NKT cells is not an informative	101
system to assess changes in NKT cytotoxicity	101
Figure 4-3 3D co-culture of primary tumor organoids with primary immune cells shows increased cell	102
death caused by post-pregnancy immune cells	103

List of Tables

Table 4-1 CD1d inducing compounds used in the screen, related to Figure 4-1	98
Table 8-1 Differential gene-expression analysis (avg_log2FC) comparing selected pre- and post-	
pregnancy mammary epithelial scRNA-seq clusters, related to Figure 2-3	146
Table 8-2 Differential gene-expression analysis (avg_log2FC) comparing FACS-isolated pre- and po	st-
pregnancy luminal mammary epithelial cells, related to Figure 2-3	156
Table 8-3 Differential gene-expression analysis (log2FoldChange) comparing FACS-isolated pre- and	d
post-pregnancy mammary resident NKT cells, related to Figure 2-11.	157

1. Introduction

Breast cancer is the most commonly diagnosed cancer in women, with one in eight women being affected during their lifetime. Breast cancer is not a single disease, given its distinct histopathology, genomic variations, and clinical outcomes. Although a lot has been understood about the biology of breast cancer, and effective therapies exist for specific subtypes of the disease, we still lack a clear picture for when or whether an individual will develop breast cancer. Moreover, targeted therapies for the more aggressive subtypes such as luminal B and triple negative breast cancer (TNBC) have not yet been developed (Collins et al. 2015). Therefore, there must be an increase in efforts to define better risk prediction models and additional and effective therapies for the disease.

There are several factors that may influence breast cancer risk. These include genetic predisposition, age, race, ethnicity, age of menarche and menopause, reproductive history, alcohol consumption, weight and physical activity, hormone therapy, and exposure to radiation (CDCBreastCancer 2022).

This thesis focused on pregnancy as a mediator of sustained changes to the cells of the mammary gland, particularly the immune compartment, and their association with cancer inhibition. In the introduction, I will outline the normal developmental process that the mammary gland goes through and the signals that cause it to reach its fully differentiated state, and how changes to normal processes can promote tumorigenesis. I will briefly describe the work that has been done to understand the stromal components of the mammary gland during various developmental stages. Next, I will go over the commonly used *in vivo* and *in vitro* models to study normal and cancerous mammary gland development. Finally, I will describe the limited ways in which immunotherapy and engineered immune cells have been used to treat breast cancer in the clinic and challenges that remain in order to make this treatment more widely available.

1.1 An overview of mammary gland development

The mammary gland is composed of a variety of cell types – epithelial cells, immune cells, fibroblasts, and adipocytes. We will briefly discuss the role of each of these cell types in mammary gland development.

1.1.1 The hierarchy of Mammary Epithelial Cell development

The epithelial cells of the mammary gland can be subdivided into cell types that have different functions but make up the mammary tree together (**Fig. 1-1**). Broadly, the two main epithelial cell compartments in the mammary gland are the luminal compartment (the inner layer) and the basal compartment (the outer layer) that is in direct contact with the basement membrane.

Recent studies that use lineage tracing and scRNA-seq approaches have demonstrated that the luminal and basal compartments are not solely maintained by one common pool of bipotential mammary stem cells (MaSC), but also have lineage-restricted stem and progenitor cells from embryonic development through puberty (Pal et al. 2017; Bach et al. 2017; Cristea and Polyak 2018).

Luminal cells can be further subdivided into progenitor, alveolar, and ductal cells. Luminal progenitor cells have the ability to give rise to differentiated cells. Alveolar cells are predominantly responsible for the production of milk during lactation. Ductal cells form the milk ducts that carry milk to the nipples in response to the suckling stimulus from offspring. There is also a lineage of hormone receptor (ER) positive cells in the luminal compartment that is distinct from ER negative alveolar and ductal cells (Fu et al. 2020; Tiede and Kang 2011).

The basal progenitor gives rise to highly contractile myoepithelial cells which guide milk from the lumen, and are also involved in deposition and remodeling of the basement membrane (Fu et al. 2020; Tiede and Kang 2011).

Figure 1-1 Simplistic model of mammary epithelial cell differentiation hierarchy.

A. Schematic outline of a ductal-alveolar unit with location of the various cell types indicated.

B. A putative map of mammary epithelial cell differentiation. A multipotent stem cell present during development gives rise to luminal epithelial and basal stem cells, which further divide into luminal and basal progenitors during puberty. Ductal and alveolar hormone-receptor negative progenitors are distinct lineages and there is also a separate hormone receptor positive luminal lineage.

Figure from: Cristea and Polyak., 2018, Nature Communications. Image used under a Creative Commons 4.0 International License. <u>http://creativecommons.org/licenses/by/4.0/</u>

1.1.2 The stages of mammary gland development

Mammary gland development (Fig. 1-2) mainly occurs postnatally, even though it sees its beginnings in the embryonic stages.

Embryonic development

Embryonic development of the mammary gland is initiated during mid-gestation. In mice, the primary species that has been used as the model system to study mammary gland development, mammary gland formation begins at embryonic day 10 (E10) (Macias and Hinck 2012; Slepicka et al. 2021). Thick bands of ectodermal cells form bilateral and vertical mammary lines at E11.25 whereupon clumps of ectoderm (placodes) bloom along the mammary line at day E11.75. At day E12.5 the placodes protrude into the mesoderm, forming an early mammary bud surrounded by a basement membrane (BM) and the first traces of a mammary mesenchyme (fat pad). Between E13 and E14, the bud will give rise to mammary bulbs with an ectodermal stalk that will elongate into a sprout surrounded by the mesenchyme at E15.5. Lumen formation commences at day E17-18, involving the programmed death of ectodermal cells localized at the center of the mammary branches.

Members of the fibroblast growth factor (FGF) and the wingless-related integration site (WNT) protein families govern signaling in mammary embryonic tissues, and they regulate transcription factors (TFs) from the Homeobox gene family (HOX), GATA3 (GATA binding protein 3), and the T-box family (TBX), which are intermittently expressed either in the endoderm or mesoderm (Carroll and Capecchi 2015; Asselin-Labat et al. 2007; Davenport et al. 2003).

Other regulators of mammary embryogenesis include TFs that are part of the Hedgehog (Hh) pathway. Through a signaling cascade with members of the Hh network, Gli3 activates gene-specific transcription that controls bud formation (Lee et al. 2013a; Tickle and Jung 2016; Robinson 2007). Gli2 functions in ductal branching through its localization in the tissue surrounding mammary branches (stroma) from embryogenesis to adulthood, but it becomes stromal and epithelial during pregnancy and lactation (Hatsell and Cowin 2006).

Figure 1-2 The stages of mammary gland development.

Schematic illustration of mammary gland developmental stages, showing fetal, puberty, estrous cycles, pregnancy, lactation and involution (from left to right). In puberty, green buds represent TEBs. Mammary alveoli are shown as orange flowers in estrous cycles, pregnancy and lactation. In lactation, the milk is represented as yellow sap flowing from the alveoli (flowers) to the ducts (branches). During involution, the regression of the mammary tissue is depicted with falling dead flowers and branches into the background, which portrays the fat pad. The main molecular regulators of each developmental stage are highlighted in the grey squares.

Figure from: Slepicka et al., 2021, Seminars in Cell and Developmental Biology

Pubertal development

During embryogenesis, maternal hormones provide the initial stimuli to the rudimentary mammary gland for ductal development. However, after birth, cessation of maternal signaling reduces ductal and branching genesis in the postnatal mammary gland. This activity resumes with the onset of puberty, a stage marked by the production of female sexual hormones, which will complete mammary morphogenesis and prepare the gland for milk production in the event of pregnancy.

Puberty varies widely, from a few weeks to several years post-birth, in different mammalian species (5 weeks in mice and 9-18 years in humans). The onset of puberty is triggered by the increase in gonadotropin levels that lead to the secretion of ovarian hormones, mainly estrogen (E2) and progesterone (P4). Peak levels of E2 production are between the follicular phase and ovulation and, depending on the vertebrate, E2 synthesis occurs every 2-4 days in mice and once every month in humans (Fata et al. 2001).

Estrous cycles in adulthood

In the pubertal and adult female, the mammary gland undergoes developmental modifications tightly correlated with ovarian/uterine reproductive cyclical repetitions (4-5 days in mice and 26-32 days in humans). The rapid increase in mammary morphogenesis through branch initiation, invasion of the fat pad, and ductal elongation, transforms a pre-formed, rudimentary mammary epithelium into an extensive ductal network. Hormonal signaling promotes differentiation and proliferation of Mammary epithelial cells (MECs), culminating in an extensively branched mammary morphology (Robinson et al. 1995).

Overall, several molecular pathways and factors act during puberty to promote mammary ductal maturation, and these pathways remain active throughout adulthood. As each reproductive cycle promotes lobulo-alveologenesis and branching, we speculate that the constant promotion of mammary cell differentiation and proliferation may induce tumorigenesis over time or otherwise elicit oncogenic pathways that are dormant in the first years of adulthood.

21

Pregnancy and Lactation

A complete pregnancy cycle involves gestation, lactation, and involution and, collectively represents the second postnatal stage of mammary gland development, which prepares the gland to produce nourishment to support the offspring.

During pregnancy, Progesterone (P4) and prolactin (Prl) orchestrate the differentiation of MECs into specialized alveolar structures, which are capable of synthesizing and secreting milk during lactation. Like its function during puberty, the main role of P4 during pregnancy is to promote extensive ductal branching but, in pregnancy, P4 signals substantially increase the number of alveolar structures to promote a lactation-competent gland. During the early stages of pregnancy, markedly increased Prl levels play a role in maintaining the *corpus luteum* (a hormone secreting structure in the ovary, responsible for the production of P4), expression of E2 and P4, and in inducing mammary morphogenesis (Ormandy et al. 1997a, 1997b).

The release of oxytocin (peptide and neuropeptide hormone secreted by the hypothalamus, OXT) is one of the factors that control parturition (the act of giving birth) and lactation. OXT controls calcium uptake and contractibility of myoepithelial cells and induces mechanical constriction of luminal alveolar cells to eject milk droplets into the lumen of alveoli (Moore et al. 1987).

While the placental hormones regulate Prl function mid-pregnancy, Prl levels increase during lactation. Prl is mainly expressed by lactotrophic cells in the pituitary gland and released into the bloodstream, but it is also expressed locally in several tissues, including by MECs in the mammary glands. Late during gestation and early during lactation, formation of tight junctions during luminal cell specification controls cellular polarity, which is crucial for directional secretion of milk droplets into the lumen (Rodriguez-Boulan and Macara 2014), which is principally coordinated by Prl/Jak2 modulation of Erk1/2 function (Liu et al. 2015).

Involution

Offspring weaning removes the suckling stimulus and causes milk stasis, which triggers a series of remodeling processes leading to regression of mammary tissue to a pre-pregnancy state, also known as

involution (**Fig. 1-2**). In humans involution lasts an average of 24 months, while in rodents it lasts for ~10-20 days and encompasses two main phases, the reversible phase (days 0-2 of involution) and the irreversible phase (days 8-18) (Jindal et al. 2014; Sharp et al. 2007).

The reversible phase is characterized by reduced milk production, milk absorption, epithelial cell shedding, alveolar cell death, phagocytosis of apoptotic cells by non-specialized epithelial cells, leukocyte infiltration, and breakdown of tight junctions. As the name implies, resumption of suckling and the suckling stimulus restores lactation through the release of accumulated milk. During lactation, the mammary gland may commence reversible involution after a few hours of milk accumulation, which restores milk-producing cells and avoids over production of milk.

During the irreversible phase (days 2-6), the mammary extracellular matrix (ECM) undergoes substantial remodeling, with the activation of wound healing processes, via increased activity of matrix metalloproteases (MMPs), deposition of collagen and BM, in addition to changes in many signaling pathways (Green and Lund 2005). Macrophages and non-professional phagocytic MECs clear the remainder of the cellular debris, resulting in a second wave of inflammation and immune cell recruitment (Stein et al. 2004; Monks et al. 2005).

The ECM also plays a role in immune cell recruitment and activation, as well as broader immune system functions, as collagen and laminin fragments may also induce an influx of macrophages and neutrophils to the involuting gland (Jena et al. 2019). Accordingly, TGF- β regulates MEC cell death and phagocytosis, and helps in the maintenance of ECM integrity, thus also playing a role during the final stages of involution (Xu et al. 2009; Pang et al. 2016). Signaling pathways and the high cell-turnover modulate mammary involution, and they also promote an increase in self-antigen reactions, creating an immune tolerant environment and a mucosal barrier. Increased numbers of ROR γ T⁺ FoxP3⁺ CD4⁺ T regulatory cells, dendritic cells, and memory Th17-Treg cells are observed during involution. The immune environment then reverts to its nulliparous state when involution comes to an end (Betts et al. 2018).

1.1.3 Mammary glands retain a memory of pregnancy

Pregnancy brings about many changes in the mammary gland, some transient and some more permanent, and these can influence breast cancer risk. The protective effect of pregnancy on breast cancer has been hypothesized to involve both cell non-autonomous and cell autonomous mechanisms. The cell non-autonomous changes likely involve persistent changes in hormone levels and the stromal composition of the mammary gland post-pregnancy (Thordarson et al. 1995; Schedin et al. 2004). Reduced levels of prolactin (PRL) and growth hormone (GH) are observed post-pregnancy, and in studies investigating the effects of hormone levels, elevated PRL and GH have been associated with an increased incidence of mammary tumorigenesis (Harvey 2012). The stromal composition including in the extracellular matrix (ECM) and collagen organization are altered by pregnancy, which has been hypothesized to reduce tumor growth and invasion (Maller et al. 2013).

Cell autonomous changes brought about by pregnancy that have been implicated in breast cancer protection include changes in the differentiation and alteration in cell fates of populations of mammary epithelial cells (MEC). After involution, even though the physiological state of the mammary gland goes back to its pre-pregnant state, there are several changes that persist. This includes a reduction in the rate of proliferation and an increased ability to repair DNA damage (Barton et al. 2014). It has been hypothesized that pregnancy induced terminal differentiation removes cells prone to become cancerous and hence reduces the risk of developing breast cancer (Meier-Abt and Bentires-Alj 2014). Pregnancy associated hormonal changes have also been hypothesized to change the developmental fate of certain MEC subpopulations by causing persistent changes to signaling pathways and other regulatory molecules that control the "stemness" and proliferation potential of mammary progenitor cells. The Wnt/Notch signaling, TGF β signaling pathways, and the cell cycle regulator p27 have been implicated in this cell fate alteration to CD44⁺/CD24⁻/CD10⁻ breast progenitor cells, leading to a downregulation of pro-tumorigenic pathways (Meier-Abt et al. 2013).

The terminal differentiation of the mammary gland also brings with it changes in gene regulation. Cells in the post-pregnant mammary gland show a higher content of heterochromatin (more condensed) as compared to cells in the pre-pregnant gland which contain mostly euchromatin. This is thought to be due to the lack of terminal differentiation of the cells in the pre-pregnant gland (Russo et al. 2012). The more differentiated post-pregnant cells are more resistant to transformation into cancer cells. A parity induced genomic signature was described in post-pregnancy MECs which provides clues to the mechanism of pregnancy induced protection against tumorigenesis (Blakely et al. 2006). Post-pregnancy MECs show an upregulation of genes like *EZH2, GATA3,* and *CBX3* which are involved in gene silencing by chromatin condensation, a feature seen in the parous mammary gland (Russo et al. 2012).

Pregnancy has been found to permanently alter the epigenetic landscape and induce long term changes in the breast tissue (Choudhury et al. 2013; Blakely et al. 2006). An epigenetic memory of pregnancy has been shown to persist in the mammary gland, allowing the gland to react quicker and more efficiently to subsequent pregnancies (Dos Santos et al. 2015). These changes have been shown to affect cMyc driven oncogenesis – post-pregnancy MECs resist oncogenesis in response to cMyc overexpression. This has been linked to reduced H3K27ac activation marks in cMyc enhancer regions that persist post-pregnancy (Feigman et al. 2020).

1.1.4 The role of the tissue microenvironment in mammary gland development and oncogenesis

The microenvironment surrounding mammary tissue plays a pivotal role in the gland development, predominantly via regulation of epithelial-to-mesenchymal transition (EMT), during which epithelial cells lose cell polarity and cell adhesion to become mesenchymal cells with migration and invasion properties. Both EMT and mesenchymal-epithelial transition (MET), the reverse of EMT, are associated with normal mammary development – as with the placodes during embryogenesis, and with cancer - as mammary tumorinitiating cells acquire stem-cell properties through EMT (Creighton et al. 2009; Ye et al. 2015). EMTinducing transcription factors (i.e. Zeb1, Slug, Twist) have been detected in cells at terminal end buds (TEBs) during puberty, and Wnt and transforming growth factor beta (TGF- β) signaling pathways in TEBs have also been reported as regulators of EMT (Nassour et al. 2012). The stroma of the mammary gland is made up of several cell types – adipocytes, fibroblasts, vascular and lymphatic cells, and immune cells. The role of each of these in the normal and oncogenic mammary gland development is described in this section.

Adipocytes

The mammary stroma is largely composed of fat-filled adipocytes that make up the mammary fat pad, into which the mammary epithelial tree grows in response to previously described signals. In addition to providing structural support for the epithelium, adipocytes also serve an endocrine function in the mammary gland. They secrete vascular endothelial growth factor (VEGF), which points to their role in regulating angiogenesis in the mammary gland. They are thought to be involved in regulating epithelial growth and function, as well as cell to cell communication in the mammary gland (Gregor et al. 2013; Hovey and Aimo 2010).

An increase in adiposity of the mammary gland associated with obesity is considered an independent risk factor for breast cancer. Cancer-associated adipocytes can release inflammatory factors such as CCL2, CCL5, IL-1 β , IL-6, TNF- α , VEGF, and leptin, that can promote the progression and metastatic potential of breast cancer (Wu et al. 2019a; Fujisaki et al. 2015; Dirat et al. 2011; D'Esposito et al. 2016). Mature adipocytes have been shown to have elevated expression of PD-L1, which inhibits the anti-tumor function of CD8+ T-cells (Wu et al. 2019a, 2018).

Fibroblasts

Fibroblasts communicate with the mammary epithelium either by direct cell-cell contact or by secreting various growth factors and proteases and have been implicated in having a role in regulating the survival and morphogenesis of epithelial cells in the fat pad (Liu et al. 2012; Makarem et al. 2013; Wang and Kaplan 2012; Howard and Lu 2014). They also secrete the components that make up the extracellular matrix (ECM), such as collagens, proteoglycans, and fibronectin. Intralobular fibroblasts regulate the expression of TGF- β 1 and α -SMA, which is similar to the expression profile of tumor stroma. It has been

suggested that these act as a "reservoir" of cancer-associated fibroblasts (CAFs) (Avagliano et al. 2020; Morsing et al. 2016).

Fibroblasts have been thus implicated in regulating oncogenesis by altering the composition or density of the ECM (Lühr et al. 2012), which can support cancer cell migration, invasion, and survival in circulation – all key processes in the metastatic cascade (Hill et al. 2020; Ao et al. 2015). The role of CAFs in solid tumors is a widely studied topic, but is beyond the scope of this dissertation and will not be further elaborated upon.

Vascular and lymphatic networks

The mammary fat pad has an extensive network of vascular and lymphatic networks that are formed during pubertal development. Lymphangiogenesis is driven by the secretion of VEGF-C and/or VEGF-D by the myoepithelial cells and macrophages (Betterman et al. 2012). While the lymphatic vasculature remains relatively stable in adults, inflammation caused by either immune cells or in the tumor microenvironment can induce excess production of VEGF-C and VEGF-D, which increase lymph flow by dilating the vasculature and allowing infiltration of invading tumor cells. Lymphatic networks have thus been shown to be involved in metastatic spread by numerous studies, and breast cancer metastasis in particular (Schoppmann et al. 2004; Fisher et al. 1983; Pepper et al. 2000; Betterman et al. 2012; Stacker et al. 2001; Skobe et al. 2001; Ran et al. 2010).

Immune cells

Immune cells, including macrophages, mast cells, and eosinophils, are involved in various stages of mammary gland development. At puberty, they regulate ductal elongation and branching morphogenesis and mediate the invasion of the branching epithelial tips into the fat pad (Gouon-Evans et al. 2000; Lilla and Werb 2010). CD4+ T-helper cells guide lineage commitment and differentiation of MECs (Plaks et al. 2015). During pregnancy, they are involved in regulating the differentiation of epithelial cells and the development of the alveolar structures required for milk production (Pollard and Hennighausen 1994).

During lactation, secretory immune cells are recruited to the mammary gland and these cells produce immunoglobulins that are passed on to the offspring through the milk (Bourges et al. 2008). Finally, during involution, macrophages provide growth factors and help clear the excess ducts and remaining milk particles to return the mammary gland to its pre-pregnancy architecture (Dawson et al. 2020; Hitchcock et al. 2020; Plaks et al. 2015; Rahat et al. 2016; Stewart et al. 2019; Wang et al. 2020; O'Brien et al. 2010).

IFN- γ is a cytokine that is secreted by and can activate more than one type of cytotoxic immune cell. MECs have been shown to directly respond to interferon- γ (IFN- γ) secreted by CD4+ T cells, leading to changes in luminal cell differentiation (Plaks et al. 2015). This, in addition to several other studies on Tcell effector cytokines (Chan et al. 2014; Khaled et al. 2007), lends support to the idea that immune cells can directly regulate MECs. In addition, there are likely a variety of other cytokines/secreted factors involved in the epithelial-immune communication in normal/cancerous tissue yet to be identified.

Changes that impact immune cell function and abundance can also influence the development and progression of mammary oncogenesis (Bach et al. 2021; Ibrahim et al. 2020). Immune surveillance and communication in the mammary gland are critical to post-pregnancy mammary tissue homeostasis, particularly as part of mammary reconstruction during post-partum involution, and have been suggested to influence mammary tumor progression (Lyons et al. 2011). For example, T-cell activity is suppressed by the infiltration of involution-associated macrophages, an immune reaction that may also induce mammary tumorigenesis (Martinson et al. 2015; Freire-de-Lima et al. 2006; Guo et al. 2017; Fornetti et al. 2012; O'Brien et al. 2010).

Conversely, cell-autonomous processes in MECs contribute to pregnancy-induced breast cancer protection, a lasting effect that decreases the risk of breast cancer by ~30% in rodents and humans (Medina 2009; Britt et al. 2007; Terry et al. 2018). For example, p53 function is critical for blocking mammary tumor development in murine and human MECs, with a complete loss of p53 in post-pregnancy MECs promoting tumor initiation (Sivaraman et al. 2001; Medina and Kittrell 2003). Epigenetic-mediated alterations of post-pregnant MECs have been shown to interfere with the transcriptional output of cMyc,

which suppressed mammary oncogenesis via oncogene-induced senescence (Feigman et al. 2020). Given that oncogene-induced senescence signals influence the immune system, a link between normal pregnancyinduced mammary development, the immune microenvironment, and oncogenesis needs to be addressed to fully understand the effects of pregnancy on breast cancer development.

1.2 Breast cancer

Breast cancer (BC) is not a single disease, but a heterogeneous group of diseases with each subtype having its own tumorigenesis pathways and disease presentation. Breast cancer tumors (like all tumors) are made up of many cell types, and there is heterogeneity in the cells of the tumor tissue. Tumors are made up of variable proportions of proliferative malignant cells, stromal cells, and immune cells, and all of these have been hypothesized to play a variety of roles in tumor heterogeneity.

The exact mechanism that initiates breast cancer remains unknown, but there has been extensive effort in the field to characterize the molecular events that cause abnormal development that lead to cancer development and progression over time. The prevailing theory is the clonal evolution model, where mutations accumulate over time and the cells with mutations and epigenetic modifications that provide them with a fitness advantage survive and evolve into cancer initiating cells (or cancer stem cells). Furthermore, molecularly, breast cancer progression has been linked to ER expression which determines tumor grade and proliferation (discussed in detail in section 1.2.1). There are gains, losses, and amplifications of chromosomal regions of genes that are associated with the ER phenotype and the HER2 phenotype (Ellis et al. 2012; Lopez-Garcia et al. 2010; Harbeck et al. 2019).

The most frequent somatically mutated and/or amplified genes in tumor cells are *TP53* (41% of tumors), *PIK3CA* (30%), *MYC* (20%), *PTEN* (16%), *CCND1* (16%), *ERBB2* (13%), *FGFR1* (11%) and *GATA3* (10%) (**Fig. 1-3**) (Nik-Zainal et al. 2016). These genes control processes such as the cell cycle, proliferation, apoptosis, and inhibiting oncogenic pathways. Most breast cancers are caused by dysregulation of more than one of these genes working cooperatively.

Even though hereditary breast cancers are less common (5-10% of all diagnosed cases) than those caused by somatic mutations acquired in the breast tissue, they are a major risk factor because of the high penetrance of the disease in carriers (Godet and Gilkes 2017).

Mutations in the *BRCA1* and *BRCA2* genes have been widely studied and well described as a significant risk factor in carriers. It is estimated that 7 in 10 women with a *BRCA1* or *BRCA2* mutation will develop breast cancer by the age of 80 (Godet and Gilkes 2017; Chen and Parmigiani 2007).

Other, less common, mutations can also increase the risk of breast cancer, including *ATM*, *TP53*, *CHEK2*, *PTEN*, *STK11*, and *PALB2* (Renwick et al. 2006; Zhang et al. 1998; Walsh et al. 2006; Lynch et al. 1997; Boardman et al. 1998; Rahman et al. 2007). Still, not all women with genetic or other predisposition factors will develop breast cancer.

Classification of BC into subtypes is based on the presence or absence of established biomarkers such as estrogen receptor (ER), progesterone receptor (PR), and the overexpression of the HER2 (human epidermal growth factor receptor 2) oncogene. These features, along with histopathology, are used to divide BC into luminal A, B, and B-like, HER2+, and basal (triple negative) subtypes. Molecular classification of BC not only helps inform patient prognosis, but also in predicting therapy response and in developing treatment strategies (Sokolova et al. 2022; Dai et al. 2016).

Figure 1-3 Molecular mutations in breast cancer.

The Cancer Genome Atlas data on breast tumor DNA copy number and somatic mutations were used to identify the frequency of each genetic alteration across 792 patients with breast cancer (all subtypes). Each gene is shaded according to the overall frequency of alteration. Orange indicates a high level of amplification and/or likely gain-of-function mutations; blue represents homozygous deletions and/or likely loss-of-function mutations.

Figure from: Harbeck et al., 2019, Nature Reviews Disease Primers. Image used with publisher's permission (License # 5447821165732).

1.2.1 Molecular subtypes of breast cancer

Hormone receptor positive BC

Patients with ER+ and/or PR+ cancers (i.e. hormone receptor positive) are responsive to treatment with hormonal therapy (i.e. ER inhibitors such as tamoxifen or aromatase inhibitors). Hormone receptor positive BCs are associated with mutations in *BRCA2*, *PALB2*, *ATM*, and *CHEK2* (Breast Cancer Association Consortium et al. 2022; Sokolova et al. 2022; Waddell et al. 2010). Luminal A, B, and B-like are all classified as being hormone receptor positive. Chemotherapy is generally omitted in patients with luminal A tumors, but in all hormone receptor positive BCs, the use of chemotherapy is guided by the assessment of the risk of recurrence based on markers such as Ki-67 expression (Harbeck et al. 2019).

Luminal A breast cancers:

ER+ and PR+, but HER2 negative. Luminal A breast cancers have low levels of Ki67 expression, and tend to be slow-growing, lower grade, and have better patient outcomes. The most frequently mutated genes in luminal A cancers are *PIK3CA*, *GATA3*, *MAP3K1*, and *TP53* (Ciriello et al. 2013; Cancer Genome Atlas Network 2012; Banerji et al. 2012).

Luminal B and B-like breast cancers:

Luminal B BCs are ER+ and HER2 negative, and either PR- or have high levels of Ki-67, hence more proliferative than Luminal A.

Luminal B-like BCs are also ER+ and HER2 negative, but can either be PR+ or PR-, and can have any level of Ki67 expression.

Luminal B/B-like cancers grow faster than Luminal A, and have a slightly worse prognosis. The most frequently mutated genes in luminal B and B-like cancers are *PIK3CA*, *TP53*, *GATA3*, *CDH1*, *MAP3K1*, *RUNX1*, and *PTEN* (Ciriello et al. 2013; Cancer Genome Atlas Network 2012; Banerji et al. 2012).

HER2-positive BC

ER- and PR-, but HER2-positive. These grow faster than luminal cancers, and can have a worse prognosis but are able to be treated with HER2 targeted therapies. HER2+ cancers can be targeted with a small molecule inhibitor (Lapatinib) or monoclonal antibodies (Trastuzumab, Pertuzumab). *TP53* pathogenic variants and *CHEK2* variants have been associated with HER2+ cancers (Breast Cancer Association Consortium et al. 2022; Melhem-Bertrandt et al. 2012; Wilson et al. 2010).

Triple Negative BC (TNBC)

A small proportion of breast cancers stain negative for ER, PR, and HER2, and these are classified as triple negative breast cancers (TNBC). A majority of TNBCs present with a more basal phenotype, which is more aggressive than luminal cancers, and therapy options have more limited efficacy (Foulkes et al. 2003; Sønderstrup et al. 2019; Lakhani et al. 2005). Chemotherapy is the standard for TNBC, typically consisting of an anthracycline and a taxane, and a platinum compound may be added for improved overall survival, though it leads to increased hematological toxicity. More recently, the use of PARP inhibitors (olaparib or talazoparib) in combination with other chemotherapy has shown promise in improving the survival and quality of life for people with TNBC (Harbeck et al. 2019).

BRCA1 associated breast cancers are very commonly linked with TNBC. More than 60% of *BRCA1* mutation associated tumors are triple-negative, and TNBC has been shown to be predictive of *BRCA1* mutation status. Additional genes involved in DNA damage repair have been associated with TNBC, including variants of *BRCA2*, *PALB2*, *RAD51C*, *RAD51D*, and *BARD1* (Heikkinen et al. 2009; Breast Cancer Association Consortium et al. 2022).
1.2.2 Breast cancer cell of origin and tumor heterogeneity

Each tumor subtype has been hypothesized to have a different cell of origin which also correlates with clinical outcomes. These subtypes fit into the broader grouping of "basal" or "luminal" types, according to their similarities to the corresponding normal MECs. In other words, basal-type breast cancers express high levels of basal cell markers (Krt5/6, Krt14, Krt17). Luminal-type breast cancers express luminal markers (ER α , Krt8/18, GATA 3-binding protein) (Sørlie et al. 2003; Chaffer and Weinberg 2010). It was thought that each lineage gives rise to its own subtype of breast cancers – basal cancers arise from transformed basal progenitors and luminal cancers arise from transformed luminal progenitors. However, several studies have shown that this is not always the case.

BRCA1 mutations greatly increase the chance of developing a basal-type breast carcinoma. However, in a mouse model of *Brca1* loss driven by the *Blg* promoter (hence MEC restricted), a luminal ER-progenitor has been identified as the cell-of-origin, even though it formed basal-like tumors (Molyneux et al. 2010; Lim et al. 2009; Chaffer and Weinberg 2010). This suggests that the cell-of-origin may have the ability to dedifferentiate into a different progenitor cell type, and thus have the ability to give rise to basal tumors.

The plasticity of tumor cells and their ability to self-renew is another factor that contributes to tumor heterogeneity. Cells with self-renewal capabilities are also called "cancer stem cells" (CSCs). CSCs have the ability to differentiate into cell types of the parental tissue, but differentiated cells in tumors also have the ability to dedifferentiate. Oncogenes may be a driving factor in this process, as shown by studies using *PIK3CA* mutant basal and luminal differentiated cells where they dedifferentiate into multipotent stem-like cells (Koren et al. 2015; Van Keymeulen et al. 2015). Though the mechanism of this plasticity is not yet understood, the process of EMT could be involved, since basal-like cancers express several EMT markers (Skibinski and Kuperwasser 2015; Guo et al. 2012).

Clonal diversity in tumor cells adds another layer of heterogeneity to the tumor tissue. Genetic evolution, where tumor cells that have acquired mutations that provide them with a survival benefit expand into larger sub-clones, has been attributed as a source for tumor heterogeneity for many years (Nowell 1976;

Kreso and Dick 2014; Marusyk and Polyak 2010). Recent studies using single cell RNA-seq have shown that TNBC tumors have multiple cancer and normal cell types. Signatures derived from bulk analyses thus do not accurately represent the properties and behavior of breast cancers and may be the reason why these signatures have not been useful as diagnostic tools for TNBC (Karaayvaz et al. 2018; Samocha et al. 2019). There are also cell-to-cell differences in copy number variation that is distributed across clones within tumors, and this can significantly change gene expression levels since CNVs cause large scale expression differences in multiple genes in the amplified regions (Funnell et al. 2022).

It is clear that tumor heterogeneity is caused by interplay between a variety of processes. It is important to understand the ramifications of heterogeneity on response to therapies over a long term so that we may develop better, long-lasting treatments.

1.2.3 Pregnancy and breast cancer

Epidemiological, clinical, and experimental data have shown that one of the factors that affects the risk of developing breast cancer is pregnancy (Rosner et al. 1994; Schedin 2006). A pregnancy cycle causes alterations in the metabolism, gene expression, epigenome profiles, and proliferation of MECs. These changes have been shown to significantly alter the risk of breast cancer development. The age and duration of the first pregnancy, as well as the number of pregnancies a woman goes through have all been shown to alter the overall risk of breast cancer development (MacMahon et al. 1970; Albrektsen et al. 2005; Wohlfahrt and Melbye 2001). Induced abortions and other pregnancies of short durations have been shown to not affect breast cancer risk (Melbye et al. 1997; Beral et al. 2004).

TRENDS in Molecular Medicine

Figure 1-4 Effect of pregnancy and age at first birth on breast cancer risk in humans.

Schematic illustration demonstrating that: (i) early pregnancy decreases breast cancer risk in the long term; (ii) the breast cancer protective effect of pregnancy is greater the earlier the pregnancy has occurred; (iii) pregnancy leads to a transient increase in breast cancer risk following parturition; and (iv) pregnancyassociated increase in breast cancer risk becomes more pronounced with increasing age at first pregnancy. The figure represents a qualitative summary adapted from several epidemiological studies and highlights the principal relationship between age at first pregnancy and breast cancer risk.

Figure from: Meier-Abt and Bentires-Alj., 2014, Trends in Molecular Medicine. Image used with publisher's permission (License # 5438410815739).

Pregnancy provides a long-term protective effect against breast cancer development in women who complete their first full term pregnancy in their late teens to early twenties (**Fig. 1-4**) (MacMahon et al. 1970; Albrektsen et al. 2005). Subsequent pregnancies can extend this protection even further (Kelsey et al. 1993). However, the protection against breast cancer reaches the same levels as observed in nulliparous women for women whose first full-term pregnancy occurs after the age of 30, increasing further with age (MacMahon et al. 1970; Meier-Abt and Bentires-Alj 2014). This protective effect seems to have an evolutionary root, given that even in rodent models of chemically induced carcinogenesis, parity has been reported to reduce the frequency of mammary tumor development (Russo et al. 2008; Russo and Russo 1996; Sinha et al. 1988; Guzman et al. 1999). A recent retrospective study identified that the minimal length of 34 weeks of gestation is required to confer substantial reduction in breast cancer risk (Husby et al. 2018). They also showed that any subsequent pregnancies at an early maternal age provide additive protection and this is not restricted to the first pregnancy.

Lactation and breastfeeding have been reported to provide a protective effect against breast cancer, especially in the case of hormone receptor negative cancers (Lord et al. 2008; Islami et al. 2015). The number of pregnancies did not affect risk in cases with early age at first birth (< 25 years), whereas in the cases of late age at first birth, multiple pregnancies and breastfeeding cycles incrementally provided protection against breast cancer risk (Stordal 2022). The exact reasons for how and why breastfeeding can provide oncoprotection remain unknown, but it has been theorized that there could be changes in the population of breast cancer stem cells and differentiation properties associated with extended lactation. A slower, more gradual process of involution might also be beneficial in reducing the likelihood of creating a tumor supportive niche due to the inflammatory process of involution (Kobayashi et al. 2012).

While it has been widely accepted that an early full-term pregnancy reduces the long-term risk of developing breast cancer, there is an increase in short-term risk (until 5 years after giving birth) (**Fig. 1-4**). This is known as pregnancy associated breast cancer (PABC), and is independent of factors such as age, race, and number of pregnancies (MacMahon et al. 1970; Albrektsen et al. 2005; Meier-Abt and Bentires-Alj 2014; Shakhar et al. 2007; Slepicka et al. 2019). The tumor subtypes diagnosed in PABC tend to be

more aggressive – luminal B-like and triple negative breast cancers (TNBC) are more frequently diagnosed in women within the first 5 years post-pregnancy (Collins et al. 2015; Zhang et al. 2021; Allouch et al. 2020; Pilewskie et al. 2012). The stromal component of the mammary gland plays a crucial role in driving disease progression. Current data suggests that breast tumors from PABC are indistinguishable from non-PABC tumors (Zhang et al. 2021; Middleton et al. 2003). But this does not explain the differential disease progression and outcome of PABC. Since assessment of tumors generally only involves identifying hormone receptor status, the stromal component is not taken into consideration. We know that pregnancy significantly remodels the mammary stroma - including, but not limited to, ECM architecture and composition, immune cell infiltration, and elevated angiogenesis (Green and Lund 2005; Stein et al. 2004; Monks et al. 2005; Betterman et al. 2012). All of these processes can contribute to cancer progression and metastatic dissemination. Although PABC metastasizes to the same sites as non-PABC, it disseminates earlier and at a higher frequency and presents later in life as late stage invasive disease (Goddard et al. 2019; Callihan et al. 2013). It also exhibits an increased likelihood for disease relapse, and this has been suggested to be related to the earlier age of initial PABC diagnosis (Hartman and Eslick 2016). Given that metastasis and disease relapse are the two main drivers of cancer related deaths, understanding how pregnancy influences these processes will help inform better ways to diagnose and treat PABC.

Pregnancy, thus, plays a dual role in breast cancer risk. Some molecular changes may promote tumorigenesis, while others provide a cancer preventive effect. It is imperative that we gain a better understanding of the molecular mechanisms involved in the dual effect of pregnancy so that we may develop better prophylactic interventions suitable for specific types of breast cancers.

1.3 Models to study mammary gland development and tumorigenesis

1.3.1 In vivo models

The mammary gland is an extensively studied system in mouse models in the context of both normal development and tumorigenesis. This is due to the easy accessibility of the gland for the purposes of manipulation. Early studies in mouse models of breast cancer were performed on spontaneous tumors that were usually due to oncogenic viruses (such as MMTV). There were also models of chemically induced tumorigenesis using agents such as 7,12-dimethylbenzanthracene (DMBA), and exposure to radiation. However, the cleared fat pad transplantation model paved the way for many further discoveries about mammary gland biology that continue to drive research questions to this day (DeOme 1967; Medina 2010).

Transplantation models

As described previously, most of the mammary gland develops postnatally, and is driven by pubertal hormones. There is only a rudimentary ductal tree that has not invaded the fat pad in mice when they are ~3 weeks of age. The cleared fat pad transplantation model takes advantage of this by surgically removing the portion of the fat pad that contains epithelial ducts in these young mice. MECs from a syngeneic mouse (regardless of age), when into the remaining fat pad, are able to repopulate the gland and respond normally to hormonal stimuli at puberty. If tumor cells are injected, hyperplastic lesions form and progress into tumors with the same phenotypic characteristics as the original tumor.

The cleared fat pad model is an "orthotopic" transplantation model, where the external cells are injected into the same site they were collected from. There are also "ectopic" transplantation models, where MECs are typically injected into the subcutaneous stroma. This has been used to determine the potential of cells to proliferate as either normal or malignant growth, and also to evaluate the invasive and metastatic properties (Cardiff and Kenney 2011).

We can also perform xenografts – transplanting cells from a donor of a different species to a recipient mouse. Xenografts can be performed either with immortalized cell lines (CDX), or from primary

tissue derived from human patients (PDX) (Kuperwasser et al. 2004). Recipient mice for xenografts are immunodeficient in order to bypass host-mediated killing of injected cells. Humanized mice are a good alternative and can be used to study the interaction of the immune system with tumor cells or therapies.

Finally, it is also possible to inject cells directly into the primary ducts (intraductal transplantation) as a modification of the cleared fat pad transplant model. The advantage of this is that the recipient mice can be of any age (Behbod et al. 2009), and there is no need to surgically remove the existing fat pad.

Genetically engineered mouse models

Like every model system, the transplant models have their drawbacks. Mainly, they bypass the early stages of cancer development, including the development of tumor permissive niches, and immune involvement (in the case of xenograft models). Genetically engineered mouse models (GEMMs) can be used to overcome some of these challenges – by activating oncogenes that cause tumorigenesis in an immune competent environment.

GEMMs are typically designed to have gene alterations that resemble the genetic profiles of human cancers. Oncogenes and/or tumor suppressors are usually altered via an inducible system where a Cre-lox or FLP/FRP system is activated to alter expression under a specific promoter. Tamoxifen inducible Cre-ER and tetracycline inducible Tet-off and Tet-on systems are most commonly used (Couto and Bentires-Alj 2017; Lewandoski 2001).

Historically, studies that focused on the role of pregnancy in inducing or preventing the development of mammary tumors heavily relied on tissue-specific inducible gene knockouts controlled by mammary specific promoters such as MMTV, BLG, and WAP (Webster et al. 1995; Wagner et al. 2001; Wen et al. 1995). These models were pivotal in establishing fundamental aspects mammary tumorigenesis driven by many oncogenes, including neu/ErbB2, cyclin D1, cyclin E, PIK3CA, RAS, and Myc (Couto and Bentires-Alj 2017; Taneja et al. 2009). However, they do not accurately recapitulate the situation of patients with germline mutations, where mutations are not restricted to breast cells. More importantly, MMTV,

BLG, and WAP promoter activity is enhanced by pregnancy hormones, thus clouding our understanding of the effects of pregnancy in inducing or preventing the development of mammary tumors.

Mammary basal or luminal progenitor cells can also be used to drive the expression of genes of interest. This removes the confounding effect of pregnancy hormone driven expression changes. Through lineage tracing studies, cytokeratin 14 (K14) and cytokeratin 5 (K5) have been identified to be expressed in progenitor cells that give rise to basal and luminal lineages of the mammary epithelium, and cytokeratin 8 (K8) which is only active in the luminal compartment (Van Keymeulen et al. 2011; Rios et al. 2014; Van Keymeulen et al. 2015). K14-CreER, K5-CreER, and K8-CreER systems have been used to generate GEMMs to study key breast cancer oncogenes such as *Brca1*, *Brca2*, *Tp53*, and *PIK3CA* (Liu et al. 2007; Hollern et al. 2019; Hanasoge Somasundara et al. 2021; Jonkers et al. 2001; Koren et al. 2015). Cytokeratins are not limited to mammary tissue, and are expressed more widely in epithelial tissues in the body such as the skin, gut, and the reproductive organs. This model better mimics the phenotype exhibited by patients that bear germline mutations in *BRCA* genes, as the loss of *BRCA1* is not restricted to the mammary tissue unlike a majority of existing mouse models.

1.3.2 In vitro models – 3D organoid cultures to study mammary gland development

While rodent models have provided crucial insights in understanding mammary gland development, it is difficult to scrutinize the molecular events that take place in whole animal studies. Most tissues and organs have been successfully cultured *ex vivo* in various forms – whole organ, cell lines, primary cells, and tissue organoids. However, 2D cell cultures do not faithfully represent the *in vivo* conditions, and thus exhibit altered morphological and molecular signaling networks. Moreover, as with all cell lines, the immortalization process may have modified the proliferation and differentiation properties of the cells. Even though whole organ (or organ slice) cultures are easily achieved *ex vivo*, there are several limitations to this method. Thick tissues are not suited to long term culture as nutrients and other molecules cannot permeate the tissue to reach all cells, thus limiting tissue viability. Additionally, the roles of individual cell types in complex tissues cannot be delineated by these culture methods.

Over the last few decades, it has been demonstrated that functional differentiation and development of tissues is dependent on three-dimensional architecture. Consequently, there has been a surge in studies that use 3D cultures to model mammary gland development. Numerous protocols have been developed for 3D cultures of tissues and organs, and the resulting structures are collectively referred to as "organoids". However, the definition of the organoids depends on the source tissue. In the case of mammary glands, organoids are cultures of mammary epithelial ducts in 3D gels whose composition is similar to the ECM (Simian et al. 2001; Shamir and Ewald 2014). By depriving epithelial cells of their natural stroma, the roles of epithelial-stromal interactions versus the innate properties of the epithelium can be delineated.

Mammary organoids can be grown in commercial 3D matrices such as Matrigel (Kleinman and Martin 2005) or collagen I (Wolf et al. 2009), which contain basement membrane (BM) matrix proteins required for epithelial cell growth and differentiation. Culturing mammary organoids in Matrigel gives rise to organized clusters of bi-layered mammary epithelium, which can be stimulated into branching morphogenesis with growth factors, partially resembling normal in vivo mammary gland development (Jamieson et al. 2017; Florian et al. 2019). Such organoid systems can also be used as models to study the modifications that pregnancy brings about to the mammary gland. By culturing organoids with pregnancy hormones, organoids can be stimulated to secrete milk proteins (lactation), and removal of such signals can mimic some of the stages seen during involution (Feigman et al. 2020; Sumbal et al. 2020; Ciccone et al. 2020). Additionally, to understand the role of various stromal components during normal mammary gland development, several co-culture assays for MECs or primary mammary organoids with fibroblasts have been developed (Koledova and Lu 2017; Krause et al. 2008). There are also 3D-printing strategies for controlled placement of cells in the hydrogel matrix, which allows for reproducible, high-throughput experiments (Reid et al. 2018). Furthermore, it has been shown by single-cell analysis that normal and premalignant organoid cultures can retain the complex system of multiple MEC states (stem/progenitor and differentiated) and protein expression patterns (Rosenbluth et al. 2020).

In addition to gaining a better understanding of normal development, organoids can help advance our knowledge of cancer. Organoid cultures can be established from primary tissue samples obtained from breast cancer patients. These organoids can also be used in personalized medicine – to test new and existing therapies that could predict the specific patient's response. Although lacking the complex interactions with the microenvironment, human tissue organoids can be used as a model system to characterize cellular and molecular changes during development and to test the susceptibility of an individual to a variety of therapies.

1.4 Exploiting immune cells for breast cancer therapies

The therapeutic interventions currently used to treat breast cancer are surgery, radiotherapy, and chemotherapy. Based on the subtype of breast cancer, hormone therapy and HER2-guided therapy are effective against hormone receptor positive (HR+) and HER2-positive breast cancers. But in cases of recurrent, therapy resistant disease, or for triple negative breast cancers (TNBC), there are no targeted therapies readily available for standard use. Although there are FDA approved therapies such as antimetabolites, taxanes, and anthracycline for use in TNBC, these are only somewhat beneficial at early stages of TNBC (Zhang et al. 2022; Slade 2020). Newer treatments like platinum, PARP inhibitors, androgen receptor (AR) inhibitors, immune checkpoint inhibitors, and PI3K/mTOR/AKT inhibitors have been the focus of recent studies on novel therapies.

The immune system plays a very important role in responsiveness to therapy. High levels of tumorinfiltrating lymphocytes (TILs) have been identified as a favorable prognostic marker. Checkpoint inhibitor immunotherapies (ICIs), such as PD-L1/PD-1/CTLA4 targeting antibodies, are currently in clinical trials as monotherapy or in combination with the more classical treatments (Zhang et al. 2022) for TNBC.

In general, breast cancer forms "cold" tumors – there is not much immune infiltration in tumor tissue. This severely reduces the effectiveness of ICI therapies which rely on the host immune system to engage, unlike in other solid tumors such as melanoma and lung cancer that are "hot" (Lesterhuis et al. 2011). Thus, in the case of breast cancers, adoptive cell transfer (ACT) therapies may be more effective.

Adoptive cell transfer (ACT) is a cell-based immunotherapy that involves several steps (Humphries 2013; Maus et al. 2014; Restifo et al. 2012):

- 1. Isolation of circulating or tumor-infiltrating lymphocytes
- 2. In vitro selection of specific cells, modification and/or activation, and expansion
- Re-administration into patients in combination with cytokines that are required to keep these cells alive.

One way of modifying the isolated immune cells *in vitro* is to genetically modify them to express a tumor associated antigen-specific (TAA) TCR or a chimeric antigen receptor (CAR). This gives the modified cells the ability to recognize and kill TAA-expressing cells independently of MHC recognition. TAA-TCR or TAA-CAR T cells have been shown to be beneficial in hematological malignancies (Brentjens et al. 2011; Kalos et al. 2011; Ray et al. 2010; Robbins et al. 2011). There are currently a number of clinical trials that are recruiting breast cancer patients to test CAR-T cells that are specifically targeted towards common BC antigens, as summarized recently (Yang et al. 2022).

Most studies on the therapeutic potential of T cells against various cancers have focused on conventional CD8+ and CD4+ T cells. Conventional T cells recognize peptide antigens presented by major histocompatibility complex (MHC) I and II molecules. Following antigen presentation and activation, CD8+ T cells undergo clonal expansion and differentiate into cytotoxic T lymphocytes (CTL) and can target and kill tumor cells expressing the activating antigen(s). CD4+ T cells can help enhance the CD8+ T cell response against certain types of antigens (Coulie et al. 2014). However, there are several types of unconventional T cells whose anti-tumor potential has not been harnessed yet, even though they have been implicated in anti-tumor immunity.

1.4.1 Unconventional T cells as potential ACT agents

Unconventional T cells can be divided into groups based on the molecules they use to recognize antigens. Unlike MHC-restricted T cells, these cells rely on different antigen presentation molecules such as CD1d (natural killer T cells), MR1 (mucosal associated invariant T cells), and $\gamma\delta$ T cells to name a few (Godfrey et al. 2018). The advantages of unconventional T cells include their ability to respond much more rapidly by secreting cytotoxic cytokines without needing activation and clonal expansion, and their ability to naturally home to non-lymphoid sites in various tissues making them helpful in targeting solid tumors. They are present in significantly greater numbers in humans (2-4 fold higher) when compared to CD8+ T cells (Godfrey et al. 2015).

Natural Killer T-cells (NKT)

Of these unconventional T cells, CD1d-restricted natural killer T cells (NKT cells) are perhaps the most well studied and characterized cell type. The CD1 family of antigen presenting molecules consists of four members: CD1a, CD1b, and CD1c – collectively known as group 1 CD1, and CD1d – group 2. CD1d restricted NKT cells are however the focus of most studies as this molecule is expressed in mice, but none of the group 1 molecules are expressed (Godfrey et al. 2018). Within CD1d restricted NKT cells, there are subgroups based on the types of T cell receptors (TCRs) that are expressed and the types of antigens they can recognize. These are as follows:

- Type I NKT cells: also known as invariant NKT (iNKT) cells. They express semi-invariant TCRs (specific combinations of αβ chains) and react to the glycolipid antigen α-galactosylceramide (α-GalCer) and its analogs (Hong et al. 1999).
- Type II NKT cells: all other CD1d restricted αβ TCR expressing T cells and react to a diverse array of antigens not including α-GalCer (Godfrey et al. 2018).
- Atypical NKT cells: express atypical TCRs including γδ, and hybrid δαβ TCRs which may also recognize α-GalCer, though this is uncommon (Le Nours et al. 2016; Uldrich et al. 2013; Pellicci et al. 2014).

Type I NKT cells (hereafter referred to as iNKT cells) are more common in mice than humans and have been shown to have anti-tumor properties by many studies (Bassiri et al. 2014; Hix et al. 2011). Following antigen presentation by CD1d, iNKT cells are activated and rapidly produce a diverse array of cytokines such as IFN-γ, TNF, IL-4, IL-13, IL-17, IL-21, and IL-22 (Coquet et al. 2008), and cytotoxic factors such as perforin, granzymes, FAS-ligand, and TRAIL to directly lyse tumor cells (Metelitsa et al. 2001; Smyth et al. 2002). The secreted factors can further recruit and activate other immune effector cells including dendritic cells, CD4+ and CD8+ T cells (Shimizu et al. 2007; Hermans et al. 2003). They can also attack cells involved in creating a tumor supporting stromal microenvironment such as tumor associated macrophages (TAMs) and myeloid derived suppressor cells (MDSCs) (Song et al. 2009; Santo

et al. 2008). However, iNKT cells can also have immunosuppressive properties and have been shown to be involved in controlling autoimmune diseases and graft versus host disease (Godfrey and Kronenberg 2004; Hong et al. 2001; Zeng et al. 1999). This is likely due to the immunosuppressive cytokines produced by specific iNKT cell subsets (IL-4 by NKT2, IL-10 by NKT10) (Lee et al. 2013b; Sag et al. 2014). These subsets have not been individually studied for their anti-tumor or tumor suppressive properties so far.

Type II NKT cells have a more diverse repertoire of TCRs and do not have a universal activating antigen like α -GalCer. Though more abundant in humans than iNKT cells, type II NKT cells are not present in mice (Godfrey et al. 2018). This has made them harder to study and there are very few studies being conducted. The data available so far suggests that type II NKT cells have an immunosuppressive role and that their effector functions depend on IL-13 secretion (Terabe et al. 2005).

Transcriptionally, there are various markers that have been used to classify NKT cells based on their intracellular staining patterns. PLZF, EGR2, T-bet, GATA-3, and RORγt expression patterns distinguish NKT cells into subsets – NKT1, NKT2, and NKT17, which produce effector molecules such as IFN-γ, IL-4, and IL-17 respectively (Lee et al. 2013b; Klibi et al. 2020).

A number of clinical trials have been conducted to study the effect of using α -GalCer on iNKT cells to harness their potential as immunotherapeutic agents. Injecting dendritic cells pulsed with α -GalCer or *in vitro* expanded iNKT cells intravenously into patients causes iNKT cell expansion, and have been suggested to lead to tumor regression (Nagato et al. 2012; Richter et al. 2013). Chimeric antigen receptor expressing NKT (CAR-NKT) cells have also been shown to be effective in a mouse model of neuroblastoma (Heczey et al. 2014).

Mucosal associated invariant T-cells (MAIT)

Mucosal associated invariant T (MAIT) cells are another type of innate-like unconventional T cells. Their abundance depends on the species – while found in humans, they are much less common in mice. MAIT cells are found in mucosal organs, but also in peripheral blood and liver. MAIT cells can be activated in response to viruses and bacteria, and rapidly secrete cytokines like IFN- γ and TNF following activation (Salio et al. 2014). MAIT cells rely on the MR1 molecule for antigen presentation, a molecule related to MHC-I but specific to the TCRs expressed on MAIT cells (Treiner et al. 2003). There are no specific antigens for MR1, but in certain cases of viral infections, MAIT cells can be activated without the need for antigen recognition (Ussher et al. 2018).

Gamma Delta T-cells ($\gamma\delta$)

Another type of unconventional T cells that have gained a lot of interest over the last decade are $\gamma\delta$ T cells. $\gamma\delta$ T cells make up ~1-5% of circulating T cells in humans. $\gamma\delta$ T cell subsets are defined based on the TCR variable (V) chains used, TCR γ in mice and TCR δ in humans. Mouse and human $\gamma\delta$ T cells also differ in their tissue homing ability – mouse $\gamma\delta$ T cells are found mostly in peripheral sites like skin, intestine, liver, lungs, and the reproductive tract, whereas human $\gamma\delta$ T cells are found in the peripheral blood in addition to skin and large intestine (Godfrey et al. 2015; Ebert et al. 2006).

 $\gamma\delta$ T cells can be subdivided into two classes based on their function – effector $\gamma\delta$ T and regulatory $\gamma\delta$ T cells. Activated $\gamma\delta$ T cells play an antitumor role by secreting cytokines, antibody dependent cellular cytotoxicity (ADCC), and other effects, and these are the effector $\gamma\delta$ T cells. On the other hand, regulatory $\gamma\delta$ T cells are responsible for modulating the immune tolerance, and can promote cancer growth by dampening the functions of various effector cells and by inducing immune-senescence of naïve T cells and dendritic cells (Paul and Lal 2016).

The presence of $\gamma\delta$ T cells in tumors has been found to be a very favorable prognostic marker (Gentles et al. 2015), and they possess properties that make them promising candidates for immunotherapy. $\gamma\delta$ T cells are activated by small phosphorylated metabolite antigens known as phosphoantigens. These are typically produced by foreign pathogens but tumor cells can also produce them (Gober et al. 2003). Of interest, some $\gamma\delta$ T cells can also be activated by α -GalCer presented by CD1d (Uldrich et al. 2013). Once activated by antigens *in vivo* or *in vitro*, $\gamma\delta$ T cells expand readily. This makes them suitable for adoptive transfer therapies. $\gamma\delta$ T cells also have more favorable homing properties to epithelial tissues and solid tumors compared to $\alpha\beta$ T cells. Since they are not MHC restricted, they do not cause Graft versus Host disease (GVHD) even when transferred to an MHC mismatched host (Godder et al. 2007).

Unconventional T cells can thus be a valuable tool to be harnessed for immunotherapy against solid tumors, and more research is required to understand how we can use them effectively against breast cancers. It is, however, important to note that all of these unconventional T cells play a dual role in cancer development. Some of their subtypes or effector functions may promote cancer progression. NKT17 and $\gamma\delta$ T17 cells are major sources of IL-17, which can have an immunosuppressive role in cancer. V $\gamma1 \gamma\delta$ T cells have been reported to secrete TGF- β which can induce epithelial-to-mesenchymal transition and aid in cancer cell dissemination and metastasis (Klibi et al. 2020; Yang and Weinberg 2008).

1.5 Research hypotheses

Previous studies have established that both a full pregnancy cycle (gestation, lactation, and involution), and an induced pseudo-pregnancy (exogenous delivery of pregnancy hormones) decreased the frequency of mammary tumors in several epidemiological studies and mouse models. Yet, pregnancy does not fully prevent the development of breast cancer, thus suggesting that cellular and biological alterations taking place right before pregnancy, or throughout a woman's life span could bypass the preventive effects of pregnancy. It is also possible that pregnancy-induced changes to mammary gland stroma and to the mammary immune microenvironment could alter signals that block cancer development. Our previous work has shown that MECs exhibit a state of semi-senescence in response to cMyc overexpression as an oncogenic stressor, and this could be engaging the immune system. *We hypothesized that pregnancy alters the overall immune composition of the mammary gland after the completion of a full pregnancy cycle*.

We undertook an unbiased approach to define the cellular heterogeneity of the mammary glands from pre- and post-pregnancy female mice by single cell RNA-sequencing (scRNA-seq). We illustrated that the fully involuted, post-pregnancy mammary gland is populated with an expanded population of resident NKT cells, suggesting a prolonged role for these cells in tissue homeostasis post- involution. We showed that post-pregnancy NKT cells express mostly $\gamma\delta$ TCRs, as opposed to pre-pregnancy NKT cells which express $\alpha\beta$ TCRs. $\gamma\delta$ TCR expressing immune cells are known to possess a high antitumor capability. *We hypothesized that post-pregnancy mammary NKT cells play a role in pregnancy associated protection against oncogenesis*.

We set out to investigate this hypothesis in various mouse models of mammary hyperplasia. Our previous results indicate that pregnancy brings cell autonomous (epithelial cell epigenome) and non-autonomous (immune microenvironment) changes to mammary glands that block *cMyc*-induced mammary oncogenesis (Feigman et al. 2020). *We hypothesized that pregnancy will also influence the development of Brca1-deficient mammary tumors*. To address this hypothesis, we developed a new transgenic model of inducible *Brca1*-loss that drives mammary oncogenesis to define whether Brca1 deficiency interferes with

the pregnancy-induced epigenome of epithelial cells and pregnancy-induced mammary immune microenvironment. These analyses were performed both in asymptomatic tissue (without malignant lesions) and in mammary tumor tissue to elucidate the establishment of pregnancy-induced modifications, and how they are sustained in the event of tumor development, in a Brca1 deficient background. Given that *BRCA1* mutations in humans increase the risk of development of breast cancer by over 50%, our work could elucidate strategies to prevent tumorigenesis in high risk populations.

2. Parity induced changes to the mammary epithelial and immune composition

2.1 Author contributions

I acknowledge the following people who assisted with this project. Mary Feigman and Camila dos Santos conceptualized and performed the initial experiments and prepared cells for single cell RNA-seq libraries. The Single Cell Sequencing core at CSHL provided the sequencing files. Matt Moss and Marygrace Trousdell analyzed the scRNA-seq data and generated the data plots. Marygrace Trousdell assisted with ATAC-seq analysis. Mary Feigman provided the preliminary flow data for CD1d KO mice and CD1d expression on MECs. Samantha Cyrill performed the pregnancy hormone pellet implantation experiments and corresponding flow cytometry. Michael Ciccone performed the organoid culture experiment for CD1d expression changes. J. Erby Wilkinson performed the histopathological analyses. Semir Beyaz generously provided the UTX KO mice and provided critical feedback. Camila dos Santos oversaw the project, and participated in experimental design and data analyses.

2.2 Results

The use of single cell strategies has elucidated the dynamics of epithelial cell lineage specification and differentiation across major mammary developmental stages (Gray et al. 2022; Twigger et al. 2022; Henry et al. 2021; Bach et al. 2017; Chung et al. 2019; Li et al. 2020a; Pal et al. 2017, 2021). Previous studies have indicated that post-pregnancy epithelial cells bear an altered transcriptome and epigenome, thus suggesting that pregnancy stably alters the molecular state of MECs (Blakely et al. 2006; Feigman et al. 2020; Huh et al. 2015; Dos Santos et al. 2015). However, it is unclear whether pregnancy leads to disproportionate changes in the transcriptome of specific mammary cell populations, which we investigated in this study. 2.2.1 Single cell analysis identifies changes to the transcriptional programs and immune composition of the post-pregnancy mammary gland

In order to characterize the effects of parity on the cellular composition and heterogeneity of mammary glands, we used single cell RNA-sequencing (scRNA-seq) to compare the abundance, identity and gene expression of mammary gland epithelial and non-epithelial cells from nulliparous (virgin, never pregnant, n=2) and parous female mice (20 days gestation, 21 days lactation, 40 days post-weaning, n=2). scRNA-seq clustering defined 20 cell clusters (TCs), which were further classified into 3 main cell types; epithelial cells (Krt8+ and Krt5+), B-lymphocytes (CD20+), and T-lymphocytes (CD3e+), and 2 smaller clusters, encompassing fibroblast-like cells (Rgs5+) and myeloid-like cells (Itgax+) (**Fig. 2-1 A-B**).

Figure 2-1 Single cell level classification of pre- and post-pregnancy MECs.

(A) UMAP showing the distribution of total, pre- and post-pregnancy mammary resident cells.

(**B**) Classification of mammary resident lineages based on the expression of *Krt8* and *Krt5* (epithelial cells), *Cd20* (B-cells), *Cd3e* (T-cells), *Rags5* (Fibroblasts), and *Itgax* (myeloid cells).

(C) UMAP showing the distribution of mammary epithelial clusters according different stages of cell cycle.

Changes to the mammary epithelial compartment

To characterize the cellular heterogeneity across pre- and post-pregnancy MECs, we used a reclustering approach, which selected for cells expressing the epithelial markers *Epcam*, *Krt8*, *Krt18*, *Krt14 and Krt5*, and resolved 11 clusters of mammary epithelial cells (ECs) with similar cell cycle states (Henry et al. 2021) (**Fig. 2-2 A, 2-1 C**). Analysis of cellular abundance and lineage identity revealed that clusters EC7 (mature myoepithelial MEC), EC9 (luminal common progenitor-like MEC), EC10 and EC11 (bipotential-like MECs), were evenly represented in pre- and post-pregnancy mammary tissue, thus demonstrating populations of cells that are mostly unchanged by a pregnancy cycle. We also identified clusters predominantly represented within pre-pregnancy MECs (EC2, EC4, and EC8), and those biased towards a post-pregnancy state (EC1, EC3, EC5, and EC6), classified as luminal alveolar-like clusters (EC1, EC2 and EC6), myoepithelial progenitor-like clusters (EC3 and EC4), and luminal ductal-like clusters (EC5 and EC8) (**Fig. 2-2 B-D**).

Figure 2-2 Single cell analysis identifies post-pregnancy biased epithelial cells in mammary tissue from parous female mice.

(A) UMAP showing epithelial-focused re-clustering (Epcam+, Krt8+, Krt18+, and Krt5+ cells) of pre- and post-pregnancy MECs.

(B) UMAP showing epithelial-focused re-clustering (Epcam+, Krt8+, Krt18+, and Krt5+ cells) of prepregnancy (blue) and post-pregnancy (pink) MECs.

(C) Cell abundancy of pre- and post-pregnancy epithelial cells across all 11 epithelial clusters.

(D) Dot plot analysis of molecular signatures and lineage identity of pre- and post-pregnancy MECs.

Comparative gene expression analysis indicated that processes associated with immune cell communication, such as *Complement* and *Inflammatory Response*, were markedly enriched in luminal and myoepithelial cell clusters biased towards the post-pregnancy state (**Fig. 2-3 A-C and Table 8-1**). This observation was supported by analysis of previously published pre- and post-pregnancy bulk RNA-seq data, which suggested an overall enrichment for immune communication signatures in epithelial cells after a full pregnancy cycle (Feigman et al. 2020) (**Fig. 2-3 D and Table 8-2**).

Figure 2-3 Pathway analysis of post-pregnancy biased epithelial cells indicates changes to immune communication signatures

(A) mRNA levels of senescence-associated, immune communication genes *Cxcl1*, *Ccl2*, *Il6*, *Cxcl5*, *Mhc-II* and *Cd1d* in pre- and post-pregnancy MECs.

(**B**, **C**) Gene set enrichment analysis (GSEA) of pathways differentially enriched in (**B**) alveolar-like MECs, and (**C**) myoepithelial progenitor-like MECs.

(**D**) Gene set enrichment analysis (GSEA) of pathways differentially enriched in FACS-isolated, pre- and post-pregnancy luminal MECs.

Changes to the mammary immune compartment

Changes in the immune microenvironment are known to contribute to pregnancy-induced mammary development (Coussens and Pollard 2011). A series of single cell strategies have identified alterations to mammary immune composition across several stages of mammary gland and cancer development (Bach et al. 2021; Dawson et al. 2020; Saeki et al. 2021). However, it is still unclear whether the immune composition of fully involuted, post-pregnancy mammary tissue resembles its pre-pregnancy state, or if a combination of epithelial and non-epithelial signals collectively influences the normal and malignant development of mammary tissue. In light of the potentially altered epithelial-immune cell communication identified in post-pregnancy MECs suggested above, we set out to understand the effects of pregnancy on the mammary resident immune compartment using scRNA-seq.

Transcriptional analysis of clusters representing B-lymphocytes (CD20+) did not identify major differences in gene expression between cells from pre- and post-pregnancy mammary glands, even though there were non-significant cell abundance differences, suggesting that B-cells may not be significantly altered in fully involuted mammary tissue (**Fig. 2-4 A**). Re-clustering of CD3e+ T-lymphocytes identified 9 distinct immune cell clusters (IC) marked by the expression of immune lineage genes such as *Cd4*, *Cd8*, *Klrk1*, and *Gzma* (**Fig. 2-4 B-C**). Classification according to cell abundance and lineage identity of pre- and post-pregnancy mammary resident lymphocytes, revealed 2 cell clusters, IC1 (CD4+ memory-like T- cells), and IC2 (CD8+ T-cells), which were evenly represented across pre- and post-pregnancy mammary tissue (**Fig. 2-5 A-B**). Differential gene expression analysis of clusters IC1 and IC2 identified minimal expression changes, suggesting that the transcriptional output of CD8+ T-cells (IC2), and certain populations of CD4+ T-cells (IC1) were not substantially altered by parity (**Fig. 2-5 C-D**).

Figure 2-4

Figure 2-4 Single cell analysis identifies transcriptional programs and immune cellular heterogeneity in mammary tissue from parous female mice.

(A) Heatmap showing top DEGs across pre- and post-pregnancy B-cell clusters.

(B) UMAP showing T-cell focused re-clustering (CD3e+ cells) of pre- and post-pregnancy mammary resident immune cells.

(C) Feature plots showing the expression of T cell markers Cd4, Cd8, Klrk1 and Gzma.

Figure 2-5 Characterization of pre- and post-pregnancy mammary resident immune cells.

(A) Cell abundancy of pre- and post-pregnancy CD3+ immune cells.

(**B**) UMAP showing CD3+ focused re-clustering of pre-pregnancy (blue) and post-pregnancy (pink) immune resident cells.

(**C-D**) Heatmap showing top 20 DEGs across CD4+ T-cells (**C**, cluster 1) and CD8+ T-cells (**D**, cluster 2) harvested from pre and post-pregnancy mammary tissue.

Analysis of clusters biased towards pre-pregnancy mammary tissue identified several populations of CD4+ T-lymphocytes, with gene identifiers supporting their identity as CD4+ Tregs (IC3), CD4+ naïve T-cells (IC7 and IC8), and CD4+ helper T-cells (IC4), suggesting that pre-pregnancy mammary tissues are enriched for populations of CD4+ T-cells (**Fig. 2-6 A**). Conversely, clusters enriched with post-pregnancy mammary immune cells (IC5, IC6, and IC9) were classified as NKT cells, a specialized population of T-cells involved in immune recruitment and cytotoxic activity (Godfrey et al. 2004) (**Fig. 2-6 A**). These clusters expressed master regulators of NKT cell fate, including transcription factors (TFs) *Tbx21 (Tbet*), and *Zbtb16 (Plzf)* (Townsend et al. 2004; Savage et al. 2008).

Figure 2-6

Figure 2-6 Single cell analysis identifies post-pregnancy biased immune cell identity as NKT cells.

(A) Dendrogram clustering and dot plot showing molecular signature and lineage identity of pre- and postpregnancy mammary resident CD3+ immune cells. NKT cells are specifically enriched in post-pregnancy mammary glands. While Natural Killer (NK) cells are known to play a role in mammary gland involution and parityassociated mammary tumorigenesis (Fornetti et al. 2012; Martinson et al. 2015), the role of NKT cells in this process has yet to be determined. Therefore, we analyzed clusters of immune cells expressing the common NK/NKT marker *Nkg7* to further define the influence of pregnancy on the abundance and identity of NK and NKT cells. Deep-clustering analysis of Nkg7+ immune cells revealed 6 distinct cell clusters (NC1-6). Cells classified under cluster NC5, which includes cells from both the pre- and post-pregnancy mammary tissue, lacked expression of CD3e, and therefore was the only cluster with an NK cell identity in our dataset (**Fig. 2-7 A-C**). Further gene expression analysis confirmed that post-pregnancy mammary glands are enriched with a variety of NKT cells, including those expressing markers of cell activation (*Gzmb* and *Ccr5*) and of a resting state (*Bcl11b*) (**Fig. 2-7 C**). In agreement, each of the post-pregnancy-biased NKT cell clusters were enriched with an array of immune activation signatures, suggesting an altered state for these cell populations after pregnancy (**Fig. 2-7 D**).

Collectively, our scRNA-seq analysis of fully involuted mammary tissue confirmed that pregnancy leads to a stable alteration of the transcriptional output of post-pregnancy MECs, including gene expression signatures that suggest enhanced communication with the mammary immune microenvironment. Our study further indicates that mammary resident NKT cells are present at higher levels in post-pregnancy glands, suggesting that pregnancy plays a role in inducing changes to the mammary immune microenvironment.

Figure 2-7 scRNA-seq identification of post-pregnancy NKT cells.

(A) UMAP showing Nkg7+ expressing cells focused re-clustering (NKT/NK cells) of pre- and post-pregnancy mammary tissue.

- (B) Cell abundancy of pre- and post-pregnancy Nkg7+ immune cells.
- (C) Dot plot showing the expression of NKT/NK associated genes across Nkg7+ cell clusters.
- (D) Dotplot of pathway analysis across populations of CD3+ NKT cells (IC5, IC6 and IC9).

2.2.2 Pregnancy induces the expansion of a specific population of NKT cells in the mammary gland

During post-partum mammary gland involution, there is an influx of infiltrating mast cells, macrophages, neutrophils, dendritic cells and natural killer cells, which remove apoptotic epithelial cells and support the remodeling of the gland (Guo et al. 2017; Kordon et al. 2017; O'Brien et al. 2010; Schwertfeger et al. 2001). Since our scRNA-seq analyses suggested that fully involuted, post-pregnancy mammary glands are enriched for populations of NKT cells, we next utilized a series of flow cytometry analyses to validate this observation.

Analysis using antibodies against the markers NK1.1 and CD3, which defines NKT cells (NK1.1+CD3+), identified a 12-fold increase in the abundance of NKT cells in post-pregnancy mammary tissue, consistent with the results of our scRNA-seq data (**Fig. 2-8 A**). Further analysis indicated a 2.3-fold higher abundance of NKT cells in recently involuted mammary tissue (15 days post offspring weaning), compared to mammary glands from nulliparous mice, or those exposed to pregnancy hormones for 12 days (mid-pregnancy), suggesting that the expansion of NKT cells is likely to initiate at the final stages of post-pregnancy mammary involution (**Fig. 2-8 B**). The selective expansion of NKT cells was further supported by the analysis of markers that define mammary resident neutrophils (Ly6G+) and macrophages (CD206+), which were largely unchanged between pre- and post-pregnancy mammary tissue (**Fig. 2-8 C-D**).

Immunofluorescence analysis of Cxcr6-GFP-KI mammary tissue, previously described to selectively label NKT cells (Germanov et al. 2008), demonstrated several GFP+ cells surrounding ductal structures from pre-pregnancy mammary tissue, an observation that supports the presence of NKT cells in mammary tissue (**Fig. 2-9 A**). Moreover, analysis of bone marrow and spleen from nulliparous and parous mice showed no difference in the abundance of NK1.1+CD3+ cells, suggesting that pregnancy-induced expansion of NKT cells is mammary-specific (**Fig. 2-9 B-C**).

Figure 2-8

Figure 2-8 Pregnancy induces expansion of specific populations of NKT cells.

(A) Flow cytometry analysis of resident CD45+ cells harvested from pre- and post-pregnancy mammary tissue, and their distribution of NKT cells (NK1.1+CD3+). n=5 nulliparous and 5 parous female mice. *p=0.0004.

(**B**) Quantification of NKT cells abundance in mammary tissue from nulliparous female mice (black bar, n=4), from female mice during Exposure to Pregnancy Hormone day 12 (pink bar, EPH D12, n=7), and from female mice at post-pregnancy involution D15 (blue bar, n=4). EPH D12 x Involution D15 *p=0.005; Involution D15 x Pre-pregnancy **p=0.008.

(C) Quantification of Ly6G+ mammary resident neutrophils abundance in tissue from pre- and postpregnancy female mice. n=5 nulliparous and n=4 parous female mice. *p=0.46.

(**D**) Quantification of CD206+ mammary resident macrophages abundance in tissue from pre- and post-pregnancy female mice. n=4 nulliparous and n=4 parous female mice. *p=0.06.

Figure 2-9 Cellular characterization of post-pregnancy mammary immune microenvironment.

(A) Immunofluorescence images (IF) of mammary tissue from Cxcr6-GFP-KI nulliparous mouse model showing the presence of GFP+ cells (NKT cells, green, white arrows) surrounding duct structures (Krt8+, white).

(**B**) Quantification of NKT cells abundance in bone marrow from pre- and post-pregnancy female mice. n=5 nulliparous and n=4 parous female mice. *p=0.5921.

(C) Quantification of NKT cells abundance in spleen from pre- and post-pregnancy female mice. n=5 nulliparous and n=5 parous female mice. *p=0.95.

To further characterize the identity of the post-pregnancy, mammary resident NKT cells, we combined cell surface and intracellular staining to detect canonical NKT lineage markers, including the NKT master regulator Tbet, the NKT/T-cell secreted factor IFN γ , and the NKT lineage marker Nkp46 (CD335) (Yu et al. 2011). Pre- and post-pregnancy, mammary resident NK1.1+CD3+ cells expressed all three markers, supporting their NKT identity. However, we detected a 2-fold increase in the percentage of post-pregnancy cells expressing Tbet, IFN γ , and CD335, suggesting that specific populations of NKTs are expanded in post-involuted mammary tissue (**Fig. 2-10 A**).

We also investigated whether pregnancy induced NKT cells represented a specialized population of CD8+ T-cells, a cytotoxic cell type reported to reside in mammary tissue (Wu et al., 2019) (Wu et al. 2019b). We found that a fraction of the NKT cells present in both pre- and post-pregnancy mammary tissue expressed CD8 on their surface, accounting for 41% and 35% of the total NKT cells, respectively (**Fig. 2-10 B**). To determine whether the triple-positive (CD3+NK1.1+CD8+) cells contributed significantly to the expanded population of post-pregnancy NKT cells, we analyzed mammary tissue of nulliparous and parous RAG1 KO mice, which lack mature CD8+ T-cells (Mombaerts et al. 1992). We observed a 10-fold expansion of NKT cells in RAG1 KO post-pregnancy mammary tissue, suggesting that CD8-expressing cells do not comprise a significant fraction of pregnancy-induced NKT cells (**Fig. 2-10 C**). These results are consistent with our scRNA-seq data, and further validate the existence of specific NKT subtypes in mammary glands after a full pregnancy cycle.

NKT cells have multiple roles, including tissue homeostasis, host protection, microbial pathogen clearance, and anti-cancer activity, mediated through their ability to recognize both foreign- and self-antigens via T-cell receptors (TCRs) (Balato et al. 2009). Therefore, we next investigated changes to the TCR repertoire of mammary resident, post-pregnancy NKT cells. We found that 17% of pre-pregnancy NKT cells expressed $\gamma\delta$ TCRs, in marked contrast to post-pregnancy NKT cells, which mostly expressed $\alpha\beta$ TCRs (44%) (**Fig. 2-10 D, top panels**). A pregnancy cycle did not alter TCR composition across all immune cells, given that mammary resident, pre- and post-pregnancy CD8+ T-cells mostly expresse

 $\alpha\beta$ TCRs, suggesting that parity promotes expansion of subtypes of NKT cells that bear a specific TCR repertoire (**Fig. 2-10 D**, **bottom panels**).

Figure 2-10

Figure 2-10 Cellular characterization of post-pregnancy NKT cells shows altered TCR expression.

(A) Flow cytometry analysis of the classical NKT cell markers T-bet, CD335, and IFN γ in NKT cells harvested from pre- and post-pregnancy mammary tissue. For Tbet analysis n=4 nulliparous and 4 parous female mice. *p=0.016. For CD335 analysis n=7 nulliparous and 7 parous female mice. *p=0.03.

(**B**) Quantification of CD8+ NKT cells abundance in mammary tissue from pre- and post-pregnancy female mice. n=8 nulliparous and n=6 parous female mice. *p=0.6

(**C**) Quantification of NKT cells abundance in mammary tissue from pre- and post-pregnancy RAG1 KO female mice. n=6 nulliparous and n=6 parous female mice. *p=0.019.

(**D**) Flow cytometry analysis of β and $\gamma\delta$ T-cell receptors (TCRs) of pre- and post-pregnancy mammary NKT cells. n=5 nulliparous and 5 parous female mice. *p=0.005.

We next investigated the molecular signatures of FACS-isolated, mammary resident, NKT cells. Unbiased pathway analysis of bulk RNA-seq datasets revealed the enrichment of post-pregnancy NKT cells for processes controlling overall NKT development and activation, such as Notch signaling, TNF α signaling, TGF β signaling, response to estrogen, and cMyc targets (Oh et al. 2015; Almishri et al. 2016; Doisne et al. 2009; Huber 2015; Mycko et al. 2009). Conversely, pre-pregnancy NKT cells were mainly enriched for processes previously associated with reduced immune activation, such as IFN α response (Bochtler et al. 2008) (**Fig. 2-11 A, Table 8-3**).

The activation of specific processes in post-pregnancy NKT cells was also evident from analysis of their accessible chromatin landscape. ATAC-seq profiles showed similar genomic distributions of accessible regions across pre- and post-pregnancy NKT cells, with a 93% overlap of their total accessible chromatin regions, suggesting that parity-induced changes did not substantially alter the chromatin accessibility associated with NKT lineage (**Fig. 2-11 B-C**). General TF motif analysis identified chromatin accessible regions bearing classical NKT regulator DNA binding motifs such as *T-bet*, *Plzf*, and *Egr2*, further supporting their NKT lineage identity (Seiler et al. 2012) (**Fig. 2-11 D**). Analysis of accessible chromatin exclusive to post-pregnancy NKT cells showed an enrichment for terms/genes associated with regulation of the adaptive immune response, killer cell activation and antigen presentation, such as *Pdk4*, *Maged1*, and *Lypla1*, all involved in enhanced immune-activation (Na et al. 2020; Connaughton et al. 2010; Lee et al. 2016; Jehmlich et al. 2013) (**Fig. 2-12 A and C**). DNA motif analysis at accessible regions exclusive to post-pregnancy NKT cells identified enrichment of specific TF motifs, including those recognized by Maf, a factor associated with an activated NKT state, and previously predicted by our scRNA-seq data to be expressed in cell clusters with an NKT identity (**Fig. 2-12 B**).

Overall, our analyses confirmed that post-pregnancy mammary tissue has an altered $\gamma\delta NKT$ cell composition, which bears molecular and cellular signatures of activated and mature adaptive immune cells.
Figure 2-11

Figure 2-11 The molecular signature of post-pregnancy NKT cells.

(A) Gene set enrichment analysis of differentially expressed genes in FACS-isolated NKT cells from preand post-pregnancy mammary tissue.

(**B**) Venn-diagram demonstrating the number of shared and exclusive ATAC-seq peaks of FACS-isolated NKT cells from nulliparous female mice (blue circle) and parous female mice (orange circle).

(C) Genomic distribution of total ATAC-seq peaks from FACS-isolated pre- and post-pregnancy NKT cells.

(**D**) TF motif analysis across total ATAC-seq peaks from FACS-isolated pre- and post-pregnancy NKT cells.

Figure 2-12

Figure 2-12 The epigenetic signature of post-pregnancy NKT cells.

(A) Genome browser tracks showing distribution of MACS-called ATAC-seq peaks at the *Pdk4*, *Maged1* and *Lypla1* genomic loci from pre- and post-pregnancy NKT cells.

(**B**) TF motif analysis across exclusive ATAC-seq peaks from FACS-isolated pre- or post-pregnancy NKT cells.

(C) GO term analysis of genes associated with total ATAC-seq peaks of FACS-isolated post-pregnancy NKT cells.

2.2.3 NKT expansion requires CD1d expression on post-pregnancy MECs

Classically, NKT cells are subdivided based on their activating antigens, including the main antigen-presenting molecules MHC class I, MHC class II, and the non-classical class I molecule, CD1d, which can be expressed on the surface of macrophages and dendritic cells, as well on the surface of epithelial cells (Gapin et al. 2013; Rizvi et al. 2015; Thibeault et al. 2009). Therefore, we next analyzed whether the expression of antigen-presenting factors on the surface of mammary epithelial and nonepithelial cells could underlie NKT cell expansion after pregnancy.

Flow cytometry analysis detected a 5-fold increase in the CD1d levels on the surface of postpregnancy luminal and myoepithelial MECs (**Fig. 2-13 A-B**). In contrast, no differences in the expression of antigen-presenting factors MHC-I and MHC-II on the surface of pre- and post-pregnancy MECs were found (**Fig. 2-13 C-D**). No difference in surface expression of CD1d on mammary CD45+ immune cells was detected, suggesting that signals provided by CD1d+ MECs could promote the post-pregnancy expansion of mammary NKT cells (**Fig. 2-13 E**).

Gene expression analysis of scRNA-seq datasets and qPCR quantification of FACS-isolated epithelial cells confirmed that post-pregnancy MECs express higher levels of *Cd1d* mRNA, supporting that pregnancy induced molecular alterations may represent the basis for the observed increase in percentage of CD1d+ post-pregnancy MECs (**Fig. 2-13 A and Fig. 2-14 A**). In agreement, we observed increased levels of the active transcription marker histone H3 lysine 27 acetylation (H3K27ac) at the *Cd1d* genomic locus in FACS-isolated post-pregnancy MECs, suggesting that increased mRNA levels could be associated with parity-induced epigenetic changes at the CD1d locus (**Fig. 2-14 B**). These observations were confirmed in organoid systems that mimic the transcription and epigenetic alterations brought to MECs by pregnancy signals (Ciccone et al. 2020), where pregnancy hormones induced upregulation of *Cd1d* mRNA levels and increased H3K27ac levels at the *Cd1d* locus (**Fig. 2-14 C-D**). Thus, pregnancy-associated signals may induce epigenetic alterations at the *Cd1d* gene locus, that subsequently increase *Cd1d* mRNA and CD1d protein levels in post-pregnancy MECs.

Figure 2-13 Pregnancy alters CD1d transcription and expression on the surface of MECs.

(A) Flow cytometry analysis of myoepithelial and luminal MECs harvested from pre-pregnancy (and postpregnancy mammary tissue, and their distribution based on CD1d cell-surface expression.

(B) Flow cytometry quantification of CD1d+ MECs harvested from pre-pregnancy (black bars, n=8) and post-pregnancy (pink bars, n=10) mammary tissue. *p=0.0036 for luminal MECs and **p=0.0006 for myoepithelial MECs.

(C) Quantification of MHC-I+ MECs in pre- and post-pregnancy mammary tissue. n=6 nulliparous and n=9 parous female mice. *p=0.1.

(**D**) Quantification of MHC-II+MECs in pre- and post-pregnancy mammary tissue. n=5 nulliparous and n=8 parous female mice. *p=0.8.

(E) Quantification of CD1d+ immune cells in pre- and post-pregnancy mammary tissue. n=6 nulliparous and n=6 parous female mice. *p=0.28.

Figure 2-14

Figure 2-14 The effects of pregnancy in controlling CD1d expression.

(A) qPCR analysis of *Cd1d* mRNA levels in lineage depleted pre- and post-pregnancy MECs. n=3 biological replicates. p=0.0002.

(**B**) Genome browser tracks showing MACS-called, H3K27ac ChIP-seq peaks at the Cd1d genomic locus in FACS-isolated, pre- and post-pregnancy luminal MECs.

(C) qPCR analysis of *Cd1d* mRNA levels in organoid cultures derived from pre- and post-pregnancy MECs treated with pregnancy hormones. n=3 biological replicates. 0h, *p=0.0092; 12h, **p=0.0001; 24h, ***p=0.01.

(**D**) Genome browser tracks showing distribution of SEACR-called, H3K27ac Cut&Run, peaks at the Cd1d genomic locus in organoid cultures derived from pre- and post-pregnancy MECs treated for 3 hours with pregnancy hormones.

To investigate whether CD1d expression is required for the expansion of NKT cells after parity, we analyzed mammary glands from CD1d KO mice, which bear reduced levels of activated NKT cells (Faunce et al. 2005; Macho-Fernandez and Brigl 2015; Mantell et al. 2011). Mammary glands from nulliparous and parous CD1d KO mice displayed similar numbers of ductal structures and MEC populations as CD1d wild-type (WT) female mice, suggesting that loss of CD1d does not majorly alter mammary tissue homeostasis (Fig. 2-15 A). Further flow cytometry analysis indicated no statistically significant changes in the percentage of NKT cells in mammary glands of nulliparous CD1d KO mice (2.2% +/- 0.8), compared to nulliparous CD1d WT mice (3% +/- 1.6) (Fig. 2-8 A, left panel, and Fig. 2-15 B, left panel). Conversely, we found a 7-fold decrease in the percentage of NKT cells in mammary tissue from fully involuted, parous CD1d KO female mice (3% +/- 1.5) compared to parous CD1d WT mammary tissue (26% +/- 4), supporting the role of CD1d in regulating NKT activation (Fig. 2-8 A, right panel, and Fig. 2-15 B, right panel). Moreover, we found no difference in the abundance of NKT cells in glands from pre- and post-pregnancy CD1d KO female mice, consistent with lack of CD1d expression reducing the activation of NKT cells (Fig. 2-15 B). The analysis of an additional mouse strain that is deficient in mature/activated NKT cells, due to the deletion of the histone-demethylase Kdm6 (UTX KO mouse model), failed to detect an expansion of NKT cells post-pregnancy, supporting that pregnancy induces the expansion of mature/active subtypes of NKT cells (Beyaz et al. 2017) (Fig. 2-15 C). Moreover, NKT cells observed in post-pregnancy CD1d KO mammary tissue mainly expressed $\alpha\beta$ TCR on their surface, in contrast to the $\gamma\delta$ NKT cells observed in CD1d WT post-pregnancy glands, further confirming that loss of CD1d expression affects the expansion and activation of specific populations of NKT cells in post-pregnancy mammary tissue (Fig. 2-15 D).

Collectively, our studies identify pregnancy-induced epigenetic changes that may control the expression of Cd1d mRNA in MECs, and elucidate a role for CD1d in mediating communication between MECs and the $\gamma\delta$ TCR-expressing NKT cells, unique to post-pregnancy mammary glands.

Figure 2-15

Figure 2-15 NKT expansion depends on CD1d expression on post-pregnancy MECs.

(A) H&E stained histological images and duct quantification from mammary glands harvested from nulliparous (top left, n=6) and parous (bottom left, n=7) CD1d WT female mice, and nulliparous (top right, n=6) and parous (bottom right, n=7) CD1d KO female mice. p=0.86 for pre-pregnancy glands and p=0.78 for post-pregnancy glands. Scale: 7mm. Zoom in panels, scale 500µm.

(B) Flow cytometry analysis of mammary resident CD45+ cells harvested from pre- and post-pregnancy CD1d KO female mice, and their distribution of NKT cells (NK1.1+CD3+). n=4 nulliparous and n=4 parous female mice. *p=0.3.

(C) Quantification of NKT cells abundance in mammary tissue from nulliparous and parous UTX KO female mice, which are deficient for activated NKT cells. n=4 nulliparous and n=4 parous female mice. *p=0.5.

(**D**) Flow cytometry analysis of β and $\gamma\delta$ T-cell receptors (TCRs) of CD1d KO NKT cells from nulliparous (left, n=3) and parous (right, n=3) female mice. *p=0.5.

3. Pregnancy and oncoprotection in genetic models of mammary cancer

3.1 Author contributions

I acknowledge the following people who assisted with this project. Mary Feigman performed the initial flow cytometry and histology experiments on the CAGMYC mice, and transplant experiments with the double transgenic CD1d KO CAGMYC mouse model. Chen Chen and City Yang generated the K5-Brca1 KO mouse line. City Yang and Michael Ciccone maintained the mouse colony. Siran Li and Jude Kendall performed the whole genome DNA sequencing and CNV analyses. Matt Moss and Marygrace Trousdell analyzed the bulk RNA-seq data and generated the GSEA plots. Chen Chen performed the western blots on CAGMYC organoid cultures. J. Erby Wilkinson performed the histopathological analyses. Camila dos Santos oversaw the project, and participated in experimental design and data analyses.

3.2 A brief introduction to the GEMMs used in this section

3.2.1 The CAGMYC mouse model

To characterize the oncoprotective epigenetic changes induced by pregnancy, the dos Santos lab created a transgenic mouse strain (CAGMYC) of doxycycline (DOX) inducible *cMyc* overexpression as an oncogenic stressor. *Myc* is a key regulator of vital cellular processes such as growth, differentiation, proliferation, metabolism, and apoptosis. *Myc* deregulation has been widely shown to be associated with breast cancer progression and poor prognosis (Xu et al. 2010; Escot et al. 1986; Deming et al. 2000; Aulmann et al. 2002). We opted to use the CAGMYC model in which overexpression of *cMYC* is controlled by the CAG promoter, which is independent of pregnancy/lactation signals (Feigman et al. 2020), as opposed to classical promoters such as *MMTV*, *BLG*, and *WAP* as previously described. Pregnancy was found to elicit oncogenic protection in response to cMYC overexpression. Pre-pregnancy MECs showed abnormal growth, while post-pregnancy MECs resisted this phenotype and blocked malignant transformation.

Analysis of the pregnancy-induced epigenome revealed that genes that retained active histone marks (H3K27ac) after pregnancy, and are downregulated during re-exposure to pregnancy hormones, were associated with immune regulation. Further analysis of global gene expression of CAGMYC MECs demonstrated that post-pregnancy MECs have greater expression of genes associated with immune recruitment, thus suggesting that a full pregnancy cycle alters the communication between epithelial and immune cells. Here, we use this model to further understand epithelial-immune communication and cMyc driven oncogenesis.

3.2.2 The K5-CreERT2 Brca1^{fl/fl} p53^{-/+} (Brca1 KO) mouse model

cMYC overexpression is present in approximately 60% of basal-like breast cancers, with *cMYC* gain of function commonly found in *BRCA1* mutated breast cancers (Chen and Olopade 2008; Grushko et al. 2004). Interestingly, women harboring *BRCA1* mutations with a full-term pregnancy before the age of 25 benefit from pregnancy-induced breast cancer protection (Medina 2009; Terry et al. 2018). Therefore, we developed an inducible mouse model of *Brca1* loss of function, for the purpose of investigating how pregnancy-induced changes influence *Brca1* null mammary tumor development.

In this model, tamoxifen (TAM) induces homozygous loss of Brca1 function in cells that express the cytokeratin 5 gene (Krt5+ cells), which include MECs (dos Santos et al. 2013), cells from gastrointestinal tract (Sulahian et al. 2015), reproductive organs (Ricciardelli et al. 2017), and additional epithelial tissue (Castillo-Martin et al. 2010; Majumdar et al. 2012), in p53 heterozygous background (*Krt5*^{CRE-ERT2}*Brca1*^{fl/fl}*p53*^{-/+}, hereafter referred to as the Brca1 KO mouse).

Nulliparous Brca1 KO mice exhibited signs of mammary hyperplasia approximately 12 weeks post TAM treatment, which gradually progressed into mammary tumors at around 20 weeks after *Brca1* deletion (**Fig. 3-1 A-B**). Brca1 KO mammary tumors display cellular and molecular features similar to those previously described in human breast tissue from *BRCA1* mutation carriers and animal models of Brca1 loss of function, including high EGFR and KRT17 protein levels and altered copy number variation marked by gains and losses of genomic regions (Annunziato et al. 2019) (**Fig. 3-1 C-D**).

Figure 3-1

Figure 3-1 Characterization of Krt5^{CRE-ERT2}Brca1^{ko}p53^{het} (Brca1 KO) mouse model.

(A) Tumor-free survival plot of nulliparous Brca1 KO female mice in weeks after TAM-treatment (to induce Brca1 deletion) (n=8).

(**B**) Mammary tissue and tumors from Brca1 KO nulliparous female mice at specific time points after TAM-treatment.

(C) Immunohistochemistry (IHC) analysis of mammary tissue and tumors from Brca1 KO nulliparous female mice for marker of basal-like mammary tumors KRT5, KRT7, EGFR and AR.

(**D**) Genomic segment plot showing Copy Number Variation (CNV) in mammary tumor from nulliparous Brca1 KO female mice.

3.3 Results

Parity resulted in the expansion of a specific population of $\gamma\delta$ NKT cells in the mammary gland in response to the upregulation of surface CD1d on MECs, pointing to a mechanistic connection between pregnancy-associated MECs and immune cell biology. Pregnancy has also been demonstrated to induce molecular modifications to MECs associated with an oncogene-induced senescence response to cMyc overexpression, and thus suppression of MEC malignant transformation (Feigman et al. 2020). Therefore, we next investigated whether pregnancy-induced mammary cancer protection was associated with the expansion of NKT cells.

3.3.1 Lack of mammary oncogenesis is marked by NKT expansion and CD1d+ MECs in CAGMYC and Brca1 KO parous mice

Flow cytometry analysis of pre- and post-pregnancy mammary tissue from cMyc overexpressing female mice (DOX-treated, CAGMYC model) demonstrated a 1.5-fold increase in the abundance of total CD3+ T-cells (**Fig. 3-2 A**). CD3+ T-cell expansion was also observed in mammary tissue transplanted with CAGMYC post-pregnancy MECs and organoid cultures derived from post-pregnancy CAGMYC MECs, both conditions previously demonstrated to lack mammary oncogenesis, and therefore suggesting a link between pregnancy-induced tumorigenic inhibition and specific changes to the adaptive immune system (**Fig. 3-2 B-C**). This selective expansion of CD3+ T cells was further supported by the analysis of markers that define mammary resident neutrophils (Ly6G+) and macrophages (CD206+), which were largely unchanged in mammary tissue transplanted with either pre- or post-pregnancy CAGMYC MECs (**Fig. 3-2**

B).

Figure 3-2

Figure 3-2 The effects of cMYC-overexpression on pregnancy-induced immune changes and CD1d+ post-pregnancy MECs.

(A) Quantification of CD3+ immune cell abundance in mammary tissue from DOX-treated (DD5), pre- and post-pregnancy CAGMYC female mice. n=8 nulliparous and n=9 parous female mice. p=0.05.

(**B**) Quantification of CD3+ (T/NKT cells), CD206+ (macrophages) and Ly6G+ (neutrophils) in mammary tissue of DOX-treated nulliparous female mice transplanted with pre-pregnancy CAGMYC MECS (black bars, n=3) or post-pregnancy CAGMYC MECs (pink bar, n=3) *p=0.03.

(C) Quantification of CD45+CD3+ immune cell abundance in DOX-treated (2-days), organoid cultures derived from pre-pregnancy CAGMYC mammary tissue (top panel, n=3) or from post-pregnancy CAGMYC mammary tissue (bottom panel, n=3) *p=0.03.

Further flow cytometry analysis identified a 6-fold increase in the percentage of NKT cells in mammary tissue from parous CAGMYC female mice, which predominantly expressed $\gamma\delta$ TCRs (**Fig. 3-3 A-B**). No change in the abundance of CD8+ T-cells or CD4+ T-cells was observed between mammary tissue from nulliparous and parous CAGMYC female mice, supporting the parity-induced expansion of $\gamma\delta$ NKT cells (**Fig. 3-3 C-D**), and suggesting that specific constituents of the mammary immune microenvironment may control tumorigenesis. In agreement, we also found a 5-fold higher percentage of CD1d+ luminal MECs in post-pregnancy mammary tissue, thus linking gain of CD1d expression and the expansion of $\gamma\delta$ TCR-expressing NKT cells, which may collectively play a role in blocking tumorigenesis (**Fig. 3-3 E**).

To investigate the effects of pregnancy on the mammary immune microenvironment and oncogenesis, age matched, TAM-treated, Brca1 KO nulliparous and parous (1 pregnancy, 21-days of gestation, 21-days of lactation/nursing, and 40-days post offspring weaning) female mice were monitored for tumor development (**Fig. 3-4 A**). Our study demonstrated that 100% of nulliparous Brca1 KO female mice (5 out of 5 mice) developed mammary tumors, compared to only 20% of the parous Brca1 KO female mice that developed mammary tumors (1 out of 5), thus indicating that a full pregnancy cycle decreases the frequency of Brca1 KO mammary tumors by 80% (**Fig. 3-4 B-C**).

Histopathological analysis suggested that pre-pregnancy mammary tumors were quite diverse, as previously reported for tumors from Brca1 KO mice (Brodie et al. 2001). These included poorly differentiated tumors, such as micro-lobular carcinomas with squamous trans-differentiation (**Fig. 3-4 C** – **top rows, far left panel**), medullary like carcinomas (**Fig. 3-4 C** – **top rows, right panel**), and solid carcinomas resembling high-grade invasive ductal carcinoma (IDC) in humans (**Fig. 3-4 C** – **top rows, left and far right panels**). Accordingly, the only tumor-bearing parous Brca1 KO female mouse developed a poorly differentiated carcinoma with extensive squamous trans-differentiation and with extensive necrosis, also previously reported for tumors from Brca1 KO mice (**Fig. 3-4 C** – **bottom rows, far right panels**). Additional histopathological analysis confirmed that mammary tissues from the remaining parous Brca1 KO female mice (4 out of 5) were largely normal (**Fig. 3-4** C – **bottom rows, far left, left and right panels** and **Fig. 3-4** D).

Figure 3-3

Figure 3-3 Lack of mammary oncogenesis is marked by NKT expansion and CD1d+ MECs in CAGMYC parous female mice.

(A) Flow cytometry analysis of mammary resident NKT cells (CD45+NK1.1+CD3+) from DOX-treated nulliparous (left panel, n=5) and parous (right panel, n=5) CAGMYC female mice. *p=0.002. (B) Flow cytometry quantification of CD1d+ luminal and myoepithelial MECs from DOX-treated nulliparous (left panel, n=16) and parous (right panel, n=11) CAGMYC female mice. *p=0.02.

(**B**) Quantification of $\gamma\delta$ TCR expression at the surface of NKT cells in mammary tissue from DOX-treated (DD5), pre- and post-pregnancy CAGMYC female mice. n=5 nulliparous and n=5 parous female mice. *p=0.03.

(C) Quantification of total CD8+ T-cells in mammary tissue from DOX-treated (DD5), pre- and post-pregnancy CAGMYC female mice. n=5 nulliparous and n=5 parous female mice. *p=0.24.

(**D**) Quantification of total CD4+ T-cells in mammary tissue from DOX-treated (DD5), pre- and post-pregnancy CAGMYC female mice. n=4 nulliparous and n=4 parous female mice. *p=0.41.

(E) Flow cytometry quantification of CD1d+ luminal and myoepithelial MECs from DOX-treated nulliparous (left panel, n=16) and parous (right panel, n=11) CAGMYC female mice. *p=0.02.

Figure 3-4

Figure 3-4 Pregnancy decreases the frequency of Brca1 KO mammary tumor development.

(A) Experimental approach showing the strategy for Brca1 deletion, and analysis of tumor development in pre- and post-pregnancy Brca1 KO female mice.

(**B**) Mammary tumor-free survival plot of nulliparous (black line, n=5) and parous (pink line, n=5) Brca1 KO female mice.

(C) H&E stained histological images from mammary tissue and mammary tumor harvested from nulliparous (top panels) and parous (bottom panels) Brca1 KO female mice. Scale: 5mm. Zoom-in panels, scale: 500µm.

(**D**) H&E histological images of normal mammary tissue harvested from parous, non-TAM treated, Krt5^{CRE-ERT2}Brca1^{fl/fl}p53_{het} (therefore Brca1 WT) female mice.

Immunofluorescence analysis confirmed that both pre-pregnancy mammary tumors and postpregnancy normal mammary tissue were indeed deficient for Krt5+ Brca1+ epithelial cells, indicating that the lack of mammary tumors in parous female mice was not due to inefficient *Brca1* deletion (**Fig. 3-5 A**).

Flow cytometry analysis of Brca1 KO MECs demonstrated a progressive loss of myoepithelial cells in tumor tissue from nulliparous (2.5-fold) and parous (2-fold) Brca1 KO female mice, defined by an increase in the percentage of CD24^{high}CD29^{low} luminal-like MECs, (**Fig. 3-5 B**). These results suggest that tumor progression in this model is accompanied by changes to the population of CD24^{high} MECs, which has been associated with poor clinical outcomes in patients with triple negative breast cancer (Chan et al. 2019). Further cellular analysis indicated a 2.7-fold increase in the percentage of CD24^{high}/luminal CD1d+ cells in healthy, post-pregnancy Brca1 KO mammary tissue compared to tissue from tumor-bearing nulliparous and parous Brca1 KO mice, supporting that parity induces the expression of CD1d at the surface of MECs (**Fig. 3-5 C**).

Given the increased levels of CD1d expression at the surface of post-pregnancy Brca1 KO MECs, we next investigated the presence of NKT cells in mammary tissue from nulliparous and parous Brca1 KO female mice. Flow cytometry analysis demonstrated a 3.8-fold increase in the percentage of NKT cells in healthy, post-pregnancy Brca1 KO mammary tissue compared to non-affected normal mammary tissue from tumor-bearing, nulliparous and parous Brca1 KO mice (**Fig. 3-6 A-B**). Additional flow cytometry analysis demonstrated that approximately 70% of total NKT cells from healthy, post-pregnancy Brca1 KO mammary tissue expressed $\gamma\delta$ TCR, in marked contrast to NKT cells from healthy (2.7%) and tumor mammary tissue (8.6%) from nulliparous Brca1 KO mice (**Fig. 3-6 C**).

Collectively, our findings show that pregnancy-induced gain of CD1d expression at the surface of MECs and expansion of NKT cells associates with lack of mammary oncogenesis in response to cMyc overexpression or loss of Brca1 function, thus supporting to the link between pregnancy-induced molecular changes, mammary tissue immune alteration, and inhibition of mammary tumorigenesis in clinically relevant mouse models.

Figure 3-5

Figure 3-5 Lack of mammary oncogenesis is marked by increased CD1d expression on MECs in Brca1 KO parous mammary tissue.

(A) Immunofluorescence analysis (IF) of BRCA1 protein levels (white signal) in mammary epithelial cells (KRT5+, pink signal) from Brca1 WT mammary tumor (far left panels), pre-pregnancy Brca1 KO mammary tumors (left and middle panels), and from normal mammary tissue from parous Brca1 KO female mice (right and far right panels). Arrows indicate cells positive for BRCA1 and KRT5.

(**B**) FACS plots showing the abundance of luminal mammary epithelial MECs (CD24^{high}CD29^{low}) and myoepithelial mammary epithelial MECs (CD24^{low}CD29^{high}) in mammary tissue from parous Brca1 KO female mice (left panel), mammary tumor from nulliparous Brca1 female mice (middle panel), and mammary tumor from parous Brca1 female mice (right panel).

(C) Flow cytometry quantification of CD1d+ CD24^{high} luminal MECs from Brca1 KO pre-pregnancy mammary tumors (black bar, n=3), Brca1 KO post-pregnancy healthy mammary tissue (pink bar, n=4), and Brca1 KO post-pregnancy mammary tumor (blue bar, n=1). *p=0.02.

Figure 3-6

Figure 3-6 Lack of mammary oncogenesis is marked by NKT expansion in Brca1 KO parous mammary tissue.

(A) Flow cytometry analysis of mammary resident NKT cells in normal mammary tissue from nulliparous, tumor-bearing, Brca1 KO female mice (left panel, n=4) and normal mammary tissue from healthy parous Brca1 KO female mice (right panel, n=4). *p=0.003.

(B) FACS plots showing the abundance of NKT cells in mammary tumors from parous Brca1 KO female mice.

(C) Quantification of $\gamma\delta$ NKT cells in normal mammary tissue from nulliparous, tumor-bearing, Brca1 KO female mice (black bar panel, n=4), in mammary tumor tissue from nulliparous Brca1 KO female mice (blue bar, n=3), and in normal mammary tissue from healthy parous Brca1 KO female mice (black bar panel, n=2). *p=0.023 and **p=0.008.

3.3.2 Functionally active NKT cells are required to block malignant progression of post-pregnancy MECs

Given that we demonstrated that pregnancy-induced changes block mammary oncogenesis in two distinct models (**Fig. 3-3 and 3-4**), and that *cMyc* gain of function is commonly found in *Brca1* mutated breast cancers, we utilized the cMyc overexpression model to further characterize the effects of the immune microenvironment on the malignant progression of post-pregnancy MECs.

Analysis of fat-pad transplantations into severely immune deficient NOD/SCID female mice, which lack T-cells, B-cells, NK and NKT cells, indicated that 100% of mammary tissue injected with prepregnancy (n=5) or post-pregnancy (n=5) CAGMYC MECs developed adeno-squamous-like carcinomas with acellular lamellar keratin, high levels of cell proliferation (Ki67 staining), and increased collagen deposition (Trichrome blue staining) (**Fig. 3-7 A-C**). Therefore, NKT cells, or associated adaptive immune cells, are required for the parity associated protection from oncogenesis in the CAGMYC model.

Bulk RNA-seq analysis demonstrated that post-pregnancy CAGMYC MECs transplanted into the fat-pad of NOD/SCID female mice were less effective at activating the expression of canonical cMyc targets and estrogen response genes, compared to transplanted pre-pregnancy CAGMYC MECs, in agreement with the previously reported transcriptional state of post-pregnancy CAGMYC MECs (Feigman et al. 2020) (**Fig. 3-7 D**). We also found that organoid cultures derived from post-pregnancy CAGMYC MECs medicated p300 protein levels and moderately increased p53 protein levels, in agreement with the previously reported senescent state of post-pregnancy CAGMYC MECs (Feigman et al. 2020) (**Fig. 3-7 E**). Together, these findings indicate that oncogenic progression of post-pregnancy CAGMYC MECs is associated with the immune deficient mammary microenvironment of NOD/SCID mice.

Figure 3-7 cMYC-overexpression induces oncogenesis of post-pregnancy MECs transplanted into NOD/SCID mammary fatpads.

(A) Experimental approach showing strategy for the transplantation of pre- and post-pregnancy CAGMYC MECs into the fatpad of nulliparous NOD/SCID female mice, and tissue analysis.

(**B**) H&E stained histology images from DOX-treated (DD90) NOD/SCID mammary tissue transplanted with pre- and post-pregnancy CAGMYC MECs. n=5 nulliparous and 5 parous female mice. Scale: 200µm. (**C**) Immunohistochemistry (IHC) analysis of Masson's Trichrome levels (collagen deposition) and Ki67 levels (proliferation) in DOX-treated (DD90) NOD/SCID mammary tissue transplanted with pre- and post-pregnancy CAGMYC MECs. n=5 nulliparous and 5 parous female mice. Scale: 200µm.

(**D**) Gene set enrichment analysis of gene networks down-regulated in NOD/SCID mice transplanted with post-pregnancy CAGMYC MECs.

(E) Western blot of p300, and p53 proteins in organoid cultures derived from NOD/SCID transplanted preand post-pregnancy CAGMYC tumor cells, with and without DOX treatment (2 days). Vinculin protein levels were used as endogenous control. While our investigation of post-pregnancy CAGMYC MECs that were transplanted into the mammary tissue of immunosuppressed animals alluded to the importance of a robust immune system in blocking mammary tumorigenesis, it did not uncouple whether functionally active NKT cells, or CD1d expression at the surface of MECs, act to block oncogenesis in post-pregnancy mammary tissue. To determine whether signaling between CD1d+ MECs and NKT cells is critical for the development of mammary oncogenesis after pregnancy, we developed a double transgenic mouse model, by crossing the DOX-inducible CAGMYC mice into a CD1d KO background, hereafter referred as CAGMYC CD1d KO.

Tissue histology analysis indicated that mammary tissue from DOX-treated, nulliparous and parous CAGMYC CD1d KO female mice showed signs of tissue hyperplasia with atypia and abnormal ductal structures, demonstrating that loss of Cd1d expression is accompanied by mammary oncogenesis in a parity-independent fashion (**Fig. 3-8 A**, **left and far right panels and Fig. 3-8 B**). Conversely, analysis of DOX-treated, CAGMYC CD1d WT mice showed that mammary tissue from parous female mice lacked malignant lesions in response to cMyc overexpression (**Fig. 3-8 A**, **right panels and Fig. 3-8 B**). Flow cytometry analysis showed a lack of NKT cells in mammary tissue from both nulliparous and parous CAGMYC CD1d KO female mice, in marked contrast to the observed expansion of γ 8NKT cells in healthy post-pregnancy CAGMYC CD1d WT mammary glands that lacked tissue hyperplasia suggesting that CD1d expression may control pregnancy-induced expansion/activation of NKTs, and thus block mammary tumorigenesis. (**Fig. 3-8 C and Fig. 3-3 A**).

Figure 3-8

Figure 3-8 Functionally active NKT cells are required to block malignant progression of post-pregnancy MECs.

(A) H&E stained histological images of mammary tissue harvested from DOX-treated (DD5), nulliparous CD1d WT CAGMYC (far left panels), nulliparous CD1d KO CAGMYC (left panels), parous CD1d WT CAGMYC (right panels), and parous CD1d KO CAGMYC (far right panels) female mice. Green arrows indicate signs of malignant lesions/mammary hyperplasia. Green asterisks indicate normal-like ductal structures. Scale: 1mm.

(**B**) H&E stained histology images from mammary tissue from pre- and post-pregnancy CD1d WT CAGMYC and CD1d KO CAGMYC female mice without DOX treatment. Scale: 1mm.

(C) Flow cytometry analysis of mammary resident NKT cells harvested from pre- and post-pregnancy CD1d KO CAGMYC female mice (DOX D5).

To further determine whether loss of CD1d expression underlies the malignant transformation of post-pregnancy CAGMYC MECs, we performed mammary transplantation assays of CAGMYC CD1d KO MECs into the fat-pad of syngeneic animals (CD1d WT female mice). We found that 100% of mammary tissue injected with pre-pregnancy CAGMYC CD1d KO MECs and 70% of mammary glands injected with post-pregnancy CAGMYC CD1d KO MECs developed signs of malignant lesions, supporting that the loss of CD1d expression impacts pregnancy-induced breast cancer protection (**Fig. 3-9 A - black font**, and **Fig. 3-9 B-C**). This last observation was in marked contrast to the finding in glands injected with post-pregnancy CAGMYC CD1d WT MECs which, as previously reported, did not present signs of malignant transformation (Feigman et al. 2020) (**Fig. 3-9 A, blue font and Fig. 3-9 D-E**).

Altogether, these results suggest that loss of CD1d, with concomitant loss of pregnancy-induced expansion of NKT cells, supports the development of mammary malignant lesions, independently of parity. Moreover, our study elucidates that parity blocks the malignant transformation of MECs, both by inducing cell-autonomous, epigenetic alterations within the MECs, and non-autonomous, communication between CD1d+ MECs cells and NKT cells in the mammary gland.

Figure 3-9

Figure 3-9 Loss of CD1d expression supports the malignant transformation and oncogenesis of postpregnancy CAGMYC MECs.

(A) H&E stained histological images of DOX-treated, CD1d WT mammary tissue transplanted with prepregnancy CD1d WT CAGMYC MECs (blue font, top far left panel), pre-pregnancy CD1d KO CAGMYC MECs (black font, top panel), post-pregnancy CD1d WT CAGMYC MECs (blue font, bottom far left panel), or post-pregnancy CD1d KO CAGMYC MECs (black font, bottom panel). Green arrows indicate signs of malignant lesions/mammary hyperplasia. Green asterisks indicate normal-like ductal structures. Scale: 500µm.

(**B**) Experimental approach showing the strategy for the transplantation of pre- and post-pregnancy CD1d KO CAGMYC MECs into the fatpad of nulliparous CD1d WT female mice, and tissue analysis.

(C) H&E stained histology images from mammary tissue from DOX-treated (DD5) CD1d WT nulliparous female mice transplanted with pre- and post-pregnancy CD1d KO CAGMYC MECs. Scale: 500µm.

(**D**) Experimental approach showing the strategy for the transplantation of pre- and post-pregnancy CD1d WT CAGMYC MECs into the fatpad of nulliparous CD1d WT female mice, and tissue analysis.

(E) H&E stained histology images from mammary tissue from DOX-treated (DD5) CD1d WT nulliparous female mice transplanted with pre- and post-pregnancy CD1d WT CAGMYC MECs. Scale: 500µm. Green arrows indicate signs of malignant lesions/mammary hyperplasia. Green asterisks indicate normal-like ductal structures.

4. Establishing an *in vitro* system to reprogram and assay pregnancy naïve MECs

4.1 Author contributions

I acknowledge the following people who assisted with this project. James Rail and Michael Ciccone performed the screen for CD1d inducing compounds *in vitro* in organoids. Charlie Chung provided an early protocol which was the basis for the organoid-immune cell co-culture imaging system, and helped with troubleshooting the analysis pipeline. Mackenzie Callaway provided critical feedback. Erika Wee from the CSHL Microscopy Shared Resource provided training and assisted during the setup of the imaging assays. Camila dos Santos oversaw the project, and participated in experimental design and data analyses.

4.2 Introduction

Given that our results indicate that pregnancy can induce an expansion of $\gamma\delta$ NKTs, and inhibit mammary oncogenesis in the presence of CD1d expression, we sought to understand ways in which we could extend the pregnancy protection to never pregnant conditions.

We hypothesized that inducing CD1d expression in MECs could eventually support the expansion of NKT cells. We also wanted to further understand the specific $\gamma\delta$ chains that were more abundant in parous NKT cells. Our long term goal with this is to make engineered NKT cells that specifically express the $\gamma\delta$ TCRs that provide pregnancy protection, and to edit epithelial cells to express more CD1d in order to attract these NKT cells and enhance their oncoprotective effect.

We started developing *in vitro* assays in order to assess any changes in cytotoxicity of mammary resident immune cells after pregnancy. The reasoning behind this was twofold – we would be able to pinpoint immune cells involved in pregnancy protection against oncogenesis, and we would be able to use the assay as a platform to screen engineered NKT cells in the future.

4.3 Results

4.3.1 Pregnancy hormones are the most effective inducers of CD1d expression on MECs and may increase NKT abundance *in vivo*

We set up a low throughput screening assay to search for chemical compounds or culturing conditions that would increase the expression of CD1d at the surface of MECs. 3D organoid cultures derived from mammary tissue from never pregnant female mice were treated with a series of compounds previously described to induce CD1d expression in other model systems (**Table 4-1**) (Brutkiewicz 2006; Zhou et al. 2004; Jahng et al. 2004; Wu et al. 2003; Amprey et al. 2004; Maira et al. 2012; Li et al. 2010). Treated organoid cultures were then harvested and CD1d expression at the surface of MECs was quantified by flow cytometry. Based on the expression of CD1d via flow cytometry, pregnancy hormones appear to be the most efficient in inducing CD1d expression on the surface of MECs, once again linking pregnancy signals with induction of CD1d at the surface of MECs (**Fig. 4-1 A**). Additionally, we determined that the timepoint for maximal CD1d induction by pregnancy hormones at the surface of MECs to be 48 hours of culturing in media with hormones (**Fig. 4-1 B**).

In order to understand whether increased CD1d expression due to exposure of MECs to pregnancy hormones is sufficient to cause an increase in NKT cell abundance in mammary glands, we transplanted organoids treated with pregnancy hormones into the mammary glands of 8 week old wild-type Balb/C mice, in addition to untreated organoids, and a matrigel only control. 3 weeks post-transplant, we harvested mammary gland tissues and analyzed the abundance of NKT cells. This approach was chosen with the goal to allow organoid cultures grown with pregnancy hormones to involute from their exposure to pregnancy hormones, thus mimicking a mammary developmental program where NKTs became expanded.

Table 4-1 CD1d inducing compounds used in the screen, related to Figure 4-1

Estrogen, Progesterone, Prolactin (EPP)	(Ciccone et al. 2020)
18:0(2R-OH) SulfoGalCer (Sulfatide)	(Brutkiewicz 2006; Jahng et al. 2004)
18:0(2S-OH) SulfoGalCer (PC)	
Dactolisib (BEZ-235)	(Shissler and Webb 2019; Maira et al. 2012)
Buparlisib (BKM-120)	
7DW8-5	(Li et al. 2010)
C17:0 Globotriaosylceramide (GB3)	
Ganglioside GD3 (Bovine Milk)	(Brutkiewicz 2006)
Ganglioside GM3 (Bovine Milk)	
15:0 Lyso PG-d5 (15:0 LPG)	
17:0 Lyso PG-d5 (17:0 LPG)	(Amprey et al. 2004)
19:0 Lyso PG-d5 (19:0 LPG)	

Figure 4-1

Figure 4-1 Pregnancy hormones induce an increased CD1d expression on the surface of MECs in mammary organoid cultures derived from healthy Balb/C mice.

(A) Flow cytometry quantification of CD1d expression on the surface of mammary organoids cultured with CD1d-inducing treatments.

(B) Flow cytometry quantification of CD1d expression on the surface of control untreated mammary organoids (black) and those cultured with pregnancy hormones (EPP – pink) at 24hr, 48hr, and 72hr of treatment.

(C) Flow cytometry quantification of NKT cells from mammary glands of mice transplanted with cultured, untreated organoids (black) or organoids treated with pregnancy hormones (EPP – pink). Two independent trials of the experiment are shown.

(**D**) Flow cytometry quantification of CD1d at the surface of MECs from frozen organoids from healthy Balb/C mice (left), or freshly obtained organoids from age-matched healthy Balb/C mice (right).

Our preliminary results confirmed that exposure of organoids to pregnancy hormones induces an expansion in the NKT cell population in the transplanted mammary glands at 3 weeks after transplanting. But this expansion disappears by 6 weeks post-transplant (**Fig. 4-1 C**, **left**) – indicating that serial infusions of treated cells might be necessary to keep the NKT cells around in the transplanted glands. Interestingly, when we attempted to repeat this experiment, we were unable to recapitulate the same results (**Fig. 4-1 C**, **right**).

It has been shown that freeze-thaw cycles of mammary tumor tissue can affect the overall epithelial cell profiles (Le Gallo et al. 2018). We used frozen organoids in our second experiment but fresh isolated organoids the first time. We hypothesized that this could be affecting how the cells react to pregnancy hormone treatment. We tested this hypothesis by treating freshly obtained organoids and frozen organoids from healthy Balb/c mice with pregnancy hormones and measuring CD1d expression via flow cytometry. And indeed, the overall viability and health of cells from frozen organoids was much lower and the freshly isolated organoids seemed to express CD1d more robustly after exposure to pregnancy hormones (**Fig. 4-1 D**).

4.3.2 Post-pregnancy immune cells exhibit an enhanced ability to induce cell death in Brca1 KO tumor organoids

To determine whether pregnancy enhances the overall cytotoxic abilities of mammary resident immune cells, we isolated pre- and post-pregnancy NKT cells (CD3+ NK1.1+) from mammary glands by magnetic bead aided separation (MACS). We placed these in 2D culture with Brca1 KO tumor cells (primary tumor cells from our mouse model described previously), and assayed Caspase 3/7 activity by flow cytometry using the Magic Red Caspase 3/7 Assay kit (Abcam) after 24 hours of co-culture. However, we did not notice any differences in the Caspase activity caused by pre- and post-pregnancy NKT cells in this system (**Fig. 4-2 A**). Interestingly, we noted that most of the NKT cells seemed to be dying while being processed for flow cytometry, as the co-culture needed to be dissociated into single cells by enzymatic digestion (**Fig. 4-2 B**). Moreover, 2D culture does not truly recapitulate how immune cells would interact

with MECs *in vivo*. Finally, NKT cells might need other immune cells and/or CD1d expression, or other environmental cues that we cannot reproduce in 2D culture.

Figure 4-2

Flow cytometry analysis of Caspase 3/7 mediated killing of 2D cultured Brca1 tumor organoids by NKT cells isolated from pre- or post-pregnancy wild-type mice (n=2 per condition) showing NKT mediated killing represented in gate Q2.

(A) epithelial cells from the co-culture (CD45-)

(B) NKT cells from the co-culture (CD45+).

Based on these observations, we determined that a 3D co-culture system in Matrigel medium that we use to culture mammary organoids would be a better system. For this assay, tumor cells and immune cells were labeled with different fluorescent dyes (non-specific binding) and then plated together in a glass-bottom imaging plate with a Caspase 3/7 substrate in the culture media. Sequential images were captured to track the progression of colocalization of immune cells with tumor cells and killing on a spinning-disk confocal microscope (**Fig. 4-3 A**). This is a more direct readout of the killing ability and motility of immune cells than measuring Caspase 3/7 activity by flow cytometry, where there is no direct visualization of the interaction between the epithelial and immune cells.

An increase in colocalization of immune cells (green) with tumor cells (red) can be observed in the case of post-pregnancy immune cells at the peak of cell death (**Fig. 4-3 B**). Quantifying the relative colocalization of red fluorescence (tumor cells) with blue fluorescence (Caspase activity – i.e. cell death), shows that post-pregnancy immune cells elicit an increased rate of cell death in the tumor organoids (**Fig. 4-3 C**).

Though preliminary observations, our results from this section have the potential to be used as a therapeutic avenue to increase immune surveillance and curb oncogenesis in pregnancy naïve mammary glands. Once optimized to be reproducible, we can use our transgenic models of mammary oncogenesis to understand the protective potential of MECs treated with pregnancy hormones. We can also investigate whether combining treated MECs with immune cells from post-pregnancy mammary glands would be an effective intervention to arrest and/or cause regression in tumor growth.

102

Figure 4-3

Figure 4-3 3D co-culture of primary tumor organoids with primary immune cells shows increased cell death caused by post-pregnancy immune cells

(A) Schematic of the 3D co-culture live imaging setup. Fluorescently labeled *Brca1* KO tumor organoids (red) and mammary resident immune cells (green) are mixed in an imaging medium containing a Caspase 3/7 substrate (blue) and serially imaged over 28 hours.

(**B**) Representative images demonstrating increased colocalization of post-pregnancy immune cells with *Brca1* KO tumor organoids at 6hr of co-culture. Scale: 100µm.

(C) Relative colocalization (normalized to organoids only) of Red/Blue for Caspase activity. Postpregnancy immune cells cause an increased rate of cell death.

5. Conclusions and Perspectives

Our findings suggest that post-pregnancy mammary homeostasis does not rely on the presence of $\gamma\delta$ NKT cells, given the largely normal histology and cellular content of mammary tissue in mice deficient for this cell type. It is possible that NKT cells expand in response to the re-setting of whole-body immunity post-partum, with the child-bearing event providing signals that alter antigens across all maternal tissues as well as expanding specific immune cell populations. $\gamma\delta$ NKT cells have been found in the pregnant uterus across many mammalian species, linking NKT specialization and the pregnancy cycle (Mincheva-Nilsson 2003). Our results support that the expansion of NKT cells was predominantly observed in post-lactating, post-involution tissue, thus suggesting that the immune reprogramming of mammary tissue takes place after giving birth. In addition to the NKT cell population expansion, parity also promotes a modification of the TCR repertoire in NKT cells. $\gamma\delta$ T-cells reside within the normal breast, and their presence has been associated with a better prognosis during triple-negative breast cancer development (Wu et al. 2019b). Here we report that pregnancy-induced changes in TCR expression was specific to NKT cells, given that we did not find pregnancy-induced TCR rearrangements in CD8+NK1.1- immune cells, pointing to the specific engagement of NKT-lineages during pregnancy-induced mammary development.

Several other immune subtypes have been described to be enriched in mammary tissue during gestation, lactation and involution stages of mammary gland development. These studies identified alterations in leukocyte interaction with mammary ductal structures, as well to specific transcriptional changes, suggesting that cell interaction and cellular identity of mammary resident cells are affected by pregnancy-induced development (Dawson et al. 2020; Hitchcock et al. 2020). Our analysis of leukocytes, specifically macrophages and neutrophils, did not show alterations in cell abundance either in from healthy parous murine mammary tissue or in post-pregnant CAGMYC mammary tissue lacking malignant lesions. Moreover, we found that CD1d expression on the surface of total CD45+ mammary resident immune cells were not altered by parity, thus supporting a role for post-pregnancy CD1d+ MECs in regulating CD1d-dependent NKT cells. However, given that leukocytes have been implicated in the activation of NKT cells

(Macho-Fernandez and Brigl 2015; Rizvi et al. 2015), it is possible that molecular alterations, rather than changes to cellular abundance or antigen presentation, could play a role in inducing or sustaining the population of NKT cells in post-pregnancy mammary tissue.

Our studies also provide evidence linking pregnancy-induced immune changes with the inhibition of mammary oncogenesis. Our previous research focused on how post-pregnancy MECs assume a senescence-like state in response to cMyc overexpression, an oncogene-induced response that activates the immune system via the expression of senescence-associated genes (Braig and Schmitt 2006). Here, we found that CD1d expression at the surface of post-pregnancy MECs, and the presence of $\gamma\delta$ NKT cells were linked with the inhibition of mammary oncogenesis in two independent models of breast cancer, illustrating how epithelial and immune cells communicate to support pregnancy-induced mammary cancer prevention. Given that NKT cells were previously shown to interact with senescent cells, it is possible that pregnancyinduced activation of CD1d expression and NKT cell expansion represent additional responses to oncogeneinduced cellular senescence (Kale et al. 2020).

Women completing a full-term pregnancy before the age of 25 have a substantially reduced breast cancer risk, by approximately one-third (Medina 2009). This benefit applies to the risk of all breast cancer subtypes, including those from women harboring *BRCA1* mutations (Terry et al. 2018). Thus, our findings supporting a role for pregnancy in inhibiting the development of Brca1 KO mammary tumors lends a clinical relevance to our studies. Interestingly, the mammary tumor from parous Brca1 KO female mouse was associated with low abundance of $\gamma\delta$ NKT cells and CD1d+ MECs, suggesting that loss of the pregnancy-induced epithelial to immune microenvironment communication may support mammary tumorigenesis. In agreement, the genetically engineered loss of CD1d expression, with a consequent deficiency in activated NKTs, supported the malignant progression of cMyc overexpressing MECs, further illustrating a link between epithelial and immune cells in supporting pregnancy-induced mammary cancer prevention.
Finally, our studies are the first to attempt to induce pregnancy-associated changes to MECs with the long term goal to use them in a therapeutic setting to improve immune surveillance in pregnancy naïve mammary glands. This, in combination with our live imaging experimental setup, can be further exploited to study epithelial-immune interactions *in vitro* to understand the roles of individual types of immune cells in the mammary microenvironment. Understanding the causal factors of pregnancy-associated oncoprotection will enable us to translate this into future therapies against breast malignancies.

Our findings are based on studies performed in mice that became pregnant at a young age (~8 weeks old), which reinforced pregnancy-induced changes to epithelial cells, and their effect on immune recruitment and oncogenesis inhibition. However, it remains unclear why such strong, pregnancy-induced changes do not fully prevent the development of breast cancer (Nichols et al. 2019). It has been suggested that specific mammary epithelial clones with oncogenic properties reside within the mammary tissue after pregnancy, and may give rise to late-onset mammary oncogenesis in aged mice (Li et al. 2020b). It is possible that such populations of rare MECs lose some of their pregnancy-induced molecular signatures over time, thereby bypassing oncogene-induced senescence and immune recognition, and ultimately developing into mammary tumors. Moreover, given that pregnancy-induced breast cancer protection becomes apparent ~5-8-years after pregnancy, it is possible that additional immune reprogramming induced by genetic makeup, age at pregnancy, and/or overall post-partum health, may further modify breast tissue and erase pregnancy-induced changes that inhibit breast cancer development.

Nonetheless, the connection between pregnancy, immunity, and oncogenesis could be used to develop therapies to block cancer development. Strategies could be developed to induce NKT expansion in the absence of a true pregnancy. Indeed, a series of preclinical models have been developed to optimize the delivery of CD1d stimulatory factors, such as αGalcer and KRN7000, and induce expansion of NKT cells (Zhang et al. 2019). Such strategies are mostly side-effect free, and could be used in cases of high cancer risk, including in the event of genetic alterations that affect BRCA1 function and/or family history of breast cancer. Additionally, the characterization of specific, pregnancy-induced TCR rearrangements could be leveraged in CAR-NKT immunotherapy, for example, which could also efficiently target disease that has

already developed. Collectively, such strategies could improve breast health, nursing experience, and decrease cancer risk in women who experience their first pregnancy after 35 years of age, when they are at greater risk of requiring medical intervention to improve milk production, breastfeeding assistance, and to develop breast cancer.

5.1 Highlights

Parity influences mammary cancer progression. We demonstrate how pregnancy induced changes modulate the communication between MECs and immune cells and establish a causal link between pregnancy, the immune microenvironment, and mammary oncogenesis in models of cMYC overexpression and Brca1 loss of function.

• Post-pregnancy MECs express higher levels of the antigenpresenting molecule CD1d

 γδTCR-expressing NKT cells are expanded in post-pregnancy mammary glands

• NKTs and CD1d expression associate with oncogenesis inhibition after pregnancy

Loss of γδNKTs and CD1d
expression supports mammary
oncogenesis after pregnancy

5.2 Future directions

The work presented in this thesis paves the way for a number of follow up studies focused on understanding the role of pregnancy in the expansion $\gamma\delta$ NKT cells in the mammary gland, and to further characterize the NKT cells.

Identification of specific TCR rearrangements in pregnancy-induced mammary resident NKT cells

NKT cells are known to assume multiple roles in maintaining tissue homeostasis, pathogen clearance, and cancer by recognizing self- and foreign-antigens using T-cell receptors (TCRs). We have shown that the TCRs expressed on post-pregnancy mammary NKT cells are different from those on prepregnancy NKT cells. Identifying the specific TCRs that are differentially expressed in post-pregnancy NKT cells may help us understand and replicate pregnancy associated oncoprotection.

In order to determine the specific changes to the TCR repertoire of mammary NKT cells, single cell TCR-sequencing by 5'-RACE may be employed. A caveat is that the existing single cell TCR sequencing reagents provided by 10X Genomics do not include $\gamma\delta$ TCRs, but other groups have designed and validated primers for sequencing $\gamma\delta$ TCRs with the 10X reagents, and this method can be used (Daniels et al. 2020).

TCR replacement in NKT cells to assess changes in cytotoxicity

The TCRs identified to be upregulated in post-pregnancy will then be overexpressed in NKT cells using a CRISPR-mediated TCR replacement strategy (Legut et al. 2018). With the help of CRISPR/Cas9, the endogenous TCRs from the recipient cells will be knocked out, and simultaneously the identified receptors will be transduced. Knocking out endogenous receptors ensures that mixed dimers of TCRs are not formed and the effects observed are solely due to the newly introduced TCRs. The TCR replacement strategy involves the use of two separate lentiviral transductions – one that encodes the chosen TCR transgenes (the desired $\gamma\delta$ variable region sequences) in a pELNS transfer vector, and the other CRISPR/Cas9 targeting the endogenous TCR- β constant region using a pLentiCRISPR v2 plasmid containing a puromycin-resistance marker gene. NKT cells will be isolated by magnetic enrichment for CD3+ and NK1.1+ cells, cultured overnight, and transduced with lentiviral particles in the presence of 5µg/ml polybrene. Cells that take up the virus will be selected by incubation with puromycin. The next step would be to test whether TCR replacement in pregnancy naïve NKT cells can increase the activation of cytotoxic CD8+ T cells as an effect of the secreted cytokines, or if the cytotoxic capabilities of the NKT cells themselves increases. These studies will be performed using *in vitro* killing assays in the 3D culture conditions described in section 4.3.2.

Devise ways to upregulate CD1d in vivo to extend pregnancy protection in a never-pregnant setting

NKT cells are classically activated by antigens presented by CD1d on the cell surface (Gapin et al. 2013; Rizvi et al. 2015). We find that CD1d expression on the surface of epithelial cells is elevated after pregnancy in healthy and in Brca1 KO mice. But the CD1d expression in Brca1 KO mice seems to be related to mammary tumorigenesis, as we observed more CD1d expression in non-tumor bearing mice. Moreover, approximately 70% of total NKTs from healthy, post-pregnancy Brca1 KO mammary tissue expressed $\gamma\delta$ TCR, in marked contrast to NKTs from healthy (2.7%) and tumor mammary tissue (8.6%) from nulliparous Brca1 KO mice (**Fig. 3-6**).

Our results show that there is a transient increase in the NKT cell population in mammary glands of mice transplanted with pregnancy hormone treated organoids. The next step would be to understand whether serial infusions of treated cells is required to sustain the expansion, and to determine the ideal route of delivery of these cells, since serial surgeries would not be ideal. We can use intraductal injections, where cells are injected into the nipples, as a local and minimally invasive delivery method.

Next, to confirm the necessity of CD1d expression on the surface of MECs, organoid cultures will be derived from CD1d KO mice, treated with pregnancy hormones, and transplanted into CD1d WT mice to see if they can induce NKT expansion (Faunce et al. 2005; Macho-Fernandez and Brigl 2015; Mantell et al. 2011).

Taking it a step further, we would ask the question of whether ex-vivo treated organoids can bring in NKTs to mammary glands in our breast cancer mouse models and if they provide protection against oncogenesis. To do this, we would harvest one of the mammary glands from Brca1 KO mice, derive organoid cultures, treat with pregnancy hormones, and transplant them back into the same mouse and monitor to see whether this would provide protection against tumorigenesis. Alternatively, normal organoids treated with pregnancy hormones could be transplanted into Brca1 KO females and monitored for tumor growth over time.

6. Experimental Procedures

6.1 Data and Code Availability

scRNA-seq, RNA-seq, ATAC-seq datasets were deposited into BioProject database under number PRJNA708263 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA708263].

Results shown in Fig. 2-2 (pre-pregnancy scRNA-seq) were deposited into BioProject database

number PRJNA677888 [https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA677888].

Results shown in Fig. 2-3 C (pre- and post-pregnancy RNA-seq), and Fig. 2-9 C (pre- and post-

pregnancy H3K27ac ChIP-seq) were deposited in the BioProject database under numbers PRJNA192515

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA192515] and PRJNA544746

[https://www.ncbi.nlm.nih.gov/bioproject/PRJNA544746].

Results shown in Fig. 2-10 F (H3K27ac Cut&Run of organoid cultures) were deposited in the

BioProject database under number PRJNA656955

[https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA656955].

This thesis does not report original code.

6.2 Experimental Model and Subject Details

Animal Studies

All experiments were performed in agreement with approved CSHL Institutional Animal Care and Use Committee (IACUC). All animals were housed at a 12 hour light/12 hour dark cycle, with a controlled temperature of 72°F and 40-60% of humidity. Balb/C female mice were purchased from The Jackson Laboratory and Charles River. RAG1 KO mice (B6.129S7-Rag1^{tm1Mom/}J, IMSR Cat# JAX:002216, RRID:IMSR_JAX:002216) were purchased from The Jackson Laboratory. VavCre UTX KO were generated as previously described (Beyaz et al., 2017). CXCR6-KO-EGFP-KI mice (B6.129P2-Cxcr6^{tm1Litt}/J, IMSR Cat# JAX:005693, RRID:IMSR_JAX:005693) were purchased from The Jackson

Laboratory. CAGMYC transgenic mouse strain was generated as previously described (Feigman et al. 2020). CD1d KO CAGMYC transgenic mouse stain was generated by crossing CD1d KO (C.129S2-Cd1^{tm1Gru}/J, IMSR Cat# JAX:003814, RRID:IMSR JAX:003814) mice with CAGMYC mice. Krt5^{CRE-} ERT2Brca1^{fl/fl}p53^{het} (Brca1 KO) transgenic mouse strain was generated by crossing Blg^{CRE}Brca1^{fl/fl}p53^{het} (Trp53^{tm1Brd}Brca1^{tmAash}Tg(B-cre)74Acl/J, IMSR Cat# transgenic mouse strain JAX:012620, Krt5^{CRE-ERT2} with transgenic RRID:IMSR JAX:012620) mouse strain (B6N.129S6(Cg)-Krt5^{tm1.1(cre/ERT2)Blh}/J, IMSR Cat# JAX:029155, RRID:IMSR JAX:029155).

6.3 Method Details

Antibodies

All antibodies were purchased from companies as indicated below and used without further purification. Antibodies for lineage depletion: biotinylated anti-CD45 (Thermo Fisher Scientific Cat# 13-0451-85, RRID:AB_466447), biotinylated anti-CD31 (Thermo Fisher Scientific Cat# 13-0311-85, RRID:AB 466421), biotinylated anti-Ter119 (Thermo Fisher Scientific Cat# 13-5921-85. RRID:AB_466798) and biotinylated anti-CD34 (Thermo Fisher Scientific Cat# 13-0341-82, RRID:AB_466425). Antibodies for cell surface flow cytometry: eFluor 450 conjugated anti-CD24 (Thermo Fisher Scientific Cat# 48-0242-82, RRID:AB 1311169), PE-Cy7 conjugated anti-CD29 (BioLegend Cat# 102222, RRID:AB_528790), 7-AAD viability staining solution (BioLegend Cat# 420404, RRID:SCR_020993), PerCP-Cy5.5 conjugated anti-CD1d (BioLegend Cat# 123514, RRID:AB_2073523), PE conjugated anti-CD1d (BioLegend Cat# 140805, RRID:AB_10643277), APC conjugated anti-CD45 (BioLegend Cat# 103112, RRID:AB_312977), FITC conjugated anti-CD3 (BioLegend Cat# 100204, RRID:AB_312661), Alexa Fluor 700 conjugated. anti-NK1.1 (BioLegend Cat# 108730, RRID:AB_2291262), APC/Cy7 conjugated anti-CD8 (BioLegend Cat# 100714, RRID:AB_312753), PE conjugated anti-TCR γ/δ (BioLegend Cat# 118108, RRID:AB 313832), APC conjugated anti-TCR β (BioLegend Cat# 109212, RRID:AB 313435), APC conjugated anti-H-2Kb (BioLegend Cat# 116517,

112

RRID:AB_10568693), Pacific Blue conjugated anti-I-Ab (BioLegend Cat#116421, RRID:AB_10613291), Brilliant Violet 421 conjugated anti-CD206 (BioLegend Cat# 141717, RRID:AB_2562232), Alexa Fluor 700 conjugated anti-Ly6G (BioLegend Cat# 127621, RRID:AB 10640452). Antibodies for intracellular flow cytometry: PE conjugated anti-IFNγ (BioLegend Cat# 505808, RRID:AB 315402), Pacific Blue conjugated anti-T-bet (BioLegend Cat# 644807, RRID:AB 1595586). Antibodies for negative controls: eFluor 450 conjugated mouse IgG (Thermo Fisher Scientific Cat# 48-4015-82, RRID:AB_2574060), FITC conjugated rat IgG (Thermo Fisher Scientific Cat# 11-4811-85, RRID:AB_465229), and PE-Cy7 conjugated mouse IgG (BioLegend Cat# 405315, RRID:AB_10662421). Antibody for MaSC enrichment: biotinylated anti-CD1d (BioLegend Cat# 123505, RRID:AB 1236543). Antibodies for Western Blot: antip300 antibody (Santa Cruz Biotechnology Cat# SC-585, RRID:AB_2231120), anti-Vinculin antibody (Abcam Cat# ab129002, RRID:AB_11144129), anti-p53 antibody (Leica Biosystems Cat# P53-CM5P, RRID:AB 2744683), goat anti-rabbit IgG HRP (Abcam Cat# ab6721, RRID:AB 955447) and goat antimouse IgG HRP (Abcam Cat# ab97051, RRID:AB_10679369). Antibodies for Immunohistochemistry (IHC) staining: anti-Cytokeratin 5 (KRT5) (BioLegend Cat# 905501, RRID:AB_2565050), anti-Cytokeratin 7/17 (KRT7/17) (Santa Cruz Biotechnology Cat# sc-8421, RRID:AB_627856), anti-EGFR (Santa Cruz Biotechnology Cat# sc-373746, RRID:AB_10920395), anti-AR (Santa Cruz Biotechnology Cat# sc-7305, RRID:AB_626671), and anti-Ki67 (Spring Bioscience Cat# M3062, RRID:AB_11219741). Antibodies for Immunofluorescence (IF) staining: Alexa Fluor 647 conjugated anti-Cytokeratin 5 (KRT5) (Abcam Cat# AB193895, RRID:AB 2728796), unconjugated rabbit anti-BRCA1 (Bioss Cat# bs-0803R, RRID:AB_10858843), Alexa Fluor 568 conjugated goat anti-rabbit IgG (Thermo Fisher Scientific Cat# A-11036, RRID:AB_10563566), Alexa Fluor 488 conjugated anti-GFP (BioLegend Cat# 338007, RRID:AB 2563287), Alexa Fluor 405 conjugated anti-Cytokeratin 8 (KRT8) (Abcam Cat# ab210139, RRID:AB_2890924).

Mammary gland isolation

Female mice classified as Pre-pregnancy (nulliparous, never pregnant), Post-pregnancy (parous, 1 gestation cycle, 21 days of lactation and 40 days of involution post offspring weaning), were housed together for 1-2 weeks to allow for estrous cycle synchronization prior to mammary gland isolation. For the experiments utilizing exposure to pregnancy hormones (EPH), never pregnant female mice (~8 weeks old) were implanted with 21 days-slow-release estrogen and progesterone pellets (17 β -Estradiol (0.5 mg/pellet) + Progesterone (10 mg/pellet) - Innovative Research of America Cat# HH-112) prior to mammary gland isolation (at D12 post pellet implantation). Females classified as involution D15 had 1 gestation cycle, 21 days of lactation and 15 days of involution post offspring weaning. In all cases, mammary gland isolation was performed as previously described (dos Santos et al. 2013). In short, mammary glands (one to four pairs per mouse) were harvested, minced, and incubated for 2 hours with 1x Collagenase/Hyaluronidase (10x solution, Stem Cell Technology Cat# 07912) in RPMI 1640 GlutaMAX supplemented with 5% FBS. Digested mammary gland fragments were washed with cold HBSS (Thermo Fisher Scientific Cat# 14175103) supplemented with 5% FBS, followed by incubation with TrypLE Express (Thermo Fisher Scientific Cat# 12604-013) and an additional HBSS wash. Cells were incubated with 2 mL of Dispase (Stem Cell Technology Cat# 07913) supplemented with 40 µL DNAse I (Sigma Cat# D4263) for 2 minutes and then filtered through a 100µm Cell Strainer (BD Falcon Cat# c352360). The single cell suspension was incubated with lineage depletion antibodies and loaded onto a MACS magnetic column (Miltenyi Biotec Cat# 130-042-401). Lineage negative, flow-through cells (epithelial cells) were utilized for flow cytometry, and transcriptomic analysis. Lineage positive cells (immune cells) were eluted from column with 3ml of MACS buffer and utilized for flow cytometry, transcriptomic and epigenomic analysis. For cell analysis, Dual Fortessa II cell analyzer (BD Biosciences) was used. Data analysis was performed FACSDiva using BD Software (RRID:SCR_001456) or FlowJo (FlowJo, RRID:SCR_008520). Statistically significant differences were considered with Student's t-test p-value lower than 0.05 (p<0.05).

Flow cytometry gating analysis

Mammary resident cells (epithelial and non-epithelial) were harvested from both top and bottom mammary glands, and analyzed according to the bellow indicated strategy. For all flow cytometry analysis an average of 300,000 cells live cells (7-AAD negative) were recorded.

a) General innate immune cells analysis strategy:

b) General adaptive immune cells analysis strategy:

c) NKT intracellular analysis strategy:

d) CD1d+ MECs analysis strategy:

e) MHC-I and MHC-II MECs analysis strategy:

f) Magic Red Caspase 3/7 activity analysis strategy:

Mammary Organoid Culture

Mammary tissue dissected was minced and digested for ~40 minutes in Collagenase A, type IV solution (Sigma, Cat Cat# C5138-1G), following a series of centrifugations to enrich for mammary organoids. Freshly isolated mammary organoids were cultured with Essential medium (Advanced DMEM/F12, supplemented with ITS (Insulin/Transferrin/Sodium selenite, Gibco Cat# 41400-045, and FGF-2 (PeproTech, Cat# 450-33)) prior to analysis. For experiments shown in Fig. 2-10, organoid cultures were derived from normal mammary tissue from pre- or post-pregnancy Balb/C female mice (RRID:IMSR CRL:028), cultured in the presence of FGF-2 for 6 days, following FGF-2 withdrawal for 24 hrs and then incubated with Complete medium (AdDF+++, supplemented with ITS (Final Concentration:1x, Insulin/Transferrin/Sodium Selenite, Gibco Cat# 41400-045), 17-B-Estradiol (Final concentration: 40ng/mL, Sigma Cat# E2758), Progesterone (Final concentration: 120ng/mL, Sigma Cat# P8783), Prolactin (Final concentration: 120ng/mL, Sigma Cat# L4021), as previously described (Ciccone et al. 2020). For experiments shown in Fig. 3-2, organoid cultures were derived from pre- or post-pregnancy CAGMYC MECs, following treatment with doxycycline (DOX, 0.1mg/mL, Clontech Cat# 631311) for 2 days (DD2). For experiments shown in Fig. 3-8, organoid cultures were derived from NOD/SCID female mice, transplanted with either pre- or post-pregnancy CAGMYC MECs, following treatment with doxycycline (DOX, 0.1mg/mL) for 2 days (DD2). For experiments shown in Fig. 4-1, organoid cultures were derived from pre-pregnancy Balb/C female mice and incubated with CD1d inducing compounds described in Table 4-1 for 24 hours and then assayed by flow cytometry for CD1d expression. For experiments shown in Fig. 4-2 and Fig. 4-3, organoid cultures were derived from a mammary gland tumor from a Tamoxifen treated Brca1 KO mouse.

RT-qPCR

Lineage depleted MECs or organoid cultures were washed with 0.5mL 1x PBS, following RNA extraction with Trizol (0.5mL, Thermo Fisher Scientific, Cat# 15596018). Reverse transcription was carried out using SuperScript III TM kit (Thermo Fisher Scientific, Cat# 18080-051). RT-qPCR was performed using a Quantstudio 6 with SYBR Green Master mix (Applied Biosystems, Cat# <u>4368577</u>). Relative mRNA expression of target gene was calculated via the $\Delta\Delta$ Ct method and normalized to *β-actin* mRNA levels.

Cd1d qPCR primers: FWD: 5' TCC GGT GAC TCT TCC TTA CA 3' and REV: 5' CTG GCT GCT CTT CAC TTC TT 3'.

 β -actin qPCR primers: FWD: 5' TGT TAC CAA CTG GGA CGA CA 3' and, REV: 5' GGG GTG TTG AAG GTC TCA AA 3'.

Mammary fat pad transplantation

MaSCs-enrichment was performed as previously described (dos Santos et al., 2013). In short, lineage depleted MECs were incubated with biotinylated anti-CD1d antibody, to allow for MaSC enrichment. CD1d-enriched MEC fractions were resuspended with 50% growth factor reduced matrigel solution (Corning, Cat# 356230) and injected into the cleared fat-pad of the inguinal mammary gland (anterior part of the gland). For experiments presented on Fig. 3-2 CD1d-enriched MECs fractions (~100K) were injected into the mammary fatpad of 12 weeks old CAG-only female mice, followed by DOX-treatment and histology analysis. For experiments presented on Fig. 3-6 CD1d-enriched MECs fractions (~100K) were injected into the mammary fatpad of 12 weeks old NOD/SCID (RRID:IMSR_JAX:001303) female mice, followed by DOX-treatment and histology analysis. For experiment and histology analysis. For experiments presented on Fig. 3-6 CD1d-enriched MECs fractions (~100K) were injected into the mammary fatpad of 12 weeks old NOD/SCID (RRID:IMSR_JAX:001303) female mice, followed by DOX-treatment and histology analysis. For experiments presented on Fig. 3-7 and Fig. 3-8, pre- or post-pregnancy CD1d WT CAGMYC MECs (~10K) or CD1d KO CAGMYC MECs

(~10K) were injected into the mammary fatpad of 8-10 weeks old CD1d WT female mice, and allowed 3days of tissue engraftment prior to DOX-treatment for 5 days.

Histological analysis

For histological analysis, the left inguinal mammary gland was harvested and fixed in 4% Paraformaldehyde overnight prior to paraffin embedding. For conventional histological analysis, mammary gland tissue slides were stained with Hematoxylin and Eosin (H&E). For ductal quantification, mammary gland H&E histological images were uploaded into Fiji (Fiji, RRID:SCR_002285), and ducts present in the posterior part of the gland were manually counted. Immunohistochemistry staining (IHC) was performed on a Roche Discovery Ultra Automated IHC/ISH stainer. For Masson's trichrome staining, Leica Multistainer Stainer/Coverslipper Combo (ST5020-CV5030) was used to stain slides according to standard reagents and protocols. Images were acquired using Aperio ePathology (Leica Biosystems) slide scanner in 40X lenses.

Immunofluorescence (IF) analysis

Paraffin-embedded mammary gland sections were deparaffinized in Xylene (Sigma Cat# 534056) and rehydrated, followed by antigen retrieval in Trilogy (Cell Marque Cat# 920P-10). Tissue was washed in 1x PBS (phosphate-buffered saline) for 1 min then blocked with blocking solution (10mM Tris-HCl pH 7.4, 100mM MgCl₂, 0.5% Tween 20, 10% FBS, 5% goat serum) for 4 hours in a humidified chamber. Sections were stained with the appropriate conjugated primary antibodies in blocking solution for 16 hours at 4°C. After subsequent washings with 1x PBS and blocking solution, tissues were incubated with DAPI (Sigma Cat# 10236276001) for 10 minutes to stain nuclei, and slides were mounted in ProLong Glass Antifade Mountant (Invitrogen Cat# P36980). Cell visualization and image collection was performed on a Zeiss LSM780 confocal laser-scanning microscope utilizing Zen lite software, Blue edition (ZEN Digital Imaging for Light Microscopy, RRID:SCR_013672) version 2.0.0.0. Non-specific staining was defined as follows (Scale: 200µm).

Doxycycline (DOX) treatment

Doxycycline was purchased from Takara Bio USA, Inc. (Cat# 631311) and sucrose was purchased from Sigma (Cat# S7903). DOX drinking solution (1 mg/mL) was prepared using sterile 1% sucrose water.

Tamoxifen (TAM) treatment

Tamoxifen USP grade was purchased from Sigma-Aldrich (Cat# 1643306) and sunflower seed oil (European Pharmacopoeia grade) was purchased from Sigma-Aldrich (Cat# 88921). To prepare the working solution, the Tamoxifen powder was weighed and dissolved in ethanol by vortexing. Heat sterilized sunflower oil was added at a ratio of 19:1 oil:ethanol mixture to a final concentration of 5mg/100ul (one dose), heated to 55°C and shaken vigorously to homogenize the mixture.

Krt5^{CRE-ERT2}Brca1^{fl/fl}p53^{het} transgenic female mice received a total of three intraperitoneal doses of Tamoxifen warmed to 37°C on alternate days.

Monitoring tumor growth

3 week old Krt5^{CRE-ERT2}Brca1^{fl/fl}p53^{-/+} female mice were treated with TAM. Half of TAM-treated female mice were housed together (pre-pregnancy/nulliparous group), and the other half were paired with a male (1 female and 1 male per breeding cage). Breeding TAM-treated females were allowed to give birth, nurse the offspring (21 days), and were considered post-pregnant (parous) after 40 days from offspring weaning. Both pre- and post-pregnancy mice were monitored for signs of tumor growth, and added to the Kaplan-Meier curve as soon as there was a palpable tumor. Mice with a tumor burden exceeding the limit of the animal's well-being (>2 cm), or mice showing signs of distress independently of tumor development were euthanized. At experimental end point, mammary tissue or mammary tumors were harvested for histological and flow cytometry analysis. Statistical analysis was performed with Logrank (Mantel-Cox) test.

Western blot

DOX-treated and control organoid cultures were homogenized in 1x Laemmli sample buffer (Bio-Rad, Cat# 1610747). Samples were loaded into homemade 10% SDS-PAGE gel and transferred overnight to PVDF membrane (Bio-Rad, Cat# 162-0177) using wet-transfer apparatus. Membranes were blocked with 1% BSA solution and incubated overnight with a diluted solution of primary antibody, followed by incubation with HRP-conjugated antibody for 40 minutes. HRP signal was developed with Luminata Crescendo Western HRP substrate (Millipore, Cat# WBLUR0100) in autoradiography film (Lab Scientific, Cat# XARALF2025). Developed films were scanned on Epson Perfection 2450 photo scanner.

scRNA-seq data analysis

Single cell data (pre-pregnancy mammary glands= 3,439 cells from n=2 biological replicates; postpregnancy mammary glands= 4,412 cells from n=2 biological replicates) were aligned to mm10 using CellRanger v.3.1.0 (10x Genomics) (Cell Ranger , RRID:SCR_017344) (Zheng et al. 2017), and downstream processing was performed using Seurat v3.1.1 (SEURAT, RRID:SCR 007322) (Stuart et al. 2019). Cells with fewer than 250 features or higher than 10% mitochondrial gene content were removed prior to further analysis. Genes with fewer than 3 cells expressing them were removed, and the data were then log-normalized. Post-filtering analysis was performed on 3,075 cells (pre-pregnancy) and 4,029 cells (post-pregnancy). Principal component analysis was performed using the top 2,000 variable genes. This analysis was used to identify the number of significant components before clustering. Clustering was performed by calculating a shared nearest neighbor graph, using a resolution of 0.6. Subsetting into different cell types was performed using known markers for MECs, T-cells, Myeloid cells, B cells and NK cells. Epithelial cells for both datasets were defined by the expression of Epcam, Krt8, Krt18, Krt5 and Krt14 (cluster average expression > 2). Non-epithelial were cells considered having low expression of Epcam, Krt8, Krt18, Krt5 and Krt14. Epithelial lineage identification and T-cell lineage identification was performed utilizing a previously validated gene signature (Henry et al. 2021). Genes used to define each immune cluster (differentially expressed genes, DEGs) were determined using known cell type markers and using the FindAllMarkers function, which uses a Wilcoxon Rank Sum test to identify differentially expressed genes between all clusters in the dataset. Cell cycle scoring was performed with the CellCycleScoring function, using the default gene lists provided by Seurat. Cell dendrograms were generated using the BuildClusterTree function in Seurat, using default arguments. Diffusion mapping was performed using the DiffusionMap function from the "destiny" R package (Angerer et al. 2016). Gene Set Enrichment Analysis (GSEA, RRID:SCR_003199) (Subramanian et al. 2005) was used for global analyses of differentially expressed genes.

RNA-seq library preparation and analysis

FACS-isolated pre- and post-pregnancy NKT cells were collected and homogenized in TRIzol LS (Thermo Fisher Scientific, Cat# 10296010) for RNA extraction. Double stranded cDNA synthesis and Illumina libraries were prepared utilizing the Ovation RNA-seq system (V2) (Nugen Technologies, Cat# 7102-32). RNA-seq libraries were prepared utilizing the Ovation ultralow DR multiplex system (Nugen Technologies, Cat# 0331-32). Each library (n=2 biological replicates per experimental condition) was

barcoded with Illumina TruSeq adaptors to allow sample multiplexing, followed by sequencing on an Illumina NextSeq500, 76bp single-end run. Analyses were performed with command-line interfaced tools such as FastQC (FastQC, RRID:SCR 014583) for quality control and Trimmomatic (Trimmomatic, RRID:SCR 011848) (Bolger et al. 2014) for sequence trimming. We used STAR (STAR, RRID:SCR_004463) for mapping reads (Dobin et al. 2013), FeatureCounts (featureCounts, RRID:SCR_012919) for assigning reads to genomic features (Liao et al. 2014) and DESeq (DESeq, RRID:SCR_000154) to assess changes in expression levels simultaneously across multiple conditions and in multi-factor experimental designs, incorporating information from multiple replicates (Anders and Huber 2010). Genes with a statistically significant pvalue of p < 0.05 were considered differentially expressed. Gene Set Enrichment Analysis (GSEA) (Gene Set Enrichment Analysis, RRID:SCR_003199) was used for global analyses of differentially expressed genes (Subramanian et al. 2005). GSEA terms with statistically significant pvalue of p<0.05 were selected for data plotting and data interpretation. For experiments presented on Fig. 2-6 D, FACS-isolated, pre- and post-pregnancy CD45+NK1.1+CD3+ NKT cells (n=2 females per experimental group, n=4 pairs of mammary glands per female, n=2 biological replicates per experimental group) were utilized. For experiments presented on Fig. 3-6, total mammary tissue isolated from DOX-treated, NOD/SCID female mice transplanted with either pre- or post-pregnancy CAGMYC MECs (n=2 biological replicates per group) were utilized.

ChIP-seq library analysis

Previously published H3K27ac ChIP-seq datasets (Feigman et al. 2020) were mapped to the indexed mm9 genome using bowtie2 short-read aligner tool (Langmead and Salzberg 2012), using default settings. MACS2 peak-calling program (MACS, RRID:SCR_013291) (Zhang et al. 2008) was used to identify enriched genomic regions in this data by comparing the pulldown ChIP data to the control (Input) data using a q-value cutoff of 1.00⁻³. Identification of genes closest to these differentially called peaks was performed using Genomic Regions Enrichment of Annotations Tool (GREAT, RRID:SCR_005807)

(McLean et al. 2010). Peak visualizations were generated using the UCSC Genome Browser (UCSC Genome Browser, RRID:SCR_005780) (Dreszer et al. 2012).

Cut&Run library analysis

Previously published H3K27ac Cut&Run datasets (Ciccone et al. 2020), were mapped to the indexed mm9 genome using bowtie2 short-read aligner tool using default settings (Langmead and Salzberg 2012). Sparse Enrichment Analysis for Cut&Run (SEACR) peak-calling program (Meers et al. 2019) was used to identify enriched genomic regions with an empirical threshold of n=0.01, returning the top n fraction of peaks based on total signal within peaks. The stringent argument was implemented, which used the summit of each curve. Identification of genes closest to these differentially called peaks was performed using Genomic Regions Enrichment of Annotations Tool (UCSC Genome Browser, RRID:SCR_005780) (McLean et al. 2010). Peak visualizations were generated using the UCSC Genome Browser (UCSC Genome Browser, RRID:SCR_005780) (Dreszer et al. 2012).

ATAC-seq library preparation and analysis

Nuclei of FACS-isolated, pre- and post-pregnancy NKT cells were isolated utilizing hypotonic lysis buffer and incubated with Tn5 enzyme from Nextera DNA sample Preparation kit (Illumina, Cat# FC-121-1031) for the preparation of ATAC libraries. Each library (n=2 per experimental condition) was amplified and barcoded as previously described (Buenrostro et al. 2015), then pooled for sequencing on an Illumina Nextseq500, 76bp single-end run. ATACseq library reads (n=2 per cell condition) were mapped to the indexed mm9 genome using Bowtie2 short read-aligner (Bowtie 2, RRID:SCR_016368) (Langmead and Salzberg 2012) and replicate alignment files were merged. MACS2 (MACS, RRID:SCR_013291) (Zhang et al. 2008) was used to identify enriched genomic regions in both conditions using a tag size of 25bp and a q-value cutoff of 1.00⁻². Peaks were annotated using Homer (HOMER, RRID:SCR_010881) with standard mm9 genome reference. Location of peaks was then grouped into intergenic, promoter and genic (containing 5'UTR, Exons, Introns, Transcription Termination Sites, 3'UTR, ncRNA, miRNA,

snoRNA, and rRNA) regions. The UCSC genome browser (UCSC Genome Browser, RRID:SCR_005780) (Dreszer et al. 2012) was used to analyze genomic regions for overlap, using the Bedtools intersect function (BEDTools, RRID:SCR_006646) (Quinlan and Hall 2010). Any base pair overlap was enough to consider two regions "shared" and regions where no overlap existed defined the regions as exclusively being in one condition. The comparison was made into a Venn diagram using tool available at https://www.meta-chart.com/venn.

DNA motif analysis

Peaks from pre- and post-pregnancy NKT cells ATAC-seq libraries were utilized as input for unbiased transcription factor analyses using Analysis of Motif Enrichment (AME) (McLeay and Bailey 2010) and Find Individual Motif Occurrences (FIMO) (MEME Suite - Motif-based sequence analysis tools, RRID:SCR_001783) (Grant et al. 2011) was used to computationally define DNA binding motif regions to identify sequences of known motifs, with a statistical threshold of 0.0001.

Genomic library preparation and Copy number variation (CNV) analysis

Mammary normal tissue and tumor from nulliparous BRCA1 KO p53het female mice were dissociated as above described. Lineage depleted tumor cells were utilized for DNA extraction using DNeasy Blood & Tissue Kit (Qiagen Cat# 69504). Genomic DNA was sonicated to an average of 300 bp using Covaris E220 Focused-ultrasonicator. For library preparation, fragmented DNA went through standard end-repair (NEB Cat# E6050), dA-tailing (NEB Cat# E6053), and sequencing adapter ligation (NEB Cat# M2200) steps. Following universal adapter ligation, eight cycles of PCR was performed for each sample. During the PCR step, a unique pair of Illumina TruSeq i7 index and i5 index was added to each sample. The PCR library was purified with AMPure XP beads (Beckman Coulter Cat# A63881), and quantified using NanoDrop spectrophotometer and Agilent Technologies 2100 Bioanalyzer. Whole-genome-sequencing libraries with different combination of Illumina indexes were pooled together for one lane of Illumina MiSeq. 150 base pairs from both ends were sequenced along with two 8-bp indexes. For

CNV analysis, Read 1 of the sequence data was mapped to the mm9 reference genome using Hisat2 version 2.1.0 in single read alignment mode (Kim et al. 2015). The reference genome was divided into 5,000 variable-length bins with equal mappability as previously described (Baslan et al. 2012). The ratio of mapped reads in the tumor sample to mapped reads in the diploid sample (normal tissue) was used to compute a fitted piecewise constant function (segmentation). This segmentation used DNAcopy version 1.50.1 implementation of the circular binary segmentation algorithm (Seshan and Olshen 2022) and the copy number profiles were plotted using R version 3.4.4.

2D co-culture system

Brca1 KO tumor organoids were cultured in Matrigel (Corning, Cat# 356230), recovered with Cell Recovery Solution (Corning, Cat# 354253), and plated in 2D overnight to allow the cells to adhere, following which NKT cells (CD3+ NK1.1+ cells) isolated using MACS magnetic columns (Miltenyi Biotec Cat# 130-042-401) were added. After 24 hours of co-culture, organoids were dissociated into single cells by gentle agitation with TryPLE Express (ThermoFisher, Cat# 12604013), filtered, and cell death was quantified as a measure of Caspase 3/7 activity using the Magic Red assay kit (Abcam, Cat# ab270771) and Live/Dead Violet (Invitrogen Cat# L23105).

3D co-culture system

Single cell suspensions from pre- and post-pregnancy mammary glands (derived as described earlier) were incubated with a CD45 or CD3 biotin antibodies, incubated with anti-biotin magnetic beads (Miltenyi Biotec Cat# 130-090-485) and loaded onto a MACS magnetic column (Miltenyi Biotec Cat# 130-042-401). Positively labeled cells (immune cells ot T-cells) were eluted from column with 3ml of MACS buffer and incubated overnight in a T-cell activating medium (media composition below). Glass bottom 96-well imaging plates were warmed overnight in a 37°C incubator. Brca1 KO tumor organoids cultured in Matrigel and recovered with Cell Recovery Solution. Tumor organoids and immune cells were fluorescently labeled separately using non-specific CellTracker dyes (ThermoFisher, Red CMTPX Cat#

C34552 for organoids, Green CMFDA Cat# C7025 for immune cells) according to manufacturer protocols. Organoids and immune cells were then mixed at a ratio of 1:1000 and plated in imaging media composed of 10% Matrigel in 1:1 organoid:immune cell media containing 1mM NucView Blue Caspase-3 dye (Millipore-Sigma Cat# SCT104).

T-cell activating medium: RPMI + 10% FBS, P/S (100 U/μl), 5.5mM β-mercaptoethanol, 0.1M MEM nonessential amino acids, 10mM HEPES, 20 ng/ml IL-2 (PeproTech Cat# 212-12), 50 ng/ml IL-7 (PeproTech Cat# 217-17).

3D time lapse live imaging

Live cell imaging was set up on a Perkin-Elmer UltraVIEW VoX high speed spinning disk confocal microscope equipped with a high end CCD camera, a fully automated stage, and 6 laser lines (405, 440, 488, 514, 561, and 640nm). Temperature was held at 37°C, CO2 at 5%, and humidity at 80%. Plate setup included setting XY coordinates at 3 distinct points per well for serial imaging of the same organoids. Images were set to be collected at 1 hr intervals with exposure times of ~500ms. A 100µm z-stack was acquired at 10µm steps. The images were acquired, assembled, and analyzed using Volocity (Perkin-Elmer v.6.3) and FIJI (Schindelin et al. 2012) software.

Quantification and Statistical Analysis

Data represent results from three or more independent biological replicates, unless otherwise specified. Sequencing data are from two biological replicates from each condition. All statistical analyses were performed using GraphPad Prism V9 software. For all analyses, error bars indicate standard error of mean across samples of the same experimental group. Statistically significant differences were considered with *p*-values lower than 0.05 (p<0.05) from unpaired Student's t-tests, as described in the figure legends.

7. References

- Albrektsen G, Heuch I, Hansen S, Kvåle G. 2005. Breast cancer risk by age at birth, time since birth and time intervals between births: exploring interaction effects. *British Journal of Cancer* **92**: 167–175.
- Allouch S, Gupta I, Malik S, Al Farsi HF, Vranic S, Al Moustafa A-E. 2020. Breast Cancer During Pregnancy: A Marked Propensity to Triple-Negative Phenotype. *Frontiers in Oncology* **10**. https://www.frontiersin.org/articles/10.3389/fonc.2020.580345 (Accessed October 31, 2022).
- Almishri W, Santodomingo-Garzon T, Le T, Stack D, Mody CH, Swain MG. 2016. TNFα Augments Cytokine-Induced NK Cell IFNγ Production through TNFR2. *JIN* **8**: 617–629.
- Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, Porcelli SA, Späth GF. 2004. A Subset of Liver NK T Cells Is Activated during Leishmania donovani Infection by CD1d-bound Lipophosphoglycan. *Journal of Experimental Medicine* **200**: 895–904.
- Anders S, Huber W. 2010. Differential expression analysis for sequence count data. *Genome Biology* **11**: R106.
- Angerer P, Haghverdi L, Büttner M, Theis FJ, Marr C, Buettner F. 2016. destiny: diffusion maps for large-scale single-cell data in R. *Bioinformatics* **32**: 1241–1243.
- Annunziato S, de Ruiter JR, Henneman L, Brambillasca CS, Lutz C, Vaillant F, Ferrante F, Drenth AP, van der Burg E, Siteur B, et al. 2019. Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer. *Nat Commun* **10**: 397.
- Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, Williams AJ, Cote RJ, Lippman ME, Datar RH, et al. 2015. Identification of Cancer-Associated Fibroblasts in Circulating Blood from Patients with Metastatic Breast Cancer. *Cancer Res* 75: 4681–4687.
- Asselin-Labat M-L, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J, et al. 2007. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. *Nat Cell Biol* **9**: 201–209.
- Aulmann S, Bentz M, Sinn HP. 2002. C-myc oncogene amplification in ductal carcinoma in situ of the breast. *Breast Cancer Res Treat* **74**: 25–31.
- Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, et al. 2020. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. *Cancers (Basel)* 12: 1697.
- Bach K, Pensa S, Grzelak M, Hadfield J, Adams DJ, Marioni JC, Khaled WT. 2017. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. *Nat Commun* 8: 1–11.
- Bach K, Pensa S, Zarocsinceva M, Kania K, Stockis J, Pinaud S, Lazarus KA, Shehata M, Simões BM, Greenhalgh AR, et al. 2021. Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors. *Nature Communications* 12: 1502.
- Balato A, Unutmaz D, Gaspari AA. 2009. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. *J Invest Dermatol* **129**: 1628–1642.
- Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, et al. 2012. Sequence analysis of mutations and translocations across breast cancer subtypes. *Nature* 486: 405–409.
- Barton M, Santucci-Pereira J, Russo J. 2014. Molecular Pathways Involved in Pregnancy-Induced Prevention Against Breast Cancer. *Front Endocrinol* **5**. https://www.frontiersin.org/articles/10.3389/fendo.2014.00213/full (Accessed April 15, 2020).
- Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J, Ravi K, Esposito D, Lakshmi B, et al. 2012. Genome-wide copy number analysis of single cells. *Nat Protoc* **7**: 1024–1041.

- Bassiri H, Das R, Guan P, Barrett DM, Brennan PJ, Banerjee PP, Wiener SJ, Orange JS, Brenner MB, Grupp SA, et al. 2014. iNKT Cell Cytotoxic Responses Control T-Lymphoma Growth In Vitro and In Vivo. *Cancer Immunol Res* **2**: 59–69.
- Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, Young E, Mukhopadhyay P, Yeh H-W, Allred DC, et al. 2009. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. *Breast Cancer Research* 11: R66.
- Beral V, Bull D, Doll R, Peto R, Reeves G, Collaborative Group on Hormonal Factors in Breast Cance. 2004. Breast cancer and abortion: collaborative reanalysis of data from 53 epidemiological studies, including 83 000 women with breast cancer from 16 countries. *The Lancet* 363: 1007– 1016.
- Betterman KL, Paquet-Fifield S, Asselin-Labat M-L, Visvader JE, Butler LM, Stacker SA, Achen MG, Harvey NL. 2012. Remodeling of the Lymphatic Vasculature during Mouse Mammary Gland Morphogenesis Is Mediated via Epithelial-Derived Lymphangiogenic Stimuli. *The American Journal of Pathology* **181**: 2225–2238.
- Betts CB, Pennock ND, Caruso BP, Ruffell B, Borges VF, Schedin P. 2018. Mucosal Immunity in the Female Murine Mammary Gland. *Journal of immunology (Baltimore, Md* : 1950) **201**: 734–746.
- Blakely CM, Stoddard AJ, Belka GK, Dugan KD, Notarfrancesco KL, Moody SE, D'Cruz CM, Chodosh LA. 2006. Hormone-Induced Protection against Mammary Tumorigenesis Is Conserved in Multiple Rat Strains and Identifies a Core Gene Expression Signature Induced by Pregnancy. *Cancer Research* 66: 6421–6431.
- Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, Ahlquist DA, Podratz KC, Pittelkow M, Hartmann LC. 1998. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. *Ann Intern Med* 128: 896–899.
- Bochtler P, Kröger A, Schirmbeck R, Reimann J. 2008. Type I IFN-Induced, NKT Cell-Mediated Negative Control of CD8 T Cell Priming by Dendritic Cells. *The Journal of Immunology* **181**: 1633–1643.
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**: 2114–2120.
- Bourges D, Meurens F, Berri M, Chevaleyre C, Zanello G, Levast B, Melo S, Gerdts V, Salmon H. 2008. New insights into the dual recruitment of IgA+ B cells in the developing mammary gland. *Mol Immunol* **45**: 3354–3362.
- Braig M, Schmitt CA. 2006. Oncogene-induced senescence: Putting the brakes on tumor development. *Cancer Research* 66: 2881–2884.
- Breast Cancer Association Consortium, Mavaddat N, Dorling L, Carvalho S, Allen J, González-Neira A, Keeman R, Bolla MK, Dennis J, Wang Q, et al. 2022. Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. *JAMA Oncol* **8**: e216744.
- Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O, et al. 2011. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. *Blood* **118**: 4817– 4828.
- Britt K, Ashworth A, Smalley M. 2007. Pregnancy and the risk of breast cancer. *Endocr Relat Cancer* 14: 907–933.
- Brodie SG, Xu X, Qiao W, Li W-M, Cao L, Deng C-X. 2001. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. *Oncogene* **20**: 7514–7523.
- Brutkiewicz RR. 2006. CD1d Ligands: The Good, the Bad, and the Ugly. *The Journal of Immunology* **177**: 769–775.
- Buenrostro J, Wu B, Chang H, Greenleaf W. 2015. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. *Curr Protoc Mol Biol* **109**: 21.29.1-21.29.9.
- Callihan EB, Gao D, Jindal S, Lyons TR, Manthey E, Edgerton S, Urquhart A, Schedin P, Borges VF. 2013. Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. *Breast Cancer Res Treat* **138**: 549–559.

- Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human breast tumours. *Nature* **490**: 61–70.
- Cardiff RD, Kenney N. 2011. A Compendium of the Mouse Mammary Tumor Biologist: From the Initial Observations in the House Mouse to the Development of Genetically Engineered Mice. *Cold Spring Harb Perspect Biol* **3**: a003111.
- Carroll LS, Capecchi MR. 2015. Hoxc8 initiates an ectopic mammary program by regulating Fgf10 and Tbx3 expression and Wnt/β-catenin signaling. *Development* **142**: 4056–4067.
- Castillo-Martin M, Domingo-Domenech J, Karni-Schmidt O, Matos T, Cordon-Cardo C. 2010. Molecular pathways of urothelial development and bladder tumorigenesis. *Urologic Oncology: Seminars and Original Investigations* **28**: 401–408.
- CDCBreastCancer. 2022. What Are the Risk Factors for Breast Cancer? *Centers for Disease Control and Prevention*. https://www.cdc.gov/cancer/breast/basic_info/risk_factors.htm (Accessed September 21, 2022).
- Chaffer CL, Weinberg RA. 2010. Cancer Cell of Origin: Spotlight on Luminal Progenitors. *Cell Stem Cell* **7**: 271–272.
- Chan S-H, Tsai K-W, Chiu S-Y, Kuo W-H, Chen H-Y, Jiang SS, Chang K-J, Hung W-C, Wang L-H. 2019. Identification of the Novel Role of CD24 as an Oncogenesis Regulator and Therapeutic Target for Triple-Negative Breast Cancer. *Mol Cancer Ther* **18**: 147–161.
- Chan SR, Rickert CG, Vermi W, Sheehan KCF, Arthur C, Allen JA, White JM, Archambault J, Lonardi S, McDevitt TM, et al. 2014. Dysregulated STAT1-SOCS1 control of JAK2 promotes mammary luminal progenitor cell survival and drives ER α + tumorigenesis. *Cell Death & Differentiation* 21: 234–246.
- Chen S, Parmigiani G. 2007. Meta-analysis of BRCA1 and BRCA2 penetrance. *J Clin Oncol* **25**: 1329–1333.
- Chen Y, Olopade OI. 2008. MYC in breast tumor progression. *Expert Review of Anticancer Therapy* **8**: 1689–1698.
- Choudhury S, Almendro V, Merino VF, Wu Z, Maruyama R, Su Y, Martins FC, Fackler MJ, Bessarabova M, Kowalczyk A, et al. 2013. Molecular Profiling of Human Mammary Gland Links Breast Cancer Risk to a p27+ Cell Population with Progenitor Characteristics. *Cell Stem Cell* **13**: 117–130.
- Chung C-Y, Ma Z, Dravis C, Preissl S, Poirion O, Luna G, Hou X, Giraddi RR, Ren B, Wahl GM. 2019. Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. *Cell Reports* **29**: 495-510.e6.
- Ciccone MF, Trousdell MC, Dos Santos CO. 2020. Characterization of Organoid Cultures to Study the Effects of Pregnancy Hormones on the Epigenome and Transcriptional Output of Mammary Epithelial Cells. *J Mammary Gland Biol Neoplasia* **25**: 351–366.
- Ciriello G, Sinha R, Hoadley KA, Jacobsen AS, Reva B, Perou CM, Sander C, Schultz N. 2013. The molecular diversity of Luminal A breast tumors. *Breast Cancer Res Treat* **141**: 409–420.
- Collins LC, Gelber S, Marotti JD, White S, Ruddy K, Brachtel EF, Schapira L, Come SE, Borges VF, Schedin P, et al. 2015. Molecular Phenotype of Breast Cancer According to Time Since Last Pregnancy in a Large Cohort of Young Women. *Oncologist* **20**: 713–718.
- Connaughton S, Chowdhury F, Attia RR, Song S, Zhang Y, Elam MB, Cook GA, Park EA. 2010. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. *Mol Cell Endocrinol* **315**: 159.
- Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, Berzins SP, Smyth MJ, Godfrey DI. 2008. Diverse cytokine production by NKT cell subsets and identification of an IL-17–producing CD4–NK1.1– NKT cell population. *PNAS* **105**: 11287–11292.
- Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. 2014. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. *Nature Reviews Cancer* 14: 135–146.
- Coussens LM, Pollard JW. 2011. Leukocytes in Mammary Development and Cancer. *Cold Spring Harb Perspect Biol* **3**: a003285.

- Couto JP, Bentires-Alj M. 2017. Mouse Models of Breast Cancer: Deceptions that Reveal the Truth. In *Breast Cancer: Innovations in Research and Management* (eds. U. Veronesi, A. Goldhirsch, P. Veronesi, O.D. Gentilini, and M.C. Leonardi), pp. 49–60, Springer International Publishing, Cham https://doi.org/10.1007/978-3-319-48848-6_6 (Accessed October 8, 2022).
- Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, et al. 2009. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. *Proceedings of the National Academy of Sciences* **106**: 13820–13825.
- Cristea S, Polyak K. 2018. Dissecting the mammary gland one cell at a time. Nat Commun 9: 2473.
- Dai X, Xiang L, Li T, Bai Z. 2016. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. *Journal of Cancer* 7: 1281–1294.
- Daniels J, Doukas PG, Escala MEM, Ringbloom KG, Shih DJH, Yang J, Tegtmeyer K, Park J, Thomas JJ, Selli ME, et al. 2020. Cellular origins and genetic landscape of cutaneous gamma delta T cell lymphomas. *Nat Commun* **11**: 1806.
- Davenport TG, Jerome-Majewska LA, Papaioannou VE. 2003. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. *Development* **130**: 2263–2273.
- Dawson CA, Pal B, Vaillant F, Gandolfo LC, Liu Z, Bleriot C, Ginhoux F, Smyth GK, Lindeman GJ, Mueller SN, et al. 2020. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. *Nat Cell Biol* **22**: 546–558.
- Deming SL, Nass SJ, Dickson RB, Trock BJ. 2000. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. *Br J Cancer* 83: 1688–1695.
- DeOme KB. 1967. The mouse mammary tumor system. *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 4: Biology and Problems of Health* **5.4**: 649–656.
- D'Esposito V, Liguoro D, Ambrosio MR, Collina F, Cantile M, Spinelli R, Raciti GA, Miele C, Valentino R, Campiglia P, et al. 2016. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. *Oncotarget* **7**: 24495–24509.
- Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al. 2011. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. *Cancer Res* **71**: 2455–2465.
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**: 15–21.
- Doisne J-M, Bartholin L, Yan K-P, Garcia CN, Duarte N, Le Luduec J-B, Vincent D, Cyprian F, Horvat B, Martel S, et al. 2009. iNKT cell development is orchestrated by different branches of TGF-β signaling. *J Exp Med* **206**: 1365–1378.
- Dos Santos CO, Dolzhenko E, Hodges E, Smith AD, Hannon GJ. 2015. An epigenetic memory of pregnancy in the mouse mammary gland. *Cell Rep* **11**: 1102–1109.
- dos Santos CO, Rebbeck C, Rozhkova E, Valentine A, Samuels A, Kadiri LR, Osten P, Harris EY, Uren PJ, Smith AD, et al. 2013. Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. *Proc Natl Acad Sci USA* **110**: 7123–7130.
- Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, Kuhn RM, Meyer LR, Wong M, Sloan CA, Rosenbloom KR, et al. 2012. The UCSC Genome Browser database: extensions and updates 2011. *Nucleic Acids Research* **40**: D918–D923.
- Ebert LM, Meuter S, Moser B. 2006. Homing and Function of Human Skin γδ T Cells and NK Cells: Relevance for Tumor Surveillance. *The Journal of Immunology* **176**: 4331–4336.
- Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, et al. 2012. Whole-genome analysis informs breast cancer response to aromatase inhibition. *Nature* **486**: 353–360.

- Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, Callahan R. 1986. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. *Proc Natl Acad Sci USA* **83**: 4834–4838.
- Fata JE, Chaudhary V, Khokha R. 2001. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. *Biol Reprod* **65**: 680–688.
- Faunce DE, Palmer JL, Paskowicz KK, Witte PL, Kovacs EJ. 2005. CD1d-Restricted NKT Cells Contribute to the Age-Associated Decline of T Cell Immunity. *The Journal of Immunology* 175: 3102–3109.
- Feigman MJ, Moss MA, Chen C, Cyrill SL, Ciccone MF, Trousdell MC, Yang S-T, Frey WD, Wilkinson JE, dos Santos CO. 2020. Pregnancy reprograms the epigenome of mammary epithelial cells and blocks the development of premalignant lesions. *Nature Communications* 11: 2649.
- Fisher B, Bauer M, Wickerham DL, Redmond CK, Fisher ER, Cruz AB, Foster R, Gardner B, Lerner H, Margolese R. 1983. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. *Cancer* **52**: 1551–1557.
- Florian S, Iwamoto Y, Coughlin M, Weissleder R, Mitchison TJ. 2019. A human organoid system that self-organizes to recapitulate growth and differentiation of a benign mammary tumor. *Proceedings of the National Academy of Sciences of the United States of America* **116**: 11444– 11453.
- Fornetti J, Martinson H, Borges V, Schedin P. 2012. Emerging targets for the prevention of pregnancyassociated breast cancer. *Cell Cycle* **11**: 639–640.
- Foulkes WD, Stefansson IM, Chappuis PO, Bégin LR, Goffin JR, Wong N, Trudel M, Akslen LA. 2003. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95: 1482–1485.
- Freire-de-Lima CG, Xiao YQ, Gardai SJ, Bratton DL, Schiemann WP, Henson PM. 2006. Apoptotic Cells, through Transforming Growth Factor-β, Coordinately Induce Anti-inflammatory and Suppress Pro-inflammatory Eicosanoid and NO Synthesis in Murine Macrophages*. *Journal of Biological Chemistry* 281: 38376–38384.
- Fu NY, Nolan E, Lindeman GJ, Visvader JE. 2020. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. *Physiol Rev* **100**: 489–523.
- Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, Kuroda M, Aoyagi Y, Miyazaki M. 2015. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat 150: 255–263.
- Funnell T, O'Flanagan CH, Williams MJ, McPherson A, McKinney S, Kabeer F, Lee H, Salehi S, Vázquez-García I, Shi H, et al. 2022. Single-cell genomic variation induced by mutational processes in cancer. *Nature* 1–10.
- Gapin L, Godfrey DI, Rossjohn J. 2013. Natural Killer T cell obsession with self-antigens. *Curr Opin Immunol* 25: 168–173.
- Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, et al. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. *Nature Medicine* **21**: 938–945.
- Germanov E, Veinotte L, Cullen R, Chamberlain E, Butcher EC, Johnston B. 2008. Critical Role for the Chemokine Receptor CXCR6 in Homeostasis and Activation of CD1d-Restricted NKT Cells. *The Journal of Immunology* **181**: 81–91.
- Gober H-J, Kistowska M, Angman L, Jenö P, Mori L, De Libero G. 2003. Human T Cell Receptor γδ Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells. *J Exp Med* **197**: 163–168.
- Goddard ET, Bassale S, Schedin T, Jindal S, Johnston J, Cabral E, Latour E, Lyons TR, Mori M, Schedin PJ, et al. 2019. Association Between Postpartum Breast Cancer Diagnosis and Metastasis and the Clinical Features Underlying Risk. *JAMA Netw Open* **2**: e186997–e186997.
- Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang K-Y, Abhyankar S, Lamb LS. 2007. Long term disease-free survival in acute leukemia patients recovering with increased γδ T cells after

partially mismatched related donor bone marrow transplantation. *Bone Marrow Transplantation* **39**: 751–757.

- Godet I, Gilkes DM. 2017. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. *Integr Cancer Sci Ther* **4**. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505673/ (Accessed April 10, 2020).
- Godfrey DI, Kronenberg M. 2004. Going both ways: Immune regulation via CD1d-dependent NKT cells. *J Clin Invest* **114**: 1379–1388.
- Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. 2018. Unconventional T Cell Targets for Cancer Immunotherapy. *Immunity* **48**: 453–473.
- Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Kaer LV. 2004. NKT cells: what's in a name? *Nat Rev Immunol* **4**: 231–237.
- Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. 2015. The burgeoning family of unconventional T cells. *Nature Immunology* **16**: 1114–1123.
- Gouon-Evans V, Rothenberg ME, Pollard JW. 2000. Postnatal mammary gland development requires macrophages and eosinophils. *Development* **127**: 2269–2282.
- Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. *Bioinformatics* **27**: 1017–1018.
- Gray GK, Li CM-C, Rosenbluth JM, Selfors LM, Girnius N, Lin J-R, Schackmann RCJ, Goh WL, Moore K, Shapiro HK, et al. 2022. A human breast atlas integrating single-cell proteomics and transcriptomics. *Developmental Cell* **57**: 1400-1420.e7.
- Green KA, Lund LR. 2005. ECM degrading proteases and tissue remodelling in the mammary gland. *Bioessays* 27: 894–903.
- Gregor MF, Misch ES, Yang L, Hummasti S, Inouye KE, Lee A-H, Bierie B, Hotamisligil GS. 2013. The Role of Adipocyte XBP1 in Metabolic Regulation during Lactation. *Cell Reports* **3**: 1430–1439.
- Grushko TA, Dignam JJ, Das S, Blackwood AM, Perou CM, Ridderstråle KK, Anderson KN, Wei M-J, Adams AJ, Hagos FG, et al. 2004. MYC is amplified in BRCA1-associated breast cancers. *Clin Cancer Res* **10**: 499–507.
- Guo Q, Betts C, Pennock N, Mitchell E, Schedin P. 2017. Mammary Gland Involution Provides a Unique Model to Study the TGF-β Cancer Paradox. *Journal of Clinical Medicine* **6**: 10.
- Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zürrer-Härdi U, Bell G, et al. 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. *Cell* **148**: 1015–1028.
- Guzman RC, Yang J, Rajkumar L, Thordarson G, Chen X, Nandi S. 1999. Hormonal prevention of breast cancer: Mimicking the protective effect of pregnancy. *PNAS* **96**: 2520–2525.
- Hanasoge Somasundara AV, Moss MA, Feigman MJ, Chen C, Cyrill SL, Ciccone MF, Trousdell MC, Vollbrecht M, Li S, Kendall J, et al. 2021. Parity-induced changes to mammary epithelial cells control NKT cell expansion and mammary oncogenesis. *Cell Reports* 37: 110099.
- Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. 2019. Breast cancer. *Nat Rev Dis Primers* **5**: 1–31.
- Hartman EK, Eslick GD. 2016. The prognosis of women diagnosed with breast cancer before, during and after pregnancy: a meta-analysis. *Breast Cancer Res Treat* **160**: 347–360.
- Harvey PW. 2012. Hypothesis Prolactin is tumorigenic to human breast: dispelling the myth that prolactin-induced mammary tumors are rodent-specific. *Journal of Applied Toxicology* **32**: 1–9.
- Hatsell SJ, Cowin P. 2006. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. *Development* **133**: 3661–3670.
- Heczey A, Liu D, Tian G, Courtney AN, Wei J, Marinova E, Gao X, Guo L, Yvon E, Hicks J, et al. 2014. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. *Blood* 124: 2824–2833.
- Heikkinen T, Kärkkäinen H, Aaltonen K, Milne RL, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H. 2009. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. *Clin Cancer Res* 15: 3214–3222.

- Henry S, Trousdell MC, Cyrill SL, Zhao Y, Feigman MJ, Bouhuis JM, Aylard DA, Siepel A, dos Santos CO. 2021. Characterization of Gene Expression Signatures for the Identification of Cellular Heterogeneity in the Developing Mammary Gland. *Journal of Mammary Gland Biology and Neoplasia* 26: 43–66.
- Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V. 2003. NKT Cells Enhance CD4+ and CD8+ T Cell Responses to Soluble Antigen In Vivo through Direct Interaction with Dendritic Cells. *The Journal of Immunology* **171**: 5140–5147.
- Hill BS, Sarnella A, D'Avino G, Zannetti A. 2020. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. *Semin Cancer Biol* 60: 202– 213.
- Hitchcock JR, Hughes K, Harris OB, Watson CJ. 2020. Dynamic architectural interplay between leucocytes and mammary epithelial cells. *The FEBS Journal* **287**: 250–266.
- Hix LM, Shi YH, Brutkiewicz RR, Stein PL, Wang C-R, Zhang M. 2011. CD1d-Expressing Breast Cancer Cells Modulate NKT Cell-Mediated Antitumor Immunity in a Murine Model of Breast Cancer Metastasis. *PLOS ONE* **6**: e20702.
- Hollern DP, Contreras CM, Dance-Barnes S, Silva GO, Pfefferle AD, Xiong J, Darr DB, Usary J, Mott KR, Perou CM. 2019. A mouse model featuring tissue-specific deletion of p53 and Brca1 gives rise to mammary tumors with genomic and transcriptomic similarities to human basal-like breast cancer. *Breast Cancer Res Treat* **174**: 143–155.
- Hong S, Scherer DC, Singh N, Mendiratta SK, Serizawa I, Koezuka Y, Kaer LV. 1999. Lipid antigen presentation in the immune system; lessons learned from CD 1 d knockout mice. *Immunological Reviews* 169: 31–44.
- Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, Wei J, et al. 2001. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. *Nature Medicine* **7**: 1052–1056.
- Hovey RC, Aimo L. 2010. Diverse and Active Roles for Adipocytes During Mammary Gland Growth and Function. *J Mammary Gland Biol Neoplasia* **15**: 279–290.
- Howard BA, Lu P. 2014. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. *Seminars in Cell & Developmental Biology* **25–26**: 43–51.
- Huber S. 2015. ERβ and ERα Differentially Regulate NKT and Vγ4+ T-cell Activation and T-regulatory Cell Response in Coxsackievirus B3 Infected Mice. *J Clin Cell Immunol* **6**: 1–9.
- Huh SJ, Clement K, Jee D, Merlini A, Choudhury S, Maruyama R, Yoo R, Chytil A, Boyle P, Ran FA, et al. 2015. Age- and Pregnancy-Associated DNA Methylation Changes in Mammary Epithelial Cells. *Stem Cell Reports* **4**: 297–311.
- Humphries C. 2013. Adoptive cell therapy: Honing that killer instinct. *Nature* 504: S13-15.
- Husby A, Wohlfahrt J, Øyen N, Melbye M. 2018. Pregnancy duration and breast cancer risk. *Nat Commun* **9**: 4255.
- Ibrahim AM, Moss MA, Gray Z, Rojo MD, Burke CM, Schwertfeger KL, dos Santos CO, Machado HL. 2020. Diverse Macrophage Populations Contribute to the Inflammatory Microenvironment in Premalignant Lesions During Localized Invasion. *Frontiers in Oncology* **10**.
- Islami F, Liu Y, Jemal A, Zhou J, Weiderpass E, Colditz G, Boffetta P, Weiss M. 2015. Breastfeeding and breast cancer risk by receptor status—a systematic review and meta-analysis. *Annals of Oncology* **26**: 2398–2407.
- Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V. 2004. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. *J Exp Med* **199**: 947–957.
- Jamieson PR, Dekkers JF, Rios AC, Fu NY, Lindeman GJ, Visvader JE. 2017. Derivation of a robust mouse mammary organoid system for studying tissue dynamics. *Development (Cambridge, England)* 144: 1065–1071.
- Jehmlich U, Alahmad A, Biedenweg D, Hundt M. 2013. The role of palmitoyl-protein thioesterases in T cell activation (P1398). *The Journal of Immunology* **190**: 204.2-204.2.

- Jena MK, Jaswal S, Kumar S, Mohanty AK. 2019. Molecular mechanism of mammary gland involution: An update. *Developmental Biology* **445**: 145–155.
- Jindal S, Gao D, Bell P, Albrektsen G, Edgerton SM, Ambrosone CB, Thor AD, Borges VF, Schedin P. 2014. Postpartum breast involution reveals regression of secretory lobules mediated by tissueremodeling. *Breast Cancer Res* 16: R31.
- Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. 2001. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. *Nat Genet* **29**: 418–425.
- Kale A, Sharma A, Stolzing A, Stolzing A, Desprez P-Y, Desprez P-Y, Campisi J, Campisi J. 2020. Role of immune cells in the removal of deleterious senescent cells. *Immunity and Ageing* **17**.
- Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. 2011. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. *Sci Transl Med* **3**: 95ra73.
- Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, Specht MC, Bernstein BE, Michor F, Ellisen LW. 2018. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. *Nat Commun* 9: 3588.
- Kelsey JL, Gammon MD, John EM. 1993. Reproductive factors and breast cancer. *Epidemiol Rev* 15: 36–47.
- Khaled WT, Read EKC, Nicholson SE, Baxter FO, Brennan AJ, Came PJ, Sprigg N, McKenzie ANJ, Watson CJ. 2007. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. *Development* **134**: 2739–2750.
- Kim D, Langmead B, Salzberg SL. 2015. HISAT: A fast spliced aligner with low memory requirements. *Nature Methods* **12**: 357–360.
- Kleinman HK, Martin GR. 2005. Matrigel: basement membrane matrix with biological activity. *Seminars in cancer biology* **15**: 378–86.
- Klibi J, Amable L, Benlagha K. 2020. A focus on natural killer T-cell subset characterization and developmental stages. *Immunology & Cell Biology* **98**: 358–368.
- Kobayashi S, Sugiura H, Ando Y, Shiraki N, Yanagi T, Yamashita H, Toyama T. 2012. Reproductive history and breast cancer risk. *Breast Cancer* **19**: 302–308.
- Koledova Z, Lu P. 2017. A 3D Fibroblast-Epithelium Co-culture Model for Understanding Microenvironmental Role in Branching Morphogenesis of the Mammary Gland. *Methods in molecular biology (Clifton, NJ)* **1501**: 217–231.
- Kordon EC, Coso OA, Kordon EC, Coso OA. 2017. *Postlactational Involution: Molecular Mechanisms* and Relevance for Breast Cancer Development. IntechOpen https://www.intechopen.com/state.item.id (Accessed October 13, 2022).
- Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, Roloff T, Britschgi A, Eichlisberger T, Kohler H, Aina O, et al. 2015. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. *Nature* **525**: 114–118.
- Krause S, Maffini M V, Soto AM, Sonnenschein C. 2008. A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland. *Tissue engineering Part C, Methods* **14**: 261–71.
- Kreso A, Dick JE. 2014. Evolution of the cancer stem cell model. Cell Stem Cell 14: 275–291.
- Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. 2004. Reconstruction of functionally normal and malignant human breast tissues in mice. *Proc Natl Acad Sci U S A* 101: 4966–4971.
- Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, Bishop T, Benitez J, Rivas C, Bignon Y-J, et al. 2005. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. *Clin Cancer Res* **11**: 5175–5180.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359.

Le Gallo M, de la Motte Rouge T, Poissonnier A, Lavoué V, Tas P, Leveque J, Godey F, Legembre P. 2018. Tumor analysis: freeze-thawing cycle of triple-negative breast cancer cells alters tumor

CD24/CD44 profiles and the percentage of tumor-infiltrating immune cells. *BMC Res Notes* **11**: 401.

- Le Nours J, Praveena T, Pellicci DG, Gherardin NA, Ross FJ, Lim RT, Besra GS, Keshipeddy S, Richardson SK, Howell AR, et al. 2016. Atypical natural killer T-cell receptor recognition of CD1d–lipid antigens. *Nature Communications* **7**: 1–14.
- Lee MY, Sun L, Veltmaat JM. 2013a. Hedgehog and Gli Signaling in Embryonic Mammary Gland Development. *J Mammary Gland Biol Neoplasia* **18**: 133–138.
- Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. 2013b. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of i NKT cells. *Nature Immunology* **14**: 1146–1154.
- Lee YJ, Starrett GJ, Lee ST, Yang R, Henzler CM, Jameson SC, Hogquist KA. 2016. Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst γδ T, Innate Lymphoid, and Th Cells. JI 197: 1460–1470.
- Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK. 2018. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. *Blood* **131**: 311–322.
- Lesterhuis WJ, Haanen JBAG, Punt CJA. 2011. Cancer immunotherapy--revisited. *Nat Rev Drug Discov* **10**: 591–600.
- Lewandoski M. 2001. Conditional control of gene expression in the mouse. Nat Rev Genet 2: 743–755.
- Li CM-C, Shapiro H, Tsiobikas C, Selfors LM, Chen H, Rosenbluth J, Moore K, Gupta KP, Gray GK, Oren Y, et al. 2020a. Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. *Cell Reports* **33**: 108566.
- Li S, Gestl SA, Gunther EJ. 2020b. A Multistage Murine Breast Cancer Model Reveals Long-Lived Premalignant Clones Refractory to Parity-Induced Protection. *Cancer Prevention Research* 13: 173–184.
- Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong C-H, Ho DD, Tsuji M. 2010. Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. *Proc Natl Acad Sci U S A* **107**: 13010–13015.
- Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* **30**: 923–930.
- Lilla JN, Werb Z. 2010. Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. *Dev Biol* **337**: 124–133.
- Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat M-L, Gyorki DE, Ward T, Partanen A, et al. 2009. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. *Nat Med* 15: 907–913.
- Liu F, Pawliwec A, Feng Z, Yasruel Z, Lebrun J-J, Ali S. 2015. Prolactin/Jak2 directs apical/basal polarization and luminal linage maturation of mammary epithelial cells through regulation of the Erk1/2 pathway. *Stem Cell Res* **15**: 376–383.
- Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LFA, Peterse JL, et al. 2007. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. *Proc Natl Acad Sci U S A* **104**: 12111–12116.
- Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, et al. 2012. ROCK Inhibitor and Feeder Cells Induce the Conditional Reprogramming of Epithelial Cells. *The American Journal of Pathology* **180**: 599–607.
- Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchió C, Reis-Filho JS. 2010. Breast cancer precursors revisited: molecular features and progression pathways. *Histopathology* **57**: 171–192.
- Lord SJ, Bernstein L, Johnson KA, Malone KE, McDonald JA, Marchbanks PA, Simon MS, Strom BL, Press MF, Folger SG, et al. 2008. Breast Cancer Risk and Hormone Receptor Status in Older Women by Parity, Age of First Birth, and Breastfeeding: A Case-Control Study. *Cancer Epidemiology, Biomarkers & Prevention* 17: 1723–1730.

Lühr I, Friedl A, Overath T, Tholey A, Kunze T, Hilpert F, Sebens S, Arnold N, Rösel F, Oberg H-H, et al. 2012. Mammary fibroblasts regulate morphogenesis of normal and tumorigenic breast epithelial cells by mechanical and paracrine signals. *Cancer Letters* **325**: 175–188.

Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, Swisshelm K, Suchard D, MacLeod PM, Kvinnsland S, et al. 1997. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. *Am J Hum Genet* **61**: 1254–1260.

Lyons TR, O'Brien J, Borges VF, Conklin MW, Keely PJ, Eliceiri KW, Marusyk A, Tan A-C, Schedin P. 2011. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. *Nat Med* 17: 1109–1115.

Macho-Fernandez E, Brigl M. 2015. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions. *Frontiers in Immunology* **6**: 362.

Macias H, Hinck L. 2012. Mammary Gland Development. Wiley Interdiscip Rev Dev Biol 1: 533–557.

MacMahon B, Cole P, Lin TM, Lowe CR, Mirra AP, Ravnihar B, Salber EJ, Valaoras VG, Yuasa S. 1970. Age at first birth and breast cancer risk. *Bull World Health Organ* **43**: 209–221.

Maira S-M, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, Schnell C, Guthy D, Nagel T, Wiesmann M, et al. 2012. Identification and Characterization of NVP-BKM120, an Orally Available Pan-Class I PI3-Kinase Inhibitor. *Mol Cancer Ther* **11**: 317–328.

Majumdar D, Tiernan JP, Lobo AJ, Evans CA, Corfe BM. 2012. Keratins in colorectal epithelial function and disease. *International Journal of Experimental Pathology* **93**: 305–318.

Makarem M, Kannan N, Nguyen LV, Knapp DJHF, Balani S, Prater MD, Stingl J, Raouf A, Nemirovsky O, Eirew P, et al. 2013. Developmental Changes in the in Vitro Activated Regenerative Activity of Primitive Mammary Epithelial Cells. *PLOS Biology* **11**: e1001630.

Maller O, Hansen KC, Lyons TR, Acerbi I, Weaver VM, Prekeris R, Tan A-C, Schedin P. 2013. Collagen architecture in pregnancy-induced protection from breast cancer. *J Cell Sci* **126**: 4108–4110.

Mantell BS, Stefanovic-Racic M, Yang X, Dedousis N, Sipula IJ, O'Doherty RM. 2011. Mice Lacking NKT Cells but with a Complete Complement of CD8+ T-Cells Are Not Protected against the Metabolic Abnormalities of Diet-Induced Obesity. *PLOS ONE* **6**: e19831.

Martinson HA, Jindal S, Durand-Rougely C, Borges VF, Schedin P. 2015. Wound healing-like immune program facilitates postpartum mammary gland involution and tumor progression. *Int J Cancer* 136: 1803–1813.

Marusyk A, Polyak K. 2010. Tumor heterogeneity: causes and consequences. *Biochim Biophys Acta* **1805**: 105–117.

Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH. 2014. Adoptive Immunotherapy for Cancer or Viruses. *Annu Rev Immunol* **32**: 189–225.

McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. 2010. GREAT improves functional interpretation of cis-regulatory regions. *Nat Biotechnol* 28: 495–501.

McLeay RC, Bailey TL. 2010. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. *BMC Bioinformatics* **11**: 165.

Medina D. 2009. Breast Cancer: The Protective Effect of Pregnancy. *Clinical Cancer Research* **10**: 380s–384s.

Medina D. 2010. Of Mice and Women: A Short History of Mouse Mammary Cancer Research with an Emphasis on the Paradigms Inspired by the Transplantation Method. *Cold Spring Harb Perspect Biol* **2**: a004523.

Medina D, Kittrell FS. 2003. p53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. *Cancer Res* **63**: 6140–6143.

Meers MP, Tenenbaum D, Henikoff S. 2019. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. *Epigenetics & Chromatin* 12: 42.

Meier-Abt F, Bentires-Alj M. 2014. How pregnancy at early age protects against breast cancer. *Trends in Molecular Medicine* **20**: 143–153.

- Meier-Abt F, Milani E, Roloff T, Brinkhaus H, Duss S, Meyer DS, Klebba I, Balwierz PJ, van Nimwegen E, Bentires-Alj M. 2013. Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. *Breast Cancer Res* **15**: R36.
- Melbye M, Wohlfahrt J, Olsen JH, Frisch M, Westergaard T, Helweg-Larsen K, Andersen PK. 1997. Induced Abortion and the Risk of Breast Cancer. *New England Journal of Medicine* **336**: 81–85.
- Melhem-Bertrandt A, Bojadzieva J, Ready KJ, Obeid E, Liu DD, Gutierrez-Barrera AM, Litton JK, Olopade OI, Hortobagyi GN, Strong LC, et al. 2012. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. *Cancer* **118**: 908–913.
- Metelitsa LS, Naidenko OV, Kant A, Wu H-W, Loza MJ, Perussia B, Kronenberg M, Seeger RC. 2001. Human NKT Cells Mediate Antitumor Cytotoxicity Directly by Recognizing Target Cell CD1d with Bound Ligand or Indirectly by Producing IL-2 to Activate NK Cells. *The Journal of Immunology* 167: 3114–3122.
- Middleton LP, Amin M, Gwyn K, Theriault R, Sahin A. 2003. Breast carcinoma in pregnant women: assessment of clinicopathologic and immunohistochemical features. *Cancer* **98**: 1055–1060.
- Mincheva-Nilsson L. 2003. Pregnancy and gamma/delta T cells: Taking on the hard questions. *Reproductive Biology and Endocrinology* **1**.
- Molyneux G, Geyer FC, Magnay F-A, McCarthy A, Kendrick H, Natrajan R, MacKay A, Grigoriadis A, Tutt A, Ashworth A, et al. 2010. BRCA1 Basal-like Breast Cancers Originate from Luminal Epithelial Progenitors and Not from Basal Stem Cells. *Cell Stem Cell* **7**: 403–417.
- Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. 1992. RAG-1-deficient mice have no mature B and T lymphocytes. *Cell* **68**: 869–877.
- Monks J, Rosner D, Jon Geske F, Lehman L, Hanson L, Neville MC, Fadok VA. 2005. Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. *Cell Death Differ* **12**: 107–114.
- Moore DM, Vogl AW, Baimbridge K, Emerman JT. 1987. Effect of calcium on oxytocin-induced contraction of mammary gland myoepithelium as visualized by NBD-phallacidin. *J Cell Sci* 88 (Pt 5): 563–569.
- Morsing M, Klitgaard MC, Jafari A, Villadsen R, Kassem M, Petersen OW, Rønnov-Jessen L. 2016. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma. *Breast Cancer Res* 18: 108.
- Mycko MP, Ferrero I, Wilson A, Jiang W, Bianchi T, Trumpp A, MacDonald HR. 2009. Selective Requirement for c-Myc at an Early Stage of Vα14i NKT Cell Development. *The Journal of Immunology* **182**: 4641–4648.
- Na YR, Jung D, Song J, Park J-W, Hong JJ, Seok SH. 2020. Pyruvate dehydrogenase kinase is a negative regulator of interleukin-10 production in macrophages. *J Mol Cell Biol* **12**: 543–555.
- Nagato K, Motohashi S, Ishibashi F, Okita K, Yamasaki K, Moriya Y, Hoshino H, Yoshida S, Hanaoka H, Fujii S, et al. 2012. Accumulation of Activated Invariant Natural Killer T Cells in the Tumor Microenvironment after α-Galactosylceramide-Pulsed Antigen Presenting Cells. *J Clin Immunol* 32: 1071–1081.
- Nassour M, Idoux-Gillet Y, Selmi A, Côme C, Faraldo M-LM, Deugnier M-A, Savagner P. 2012. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. *PloS one* 7: e53498.
- Nichols HB, Schoemaker MJ, Cai J, Xu J, Wright LB, Brook MN, Jones ME, Adami H-O, Baglietto L, Bertrand KA, et al. 2019. Breast Cancer Risk After Recent Childbirth. *Ann Intern Med* **170**: 22–30.
- Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC, et al. 2016. Landscape of somatic mutations in 560 breast cancer wholegenome sequences. *Nature* 534: 47–54.
- Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194: 23-28.

- O'Brien J, Lyons T, Monks J, Lucia MS, Wilson RS, Hines L, Man Y, Borges V, Schedin P. 2010. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. *Am J Pathol* **176**: 1241–1255.
- Oh SJ, Ahn S, Jin Y-H, Ishifune C, Kim JH, Yasutomo K, Chung DH. 2015. Notch 1 and Notch 2 synergistically regulate the differentiation and function of invariant NKT cells. *Journal of Leukocyte Biology* **98**: 781–789.
- Ormandy CJ, Binart N, Kelly PA. 1997a. Mammary gland development in prolactin receptor knockout mice. *J Mammary Gland Biol Neoplasia* **2**: 355–364.
- Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, et al. 1997b. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. *Genes Dev* **11**: 167–178.
- Pal B, Chen Y, Milevskiy MJG, Vaillant F, Prokopuk L, Dawson CA, Capaldo BD, Song X, Jackling F, Timpson P, et al. 2021. Single cell transcriptome atlas of mouse mammary epithelial cells across development. *Breast Cancer Research* 23.
- Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, Wilcox S, Fu N, Liu KH, Jackling FC, et al. 2017. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. *Nat Commun* 8: 1627.
- Pang M-F, Georgoudaki A-M, Lambut L, Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS, Nelson CM, et al. 2016. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. *Oncogene* **35**: 748–60.
- Paul S, Lal G. 2016. Regulatory and effector functions of gamma–delta ($\gamma\delta$) T cells and their therapeutic potential in adoptive cellular therapy for cancer. *International Journal of Cancer* **139**: 976–985.
- Pellicci DG, Uldrich AP, Le Nours J, Ross F, Chabrol E, Eckle SBG, de Boer R, Lim RT, McPherson K, Besra G, et al. 2014. The molecular bases of $\delta/\alpha\beta$ T cell-mediated antigen recognition. *J Exp Med* **211**: 2599–2615.
- Pepper MS, Baetens D, Mandriota SJ, Di Sanza C, Oikemus S, Lane TF, Soriano JV, Montesano R, Iruela-Arispe ML. 2000. Regulation of VEGF and VEGF receptor expression in the rodent mammary gland during pregnancy, lactation, and involution. *Dev Dyn* 218: 507–524.
- Pilewskie M, Gorodinsky P, Fought A, Hansen N, Bethke K, Jeruss J, Scholtens D, Khan SA. 2012. Association between recency of last pregnancy and biologic subtype of breast cancer. *Ann Surg Oncol* **19**: 1167–1173.
- Plaks V, Boldajipour B, Linnemann JR, Nguyen NH, Kersten K, Wolf Y, Casbon A-J, Kong N, van den Bijgaart RJE, Sheppard D, et al. 2015. Adaptive Immune Regulation of Mammary Postnatal Organogenesis. *Developmental Cell* 34: 493–504.
- Pollard JW, Hennighausen L. 1994. Colony stimulating factor 1 is required for mammary gland development during pregnancy. *Proc Natl Acad Sci U S A* **91**: 9312–9316.
- Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**: 841–842.
- Rahat MA, Coffelt SB, Granot Z, Muthana M, Amedei A. 2016. Macrophages and Neutrophils: Regulation of the Inflammatory Microenvironment in Autoimmunity and Cancer. *Mediators of Inflammation* 2016.
- Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, et al. 2007. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. *Nat Genet* **39**: 165–167.
- Ran S, Volk L, Hall K, Flister MJ. 2010. Lymphangiogenesis and lymphatic metastasis in breast cancer. *Pathophysiology* **17**: 229–251.
- Ray S, Chhabra A, Chakraborty NG, Hegde U, Dorsky DI, Chodon T, von Euw E, Comin-Anduix B, Koya RC, Ribas A, et al. 2010. MHC-I-restricted melanoma antigen specific TCR-engineered human CD4+ T cells exhibit multifunctional effector and helper responses, in vitro. *Clin Immunol* 136: 338–347.

- Reid JA, Mollica PA, Bruno RD, Sachs PC. 2018. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform. *Breast cancer research* : *BCR* **20**: 122.
- Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K, et al. 2006. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. *Nat Genet* 38: 873–875.
- Restifo NP, Dudley ME, Rosenberg SA. 2012. Adoptive immunotherapy for cancer: harnessing the T cell response. *Nat Rev Immunol* **12**: 269–281.
- Ricciardelli C, Lokman NA, Pyragius CE, Ween MP, Macpherson AM, Ruszkiewicz A, Hoffmann P, Oehler MK. 2017. Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. *Oncotarget* **8**: 17819–17832.
- Richter J, Neparidze N, Zhang L, Nair S, Monesmith T, Sundaram R, Miesowicz F, Dhodapkar KM, Dhodapkar MV. 2013. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. *Blood* **121**: 423–430.
- Rios AC, Fu NY, Lindeman GJ, Visvader JE. 2014. In situ identification of bipotent stem cells in the mammary gland. *Nature* **506**: 322–327.
- Rizvi ZA, Puri N, Saxena RK. 2015. Lipid antigen presentation through CD1d pathway in mouse lung epithelial cells, macrophages and dendritic cells and its suppression by poly-dispersed single-walled carbon nanotubes. *Toxicol In Vitro* **29**: 1275–1282.
- Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al. 2011. Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1. J Clin Oncol 29: 917–924.
- Robinson GW. 2007. Cooperation of signalling pathways in embryonic mammary gland development. *Nat Rev Genet* **8**: 963–972.
- Robinson GW, McKnight RA, Smith GH, Hennighausen L. 1995. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. *Development* **121**: 2079–2090.
- Rodriguez-Boulan E, Macara IG. 2014. Organization and execution of the epithelial polarity programme. *Nat Rev Mol Cell Biol* **15**: 225–242.
- Rosenbluth JM, Schackmann RCJ, Gray GK, Selfors LM, Li CM-C, Boedicker M, Kuiken HJ, Richardson A, Brock J, Garber J, et al. 2020. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. *Nature communications* **11**: 1711.
- Rosner B, Colditz GA, Willett WC. 1994. Reproductive Risk Factors in a Prospective Study of Breast Cancer: The Nurses' Health Study. *Am J Epidemiol* **139**: 819–835.
- Russo IH, Russo J. 1996. Mammary gland neoplasia in long-term rodent studies. *Environ Health Perspect* **104**: 938–967.
- Russo J, Balogh GA, Russo IH, and the Fox Chase Cancer Center Hospital Network Participants. 2008. Full-term Pregnancy Induces a Specific Genomic Signature in the Human Breast. *Cancer Epidemiology Biomarkers & Prevention* 17: 51–66.
- Russo J, Santucci-Pereira J, Cicco RL de, Sheriff F, Russo PA, Peri S, Slifker M, Ross E, Mello MLS, Vidal BC, et al. 2012. Pregnancy-induced chromatin remodeling in the breast of postmenopausal women. *International Journal of Cancer* **131**: 1059–1070.
- Saeki K, Chang G, Kanaya N, Wu X, Wang J, Bernal L, Ha D, Neuhausen SL, Chen S. 2021. Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis. *Communications Biology* **4**.
- Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. 2014. IL-10–producing NKT10 cells are a distinct regulatory invariant NKT cell subset. *J Clin Invest* **124**: 3725–3740.
- Salio M, Silk JD, Yvonne Jones E, Cerundolo V. 2014. Biology of CD1- and MR1-Restricted T Cells. *Annu Rev Immunol* **32**: 323–366.

- Samocha A, Doh H, Kessenbrock K, Roose JP. 2019. Unraveling Heterogeneity in Epithelial Cell Fates of the Mammary Gland and Breast Cancer. *Cancers (Basel)* **11**. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826786/ (Accessed June 1, 2020).
- Santo CD, Salio M, Masri SH, Lee LY-H, Dong T, Speak AO, Porubsky S, Booth S, Veerapen N, Besra GS, et al. 2008. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus– induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118: 4036–4048.
- Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A. 2008. The transcription factor PLZF directs the effector program of the NKT cell lineage. *Immunity* **29**: 391–403.
- Schedin P. 2006. Pregnancy-associated breast cancer and metastasis. Nature Reviews Cancer 6: 281–291.
- Schedin P, Mitrenga T, McDaniel S, Kaeck M. 2004. Mammary ECM composition and function are altered by reproductive state. *Molecular Carcinogenesis* **41**: 207–220.
- Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. 2012. Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**: 676–682.
- Schoppmann SF, Bayer G, Aumayr K, Taucher S, Geleff S, Rudas M, Kubista E, Hausmaninger H, Samonigg H, Gnant M, et al. 2004. Prognostic Value of Lymphangiogenesis and Lymphovascular Invasion in Invasive Breast Cancer. Ann Surg 240: 306–312.
- Schwertfeger KL, Richert MM, Anderson SM. 2001. Mammary gland involution is delayed by activated Akt in transgenic mice. *Molecular Endocrinology* **15**: 867–881.
- Seiler MP, Mathew R, Liszewski MK, Spooner CJ, Spooner C, Barr K, Meng F, Singh H, Bendelac A. 2012. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. *Nat Immunol* 13: 264–271.
- Seshan VE, Olshen A. 2022. DNAcopy: DNA copy number data analysis. https://bioconductor.org/packages/DNAcopy/ (Accessed October 19, 2022).
- Shakhar K, Valdimarsdottir HB, Bovbjerg DH. 2007. Heightened Risk of Breast Cancer Following Pregnancy: Could Lasting Systemic Immune Alterations Contribute? *Cancer Epidemiol Biomarkers Prev* 16: 1082–1086.
- Shamir ER, Ewald AJ. 2014. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. *Nature Reviews Molecular Cell Biology* **15**: 647–664.
- Sharp JA, Lefevre C, Brennan AJ, Nicholas KR. 2007. The Fur Seal—a Model Lactation Phenotype to Explore Molecular Factors Involved in the Initiation of Apoptosis at Involution. *J Mammary Gland Biol Neoplasia* 12: 47–58.
- Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S. 2007. Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell– mediated immunity via dendritic cells. *J Exp Med* **204**: 2641–2653.
- Shissler SC, Webb TJ. 2019. Inhibition of PI3K promotes anti-tumor immune responses to Mantle Cell Lymphoma. *The Journal of Immunology* **202**: 194.45-194.45.
- Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ. 2001. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. *Development* **128**: 3117–3131.
- Sinha DK, Pazik JE, Dao TL. 1988. Prevention of mammary carcinogenesis in rats by pregnancy: effect of full-term and interrupted pregnancy. *Br J Cancer* **57**: 390–394.
- Sivaraman L, Conneely OM, Medina D, O'Malley BW. 2001. p53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. *Proc Natl Acad Sci U S A* **98**: 12379–12384.
- Skibinski A, Kuperwasser C. 2015. The origin of breast tumor heterogeneity. Oncogene 34: 5309–5316.
- Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M. 2001. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. *Nat Med* 7: 192–198.
- Slade D. 2020. PARP and PARG inhibitors in cancer treatment. Genes Dev 34: 360–394.
- Slepicka PF, Cyrill SL, dos Santos CO. 2019. Pregnancy and Breast Cancer: Pathways to Understand Risk and Prevention. *Trends in Molecular Medicine*. http://www.sciencedirect.com/science/article/pii/S1471491419301650 (Accessed September 26, 2019).
- Slepicka PF, Somasundara AVH, dos Santos CO. 2021. The molecular basis of mammary gland development and epithelial differentiation. Seminars in Cell & Developmental Biology 114: 93– 112.
- Smyth MJ, Crowe NY, Pellicci DG, Kyparissoudis K, Kelly JM, Takeda K, Yagita H, Godfrey DI. 2002. Sequential production of interferon- γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α -galactosylceramide. *Blood* **99**: 1259–1266.
- Sokolova A, Johnstone KJ, McCart Reed AE, Simpson PT, Lakhani SR. 2022. Hereditary breast cancer: syndromes, tumour pathology and molecular testing. *Histopathology* **n/a**.

https://onlinelibrary.wiley.com/doi/abs/10.1111/his.14808 (Accessed December 7, 2022). Sønderstrup IMH, Jensen M-BR, Ejlertsen B, Eriksen JO, Gerdes A-M, Kruse TA, Larsen MJ, Thomassen M, Lænkholm A-V. 2019. Subtypes in BRCA-mutated breast cancer. *Hum Pathol* 84:

192–201. Song L, Asgharzadeh S, Salo J, Engell K, Wu H, Sposto R, Ara T, Silverman AM, DeClerck YA, Seeger RC, et al. 2009. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-

associated macrophages. J Clin Invest 119: 1524–1536.

- Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al. 2003. Repeated observation of breast tumor subtypes in independent gene expression data sets. *Proc Natl Acad Sci U S A* **100**: 8418–8423.
- Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG. 2001. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. *Nat Med* 7: 186–191.
- Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy M-A, Heath VJ, Bell AK, Ferrier RK, Sandilands GP, Gusterson BA. 2004. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. *Breast Cancer Res* 6: R75–R91.
- Stewart TA, Hughes K, Hume DA, Davis FM. 2019. Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. *Frontiers in Cell and Developmental Biology* **7**.
- Stordal B. 2022. Breastfeeding reduces the risk of breast cancer: A call for action in high-income countries with low rates of breastfeeding. *Cancer Medicine* **n**/**a**.
- https://onlinelibrary.wiley.com/doi/abs/10.1002/cam4.5288 (Accessed October 31, 2022). Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R. 2019. Comprehensive Integration of Single-Cell Data. *Cell* **177**: 1888-1902.e21.
- Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences* **102**: 15545–15550.
- Sulahian R, Chen J, Arany Z, Jadhav U, Peng S, Rustgi AK, Bass AJ, Srivastava A, Hornick JL, Shivdasani RA. 2015. SOX15 Governs Transcription in Human Stratified Epithelia and a Subset of Esophageal Adenocarcinomas. *Cell Mol Gastroenterol Hepatol* 1: 598-609.e6.
- Sumbal J, Chiche A, Charifou E, Koledova Z, Li H. 2020. Primary Mammary Organoid Model of Lactation and Involution. *Front Cell Dev Biol* **8**.

https://www.frontiersin.org/articles/10.3389/fcell.2020.00068/full#h1 (Accessed June 1, 2020).

- Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T, Kai F, Taneja NK, Inoue K. 2009. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. *Expert Rev Mol Diagn* 9: 423–440.
- Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, Berzofsky JA. 2005. A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II)

NKT cell is sufficient for down-regulation of tumor immunosurveillance. *J Exp Med* **202**: 1627–1633.

- Terry MB, Liao Y, Kast K, Antoniou AC, McDonald JA, Mooij TM, Engel C, Nogues C, Buecher B, Mari V, et al. 2018. The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With *BRCA1* or *BRCA2* Mutations. *JNCI Cancer Spectrum* 2. https://academic.oup.com/jncics/article/doi/10.1093/jncics/pky078/5370381 (Accessed April 7, 2019).
- Thibeault SL, Rees L, Pazmany L, Birchall MA. 2009. At the crossroads: mucosal immunology of the larynx. *Mucosal Immunol* **2**: 122–128.
- Thordarson G, Jin E, Guzman RC, Swanson SM, Nandi S, Talamantes F. 1995. Refractoriness to mammary tumorigenesis in parous rats: is it caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? *Carcinogenesis* **16**: 2847–2853.
- Tickle C, Jung H-S. 2016. Embryonic Mammary Gland Development. In *eLS*, pp. 1–10, John Wiley & Sons, Ltd https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0026057 (Accessed October 24, 2022).
- Tiede B, Kang Y. 2011. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. *Cell Res* **21**: 245–257.
- Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH. 2004. T-bet Regulates the Terminal Maturation and Homeostasis of NK and Vα14i NKT Cells. *Immunity* **20**: 477–494.
- Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O. 2003. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. *Nature* 422: 164–169.
- Twigger A-J, Engelbrecht LK, Bach K, Schultz-Pernice I, Pensa S, Stenning J, Petricca S, Scheel CH, Khaled WT. 2022. Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk. *Nature Communications* **13**.
- Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T, Gras S, Rossjohn J, et al. 2013. CD1d-lipid antigen recognition by the γδ TCR. *Nature Immunology* **14**: 1137–1145.
- Ussher JE, Willberg CB, Klenerman P. 2018. MAIT cells and viruses. Immunol Cell Biol 96: 630-641.
- Van Keymeulen A, Lee MY, Ousset M, Brohée S, Rorive S, Giraddi RR, Wuidart A, Bouvencourt G, Dubois C, Salmon I, et al. 2015. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. *Nature* 525: 119–123.
- Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C. 2011. Distinct stem cells contribute to mammary gland development and maintenance. *Nature* 479: 189–193.
- Waddell N, Arnold J, Cocciardi S, da Silva L, Marsh A, Riley J, Johnstone CN, Orloff M, Assie G, Eng C, et al. 2010. Subtypes of familial breast tumours revealed by expression and copy number profiling. *Breast Cancer Res Treat* **123**: 661–677.
- Wagner K-U, Ward T, Davis B, Wiseman R, Hennighausen L. 2001. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. *Transgenic Res* 10: 545–553.
- Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, Roach KC, Mandell J, Lee MK, Ciernikova S, et al. 2006. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. *JAMA* **295**: 1379–1388.
- Wang X, Kaplan DL. 2012. Hormone-responsive 3D multicellular culture model of human breast tissue. *Biomaterials* **33**: 3411–3420.
- Wang Y, Chaffee TS, LaRue RS, Huggins DN, Witschen PM, Ibrahim AM, Nelson AC, Machado HL, Schwertfeger KL. 2020. Tissue-resident macrophages promote extracellular matrix homeostasis

in the mammary gland stroma of nulliparous mice eds. S. Rath, C.V. Rothlin, and F. Davis. *eLife* **9**: e57438.

- Webster J, Wallace RM, Clark AJ, Whitelaw CB. 1995. Tissue-specific, temporally regulated expression mediated by the proximal ovine beta-lactoglobulin promoter in transgenic mice. *Cell Mol Biol Res* **41**: 11–15.
- Wen J, Kawamata Y, Tojo H, Tanaka S, Tachi C. 1995. Expression of whey acidic protein (WAP) genes in tissues other than the mammary gland in normal and transgenic mice expressing mWAP/hGH fusion gene. *Mol Reprod Dev* **41**: 399–406.
- Wilson JRF, Bateman AC, Hanson H, An Q, Evans G, Rahman N, Jones JL, Eccles DM. 2010. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. *Journal of Medical Genetics* 47: 771–774.
- Wohlfahrt J, Melbye M. 2001. Age at Any Birth Is Associated with Breast Cancer Risk. *Epidemiology* **12**: 68–73.
- Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P. 2009. Collagen-based cell migration models in vitro and in vivo. *Seminars in cell & developmental biology* 20: 931–41.
- Wu B, Sun X, Gupta HB, Yuan B, Li J, Ge F, Chiang H-C, Zhang X, Zhang C, Zhang D, et al. 2018. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology 7: e1500107.
- Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB. 2003. Cross-presentation of disialoganglioside GD3 to natural killer T cells. *J Exp Med* **198**: 173–181.
- Wu Q, Li B, Li Z, Li J, Sun S, Sun S. 2019a. Cancer-associated adipocytes: key players in breast cancer progression. *Journal of Hematology & Oncology* 12: 95.
- Wu Y, Kyle-Cezar F, Woolf RT, Naceur-Lombardelli C, Owen J, Biswas D, Lorenc A, Vantourout P, Gazinska P, Grigoriadis A, et al. 2019b. An innate-like $V\delta 1+\gamma\delta$ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. *Science Translational Medicine* **11**.
- Xu J, Chen Y, Olopade OI. 2010. MYC and Breast Cancer. Genes Cancer 1: 629–640.
- Xu J, Lamouille S, Derynck R. 2009. TGF-β-induced epithelial to mesenchymal transition. *Cell Research* **19**: 156–172.
- Yang J, Weinberg RA. 2008. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. *Dev Cell* 14: 818–829.
- Yang Y-H, Liu J-W, Lu C, Wei J-F. 2022. CAR-T Cell Therapy for Breast Cancer: From Basic Research to Clinical Application. *Int J Biol Sci* 18: 2609–2626.
- Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, Weinberg RA. 2015. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. *Nature* **525**: 256–260.
- Yu J, Mitsui T, Wei M, Mao H, Butchar JP, Shah MV, Zhang J, Mishra A, Alvarez-Breckenridge C, Liu X, et al. 2011. NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. *Journal of Clinical Investigation* **121**: 1456–1470.
- Zeng D, Lewis D, Dejbakhsh-Jones S, Lan F, García-Ojeda M, Sibley R, Strober S. 1999. Bone Marrow NK1.1– and NK1.1+ T Cells Reciprocally Regulate Acute Graft versus Host Disease. J Exp Med 189: 1073–1081.
- Zhang H, Somasundaram K, Peng Y, Tian H, Zhang H, Bi D, Weber BL, El-Deiry WS. 1998. BRCA1 physically associates with p53 and stimulates its transcriptional activity. *Oncogene* **16**: 1713–1721.
- Zhang J, Xia Y, Zhou X, Yu H, Tan Y, Du Y, Zhang Q, Wu Y. 2022. Current landscape of personalized clinical treatments for triple-negative breast cancer. *Frontiers in Pharmacology* 13. https://www.frontiersin.org/articles/10.3389/fphar.2022.977660 (Accessed October 9, 2022).
- Zhang R, Liu X, Huang W, Shao B, Yan Y, Liang X, Ran R, Song G, Di L, Jiang H, et al. 2021. Clinicopathological features and prognosis of patients with pregnancy-associated breast cancer: A matched case control study. *Asia-Pacific Journal of Clinical Oncology* 17: 396–402.

- Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. 2008. Model-based Analysis of ChIP-Seq (MACS). *Genome Biology* **9**: R137.
- Zhang Y, Springfield R, Chen S, Li X, Feng X, Moshirian R, Yang R, Yuan W. 2019. α-GalCer and iNKT cell-based cancer immunotherapy: Realizing the therapeutic potentials. *Frontiers in Immunology* **10**.
- Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al. 2017. Massively parallel digital transcriptional profiling of single cells. *Nat Commun* 8: 14049.
- Zhou D, Mattner J, Cantu C, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y-P, Yamashita T, et al. 2004. Lysosomal glycosphingolipid recognition by NKT cells. *Science* **306**: 1786–1789.

8. Appendix 1 – Supplementary tables

Table 8-1 Differential gene-expression analysis (avg_log2FC) comparing selected pre- and postpregnancy mammary epithelial scRNA-seq clusters, related to Figure 2-3.

Cluster EC2 x Cluster EC1

Cluster EC2	Pre-pregnancy alveolar like cells	Positive avg_log2FC
Cluster EC1	Post-pregnancy alveolar like cells	Negative avg_log2FC

ID	avg_log2FC	RHOJ	0.99617701	FOXQ1	0.34182107	BAIAP2	-0.5435382
HP	-3.41225	CAR2	-1.0739367	FOS	1.0583883	SGMS2	-0.6073056
RPS18	0.95423309	TNFAIP2	-1.2408653	GAPDH	0.54979904	CRABP2	-0.6992823
RPS18-PS3	0.85295349	SFN	-0.9458161	BTG1	0.53533872	WNT7B	-0.4411393
CSN1S1	-1.9926168	ARRDC3	0.85177601	PSAP	0.44076867	GM2A	0.51816379
GM10260	-0.8173944	LMO4	0.8362841	GM16136	0.46814484	MET	-0.5259474
RPL35	-0.7285127	C4B	-0.8514614	NEAT1	0.54571735	GIPC1	0.388673
SQSTM1	-1.4970493	PMEPA1	-0.8647831	PPP2CA	-0.4991189	RFTN1	-0.4529127
CXCL1	-2.4381099	EMP1	-0.9158746	KRT8	-0.4639008	COL16A1	0.35202565
CSN3	-1.4063395	PABPC1	0.49804445	EHF	0.7105334	CXCL5	-1.1883553
CSN1S2A	-1.2777775	PRELP	-0.7346324	FAM107B	-0.6710583	TXN1	-0.3993605
LGALS7	1.67539669	LMNA	-0.6266127	HMGN1	0.42460841	GM266	0.34386915
SPP1	-1.7734804	SRXN1	-0.8147953	CP	-0.6012948	UBALD1	0.33515308
CD200	-1.3720457	RPS27RT	0.34944042	CAMK2N1	-0.4090801	F3	-0.6314083
WFDC18	2.21187284	RPS27	-0.5149663	QSOX1	-0.6046003	VMP1	-0.512585
GM10073	-0.7484677	SLC2A1	-0.928184	CRISPLD2	1.0300721	MCL1	-0.5869433
LGALS3	-1.4123553	TFAP2B	0.38381511	APRT	-0.5160206	RNASET2A	0.39990554
CSF3	-2.3265594	GM10709	-0.5783823	LRG1	1.37454062	DACT2	0.25705329
LTF	-2.2219596	DBI	0.60159515	CALM1	-0.5182316	COX7A2L	0.39075435
TM4SF1	-1.1436616	XBP1	1.08331436	PTGS2	-1.0427087	SLC39A14	-0.5964625
PLET1	-0.8856469	PIK3R1	0.96368608	H3F3A	0.37140594	RGMA	0.25603816
FCGBP	1.17875924	COMT	0.5336296	SLC31A2	0.43570049	HBEGF	-0.6166383
RPL15	0.76517913	POLR2L	-0.7056183	ARHGEF6	-0.6759192	TGM2	0.51496309
CSRP1	1.12668615	RPL6	0.37690283	CLTA	0.55780014	NFKB1	-0.5035646
DMKN	1.32242531	HILPDA	-1.0976729	GM10076	-0.4244255	KCTD1	0.57646587
RPL23A-PS3	0.53010216	MFGE8	-0.5539383	UBD	0.50710925	PFKL	-0.3564594
PDK4	-1.3128634	SBSN	0.76130029	9530053A07RIK	0.27612258	MAP1LC3B	0.46680867
TNFRSF12A	-0.7757174	CIDEA	-0.7813266	FOSL1	-0.4820608	S100A16	-0.3510357
SLC7A2	-0.9027661	CX3CL1	-0.8076444	UBA52	0.48291589	F11R	0.44921496
DKKL1	-0.8177405	CYP1B1	0.53143687	CXADR	0.62276051	FLRT3	0.33224128
UBALD2	0.78067012	CGREF1	-0.5920381	GM10036	0.39226964	KLF4	0.47886011
RPL6L	0.58878136	IGSF8	0.67984248	H1F0	0.68803391	COL9A2	0.25993645
PLAUR	-0.9842945	RPS26	0.30681624	PRR13	-0.5550719	GRB7	0.36944442
FABP5	1.79955594	LAS1L	0.78938915	TIMP3	-0.5760445	TRPS1	0.5826528
ANXA2	-0.758103	LCN2	-0.5443904	CCK	-0.889174	RPL3	0.27286246
RPS28	0.35223714	CEL	-1.0674076	HBP1	0.35773448	AHNAK	-0.41897
TMSB4X	0.87902067	CRIP1	-0.8142327	ERBB3	0.42608471	NCOA7	0.34228615
EMID1	0.60013274	0610040J01RIK	0.54050183	CRIP2	-0.4852684	MAT2A	-0.4377527
TRF	-0.7353312	PTTG1IP	-0.6817496	SLC35E4	-0.4720801	PHLDA1	0.5080431
ERDR1	0.86928857	MGAT4B	-0.4960538	MAP3K1	0.53566684	JDP2	-0.5418526
ITM2B	-0.6600402	RPS11	0.26963681	CDKN1A	-0.7639228	CXCL2	-1.1870372
KIT	0.76187512	TNC	-0.5409597	1500015O10RIK	-0.3435542	PVRL4	0.38658609
CD63	-0.7277041	RSRP1	0.53485115	ZC3H12A	-0.5359317	GM13889	-0.7240565
EHD1	-0.7459027	RPL27	0.48710796	ABCC3	0.30721929	CEACAM10	-0.3713838
CITED4	0.76045598	S100A13	-0.6244361	SCN1B	-0.3110158	HS3ST1	-0.6299339
CST3	-1.7269527	IGFBP7	-0.6457311	EZR	-0.4729411	FTL1	-0.3107629
PLIN2	-1.0621507	BCAM	-0.6676489	FRAT2	0.38174187	SOX4	0.6151711
RP23-278M8.1	-0.5886355	RSPO1	0.65861476	EIF3F	0.34084188	RALBP1	0.42496207
GM9493	0.58379215	IER2	0.75081181	EIF3H	0.38251764	EPHA2	-0.3692702
EEF2	0.50344529	JCHAIN	-0.4094184	CD44	-0.6107016	CELSR2	0.47901132
RNF19B	-0.9647511	CBR2	-0.7848635	RPL13-PS3	0.34043176	SHISA2	0.36214805

ETU1	0.4501044	LIE	0 5037808	PTCES	0.4082006	CIP2	0 37264187
	-0.4301944	LIF	-0.3037808	FIGES	-0.4082990	GJB2	0.3/20418/
TUBB6	-0.3502234	P2R16	-0.3146484	PIN	0.5806618	CD24A	-0.401/969
RALY	0.37048391	ATF7IP	0.25493467	STAP2	0.27216495	TMBIM1	-0.2610876
UBE2C	0.39428408	S100A8	1.14763301	UQCRFS1	0.32525939	ITGAV	-0.2803802
SDC4	-0.4271935	DDI2	0.32916634	TMEM120A	-0.3271727	CELF2	-0.2971656
RRP1	0.51637636	AU020206	-0.3412263	ZMIZ1	-0.3318022	ZEOS1	0.29612099
CVD24A1	0.51057050	S100A11	-0.3412203		0.2022428	ECMI	0.2109016
CYP24A1	0.55/03934	SIUUAII	-0.268/169	AK2	-0.2922428	ECMI	-0.3128016
TUBA1C	-0.4171137	SRSF7	-0.3471977	HEG1	0.25884961	IFITM2	0.29857567
TBCC	-0.4899248	ETV6	0.33593341	BTG2	0.48602494	CISH	-0.2804749
\$100A10	-0 3926241	SMOX	-0.4320533	GPX1	0 28405723	CNN3	0 30421046
EAM22A	0.36250055	TUPP 4P	0.2872202	CETR	0.20403123	DDMC1	0.2175006
FAM32A	0.30230033	TUBB4B	-0.5875205	CSIB	-0.2808117	RBMS1	-0.31/3096
PLA2G4A	-0.3332718	GAS6	-0.3673182	RBM47	0.33105398	KLC3	0.25248611
WFDC2	-0.3780653	COL9A1	0.41095673	LY6D	0.2620322	WIPI2	0.25625356
ALOX12E	0.32632416	MAF1	0.29241706	RIN2	0.28241235	PEAK1	-0.3070777
SIDI	0.6102408	CSE1	0.5008555	PDE4B	0.3427502	CYCS	0.28080005
JU IDN	-0.0102400	CM10126	-0.377047	DUCD14	-0.3427302	TOTAL	0.20109475
ILIKN	0.64626012	GM10126	-0.3377947	DUSP14	-0.2735975	ICF/L2	0.30108475
TSPAN3	-0.3442177	SERPINE1	-0.5088554	HMGA1-RS1	-0.2555186	LITAF	0.31333653
CD47	0.50617619	OXA1L	0.28637108	RSF1	0.26478857	TNIP1	0.25232102
EGR1	0.49385	LDHA	0.50010519	STAT3	0.3352457	LOCKD	0.30008829
DDI 27 DS2	0.24972221	HMCN5	0.20524065	CTSD	0.2110770	DNICD	0.25206520
KFL2/-F35	0.346/3231	HMGNJ	0.30334903	CISD (CD	-0.3110779	FINISK	0.23390339
KLF13	0.42881199	TANCI	0.35938205	KDM6B	-0.368726	TPS12	-0.2849968
TNFRSF1B	-0.4612497	MAT2B	0.28401174	RB1CC1	0.26483381	CLDN3	0.38732362
RP9	0.46179308	FAM102A	-0.3615152	BZW2	0.2783197	SSU72	0.26989651
ZNRF1	0 40809964	PLEKHR1	0 30612316	CTDSP2	0 33249325	NAV2	-0 3024/3
OARS	0.7000000	NCE	0.4201502	NOP54	0.2122705	MT2	0.464666
QAR5	0.5/159/15	NOF	-0.4291502	NOF30	-0.5125/95	IVI12	-0.4040065
PHXR4	-0.4562922	NOSIAP	0.28530111	MPZL1	0.27898106	KAB10	-0.2720932
SDC1	0.56791041	ZFP637	0.26921015	C3	0.40079502	SLC39A1	0.3263839
ARMCX2	0.37943921	GM26917	-0.330914	SSR2	0.34712048	TNRC6A	0.26957111
GNG5	0 33081346	KRT18	-0 2747500	SLC20A1	-0 3206587	ACLY	-0.3051000
DIFZO1	0.33081340	RK116	-0.2747309	SLC20A1	-0.3200387	HOAFY	-0.3031099
PIEZOI	-0.4249671	PDGFA	-0.3520496	CIBPI	0.25286113	H2AFV	0.40725129
BASP1	-0.299978	S100A1	-0.3223718	ETS1	-0.3295536	AEN	-0.2999965
POR	-0.4363149	NFKBIZ	-0.4028743	PTPN1	0.3351736	TUBB2B	-0.2937099
ATOX1	0 34224381	HIST1H1E	0.26071624	CREB5	0 58631554	PLEKHM2	-0 2864394
HOMER2	0.2700051	CLCE1	0.2542800	DNDC2	0.26945156	I DDC%A	0.27065510
HOMEK2	-0.3709931	CLCFI	-0.2342899	FINC2	0.20845130	LKKC6A	0.27903319
ARPC4	0.35503639	LZ1S2	0.31236088	ERGIC3	0.25837039	MARCH7	0.323/3008
SLC6A6	-0.2596367	VEGFA	-0.9070968	PDHA1	0.29174117	TRABD	0.25479352
OGFRL1	0.69985122	DAB2	-0.4019607	ETS2	-0.3271724	NSMF	0.28829313
IGEBP5	0.64707378	ZEP36	0 3837823	SGMS1	0.36600606	KI HI 21	-0.3357838
CLDN1	0.04707578		0.3637623	DDG1	0.3000000	CVCL16	-0.3337030
CLDNI	0.43933564	HMGB1	0.36841265	RRSI	-0.3052903	CACLI6	-0.3045125
TRIM8	0.43753854	TPM3	0.31072285	PDLIM4	0.32435107	PIK3C2A	0.3696741
BSG	-0.3522088	BNIP3L	0.36700092	HMGB2	0.55497336	SUPT4A	0.27761471
YPEL3	0.33983985	TAGLN	0.35538996	POLC1	0.30438279	BPTF	0.25245585
TSC22D1	0.61834165	CITED2	0.6030088	GARAPAPI 1	0.30204707	IET43	0.2511782
DD1	0.01834103	DDV5	0.0050088	GABARALLI	0.30204707	11145	-0.2311782
KB1	-0.3838559	DDX5	-0.2557279	S16GALNAC4	-0.286954	KR11/	0.31234665
AHR	0.40000467	EIF3E	0.32515081	TNF	-0.2689575	SCARB1	0.25523327
MTHFSL	0.26017157	IER3	-0.4319319	GADD45B	-0.5367672	MSRB1	0.30265914
FOX11	0 34603328	TSPO	-0 3575336	CYB561	0.28910018	ARL 6IP5	-0.2596836
ANYAS	0.3502678	DKM	0.34501178	HACH	0.32230037	I IMA1	0.26485213
DNDC1	-0.3302078	I KM	0.34501178	TOFPD1	0.32230037	CNIDDD1	0.20463213
PNRCI	0.415/556	SECISBP2L	0.30704951	TGFBRI	0.34985606	SNRPDI	-0.268913
STX5A	0.30234494	CHIC2	0.33078651	RHPN2	-0.2792711	ELF1	0.26047715
ARID5B	0.30161658	SRGN	-0.2589423	GSTM1	-0.2974814	TNIP3	0.28484656
EIF4EBP1	0 44270438	NFKBIA	-0 398926	HES1	0 35998282	PLAT	-0.2879236
PCUV1	0.30878347	EENA5	0.25471357	GIA1	0.31525636	SMPDI 3A	0.28371022
TUDDA	0.30878347	EFINAS	0.254/1357	UED24	0.31323030	SIMI DESA	0.28371022
IUBB2A	-0.4019754	HMOXI	-0.6146459	MED24	-0.3259472	IUBA4A	-0.25810/3
GM10116	-0.3972508	ANKRD11	0.38423583	U2AF1	-0.2822284	AY036118	-0.2762664
CTSC	-0.3215553	SNRPG	0.30762884	UBB	0.26409757	SUMO1	0.26652609
ARF5	0.32656296	TMPRSS13	0.27203199	PFKFB3	-0.3957841	CEBPB	-0.2716935
IFI202B	-0.8/002/1	CHMP2P	0 30/80/00	PRKCA	0 3/01/29/	SI C5A1	0 36017054
STMN1	0.07004401	UIN LIN	0.50400477	CEII	0.26740777	SCV1	0.00017034
51 WIN1	0.07824401	JUN	0.50/49064	561001000	0.20/48///	SUKI	0.29682199
4631405K08RIK	0.37566258	HISTIHIC	0.31489971	0610012G03RIK	0.26301393	PLEKHG3	-0.3207291
HSP90AA1	-0.2673399	TAX1BP3	0.34998334	FAM103A1	0.28919345	CEP170B	-0.2569257
GM8973	0.32049154	TXNIP	0.45864972	GM7808	-0.2988717	PTPRF	0.25279701
TOP1	-0.2868505	PTX3	-0 3768637	SYNE4	0 25152708	IRX1	0 31311402
KI E7	0.52005011	7ED261 1	0.35210112	LUDADI	0 3/22001	DPDV2	0.26421467
NLI /	0.32903911	ZIT JULI	0.33310112	LUKAFIL DI DD2	-0.3423981		0.2043140/
XDH	0.37355702	MAFB	0.42708452	PLPP2	0.28488562	TUBAIA	-0.309363
PPP1CB	0.31469134	PHPT1	0.32728633	RALGDS	0.40137463	SNW1	0.26550676
ANGPTL4	-0.6103214	ALDOC	-0.3531481	ENO1	-0.3001817	IFNGR1	0.31214391
MAST4	-0.4342803	CARD19	-0.2902602	AKAP9	0.2589015	WBP5	0 30115424
NUCL			0.20070005	IK 7E2	0.2000107	EDD10	0.25056607
INUSI	0.270.4072	N/6100	0.30079085	INZF2	0.3889408/	ЕКР29	0.25056607
NUPR1	-0.3704873	M6PR	a	1/ 17/7		TKT	0.25670866
	-0.3704873 -0.5320468	M6PR GM42418	-0.5267728	KK1/	0.52313111		
ACOT1	-0.3704873 -0.5320468 0.38646036	M6PR GM42418 ERRFI1	-0.5267728 -0.3043006	SLC28A3	0.52313111 -0.4321609	EPHB3	0.30033295
ACOT1 ZFP36L2	-0.3704873 -0.5320468 0.38646036 0.63070253	M6PR GM42418 ERRFI1 CHILJ	-0.5267728 -0.3043006 -0.4571045	SLC28A3 MRPL14	0.52313111 -0.4321609 -0.2676343	EPHB3 EGLN3	0.30033295
ACOT1 ZFP36L2	-0.3704873 -0.5320468 0.38646036 0.63070253	M6PR GM42418 ERRFI1 CHIL1 SEPDINUL	-0.5267728 -0.3043006 -0.4571045	SLC28A3 MRPL14	0.52313111 -0.4321609 -0.2676343	EPHB3 EGLN3	0.30033295 0.29929304
ACOT1 ZFP36L2 LALBA	-0.3704873 -0.5320468 0.38646036 0.63070253 1.46226547	M6PR GM42418 ERRF11 CHIL1 SERPINH1	-0.5267728 -0.3043006 -0.4571045 0.34082078	SLC28A3 MRPL14 2200002D01RIK	0.52313111 -0.4321609 -0.2676343 -0.3131905	EPHB3 EGLN3 SAA1	0.30033295 0.29929304 -0.4700263
ACOT1 ZFP36L2 LALBA GDI2	-0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334	M6PR GM42418 ERRFI1 CHIL1 SERPINH1 FHL2	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073	KR17 SLC28A3 MRPL14 2200002D01RIK VAT1	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697	EPHB3 EGLN3 SAA1 MARCKS	0.30033295 0.29929304 -0.4700263 -0.3331056
ACOT1 ZFP36L2 LALBA GDI2 PLB1	-0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334 0.4190669	MOPR GM42418 ERRFI1 CHIL1 SERPINH1 FHL2 MBP	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073 -0.3765734	KR17 SLC28A3 MRPL14 2200002D01RIK VAT1 TMEM234	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697 0.27013045	EPHB3 EGLN3 SAA1 MARCKS CD14	0.30033295 0.29929304 -0.4700263 -0.3331056 0.5052468
ACOT1 ZFP36L2 LALBA GDI2 PLB1 ABHD17C	0.3704873 -0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334 0.4190669 0.38204019	M6PR GM42418 ERRF11 CHIL1 SERPINH1 FHL2 MBP ZFP46	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073 -0.3765734 0.28494482	KR17 SLC28A3 MRPL14 2200002D01RIK VAT1 TMEM234 RRAS	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697 0.27013045 0.26112937	EPHB3 EGLN3 SAA1 MARCKS CD14 MKRN1	0.30033295 0.29929304 -0.4700263 -0.3331056 0.5052468 0.26270229
ACOT1 ZFP36L2 LALBA GDI2 PLB1 ABHD17C TNEPSE21	0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334 0.4190669 0.38204019 0.4021725	M6PR GM42418 ERRFI1 CHIL1 SERPINH1 FHL2 MBP ZFP46 CYSTM1	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073 -0.3765734 0.28494482 0.2882922	SLC28A3 MRPL14 2200002D01RIK VAT1 TMEM234 RRAS NEK PIP	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697 0.27013045 0.26112937 -0.2040674	EPHB3 EGLN3 SAA1 MARCKS CD14 MKRN1 L AP2	0.30033295 0.29929304 -0.4700263 -0.3331056 0.5052468 0.26270229 0.2802552
ACOT1 ZFP36L2 LALBA GD12 PLB1 ABHD17C TNFRSF21 ZTAND5	0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334 0.4190669 0.38204019 0.40617835	M6PR GM42418 ERRF11 CHIL1 SERPINH1 FHL2 MBP ZFP46 CYSTM1 UGCTU	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073 -0.3765734 0.28494482 -0.2988292	SLC28A3 MRPL14 2200002D01RIK VAT1 TMEM234 RRAS NFKBIB	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697 0.27013045 0.26112937 -0.3040674	EPHB3 EGLN3 SAA1 MARCKS CD14 MKRN1 LAP3 THEP VICE	0.30033295 0.29929304 -0.4700263 -0.3331056 0.5052468 0.26270229 0.28036583
ACOT1 ZFP36L2 LALBA GD12 PLB1 ABHD17C TNFRSF21 ZFAND5	0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334 0.4190669 0.38204019 0.40617835 0.4328498	M6PR GM42418 ERRF11 CHIL1 SERPINH1 FHL2 MBP ZFP46 CYSTM1 HS2ST1	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073 -0.3765734 0.28494482 -0.2988292 0.26958674	KRT/ SLC28A3 MRPL14 2200002D01RIK VAT1 TMEM234 RRAS NFKBIB SLC12A2	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697 0.27013045 0.26112937 -0.3040674 0.28958084	EPHB3 EGLN3 SAA1 MARCKS CD14 MKRN1 LAP3 TMEM176A	0.30033295 0.29929304 -0.4700263 -0.3331056 0.5052468 0.26270229 0.28036583 -0.3321555
ACOT1 ZFP36L2 LALBA GDI2 PLB1 ABHD17C TNFRSF21 ZFAND5 GLTSCR2	0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334 0.4190669 0.38204019 0.40617835 0.4328498 0.3763282	M6PR GM42418 ERRFI1 CHIL1 SERPINH1 FHL2 MBP ZFP46 CYSTM1 HS2ST1 GCH1	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073 -0.3765734 0.28494482 -0.288292 0.26958674 -0.3461258	KR17 SLC28A3 MRPL14 2200002D01RIK VAT1 TMEM234 RRAS NFKBIB SLC12A2 ATXN7L3B	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697 0.27013045 0.26112937 -0.3040674 0.28958084 0.2709961	EPHB3 EGLN3 SAA1 MARCKS CD14 MKRN1 LAP3 TMEM176A CLU	0.30033295 0.29929304 -0.4700263 -0.3331056 0.5052468 0.26270229 0.28036583 -0.3321555 -0.2536262
ACOT1 ZFP36L2 LALBA GD12 PLB1 ABHD17C TNFRSF21 ZFAND5 GLTSCR2 SLC5A8	0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334 0.4190669 0.38204019 0.40617835 0.4328498 0.3763282 0.28849913	M6PR GM42418 ERRF11 CHIL1 SERPINH1 FHL2 MBP ZFP46 CYSTM1 HS2ST1 GCH1 MAP7D1	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073 -0.3765734 0.28494482 -0.2988292 0.26958674 -0.3461258 -0.4160341	KR17 SLC28A3 MRPL14 2200002D01RIK VAT1 TMEM234 RRAS NFKBIB SLC12A2 ATXN7L3B RABAC1	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697 0.27013045 0.26112937 -0.3040674 0.28958084 0.2709961 -0.2576567	EPHB3 EGLN3 SAA1 MARCKS CD14 MKRN1 LAP3 TMEM176A CLU TSPAN8	0.30033295 0.29929304 -0.4700263 -0.3331056 0.5052468 0.26270229 0.28036583 -0.3321555 -0.2536262 -0.2516312
ACOT1 ZFP36L2 LALBA GD12 PLB1 ABHD17C TNFRSF21 ZFAND5 GLTSCR2 SLC5A8 FOSL2	0.3704873 -0.3704873 -0.5320468 0.38646036 0.63070253 1.46236547 0.33563334 0.4190669 0.38204019 0.4328498 0.3763282 0.28849913 0.44146105	M6PR GM42418 ERRF11 CHIL1 SERPINH1 FHL2 MBP ZFP46 CYSTM1 HS2ST1 GCH1 MAP7D1 NCL	-0.5267728 -0.3043006 -0.4571045 0.34082078 -0.2874073 -0.2874073 -0.28494482 -0.298292 0.26958674 -0.3461258 -0.4160341 -0.2680592	KR17 SLC28A3 MRPL14 2200002D01RIK VAT1 TMEM234 RRAS NFKBIB SLC12A2 ATXN7L3B RABAC1 CDCP1	0.52313111 -0.4321609 -0.2676343 -0.3131905 -0.2697 0.27013045 0.26112937 -0.3040674 0.28958084 0.2709961 -0.2576567 -0.292256	EPHB3 EGLN3 SAA1 MARCKS CD14 MKRN1 LAP3 TMEM176A CLU TSPAN8 CALD1	0.30033295 0.29929304 -0.4700263 -0.3331056 0.5052468 0.26270229 0.28036583 -0.3321555 -0.2536262 -0.2516312 0.42275897

GSN	0 32736505	BCI 3	0 28982274	ID2	0 27232432	H2AF7	0 32994125
CVR61	-0.6312425	MVH9	0.33685507	ICAM1	0.37269107	AREG	0.30950056
DDIE	0.225058	MUC15	0.33003307	SEDD1	0.37207107	TACLN2	0.25924755
FFIF	-0.323038	MUCIS	0.27033303	SEFFI	0.27173313	TAGLINZ	0.33824733
OSIC	0.25442301	MANF	0.31417477	POSTN	-0.2572193	SPRY2	-0.2812402
MYC	-0.2649687	ACTB	0.60903947	PDZK1IP1	0.25204479	APOD	-0.7533769
PLSCR1	0.42440326	HK2	-0.3102336	FOXC1	-0.287111	BTN1A1	-0.4624796
HN1	0.25620642	SPPL2A	0.25365488	KLF5	0.28742002	ADAMTS4	-0.2758964
IFI203	-0.4145351	MNDAL	-0.3042569	SOD2	0.42536864	ARRDC4	0.30074565
MSN	0.25100561	FLNB	0.25695665	PRKCDBP	-0.3427673	TIMP1	-0.2690303
PPM1H	0.29429954	ELF3	-0.3522617	AQP3	-0.4371909	GADD45G	0.25388697
PVRL1	-0.2822224	BGLAP3	0.54309612	DCTN3	-0.3939237	HSPB1	0.35888183
HYPK	0.254143	RASSF1	0.28686589	PDLIM3	0.2747511		
KRT19	0.3741407	TRIM25	-0.2772625	NDRG1	-0.3012046		
ATP2B1	0.28993429	MARCKSL1	-0.3153275	CEACAM1	0.35572358		

Cluster EC4 x Cluster EC3

Cluster EC4 Pre-pregnancy myoepithelial progenitor MEC

Positive avg_log2FC

Cluster EC3 Post-pregnancy myoepithelial progenitor MEC

Negative avg_log2FC

ID	avg_log2FC	N
SPARC	2.31533684	R
RPS18-PS3	0.93844188	C
RPS18	0.91982817	N
CSF3	-3.5196402	N
IGFBP3 EMID1	1.85/55426	A
EMIDI MT1	0.2002472	
MGP	-0.8993478	r
COL9A3	1 20720255	R
GAS1	1.66834078	L
COL9A2	1.10333706	R
MAFF	-1.3367986	Ν
RPS28	0.51844485	G
MT2	-0.8072718	E
IGFBP7	0.97804857	Р
MMP2	1.03063964	Т
HSPBI	-1.6811946	0
CDKNIA ADAMTS4	-1.3011324	5
ADAM154 VECEA	-2.0307397	E S
MAST4	-0.9524079	P
RPS8	0 44249643	T
PLAUR	-1.3203245	T
FST	-1.0554729	R
POLR2L	-0.8855032	S
MT-ATP6	-0.4667118	Х
KRT14	-0.8731447	Р
FTH1	-0.8207371	Р
RPS4X	0.48833952	N
CIGF	1.92716183	R
GEM	-1.0040074	E N
CNN2	0.97744552	N C
EMB	0.99997595	S
GM10260	-0.6025848	R
PDPN	-1.0070121	G
1500015O10RIK	-1.2045197	R
SOCS3	-1.20897	П
TSC22D1	-0.9846283	S
ELN	0.9810055	K
PLPP3	-1.2186489	R
RPL7	0.41065277	C
MATZA EPDP1	-0.8053547	D D
UBB	-0.6459221	F
TM4SF1	-1 2503979	0
ADAMTS1	-1.0981749	S
RCAN1	-1.4058609	A
SDC1	0.90490115	S
RPS3A1	0.36441531	S
FZD1	0.69960277	В
CRISPLD2	0.878397	R
RGS2	-1.4043259	S
KPL35	-0.5361239	
EGALS/	0.84230928	r C
RPS26	0.48163962	
SRM	0.67153651	F
COL4A2	0.76477759	H
SLC43A2	1.0023914	Р
TNS1	-0.9776525	C
BCAM	0.75356007	В
RPL15	0.66090123	S
TMEM165	0.69759769	S
EIF1	-0.346456	C
NET1	0.84187384	K

NFKBIA	-1.1983614
RPL23A-PS3	0.54322523
COL16A1	0.71172101
MEGER	0.77648684
	0.77048084
NEATI	0.01103933
APOE	0.49057493
PDE4B	-0.7058161
PTX3	-1.2862653
COMT	0.56490532
RPI 221 1	0.52361073
	0.7444526
	-0.7444320
RPLPI	0.35900057
MFAP2	0.54021457
GM9493	0.63288626
DLL1	-1.0604585
PHLDA3	0 67044447
	0.8264388
CNIDAL 1	-0.8204388
GNB2L1	0.45571405
SERPINE1	-1.2395515
BRINP1	-0.7215813
SMAD7	-0.8041567
PAPPA	0.54563931
UCP2	0.60630776
	0.00030770
IUBB2A	-0.931/2/9
KBP1	0.66437244
SOX9	-0.9740876
XIST	0.47191884
PPIC	0 53608313
PHI DA1	-1 0055702
MT CVTP	-1.0033703
MI-CYIB	-0.3364994
RPL6L	0.55466562
HACD1	0.58505046
MT-CO3	-0.3021533
CD63	-0.3671894
SMIM3	-0.6882012
DDI 26 A	-0.0002912
NFL30A	0.3/3//545
GM10354	0.58074988
RPL37A	0.280373
IFRD1	-1.0941353
SPHK1	-0.7111664
KRT15	0.83262061
	0.42041412
NFL0	0.42041412
UGT	0.60528786
HBEGF	-0.808186
RPL10A	0.38747415
ERRFI1	-0.6664904
CYP1B1	0.6861433
SU2DVD2D	0.58476794
JIJFAD2B	0.36420780
AKC	-0.8342408
SPRY2	-1.1145088
SNHG11	-0.6080732
B2M	-0.5298562
RPS20	0 34271813
SOSTMI	0.34271013
	-0.7007289
CAV2	0.64058548
FAM110A	-0.6517043
CD24A	-0.8677453
GADD45G	-1.0702124
FOSL2	-0 7965096
	0.4707204
DDVD	-0.4/9/294
PPIB	0.54063238
CXCL14	-0.6045752
BGN	0.6462825
SLC2A1	-0.7942687
SFN	-0 5260075
CNILLA	0.55600000
UNIER4	0.55628832
KRT18	-0.7362266

CNDP1	0.47432199
CXCI 1	-2.0747369
CACLI	-2.0747309
H3F3B	-0.2720352
CDA	-0.9688632
DDS15A	0.27006031
KISISA KISISA	0.27070731
IFITM3	-0.3650145
GSN	0.59272819
DTMA	0.2215201
FINA	-0.5515591
FRMD6	-0.7595661
RPL14	0 26747713
LIDALL	0.0050002
UKAH	-0.8050885
GPR153	0.33944661
COL4A1	0.66007096
EDUAS	0.00007090
EPHA2	-0.5938618
EFHD2	-0.5659558
MT-ND4	-0.3135075
MI-ND4	-0.3133073
DDI14	-1.0068922
TRP63	0.81112026
CCL2	1 3752007
CCL2	-1.3/3298/
RPSA	0.33189487
WNT5B	0.48803126
TNC2	0.5070022
11833	0.3979923
HES1	-0.6662436
COL445	0.46764622
ADAMTOS	0.40704022
ADAMTS5	-0.832783
CHADL	0.48697472
ADE6	0 165 1550
AKFU	-0.4034338
KLF7	0.64132675
FTI 1	-0 3460791
DDI 10	0.00100771
RPL12	0.32448236
RNF19B	-0.6411261
ICAM1	0.6606807
ICAMI	-0.0090807
	0 100 11
нР	-0.670264
HP CEBPB	-0.670264 -0.4041555
HP CEBPB 4631405K08PIK	-0.670264 -0.4041555 0.58320000
HP CEBPB 4631405K08RIK	-0.670264 -0.4041555 0.58329099
HP CEBPB 4631405K08RIK NEDD9	-0.670264 -0.4041555 0.58329099 -0.6062499
HP CEBPB 4631405K08RIK NEDD9 NPM1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MANUA	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MANIA ATP2B1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6659465 -0.6659465 0.53395439
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MANIA ATP2B1 TSPAN5	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6639465 0.53395439 0.48842022
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 DMEDA1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 0.465706
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCN72 MANIA ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669953 -0.5669953
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN74	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 0.6215767
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6637185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGEPL	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCN72 MANIA ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL DWFAL	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669953 -0.5109 -0.6312598 0.36190965 0.43547576
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6659455 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 0.43547576 0.30551659 0.51933994 0.51933994
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.5450396
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.445003760
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 PD20V1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6639465 0.53395439 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRFF19 P2RY1 RPL4	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676966
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECF1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676964 0.27676964
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRFF19 P2RY1 RPL4 ECE1 HA	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676966 -0.5987072 -0.598707 -0.598707 -0.5987072 -0.5987072 -0.5987072 -0.5987072 -0.5987072 -0.5987072 -0.598707 -0.598707 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.5987 -0.598 -0.598 -0.598 -0.598 -0.598 -0.598 -0.598 -0.598 -0.598 -0.598 -0.598 -0.59 -0.598 -0.59 -0.598 -0.59 -0.598 -0.59 -0.598 -0.59 -0.59 -0.598 -0.59 -0.59 -0.59 -0.598 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.5 -0.59 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676964 0.25987072 -0.4661935
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676966 -0.5987072 -0.4661935 0.47084665
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY11 RPL4 ECE1 JAM2 RCN1 TNESEL0	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6639465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676966 -0.5987072 -0.4661935 0.47084665 0.47084665
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1 TNFSF10	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 -0.45223762 0.37140954 0.27676966 -0.5987072 -0.4661935 0.47084665 0.34644
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1 TNFSF10 PGM5	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037142 0.49650518 -0.6639465 0.53395439 -0.6659465 0.53395439 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 -0.5987072 -0.4661935 0.334644 -0.445634
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1 TNFSF10 PGM5	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676966 -0.5987072 -0.4661935 0.47084665 0.34644 -0.54552869
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1 TNFSF10 PGM5 NONO	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6639465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 -0.5987072 -0.4661935 0.37140954 0.27676966 -0.5987072 -0.4661935 0.34644 -0.445634 0.34652
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1 TNFSF10 PGM5 NONO HMOX1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.5109 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676964 0.27676954 0.27677954 0.34641935 0.44061935 0.44552869 -0.54552869 -0.8856775
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1 TNFSF10 PGM5 NONO HMOX1 TPT1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 -0.5987072 -0.4661935 0.47084665 0.34644 -0.445634 0.54552869 -0.8856775 -0.2609572 -0.260957 -0.2609572 -0.260957 -0.2609572 -0.2609572 -0.2609572 -0.2609572 -0.260957
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1 TNFSF10 PGM5 NONO HMOX1 TPT1 PI EKHB1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.37140954 0.37140955 0.47084665 0.345614 0.54552869 -0.8856775 -0.2609575 -0.2609575 -0.26095752 0.408353234
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY1 RPL4 ECE1 JAM2 RCN1 TNFSF10 PGM5 NONO HMOX1 TPT1 PLEKHB1	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6387185 -0.6659465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 -0.5987072 -0.4661935 0.47084665 0.34644 -0.445634 0.34552869 -0.8856775 -0.2609572 0.40835234
HP CEBPB 4631405K08RIK NEDD9 NPM1 CHD7 XYLT1 GCNT2 MAN1A ATP2B1 TSPAN5 PMEPA1 FRMD4B TNFRSF12A SCN7A LDHA PDGFRL RPL3 EIF3F TXNIP SRSF5 PRPF19 P2RY11 RPL4 ECE1 JAM2 RCN1 TNFSF10 PGM5 NONO HMOX1 TP11 PLEKHB1 RAB20	-0.670264 -0.4041555 0.58329099 -0.6062499 0.38004012 0.55037146 0.49650518 -0.6639465 0.53395439 0.48842022 -0.4685796 -0.5669053 -0.5109 -0.6312598 0.36190965 0.43547576 0.30551659 0.51933994 0.52084788 0.44500396 0.45223762 0.37140954 0.27676966 -0.5987072 -0.4661935 0.47084665 0.34644 -0.445634 0.54552869 -0.8856775 -0.2609572 -0.40835234 -0.6880616

SERF1	0.34685372
PSMA4	0.42848742
WDR89	0.39773657
NABP1	-0.5605526
SRSF6	0.49418054
TFAP2B	0.51336205
CRLF2	0.30380665
PEBP1	0.40710043
RAMP1	0.29/196676
SDC4	-0.4699373
TUSD7A	0.4177646
ELL2	-0.4177040
ELL2	-0.3023646
JCHAIN	-0.3783936
FIIR	0.46162011
NPW	0.40/4802
LHFPL2	0.44793518
NDUFV2	0.47199861
DSTN	0.35178272
BCAR1	-0.5868095
FGFR2	-0.6113653
EIF4EBP1	0.57437562
AFF1	-0.5176102
ZFP637	0.4697336
RERG	0.32082093
PHPT1	0.48258605
RPI 23	0.25121188
DDS27DT	0.23121100
DASI 12	0.31039414
RASL12	0.37040823
FBLN2	0.33285403
SERPINHI	0.32980026
WFDC18	0.75080132
SBSPON	0.29906632
SLC7A5	0.44200303
FERMT2	-0.6853473
RNF122	-0.5604109
PRSS23	0.61700477
ZFAND5	0.43163879
AJUBA	0.26497697
LAMB3	0.47746315
TEAD1	0.53602904
PRELID1	0.39313129
JOSD2	0.42959797
LMOD1	0.48853126
MSRB1	0.55284846
NDUFA3	0.43962502
7EP260	0.36563007
CDK4	0.26703
UBALD2	0.50781208
EDDC	0.30781208
EPK5	0.45454925
TIMM44	0.38420928
KRITT	0.41800/46
UHRF2	0.41785218
DEPDC7	-0.586058
RPL27	0.39692026
APOL10B	0.33410419
TMEM147	0.45024579
MAT2B	0.34075028
ACSL4	0.58112396
DYNLL1	-0.4780073
NACC2	0.40226332
FOSL1	-0 5666335
IGEBP5	0.56145017
	0.53746200
ZED26L1	0.53/40288
ZFP30L1	-0.5/38934
TIGD2	0.30/12/65
FAM43A	-0.3422713
COL7A1	0.40223898

[
CUL4A	0.34232447	SEC61B	0.37870012	SSNA1	0.3081824	REST	0.31120158
IER5	-0.6757285	ACAD9	0.30806691	HRAS	0.32139642	ELOVL7	0.36507809
DDI 21	0.25280072	IED2	0.6820465	CETP	0 2255074	TAEID	0.22011210
ADDG4	0.23380973	TERS T	-0.0850405	CSTB	0.3333974	TAPID	0.26911219
ARPC4	0.39976332	TSPAN7	0.30069923	TGIFI	-0.4018/65	TMEM16/	0.27620036
BRD3	0.45287809	SDHD	0.37571699	NTNG1	0.34091013	WDR77	0.28877813
I MANI	0.44866407	DDC12 DC2	0.26544995	MATNA	0.20059721	WDP26	0.20000560
LWAN	0.44800407	KI 312-135	0.30344883	INIA IIN4	0.39938731	WDR20	0.28008508
CST3	-0.5569612	GM10116	-0.4371065	EPCAM	-0.2696682	ZFP292	0.30172772
KEAP1	0.35624593	LMNA	-0.3316212	MINA	0.29914148	ZFP106	0.27283828
CEDNIDI	0.592(922	ANID22D	0.22172670	CCT5	0.25450690	DDDCD	0 455 (729
CSKNPI	-0.5836823	ANP32B	0.321/26/9	0015	0.35450689	PPP2CB	-0.4556/38
BCLAF1	0.38881578	TAGLN2	-0.4480851	RNF10	0.34570631	PRMT7	0.295475
FOXC1	-0 5212569	LIOCC3	0 37288685	FIF3M	0 33814594	CSNK2A1	0.25778915
ТОЛСТ	-0.5212505	00000	0.37200003		0.33014374	CSIGEZAI	0.23770713
EEF1B2	0.33393866	PIGT	0.39027094	SLC4A7	0.3277/162	EZR	-0.4328437
PCDH7	-0.5709166	HDDC2	0.2588352	GAPDH	0.28635784	ITGB4	0.28084443
ANYA6	0.38063561	PPM5	0.41102126	PPAD	0.6004345	ADGPG1	0.4421174
ANAAO	0.38003301	RBWD	0.41102120	RKAD	-0.0094343	ADOROI	-0.4421174
AATF	0.39449673	RNPEP	0.30080457	BSG	0.30357164	UQCRC1	0.30019907
MTHFD2	0.44674565	IL11	-0.5088407	DAG1	0.35655236	0610012G03RIK	0.2927798
ACTC1	0.21228502	CEDD1	0.4440052	EVO8C7	0.20012700	MDZL 2	0.4550464
ACIGI	0.31228393	SFRPI	-0.4449052	EAUSC/	0.30813708	MPZL2	-0.4552404
GJA1	-0.5333332	H2-Q6	-0.4049656	AKAP2	-0.459156	GM8973	0.2502512
TRIM29	0.41057539	SI C38A2	0 34250873	FIF4F2	0 30710229	FBNA1BP2	0.28710592
Th(III) (51	0.41057555	DEDD	0.057200070	DDD1D14D	0.00710220	A DDDIN A	0.20710072
TMEM51	-0.4844163	PERP	0.35709232	PPPIR14B	0.3657822	ADPRHL2	0.31786817
PXDC1	-0.7909189	BNC1	-0.2664369	NR4A2	-0.5779799	SLC39A14	-0.4354608
EBD20	0.20700272	VI C1	0 40709266	DDI 12 DC2	0.20720042	D A D2D	0.20062021
EKF29	0.39700372	KLCI	0.40708200	KFL15-F55	0.30730943	KAF2D	0.38802021
CTSF	0.35621831	MAF1	0.29348089	UNC5B	-0.4437752	MRPS17	0.27526535
RPS27	-0 4274824	TOPORSOS	0.30800575	CCT3	0 33701293	CXCL2	-17614319
COLIM4	0.2120720	ATC101	0.21242422	1910059124012	0.26160021	L VEMD2	0.07000615
GULIM4	0.5150/29	AIGIUI	0.51245452	1810058124KIK	0.30100031	LISMD2	0.27802615
AEBP1	0.37627045	TNFRSF18	0.29652422	DDX27	0.32674642	CTAGE5	0.32390617
CD9	-0 3025922	GM11713	-0 3573909	PAICS	0.26274236	TCN2	0 30472465
DD AD1	0.0020722		0.3373707	H 175	0.20274230	EAD COA	0.20021103
PDAPI	0.37191478	ATP5C1	0.39357475	ILT/B	0.54322222	FAM60A	0.28031402
KLF4	-0.589869	OST4	0.34164821	ASXL2	0.27597167	COLGALT1	0.2633101
CSN1S1	-0 5766556	LAMC1	0.33022107	EGEPTOP	0 36655766	POLP	0.28008404
CONIOI	-0.3700330		0.33023107	FOFKIOP2	0.30033700	TOLD	0.20008404
FBLN7	0.25958328	SPTBN1	0.38486574	ETS2	-0.4703247	TSPO	-0.4213732
LIF	-0.6083555	YBX3	0 38865125	NFKB1	-0 4344701	CAMK2N1	-0.4815123
DUND 4	0.504054	N/IC1	0.49657697	TDD (20	0.20220010	NIDDO	0.2022022
PHAR4	-0.504854	WIFI	0.4865/68/	TRIM28	0.29330919	NRP2	-0.3932933
GADD45A	-0.7145401	UBA52	0.35184243	PPP3R1	0.27405411	CP	-0.5303249
TGEA	0.5262120	TD ID 1	0 5017682	EAM105B	0.33584045	SCMS2	0.4601580
TOPA	-0.3202129	IKIDI	-0.3917082	PAMIJJB	0.33384043	3014152	-0.4001389
TIMM9	0.39914248	NUDCD2	0.26134308	BAX	0.30761806	CDCA7	0.3483478
CDK2AP1	0.3922054	UOCRO	0.31565564	RRP15	0.31936193	1810011010RIK	-0.5290126
CALM2	0.4440008	MVDDD1A	0.26714905	DCCC	0.4291616	CDC42ED4	0.2062075
CALMZ	-0.4449998	MIBBPIA	0.30/14803	KGCC	-0.4381010	CDC42EP4	-0.3962073
SUPT4A	0.41790276	LSM1	0.29191815	ATP13A1	0.28829229	PBDC1	0.36183479
CAPRIN1	0.40534059	SSR2	0 41874809	LTE	-0 3732564	TIMM13	0 3115409
NGI	0.24220254	DDL0 DCC	0.22654204	CL DIT1	0.2102505	Dalipha	0.07002107
NCL	0.34339354	RPL9-PS6	0.33654384	CLINTI	0.3103585	K3HDM4	0.2/08318/
DUSP5	-0.713894	IMMT	0.36951128	CFL2	0.32976322	LGALS3	-0.4872663
CEP A 1	0.45763336	DVN	0.4647002	CLOBP	0 33632	TID2	0.4540103
URAI	0.43703330		-0.4047902	CIQBI	0.33032	1312	=0.4349103
FAM103A1	0.3152435	MANF	0.41468346	PARMI	0.37811999	CHIF8	0.27062033
PDIA6	0.43508388	PHB2	0.39203273	RPL10	0.32939948	VIMP	0.32301812
CIP 1	0.33046013	SEDBD1	0.2828060	CCNII	0.2552777	PCS10	0.27111727
CIKI	0.33940913	SERDFI	0.2828909	CCINJL	-0.2332111	K0319	0.2/111/2/
PLS3	0.48245323	SOX10	-0.4798252	KTN1	0.33428696	RALGDS	-0.4993997
FOX01	0.52862089	COPE	0.39442061	TLR2	0.36383299	ATRX	0.31035105
TYNDC5	0.28774084	2910004NI22DIK	0.24740197	CDV9	0.2892109	UK2	0.5912207
TANDC5	0.38774984	2810004N25KIK	0.54740187	GPAð	0.2885108	HK2	-0.5812297
H2AFJ	0.39548501	NRIP1	-0.3386643	SERPINA3N	-0.6318531	ARF3	0.34633373
PI FKHA1	0 33547894	MORC4	0.25095288	RAB24	0 30831828	HERPUD1	0 34617543
DOG	0.33347674	DATE:	0.25075200	THO CT	0.06001020		0.34017343
PMMI	0.32905662	RAEI	0.3/16429/	THOC/	0.36224132	MZ12	0.36664695
PINX1	0.31393275	ECHDC2	0.31523672	ATAD3A	0.30651805	LYAR	0.35710477
ACTA2	0 56//8816	GPATCH4	0 37068642	ZBTB74	0 38035402	PPII 2	0 351 33300
DD00C D01	0.26751202	EMD1	0.01000042	DADDC1	0.22721555		0.001000744
KPS26-PS1	0.36/54392	EMPI	-0.696586	PABPC4	0.33/31556	METILI	0.32997665
POLR2E	0.37354047	ARGLU1	0.40718827	IKZF4	-0.5053935	SSB	0.31559358
NFE2L2	0.463/122/16	STX11	-0.4366108	PCBP4	0 3331///22	L7TS2	0 20626
CDD1	0.40342240	IDICI	0.4300100	I CDI +	0.53514422	DVCD2	0.27020
SPP1	-0.6121358	UBACI	0.30345463	ID4	0.52341058	PYCR2	0.2887178
HNRNPA2B1	-0.3213263	BTG3	-0.3947181	CHIL1	0.59775596	POLR1A	0.25198401
TANC ²	0.425308	STARD3NI	0 31227141	MBD3	0 3675118	LBP	0 30360180
TAVIDDO	0.723370	DADO	0.0122/141	DOTDE1	0.000005745	MDDI 24	0.00000109
TAXIBP3	0.39588865	DAB2	-0.2954445	DCTPPI	0.29335745	MRPL34	0.29327553
MEDAG	-0.6400996	BRI3BP	0.27921262	STX16	0.26421627	SPRY1	0.2593321
NOCT		DELN	0.27700042	GLPY	-0 5/6516/	ZEOS1	0 26/12275
noci	_0 5/00565		0.27798043	ULKA	-0.3403104	21:031	0.30412273
TO X YO XY TO C	-0.5408565	KELN	0.0.11.71	1 MARCAN D		SUSD6	0 422064
RUNX1	-0.5408565 -0.4430038	NUDT21	0.36157685	ПРКВ	-0.506864	30300	-0.432964
RUNX1 CCDC6	-0.5408565 -0.4430038 0.32457028	NUDT21 RTCB	0.36157685	DYNC112	-0.506864 0.31652263	COPS7A	0.29932026
RUNX1 CCDC6	-0.5408565 -0.4430038 0.32457028	NUDT21 RTCB	0.36157685 0.38383592 0.25020252	DYNC112	-0.506864 0.31652263	COPS7A SEMA4C	0.29932026
RUNX1 CCDC6 KIF1A	-0.5408565 -0.4430038 0.32457028 0.29156081	NUDT21 RTCB SEC31A	0.36157685 0.38383592 0.35929852	DYNC1I2 HDLBP	-0.506864 0.31652263 0.35242735	COPS7A SEMA4C	-0.432964 0.29932026 -0.4428507
RUNX1 CCDC6 KIF1A CDC16	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992	NUDT21 RTCB SEC31A FRG1	0.36157685 0.38383592 0.35929852 0.34292623	DYNC112 HDLBP TUFM	-0.506864 0.31652263 0.35242735 0.30706302	COPS7A SEMA4C CNPY2	-0.432964 0.29932026 -0.4428507 0.32042431
RUNX1 CCDC6 KIF1A CDC16 FSTL1	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657	NUDT21 RTCB SEC31A FRG1 EIF1A	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459	HIPKB DYNC1I2 HDLBP TUFM SSRP1	-0.506864 0.31652263 0.35242735 0.30706302 0.33778462	COPS7A SEMA4C CNPY2 MOXD1	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897
RUNX1 CCDC6 KIF1A CDC16 FSTL1	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657	NUDT21 RTCB SEC31A FRG1 EIF1A	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459	11PKB DYNC112 HDLBP TUFM SSBP1	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462	COPS7A SEMA4C CNPY2 MOXD1	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646	IIPKB DYNCII2 HDLBP TUFM SSBP1 SMC1A	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748	COPS7A SEMA4C CNPY2 MOXD1 HEG1	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768	TIPKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG PUSC2	-0.5408565 -0.4430038 0.32457028 0.39156081 0.36769992 0.38540657 0.33739441 -0.574881 0.279214	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 CAS6	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768	TUFKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AV1	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 0.477350	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.3282260
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2	-0.5408565 -0.4430038 0.32457028 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917	TIPKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.33883669
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338	11FKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI	-0.452964 0.29932026 -0.4428507 0.30420897 0.41127993 0.33103339 0.33883669 -0.5543372
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561	11PKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRF	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI II.19	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.33883669 -0.5543372 0.35507232
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 SRP72	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561	11PKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MADW7	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.0994545	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 LNW	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.33883669 -0.5543372 0.36507232
RUNX1 CCDC6 KIFIA CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065	11PKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.3310339 0.33883669 -0.5543372 0.36507232 0.25995015
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431	NLLIN NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722	11PKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP	-0.452964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.33883669 -0.5543372 0.36507232 0.25995015 0.30231097
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A BTG2	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431 0.8594152	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1 I/BE2D2	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722 -0.3044025	ITPKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6 DI/SP7	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106 0.271256	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP PDV	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.3310339 0.33883669 -0.5543372 0.36507232 0.25995015 0.30231097 0.30250444
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A BTG2	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431 -0.8584152	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1 UBE2D3	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722 -0.3044025	11PKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6 DUSP7	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106 -0.3711356	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP RDX	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.3103339 0.33103339 0.33883669 -0.55433722 0.36507232 0.25995015 0.30231097 0.34059444
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A BTG2 PSAP	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431 -0.8584152 0.37168572	NLLIN NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1 UBE2D3 ILK	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722 -0.3044025 0.31327639	ITPKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6 DUSP7 NRBP2_	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106 -0.3711356 0.26889204	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP RDX PGLS	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.33883669 -0.5543372 0.36507232 0.25995015 0.30231097 0.34059444 0.28953013
RUNX1 CCDC6 KIFIA CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A BTG2 PSAP PEX11B	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431 -0.8584152 0.37168572 0.30081339	NLLIN NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1 UBE2D3 ILK FAM162A	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722 -0.3044025 0.31327639 0.44557318	ITPKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6 DUSP7 NRBP2 LSM2	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106 -0.3711356 0.26889204 0.30310515	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP RDX PGLS DCTN2	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.33883669 -0.5543372 0.36507232 0.36507232 0.30231097 0.34059444 0.28953013 0.3020427
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A BTG2 PSAP PEX11B CALL	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431 -0.8584152 0.37168572 0.30081339 0.05772700	NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1 UBE2D3 ILK FAM162A CCT4	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722 -0.3044025 0.31327639 0.44557318	11PKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6 DUSP7 NRBP2 LSM2 CM277	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106 -0.3711356 0.26889204 0.30310515 0.467207	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP RDX PGLS DCTN2 TMENUT2	-0.432964 0.29932026 -0.4428507 0.30420897 0.41127993 0.33103339 0.33883669 -0.5543372 0.36507232 0.25995012 0.30231097 0.34059444 0.28953013 0.32020427 0.212502
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A BTG2 PSAP PEX11B SAE1	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.2720314 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431 -0.8584152 0.37168572 0.30081339 0.35777803	NLLIN NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1 UBE2D3 ILK FAM162A CCT4	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722 -0.3044025 0.31327639 0.44557318 0.32219454	ITPKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6 DUSP7 NRBP2 LSM2 GM7676	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106 -0.3711356 0.26889204 0.30310515 -0.4055085	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP RDX PGLS DCTN2 TMEM173	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.33883669 -0.5543372 0.36507232 0.36507232 0.30231097 0.34059444 0.28953013 0.30231097 -0.34059444 0.28953013
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A BTG2 PSAP PEX11B SAE1 TAGLN	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431 -0.8584152 0.37168572 0.30081339 0.35777803 0.552444022	NLLIN NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1 UBE2D3 ILK FAM162A CCT4 COA3	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.33440768 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722 -0.3044025 0.31327639 0.44557318 0.32219454 0.35707481	11PKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6 DUSP7 NRBP2 LSM2 GM7676 RBM6	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106 -0.3711356 0.26889204 0.30310515 -0.4055085 0.36019144	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP RDX PGLS DCTN2 TMEM173 HADHA	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 0.3383669 -0.5543372 0.36507232 0.25995015 0.30231097 0.34059444 0.28953013 0.32020427 -0.3121298 0.29649667
RUNX1 CCDC6 KIF1A CDC16 FSTL1 GARS TPBG RUSC2 SLC25A4 SRP72 ERH FAM83A BTG2 PSAP PEX11B SAE1 TAGLN KDMCP	-0.5408565 -0.4430038 0.32457028 0.29156081 0.36769992 0.38540657 0.33739441 -0.574881 -0.2720314 0.39774954 0.34480645 0.29878681 -0.4517431 -0.8584152 0.37168572 0.30081339 0.35777803 0.52444022 0.652444022	NLLIN NUDT21 RTCB SEC31A FRG1 EIF1A YIPF3 ZFP706 GAS6 1810037117RIK KCTD4 NIPAL4 TINAGL1 UBE2D3 ILK FAM162A CCT4 COA3 LAP2	0.36157685 0.38383592 0.35929852 0.34292623 -0.3911459 0.36021646 0.39181917 -0.4875338 0.30616561 0.28310065 -0.6310722 -0.3044025 0.31327639 0.44557318 0.32219454 0.35707481 0.38707481	ITPKB DYNC112 HDLBP TUFM SSBP1 SMC1A COPS6 AK1 1110004F10RIK PTPRE MAP3K7 PSMD6 DUSP7 NRBP2 LSM2 GM7676 RBM6 ILAP1	-0.506864 0.31652263 0.35242735 0.30706302 0.33278462 0.41174748 0.27280278 -0.477259 0.28073955 -0.4994545 0.28167803 0.3302106 -0.3711356 0.26889204 0.30310515 -0.4055085 0.36019144 0.584703	COPS7A SEMA4C CNPY2 MOXD1 HEG1 2-Sep TENM2 SLPI IL19 BLMH SYNCRIP RDX PGLS DCTN2 TMEM173 HADHA MCPN1	-0.432964 0.29932026 -0.4428507 0.32042431 0.30420897 0.41127993 0.33103339 -0.5543372 0.36507232 0.25995015 0.30231097 0.34059444 0.28953013 0.32020427 -0.3121298 0.29649667 0.30141000

PUS/	0.00004441	DDI 124 DG1	0.000 (5105	TDD (22	0.0500007	1 D1 (G1	0.0501440
	0.26884441	RPL13A-PS1	0.2806/43/	TRIM32	0.2589827	ARMCI	0.2581443
ZC3H12A	-0.3084632	FXYD2	-0.7811718	GTF2F2	0.34418362	ARPC3	-0.4043713
TIMM10B	0.3039074	PEX19	0.27525296	CLMP	-0.3555079	MTCH2	0.25865473
RPI 27-PS3	0.26511831	ATE3	-0.5896153	HAS2	-0.4719543	DUSP1	-0.7816019
RI 12/1155	0.20511051	AID	-0.3690133	na52	-0.4717545	CADADAD	-0.7010017
IUBAIB	0.34105002	AHR	0.31695045	PGAMI	0.25347273	GABARAP	-0.2827577
SOX4	-0.3770179	ATP5A1	0.25554229	PFKFB3	-0.2841986	MRPL36	0.26988939
MRTO4	0.28729525	1110008P14RIK	0.28796553	RNF187	0.28324877	MED21	0.29751108
MYDGE	0 28759299	PTOV1	0 31042106	HDAC2	0.26066118	OI A1	0 26643749
EIE2A	0.20109255	MADIL C2A	0.2617765	DDACA	0.25904126	KNODI	0.20049926
EIF3A	0.28189205	MAPILC3A	-0.3017703	RRAGA	0.23804130	KNOPI	0.29048820
DUT	0.25480828	LAMTOR5	0.25471769	H2-Q4	-0.3758206	MAPK1	0.25390048
NSUN2	0.31109974	SLC7A2	0.41472158	SNX10	-0.366059	ZFP462	-0.3887111
CTSD	0 34680005	OSGIN1	-0.4987429	SMARCB1	0.26420055	RAP1A	0 25224894
URTE	0.28835074	AIMP2	0.27001796	BCL 3	0.523212	CSE1	0.7271172
DDDV2	0.28833974	Allvil 2	0.27001790	BCL5	-0.323212	CSF1	-0.7271172
PRDX2	0.33812661	CHMP2B	0.2945/881	GSR	-0.3496278	GM10053	-0.3131711
IMPDH2	0.29509665	ANXA1	0.41619062	XPOT	0.28341554	S100A16	0.28209942
ZFP36L2	-0.4482765	ARHGEF40	0.28136028	FHAD1	-0.4351905	USP36	0.25673012
FARSB	0 32129396	ENY2	0 29462073	MRPL3	0 25404685	TRNAU1AP	0.26789372
KBCC1	0.26102580	DARCEE1	0.2722777	MTV2	0.26975255	CRWD1	0.26141605
DKGI	0.20102389	KABOLIT	-0.3722777	MIX2	0.20873233	UKWDI	0.20441003
DKCI	0.28/632/	ATP50	0.28262356	TMA/	0.26122839	FZD/	0.32093415
RAB2A	0.26013704	ITGB3	0.4665733	SYNGR2	0.28891296	NRG1	-0.3828285
FAF2	0.27020559	LYPD3	-0.4220152	TOMM5	0.31197582	WASF2	0.27223762
GABARAPL1	0 33255972	BAK1	0.26959336	ABCE1	0.28198095	FGG	-0 5146343
DET	0.4005084	ADSI	0.28100260	CHD2	0.25709699	WNIT5 A	0.2222618
031	-0.4093084	ADSL	0.28100309	CHD2	0.23708088	WNIJA	-0.3233018
GNG5	0.28376148	PSMD9	0.25905926	NFKBIZ	-0.3164092	HNKNPH1	-0.3858656
EIF5B	0.25104829	WDFY1	0.28038882	GM6133	0.26682526	MRPL54	0.27041759
SDHB	0.34203588	GADD45GIP1	0.3194576	CYC1	0.3124549	TXN1	-0.3636133
GPS1	0.3339113	SNAI2	0.27557276	RNF7	0.25380471	LRRFIP1	-0 3299886
CSDD1	0.2546660	AIMPI	0.26152069	TSN	0.27902402	ADADD1	0.2002121
CSPP1	0.25466682	AIMPI	0.26152968	ISN	0.27802403	ADARBI	-0.2993121
GORASP2	0.34408839	SLC25A51	0.26686323	NSA2	0.25856491	RER1	0.27644351
IFRD2	0.27091401	MAP2K3	-0.2943596	5730559C18RIK	-0.4728983	EPS8	0.29285819
IGFBP6	-0.3070253	PPM1H	0.26909874	CCL7	-0.504884	RPL7L1	0.28495885
KI E13	0.32147100	PALIP	0.25430814	EKBP4	0.2673405	SNIPPE	0.25023731
EADD5	0.32147109	T411B	0.23450014	LANDI	0.2073493	GALD	0.25107549
FABP5	0.36547102	FAM83G	-0.3468894	LAMPI	0.28208354	CALR	0.2510/548
RABL6	0.28541043	NFIC	0.25840333	UQCRC2	0.28467361	MPHOSPH8	0.28507556
URI1	0.27170986	TCEA1	0.27045886	PROCR	-0.4595694	NDUFA8	0.26864457
POLR2I	0.26253636	ARL6IP5	0 31923587	MRPS24	0 27176402	PIN1	0 26395498
PNN	0.20258303	SDDI 3	0.26610412	SAC3D1	0.27731375	PRICCI	0.2841017
	0.29738303	SFFLS	0.20019412	SACSDI	0.27731373	KBICCI	0.2641917
SH2D5	-0.4609008	BIRC3	-0.3669547	GPN1	0.25076828	HCAR2	-0.2910127
PDIA3	0.33569238	TXNDC9	0.2641789	RPS2	0.26176479	WBSCR22	0.25379804
MAFK	-0.3983459	PPP1R18	-0.397703	HNRNPA1	-0.3123329	HADHB	0.29390143
BMP7	0 29374638	MRPI 57	0.26482153	ANKRD11	0.27210013	VAP1	-0.3468991
DDID	0.29012241	MAD7D1	0.4762224	EADD4	0.27217713	KDT22	0.25165492
PPID	0.28913241	MAP/D1	-0.4/62334	FABP4	-0.8815584	KR123	0.25165482
ATP5G3	0.29764128	GM10036	0.2524142	ACP1	0.265252	ZFP91	0.25444789
RNF166	0.25850692	YPEL3	0.28265688	NPTN	0.27737128	JAK1	0.28908155
BRK1	0 30447817	ANAPC2	0.27004058	NPTX2	-0.3074983	COL14A1	0 25701656
ADUS	0.27457244	CALMI	0.2201042	TIAI	0.26509050	CADD45D	0.6770729
ADH5	0.27457244	CALMI	-0.3391945	HAI	0.26598959	GADD45B	-0.0779728
MRPL14	0.31346617	STRAP	0.25767591	GM10709	-0.3762732	PPP3CA	0.27/50842
RPS6KA1	0.25918788	UQCRFS1	0.2905505	CALU	0.25552986	ZFP703	-0.3144785
PPP1CA	0.26578586	CRIM1	-0.4382513	RBPJ	-0.3348149	RNH1	-0.4153291
ILIP	-0 372577	IUNB	-0 3766895	B7W2	0.25269565	CKB	-0.4033804
LUZD1	0.2242226	VWHAH	0.28080220	ABBC5	0.25205505	SVNM	0.2707550
LUZPI	-0.5545220	IWHAH	0.28080559	ARPCS	0.26046012	STINM A LEGA	-0.5797559
EIF31	0.35657155	GABARAPL2	-0.4316758	FLNC	-0.5051666	LAMB2	0.25778733
OSTC	0.2943919	NLE1	0.26215605	TMEM238	0.30503277	POLE4	-0.3700228
MAF	0.3354657	LTBP2	0.26240883	CCAR1	0.30990657	SCAP	0.25891013
MRPS34	0.27892591	UBE3A	0.271055	RND1	-0.4117352	SLC6A6	-0.3956762
\$10046	-0.3808668	ANKRD12	0 25835874	PTK7	0.26412502	PPDPF	0.28524009
CD200	0.000000	SOCC1	0.23033074	ADUCAD/2	0.2426692	ND442	0.20324090
CD200	-0.4985864	SUC31	-0.4390/89	AKHGAP42	-0.3420082	INK4A5	-0.5155/13
PNISR	0.314966	GALNT18	0.29079108	TMEM33	0.2623349	TCP1	0.25782616
RRBP1	0.29117117	LY6E	0.26553968	SNTB2	-0.3247926	CAV1	0.35720543
PES1	0.31104103	CISD1	0.31007628	ANAPC5	0.30482345	H2-T23	-0.371192
IER2	-0.4005167	PTPN14	-0.2934405	CLTB	-0.2511393	1700025G04RIK	0.29973804
1110065D20D112	0.25272141	CAP	0.210450	L DDC59	0.26205005	CDD2	0.26144267
TTTUUU03P2UKIK	0.232/3141	C4D	-0.318438	LKKUJO CDI EL	0.20293993	CDKJ	0.2014420/
GLKX5	0.27815202	BKD/	0.25556092	CRLFI	0.27504382	ENAH	-0.3571742
PCGF2	0.25988125	TPR	0.28869399	FLNA	0.2847464	PRKCDBP	0.27685229
RSU1	0.33145684	NAA20	0.28653849	NUDC	0.28976751	KAZN	-0.363265
EMG1	0.29275472	BTG1	0.26525725	GLUL	-0 447331	SMC3	0.25357415
ARE5	0.25701704	KCTD1	0.3/35/026	LGAISI	0 42605726	CERP7	0.25901059
ART MEAT	0.20191/04	I I I I I I I I I I I I I I I I I I I	0.34334020	LUALSI	0.42093/30	UEDFZ IDV2	0.23801938
MT-ND4L	-0.385/562	1110008F13RIK	0.30454105	MIR143HG	0.28861547	IKX3	0.28079631
MDH2	0.29443577	RTN3	0.25488168	ASPH	0.27760104	2700060E02RIK	0.2503269
DNAJC2	0.29807656	TCEB1	-0.3526374	VPS37B	-0.3922518	HIVEP2	-0.3817948
UBA5	0.26083595	DHX30	0 25471763	LTV1	0 2606141	DNAIB1	-0.8025256
VDTO	0.4274715	ADI 1	0.2650(152	IMID1C	0.4270552	DDV2V	0.0025250
KK10	-0.43/4/15	AKLI	0.20390153	JMJDIC	-0.4378552	DDA3A	-0.2/05252
IARS	0.28236859	GMPS	0.28290706	ITGA5	-0.3887217	LDHB	0.32541194
PPIL4	0.27306153	2810474O19RIK	0.32223164	SMAD1	0.30941261	NDUFB5	0.25697518
PRKCA	0.30587186	PDGFC	0.25424277	ETHE1	-0.3351722	PRMT1	0.28152081
METADO	0.261107	TOMM70A	0.25571258	NDUEA 10	0.25770263	CLICI	-0.2741242
NELASI	0.20119/	DI L CI I	0.233/1238	NDUFAIU	0.23770203	CLICI ZED205	-0.2/41242
METAP2	0.26132854	PLAGLI	0.28448598	NDUFS7	0.2832036	ZFP20/	0.25464338
ACTR1A		-	0.0500040		0.4162362	CV3CL1	0.25057200
ACTR1A UTP11L	0.28610594	MRPL52	-0.3500249	ARIDJA	=0.4102302	CASCEI	0.23057288
ACTR1A UTP11L MICAL2	0.28610594 0.28001954	MRPL52 SF3B5	-0.3500249 0.28926677	SNX17	0.28532048	S100A1	0.32312934
ACTR1A UTP11L MICAL2 ZFP280C	0.28610594 0.28001954 0.25384681	MRPL52 SF3B5 HTR1D	-0.3500249 0.28926677 -0.2584835	SNX17 AHSA1	0.28532048	S100A1 SUCO	0.32312934
ACTR1A UTP11L MICAL2 ZFP280C SSPD1	0.28610594 0.28001954 0.25384681	MRPL52 SF3B5 HTR1D	-0.3500249 0.28926677 -0.2584835	SNX17 AHSA1	0.28532048 0.26227417	S100A1 SUCO	0.23037288 0.32312934 -0.2638043

MID1IP1	-0.2866345	CSN3	-0.2968789	ITPKC	-0.2501931	MICALL1	-0.2540084
FGFR1	-0.305203	ANXA7	-0.2955547	PAWR	-0.2524261	DEK	-0.2751447
SLC41A1	-0.3340476	ZFP36	-0.5121517	HACD2	-0.2720441	NOTCH2	-0.2546141
MRPS30	0.25146644	JUND	-0.3596601	DYNLRB1	-0.286995	PRR13	-0.2678446
TRIM27	0.25390091	PRORSD1	0.25255265	MGST3	-0.2584638	TRP53INP1	-0.2541585
KLHL21	-0.3108227	HSP90B1	0.26275558	GRB2	-0.2884103	FEM1B	-0.2887525
PLSCR1	-0.2808647	XBP1	0.25410387	MDM2	-0.3645892	REEP5	-0.276574
RNASE4	0.28765903	ID3	-0.4219109	GJB3	-0.3001574	TGOLN1	-0.2907745
PIM1	-0.3350008	GPX3	-0.4160527	MEG3	0.2541342	TMSB4X	-0.3530559
COQ10B	-0.3763347	EHD4	-0.2800302	HTRA1	0.2764651	VIM	-0.4420188
CXCL12	-0.4387291	OSMR	-0.2823905	NFATC2	-0.2566964	RBMS3	-0.2590783
RSRP1	0.26312431	TMEM120A	-0.296411	LGMN	-0.3421986	PLET1	0.54782958
LIPE	-0.2567864	MED13L	-0.3168404	AHNAK	-0.253099	CHKA	-0.2727559
NDUFS6	0.25784205	ANXA2	-0.294842	SEC14L1	-0.2776982	WFDC2	-0.2585037
CNN1	0.30499414	AY036118	-0.2645271	KRT16	-0.48625	SLC5A3	-0.260472
TIPARP	-0.4112152	SOD2	-0.3621312	SRXN1	-0.3056399	TNIP1	-0.2703667
IFI202B	0.35593479	MAP3K2	-0.3275486	ETS1	-0.3411989	MBP	-0.3661046
GSTM5	0.26277025	MOCS2	-0.3203483	LACTB	-0.281461	BAG3	-0.2850318
ITM2C	0.30748972	ITPK1	-0.2675809	SLC16A1	-0.3061881	PDLIM3	-0.3337658
EFNB1	-0.3939123	CD44	-0.285081	TMBIM1	-0.2738378	HILPDA	-0.3226099
IRS2	-0.3087484	ARL4C	0.26311693	CGREF1	-0.2630399	PMP22	-0.2929944
YTHDC1	-0.3589166	SNX18	-0.2522661	FNDC4	-0.2958394	VCAM1	-0.4649157
FERMT1	-0.4100528	GCLM	-0.3160262	STEAP4	0.32917848	ELF3	-0.2572267
CYP51	0.26323189	CYSTM1	-0.2892793	SFR1	-0.2953137	CYR61	0.25169352
CBR2	-0.3962188	CREM	-0.2791787	FHOD3	-0.257756	THBS1	0.30056578
KLF10	-0.363313	SPOP	-0.2627009	MYC	-0.2759724	HSPA1A	-1.4447849
TRIP12	0.25081132	ATXN7	-0.3655965	BCR	-0.2936909	NR4A1	-0.3236005
ANGPTL4	0.34181698	TSC22D2	-0.3353653	EPAS1	-0.2523975	SGK1	-0.3334334
BHLHE40	-0.3613637	UBE2H	-0.2983197	KLF6	-0.2702859	NUPR1	-0.48738
MARCKS	-0.3821772	GM20186	-0.39789	PPP1R15A	-0.3390034	EGR1	-0.3041719
KRT5	0.26961365	ODC1	-0.2504866	CRIP1	-0.2631821	HSPA1B	-0.7375439
YPEL5	-0.2802858	IDI1	0.25054512	RHOU	-0.3048126	FOS	-0.2745653
DBI	0.32342532	SERTAD2	-0.3127763	USP50	-0.2501396	FOSB	-0.266892
GM5786	-0.2574996	PURA	-0.2733728	TIMP2	-0.2767852		

Cluster EC8 x Cluster EC5

Cluster EC8

Pre-pregnancy ductal-like MEC

Positive avg_log2FC

Cluster EC5

Post-pregnancy ductal-like MEC

RPS21

Negative avg_log2FC

0.33179284

ID	avg_log2FC	
RPS18-PS3	1.18992122	
RPS18	1.26388637	
RPS28	0.8618869	
FXYD2	-1.9250332	1 1
LY6D	2.54194062	-
RPS26	0.84120746	1 -
DCN	2 38/112/7	-
DCN	2.36411347	-
HP	-2.2748495	-
NRXN3	1.32871626	
RPL10A	0.72121968	
RPL32	0.63809086	
PTN	1.18253047	1 [
FMB	-1 2415353	1 -
TMDDSS6	0.0886125	-
DDC27DT	0.50065672	-
KF52/K1	0.39003072	-
221040/C18RIK	-2.3893773	
RPL3	0.49567543	
LTC4S	-1.2573627	
RPS8	0.46709917	
FAM3C	-1.075416	1 [
RPS27A	0.43796626	1
RPS20	0.63072303	1
D2UDMI	1 12771004	łŀ
NJIDML DDG2A1	0.404722225	4 -
RPS3A1	0.48473335	
RPS26-PS1	0.70743652	
CST3	-1.0302361	
ITM2B	-0.7741654	
RPL23A-PS3	0.65744914	1 [
PARPC1	0.72907796	1 -
RPI 23	0.42674955	-
NI L23	0.42074933	-
RPLP0	0.50880619	
RPLPI	0.48755774	
RPL37A	0.39911891	
SOX9	1.16737231	
RPL17	0.45692419	
RPL37	0.41587614	
H2-K1	-1.0256533	1 [
TM4SF1	-1 5094496	1 -
DDS15A	0.45067426	-
DDI 15	0.43007420	
RPLIS	0.03524075	-
10X2	0.7974272	
RPL12	0.63069255	
PCOLCE	-0.9207665	l L
ATOX1	-0.5910612	jΓ
RPL18	0.39360442	I [
COMT	0.65569565	1
CLCA3A2	-1.3647923	1
RPI 36	0.41638775	1
DDI 6	0.4760207	
INFLU TEMEN (150	0.4/02238/	4 -
IMEM158	0.9064517	4 4
FUCA1	-0.805027	
FTL1	-0.6488383	l L
RPL35A	0.36829896	jΓ
EEF2	0.42868848	1 [
GNB2L1	0.56382118	1
GM8730	0 44458698	1 1
CPIMI	0.8055155	1
NAV2	-0.0033133	4 -
INAV2	0.73859137	
H2-D1	-0.8441993	4 4
RPS4X	0.43817281	l L
SGMS1	0.88851498	jΓ
WFDC12	-0.7239626	1 [
MAN1A	-1.1171824	1
RGS20	0 54281344	1
DMD2	0.0001907	1 -
DIVIES	-0.909189/	-
KPS19	0.36535408	4
POLR2L	-0.7504381	1

RPS17	0.37428292
TSPAN1	-0.9691037
RPL13	0.39570293
RPL39	0.34738731
HSPB1	-1.2010745
BTF3	0.47275331
TMED3	-0.8586651
RPS3	0.35350051
RPI 36A	0.44326677
RPI 24	0.34438727
SMIM22	0.6963714
	1 71955172
CALCA	0.700220022
GSN	0.78232932
ERREII	0.97012886
RPS5	0.36878438
GM9493	0.61859878
RPS24	0.3872358
ERDR1	0.89063282
AREG	0.75630221
TSPAN13	-0.6051338
RPL22L1	0.5594345
RPL7	0.39298197
RPS9	0.3267333
UBE2Q2	0.73498743
AOP3	0.92562487
GPX4	-0 514277
0471	0.4226787
DDI 24	-0.4220787
KPL34	0.33433024
KPL28	0.39872847
COPG2	-0./13305/
RPSA	0.4595774
GM10263	0.38023062
RPS29	0.2902955
RPS14	0.32664833
RPL14	0.32367454
KIF5C	0.6145501
HIF1A	0.71327378
RPL19	0.29316566
RPS2	0.52893089
RPS13	0.34091859
GM10036	0.45622388
EEF1B2	0.4820212
EEF1A1	0.30611073
RPI 5	0.4092854
TSPO	-0.5364546
RPI 8	0.32090655
DDC15	0.32070035
INCCE2	0.31023030
HMGC52	0.97914016
IMEMI/6B	-0.61/4452
RPS10	0.36549744
MUCI	-0.5797397
MALATI	-0.3547237
RPL11	0.32341954
TMPRSS2	0.65416519
PNRC1	0.57063559
RPL6L	0.45766681
CD81	-0.6570352
SAMD5	-0.5542301
ANAPC13	-0.4791306
RPL4	0.36028972
SNHG11	-1.1042267
HEPACAM2	-0 6661256
RPS16	0.27812016
UBA52	0.56725577
TNS2	0.30723377
ENOI	-0.+337214
ENUI TMCD4V	-0.0408969
INISB4X	-0.6191246
KPL18A	0.28013432

PLCB1	-0.5829767
NFIB	0.5638651
5330417C22RIK	0.44789575
MFGE8	-0.5577449
CALR	-0.6672341
MASP2	-0.3703753
CRIP1	-0.6813086
DDI 26	0.0013000
CSTA4	0.29704317
DID 42	-0.0363727
PIRA2	0.87690026
RPS6	0.30135317
APP	-0.6138135
RPL13-PS3	0.48799412
CRYM	-1.3657359
WDR89	0.42464941
PTMA	-0.3032444
AGPS	-0.8364079
CXCL17	0.65407753
MORE/I 1	-0.411987
ABCC3	0.62346604
DDC12 DC2	0.02340004
RP312-P33	0.43393373
1 MEM 59	-0.4808266
SOCS2	-0.6533881
TRP53INP1	0.71133098
IFITM3	-0.4782109
ADRBK2	0.51105176
SV2C	-0.6079549
ITIH5	0.49230396
UOCC2	-0.4266572
RPL31	0 2854199
OST4	0.4304637
US14	-0.4304037
IMEM1/6A	-0.5606968
RPL2/A	0.26454219
5930412G12RIK	0.52326026
5930412G12RIK PRSS23	0.52326026 -0.6783544
5930412G12RIK PRSS23 FBXO2	0.52326026 -0.6783544 -0.4595704
5930412G12RIK PRSS23 FBXO2 GJB3	0.52326026 -0.6783544 -0.4595704 -0.7376795
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243
5930412G12RIK PRSS23 FBXO2 GIB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.464\$533
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 -0.246323268
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HACA	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 -0.45600695 -0.4697243 -0.4648533 0.92432368 0.22616553 -0.5064756 -0.4735318
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843	$\begin{array}{r} 0.52326026\\ -0.6783544\\ -0.4595704\\ -0.7376795\\ 0.33552708\\ -0.412324\\ 0.45600695\\ -0.4697243\\ -0.4648533\\ 0.92432368\\ 0.26616553\\ -0.5064756\\ -0.4735318\\ 0.29502448\\ \end{array}$
5930412G12RIK PRSS23 FBXO2 GIB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 0.29502448 -0.5009999 -0.4284063
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 -0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977
5930412G12RIK PRSS23 FBXO2 GIB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.5786977
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 -0.45600695 -0.4697243 -0.4648533 0.92432368 0.226616553 -0.5064756 -0.4735318 0.29502448 -0.5006979 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EJF3F LDHD ATP6V1F PLEKHG3 WRP5	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5004756 -0.4735318 0.29502448 -0.5004756 -0.5786977 -0.347671 0.49286046 -0.459178
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4591178
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 -0.45600695 -0.4697243 -0.4648533 0.92432368 0.22616553 -0.5064756 -0.4735318 0.29502448 -0.5064756 -0.4735318 0.29502448 -0.509999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4791178 -0.4601759 -0.4601759
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDPC1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.50064756 -0.4735318 0.29502448 -0.5006979 -0.347671 0.49286046 -0.4591178 -0.4601759 -0.4626125 -0.4926122 -0.492612
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4591178 -0.4601759 -0.4926122 0.53511242 0.53511242
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2	$\begin{array}{r} 0.52326026\\ -0.6783544\\ -0.4595704\\ -0.7376795\\ 0.33552708\\ -0.412324\\ 0.45600695\\ -0.4697243\\ -0.4648533\\ 0.92432368\\ 0.26616553\\ -0.5064756\\ -0.4735318\\ 0.29502448\\ -0.5009999\\ -0.4284063\\ 0.35908056\\ -0.5786977\\ -0.347671\\ 0.49286046\\ -0.4591178\\ -0.4601759\\ -0.4926122\\ 0.53511242\\ -0.3245578\end{array}$
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 -0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5006979 -0.4284063 0.35908056 -0.5786977 -0.347671 -0.347671 -0.49286046 -0.47351178 -0.49286046 -0.4591178 -0.4601759 -0.4926122 0.53511242 -0.33245578 0.6110499
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B BTG3	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5004756 -0.4735318 0.29502448 -0.5004756 -0.4735318 0.29502448 -0.5089979 -0.324677 -0.347671 0.49286046 -0.4591178 -0.4601759 -0.4926122 0.53511242 -0.3245578 0.6110499 -0.4946694
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B BTG3 PCBD1	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4591178 -0.4601759 -0.46017
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEEHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B BTG3 PCBD1 CXADR	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.226616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4791178 -0.4601759 -0.44961759 -0.44961759 -0.44961759 -0.49261242 0.33511242 -0.3245578 0.6110499 -0.43876396 0.67542794
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B BTG3 PCBD1 CXADR DBP	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.50064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4591178 -0.4601759 -0.4926122 0.53511242 -0.3245578 0.6110499 -0.4946694 -0.3876396 0.67542794 -0.6763226
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B BTG3 PCBD1 CXADR DBP CD63	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4591178 -0.4601759 -0.4926122 0.53511242 -0.3245578 0.6110499 -0.4946694 -0.3876396 0.67542794 -0.67542261
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B BTG3 PCBD1 CXADR DBP CDG3 NABP1	0.52326026 -0.6783544 -0.4795704 -0.7376795 0.33552708 -0.412324 -0.45600695 -0.4697243 -0.4648533 0.92432368 0.22616553 -0.5064756 -0.4735318 0.29502448 -0.5064756 -0.4735318 0.29502448 -0.506979 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4791178 -0.4601759 -0.4702122 -0.3245578 0.6110499 -0.4926122 -0.3876396 0.67542794 -0.473226 -0.473226 -0.4735318 -0.538697 -0.4946694 -0.3876396 -0.5782794 -0.473226 -0.423267 -0.423267 -0.423267 -0.5350602
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B BTG3 PCBD1 CXADR DBP CD63 NABP1 EGP	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 -0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.50064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.47921178 -0.4601759 -0.4926122 0.53511242 0.53511242 -0.3245578 0.6110499 -0.4924639 -0.4924639 -0.47542794 -0.4753226 -0.423267 0.53050603 -0.530506050 -0.530505050 -0.530505050 -0.530505050 -0.5305050
5930412G12RIK PRSS23 FBXO2 GJB3 RPS7 ACHE SH3PXD2B PDLIM1 CALM2 NET1 NACA HAGH YWHAQ GM9843 LCP1 SMDT1 EIF3F LDHD ATP6V1F PLEKHG3 WBP5 VDAC1 B2M NDRG1 CHCHD2 ARID5B BTG3 PCBD1 CXADR DBP CD63 NABP1 FGB	0.52326026 -0.6783544 -0.4595704 -0.7376795 0.33552708 -0.412324 0.45600695 -0.4697243 -0.4648533 0.92432368 0.26616553 -0.5064756 -0.4735318 0.29502448 -0.5009999 -0.4284063 0.35908056 -0.5786977 -0.347671 0.49286046 -0.4591178 -0.4601759 -0.4926122 0.53511242 -0.3245578 0.6110499 -0.4926122 -0.3245578 0.6110499 -0.4926622 -0.43267 0.53050603 1.20992864 -0.53050603 1.2092864

FOM	0.7107052
ECMI	-0./10/852
РНҮН	0.5355907
POLR2G	-0.4878713
LRG1	0.37796361
S100A16	0.53600967
PFKI	-0.44899
UDI 5	0.2195216
UBLJ	-0.3183210
IL6RA	0.33208637
CELF4	0.45549687
PKM	-0.4436203
ALDOA	-0.3637458
CVSTM1	-0.3421409
DADAGI	-0.3421407
KABACI	-0.5/21842
ARPC2	-0.3827931
ABCC8	0.30037024
1700025G04RIK	-0.2950847
TAP2	-0.6736999
BFX1	0 28819542
MDEI	0.41714241
MDFI	0.41/14241
KPL9-PS6	0.34134613
CNN3	-0.4272618
SCARF2	-0.4458248
GNAI2	-0.4048364
PRDX6	-0.4657721
ITIH2	0.42114594
AVD1D2	0.4014205
AKKIBJ	-0.4014325
SPHK1	0.49375587
ATP6V1G1	-0.3152623
CD24A	0.52105915
RPL10	0.41975797
UESP1	-0 4086446
ПСТ	0.405224
11.051	0.485334
HSPA5	-0.6485635
RPL27-PS3	0.36178619
ID2	0.70514834
GJB4	-0.6707199
F3	0.62139297
CSN1S1	-0.4571236
CM6122	0.20705022
UNI0133	0.39/95033
PSMC4	-0.4365438
PCP4	-1.2876637
TNIP3	0.91970039
CD82	-0.4248255
TOP1	0.39934446
RPI 27	0 / 2222/25
TMEM54	0.4415401
I MEM36	-0.4415401
ACTG1	0.42113947
CDKN1A	0.41060402
SPINT2	-0.2675067
NEAT1	0.44320544
SVNGR2	-0 //71871
MDDL 14	-0.44/18/1
WIKPL14	-0.3800478
LAPTM4A	-0.3775298
ATP5H	-0.3049357
CTSE	-0.5835866
PRDX1	-0.3094062
UBL3	-0.4757524
MVL 124	-0.+757524
MYL12A	-0.292468
CTSB	-0.4247592
ABHD12	-0.448543
PER3	-0.5622943
ZFOS1	0.44527727
CEACAMI	0.47728257
CCDC124	0.4020027
CCDC124	-0.4028937
INHBB	0.46590391
DNAJA4	-0.5678117
TMEM116	-0.2677182
MYOIE	0.42416459

F7D10	0.40160502	MON	0.22642601	MADOLO	0.2425021	CDO	0.0554011
FZD10	0.40108505	MSN	0.55042091	MAD2L2	-0.5425921	CPQ	-0.2554211
INSL6	-0.33/511	PARD6G	-0.2908865	FAU	0.29292763	PI4K2B	0.29886119
GM10116	-0.4789945	S100A14	0.35395467	TMBIM4	-0.3438819	TMED4	-0.3198525
CAPNS1	-0 3721853	SEC62	-0 3627336	UBE2E	-0 3091939	EPS8L1	0 25142445
TMED10	0.2024207	TMEM150	0.5462207	ADM	0.24224969	2210020C06DIK	0.2212565
IMEDIO	-0.3234307	IMEM159	-0.5462207	ADM	0.34334868	2310030G06RIK	-0.3213365
CISD1	-0.4396111	CD01	-0.3097039	PAPSS1	-0.329373	CIRBP	-0.3129272
NDUFB6	-0.4050791	POLE3	-0.3343585	PINK1	-0.3830007	BST2	-0.3584873
BSG	-0.2966119	PTPN2	0.47042934	PFDN2	-0.2855621	VAV3	-0 3338524
11 2 2 2	-0.2900119	111112	0.47042734		-0.2055021	VAVS	-0.5550524
ALDOC	-0.3694125	TM2D1	-0.3538362	MBOA17	0.31/1/533	ZYX	0.32/26388
ZFP36	0.34547289	RNF5	-0.3372868	H1F0	0.53137118	PDLIM4	0.28542685
UBB	-0 492613	KLF9	0.31674452	ETS2	0.32105219	REEP5	-0 3103433
NIDDL 1	0.49610011	TONG	0.2057407	DID	0.47027070	TD A DDCI4	0.0670446
INPPLI	0.48619911	TUNSL	-0.3857407	PIR	0.47937978	TRAPPC4	-0.26/2446
AY036118	-0.5414036	NAB1	0.34188842	FAM134C	0.26683228	CHCHD5	0.2739542
DNAJA1	-0.9119501	TGIF1	0.43752468	4833439L19RIK	-0.4010284	RAB5A	-0.2654195
PSMA2	-0.4227833	GM5160	-0.2767176	NDUEAB1	-0.3183634	CLIP4	0.43360439
I SMA2	-0.4227833	0005100	-0.2707170	RDUPABI	-0.5185054	CLII4	0.45500459
EIF4EBP1	0.36896881	OSTFI	-0.327465	FAMII0A	-0.3449546	PSMB6	-0.2530964
TROVE2	-0.3492607	ACOT1	0.46840362	HIPK1	0.29367441	HIST1H2AL	-0.3592269
CLDN8	-0 3858389	CRISPLD2	0.45221509	MIDN	0 36903155	H2-T23	-0.2993322
MT2	0.04026406	CSTT1	0.2429695	EIE262	0.20218106	DDD1D11	0.2272171
1112	0.94920490	03111	-0.3428083	EIF232	0.29218190	FFFIKII	-0.5275171
NDUFA11	-0.4252678	JCHAIN	-0.2587859	MAFG	0.28870861	NDUFA12	-0.2632034
HCFC2	0.30016671	TSPAN17	-0.4169673	BDNF	0.30295803	ATP1A1	-0.3426402
AUNAK2	0.33865778	I ASP1	0.32060216	DDSS22	0.53830135	DD K A D 1	0.26177678
AHNAK2	0.33803778	LASFI	0.32909210	FK3522	0.33630133	FKKADI	0.20177078
NKAS	0.35283219	SRP14	-0.2967375	HIFX	0.30485366	SEC13	-0.2877947
ROMO1	-0.3193179	MAL	-0.3813902	LTF	-0.3499346	PTPN1	0.40098748
ATP1B1	-0.4703144	YIPF4	-0 3298835	MANBA	0 38489209	CERS2	-0 3553563
STYPDC	0.4200754	CDV2AD1	0.2400244	IUND	0.4074126	LIDAL DO	0.2670922
SIABPO	-0.4289754	CDK2AP1	0.5490544	JUND	-0.40/4126	UBALD2	0.20/98826
GM13393	-0.257271	GSTP1	-0.3384946	STK40	0.29546553	CAV1	0.37255469
MPC1	-0.421387	GNG12	-0.8039197	BNIP3	-0.2592173	BABAM1	-0.3131349
AFS	_0.261/12/	KCN010T1	0 36023827	SCAMP2	-0 3206701	RAI BD1	-0.2600529
AES	-0.301434	KCNQ1011	0.30023827	SCAMPS	-0.3200/91	KALDP1	-0.2090328
FOSB	-1.0067064	LY6A	-0.5616344	MRPS14	-0.2788464	TET3	0.29581884
CAPN5	0.3588379	HSP90B1	-0.4680939	MLPH	0.36375568	KANK3	0.26245318
RPI 134-PS1	0.35084702	TXNI 1	-0 360731	ID3	-0.9512744	LRRC10B	-0.2564646
NILISA-ISI	0.33084702	DOLOD 5	-0.300731		-0.9312744	LKKC10D	-0.2304040
MIENI	-0.3708059	PSMB5	-0.3433695	SUMOI	-0.2986105	MTHFD2L	0.28964469
S100A10	0.4102787	OAT	-0.4409555	FAM174A	-0.3290689	TRAK1	0.29311963
CDC42EP5	0 34043773	RPS2-PS6	0.25250022	ATP6AP1	-0.3562517	CTSH	-0.3085751
MDEADI	0.2412792	OPMDL2	0.25250022	NIDUED7	0.2247060	ATDCV/0E2	0.0764971
MRFAPI	-0.3412/83	ORMDL2	-0.3/2/01	NDUFB/	-0.3347969	ATP6V0E2	-0.2/648/1
GALNT18	-0.4990803	LAMP1	-0.2951512	CIB1	-0.3214876	LAMTOR2	-0.2932975
GSTK1	-0.3560957	SLC35B1	-0.3304246	EHD1	0.28315836	KRT7	-0.262736
VAMD	0.2465466	DLAC9	0.20045152	SUD1	0.24225072	EMDI	0.5225901
VAMP8	-0.3403400	PLAC8	0.39043133	SUBI	0.54225072	EMPI	0.5255891
ATP6V0E	-0.3677176	TMEM123	-0.3857128	RAB7B	-0.2521833	HOXB2	-0.2656055
NGF	0.44635201	ANXA5	-0.4584788	FAT1	0.36683852	STEAP4	0.28665366
CYP3A57	-0.669751	LIGP2	-0.3316819	DYNI RB1	-0 3141866	CCDC12	-0.2790385
DEDI	-0.007751	10012	-0.3310017	DIREKDI	-0.5141000	2010/5/01004	-0.2770305
RERI	-0.3401843	ARGI	0.38/9202	RHOC	-0.292/152	28104/4019RIK	0.28835985
GLRX5	-0.3953919	PFKFB3	0.53263766	DUSP4	-0.3522378	LAMC2	0.31153022
FITM2	0.30804073	UOCR10	-0.293065	NBL1	-0.3711691	IMPDH2	0.27168319
CCDC162	0.27666112	PCI 21 11	0.46052140	NIDUEA12	0.2544114	DDM2	0.2625297
CCDC102	0.37000112	BCL2LII	0.40955149	NDUFA15	-0.2344114	DEMIS	-0.2033387
MYADM	0.43920601	SATI	-0.4234823	SLC/A7	-0.251905	ADCK5	-0.2853413
PSMB3	-0.387222	SPP1	-0.4604669	MBNL2	-0.327004	DYNLT1C	0.30296315
ADRM1	-0.4285549	CXXC5	0.38179185	VCP	-0.3478645	PNKD	-0.2562621
SDE2L1	0.4052022	EAMO2U	0.21196205	EEUD2	0.41200227	CKD1 A	0.2262021
SDF2L1	-0.4053932	FAM85H	0.31180295	EFHD2	0.41509557	SKPIA	-0.2767257
NUPR1	-0.5076809	STUB1	-0.3401348	FAM96A	-0.2957327	2200002D01RIK	-0.334315
TMEM147	-0.3645828	BHLHE40	-0.3711905	PDGFA	-0.4037185	CUTA	-0.2892114
SPTAN1	0 34907129	WDR26	0 3589136	ISG20	0 3445121	MARCKS	-0 3059918
DCAT2	0.710/402	ITMOC	0.2250010	ADIO	0.2026650	SI COA 2D2	0.0007/01
DGA12	0.7104496	11 M2C	-0.5259819	AKL2	-0.3030039	SLC9A3K2	-0.298/631
PDIA3	-0.4281573	ISCU	-0.3388099	BCR	-0.4503348	DYNLL2	-0.3232239
GM17430	0.35258833	MSRB1	-0.3634143	NEK7	0.26640008	SCN1B	-0.2816656
ARF1	-0.3078058	NDUFA1	-0.2892189	F11R	0 31101532	IAG1	-0.2639284
DDI 25	0.2750105	DOTN	0.2754440	DUCD24	0.0000601	MADOLI	0.245074
KPL33	-0.2/39193	DSTIN	-0.2/54448	DHCK24	-0.2822031	MAD2L1	0.345974
N4BP1	0.3007646	METTL7A1	0.33685858	MALL	0.32541564	ATP6V1D	-0.2703738
NDUFS5	-0.3406087	GPR137B	-0.3153005	ATP2C1	-0.3352041	TPM3	0.2677618
CDH13	-0.2539134	DNAJC12	-0.3739782	SCP2	-0.3158216	SSR2	0.28557938
LADCE	0 6570 414	ITCP2	0.2020520	OSMB	0.22002017	4020522007012	0.20701467
LANGE	-0.03/8414	110B3	-0.3930528	OSNIK	0.32902817	4930525C0/KIK	0.32/2140/
URAH	0.34948125	MGAT4B	-0.3192086	GFPT2	0.29992806	NDUFAF3	-0.2800843
PRKCA	0.32913762	PLIN2	-0.367006	HCFC1R1	-0.3022909	RCAN1	0.38180351
AR	-0 281882	SC5D	-0 315579	CDH1	0.27960117	ITGB6	-0 3160982
DDE4D	0.22025051	L DD10	0.2492122	TNEADO	0.22592007	NEDD ^o	0.2522062
FDE4B	0.33833851	LKr10	-0.3483122	INFAIPS	0.33383097	INEDD8	-0.2333862
FKBP2	-0.3733531	FEZ2	-0.2741846	EPHB3	0.34138346	ANXA1	-0.4357169
MT1	0.95092806	TIRAP	0.26063218	GADD45G	0.57471317	NDFIP1	-0.3125609
TNFRSF21	0/31177/2	PSMC5	-0 3368527	MRPS21	-0.3030006	PSMC3	-0.2887120
1111 K01/21	0.20120002	COTI	-0.3300327	NINT 521	-0.3039090	DC005524	-0.200/129
SPCS1	-0.3243892	GOTI	-0.3831788	NMEI	-0.3150892	BC005624	-0.3040177
HSPA1B	-1.3257733	PEPD	-0.29292	RAB5C	-0.3276518	MVP	-0.2695987
CLTB	-0.3368119	SERINC3	-0.2994849	SNRPG	0.3342037	NISCH	0.25701133
CVCL16	0.4025144	CRAMPII	0.25672154	OCT	0.25107005	AEC2L1	0.25769202
CAULIO	-0.4255144	CKAMPIL	0.256/3154	UGI	0.35197995	AFG3LI	0.25/68203
	0.2400245	UQCRQ	-0.260438	PPP1R2	-0.3356636	SHB	0.27248808
CHMP5	-0.3498245		-0 3318247	GLUL	-0.7346685	UNC5B	-0.2784144
CHMP5 TMEM205	-0.3498245	DBI	0.5510247	-			
CHMP5 TMEM205	-0.3498245 -0.4205774 -0.3474244	DBI	0 3//50075	KI F13	0.31055154	SSNA1	0 27/08/57
CHMP5 TMEM205 OAZ2	-0.3498245 -0.4205774 -0.3474344	DBI LITAF	0.34450975	KLF13	0.31055154	SSNA1	0.27498457
CHMP5 TMEM205 OAZ2 BC031181	-0.3498245 -0.4205774 -0.3474344 -0.3307821	DBI LITAF HSP90AA1	0.34450975 -0.9472682	KLF13 ANO6	0.31055154 0.29755697	SSNA1 AHSA1	0.27498457 -0.2761647
CHMP5 TMEM205 OAZ2 BC031181 GM10709	-0.3498245 -0.4205774 -0.3474344 -0.3307821 -0.3212095	DBI LITAF HSP90AA1 TALDO1	0.3310247 0.34450975 -0.9472682 -0.3379679	KLF13 ANO6 OGDH	0.31055154 0.29755697 -0.2893836	SSNA1 AHSA1 YWHAH	0.27498457 -0.2761647 0.29952418
CHMP5 TMEM205 OAZ2 BC031181 GM10709 RBX1	-0.3498245 -0.4205774 -0.3474344 -0.3307821 -0.3212095 -0.3010299	DBI LITAF HSP90AA1 TALDO1 HSP90AB1	0.34450975 -0.9472682 -0.3379679 -0.3064295	KLF13 ANO6 OGDH ATP6V0B	0.31055154 0.29755697 -0.2893836 -0.3122884	SSNA1 AHSA1 YWHAH SNRPB	0.27498457 -0.2761647 0.29952418 -0.2680773
CHMP5 TMEM205 OAZ2 BC031181 GM10709 RBX1 AMD1	-0.3498245 -0.4205774 -0.3474344 -0.3307821 -0.3212095 -0.3010299 0.36212507	DBI LITAF HSP90AA1 TALDO1 HSP90AB1 IS00011/LISD1//	0.3310247 0.34450975 -0.9472682 -0.3379679 -0.3064295 0.3492527	KLF13 ANO6 OGDH ATP6V0B ZBTB74	0.31055154 0.29755697 -0.2893836 -0.3122884 0.30268727	SSNA1 AHSA1 YWHAH SNRPB	0.27498457 -0.2761647 0.29952418 -0.2680773 0.3271402
CHMP5 TMEM205 OAZ2 BC031181 GM10709 RBX1 AMD1	-0.3498245 -0.4205774 -0.3474344 -0.3307821 -0.3212095 -0.3010299 0.36213597	DBI LITAF HSP90AA1 TALDO1 HSP90AB1 1500011K16RIK	0.34450975 -0.9472682 -0.3379679 -0.3064295 -0.3482527	KLF13 ANO6 OGDH ATP6V0B ZBTB7A	0.31055154 0.29755697 -0.2893836 -0.3122884 0.30268727	SSNA1 AHSA1 YWHAH SNRPB STAT5A	0.27498457 -0.2761647 0.29952418 -0.2680773 0.3271492
CHMP5 TMEM205 OAZ2 BC031181 GM10709 RBX1 AMD1 GM11808	-0.3498243 -0.4205774 -0.3474344 -0.3307821 -0.3212095 -0.3010299 0.36213597 0.30626078	DBI LITAF HSP90AA1 TALDO1 HSP90AB1 1500011K16RIK RPL36-PS3	0.34450975 -0.9472682 -0.3379679 -0.3064295 -0.3482527 0.31667722	KLF13 ANO6 OGDH ATP6V0B ZBTB7A DMPK	0.31055154 0.29755697 -0.2893836 -0.3122884 0.30268727 -0.2567292	SSNA1 AHSA1 YWHAH SNRPB STAT5A TMEM50A	0.27498457 -0.2761647 0.29952418 -0.2680773 0.3271492 -0.2763808

FOS	-0.5486435	LEPROTL1	-0.2771392	COA3	-0.2834306	HIST1H1C	0.50922176
UCHL5	-0.2661158	PODXL	0.25157772	COPE	-0.2508306	HSPB8	-0.2917692
RCN2	-0.2931804	OCIAD1	-0.2555998	IP6K1	0.25549266	ITGB5	-0.2636675
CTSA	-0.2559055	SSRP1	-0.301622	ADGRG6	-0.2633153	VEGFA	0.31093751
SEMA4C	0.34560881	TNFAIP2	-0.2588996	HSPA1A	-2.3401206	SQSTM1	-0.2887921
AHR	-0.349568	CTSD	-0.2890844	LY6E	0.28652118	PADI4	0.3190473
NDUFB10	-0.2763413	TMEM65	0.28954671	SARAF	-0.2523618	FGG	0.4728174
PIEZO2	0.26842995	SLC25A39	-0.27518	PTS	-0.2597013	KLF2	-0.6628286
TPI1	-0.2834934	EPB41L3	-0.2740754	HSPH1	-0.3159717	LY6C1	-0.2703588
TESC	0.25541943	TNFAIP1	0.2508641	SRA1	-0.2794053	NFKBIZ	-0.3074371
NDUFB4	-0.3020919	SFI1	0.28982417	PLET1	0.39038235	PLPP3	-0.2917038
SLC48A1	-0.2740522	2210016F16RIK	-0.2517191	DUSP1	-0.5804819	ATF3	-0.7236957
RAD23A	-0.2812474	UBE2K	-0.265805	HMGCL	-0.2722476	HK2	0.26183913
LMO7	0.34194259	ACLY	-0.277086	PABPN1	0.26280452	ABHD2	-0.5063073
CAB39L	-0.255705	TRIM25	0.28318653	UQCRC1	-0.2646616	CCL5	-0.5475305
CSN3	-0.3973642	CALM1	-0.3171159	ST3GAL1	0.2914429	IDO1	-0.467186
CDIPT	-0.2683502	0610040J01RIK	0.25522141	CAR8	-0.2684072	TMEM86A	-0.2952127
POLR2F	-0.2594806	CD151	-0.2743827	TSC22D2	-0.266153	RHOB	-0.3518169
PLBD2	-0.26209	EBPL	-0.2637168	FGF13	-0.2540955	HSPE1	-0.3289985
PIGP	-0.2681886	BCL3	0.32728281	H2-Q7	-0.2703138	NOCT	-0.2788543
GIPC1	0.31679885	KLF3	0.27549059	FXYD3	-0.2864313	DNAJB1	-1.3023746
RP9	0.26454173	HDAC11	0.25253409	PSMB8	-0.254063	CXCL15	-0.4334838
KRT4	0.51741384	ARHGEF17	0.29746427	EMC7	-0.2557059	TOB1	-0.2959279
TPPP3	-0.3738329	RNF187	-0.2540578	EIF5	0.29273069	CTSL	0.35667912
WFS1	-0.2717045	CYB5R3	-0.2697194	SOD2	-0.2610739	TPH1	0.311058
FIS1	-0.2616459	SPR	-0.2882224	DNAJC3	-0.2858517	SERPINH1	-0.5159763
MRPL20	-0.2658254	ETFB	-0.2846293	CAPSL	-0.3332189	APOC1	-0.3106238
AMN1	0.25606103	ANGPTL4	-0.466305	SOX4	-0.4267755	CLU	-0.3200278
MPV17	-0.2562361	DDIT4	-0.4483809	RASD1	-0.4934225	KRT14	-0.4057282
MAPK13	-0.2901268	SYF2	-0.2639814	FAM213B	-0.2543962	UPK3A	0.5663947
DEFB1	0.43344867	ACSL3	-0.2750066	SMIM3	0.25991546	CHIL1	0.25652983
LAMA5	0.2514355	LAMTOR4	-0.2658535	GATA3	-0.2989811	EGR1	-0.3836938
SAR1B	-0.2576068	ARGLU1	0.26546397	ZWINT	0.26953359	JUN	-0.7707645
SHISA4	-0.2648458	NARS	-0.2537528	ETS1	-0.2956004	BTG2	-0.2923109
TRAPPC2L	-0.2716963	LAS1L	0.32060842	HERPUD1	-0.295105		
RAPH1	0.2510971	KRT6A	0.61208089	TRF	-0.3039322		

Table 8-2 Differential gene-expression analysis (avg_log2FC) comparing FACS-isolated pre- and post-pregnancy luminal mammary epithelial cells, related to Figure 2-3.

Post-pregnancy x Pre-pregnancy luminal MECs

Pre-pregnancy luminal MECs	Negative avg_log2FC
Post-pregnancy luminal MECs	Positive avg_log2FC

Table 8-2 can be found at https://doi.org/10.1016/j.celrep.2021.110099 as Table S2.

Table 8-3 Differential gene-expression analysis (log2FoldChange) comparing FACS-isolated pre- and post-pregnancy mammary resident NKT cells, related to Figure 2-11.

Post-pregnancy x Pre-pregnancy NKT cells

Pre-pregnancy NKT cells

Negative avg_log2FC

Post-pregnancy NKT cells

Positive avg_log2FC

ID	log2FoldChange
Klhdc8a	-10.396616
Mrpl28	-10.354259
Nup43	-10.222935
Emc6	-9.8011804
Dnase111	-9.5569436
Tbc1d31	-9.3022889
Rfx2	-9.2570242
Cstad	-9.1275339
Rbm10	-8.917264
Man1b1	-8.7521811
Clec12a	-8.5855052
Gpr151	-8 56871
Mettl26	-8 5414241
Pfkfb4	-8 3813645
Iscu	-8 3463175
Abcg3	-8 2000061
Pold4	8 1160100
Nlrp10	-0.1100199
Facar	-0.1113003
Ap5b1	-8.0090224
Ap301	-0.0400/11
7f=004	-8.0005427
Zfp994	-7.990489
Magonb	-7.990489
Z1p691	-/.9854358
Cyp2e1	-7.9752759
Stk11	-/.9/01691
Zkscan14	-7.9074333
Txn2	-7.8967069
Ndufal	-7.8640407
Comtd1	-7.8306177
Bcl2a1a	-7.8193024
Vmn1r43	-7.8136113
Snx24	-7.7254355
Thap4	-7.6698215
Rab42	-7.6635077
Stom13	-7.6185203
Slc6a1	-7.6119774
Smim20	-7.6119774
Osbpl7	-7.5855052
Fam185a	-7.5379768
Abhd4	-7.5310574
Oprk1	-7.4959536
Krba1	-7.4816694
Tfpt	-7.4744739
Vamp8	-7.4526695
Dcaf11	-7.4453275
Usp17lb	-7.4230747
Zfp975	-7.4155802
Ppp6r2	-7.4155802
Tha1	-7.3541797
Mgat1	-7.3541797
Mrs2	-7.3384123
Ntn3	-7.3304636
Cnih1	-7.3224708
Extl2	-7.3144335
Ubl7	-7.3063511
Sf3b6	-7.3063511
Olfr126	-7.2900493
Fzd6	-7 2568825

Slc9a7	-7.2400086
Slfn1	-7.2229351
Zfpm1	-7.2056571
Mydgf	-7.1969399
Gins3	-7.1809291
Poli	-7.1793459
Fgl1	-7.1704677
Mepce	-7.1343984
Fam92b	-7.1252384
115	-7.1160199
Gnat1	-7.1160199
Adhfe1	-7.1067421
Emcn	-7.1067421
Fbxw4	-7.1067421
Adal	-7.0974042
Ercc5	-7.0974042
Gnaol	-7.0974042
Rnn40	-7.0690224
Habn2	-7.0690224
Rtn4rl1	-7.0690224
Tysnd1	-7.0690224
Cov6b2	-7.059/36/
C0X002	7 03020
Apold1	7.0005427
Nace2	7.0005427
Trad5212	-7.0003427
1 pu5212	-0.9803048
Ankrd40	-0.9/01091
Timem238	-0.9495588
S100a13	-6.9391422
Naip5	-6.9286498
Innsii	-6.9180805
DgKi	-6.9074333
Fam45a	-6.896/069
Olfr134	-6.8967069
Cryi	-6.8967069
Musin1	-0.8859001
Tmem101	-6.8/50118
Ubd	-6.8/50118
Exol	-6.8529855
Hpse	-6.8529855
Aqp6	-6.841845
Lynxl	-6.830617/
R3hcc1	-6.8193024
SIc12a9	-6.8193024
Eml3	-6.8193024
Plin1	-6.8078976
Nphp3	-6.8078976
Abt1	-6.784814
Rnf7	-6.7731322
Coq6	-6.7731322
Cdt1	-6.761355
Hic1	-6.761355
Spx	-6.761355
Unc45b	-6.761355
Gata5os	-6.761355
Hlx	-6.761355
Habp4	-6.7494809
Parp11	-6.7494809
Ly96	-6.7254355
Cldn26	-6.7132607

Zfp444	-6.7132607
Ndufb8	-6.7009824
Ppapdc1b	-6.7009824
Ccdc136	-6.7009824
Grwd1	-6.6885987
Tpcn2	-6.6761077
Rdh16	-6.6761077
Ehd3	-6.6635077
Cldn5	-6.6635077
Gdf15	-6.6507967
Clcn2	-6.6250336
Map3k21	-6.6250336
Prss42	-6.6250336
Rnf41	-6.6250336
Fam198b	-6.6119774
Batf2	-6.6119774
Cdk6	-6.6119774
Pygo2	-6.6119774
Fkbp2	-6.598802
Racgap1	-6.598802
Gpr26	-6.598802
Sf3b5	-6.5855052
Mmp13	-6.5720847
Runx3	-6.5585382
Vps4a	-6.5310574
Ufl1	-6.5310574
Cmpk2	-6.5310574
Zfp229	-6.5171182
Gbp3	-6.5171182
Fxyd1	-6.5171182
Oxtr	-6.503043
Mief1	-6.4888292
Pde10a	-6.4888292
Zfp329	-4.2472736
Rn45s	2.06786142
Gas6	9.92948258

9. Appendix 2 – List of publications

Slepicka PF, <u>Somasundara AVH</u>, dos Santos CO. 2021. The molecular basis of mammary gland development and epithelial differentiation. *Seminars in Cell & Developmental Biology* **114**: 93–112.

Hanasoge Somasundara AV, Moss MA, Feigman MJ, Chen C, Cyrill SL, Ciccone MF, Trousdell MC, Vollbrecht M, Li S, Kendall J, et al. 2021. Parity-induced changes to mammary epithelial cells control NKT cell expansion and mammary oncogenesis. *Cell Reports* **37**: 110099.

Seminars in Cell and Developmental Biology 114 (2021) 93-112

Review

The molecular basis of mammary gland development and epithelial differentiation

Priscila Ferreira Slepicka^a, Amritha Varshini Hanasoge Somasundara^b, Camila O. dos Santos^{c,*}

^a Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA ^b Cold Spring Harbor Laboratory, CSHL School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA ^c Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA

ARTICLE INFO

ABSTRACT

Keywords: Mammary development Gene expression Transcription regulation Cell heterogeneity Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.

1. Introduction

Mammals are a diverse class of warm-blooded vertebrates with classspecific features that include the presence of hair and the nourishment of young offspring through the secretion of milk by the mammary glands of females. The structure and development of the mammary gland, as well as the nutritional constituents of milk (fat globules, casein micelles, whey proteins, and sugars) are highly conserved across mammals. The evolutionary origin of the mammary gland dates to 310 million years ago (mya), during the Carboniferous period [1,2], long before the appearance of mammals (190 mya). In the Carboniferous period, synapsids (mammalian ancestors evolved from basal amniotes) developed a glandular integument. During the various radiations of synapsids (mammals and mammaliaforms, therapsids), the ancestral integument became highly specialized to produce an abundant and nutritive secretion (milk) during lactation, leading to what is currently defined as the mammary gland. The primitive apocrine glands from which mammary glands originated played an initial role in keeping terrestrially-laid parchment-shelled eggs moist, and in protecting the skin of early

synapsids from infection and injury [3].

More recently in evolution, emergence of the placenta diversified mammary gland structures in eutherians in terms of the number of glands and lobuloalveolar structures per nipple [4]. For instance, unlike nipples in mice and humans, cattle or ruminants have a teat formed by epithelial proliferation and gland cisterns that accumulate milk in between each milk harvest, offering a substantial yield of milk for the offspring and an economically advantageous milk supply [5].

During the first days or months of life, milk contributes significantly to nourishment, as well as to the regulation of basal metabolism and temperature of mammalian offspring. As lactation proceeds, caseins are synthetized, phosphorylated, and aggregated into large micelles that are insoluble in the milk and that function to carry calcium phosphate nanoclusters directly to the offspring's body [6]. The presence of casein micelles correlates with an improvement in offspring nutrition, reducing the demand for egg yolk, and potentially leading to the inactivation of genes associated with yolk formation during evolution [7]. The three primary caseins, α -, β -, α -, α -spectively, diverged before these three

* Corresponding author.

E-mail address: dossanto@cshl.edu (C.O. dos Santos).

https://doi.org/10.1016/j.semcdb.2020.09.014

Received 19 July 2020; Received in revised form 28 September 2020; Accepted 30 September 2020

Available online 17 October 2020 1084-9521/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

taxa originated [8,9].

All the above processes arose more than 150 million years ago and shaped not only a new evolutionary feature to nourish offspring but also the development and anatomy of mammals. As the mammary gland specialized over time, molecular mechanisms have also evolved to control cellular differentiation of mammary epithelial cells and to support their production of milk during lactation. In this review, we will further discuss several molecular switches that control the identity of mammary epithelial cells (MECs) and the development of a fullyfunctional, milk-producing mammary gland.

2. Understanding fetal mammary gland development

Embryonic development of the mammary gland (Fig. 1) is initiated during mid-gestation in many mammalian species. Several mammary gland features associated with sexual dimorphism differ among mammals: the number of primary and secondary sprouts, formation of teats and cisterns in cattle and ovines, and the timing of each developmental event [5].

In rodents, thick bands of ectodermal cells form bilateral and vertical mammary lines at embryonic day (E) E11.25 whereupon clumps of ectoderm (placodes) bloom along the mammary line at day E11.75, and these ultimately determine the number of breasts in each mammalian species. At day E12.5 the placodes intumesce into the mesoderm, forming an early mammary blud surrounded by a basement membrane

(BM) and the first traces of a mammary mesenchyme. Between E13 and E14, the bud will give rise to mammary bulbs with an ectodermal stalk that will elongate into a sprout surrounded by the mesenchyme (fat pad) at E15.5. Lumen formation commences at day E17–18, involving the programmed death of ectodermal cells localized at the center of the mammary branches.

2.1. Signaling networks in the placode and mammary tissue formation

The first stage of mammary development occurs at the same time as the specialization and maturation of the embryonic mesoderm and ectoderm. The ectoderm shapes the structural organization of the mammary gland whereas mesenchymal signaling networks guide ectodermal modifications and expansion during mammary line positioning, placode assembly, and mammary bud formation and elongation. Members of the Fibroblast growth factor (FGF) and the Wingless-related integration site (WNT) protein families govern signaling in mammary embryonic tissues, and they regulate transcription factors (TFs) from the Homeobox gene family (HOX), GATA binding protein 3 (GATA3), and the T-box family (TBX), which are intermittently expressed either in the endoderm or mesoderm [10–12].

Hoxc8 is expressed until E12.5 and defines the location of mammary placodes, whereas *Hox9* is expressed until shortly after birth, and their depletion results in mammary ductal hypoplasia [10,13]. Hox genes have been suggested to be the founders of the enhancer landscape in

Fig. 1. The blooming of mammary gland development. Schematic illustration of mammary gland developmental stages, showing fetal, puberty, estrous cycles, pregnancy, lactation and involution (from left to right). In puberty, green buds represent TEBs. Mammary alveoli are shown as orange flowers in estrous cycles, pregnancy and lactation. In lactation, the milk is represented as yellow sap flowing from the alveoli (flowers) to the ducts (branches). During involution, the regression of the mammary tissue is depicted with falling dead flowers and branches into the background, which portrays the fat pad. The basal compartment and luminal compartment are delineated with darker and lighter colors in the tree, respectively. The main molecular regulators of each developmental stage are highlighted in the grey squares.

mammary epithelial cells, acting directly via mammary bud regulatory elements (MBRE) [14]. Such elements, including those associated with the *Hoxd9* gene, have been identified in eutherians but not in monotremes or marsupials, suggesting that mammary gland development and a specific pool of regulatory factors perhaps guided evolution in eutherians.

Across all mammals, the TF TBX3 plays a role during fetal mammary gland development. The expression of Fibroblast growth factor receptor 1b (FGFR1b), Fibroblast growth factor receptor 2c (FGFR2c), and Fibroblast growth factor 10 (FGF10) initially promote *Tbx3* gene expression in mammary line mesenchyme and subsequently in the placodes [15]. Conversely, Bone morphogenic protein 4 (BMP4) negatively regulates *Tbx3*, which influences the orientation of ectodermal cells, mammary line specification, and placode formation [16]. Furthermore, loss of *Tbx3* expression in micr results in the absence of mammary placodes and abnormal gland development, due to loss of expression of Wh10b and Lymphoid enhancer-binding factor 1 (Lef1), key factors in mammary embryogenesis [17–20]. A similar phenotype is observed in FGF10^{+/-} mice which have lost one of the master regulators of TBX3 [21,22].

Ectopic expression of the Wnt inhibitor Dickkopf (Dkk1) in the ectoderm compromises the formation of mammary placodes and impairs the localization of Wnt10b [23]. As abrogation of placode development is more severe in embryos ectopically expressing Dkk1 compared to FGF10- or FGFR-null mice, Wnt networks may be critical for placode initiation [23]. Later in mammary development, mutations in Wnt10b have been correlated with aggressive clinical outcomes for breast cancer, and rapid development of mammary tumors [24].

Other regulators of mammary embryogenesis include TFs that are part of the Hedgehog (Hh) pathway. For instance, mutations in the GLI family Zinc Finger 3 (Gli3) TF lead to the loss of specific placodes, which can cause ductal defects in later stages of mammary development [22]. Through a signaling cascade with members of the Hh network, Gli3 activates gene-specific transcription that controls bud formation [25–27]. GLI family Zinc Finger 2 (Gli2) functions in ductal branching through its localization in the tissue surrounding mammary branches (stroma) from embryogenesis to adulthood, but it becomes stromal and epithelial during pregnancy and lactation [28].

2.2. The nest of embryonic mammary tissue

The microenvironment surrounding mammary tissue plays a pivotal role in the gland development, predominantly via regulation of epithelial-to-mesenchymal transition (EMT), during which epithelial cells lose cell polarity and cell adhesion to become mesenchymal cells with migration and invasion properties. Both EMT and mesenchymalepithelial transition (MET), the reverse of EMT, are associated with normal mammary development, such as the placodes during embryogenesis, and with cancer, as mammary tumor-initiating cells acquire stem-cell properties through the EMT [29,30]. EMT-inducing TFs (i.e. Zeb1, Slug, Twist) have been detected in cells at terminal end buds (TEBs) during puberty, and Wnt and Transforming growth factor beta (TGF-B) signaling pathways in TEBs have also been reported as regulators of EMT [31]. More specifically, EMT-driven signals can determine the expression of extracellular matrix (ECM) components and epithelial cell adhesion receptors through Neuregulin-3 (Nrg3), a member of the EGF family, which also localizes in the mesenchyme underlying the mammary line [32]. In Nrg3 mutant mice, FGF10 and mesenchymal Tbx3 expression levels were normal, however, Wnt10b and Lef1 levels were reduced or undetectable in specific placodes [33,34]. Nrg3 signaling through its receptor Erb-B2 receptor tyrosine kinase 4 (Erbb4) has been suggested to modulate cell adhesion, thus promoting transduction of somatic FGF10 signaling to the developing placodes.

From E15.5-E16.5 to the end of embryonic development, mammary buds continue to elongate and form rudimentary ductal sprouts that embed into the mesenchymal layer. Throughout this developmental time, transcriptional regulation and cellular signaling mediated by Tbx2–3, Wnt genes, Parathyroid related hormone (PTHrP), Msh homeobox 2 (MSX2), and Nuclear factor kappa B (NF-κB) function in concert to promote branching morphogenesis and expansion [27].

Specific immune cell populations are involved in mammary gland development, with recent studies demonstrating the presence of macrophages in the embryonic mammary gland. During embryonic development, macrophages invade and partially remove the mammary epithelium of males, implicating the microenvironment in the sexual dimorphism of the gland [35]. Macrophage-derived progenitor cells from the fetal liver or yolk sac persist in the gland from embryogenesis to adulthood, thus composing the majority of the macrophage population in the postnatal mammary fat pad [36]. Conversely, during puberty, mammary macrophages mostly originate from precursor cells located in the bone marrow, an observation that may suggest constant remodeling of the gland and the requirement for cellular reneval [37].

Macrophages have been observed in the mesenchyme surrounding the mammary buds, but not in close proximity to the epithelial cells during embryogenesis [35]. This is in marked contrast to postnatal stages of mammary development, in which macrophages are found in periductal locations, indicating their role as scavengers as part of the immune surveillance in the mammary microenvironment [35–38]. During postnatal stages, macrophages reach the intraductal niche through dendritic cell movements whereupon they have direct contact with both luminal and basal ductal compartments [37]. Thus, it is possible that fetal macrophages play a role that is distinct from their "sentinel" function during embryonic mammary development, which still remains to be elucidated. Accordingly, we still lack a clear picture of whether macrophages that populate fetal mamary glands remain dormant during post-birth mammary gland development, and whether they contribute to tissue surveillance after birth.

2.3. Not everything is about symmetry

Mammary gland development is bilateral and asymmetrical, like other paired organs [19]. Although the rate of asymmetry is relatively low for the mammary gland, molecular factors can contribute to leftright (L-R) asymmetry in somites during embryogenesis, including the Retinoic acid receptors, RARs and RXRs. Lack of RXRα induces defects in the ductal networks, with thoracic mammary glands (TMGs) showing asymmetry marked by decreased ductal branching in the left gland, whereas inguinal mammary glands (IMGs) remain symmetric, with no alterations in the ductal profile [39].

Retinoic acid (RA) regulates the expression of Tbx3, Fgf8, sonic hedgehog protein (Shh), and human epidermal growth factor receptor 2 (ErbB2), all genes associated with MEC differentiation and proliferation 40,41]. In addition, forkhead box protein M1 (FoxM1) and Gata3 are highly expressed in the left mammary gland, in contrast to retinoic acidinducible G-protein coupled receptor 5D (Gprc5d) and Neurogenic locus notch homolog protein 1 (Notch1), which are more abundant in the right gland [39]. Both pairs of genes play a role in luminal progenitor cell fate commitment, and in chemoresistance to cancer treatment, suggesting that asymmetrical development of the gland may engage programs that could alter the commitment and malignance of MECs. In fact, women whose breasts significantly vary in size have been reported to have an increased risk of developing breast cancer, with the left breast often being the most affected tissue [42,43], thus suggesting that misregulation of genes associated with left-sided breast development could play an important role as a prognostic marker of aggressive cancer development.

3. The "teen" years

During embryogenesis, the maternal hormones provide the initial stimuli to the rudimentary mammary gland for ductal development. However, after birth, cessation of maternal signaling reduces ductal and

branching genesis in the postnatal mammary gland. This activity resumes with the start of puberty, a stage marked by the production of female sexual hormones, which will complete mammary morphogenesis and prepare the gland for milk production in the event of pregnancy.

Puberty varies widely, from a few weeks to several years post-birth, in different mammalian species (5 weeks old in mice and 9–18 years old in humans). The onset of puberty is triggered by the increase in gonadotropin levels that lead to the secretion of ovarian hormones, mainly Estrogen (E2) and Progesterone (P4). Peak levels of E2 production are between the follicular phase and ovulation and, depending on the vertebrate, E2 synthesis occurs every 2–4 days in mice and once every month in humans [44].

In the pubertal and adult female, the mammary gland undergoes developmental modifications tightly correlated with ovarian/uterine reproductive cyclical repetitions (4-5 days in mice and 26-32 days in humans). The cycle (Fig. 1) is divided between two major phases: Follicular (proestrus and estrus in mice) and luteal (metestrus and diestrus in mice) phases. In humans, the follicular phase begins on the first day of menstruation when P4 levels decrease, the previous corpus luteum degenerates, and a new preovulatory folliculum grows. During ovulation (also called estrus in mice), peak levels of E2 stimulate the high production of luteinizing hormone from the pituitary gland, causing the release of the ovum from the ovary whereupon the luteal phase begins. In mice, and in preparation for a potential pregnancy, the corpus luteum keeps up P4 production for a few days thus triggering mammary tissue expansion and lobuloalveologenesis. The percentage of dense tissue in women's breasts (mammographic density), is amplified during this phase given the augmented mammary ductal branching and, in mice, high levels of P4 positively correlate with lobuloalveologenesis and tertiary branching [44,45]. The degradation of the corpus luteum and reduced levels of P4 mark the end of a cycle, which induces clearance of MECs through cell death and lobuloalveolar shedding.

The investigation of the molecular underpinnings of both mammary gland pubertal development and the fluctuations during the reproductive cycle will contribute to evaluate the effects of molecular and signaling perturbations in response to disease and cancer initiation, ductal alveologenesis, stromal composition, and in immune microenvironment studies.

3.1. Pubescent structure of the gland

The rapid increase in mammary morphogenesis through branch initiation, invasion of the fat pad, and ductal elongation, transforms a pre-formed, rudimentary mammary epithelium into an extensive ductal network. Hormonal signaling promotes differentiation and proliferation of MECs, culminating in an extensively branched mammary morphology, with pro-apoptotic factors, such as BH3-only BCL-2 protein (BIM), triggering apoptosis and cell clearance to allow lumen formation in the newly developed ducts [46]. The pubescent emergence of mammary ducts depends on TEBs, which emerge at the tip of the ducts and are responsible for promoting the invagination of ducts into the fat pad at a rate of ~ 0.5 mm/day in mice [47]. TEBs (Fig. 1) are elongatedshaped structures with an outer layer of cap cells and an inner multilayer of body cells.

The TEB cap cells have stem cell-like features such as self-renewal properties, being morphologically undifferentiated, and the ability to give rise to both luminal and myoepithelial cells in cleared fat pad transplants. In the "neck" region of TEBs, cap cells tend to differentiate into myoepithelial cells, while a fraction of the cap cells have high mobility, penetrate the lumen of the TEBs, and commit to a luminal cell fate [48,49]. Additional studies of cells expressing the Tumor protein 63 (TP63), a master regulator of MEC development, identified cap cells with a unipotent differentiation capacity towards a myoepithelial cell fate [50], thus suggesting a cellular hierarchy within mamary differentiation of biostatistical modeling and lineage tracing, recent studies dispute

the contribution of cap-in-body cells to the luminal lineage. These migratory cap cells are more apoptotic and unlikely to contribute overall to either the luminal or the myoepithelial lineages [47,50]. Therefore, the role of TEB cap cells in ductal elongation remains controversial and warrants further studies.

As an additional cellular stage, the cap-in-body cells are mostly exclusive to the body of TEBs. These cells have a delayed cell cycle progression and increased apoptotic rate when compared to cap cells localized at the outer layer of the TEBs. Molecular analysis of cap-inbody cells identified the TF Forkhead box O protein 1 (FOXOI), and its downstream targets, as major regulators of apoptosis in cap-in-body cells, which contributed to the formation of the lumen during ductal expansion [50]. Collectively, these studies indicate that TEB cap and cap-in-body mammary cells may represent a pool of plastic, heterogeneous, undifferentiated cells that guide pubescent ductal expansion.

Moreover, signaling between MECs and the stroma plays a crucial role in ductal elongation during puberty. TEBs can secrete factors (i.e. eotaxin and interleukin 5) that recruit eosinophils to the tip of TEBs, thus orchestrating side branching [51,52]. Additionally, macrophages spread throughout the mammary ductal system encasing TEBs and perfusing the epithelial bilayer, where they perform a range of functions in guiding ductal outgrowth into the fat pad and phagocytizing body cells to form the lumen of the ducts [35,52,53].

3.2. Estrogen network

During embryogenesis, estrogen receptor (ER)a-depleted glands showed normal primitive mammary ducts, however, during puberty and the following stages of mammary development, lack of ER expression severely compromised ductal network development [54]. Transplantation of $ER\alpha^{-/-}$ MECs, together with wild-type (WT) MECs, resulted in ductal elongation, suggesting that ER may also act in a paracrine manner, stimulating neighbor cells [55-57]. Local paracrine signals act downstream of ovarian hormones, as stroma-derived growth factors. Among these factors is Amphiregulin (AREG), a ligand of the Epidermal growth factor receptor (EGFR) in stromal cells, which functions as a membrane-anchored precursor and is expressed in luminal MECs and cells throughout the TEBs. AREG-depleted mice lack a mammary ductal network during puberty, similar to the phenotype observed in ERa1/- glands, and ectopic AREG overexpression rescues the ductal network phenotype in ERa knock out (KO) mice, [58,59], AREG is cleaved by Desintegrin and metalloproteinase domain-containing protein 17 (ADAM17) to promote signaling in stromal cells. The ADAM17 KO phenocopies the ablation of mammary ductal outgrowth seen in AREG- and EGFR-depleted mice during puberty, indicating that the E2-AREG-ADAM17 axis is a key network of paracrine signaling responsible for ductal outgrowth during mammary pubertal development [60]. Moreover, the epithelial expression of AREG is sufficient to induce mammary ductal formation, independently of the stromal signals. In contrast, stromal expression of EGFR is crucial for mammary tree formation compared to epithelial EGFR expression, demonstrating that depletion of EGFR family members also delayed ductal expansion with hyperplasia of cap-in-body cells and reduced body cell levels [60-62].

E2 binds to its receptor, ER, which translocates from the cytoplasm to the nucleus, where it activates the transcription of genes associated with expansion and growth of the mammary epithelium. ER executes its TF functions in both a ligand-independent (Activation function-1, AF-1) and ligand-dependent (Activation function-2, AF-2) manner, and both mechanisms support the transcriptional activation of paracrine factors which are crucial for ductal outgrowth and side branching [58]. Beyond its transcription activation role, ER can mediate a series of cellular signaling via its membrane localization. In fact, site-specific mutations in ER α protein that block its anchoring to cellular membrane resulted in delayed mammary development during puberty and an inability of MaSCs to repopulate mammary fat pads in transplantation assays. This phenotype was accompanied by alterations to the transcriptional state of

MECs, thus bringing together a complex regulatory network of endogenous and secreted factors orchestrated by $\text{ER}\alpha$ [63].

Another TF, Forkhead box A protein 1 (FOXA1), mediates E2 signaling by facilitating chromatin accessibility and, therefore, the interaction between ER and its gene targets. FOXA1 has been identified as a target of the GATA3 regulatory network in branching morphogenesis during puberty [64–67]. Loss of GATA3 has been shown to abrogate TEB formation and to reduce ductal outgrowth, and impair development of ER + MECs, and perturb pathways regulated by P4, consistent with its role as a master regulator of hormone sensing during mammary gland development [11,67,68]. More recently, a reorganization of the chromatin landscape has been detected in cancer cells, leading to redistribution of ER- and FOXA1-binding sites and disruption of GATA3-ER-FOXA1 signaling network, implicating these TFs and their downstream targets in disease-related pathways [69].

As part of its function during mammary development, ER also recruits other coregulators. The ER co-factor abrogation of glutamic acid [E] and aspartic acid [D]-rich C-terminal domain 1 (CITED1) induced ductal hyperplasia, little to no lumen formation, and dilated ductal structures, thus delaying mammary maturation, although these effects were less pronounced in comparison to $\text{ER}\alpha^{-/-}$ [70]. CITED1 also functions as a downstream target of the TGF- β family of TFs, suggesting that its role as a cofactor in these two major signaling pathways, ER and TGF- β , ensures a balance between proliferative and non-proliferative signals during puberty [71].

3.3. Progesterone signaling

In mammals there are two main nuclear progesterone receptor (PR) isoforms (PR-A and PR-B) and multiple variants that homodimerize or heterodimerize to perform distinct gene transcription functions. The ratio of PR-A:PR-B varies in humans (1:1) and in mice (2:1-3:1), and perturbation of the PR ratio has been associated with mammary oncogenesis in humans and atypical side-branching development and proliferation in mice [72,73]. Although PR-A can act as a dominant repressor of PR-B during murine puberty, ablation of PR-B results in the lack of conventional pubertal structures in the mammary gland [74,75]. Overexpression of PR-A in the pubertal gland induces mammary ductal hyperplasia and the development of abnormal TEBs [73]. In mice, during puberty, overall depletion of PR resulted in impaired mammary side branching and lobuloalveolar development [76,77]. Using mammary transplantation assays, injection of PR-depleted MECs resulted in impaired lobuloalveolar development in response to E2/P4 treatment, a phenotype mostly rescued with the co-transplantation of WT MECs and PR-/- MECs [77

Increased P4 levels result in induction of side-branching morphogenesis, through the activation of a subset of quiescent ductal MECs and their reorganization into a multilayered epithelium that buds laterally [76,78]. Given the role of P4 signaling in side branching, we speculate that PR signaling is essential for MaSCs to promote tissue expansion and differentiation, although MaSCs have not been demonstrated to express PR [79–82]. PR is commonly expressed in luminal epithelial cells in mice and humans, and such cell types also engage in tissue expansion during puberty in response to elevated P4 levels, suggesting that a combination of paracrine and non-paracrine functions are regulated by the PR/P4 axis [79,80].

One of the P4-induced paracrine signaling mechanisms involves release of the Receptor activator of nuclear factor kappa-B-ligand (RANKL) and its interaction with Receptor activator of nuclear factor kappa-B (RANK) in PR-negative cells, which together control mammary alveologenesis during much of mammary gland development [83,84]. In addition to its paracrine function, P4 induces the proliferation of PRpositive MECs, potentially through the activation of its downstream target Cyclin D1 (CCND1), a mitogenic regulator [83]. Ccnd1-depleted mice show similar phenotypes as PR-null mice [85,86]. The abrogation of PR reduces Ccnd1 expression, resulting in cell cycle changes in highly proliferative cells. P4 also mediates Wnt4 signaling during puberty to promote ductal expansion, revealing that an additional signaling network is involved in mammary branching during major mammary development stages [87]. The balance between P4-induced cell proliferation and side branching may also rely on mediators and downstream targets of P4 signaling.

At puberty, P4 and Insulin growth factor 1 (IGF-1) synergistically promote side branching, TEB expansion, and lobulo alveologenesis, with the combination of P4 and IGF-1 treatment having a 3-fold greater effect on ductal branching compared to IGF-1 treatment alone [76,88]. In prepubertal glands, IGF-1 and/or IGF1R have substantial, P4-independent effects on branching, as increased IGF-1 and/or IGF1R levels markedly enhanced ductal expansion, in some cases resulting in mammary tumors, whereas the transplantation of IGF-1R-depleted cells into mammary fat pads arrested MEC proliferation, causing defects in TEB formation [89–93].

The IGF-1 signaling network involves pituitary hormones required for TEB initiation. Growth hormone (GH) binds to its receptor (GHR) on stromal cells and activates IGF-1 transcription, which, in turn, is secreted and interacts with IGFR in epithelial cells. The depletion of IGF-1 leads to a delay in pubertal ductal outgrowth with few side branches, a similar phenotype as described in GHR KO glands [94]. As GH and E2 are upstream targets of IGF-1, the combination of GH and E2 treatment rescued the phenotype caused by IGF-1 depletion [94]. The expression of AREG, an E2-transcriptional target, is increased by P4 signaling and mediates TEB formation and expansion during puberty [95].

In summary, the P4 network involves a combination of paracrine signals and other hormonal pathways that coordinate mammary TEB development, ductal expansion into the fat pad, and side branching during puberty and adult reproductive cycles.

3.4. Regulation of cell polarity

The multicellular bi-layered organization of luminal and myoepithelial cells confers the mammary gland tissue with polarization, and polarity proteins regulate the differential apical-basal (A/B) asymmetry of MECs. Collectively, polarity proteins govern TEB expansion, likely through the regulation of MaSC homeostasis and mammary epithelial fate commitment. Golgi positioning and cytoskeleton organization ensures the orientation of vesicle trafficking, which also contributes to cell polarity. MEC cell polarity can also play a role in mammary lumen formation, in epithelial cell shape and, consequently, ductal branching [96,97]. Moreover, depletion of the TF TP63 blocked mammary lumen establishment, and reduced levels of cell-cell adhesion proteins, a phenotype commonly found in mammary tissues with loss of cell polarity [98]. The loss of polarity proteins, i.e. Partitioning-defective protein 3 (Par3), triggers atypical hyperplastic ductal morphology due to loss of A/B symmetry, deregulation of progenitor cell differentiation, and increases in cell proliferation and apoptosis [99]. This results in expansion of the diameter of primary ducts and limits the growth of secondary branches, thus arresting mammary branching.

The exogenous Par3-Like (Par3L) protein is another key polarity factor involved in mammary duct expansion. Par3L localizes in cap cells of TEBs and controls stem cell maintenance, as lack of Par3L significantly depleted a subset of MaSCs [100]. Mechanistically, Par3L has been suggested to interact with and inhibit Protease-activated receptor 4/Liver kinase B1 (Par4/LKB1) kinase activity, thus controlling stem cell maintenance and cell apoptosis [100]. In addition, the depletion of the focal adhesion protein Paxillin, induces loss of A/B cell polarity, misallocation of apical proteins, loss of microtubule acetylation, and disturbed acinar orientation [101].

Moreover, cell polarity determines the orientation of the mitotic spindle and, consequently, the plane of cell division. This also affects the differentiation and architecture of the expanding TEB during pubertal mammary development. In addition to the factors discussed above, a number of signaling pathways are involved in cell fate decisions. Notch/

Numb/Musashi1 signaling, Wnt/ β -catenin signaling, and p53 and its downstream effectors are all key pathways that regulate the symmetry of cell divisions based on microenvironmental cues at various developmental stages in the mammary gland (reviewed in detail by Santoro et al. [102]).

The deregulation of proteins that control cell polarity is often associated with tumorigenesis. The ablation of Par3, besides impairing ductal growth, also induces Signal transducer and activator of transcription 3 (STAT3)-dependent cell invasion and migration, and it contributes to the invasiveness and metastasis of mammary tumors from ErbB2 mice [103]. Partitioning-defective protein 6 (Par6) is overexpressed in ER⁺ human breast tumors and in MCF10A human mammary cell lines, and the inhibition of ErbB2-Par6 signaling axis is sufficient to arrest cell invasion [104]. Although expression of Par6 does not alter A/ B polarity, it does cause hyperplasia and induces EGF-independent cell proliferation [105]. Additionally, upregulation of Scribble (SCRIB) as well as its mislocalization away from cell-cell junctions is correlated with poor breast cancer prognosis, and ectopic expression of SCRIB can activate oncogenic pathways (i.e. PTEN and mTOR) [106]. Pubertal rats subjected to 7,12-dimethylbenz(a)anthracene (DMBA) treatment developed more TEBs, which showed a higher proliferation rate compared to other mammary developmental stages, and these TEBs eventually underwent oncogenic transformation [107]. Therefore, TEB development and organization share some characteristics with oncogenic phenotypes (i.e. cell invasion, proliferation and an increase in vascular supply) and investigation of TEBs and pubertal development of the mammary gland may be relevant to breast cancer research.

Microtubule organization also plays a key role in determining the apicobasal polarity of MECs, orienting the mitotic spindle, and forming the mammary lumen structure during development and in response to pregnancy signals. Loss of Stathmin (STM), a microtubule destabilizing protein, causes a significant delay in postnatal development and maturation of the mammary gland in mice, thus depriving them of the ability to nurse offspring. STM loss leads to decreased Prolactin receptor (PrlR) trafficking and Signal transducer and activator of transcription 5 (STAT5) signaling, both known to be essential for normal functioning of the gland and to be involved in breast cancer [108]. Huntingtin (HTT) is another protein that regulates apicobasal polarity through microtubulebased dynamics. HTT has been shown to be required for the microtubule dependent apical localization of Par3 through vesicular transport and controls lumen formation in virgin, pregnant, and lactating mice [109]. Integrins also play a critical role in determining the apicobasal polarity of MECs through the Integrin linked kinase (ILK)-microtubule network, by regulating tight junction proteins, basolateral surface, Golgi orientation, and consequently mammary acinar morphogenesis [110]

Additional components of the basement membrane, have also been reported in determining MEC cell polarity. For instance, loss of p120, a complex subunit essential for normal functioning of E-cadherin (epithelial cadherin), induced alterations to ductal architecture and TEB function, phenotypes that were likely resultant of an abnormal interaction of cadherin complexes with polarity proteins [111]. More recently, it was shown that depletion of the laminin-binding integrins α3α6 resulted in abnormal baso-apical polarization of luminal progenitor cells, and blocked alveologenesis during pregnancy, thus illustrating that maintenance of polarity via basement membrane function can influence the secretory potential of MECs [112].

Overall, several molecular pathways and factors act during puberty to promote mammary ductal maturation, and these pathways remain active throughout adulthood. As each reproductive cycle promotes lobulo alveologenesis and side branching, we speculate that the constant promotion of mammary cell differentiation and proliferation may induce tumorigenesis over time or otherwise elicit oncogenic pathways that are dormant in the first years of adulthood.

4. Parity signals and mammary development

A complete pregnancy cycle involves gestation, lactation, and involution and, collectively represents the second postnatal stage of mammary gland development, which prepares the gland to produce nourishment to support the offspring. Given the complexity and importance of each of these steps and their molecular programs in mammary gland development and maturation, we will discuss each of them separately.

As well as their role in sexual maturation and mammary development, increased E2 and P4 levels during early gestation are the main factors that induce and regulate MEC proliferation, differentiation, ductal branching, and alveolar development [113,114]. These effects on mammary gland development can be mimicked with subcutaneous implantation of slow-release 17- β -estradiol and progesterone pellets, which provide a temporally controlled approach for studies of the mammary gland in response to pregnancy hormones [115]. Similar to the pubertal mammary gland development, ER dimerizes and translocates to the nucleus in response to elevated E2 levels, thus acting as (a) a paracrine signal transducer that activates FGF and EGF pathways, and (b) a TF of that induces the expression of ER–responsive genes, during pregnancy [116,117].

During pregnancy (Fig. 1), P4 and prolactin (Prl) orchestrate the differentiation of MECs into specialized alveolar structures, which are capable of synthetizing and secreting milk during lactation. Like its function during puberty, the main role of P4 during pregnancy is to promote extensive ductal side-branching but, in pregnancy, P4 signals substantially increase the number of alveolar structures to promote a lactation-competent gland. The absence of PRs in MECs impairs alveolar and side-branching formation, and its paracrine signaling is associated with Wnt4 and RANKL [114]. The RANKL receptor (RANK) expressed in ER+ PR+ luminal cells increases WNT paracrine signaling in ERPR luminal progenitor cells, wherein P4 mediates Wnt4 and RANKL expression in luminal cells, promoting alveologenesis, expansion of mammary epithelium and milk-secreting acini during pregnancy [118-120]. In progenitor cells, P4-RANK/L signals upregulate R-spondin, a receptor agonist for Wnt. Thus, the Wnt and RANK pathways work in combination to control MEC differentiation [118]. As a consequence, Wnt4 KO does not completely abrogate alveologenesis, as other factors are able to compensate for the absence of Wnt4, promoting alveoli formation in late pregnancy [119]. However, RANKL and RANK KO pregnant mice have no lobuloalveolar milk-secreting structures and experience increased levels of apoptosis in alveolar MECs [121,122].

RANKL activates NF-kB in combination with IkB kinase (IKK), inducing the expression of Ccnd1 and promoting MEC proliferation during pregnancy [123]. The impairment of this pathway leads to underdeveloped ductal structures during pregnancy and a subsequent lactation deficiency due to the lack of MEC expansion [124]. RANKL expression in PR + luminal cells induces mitogenic paracrine signaling to MaSCs and RANKL-expressing luminal progenitors. Elf5 is a down stream factor for the P4-RANK/L network that can induce progenitor specification towards luminal secretory cell fate [79,125]. The purification of subpopulations of MECs and organoid culture strategies will potentially help identify the specific cell lineages affected by RANK/L, its downstream targets, and the mechanisms and molecular switches triggered by P4.

The release of oxytocin (peptide and neuropeptide hormone, OXT) is one of the factors that control parturition (the act of giving birth) and lactation (Fig. 1). OXT controls calcium uptake and contractibility of myoepithelial cells and induces mechanical constriction of luminal alveolar cells to eject milk droplets into the lumen of alveoli [126]. Abrogation of oxytocin production and release does not impact milk production, instead affecting myoepithelial cell contraction. This results in an accumulation of milk droplets in the luminal alveolar cells, nursing impairment, and the death of pups [127]. The inhibition of oxytocin master regulators, such as ORAI calcium release-activated calcium

channel protein 1 (Orai1), delays alveolar contraction due to interference with calcium influx, and impairs lactation [128,129].

Lactation and milk production yield during late pregnancy have been associated with the presence of binucleated alveolar cells [130,131]. Aurora kinase A (AURKA) and polo-like kinase (PLK1), essential kinases that control cell cycle progression, were found to be upregulated during the onset of lactation, and binucleated cells were suggested to be a byproduct of cytokinesis failure during cell division [130]. These binucleated MECs not only have an altered ploidy index, but also display an enlarged cell volume, indicating the synthesis of high levels of milk protein. They are postulated to play a critical role during milk production, given that AURKA-depleted mammary glands lacked cells with increased DNA content, and were impaired for milk protein production, resulting in stunting of the pups. Similarly, small molecule inhibition of AURKA and PLK1 kinase activity reduced binucleation in luminal alveolar cells and impacted lactogenesis [130]. Such binucleated cells were also detected in the mammary tissue of humans, cows, seals, and wallabies, indicating their evolutionary conservation across mammalian species [146]. However, recent studies have yielded conflicting results, with some indicating that mitotic events are not involved in promoting alterations in DNA synthesis and milk protein production in murine MECs, while others have suggested that DNA synthesis and lactogenesis are directly associated. This highlights the complexity of mechanisms supporting polyploidy in mammary alveolar cells during pregnancy and lactation, which still remain to be elucidated [132-134]

4.1. Prolactin's role in mammary gland development and lactation

Prolactin (Prl) was first described in 1929 when virgin rabbits injected with pituitary extracts from lactating mice showed pregnancylike mammary architecture and lactating glands [135]. During the early stages of pregnancy, markedly increased Prl levels play a role in maintaining the corpus luteum, expression of E2 and P4, and in inducing mammary morphogenesis [136,137]. Prl KO mice suffer from impaired alveolar bud formation and reduced tertiary ductal branches, demonstrating the role of Prl during pregnancy-induced development of the mammary gland [138]. The defective mammary branching phenotype was restored by administration of P4 in Prl-/- ovariectomized mice, revealing that P4 and Prl potentially coordinate lobuloalveolar development [138]. Impaired alveologenesis, but not ductal branching, was rescued when the mammary fat pads of WT mice were transplanted with Prl-/- MECs, revealing that prolactin alone drives mammary alveologenesis. While the placental hormones regulate Prl function midpregnancy, Prl levels increase during lactation. Prl is mainly expressed by lactotrophic cells in the pituitary gland and released into the bloodstream, but it is also expressed locally in several tissues, including by MECs in the mammary glands. RANKL also acts downstream of PrIR signaling and its overexpression in virgin glands induces pregnancy-like mammary architecture. RANKL is also responsive to P4, and depletion of RANKL results in similar mammary phenotypes as in PR-/- and Prl-/ glands [48,84,139]

Prolactin binds to its receptor (PrIR), resulting in the activation of several signaling cascades, including the Janus Kinase (JAK)/STAT5 pathway in MECs [140,141]. Upon Prl binding, JAK1 and JAK2 are recruited to PrIR, and their activation triggers the phosphorylation and nuclear localization of STAT5 [142]. STAT5(A/B) was first described as one of the progenitors and master regulators of stem cells in normal and leukemic hematopoiesis, and its activation allows for its binding to GAS motif responsive elements (TTCnnnGAA) at gene regulatory regions il43,144]. In MECs, STAT5 controls the expression of an array of genes, including whey acidic protein (*Wap*), β -casein, and others that together regulate differentiation and proliferation across multiple developmental stages [145,146]. STAT5 also binds to super-enhancers of mammary lineage-specific target genes, which then act collectively with additional TFs to control gene expression [147].

A downstream target of the PrlR pathway is the ETS transcription

Seminars in Cell and Developmental Biology 114 (2021) 93-112

factor 5(ELF5), a major regulator of alveolar cell fate and lobuloalveolar expansion, as mammary glands from Elf5+/- mice show arrested alveologenesis during pregnancy and lactation failure [148,149]. Elf5 expression increases during pregnancy and lactation, and falls immediately after lactation (involution), when alveolar structures are cleared [149,150]. Accordingly, induction of Elf5 expression in virgin mice leads to an increased expression of milk genes (β-casein and Wap), secretion of milk, inhibition of ductal expansion, and alveolar differentiation [148]. The depletion of Elf5 impacts other downstream targets of the prolactin pathway, as female mice and cultured cells that are haploinsufficient for Elf5 showed impairment of STAT5 activation during pregnancy. Elf5 responsive elements were found near the promoter region of STAT5, suggesting that ELF5 controls STAT5 expression [150]. Genome-wide analysis showed that ELF5 and STAT5 colocalize at mammary-specific STAT5-bound enhancers, including an intergenic enhancer that controls STAT5 activity, suggesting that they cooperate to induce gene expression [151-153].

Additional factors, such as Cub and zona pellucida-like domaincontaining protein 1 (CUZD1) operate downstream of the JAK2/STAT5 pathway. Loss of CUZD1 induces abnormal mammary TEBs, and impairs the development of tertiary branches and alveologenesis, resulting in a critical reduction of milk proteins and milk production in pregnant and lactating mice [154]. CUZD1 deletion resulted in enhanced STAT5mediated transcription activation of members of the EGF family, such as *Areg, Nrg1* (neuregulin-1), and *Epgn* (epigen), which interact with ErbB receptors and promote MEC proliferation [152,154–156].

During early (5–7 days) and mid (11–14 days) pregnancy in mice, the downregulation of SCRIB expression delayed alveologenesis though the reduction of PrI-induced activation of the JAK2/STAT5 pathway [157]. Loss of SCRIB induced PrIR accumulation in the Golgi complex and in recycling endosomes in both mouse and human cells. Given that lactation and milk flow were normal, it was hypothesized that SCRIB levels are restored in late pregnancy [157], however SCRIB depletion has not [158]. Late during gestation and early during lactation, formation of tight junctions during luminal cell specification controls cellular polarity; which is crucial for directional secretion of milk droplets into the lumen [159], which is principally coordinated by PrI/JAK2 modulation of fxtracellular signal-regulated kinases (ERK)1/2 function [160].

4.2. The back-and-forth of mammary involution

Offspring weaning removes the suckling stimulus and causes milk stasis, which triggers a series of remodeling processes leading to regression of mammary tissue to a pre-pregnancy state, also known as involution (Fig. 1). In humans involution lasts an average of 24 months, while in rodents it lasts for \sim 10–20 days and encompasses two main phases, the reversible phase (days 0–2 of involution) and the irreversible phase (days 8–18) [161,162].

The reversible phase is characterized by reduced milk production, milk absorption, epithelial cell shedding, alveolar cell death, phagocytosis of apoptotic cells by non-specialized epithelial cells, leukocyte infiltration, and breakdown of tight junctions. As the name implies, resumption of suckling restores lactation through the release of accumulated milk. During lactation, the mammary gland may commence reversible involution after a few hours of milk accumulation, which restores milk-producing cells and avoids over production of milk.

Cell death in the reversible phase of involution occurs via nonapoptotic signals, where residual milk fat globules are taken up by the MECs through lysosomes, which induces lysosomal-mediated cell death (LCD) [163,164]. Of the factors that control LCD, the Zinc transporter zinc transporter 2 (ZnT2) is involved in regulating mammary gland development during lactation and involution [165]. During lactation, ZnT2 regulates cell polarization, orientation of vesicles, lumen formation, and prolactin signaling, while induction of ZnT2 expression in MECs induced premature activation of involution and increased zinc

99

concentration in mitochondria and lysosomes [166]. Mutations in ZnT2 have been found in women who produce milk deficient in zinc, which is an important nutritional constituent for newborns [167]. From day 0–6, ~80% of the mammary epithelium undergoes tightly regulated cell death [168]. Serotonin (5-HT) synthetized by MECs [169] regulates tight junction homeostasis through the activation of p38-MAPK signaling, with long-term exposure to 5-HT inducing tight junction breakdown and promoting cell death [170].

Such events occur concomitantly to the recruitment of STAT3mediated signals, which is initially activated by Leukemia inhibitor factor (LIF) in response to milk stasis during the first 3 days of involution [171,172]. Activation of LIF-STAT3 pathways induces the expression of Oncostatin M (OSM), one of the main cytokines induced by STAT3regulatory network, and essential factor for the control of the irreversible phase of involution [173]. In fact, mammary glands from either TGF-β^{-/-}, interleukin 6^{-/-} (IL6^{-/-}), lLIF^{-/-}, or STAT3^{fl/fl} mice showed stalled involution and lower levels of cell death [171,172,174,175]. Similarly, STAT5 overexpression during early involution activates Akt1 transcription, a direct target of STAT5, and both proteins abrogate proapoptotic STAT3 signaling, leading to the survival of mammary cells and delayed involution, indicating that the Prl/JAK2/STAT5 pathway must be terminated during involution [176,177]. Understanding the mechanisms by which STAT3 functions during involution could lead to therapeutic strategies targeting STAT3 during breast cancer development and progression [178]

During the irreversible phase (days 2-6), the mammary Extracellular matrix (ECM) undergoes substantial remodeling, with the activation of wound healing processes, via increased activity of Matrix metalloproteases (MMPs), deposition of collagen and BM, in addition to changes in many signaling pathways [179]. For example, the metalloprotease Disintegrin and metalloproteinase domain-containing protein 12 (ADAM12) directly activates the STAT3 pathway, one of the involution signals in MECs. In addition, MECs of both rodents and humans express the inflammatory activator gene Cyclooxygenase-2 (COX-2) in response to collagen accumulation during involution, a signal that supports immune infiltration, but may also be associated with postpartum breast tumor development [180,181]. Finally, the drop of systemic Prl levels, and the increase of leptin hormone levels induces adipogenesis starting on involution day 2, allowing for the initial reestablishment of pre-pregnancy cellular density and architecture in the mammary gland [182,183].

In the irreversible phase of involution, macrophages and nonprofessional phagocytic MECs clear the remainder of the cellular debris, resulting in a second wave of inflammation and immune cell recruitment [184,185]. Activation of Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of Rho-GTPase family, in MECs sustains their phagocytic activity, while chemotactic factors promote macrophage infiltration in order to eliminate dead cells [186,187]. Concordantly, Rac1-/- female mice showed accumulation of dead cells and milk protein in the mammary lumen due to loss of adhesion proteins in dying MECs, and inhibition of the phagocytic function of MECs.

The ECM also plays a role in immune cell recruitment and activation, as well as broader immune system functions, as collagen and laminin fragments may also induce an influx of macrophages and neutrophils to the involuting gland [188]. Accordingly, TGF- β regulates MEC cell death and phagocytosis, and helps in the maintenance of ECM integrity, thus also playing a role during the final stages of involution [189,190]. Signaling pathways and the high cell-turnover modulate mammary involution, and they also promote an increase in self-antigen reactions, creating an immune tolerant environment and a mucosal barrier. Increased numbers of T regulatory cells (ROR γ T⁺ FoxP3⁺ CD4⁺), dendritic cells, and memory Treg (Th17) cells are observed during involution. The immune environment then reverts to its nulliparous state when involution comes to an end [191].

The immune tolerance observed during involution and lactation may be relevant for understanding postpartum breast cancer, which has a

Seminars in Cell and Developmental Biology 114 (2021) 93-112

very poor clinical prognosis, as well as suggest potential routes to explore in cancer treatment [192]. For example, T-lymphocytes expressing the T-cell receptor $\gamma\delta$ TCR, also called $\gamma\delta$ T cells, may be potential targets for genetic engineering to treat a variety of cancers, including breast tumors [193]. $\gamma\delta$ T-cells are involved in both innate and adaptive immune responses, and the mechanism of activation for $\gamma\delta$ T-cells is major histocompatibility complex (MHC)-independent creating an opportunity for the development of pan-population immunotherapy.

Despite involution being both a complex and extensive developmental process, the post-involution gland is phenotypically indistinguishable from a mammary gland that has never been exposed to pregnancy hormones, and is competent to re-engage in the lactation process de novo, by repeating the process with each pregnancy. Part of this ability is based on stable molecular changes brought about by the first pregnancy cycle, which enhance milk production during a consecutive pregnancy, indicating that MECs undergo stable molecular changes that function as a memory of prior pregnancy [194,195]. These changes involve remodeling of the MEC epigenome, including alteration of the DNA methylation landscape and gain of the histone 'active' mark, H3K27ac, at genomic regions associated with early activation of milkrelated genes during a subsequent exposure to pregnancy hormones [196-198]. These gene activation mechanisms are MEC-autonomous, given that a robust response to pregnancy hormones was also observed using fatpad transplantation and organoid cultures [198].

Involution shares many biological processes and gene networks with those implicated in breast cancer progression and metastasis [188,199]. Thus, research on involution-related processes will provide insights on the orchestration of mechanisms associated with ECM remodeling, regulation of gene transcription, maintenance of the epigenomic landscape, and immune surveillance in the normal environment of the gland, while also exploring their deregulation in contribution to cancer development.

5. Beyond tissue development – The transcriptional regulation of MEC differentiation

Two main theories have been advanced concerning the cellular states between MaSCs and fully differentiated MECs [200]. The first hypothesis is based on a MaSC that differentiates directly into luminal or myoepithelial progenitors, thereby producing the respective differentiated MECs. The second theory postulates the existence of a bipotent stem cell generated by a multipotent stem cell that gives rise to basal and luminal progenitors. However, it is difficult to analyze lineage commitment and differentiation in a system where cell surface markers and signals are highly interchangeable. To address this point, several studies have focused on understanding determinants of cell identity and state, with the goal of defining gene expression dynamics that could identify bi- or unipotent cells and their ability to commit to a lineage during the process of mammary gland differentiation (summarized in Fig. 2 and Table 1).

5.1. Working forces of MEC differentiation

Axis inhibition protein 2 (Axin2) is one such factor whose role in MEC differentiation has been investigated. Axin2 is a target of the Wnt/ β -Catenin pathway and has been shown to mark stem cells localized at the bottom of intestinal crypts and to generate entire crypt/villus structures [201–203]. In the mammary gland, Axin2⁺ MECs exclusively give rise to MECs committed to the myoepithelial lineage in prepubescent mice. However, Axin2⁺ MECs demonstrated multipotent cell fates in mammary transplantation assays, suggesting that signals present during wound healing, or those coming from specific localization at TEBs during mammary branching, may dictate stemness (Table 1) [203,204].

In addition to signaling molecules, epigenetic factors have also been shown to play a role in lineage commitment and differentiation during

100

mammary gland development. For instance, Lysine-specific demethylase 5B (KDMSB), a Jumonji protein, is a histone demethylase that removes H3K4me3 methyl marks and regulates ductal development during puberty and pregnancy through the control of the transcription of genes for luminal lineage maintenance [205]. Using a single-cell approach, KDM5B was identified as a regulator of epigenetic and transcriptomic states of differentiated luminal epithelial cells, as well as a regulator of transcriptomic heterogeneity in ER + luminal breast cancer (Table 1) [206]. The inhibition of KDM5B was associated with a pattern of H3K4me3 marks that overall altered the transcriptomic profile in single cells. The KDM5 family of proteins has been implicated in the development of cancer, poor cancer survival, and cancer therapy resistance (e.g. lung, melanoma and breast) [207–210]. Recent studies have attempted to identify small molecules that target KDM5 [211–213].

Many components of the master epigenetic regulator Polycomb complex (PcG) have been implicated during mammary gland development. The H3K27me3 histone methyltransferase Enhancer of zest homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), and a key factor in stem cell differentiation, regulates the timing of alveologenesis and luminal differentiation during mammary development [79,214-216]. Loss of EZH2 induced premature cell differentiation and luminal alveolar lineage commitment due to enhanced STAT5 occupancy at its genomic binding sites and increased expression of its downstream targets, suggesting that loss of a repressive marker catalyzed by EZH2 facilitated STAT5-dependent gene expression activation and luminal-biased differentiation (Table 1) [217]. During pregnancy, activation of genes associated with milk production and cellular differentiation was associated with loss of H3K27me3 signals, whereas genes that were repressed during pregnancy (and mammary morphogenesis) markedly gained H3K27me3, demonstrating a regulated gene expression switch that supports cellular commitment during pregnancy-development [79]. Conversely, the Polycomb repressive complex 1 (PRC1) ring finger protein 4, also known as BMI-1, plays an essential role in controlling the stemness of MECs [214,215]. Loss of Bmi-1 affected the pool of MaSCs and lineage committed progenitors, which resulted in defective mammary development in fat pad transplantation assays (Table 1), a phenotype that was rescued by further loss

Seminars in Cell and Developmental Biology 114 (2021) 93-112

Fig. 2. Molecular regulators of mammary hierarchy. Schematic representation of molecular regulators of mammary cell lineage commitment. Two main differentiation pathways have been reported in literature. In one of them, mammary stem cell (MaSCs) can differentiate into luminal progenitors (LP) and basal progenitors (BP), which are committed to originate either luminal alveolar progenitor (LAP) and luminal hormone progenitors (LHP), or myoepithelial cells, respectively. Another possibility is that MaSCs differentiate into a bipotent MaSC that will give rise to LPs and BPs, subsequently driving luminal and basal differentiated cells. Signaling molecules regulating one MEC subpopulation are color coded according to the cell color and are adjacent to the cell type, whereas molecules regulating more than one cell fate are represented with a bar. Lighter yellow semi-circles indicate high cellular stemness whereas the darker yellow is representative of a differentiated state. The orange bars on the right highlight the most common MECs specification networks identified in each stage of the mammary gland. The gradient colors in the bars representing BPTF (Bromodomain Protein Transcription Factor) and KDM5B (Lysine-Specific Demethylase 5B) are directly related to the function of these proteins at the specified cell lineage.

of Ink4a/Arf expression, one of the factors negatively regulated by PRC1/BMI-1 [218].

Another key regulator of MaSC self-renewal and differentiation is the Bromodomain protein transcription factor (BPTF). BPTF is the largest subunit of the Nucleosome remodeling factor (NURF) complex, classified as a histone acetylation reader that plays a role in the regulation of chromatin accessibility, modulating TF-DNA occupancy and gene expression levels. [219-223]. Conditional deletion of BPTF in cytokeratin K5 (KRT5+) MaSCs resulted in loss of accessibility at genomic regions occupied by many master regulators of mammary development, such as SRY-box (SOX) 2 [224], Transcription factor AP-2 (TFAP2) [225], Runt-related transcription factor 1 (RUNX1) [226], SOX10 [227], TEA domain transcription factor 1 (TEAD1) [228], SOX6 [229] and Zinc finger e-box binding homeobox 1 (ZEB1) [230], and impacted ductal alveologenesis during active stages of post-birth mammary gland development (Table 1) [231]. Pygopus 2 (PYGO2), is an additional epigenetic factor and histone methylation reader that in response to Wnt signaling controls gene expression, self-renewal and MEC differentiation. Conditional loss of Pygo2 in Cytokeratin 14 (KRT14) expressing cells resulted in reduced mammary repopulation activity in fat pad transplantation assays (Table 1) due to a luminal-biased state of MaSCs, suggesting its role in sustaining the basal-like fate commitment of MECs [232,233]. Further gene-focused chromatin immunoprecipitation assays (ChIP-qPCR) suggested a mechanism through which PYGO2 chromatin association induces the active transcription of Notch3 mRNA, one of the drivers of luminal/alveolar cellular fate, indicating an epigenomic control of the timing of gene expression according to the cell differentiation state [234,235]

As well as epigenetic regulation of MEC differentiation, many TFs associated with DNA and gene expression regulation are required to determine lineage commitment and cellular differentiation. For example, STATS plays a role during pregnancy-development of the mammary gland, and has also been implicated in cellular differentiation [48,139,147,153–156]. Depletion of STAT5 expression in MaSCs resulted in loss of tissue engraftment in fat pad transplantation assays, abrogation of mammary branching, and reduced milk production, demonstrating a role for STAT5 in controlling lineage commitment

Table 1

Transcriptional regulation of MEC differentiation – overall summary of bulk and scRNAseq expression profiles and their contribution to elucidating cellular state, master regulators, and lineage commitment across mammary epithelial tress.

Gene name	Cell types	Function	Identification method	References
Axin2	Multipotent cell fates	Lineage commitment and stemness	Lineage tracing, transplantation assays	[203,204]
BPTF	Basal epithelial cells, MaSC pool	MaSC self-renewal, ductal alveologenesis, regulation of chromatin accessibility	Gene knockdown, transgenic mice, RNA-seq, ATAC-seq	[231,333]
HOTAIR	Ductal carcinoma cells	Hormonal regulation of cell proliferations	Human tumor tissue analysis, microarray expression analysis, gene knockdown, PDX models	[263,264,266]
KDM5B	Luminal epithelial cells	Regulator of epigenetic and transcriptomic states	Single cell RNA-seq, mathematical and molecular modeling, gene knockdown, human tumor cell line cultures, inhibitor resistance	[206,207,211,213]
Let-7/ miR- 93/ miR- 200c	MaSCs	Maintenance of stemness and regulation of differentiation	3D cell culture assays, miRNA expression sequencing	[248]
NEAT1	Luminal ductal progenitors	Ductal morphogenesis throughout postnatal mammary development	Mouse tissue analysis, RNA in situ hybridization	[260,261]
PER2	MaSC pool	MaSC lineage commitment during pubertal development, regulation of MEC identity, epithelial-mesenchymal transition (EMT)	Transgenic mice, transplantation assays, RNA-seq,	[238,239]
PRC2 complex – EZH2	Luminal alveolar progenitors	Regulator of timing of differentiation and alveologenesis	Gene knockdown, transgenic mice, ES cell differentiation studies	[214,216,217]
PRC1 complex – Bmi1	MaSC pool	Mammary ductal expansion, alveolar cell differentiation, self-renewal of MaSCs	Human MaSC cultures, PDX models, transgenic mice	[218,243]
PROM1	ER+ luminal progenitors	Development and long-term homeostasis of ER+ luminal cells, alveologenesis	Transgenic mice, lineage tracing, transplantation assays	[334]
Pygo2	Basal epithelial cells, MaSC pool	MaSC self-renewal, regulation of chromatin accessibility, lineage commitment and differentiation	Gene knockdown, transgenic mice, transplantation assays, ChIP microarrays	[232,233,335]
SOX9	ER- luminal and basal progenitors	Development and long-term homeostasis of ER- luminal cells	Transgenic mice, lineage tracing, transplantation assays	[240,334]
STAT5	Luminal and basal progenitors	Lineage commitment and differentiation during pregnancy	Inhibitor assays, transgenic mice, microarray analysis, transplantation assays, 3D cell culture systems	[139,147,153-156,236,237]
miR-193b	Luminal progenitors	Control of MaSC activity and alveolar differentiation	Transplantation assays. RNA-seq, gene knockdown	[254]
miR-205/ miR-22	MaSCs, MECs	Stemness, EMT, cell polarity, differentiation and specialization of MECs during late pregnancy through lactation, breast tumorigenesis	Transplantation assays, xenograft models, 3D cell culture, gene knockdown	[249-253]
miR-206/ miR-150	Luminal alveolar cells, MaSCs	Regulation of cell proliferation, differentiation, and stemness during pregnancy, mammary positioning during embryogenesis	3D cell culture, microarray expression analysis, gene overexpression, transgenic mice	[255-257]
ZFAS1, PINC	Luminal alveolar cells	Terminal secretory differentiation during pregnancy and lactation, epigenetic control of mammary development	Gene knockdown, microarray expression analysis, RNA in situ hybridization	[259,261]

(Table 1) [236]. STAT5 overexpression in MaSCs induced precocious alveologenesis, further indicating that STAT5 is involved in the differentiation of luminal alveolar progenitor cells [237].

Based on observations of genes that control MEC lineage commitment, a "developmental clock" has been proposed for MEC fate specification, which functions independently of normal circadian clocks. Period 2 (PER2) is one such gene that regulates MaSC lineage commitment and cell fate determination during the pubertal development of the mammary gland, given that PER2 KO mice exhibited underdeveloped mammary glands with reduced ductal branching, and MECs displayed a dual luminal/myoepithelial phenotype, demonstrating PER2's role in cell fate determination (Table 1) [238]. Further studies showed that loss of PER2 resulted in alteration of MEC identity, with the deregulation of several factors that block or promote EMT progression and MaSC cell fate determination, suggesting that these MECs have increased cell fate plasticity and heterogeneity, which will need to be defined at the single cell level [239,240].

Additional TFs controlling MEC differentiation include the AP-1 complex, E2 factor (E2F), RUNX1, and BCL11B, which mainly control gene expression in response to changes in the levels of growth factors and hormones (such as FGF, EGF, and ER). For example, loss of function of the TFs AP-1and E2F suppressed mammary development at all postnatal stages, given their role in controlling genes such as Ccnd1, cmyelocytomatosis oncogene (c-Myc), Tissue inhibitor matrix metalloproteinase 1 (TIMP1), Vimentin (Vim), and Fibronectin (Fn), which together guide the proliferation, survival, and ECM remodeling of MECs [241,242].

Undoubtedly, this comprehensive overview of molecular regulators in murine MECs illustrates the intersection of complex events that guide murine mammary gland development. The need to understand how such processes take place in mammary tissue aims to answer outstanding questions regarding activation of programs associated with development and carcinogenesis in humans. For example, utilizing RNA interference targeting to induce Bmi-1 knockdown, severely impaired the mammary repopulating capacity of human MaSCs in humanized mammary fat pad transplantation assays, and reduced in vitro mammosphere formation, supporting an evolutionarily conserved role in controlling breast stem cell activity [243]. The notion of the evolutionarily conserved need for molecular regulators of breast development was further expanded in studies that defined cell specific cis-regulatory regions in isolated mammary cell populations from humans, implicating TP63, ELF5, and ESR1 as master regulators of human mammary epithelial lineage commitment [244]. In addition, the utilization of mouse and human comparative analyses revealed that pregnancy epigenetically modifies the Cyclin-dependent kinase inhibitor 1B $(p27^{Kip1})$ and TGF\beta gene loci, an effect that influences the state of

luminal progenitor cells in culturing systems [245]. Still, there remains an acknowledged gap in bridging breast cellular function, lifespan, and life events (pregnancy, environmental exposures, habits, etc) with epigenomic and molecular alterations that can influence MEC homeostasis and cancer development.

5.2. ncRNA regulation of MEC development

Non-coding RNAs (ncRNAs) are known to play key roles during tissue development and cellular lineage commitment. MicroRNAs (miR-NAs) and long non-coding RNAs (lncRNAs) have been implicated in fate specification and specialization of MECs. Profiling of miRNA expression in comma-D β cells, a normal-like mammary cell line revealed a number of miRNAs potentially involved in MEC differentiation, including miR-205 and miR-22, which are highly expressed in Sca1^{high} progenitor cells, and let-7 and miR-93, present in mammary undifferentiated cells (Table 1) [246–248].

Several of these miRNAs have subsequently been shown to either promote or block MEC stemness. For example, loss of miR-205 expression resulted in a stemness phenotype in MECs, promoting EMT, and altering cell polarity and symmetric division, through increased Zeb1/2 and Notch expression [249]. During late-pregnancy through lactation, miR-200a stabilizes the levels of E-cadherin and other cell polarity proteins, such as Par6b, by potentially downregulating Zeb1/2, thereby inducing MEC differentiation and specialization [250]. Conversely, miR-22 overexpression resulted in Zeb1 upregulation, leading to the amplification of the MaSC pool, and breast tumorigenesis [251]. Zeb1 and Bmi-1 are also target of miR-200c, a microRNA detected in CD44+CD24 mammary repopulating cells and downstream to the p53 oncogene [252,253]. miR-193b has been identified as a STAT5 target, and mice lacking miR-193b showed accelerated stem/progenitor cell activity and proliferation during puberty and pregnancy (Table 1) [254]. Given miR193b is downstream of prolactin signaling, other miRNAs may potentially be targets of hormonal pathways, and their signaling is yet to be elucidated.

Besides its expression in ER + breast cancers, miR-206 regulates the transcription of genes that control cell proliferation, differentiation, and stemness in non-tumorigenic mammary cells during pregnancy (Table 1) [255]. Among the genes upregulated by mir-206 in mammary buds are Tbx3 and Lef1, TFs required for mammary positioning during embryogenesis (see above) [256]. The levels of miR-206 and miR-150 decrease between pregnancy and lactation [255,257]. Constitutive expression of miR-150 in MECs resulted in the failure of alveoli formation, and therefore, lactation, liked caused by reduced the expression and phosphorylation of STAT5 [257], however the exact mechanism is currently not known. miR424–503 has been shown to activate apoptosis during involution [258]. As the offspring are weaned, the TGF- β pathway is activated, upregulating miR-424–503 and resulting in the expression of apoptotic factors while reducing the activity of Akt and ERK1–2 pathways [258].

Amongst the lncRNAs identified in MECs, ZNFX1 antisense RNA 1 (ZFAS1) and pregnancy induced non-coding RNA (PINC), are highly expressed in alveolar cells during pregnancy, however, their expression is significantly decreased during lactation with a subsequent increase during involution (Table 1). The reduction of PINC levels during lactation is crucial for terminal secretory differentiation of the gland as knockdown of PINC induces differentiation whereas its overexpression interferes negatively with lactogenic differentiation [259]. PINC inhibits the differentiation of alveolar secretory cells through its interaction with Retinoblastoma-associated protein 46 (RbAp46) and PRC2, which results in the deposition of H3K27mc3 marks that repress the transcription of target genes [259]. PINC modulates the epigenetic control of mamary development to prevent overproduction of milk and uncontrolled differentiation of luminal progenitor cells into alveolar secretory cells.

Similarly, the lncRNA Nuclear paraspeckle assembly transcript 1 (Neat1) is expressed in luminal cells and is required for ductal morphogenesis throughout postnatal mammary gland development, as KO mice for Neat1 show impaired lactation progression (Table 1) [260]. In parous glands, PINC and ZFAS1 localize to the terminal ductal-lobular structures, where their function is associated with cell survival and cell division [261,262]. Taken together, ZFAS1, Neat1, and PINC expression is tightly regulated during mammary development, and collectively these ncRNAs control the differentiation of mammary alveolar structures.

Hox transcript antisense intergenic RNA (HOTAIR) is another IncRNA that recruits PRC2 to control and repress the transcription of target genes (Table 1) [263,264]. Given that E2 regulates HOTAIR, and that HOTAIR regulates cancer cell proliferation and cancer invasion in ER + breast tumors, this suggests that a feedback loop exists between HOTAIR and mammary hormones [265,266]. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is a InCRNA upregulated by oxytocin during lactation and in the breast of postmenopausal women [267]. MALAT1 has also been reported to induce invasion and metastasis and to regulate the oncogene p53 [268].

With their wide-ranging role in gene expression regulation, miRNAs and lncRNAs have been considered as suitable drug targets to abrogate the establishment and progression malignant mammary development. While a series of strategies, including the development of tiny-LNAS, have been shown to be efficient in silencing programs regulated by miRNAs [269], recent studies utilizing anti-sense oligo targeting approaches have successfully reduced tumor growth and metastasis by inhibiting MALAT1 expression, thus providing a potential therapeutic strategy to target breast tumors.

5.3. New insights into mammary hierarchy - at single cell resolution

The need for more refined strategies to isolate MaSCs and differentiated MECs has led to the development of flow cytometry-based methods for the prospective isolation of mammary cells, the identification of multiple cellular markers that, coupled with molecular profiling, are starting to reveal the mechanistic basis of mammary lineage commitment [200,204,270–277]. These approaches are also filling in the gaps in our understanding of cell specification and plasticity, while raising questions about our appreciation of cellular heterogeneity in MECs. Recent advances in next generation sequencing coupled with bioengineering approaches for single-cell isolation (e.g. microfluidics) offer versatile and agnostic tools able to address global molecular classification and cell identity at high-resolution.

Single cell RNA-seq (scRNAseq) studies are beginning to analyze mammary epithelial cell developmental trajectories in order to address, for example, the existence of bipotent MaSCs and/or lineage-committed progenitors during mammary development, and the temporal switches that govern lineage segregation [278]. To investigate the onset of the mammary epithelial differentiation during embryogenesis, the transcriptomes of a limited pool of FACS-isolated E14 cells have been analyzed, using scRNAseq [279]. Although a transcriptional signature for multipotency was still detected in E13 mammary tissue, unsupervised analysis revealed a composite of gene expression signatures from both luminal and basal cells at E14 [279]. This data provides insight into the molecular regulation that shifts multipotency to unipotency in a developmentally timed fashion, and also indicates the presence of a rare population of bipotent cells early during mammary fetal development. Consistent with these results, scRNAseq data from mouse mammary tissue at E16 and E18 revealed hybrid transcriptional signatures consistent with both basal and luminal lineage specifiers within a single fMaSC cluster, in addition to signatures associated with chromatin remodeling, indicating a role of the epigenetic reprogramming of stemness during mammary embryogenesis [280]. Single-nucleus ATACseq (snATACseq) data revealed an epigenetically poised state in fMaSCs from E18, an observation consistent with earlier lineage tracing studies [281,282]. This poised state may guide bidirectional cell commitment to either the basal or luminal lineage after birth [283].

MEC specification accompanies mammary tissue remodeling during subsequent postnatal developmental stages, involving multiple repeated lineage segregation events. Single-cell transcriptome analyses of prepubertal glands revealed signs of an intermediate cellular state between embryonic and adult cells, with MECs assuming more luminal/alveolar features, which potentially indicates the emergence of a luminal precursor or immature state [280,284]. Such an intermediate cellular state was also observed in studies that analyzed MaSCs microdissected from TEBs, which demonstrated a heterogenous transcription state for lineage committed MaSCs, thus introducing the concept that perhaps pools of MaSCs are more likely to drive mammary expansion and growth [285]. High-resolution transcriptomics of sorted cells also captured a largely heterogeneous population of MECs wherein myoepithelial cells showed gene profiles correlated to luminal cells, thus suggesting a common ancestry [286].

Single-cell transcriptomics has also revealed and confirmed epithelial cell types within the mammary gland. For instance, scRNA-seq captured Protein C receptor (Procr +) cells, B-cell lymphoma/leukemia 11B (Bcl11 +) cells, and Cadherin 5 (Cdh5 +) cells within myoepithelial cell clusters, corroborating previous studies that characterized populations of MaSCs that reside within the basal compartment, consistent with their ability to fully reconstitute the mammary epithelium in transplantation assays [286-289]. A series of studies have described modifications in the transcriptional landscape of luminal MECs across mammary development. scRNA-seq studies revealed that parity stably affects the transcriptional program of luminal cells, and biases luminal differentiation towards an alveolar fate [288]. E2 treatment correlated with the enrichment of four populations within the luminal progenitor and mature luminal pools, consisting of: (a) ERa⁺PR⁺; (b) ERa⁺PR⁻; (c) ERa⁻PR⁺; and (d) ERa⁻PR⁻ cells, revealing hormone receptor expression in cells of the luminal fate [290]. Singlecell transcriptomics captured a shift within the hormone-sensing alveolar secretory luminal cells, from high numbers in young murine glands to very low numbers in nulliparous perimenopausal murine glands, indicating a role for aging in luminal cellular fate [291]. Pseudotemporal reconstruction of scRNAseq data from adult breast epithelial cells have also identified a linear trajectory that may give rise to three distinct cellular populations, connecting one myoepithelial cell cluster with two luminal-committed cell clusters [292]. These further divide into subpopulations that were all proliferative, indicating a specific progenitor cell-type for each cell subcluster.

Although single-cell RNA-seq and ATAC-seq are groundbreaking technologies, standardization and reproducibility are critical issues for these methods. Some of the potential pitfalls in these systems arise from single-cell isolation techniques, variation in cell counts, and computational data analysis that considers both technical and biological effects [293]. Furthermore, we still lack a clear general signature of all cells within mammary tissue, including stromal and immune cells, data that would allow effective cellular identification across developmental stages and could consider cellular fluctuations that could influence tumorigenesis. Regardless, single-cell transcriptomics has been critical in the reconstruction of the cell populations that constitute the mammary gland and in disentangling the transcriptional and epigenomic programs

6. Organoids and modeling normal mammary gland development

Over the last several decades, it has become clear that the functional differentiation and development of tissues is dependent on threedimensional architecture. Consequently, there has been a surge in studies that use three-dimentional (3D) cultures to model mammary gland development. Numerous protocols have been developed for the 3D culture of tissues and organs, and the resulting structures are collectively referred to as "organoids". However, the definition of the source tissue. In the case of mammary glands, developments on the source tissue. In the case of mammary glands, such as the source tissue. organoids are cultures derived from of mammary tissue fragments in 3D gels, whose composition is similar to the in vivo mammary ECM $\left[294,295\right]$.

Cultures of mammary epithelial cells in collagen I gels were first established in the late 1970s. Together with other contemporary studies, they demonstrated that the normal functional differentiation of MECs is dependent on their interaction with a flexible biological substrate [296–299]. MECs harvested from virgin female mice grown in collagen gels showed the ability to reorganize and form structures that can express milk proteins when stimulated with hormones [300–303]. There were also alterations in differentiation and proliferation of MECs depending on whether the collagen gel matrix was attached to a substrate or if it was suspended in dome-like structures [299,304–306].

Mammary organoids can also been grown in commercial 3D matrices such as Matrigel [307] or collagen I [308], which contain BM matrix proteins required for epithelial cell growth and differentiation. Culturing mammary organoids in Matrigel gives rise to organized clusters of bi-layered mammary epithelium, which can be stimulated into branching morphogenesis with growth factors, partially resembling normal in vivo mammary gland development [309,310]. Such organoid systems can also be used as models to study the modifications that pregnancy brings about to the mammary gland. By culturing organoids with pregnancy hormones, organoids can be stimulated to secrete milk proteins (lactation), and removal of such signals can mimic some of the stages seen during involution [198,311] (Fig. 3). Additionally, to understand the role of various stromal components during normal mammary gland development, several co-culture assays for MECs or primary mammary organoids with fibroblasts have been developed [312,313]. These assays involve culturing MECs or primary organoids in Matrigel containing fibroblasts isolated by enzymatic digestion and differential centrifugation. There are also 3D-printing strategies for controlled placement of cells in the hydrogel matrix, which allows for reproducible, high-throughput experiments [314].

3D mammary organoids cultures has led to the elucidation of many factors that drive signaling transduction, gene expression regulation, cell-to-cell junction and tissue remodeling, and that together influence mammary development and MEC differentiation [189,315-320]. More recently, mammary organoids have been used to define a role for Suppressor of zest 12 (SUZ12) and Embryonic ectoderm development (EED), core components of the PRC2 complex, in sustaining progenitor activity of MECs via regulation of cell type specific gene silencing [321]. In addition, high levels of R-spondin-1 (Rspo) induced the expansion of undifferentiated myoepithelial cells, revealing that the combination of Nrg1 treatment with low concentrations of Rspo can help maintaining mammary organoids in culture for extended periods of time [322]. Moreover, mammary organoid cultures have also been utilized to analyze the signals controlling mTOR regulation of MaSCs, and the specific contribution of EMT-associated genes in controlling MEC migration and invasion, demonstrating the use of such a system to understand signals that control stemness and cellular plasticity [323-325].

Recently, protocols have also been developed for modeling mammary gland developmental and molecular processes engaged during pregnancy, lactation and involution, and as well for culturing irradiated organoids to simulate radiotherapy, a standard protocol for treating many types of breast cancer [311,326,327]. Furthermore, it has been shown by single-cell analysis that normal and pre-malignant organoid cultures can retain the complex system of multiple MEC states (stem/ progenitor and differentiated) and protein expression patterns [328]. Although lacking the complex interactions with the microenvironment, human tissue organoids can be used as a model system to characterize cellular and molecular changes during development and to test the susceptibility of an individual to a variety of therapies.

7. Final remarks

In this review we discuss many aspects of the molecular basis of

Fig. 3. Mammary organoid cultures can replicate characteristics of normal development. Representative images of mammary organoid culture derived from prepregnancy MECs (Babb/C mice), grown with either essential media or media with pregnancy hormones (containing estrogen (E2), progesterone (P4), and prolac-tin (Prl). (a) H&E stained organoids (b) light microscope image of organoids in culture (c) Immunofluorescence image of an organoid showing the branching morphogenesis phenotype (d) Immunofluorescence image of an organoid treated with pregnancy hormones expressing Csn2, a milk protein. Scale: 200 µm. Mammary organoid growth conditions and IF staining were performed as described on [198]. Images credits to Chen Chen and Michael F. Ciccone.

mammary epithelial differentiation, as well as the mechanisms that are engaged during the various mammary gland developmental stages. Our goal was to highlight many of the significant advances in mammary gland biology research from the last several decades, and to highlight important mechanisms that must be considered as we move toward addressing questions about lineage commitment, cellular differentiation, and mammary gland development. Many of the points discussed here have implications for either the initiation, maintenance or progression of mammary tumorigenesis, underlining the disease relevance in the understanding of normal breast development.

Technological developments - the exploration of 3D organoid cultures and single-cell strategies - are deepening our understanding of specific perturbations that influence the mammary tissue as a whole. Unquestionably, the combination of such strategies with novel mathematical models and lineage tracing has the means to provide quantifiable metrics of cell fate and expression heterogeneity and will yield valuable insights into the coordination of tissue development, as well as help in the prediction of novel factors that modulate risk and treatment response of breast tumors. For instance, quantification of MEC-specific apoptosis and proliferation rates, cell size, cell number, and duct morphology, offer parameters that sufficiently predicted the outcome of ductal elongation in TEBs during puberty [47]. In fact, previous studies have also successfully demonstrated the use of mathematical modeling and lineage tracing to correlate the number of cells and differentiation states with age, pregnancy, and the risk for breast cancer development [329-331]. Moreover, the integration of 3D imaging of breast tumor spheroids with the analysis of biophysical parameters using mathematical models has brought us a step closer toward assessing tumor aggressiveness and response to treatment [332], thus offering robustness and a method for the analysis of retrospective clinical data.

Altogether, these strategies hold the promise of answering longstanding questions about the connections between the regulation of gene expression and tissue maintenance, and microenvironment homeostasis and cellular diversity; evidence of which will hopefully elucidate, address, and perhaps even provide preventative strategies against malignant transformation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was performed with the support by the CSHL and Northwell Health Affiliation, the Rita Allen Scholar Award, the AACR-Breast Cancer Research Foundation Award, the Pershing Square Sohn Prize for Cancer Research, the NIH/NCI grant R01CA248158-01 (C.O.D.S.), and Bristol-Myers Squibb Fellowship (A.V.H.S.). We deeply apologize to all investigators whose works were not cited owing to space limitations. This work was also supported with editing services provided by Dr. Riddihough from Life Science Editors.

References

- O.T. Oftedal, The origin of lactation as a water source for parchment-shelled eggs, J. Mammary Gland Biol. Neoplasia 7 (2002) 253-266.
 O.T. Oftedal, The mammary gland and its origin during synapsid evolution, J. Mammary Gland Biol. Neoplasia 7 (2002) 225-252.
 C. Vorbach, M.R. Capecchi, J.M. Penninger, Evolution of the mammary gland from the innate immune system? Bioessays 28 (2006) 606-616.
 A.V. Capuco, S.E. Ellis, Comparative aspects of mammary gland development and homeostasis, Annu. Rev. Anim. Bioaci. 1 (2013) 179-202.
 A.R. Rovson, K.M. Daniels, S.E. Ellis, R.C. Hovey, Growth and development of the mammary glands of livestock: a veritable barnyard of opportunities, Semin. Cell Dev. Biol. 23 (2012) 555-566.
- Cell Dev. Biol. 23 (2012) 557-566. [6] E. Smyth, R.A. Clegg, C. Holt, A biological perspective on the structure and function of caseins and casein micelles, Int. J. Dairy Technol. 57 (2004) 121–126.

- mals and the
- D. Brawand, W. Wahli, H. Kaessmann, Loss of egg yolk genes in mammals and the origin of lactation and placentation, PLoS Biol. 6 (2008), e63.
 C.M. Lefevre, J.A. Sharp, K.R. Nicholas, Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals, Reprod. Fertil. Dev. 21 (2009) 1015–1027.
- M. Rijnkels, Multispecies comparison of the casein gene loci and ev-
- casein gene family, J. Mammary Gland Biol. Neoplasia 7 (2002) 327–345.
 L.S. Carroll, M.R. Capecchi, Hoxe8 initiates an ectopic mammary program by regulating Fgf10 and Tba3 expression and Wnt/β-catenin signaling, Development 142 (2015) 4056–4067.
- [11] M.-L. Asselin-Labat, K.D. Sutherland, H. Barker, R. Thomas, M. Shackleton, N. M.-L. ASSUM-LADAI, A.D. SUMERIANO, F. BURKET, K. TROMAS, M. SMACKEGON, N. C. FORTEST, L. Hartley, L. Robb, F.G. Grosveld, J. van der Wees, G.J. Lindeman, J. E. Visvader, Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation, Nat. Cell Biol. 9 (2007) 201–209.
- [12] T.G. Davenport, Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome, Development 130 (2003) 63-2273.
- [13] F. Chen, M.R. Capecchi, Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in respon pregnancy, Proc. Natl. Acad. Sci. 96 (1999) 541-546,
- [14] R. Schep, A. Necsulea, E. Rodríguez-Carballo, I. Guerreiro, G. Andrey, T H. Sutpp, F. Pecsanea, E. Rodriguez-anonalo, E. duerreno, G. Juna ey, E. H. N. Suyen Huynh, V. Marcet, J. Zakány, D. Duboule, L. Beccari, Control of Ho gene transcription in the mammary bud by hijacking a preexisting regulatory landscape, Proc. Natl. Acad. Sci. 113 (2016) E7720-E7729. rol of Hoyd
- M.C. Eblaghie, S.J. Song, J.Y. Kim, K. Aklta, C. Trickle, H.S. Jung, Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos, J. Anat. 205 (2004) 1–13.
 K.-W. Cho, J.Y. Kim, S.J. Song, E. Farrell, M.C. Eblaghie, H.J. Kim, C. Tickle, H.
- S. Jung, Molecular interactions between Tbx3 and Bmp4 and a model for dorsoventral positioning of mammary gland development, Proc. Natl. Acad. Sci. USA 103 (2006) 16788–16793.
- [17] C. van Genderen, R.M. Okamura, I. Farinas, R.G. Quo, T.G. Parslow, L. Bruhn, R. Grosschedl, Development of several organs that require inductive epithelia mesenchymal interactions is impaired in LEF-1-deficient mice, Genes Dev. 8 (1994) 2691-2703.
- [18] K. Boras-Granic, H. Chang, R. Grosschedl, P.A. Hamel, Lef1 is req transition of Wnt signaling from mesenchymal to epithelial cells in the more embryonic mammary gland, Dev. Biol. 295 (2006) 219–231.
- [19] J.M. Veltmaat, et al., Positional variations in mammary gland development and
- J.M. Veinnaat, et al., Positional variations in manimary gand development and cancer, J. Mammary Gland Biol. Neoplasia 18 (2013) 179–188.
 I.A. Jerome-Majewska, G.P. Jenkins, E. Ernstoff, F. Zindy, C.J. Sherr, V. E. Papaioannou, Tbx3, the ulnar-mammary syndrome gene, and Tbx2 interact in mmary gland development through a p19Arf/p53-independent pathway, Dev. [21] J.M. Veltmaat, F. Relaix, L.T. Le, K. Kratochwil, F.G. Sala, W. van Veelen, R. Rice,
- B. Spencer-Dene, A.A. Mailleux, D.P. Rice, J.P. Thiery, S. Bellusci, Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes, Development 133 (2006) 2325-2335.
- 2325-2359.
 2325-2359.
 2325.-J. Hatsell, P. Cowin, Gli3-mediated repression of Hedgehog targets is requires for normal mammary development, Development 133 (2006) 3661-3670.
 [23] E.Y. Chu, Canonical WNT signaling promotes mammary placed development and is essential for initiation of mammary gland morphogenesis, Development 131 (2004) 4819-4829.
- I. (2004) 4819-4829.
 P. Wend, K. Wend, S.A. Krum, G.A. Miranda-Carboni, The role of WNT10B in physiology and disease, Acta Physiol. (Oxf.) 204 (2012) 34-51.
 M.Y. Lee, L. Sun, J.M. Veltmant, Hedgehog and Gli signaling in embryonic mammary gland development, J. Mammary Gland Biol. Neoplasia 18 (2013)
- [26] C. Tickle, H.-S. Jung, Embryonic Mammary Gland Development, John Wiley &
- [20] C. TICKE, P.-S. JURG, EMBY ONE MAILING YOUR MAILING DEVElopment, John Sons Ltd, 2016, pp. 1–10.
 [27] G.W. Robinson, Cooperation of signalling pathways in embryonic mam gland development, Nat. Rev. Genet. 8 (2007) 963–972.
- [28] S.J. Hatsell, P. Cowin, Gli3-mediated repression of Hedgehog targets is required for normal mammary development, Development 133 (2006) 3661–3670.
 [29] G.J. Creighton, X. Li, M. Landis, J.M. Dixon, V.M. Neumeister, A. Sjolund, D. L. Rimm, H. Wong, A. Rodriguez, J.H. Herschkowitz, C. Pan, X. Zhang, X. He, A. Pavlick, M.C. Gutierrez, L. Renshaw, A.A. Larionov, D. Faratian, S. G. Hilsenbeck, C.M. Perou, M.T. Lewis, J.M. Rosen, J.C. Chang, Residual breast cancers after conventional therapy display mesenchymal as well as tumo initiating features, Proc. Natl. Acad. Sci. USA 106 (2009) 13820-13825,
- [30] X. Ye, W.L. Tam, T. Shibue, Y. Kayusuz, F. Reinhardt, E. Ng Eato A. Weinberg, Distinct EMT programs control normal mammary ste tumour-initiating cells, Nature 525 (2015) 256–260. nary stem cells and
- M. Nasour, Y. Idoux-Gillet, A. Selmi, C. Gone, M.L.M. Faraldo, M.A. Deugnier, P. Savagner, Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis, PLoS One 7 (2012), e53498.
- H. Panchal, O. Wansbury, S. Parry, A. Ashworth, B. Howard, Neuregulin3 alters cell fate in the epidermis and mammary gland, BMC Dev. Biol. 7 (2007) 105.
 B.A. Howard, B.A. Gusterson, The characterization of a mouse mutant that displays abnormal mammary gland development, Mamm, Genome 11 (2000)
- 234 237 B. Howard, Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification, Genes Dev. 19 (2005) 2078–2090. [34] B. He

- [35] T.A. Stewart, K. Hughes, D.A. Hume, F.M. Davis, Devel ution of macrophages in mouse mammary gland, Front. Cell Dev. Biol. 7 (2019) 250.
- (2019) 250.
 (36) N. Jāppinen, I. Fēlix, E. Lokka, S. Tyystjärvi, A. Pynttäri, T. Lahtela, H. Gerke, K. Elima, P. Rantakari, M. Salmi, Petal-derived macrophages dominate in adult mammary glands, Nat. Commun. 10 (2019) 281.
 (37) C.A. Dawson, B. Pal, F. Vaillant, L.G. Gandolfo, Z. Liu, C. Bleriot, F. Ginhoux, G. K. Smyth, G.J. Lindeman, S.N. Mueller, A.C. Rios, J.E. Visvader, Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling, Nat. Cell Biol. 22 (2020) 546–558.
 (38) D.E. Gravit, M.L. Arenglo, Jabet N. van Bonjim, G. L. Lindeman, J.F. Vigarder, S. S. Santa, S. S. Santa, S. S. Santa, Santa, Santa, Santa, Santa, Santa, Santa, Santa, Santa, Sant
- [38] D.E. Gyorki, M.L. Asselin-Labat, N. van Rooijen, G.J. Lindeman, J.E. Visvader, Resident macrophages influence stem cell activity in the mammary gland, Breast Cancer Res. 11 (2009) R62.
- [39] J.P. Robichaux, R.M. Hallett, J.W. Fuseler, J.A. Hassell, A.F. Ramsdell, Mammary Shi Kootchino, Jean Habet, S.W. Josef, J.M. Habet, J.M. Habet, J.M. Josef, J.M. Josef, J.M. Josef, J. M. Karlow, N. C. Ginestier, J. Wicinski, N. Cervera, F. Monville, P. Finetti, F. Bertucci, M. S. Josef, M. S. Josef, J. J. Josef, J. S. Josef, J. S. Josef, J. Josef, J. Josef, J. S. Josef, J. Josef, J. S. Josef, J. Jo mmetric ductal
- [40] S. Wicha, D. Birnbaum, E. Charafe-Jauffret, Retinoid signaling regulates breast cancer stem cell differentiation, Cell Cycle 8 (2009) 3297-3302. M. Rhinn, P. Dolle, Retinoic acid signalling during development, Dev
- [41] 139 (2012) 843-858.
- [42] S.A. Cheng, L.Z. Liang, Q.L. Liang, Z.Y. Huang, X.X. Peng, X.C. Hong, X.B. Luo, G. L. Yuan, H.J. Zhang, L. Jiang, Breast cancer laterality and molecular subtype likely share a common risk factor, Cancer Manag. Res. 10 (2018) 6549-6554, /doi.org/10.2147/CMAR.S182254.
- [43] M.H. Amer, Genetic factors and breast cancer laterality, Cancer Manag. Res. (2014) 191, https://doi.org/10.2147/CMAR.S60006.
 [44] J.E. Fata, V. Chaudhary, R. Khokha, Cellular turnover in the mammary gland is
- correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle, Biol. Reprod. 65 (2001) 680-688.
 [45] G.W. Robinson, et al., Manmary epithelial cells undergo secretory differentiation
- Gerrarian and Antiparticle and Antipa
- [46]
- BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms, Dev. Cell 12 (2007) 221-234. L Paine, A. Chauviere, J. Landua, A. Sreekumar, V. Cristini, J. Rosen, M.T. Lewis, A geometrically-constrained mathematical model of mammary gland ductal [47] elongation reveals novel cellular dynamics within the terminal end bud, PLoS Comput. Biol. 12 (2016), e1004839. [48] S. Srivastava, M. Matsuda, Z. Hou, J.P. Bailey, R. Kitazawa, M.P. Herbst, N
- D. Horseman, Receptor activator of NF-kappaB ligand induction via Jak2 and
- Horsennan, Receptor activation of NF approximation and activation of a second se (1983) 274-290.
- Sreekumar, M.J. Toneff, E. Toh, K. Roarty, C.J. Creighton, G.K. Belka, D.K. Lee, Xu, L.A. Chodosh, J.S. Richards, J.M. Rosen, WNT-mediated regulation of [50] . Sreeku FOXO1 constitutes a critical axis maintaining pubertal mammary stem cell homeostasis, Dev. Cell 43 (2017) 436-448.e6.
- [51] A.N. Sferruzzi-Perri, S.A. Robertson, L.A. Dent, Interleukin-5 transgene expression and eosinophilia are associated with retarded mammary gland development in mice, Biol. Reprod. 69 (2003) 224-233.
- [52] V. Gouon-Evans, et al., Postnatal mammary gland development require macrophages and eosinophils, Development 127 (2000) 2269–2282.
 [53] W.V. Ingman, J. Wyckoff, V. Gouon-Evans, J. Condeelis, J.W. Pollard,
- W.Y. Ingman, J. Wyckoff, V. Gouon-Evans, J. Condeens, J.W. Pollard, Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland, Dev. Dyn. 235 (2006) 3222-3229.
 Y. Feng, D. Manka, K.U. Wagner, S.A. Khan, Estrogen receptor-alpha expression in the mammary epithelim is required for ductal and alveolar morphogenesis in mice, Proc. Natl. Acad. Sci. USA 104 (2007) 14718–14723.
 J. Russo, X. Ao, C. Grill, L.H. Russo, Pattern of distribution of cells positive for extrone meenter alpha and proceedinge accention in realizing to confiferentian.
- strogen receptor alpha and progesterone receptor in relation to pr
- cells in the mammary gland, Breast Cancer Res. Treat. 53 (1999) 217-227. K. Zeps, J.M. Bentel, J.M. Papadimitriou, M.F. D'Antuono, H.J.S. Da Estrogen receptor-negative epithelial cells in mouse mammary gland [56] N
- development and growth, Differentiation 62 (1998) 221-226. [57] R.B. Clarke, et al., Dissociation between steroid receptor expression and cell proliferation in the human breast, Cancer Res. 57 (1997) 4987-4991.
 [58] L. Ciarloni, S. Mallepell, C. Brisken, Amphiregulin is an essential mediator of
- strogen receptor alpha function in mammary gland development, Proc. Natl.
- estrogen receptor alpha function in mammary gland development, Proc. Natl. Acad. Sci. USA 104 (2007) 5455-5460.
 [59] N.J. Kenney, A. Bowman, K.S. Korach, J. Carl Barrett, D.S. Salomon, Effect of exogenous epidermal-like growth factors on mammary gland development and differentiation in the estrogen receptor-alpha knockout (ERKO) mouse, Breast Cancer Res. Treat. 79 (2003) 161-173.
 [60] M.D. Sternlicht, Mammary ductal morphogenesis requires paracrine activation of head of the paracretic structure of the structure of the paracritic structure of the struc
- esis requires paracrine activation of tromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin.
- Development 132 (2005) 3923–3933. [61] J.F. Wiesen, et al., Signaling through the stromal epidermal growth fit receptor is necessary for mammary ductal development, Development 126 (1999) 335 344
- [62] A.J. Jackson-Fisher, G. Bellinger, R. Ramabhadran, J.K. Morris, K.F. Lee, D. F. Stern, ErbB2 is required for ductal morphogenesis of the mammary gland, Proc. Natl. Acad. Sci. USA 101 (2004) 17138–17143.

- [63] L. Gagniac, M. Rusidzć, F. Boudou, S. Cagnet, M. Adlanmerini, P. Jeannot, N. Gaide, F. Giton, A. Besson, A. Weyl, P. Gourdy, I. Raymond-Letron, J.F. Arnal, C. Brisken, F. Lenfant, Membrane expression of the estrogen receptor ERa is required for intercellular communications in the mammary epithelium, Development 147 (2020), dev182303, https://doi.org/10.1242/dev.182303.
 [64] A. Hurtado, K.A. Holmes, C.S. Ross-Innes, D. Schmidt, J.S. Carroll, FOXAI is a key
- rminant of estrogen receptor function and endocrine response, Nat. Genet. 43 (2011) 27-33
- Laganiere, G. Deblois, C. Lefebvre, A.R. Bataille, F. Robert, V. Giguere, From [65] the Cover: location analysis of estrogen receptor alpha target prothat FOXA1 defines a domain of the estrogen response, Proc. Natl. Acad. Sci. USA (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Natl. Acad. Sci. Os. 102 (2005) 11651 a Johanni of the Sitogen response, Fior. Nat.
- W. Shao, E.V. Hestermann, T.R. Geistlinger, E.A. Fox, P.A. Silver, M. Brown, Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1, Cell 122 (2005) 33–43.
 H. Kouros-Mehr, E.M. Slorach, M.D. Sternlicht, Z. Werb, GATA-3 maintains
- ferentiation of the luminal cell fate in the mammary gland, Cell 127 (2006) 1041-1055.
- [68] M. Takaku, S.A. Grimm, J.D. Roberts, K. Chrysovergis, B.D. Bennett, P. Myers, L. Perera, C.J. Tucker, C.M. Perou, P.A. Wade, GATA3 zinc finger 2 mutati ram the breast cancer transcriptional network, Nat. Com un 9 (2018)
- [69] M. Takaku, S.A. Grimm, B. De Kumar, B.D. Bennett, P.A. Wade, Cancer-spec mutation of GATA3 disrupts the transcriptional regulatory network governe Estrogen Receptor alpha, FOXA1 and GATA3, Nucleic Acids Res. 48 (2020)
- [70] J. Howlin, J. McBryan, S. Napoletano, T. Lambe, E. McArdle, T. Shioda, F. Martin,
- [70] J. HOWIN, J. McBryan, S. Napoletano, I. Lambe, E. McArdie, I. Shioda, F. Martin, CITEDI homozygous null mice display aberrant pubertal mammary ductal morphogenesis, Oncogene 25 (2006) 1532–1542.
 [71] K.B. Ewan, G. Shyamala, S.A. Ravani, Y. Tang, R. Akhurst, L. Wakefield, M. H. Barcellos-Hoff, Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation, Am. J. Pathol. 160 (2002) 2081–2093.
 [72] F. Achenez, The net for enterpolar department extractor in hormone.
- [72] E. Anderson, The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis, Breast Cancer Res. 4 (2002) 197–201.
 [73] G. Shyamala, X. Yang, G. Silberstein, M.H. Barcellos-Hoff, E. Dale, Transgenie mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands, Proc. Natl. Acad. Sci. USA 95 (1998) 696–701.[74] O.M. Conneely, B. Mulac-Jericevic, J.P. Lydon, F.J. De Mayo, Repr
- functions of the progesterone receptor isoforms; lessons from knock-out mice.
- Mol. Cell. Endocrinol. 179 (2001) 97–103.
 [75] B. Mulac-Jericevic, Subgroup of reproductive functions of progesteron by progesterone receptor-B isoform, Science 289 (2000) 1751–1754.
- [76] C. Brisken, S. Park, T. Vass, J.P. Lydon, B.W. O'Malley, R.A. Weinberg, A paracrine role for the epithelial progesterone receptor in mammary gland development, Proc. Natl. Acad. Sci. USA 95 (1998) 5076-5081.
 [77] R.C. Humphreys, J.P. Lydon, B.W. O'Malley, J.M. Rosen, Use of PRKO mice to
- Field Transpires for Leyton, Bern O Baues, Lan Robert, Ose of Perco Tarce to study the role of progesterone in mammary gland development, J. Mammary Gland Biol. Neoplasia 2 (1997) 343–354.
 A.R. Lain, C.J. Creighton, O.M. Conneely, Research resource: progesterone receptor targetome underlying mammary gland branching morphogenesis, Mol. [78]
- Redocrinol. 27 (2013) 1743–1761.
 B. Pal, T. Bouras, W. Shi, F. Vaillant, J.M. Sheridan, N. Fu, K. Breslin, K. Jiang, M. E. Ritchie, M. Young, G.J. Lindeman, G.K. Smyth, J.E. Visvader, Global changes in [79]
- the mammary epigenome are induced by hormonal cues and coordinated by Ezh2, Cell Rep. 3 (2013) 411–426.
 [80] M. Shehata, A. Teschendorff, G. Sharp, N. Novcic, I.A. Russell, S. Avril, M. Pra P. Eirew, C. Caldas, C.J. Watson, J. Stingl, Phenotypic and functional ell, S. Avril, M. Prater, characterisation of the luminal cell hierarchy of the m nary gland, Breast
- [81] G. Shyamala, Y.C. Chou, S.G. Louie, R.C. Guzman, G.H. Smith, S. Nandi, Cellular xpression of estrogen and progesterone receptors in mammary glands: regulation y hormones, development and aging, J. Steroid Biochem. Mol. Biol. 80 (2002) -148.
- [82] D. Schams, S. Kohlenberg, W. Amselgruber, B. Berisha, M. Pfaffl, F. Sinowatz, sion and localisation of oestrogen and progesterone receptors in the bovine ary gland during development, function and involution, J. Endocrinol. 177 Expression and localisati (2003) 305-317.
- [83] M. Beleut, R.D. Rajaram, M. Cajkovski, A. Avvanan, D. Germano, Y. Choi, P. Schneider, G. Brisken, Two distinct mechanisms underline progesterone-indu proliferation in the mammary gland, Proc. Natl. Acad. Sci. USA 107 (2010) 89-2994
- [84] R. Fernandez-Valdivia, A. Mukherjee, Y. Ying, J. Li, M. Paquet, F.J. DeMayo, J. Lydon, The RANKL signaling axis is sufficient to elicit ductal side-branchin ad alveologenesis in the mammary gland of the virgin mouse, Dev. Biol. 328 nd alveo (2009) 127-139.
- [85] P. Sicinski, J.L. Donaher, S.B. Parker, T. Li, A. Fazeli, H. Gardner, S.Z. Haslam, R. T. Bronson, S.J. Elledge, R.A. Weinberg, Cyclin D1 provides a link between development and oncogenesis in the retina and breast, Cell 82 (1995) 621–630.
- [86] V. Fanti, G. Stamp, A. Andrews, I. Rosewell, C. Dickson, Mice lacking cyclin D1 are small and show defects in eye and mammary gland development, Genes Dev. 9 (1995) 2364-2372.

- [87] R.D. Rajaram, D. Buric, M. Caikovski, A. Ayyanan, J. Rougemont, J. Shan, S. J. Vainio, O. Yalcin-Ozuysal, C. Brisken, Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk, EMBO J. 34 (2015) 641–652.
- [88] W. Ruan, M.E. Monaco, D.I. Kleinberg, Progesterone stimulates mamary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action, Endocrinology 146 (2005) 1170–1178.[89] R.A. Jones, C.I. Campbell, E.J. Gunther, L.A. Chodosh, J.J. Petrik, R. Khokha, R.
- [89] R.A. Jones, C.I. Campbell, E.J. Gunther, L.A. Chodosh, J.J. Petrik, R. Knokha, R. A. Moorehead, Transgenic overexpression of IGF-Hd Bisrupts mammary ductal morphogenesis and induces tumor formation, Oncogene 26 (2007) 1636–1644.
 [90] J.M. Carboni, A.V. Lee, D.I. Hadsell, B.R. Rowley, F.Y. Lee, D.K. Bol, A. E. Camuso, M. Gottardis, A.F. Greer, C.P. Ho, W. Hurlburt, A. Li, M. Saulnier, U. Velaparthi, G. Wang, M.L. Wen, R.A. Westhouse, M. Wittman, K. Zimmermann, B.A. Rupnow, T.W. Wong, Tumor development by transgenic expression of a magnetic program. *Basel Genetary Comput. Neurorem Comput. Comp* constitutively active insulin-like growth factor I receptor, Cancer Res. 65 (2005) 3781-3787
- [91] M.M. Richert, T.L. Wood, The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of nessenger ribonucleic acid expression and potential functions. Endocrinology 140 (1999) 454–461. K.K. de Ostrovich, I. Lambertz, J.K.L. Colby, J. Tian, J.E. Rundhaug, D. Johr
- [92] C.J. Conti, J. DiGiovanni, R. Fuchs-Young, Paracrine overexpression of insulinlike growth factor-1 enhar ces mammary tumorigenesis in vivo, Am. J. Pathol.
- like growth factor-1 enhances mammary tumorigenesis in vivo, Am. J. Pathol. 173 (2008) 824–834.
 S.G. Bonnette, D.L. Hadsell, Targeted disruption of the IGF-1 receptor gene decreases cellular proliferation in mammary terminal end buds, Endocrinology 142 (2001) 4937–4945.
 W. Ruan, D.L. Kleinberg, Insulin-like growth factor 1 is essential for terminal end [93]
- [94] bud formation and ductal morphogenesis during mammary development, Endocrinology 140 (1999) 5075-5081.
- Endocrinology 140 (1999) 5075–5081. M.D. Aupperlee, J.R. Leippradt, J.M. Bennett, R.C. Schwartz, S.Z. Haslam, Amphiregulin mediates progesterone-induced mammary ductal development during puberty, Breast Cancer Res. 15 (2013) 1444. L.M. McCaffrey, J. Montalbano, C. Mihai, I.G. Macara, Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis, Cancer Cell 22 (2012) 60. 614. [95]
- [96] 601-614.
- [97] R.A. Guyer, I.G. Macara, Loss of the polarity protein PAR3 activates STAT3 signaling via an atypical protein kinase C (aPKC)/NF-&B/interleukin-6 (IL-6) axis in mouse mammary cells, J. Biol. Chem. 290 (2015) 8457–8468.
 [98] S. Kumar, A. Nandi, A. Mahesh, S. Sinha, E. Flores, R. Chakrabarti, Inducible
- [90] G. Ruman, P. Raman, P. Manesh, S. Siman, L. FINES, I. C. Gandboltt, Indicable knockout of ApA63 alters cell polarity and metabolism during pubertal mammary gland development, FEBS Lett. 594 (2020) 973–985.
 [99] L.M. McCaffrey, I.G. Macara, The Par3/aPKC interaction is essential for end bud
- [9] Land Breckartey, 105 middleng The Failowing mean is executing tool remodeling and progenitor differentiation during mammary glad morphogenesis, Genes Dev. 23 (2009) 1450–1460.
 [100] Y. Huo, I.G. Macara, The Par3-like polarity protein Par3L is essential for mammary stem cell maintenance, Nat. Cell Biol. 16 (2014) 529–537.
- [101] W. Xu, A.C. Gulvady, G.J. Goreczny, E.C. Olson, C.E. Turner, Paxillin-dep regulation of apical-basal polarity in mammary gland morphogenesis, velopment 146 (2019) 146.
- [102] A. Santoro, T. Vlachou, M. Carminati, P.G. Pelicci, M. Mapelli, Molecular A. Sillioto, I. Vikitou, M. Cartininat, P.S. Peircer, M. Mapera, morecular mechanisms of asymmetric divisions in mammary stem cells, EMBO Rep. 17 (2016) 1700–1720, https://doi.org/10.15252/embr.201643021.
 B. Xue, K. Krishnamurthy, D.C. Allred, S.K. Muthuswamy, Loss of Par3 promo-
- [103] er metastasis by compromising cell-cell cohesion, Nat. Cell Biol. 15 (2013) 189–200.
 S. Chatterjee, L. Seifried, M.E. Feigin, D.L. Gibbons, C. Scuoppo, W. Lin, Z.
- [104] b) Grandback and the second state of the second (2012), e34343.
- [105] M.F. Nolan, V. Aranda, S. Lee, B. Lakshmi, S. Basu, D.C. Allred, S.K. Muthu The polarity protein Parls induces cell proliferation and is overexpressed in breast cancer, Cancer Res. 68 (2008) 8201–8209.
- [106] M.E. Feigin, S.D. Akshinthala, K. Araki, A.Z. Rosenberg, L.B. Muthus B. Martin, B.D. Lehmann, H.K. Berman, J.A. Pietenpol, R.D. Cardiff, S. K. Muthuswamy, Mislocalization of the cell polarity protein scribble pron mmary tumorigenesis and is associated with basal breast cancer, Cancer Res. 74 (2014) 3180-3194.
- 1.H. Russo, J. Russo, Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz[a]anthracene, J. Natl [107] Cancer Inst. 61 (1978) 1439-1449.
- Cancer inst. 61 (1976) 1439-1449. I. Segatto, M.D.M. Zompit, F. Citron, S. D'Andrea, G.L.R. Vinciguerra, T. Perin, S. Berton, G. Mungo, M. Schiappacassi, C. Marchini, A. Amici, A. Vecchione, G. Baldassarre, B. Belletti, Stathmin is required for normal mouse mannary gland [108] development and A16HER2-driven tumorigenesis, Cancer Res. 79 (2019)
- [109] S. Elias, et al., Huntingtin is required for epithelial polarity through RAB11Amediated apical trafficking of PAR3-aPKC, PLoS Biol. 13 (2015), e1002142, re/10.1371/ al phio 1002142
- [110] N. Akhtar, C.H. Streuli, An integrin-ILK-microtubule network orients cell p olarity and lumen formation in glandular epithelium, Nat. Cell Biol. 15 (2013) 17-27, /doi.org/10.1038 ch2646
- [111] S.J. Kurley, B. Bierie, R.H. Carnahan, N.A. Lobdell, M.A. Davis, I. Hofmann, H. L. Moses, W.J. Muller, A.B. Reynolds, p120-catenin is essential for terminal end bud function and mammary morphogenesis, Development 139 (2012) 1754–1764, https://doi.org/10.1242/dev.072769.

- [112] M. Romagnoli, L. Bresson, A. Di-Cicco, M. Pérez-Lanzón, P. Legoix, S. Baulande, P. de la Grange, A. De Arcangelis, E. Georges-Labouesse, A. Sonnenberg, M. A. Deugnier, M.A. Glukhova, M.M. Faraldo, Laminin-binding integrins are essential for the maintenance of functional mammary secretory epithelium in lactation, Development 147 (2020), dev181552, https://doi.org/10.1242/ v.181552.
- [113] W.P. Bocchinfuso, J.K. Lindzev, S.C. Hewitt, J.A. Clark, P.H. Myers, R. Cooper, K. [113] W. Jorch, Induction of mammary gland development in strongen receptor-alpha knockout mice, Endocrimology 141 (2000) 2982–2994.
 [114] J.P. Lydon, F.J. DeMayo, C.R. Funk, S.K. Mani, A.R. Hughes, C.A. Montgomery,
- G. Shyamala, O.M. Connedy, B.W. O'Malley, Mice lacking progestrone receptor exhibit pleiotropic reproductive abnormalities, Genes Dev. 9 (1995) 2266-2278.
 G.B. Silberstein, K. Van Horn, G. Shyamala, C.W. Daniel, Essential role of
- endogenous estrogen in directly stimulating mammary growth demonstrated by
- nangenous estrogen in uncerty similariting maintain y growth technologue nplants containing pure antiestrogens, Endocrinology 134 (1994) 84–90. Kumar, P. Chambon, The estrogen receptor binds tightly to its responsi-lement as a ligand-induced homodimer, Cell 55 (1988) 145–156. [116] V its responsive
- [117] S.S. Skandalis, N. Afratis, G. Smirlaki, D. Nikitović, A.D. Theocharis, G. N. Tzanakakis, N.K. Karamanos, Cross-talk between estradiol receptor and EGFR/ IGF-R signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans, Matrix Biol. 35 (2014) 182–193.
- [118] P.A. Joshi, P.D. Waterbouse, N. Kanana, S. Naria, H. Fang, M.A. Di Grappa, H. W. Jackson, J.M. Penninger, C. Eaves, R. Khokha, RANK signaling amplifies WNT-responsive mammary progenitors through R-SPONDIN1, Stem Cell Rep. 5 (2015) 31-44.
- [119] C. Brisken, et al., Essential function of Wnt-4 in mammary gland develo
- downstream of progesterone signaling, Genes Dev. 14 (2000) 650–654.
 B. Mulac-Jericevic, J.P. Lydon, F.J. DeMayo, O.M. Conneely, Defective man
- gland morphogenesis in mice lacking the progesteronercy percenter in mining gland morphogenesis in mice lacking the progesteroner explore B isoform, Proc Natl. Acad. Sci. USA 100 (2003) 9744–9749.
 [121] J.E. Fata, Y.Y. Kong, J. Li, T. Sasaki, J. Irie-Sasaki, R.A. Moorehead, R. Elliott, S. Scully, E.B. Voura, D.L. Lacey, W.J. Boyle, R. Khokha, J.M. Penninger, The osteoclast differentiation factor osteoprotegerin-ligand is essential for mamma nd development, Cell 103 (2000) 41–50. Gonzalez-Suarez, D. Branetetto
- [122] E. Gonzalez-Suarez, D. Branstetter, A. Armstrong, H. Dinh, H. Blumberg, W. E. Gonzalez-Source, D. Branstetter, A. Armstrong, H. Dinn, H. Biumberg, W. C. Dougall, RNMK overexpression in transperie mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial actini, Mol. Cell. Biol. 27 (2007) 1442-1454.
 Y. Cao, G. Bonizzi, T.N. Seagroves, F.R. Greten, R. Johnson, E.V. Schmidt, M. Karin, IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development, Cell 107 (2001) 763-775.
 J.S. E. G. E. Cercein, V. Siel, J.M. Benzingner, RANKI and BANK form
- S. Rao, S.J.F. Croini, V. Sigl, J.M. Penninger, RANKL and RANKK form mammalian physiology to cancer treatment, Trends Cell Biol. 28 (2018) 213-2
 H.J. Lee, D. Gallego-Ortega, A. Ledger, D. Schramek, P. Joshi, M.M. Szware, 018) 213-223.
- C. Cho, J.P. Lydon, R. Khokha, J.M. Penninger, C.J. Ormandy, Progesterone s mammary secretory differentiation via Rankl-mediated induction of Elf5 minal progenitor cells, Development 140 (2013) 1397-1401. drives n
- [126] D.M. Moore, et al., Effect of calcium on oxytocin-in ced co mammary gland myoepithelium as visualized by NBD-phallacidin, J. Cell Sci. 88 (Pt 5) (1987) 563-569.
- [127] W.S. Young III, E. Shepard, J. Amico, L. Hennighausen, K.U. Wagner, M.
- E. LaMarca, C. McKinney, E.I. Ginns, Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition, J. Neuroendocr. 8 (1996) 847–853. F.M. Davis, A. Janoshazi, K.S. Janardhan, N. Steinckwich, D.M. D'Agostin, J. G. Petranka, P.N. Desai, S.J. Roberts-Thomson, G.S. Bird, D.K. Tucker, S. [128] E. Fenton, S. Feske, G.R. Monteith, J.W. Putney, Essential role of Orail ated calcium channels in lactation, Proc. Natl. Acad. Sci. 112 (2015) 7-5832.
- [129] T.A. Stewart, K. Hughes, A.J. Stevenson, N. Marino, A.L. Ju, M. Morehead, F. M. Davis, Mammary mechanobiology: PIEZO1 mechanically-activated ion channels in lactation and involution, bioRxiv (2019), https://doi.org/10.1101/
- [130] A.C. Rios, N.Y. Fu, P.R. Jamieson, B. Pal, L. Whitehead, K.R. Nicholas, G [130] A.C. ROS, N.T. PU, P.N. Jameson, D. Paj, L. WIITERRAD, R.E. VILLINGS, O. J. Lindeman, J.E. Visvader, Essential role for a novel population of binuclei mammary epithelial cells in lactation, Nat. Commun. 7 (2016) 11400.
 [131] B.K. Vonderhaar, et al., Difference between mammary epithelial cells from
- mature virgin and primiparous mice, Cancer Res. 38 (1978) 4059–4065. [132] B.K. Vonderhaar, G.H. Smith, Dissociation of cytological and functional
- rential in virgin mouse mammary gland during inhibition of DNA synthesis. J. Cell Sci. 53 (1982) 97-114.
- [133] G.H. Smith, B.K. Vonderhaar, Functional differentiation in mouse mammingland epithelium is attained through DNA synthesis, inconsequent of mitu Dev. Biol. 88 (1981) 167-179.
- [134] G.H. Smith, D. Medina, A morphologically distinct candidate for an epithelial [134] O.H. Smuth, D. Meuna, A morphologically distinct candidate for an epithelistem cell in mouse mammary gland, J. Cell Sci. 90 (Pt 1) (1988) 173–183.
 [135] L. Hennighausen, G.W. Robinson, Signaling pathways in mammary gland development, Dev. Cell 1 (2001) 467–475.

- development, Dev. Cell 1 (2001) 467–475.
 [136] C.J. Ormandy, N. Binart, P.A. Kelly, Mammary gland development in prolactin receptor knockout mice, J. Mammary Gland Biol. Neoplasia 2 (1997) 355–364.
 [137] C.J. Ormandy, A. Camus, J. Barra, D. Damotte, B. Lucas, H. Buteau, M. Edery, N. Brousse, C. Babinet, N. Binart, P.A. Kelly, Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse, Genes Dev. 11 (1997) 167–178. se, Genes Dev. 11

- disruption arrests mammary gland development and retards T-antigen-induced tumor growth, Oncogene 19 (2000) 1077–1084. A. Cordero, P. Pellezrini, A. Sana Mark [138] A.J. Vomachka, S.L. Pratt, J.A. Lockefeer, N.D. Horsem
- tunior growth, Oncogene 19 (2000) 1077-1084.
 A. Cordero, P. Pellegrini, A. Sanz-Moreno, E.M. Trinidad, J. Serra-Musach,
 C. Deshpande, W.C. Dougall, M.A. Pujana, E. González-Suárez, Rankl impairs lactogenic differentiation through inhibition of the prolactin/Stat5 pathway at [139] nidgestation, Stem Cells 34 (2016) 1027-1039.
- [140] H. Rui, et al., Activation of receptor-ass J. Biol. Chem. 269 (1994) 5364–5368. ociated tyre ine kinase JAK2 by prolactin,
- [141] H. Wakao, F. Gouilleux, B. Groner, Mammary gland factor (MGF) is a novel nember of the cytokine regulated transcription factor gene family and confers the memoer of the cytokine regulated transcription factor gene na prolactin response, EMBO J, 13 (1994) 2182–2191.
 [142] S. Ali, Prolactin receptor regulates Stat5 tyrosine phosphoryl
- translocation by two separate pathways, J. Biol. Chem. 273 (1998) 7709-7716.
- [143] G. Li, Z. Wang, Y. Zhang, Z. Kang, E. Haviernikova, Y. Cui, L. Hennighausen R. Moriggl, D. Wang, W. Tse, K.D. Bunting, STAT5 requires the N-domain to saintain hematopoietic stem cell repopulating function and appropriate
- lymphoid-myeloid lineage output, Exp. Hematol, 35 (2007) 1684-1694. F. Liu, G. Kunter, M.M. Krem, W.C. Eades, J.A. Cain, M.H. Tomasson, L. Hennighausen, D.C. Link, Csf3r mutations in mice confer a strong clor [144] advantage via activation of Stat5, J. Clin. Investig, 118 (2008) 946-955,
- [145] S. Li, J.M. Rosen, Nuclear factor 1 and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgen mice, Mol. Cell. Biol. 15 (1995) 2063–2070.
- [146] M. Schmitt-Ney, W. Doppler, R.K. Ball, B. Groner, Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repressi and a mammary-gland-specific nuclear factor, Mol. Cell. Biol. 11 (1991) and a mammary-gland-specific nuclear factor, Mol. Cell. Biol. 11 (1991) 3745-3755.
- [147] H.Y. Shin, M. Willi, K.H. Yoo, X. Zeng, C. Wang, G. Metser, L. Hennighauser Hierarchy within the mammary STAT5-driven Wap super-enhancer, Nat. Ger 48 (2016) 904–911.
- [148] S.R. Oakes, M.J. Naylor, M.L. Asselin-Labat, K.D. Blazek, M. Gardiner-Garden, H. N. Hilton, M. Kazlauskas, M.A. Pritchard, L.A. Chodosh, P.L. Pfeffer, G. J. Lindeman, J.E. Visvader, C.J. Ormandy, The Ets transcription factor EIf5 ecifies mammary alveolar cell fate, Genes Dev. 22 (2008) 581-586.
- J. Zhou, R. Chehab, J. Tkalevin, M.J. Naylor, J. Harris, T.J. Wilson, S. Tsao, I. Tellis, S. Zavarsek, D. Xu, E.J. Lapinskas, J. Visvader, G.J. Lindeman, R. Thomas, C.J. Ormandy, P.J. Hertzog, I. Kola, M.A. Pritchard, Elf5 is essential [149] for early embryo genesis and mammary gland development during pregnancy and Jactation, EMBO J. 24 (2005) 635–644.
 Y.S. Choi, R. Chakrabarti, R. Escamilla-Hernandez, S. Sinha, Elf5 conditional
- [150] knockout mice reveal its role as a master regulator in mammary alveolar development: Failure of Stat5 activation and functional differentiation in the absence of ElfS, Dev. Biol. 329 (2009) 227–241.
 [151] G. Metser, H.Y. Shin, C. Wang, K.H. Yoo, S. Oh, A.V. Villarino, J.J. O'Shea,
- K. Kang, L. Hennighausen, An autoregulatory enhancer controls mammary-specific STAT5 functions, Nucleic Acids Res. 44 (2016) 1052–1063. T. Komurasaki, H. Toyoda, D. Uchida, S. Morimoto, Epiregulin binds to epidermal
- [152] growth factor receptor and ErbB-4 and induces tyrosine phosphorylation pidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4, Oncogene 15 (1997) 2841–2848. X. Zeng, M. Willi, H.Y. Shin, L. Hennighausen, C. Wang, Lineage-specific a
- [153]
- A. Zeng, M. Wini, E.F. Suni, E. Preungaausen, C. Vinng, Lineage-specific and non-specific cytokine-sensing genes respond differentially to the master regulator STATS, Cell Rep. 17 (2016) 3333–3346.
 J. Mapes, Q. Li, A. Kannan, L. Anandan, M. Laws, J.P. Lydon, I.C. Bagchi, M. K. Bagchi, CUZD1 is a critical mediator of the JAK/STATS signaling pathway that [154] controls mammary gland development during pregnancy, PLOS Genet. 13 (2017), 1006654
- [155] B.-M. Zhu, K. Kang, J.H. Yu, W. Chen, H.E. Smith, D. Lee, H.W. Sun, L. Wei L. Hennighausen, Genome-wide analyses reveal the extent of opportunistic STAT5 binding that does not yield transcriptional activation of neighboring genes, Nucleic Acids Res. Ad (2012) 4461–4472.
 [156] P.V. Elizalde, R.I. Cordo Russo, M.F. Chervo, R. Schillaci, ErbB-2 nuclear function
- n breast cancer growth, metastasis and resistance to therapy, Endocr. Relat
- in breast cancer growth, metastasis and resistance to therapy, Endocr. Relat. Cancer 23 (2016) T243-T257.
 L. Baker, M. BeGora, F. Au Yeung, M.E. Feigin, A.Z. Rosenberg, S.W. Lowe, T. Kislinger, S.K. Muthuswamy, Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland, J. Cell Sci. 129 (2016) 2307-2315, S.M. McDaniel, K.K. Rumer, S.L. Biroc, R.P. Metz, M. Singh, W. Porter, P. Schedin, Danardditic eduction of the second seco [157]
- [158] Remodeling of the mammary microenvironment after lactation prom tumor cell metastasis, Am. J. Pathol. 168 (2006) 608-620.
- [159] E. Rodriguez-Boulan, I. G. Macara, Organization and execution of the epithelial polarity programme, Nat. Rev. Mol. Cell Biol. 15 (2014) 225–242.
 [160] F. Liu, A. Pawliwec, Z. Feng, Z. Yasruel, J.J. Lebrun, S. Ali, Prolactin/Jak2 directs
- apical/basal polarization and luminal linage maturation of mammary epithelial cells through regulation of the Erk1/2 pathway, Stem Cell Res. 15 (2015) 376-383.
- [161] S. Jindal, D. Gao, P. Bell, G. Albrektsen, S.M. Edgerton, C.B. Ambrosone, A. D. Thor, V.F. Borges, P. Schedin, Postpartum breast involution reveals regression of secretory lobules mediated by tissue-remodeling, Breast Cancer Res. 16 (2014)
- [162] J.A. Sharo, C. Lefevre, A.J. Brennan, K.R. Nicholas, The fur seal-a model lactation [104] J.A. Sharp, C. Lefevre, A.J. Brennan, K.N. Nicholas, Ine fur seat-a modei tactation phenotype to explore molecular factors involved in the initiation of apoptosis at involution, J. Mammary Gland Biol. Neoplasia 12 (2007) 47–58.
 [163] F.O. Baxter, K. Neoh, M.C. Tevendale, The beginning of the end: death signaling in early involution, J. Mammary Gland Biol. Neoplasia 12 (2007) 3–13.

- [164] T.J. Sargeant, B. Lloyd-Lewis, H.K. Resemann, A. Ramos-Montoya, J. Skepper, C. J. Watson, Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization, Nat. Cell Biol. 16 (2014) 1057–1068.
 [165] S.R. Hennigar, Y.A. Seo, S. Sharma, D.I. Soybel, S.L. Kelleher, ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland heucheng Sci. Dec. 5 (2015) 2002.
- involution, Sci. Rep. 5 (2015) 8033.
 S. Lee, O.C. Rivera, S.L. Kelleher, Zinc transporter 2 interacts with vacuolar APTase and is required for polarization, vesicle acdification, and secretion in mammary epithelial cells, J. Biol. Chem. 292 (2017) 21598-21613.
- [167] W. Chowanadisai, B. Lönnerdal, S.L. Kelleher, Identification of a mutation in SLC30A2 (*Dar*-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J. Biol. Chem. 281 (2006) 39699–39707.
 [168] N.I. Walker, R.E. Bennett, J.F.R. Kerr, Cell death by apoptosis during involution of
- [169] N.I. Hinkeri, Y.L. Berner, J. R. Rei, Y. Ch. Weint, G. Pappinos waing involution the lactating breast in mice and rats, Am. J. Anal. 185 (1989) 19–32.
 [169] M. Matsuda, T. Imooka, A.J. Vomachka, G.A. Gudelsky, Z. Hou, M. Mistry, J. P. Bailey, K.M. Nieport, D.J. Walther, M. Bader, N.D. Horseman, Serotonin regulates mammary gland development via an autocrine-paracrine loop, Dev. Cell 6 (2004) 193-203.
- [170] V.P. Pai, N.D. Horseman, Multiple cellular resp
- [170] V.F. Fai, K.J. HOFEMAN, IMAPPE CEREMIT PERFORM STRUCTURE environment of environment 3459 3468.
- [172] C. Schere-Levy, Leukemia inhibitory factor induces apoptosis of the mamn helial cells and participates in mouse mammary gland involu 282 (2003) 35-47. n, Exp. Cell
- [173] P.G. Tiffen, N. Omidvar, N. Marquez-Almuina, D. Croston, C.J. Watson, R.W. E. Clarkson, A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo, Mol. Endocrinol. 22 (2008) 2677–2688,
- https://doi.org/10.1210/me.2008-0097.
 [174] A.V. Nguyen, J.W. Pollard, Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution, Development 127 (2000) 2107. 3118.
- [175] R.C. Humphreys, B. Bieric, L. Zhao, R. Raz, D. Levy, L. Hennighausen, Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli, Endocrinology 143 (2002) 3641–3650.
- [176] B.A. Creamer, K. Sakamoto, J.W. Schmidt, A.A. Triplett, R. Moriggl, K.U. Wagner,
- [176] B.A. Creamer, K. Sakamoto, J.W. Schmidt, A.A. Triplett, R. Morggi, K.U. Wagner, Stat5 promotes survival of mammary epithelial cells through transcriptional activation of a distinct promoter in Akt1, Mol. Cell. Biol. 30 (2010) 2957–2970.
 [177] J.W. Schmidt, B.L. Wehde, K. Sakamoto, A.A. Triplett, S.M. Anderson, P. N. Tsichlis, G. Leone, K.U. Wagner, Stat5 regulates the phosphatidylinositol 3-Kinase/Akt1 pathway during mammary gland development and tumorigenesis, Mol. Cell. Biol. 34 (2014) 1363–1377.
- [178] E.C. Kordon, O.A. Coso, Postlactational involution: molecular mechanisms and nce for breast cancer development, in: Current Topics in Lactation, InTech,
- [179] K.A. Green, L.R. Lund, ECM degrading proteases and tissue remodelling in the
- [179] K.A. Oreen, L.A. Land, E.A. diegtaming proteases and ussue reinodering in the mammary gland, Bioessays 27 (2005) 894-903.
 [180] J. Fornetti, S. Jindal, K.A. Middleton, V.F. Borges, P. Schedin, Physiological COX-2 expression in breast epithelium associates with COX-2 levels in ductal carcinoma in situ and invasive breast cancer in young women, Am. J. Pathol. 184 (2014) 1219-1229
- (2014) 1219-1229.
 T.R. Lyons, J. O'Brien, V.F. Borges, M.W. Conklin, P.J. Keely, K.W. Eliceiri,
 A. Marusyk, A.C. Tan, P. Schedin, Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2, Nat. Med. 17 [181]
- progression or unclus cars unaverse (2011) 1109–1115. N. Ben-Jonathan, E. Hugo, Prolactin (PRL) in adipose tissue: regulation and functions, Adv. Exp. Med. Biol. 846 (2015) 1–35. [182]
- Y. Lin, Q. Li, Expression and function of leptin and its receptor in mouse mammary gland, Sci. China Ser. C Life Sci. 50 (2007) 669–675.
 T. Stein, J.S. Morris, C.R. Davies, S.J. Weber-Hall, M.A. Duffy, V.J. Heath, A. K. Bell, R.K. Ferrier, G.P. Sandilands, B.A. Gusterson, Involution of the mouse esponse, involving LBP, CD14 and STAT3, Breast Cancer Res. 6 (2004) R75-R91.
- [185] J. Monks, D. Rosner, F. Jon Geske, L. Lehman, L. Hanson, M.C. Neville, V. A. Fadok, Evitati et al. 1990 (1990) and the second state of th
- function of the mammary gland and its remodeling for successive gestations, Dev. Cell 38 (2016) 522–535. F. Schular, P. Schular, S. Schula [186] N. Akhtar, W. Li, A. Mironov, C.H. Streuli, Rac1 controls both the secretor
- Cell 38 (2016) 522–535.
 [187] F. Schuler, F. Baumgartner, V. Klepsch, M. Chamson, E. Müller-Holzner, C. J. Watson, S. Oh, L. Hennighausen, P. Tymoszuk, W. Doppler, A. Villunger, The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland, Cell Death Differ. 23 (2016) 41–51.
- [188] M.K. Jena, S. Jaswal, S. Kumar, A.K. Mohanty, Molecular n
- [169] M.K. Sena, S. Jaswai, S. Kuma, F.K. Molandy, Molecular mechanism mammary gland involution: an update, Dev. Biol. 445 (2019) 145–155.
 [189] J. Xu, S. Lamouille, R. Derynck, TGF-β-induced epithelial to mesenchyr transition, Cell Res. 19 (2009) 156–172.
- (190) M.-F. Pang, A.M. Georgoudaki, L. Lambut, J. Johansson, V. Tabor, K. Hagikura, Y. Jin, M. Jansson, J.S. Alexander, C.M. Nelson, L. Jakobsson, C. Betsholtz, M. Sund, M.C.I. Karlsson, J. Fuxe, TGF.91-induced EMT promotes targeted migration of breast cancer cells through the lymphatic sy stem by the activation of CCR7/CCL21-mediated chemotaxis, Oncoger ac 35 (2016) 748-760

- [191] C.B. Betts, N.D. Pennock, B.P. Caruso, B. Ruffell, V.F. Borges, P. Schedin, M. immunity in the female murine mammary gland, J. Immunol. 201 (2018) 734-746.
- [192] J. Fornetti, H.A. Martinson, C.B. Betts, T.R. Lyons, S. Jindal, O. Guo, L. Forneut, Fr.A. Martinson, C.B. Betts, F.R. Lyons, S. Jinaa, Q. Guo, L. M. Coussens, V.F. Borges, P. Schedin, Mammary gland involution as an immunotherapeutic target for postpartum breast cancer, J. Mammary Gland Biol. Neoplasia 19 (2014) 213–228.
- Reopara I S (2017) 115-220.
 A. Janssen, J. Villacorta Hidalgo, D.X. Beringer, S. van Dooremalen, F. Fernando, E. van Diest, A.R. Terrizi, P. Bronsert, S. Kock, A. Schmitt-Gräff, M. Werner, K. Heise, M. Follo, T. Straetemans, Z. Sebestyen, D.M. Chudakov, S.A. Kasatskaya, [193] FE Frenkel, S. Ravens, E. Spierings, I. Frinz, R. Kippers, M. Malkovsky, P. Fisch, J. Kuball, y6 T-cell receptors derived from breast cancer-infiltrating T lymphocytes mediate antitumor reactivity, Cancer Immunol. Res. 8 (2020) 530-543.
- [194] A.A. Zuppa, A. Tornesello, P. Papacci, G. Tortorolo, G. Segni, G. Lafuenti, E. Moneta, A. Diodato, M. Sorcini, S. Carta, Relationship between maternal parity basal prolactin levels and neonatal breast milk intake, Biol. Neonate 53 (1988) 144-147.
- 144-147.
 [195] J. Ingram, M. Woolridge, R. Greenwood, Breastfeeding: it is worth trying with the second baby, Lancet (Lond., Engl.) 358 (2001) 986–987.
 [196] S.J. Huh, K. Clement, D. Jee, A. Merlini, S. Choudhury, R. Maruyama, R. Yoo, A. Chytli, P. Boyle, F.A. Ran, H.L. Moses, M.H. Barcellos-Hoff, L. Jackson-Grusby, A. Meissner, K. Polyak, Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells, Stem Cell Rep. 4 (2015) 297–311.
 [197] C.O. dos Santos, F. Dolzhenko, E. Hodges, A.D. Smith, G.J. Hannon, An epigenetic memory of pregnancy in the mouse mammary gland, Cell Rep. 11 (2015)
- 102-1109.
- M.J. Feigman, M.A. Moss, C. Chen, S.L. Cyrill, M.F. Ciccone, M.C. Trousdell, S. [198] [198] M.J. Fergman, M.A. Moss, C. Chen, S.L. Cyrili, M.F. Ciccone, M.L. Frousdeil, S. T. Yang, W.D. Frey, J.E. Wilkinson, C.O. dos Santos, Pregnannyr reprograms the epigenome of mammary epithelial cells and blocks the development of premalignant lesions, Nat. Commun. 11 (2020) 2649.
 [199] T.R. Wallace, S.E. Tarullo, L.S. Crump, T.R. Lyons, Studies of postpartum mammary gland involution reveal novel pro-metastatic mechanisms, J. Cancer Metastas. Treat. 2019 (2019) 2019.
 [200] N.Y. Fu, E. Nolan, G.J. Lindeman, J.E. Visvader, Stem cells and the differentiation

- N. F. V. L. Kohn, G.J. Landming year brief current current current and current mannary gland development. Physiol. Rev. 100 (2020) 489–523.V. Muncan, O.J. Sansom, L. Tertoolen, T.J. Phesse, H. Begthel, E. Sancho, A. M. Cole, A. Gregorieff, I.M. de Alboran, H. Clevers, A.R. Clarke, Rapid loss of [201] In conc. A Gregorich, Link de Aubrin, Fri Greens, Andre Ganice, Napie accordination intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc, Mol. Cell. Biol. 26 (2006) 8418–8426. V. Korinek, N. Barker, P. Moerer, E. van Donselaar, G. Huls, P.J. Peters,
- [202] H. Clevers, Depletion of epithelial stem-cell compartments in the small intestine
- H. Gevers, Depiction of epitheliai stem-cen compartments in the small intestin of mice lacking Tcf-4, Nat. Genet. 19 (1998) 379–383.
 R. van Amerongen, A.N. Bowman, R. Nusse, Developmental stage and time dictate the fate of Wnt/Jl-catenin-responsive stem cells in the mammary gland, [203] Cell Stem Cell 11 (2012) 387-400.
- Cell steim Cell 11 (2012) 337–400. A. Van Keymeulen, A.S. Rocha, M. Ousset, B. Beck, G. Bouvencourt, J. Rock, N. Sharma, S. Dekoninck, C. Blanpain, Distinct stem cells contribute to mammary gland development and maintenance, Nature 479 (2011) 189–193. M.R. Zou, J. Cao, Z. Liu, S.J. Huh, K. Polyak, Q. Yan, Histone demethylase jumonji [204]
- [205] AT-rich interactive domain 1B (JARID1B) controls mammary gland developmen by regulating key developmental and lineage specification genes, J. Biol. Chem. 289 (2014) 17620-17633.
- 289 (2014) 17620-17633. K. Hinohara, H.J. Wu, S. Vigneau, T.O. McDonald, K.J. Igarashi, K.N. Yamamoto, T. Madsen, A. Fassl, S.B. Egri, M. Papanastasiou, L. Ding, G. Peluffo, O. Cohen, S. C. Kales, M. Lal-Nag, G. Rai, D.J. Maloney, A. Jadhav, A. Simeonov, N. Wagle, M. Brown, A. Meissner, P. Sicinski, J.D. Jaffe, R. Jeselsohn, A.A. Gimelbrant, F. Michor, K. Polyak, KDMS histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance, Cancer Cell 34 (2018) 2020 052 05 [206] 939-953.c9.
- 939–953.e9, S. Yamamoto, Z. Wu, H.G. Russnes, S. Takagi, G. Peluffo, C. Vaske, X. Zhao, H. K. Moen Vollan, R. Maruyama, M.B. Ekram, H. Sun, J.H. Kim, K. Carver, M. Zucca, J. Feng, V. Almendro, M. Beszarabova, O.M. Rueda, Y. Nikolsky, C. Caldas, X.S. Liu, K. Polyak, JARID1B is a luminal lineage-driving oncogene in [207]
- C. Caldas, X.S. Liu, K. Polyak, JARID1B is a luminal lineage-driving oncogene in breast cancer, Cancer Cell 25 (2014) 762–777.
 A. Roesch, A. Vultur, I. Bogeski, H. Wang, K.M. Zimmermann, D. Speicher, C. Körbel, M.W. Laschke, P.A. Gimotty, S.E. Philipp, E. Krause, S. Patzold, J. Villanueva, C. Krepler, M. Fukunaga-Kalabis, M. Hoth, B.C. Bastian, T. Vogt, M. Herlyn, Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID18(high) cells, Cancer evil no convolution. Data not. [208] Cell 23 (2013) 811-825.
- Cell 35 (2013) 611–625.
 A. Roesch, M. Fukunaga-Kalabis, E.C. Schmidt, S.E. Zabierowski, P.A. Brafford, A. Vultur, D. Basu, P. Gimotty, T. Vogt, M. Herlyn, A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor [209] A. Re
- Stoppontor of a non-systing inclining treatment ceres is required to containous termol growth, Cell 141 (2010) S83–S94.S.V. Sharma, D.Y. Lee, B. Li, M.P. Quinlan, F. Takahashi, S. Maheswaran, U. McDermott, N. Azizian, L. Zou, M.A. Fischbach, K.K. Wong, K. Brandstetter, [210] B. Wittner, S. Ramaswamy, M. Classon, J. Settleman, A chrom versible drug-tolerant state in cancer cell subpopulations, Cell 141 (2010)
- [211] J.R. Horton, A. Engstrom, E.L. Zoeller, X. Liu, J.R. Shanks, X. Zhang, M.A. Johns, P.M. Vertino, H. Fu, X. Cheng, Characterization of a linked jumoni domain of th KDM5/JARID1 family of histone H3 lysine 4 demethylases, J. Biol. Chem. 291 (2016) 2631-2646.
- [212] C. Johansson, S. Velupillai, A. Tumber, A. Szykowska, E.S. Hookway, R.P. Nowak, C. Strain-Damerell, C. Gileadi, M. Philpott, N. Burgess-Brown, N. Wu, J. Kopec

Nuzzi, H. Steuber, U. Egner, V. Badock, S. Munro, N.B. LaThangue, S. Westaway, J. Brown, N. Athanasou, R. Prinjha, P.E. Brennan, U. Oppermann, Structural analysis of human KDM5B guides histone demethylase inhibitor development, Nat. Chem. Biol. 12 (2016) 539–545.
 [213] S. Fippa, C. Mannironi, V. Licursi, L. Bombardi, G. Colotti, E. Cundari, A. Mollica, A. Coluccia, V. Naccarato, G. La Regina, R. Silvestri, R. Negri, Small molecule hybrid and the statement of the statement of the statement of the statement of the statement.

- inhibitors of KDM5 histone demethylases increase the radiosensitivity of breast
- (214) E.M. Michalak, K. Nacerddine, A. Pletersen, V. Beuger, I. Pawlitzky, P. Cornelissen-Steijger, E. Wientjens, E. Tanger, J. Seibler, M. van Lohuizen, J. Jonkers, Polycomb group gene Early regulates mammary gland morphogenesis and maintains the luminal progenitor pool, Stem Cells 31 (2013) 1910–1920.
 R. Margueron, G. Li, K. Sarma, A. Blais, J. Zavadil, C.L. Woodcock, B.D. Dynlacht,
- D. Reinberg, Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms, Mol. Cell 32 (2008) 503-518.
- [216] X. Shen, Y. Liu, Y.J. Hsu, Y. Fujiwara, J. Kim, X. Mao, G.C. Yuan, S.H. Orkin, EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency, Mol. Cell 32 (2008) 491-502
- [217] K.H. Yoo, S. Oh, K. Kang, T. Hensel, G.W. Robinson, L. Hennigh EZH2 results in precoclous mammary gland development and activation of STAT5-dependent genes, Nucleic Acids Res. 43 (2015) 8774–8789.
- [218] A.M. Pietersen, B. Evers, A.A. Prasad, E. Tanger, P. Cornelissen-Steijger, J. Jonkers, M. van Lohuizen, Bmil regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium, Curr. Biol. 18 (2008) 1094–1099, https://doi.org/10.1016/j.cub.2008.06.070. T. Goller, F. Vauti, S. Ramasamy, H.H. Arnold, Transcriptional regulator BPTF/
- [219] FAC1 is essential for trophoblast differentiation during early mouse development.
- Mol. Cell. Biol. 28 (2008) 6819–6827.
 (220) J.W. Landry, S. Banerjee, B. Taylor, P.D. Aplan, A. Singer, C. Wu, Chromatin remodeling complex NURF regulates thymocyte maturation, Genes Dev. 25 (2011) 275–286.
- (2011) 273–200. D. Koludrovic, P. Laurette, T. Strub, C. Keime, M. Le Coz, S. Coassolo, G. Mengus, L. Larue, I. Davidson, Chromatin-remodelling complex NURF is essential for differentiation of adult melanocyte stem cells, PLOS Genet. 11 (2015), e1005555. [221]
- [222] A.J. Ruthenburg, H. Li, T.A. Milne, S. Dewell, R.K. McGinty, M. Yuen, B. Ueberheide, Y. Dou, T.W. Muir, D.J. Patel, C.D. Allis, Recognition of mononucleosomal histone modification pattern by BPTF via multivalen nteractions, Cell 145 (2011) 692-706,
- [223] B. Xu, L. Cai, J.M. Butler, D. Chen, X. Lu, D.F. Allison, R. Lu, S. Rafi, J.S. Parker, D. Zheng, G.G. Wang, The chromatin remodeler BPTF activates a stemness gene-expression program essential for the maintenance of adult hematopoietic stem
- CAPTESSION program ESEMITATION OF INTERNATIONAL AND ADDRESSION program ESEMITATION OF ADDRESSION PROGRAMMENT AND ADDRESSION PROFESSION PROFE [224] G. D. luminal progenitor and breast cancer stem cells, Oncogene 38 (2019) 3151–3169.
 [225] R. Jäger, S. Schäfer, M. Hau-Liersch, H. Schorle, Loss of transcription factor AP-
- gamma/TFAP2C impairs branching morphogenesis of the murine mammary nd, Dev. Dyn. 239 (2010) 1027-1033.
- [226] D. Hong, T.L. Messier, C.E. Tye, J.R. Dobson, A.J. Fritz, K.R. Sikora, G. Browne, J. L. Stein, J.B. Lian, G.S. Stein, Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget 8 (2017) 17610-17627
- (2017) 17610–17627.
 [227] H.K. Athwal, G. Murphy, E. Tibbs, A. Cornett, E. Hill, K. Yeoh, E. Berenstein, M. P. Hoffman, I.M.A. Lombaert, Sox10 regulates plasticity of epithelial progenitors toward secretory units of exocrine glands, Stem Cell Rep. 12 (2019) 366–380.
 [228] H. Huh, D. Kim, H.S. Jeong, H. Park, Regulation of TEAD transcription factors in cancer biology, Cells 8 (2019) 8.
- [229] H. Kendrick, J.L. Regan, F.A. Magnay, A. Grigoriadis, C. Mitsopoulos, M. Zvelebil, M.J. Smalley, Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate, BMC Genom. 9 (2008) 591.
- [230] S.S. Sikandar, A.H. Kuo, T. Kalisky, S. Cai, M. Zabala, R.W. Hsieh, N.A. Lobo, F. A. Scherens, S. Sim, D. Qian, F.M. Dirbas, G. Somlo, S.R. Quake, M.F. Clarke, R. of epithelial to mesenchymal transition associated genes in mammary gland
- regeneration and breast tumorigenesis, Nat. Commun. 8 (2017) 1669.
 W.D. Frey, A. Chaudhry, P.F. Slepicka, A.M. Ouellette, S.E. Kirberger, W.C. K. Pomerantz, G.J. Hannon, C.O. dos Santos, BPTF maintains chromatin accessibility and the self-renewal capacity of mammary gland stem cells. Stem Cell Rep. 9 (2017) 9-31.
- [232] B. Gu, P. Sun, Y. Yuan, R.C. Moraes, A. Li, A. Teng, A. Agrawal, C. Rhéaume, V. Bilanchone, J.M. Veltmaat, K.I. Takemaru, S. Millar, E.Y.H.P. Lee, M.T. Lewis, B. Li, X. Dai, Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation, J. Cell Biol. 185 (2009) 811-826, http //doi.org/10.1083
- [233] B. Gu, K. Watanabe, P. Sun, M. Fallahi, X. Dai, Chromatin effector Pygo2 mediates vnt-notch crosstalk to suppress luminal/alveolar potential of mam arv stem and basal cells, Cell Stem Cell 13 (2013) 48-61, https://doi.org/10.1016/j
- [234] B.E. Bernstein, T.S. Mikkelsen, X. Xie, M. Kamal, D.J. Huebert, J. Cuff, B. Fry, B.E. Bernstein, L.S. mindelsen, A. Ale, M. Kalina, D.S. rudovi, S. Cuit, B. Fity, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S.L. Schreibe E.S. Lander, A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell 125 (2006) 315–326, https://doi.org/10.1016/j. cell.2006.02.041.

- [235] T.S. Mikkelsen, M. Ku, D.B. Jaffe, B. Issac, E. Lieberman, G. Giannoukos, P. Alvarez, W. Brockman, T.K. Kim, R.P. Koche, W. Lee, E. Mendenhall, A. O'Donovan, A. Presser, C. Russ, X. Xie, A. Meissner, M. Wernig, R. Jaenisch, C. Nusbaum, E.S. Lander, B.E. Bernstein, Genome-wide maps of chr atin state in pluripotent and lineage-committed cells, Nature 448 (2007) 553-560, https://
- oi.org/10.1038/nature06008. [236] D. Yamaji, R. Na, Y. Feuermann, S. Pechhold, W. Chen, G.W. Robi D. Family, R. Ka, F. Petermann, S. Fechnolo, W. Glen, G.W. Konnson, L. Hennighausen, Development of mammary luminal progenitor cells is controlle by the transcription factor STATSA, Genes Dev. 23 (2009) 2382–2387.
 V. Vafaizadeh, P. Klemmt, C. Brendel, K. Weber, C. Doebele, K. Britt, M. Grez,
- [237] Friendmaden P. Roching & anchor R. Heeler, & Doberte R. Britt, in Ore-modified stem cells assigns roles to Stat5 in luminal alveolar cell fate decisions, differentiation, involution, and mammary tumor formation, Stem Cells 28 (2010) 928-938.
- [238] C.M. McQueen, E.E. Schmitt, T.R. Sarkar, J. Elswood, R.P. Metz, D. Earr M. Rijnkels, W.W. Porter, PER2 regulation of mammary gland development Development 145 (2018) 145.
- [239] W.W. Hwang-Versitus, P.H. Chang, Y.M. Jeng, W.H. Kuo, P.H. Chiang, Y. C. Chang, T.H. Hsieh, F.Y. Su, L.C. Lin, S. Abbondante, C.Y. Yang, H.M. Hsu, J. C. Yu, K.J. Chang, J.Y. Shew, E.Y.H.P. Lee, W.H. Lee, Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances
- under hypoxia upregulates OCT intendiates Earl gene expression and email tumor malignancy, Proc. Natl. Acad. Sci. USA 110 (2013) 12331–12336.W. Guo, Z. Keckesova, J.L. Donaher, T. Shibue, V. Tischler, F. Reinhardt, S. Itzkovitz, A. Noske, U. Zürrer-Härdi, G. Bell, W.L. Tam, S.A. Mani, A. van [240] Oudenaarden, R.A. Weinberg, Slug and Sox9 cooperatively determine the mammary stem cell state, Cell 148 (2012) 1015–1028.
 [241] Q. Shen, Y. Zhang, I.P. Uray, J.L. Hill, H.T. Kim, C. Lu, M.R. Young, E.J. Gunther, S.G. Hilsenbeck, L.A. Chodosh, N.H. Colburn, P.H. Brown, The AP-1 transcription
- factor regulates postnatal mammary gland development, Dev. Biol. 295 (2006)
- [242] B. To, E.R. Andrechek, Transcription factor compensation du ne mammary gland nt in E2F knockout mice, PLoS One 13 (2018), e0194937
- [243] S. Liu, G. Dontu, I.D. Mantle, S. Patel, N. Ahn, K.W. Jackson, P. Suri, M.S. Wicha, Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells, Cancer Res. 66 (2006) 6063-6071, https://doi.org/ 10.1158/0008-5472.CAN-06-0054.
- [244] D. Pellacani, M. Bilenky, N. Kannan, A. Heravi-Moussavi, D.J.H.F. Knapp, S. Gakkhar, M. Moksa, A. Carles, R. Moore, A.J. Mungall, M.A. Marra, S.J. M. Jones, S. Aparicio, M. Hirst, C.J. Eaves, Analysis of normal human mam epigenomes reveals cell-specific active enhancer states and associated transcription factor networks, Cell Rep. 17 (2016) 2060-2074, https://doi.org/ 10.1016/j.celrep.2016.10.058
- [245] S.J. Huh, K. Clement, D. Jee, A. Merlini, S. Choudhury, R. Maruyama, R. Yoo, A. Chytil, P. Boyle, F.A. Ran, H.L. Moses, M.H. Barcellos-Hoff, L. Jackson-Grusby, A. Meissner, K. Polyak, Age- and pregnancy-associated DNA methylation changes
- in mammary epithelial cells, Stem Cell Rep. 4 (2015) 297–311, [246] K.G. Danlelson, C.J. Oborn, E.M. Durban, J.S. Butel, D. Medina, Epithelial mout mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vivo, Proc. Natl. Acad. Sci. USA 81 (1984) 3756–3760.
- [247] J.R. Johson, C.A. Boulanger, T. Hudson, E. Savage, G.H. Smith, Microarray and pathway analysis of two COMMA-Dβ derived clones reveal important differences relevant to their developmental capacity in-vivo, Oncotarget 10 (2019) 2118-2135.
- [248] I. Ibarra, Y. Erlich, S.K. Muthuswamy, R. Sachidanandam, G.J. Hannon, A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. *Genes*. microRNAs in maintenance Dev. 21 (2007) 3238-3243.

- Dev. 21 (2007) 3238–3243.
 [249] C.-H. Chao, C.-C. Chang, M.J. Wu, H.W. Ko, D. Wang, M.C. Hung, J.Y. Yang, C. J. Chang, MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis, J. Clin. Invest, 124 (2014) 3093–3106.
 [250] K. Nagaoka, H. Zhang, G. Watanabe, K. Taya, Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands, PLoS One 8 (2013), e65127.
 [251] S.J. Song, L. Pollseno, M.S. Song, U. Ala, K. Webster, C. Ng, G. Beringer, N. J. Bribbak, X. Yuan, L.C. Cantley, A.L. Richardson, P.P. Pandolfi, MicroRNA-antisensing menutics beaset access tempers and metatanis via TET_fomily.
- antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154 (2013) 311–324. C.-J. Chang, C.H. Chao, W. Xia, J.Y. Yang, Y. Xiong, C.W. Li, W.H. Yu, S. K. Rehman, J.L. Hsu, H.H. Lee, M. Liu, C.T. Chen, D. Yu, M.C. Hung, p53 regulates [252] cpithelial-mesenchy al transition and stem cell properties through m
- [253] Y. Shimono, M. Zabala, R.W. Cho, N. Lobo, P. Dalerba, D. Qian, M. Diehn, H. Liu, S.P. Panula, F. Chiao, F.M. Dirbas, G. Somlo, R.A.R. Pera, K. Lao, M.F. Clarke, bells, Cell 138 (2009) 592-603. ormal stem
- [254] K.H. Yoo, K. Kang, Y. Feuermann, S.J. Jang, G.W. Robinson, L. Hennighau The SToY, Fe Guig, T. Fourinani, Sor. Yang, V.H. Koohnoli, L. Primighaosch, The STATS-regulated miR-193b locus restrains mammary stem and progenitor cell activity and alveolar differentiation, Dev. Biol. 395 (2014) 245–254.
 [255] J. Wang, E. Aydogdu, S. Mukhopadhyay, LA. Helguero, C. Williams, A miR-206
- egulated gene landscape enhances mammary epithelial differentiation, J. Cell.
- ysiol. 234 (2019) 22220-22233. L-J. Lee, K.S. Yoon, K.W. Cho, K.S. Kim, H.S. Jung, Expression of miR-2([256] the initiation of mammary gland development, Cell Tissue Res. 353 (2013) 425.433
- [257] R.E. Heinz, M.C. Rudolph, P. Ramanathan, N.S. Spoelstra, K.T. Butterfield, P. G. Webb, B.L. Babbs, H. Gao, S. Chen, M.A. Gordon, S.M. Anderson, M.C. Neville, H. Gu, J.K. Richer, Constitutive expression of microRNA-150 in mammary

epithelium suppresses secretory activation and impairs de novo lipogenesis, Development 143 (2016) 4236-4248.
 [258] D. Llobet-Navas, R. Rodriguez-Barrueco, V. Castro, A.P. Ugalde, P. Sumazin,

- D. Jacob-Sender, B. Demirçae-Jointoco, F. Guina, A. Fognika, F. Johnson,
 D. Jacob-Sender, B. Demirçae, M. Castillo-Martin, P. Putcha, N. Marshall,
 P. Villagrasa, J. Chan, F. Sanchez-Garcia, D. Pe'er, R. Rabadan, A. Iavarone,
 C. Cordon-Cardo, A. Califano, C. Lopez-Otin, E. Ezhkova, J.M. Silva, The miR-424
- (322)/503 cluster orchestrates remodeling of the epithelium in the involuting mammary gland, Genes Dev. 28 (2014) 765-782.
 A.N. Shore, E.B. Kabotyanski, K. Roarty, M.A. Smith, Y. Zhang, C.J. Creighton, M. E. Dinger, J.M. Rosen, Pregnancy-induced noncoding RNA (PINC) associates with polycomb repressive complex 2 and regulates mammary epithelial differentiation. PLoS Genet, 8 (2012), e1002840.
 [260] L. Standaert, C. Adriaens, E. Radaelli, A. Van Keymeulen, C. Blanpain, T. Hiro
- [200] L. Stamateri, G. Auflachs, E. Nadachi, A. Van Keymeuen, G. Bianpain, T. Hirsse, S. Nakagawa, J.C. Marine, The Iong noncoding RNA Neat1 is required for mammary gland development and lactation, RNA 20 (2014) 1844–1849.
 [201] M.E. Askarian-Amiti, J. Crawford, J.D. French, C.E. Smart, M.A. Smith, M. B. Clark, K. Ru, T.R. Mercer, E.R. Thompson, S.R. Lakhani, A.C. Vargas, I. G. Campbell, M.A. Brown, M.E. Dinger, J.S. Mattick, SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer, RNA 17 (2011) 878–891.
 [202] M.E. Ginger, A.N. Shore, A. Contreras M. Bünkel, J. Miller, M.F. Gonzalez-
- [262] M.R. Ginger, A.N. Shore, A. Contreras, M. Riinkels, J. Miller, M.F. Gon
- [262] M.R. Ginger, A.N. Shore, A. Contreras, M. Rijnkels, J. Miller, M.F. Gonzalez-Rimbau, J.M. Rosen, A noncoding RNA is a potential marker of cell fate during mammary gland development, Proc. Natl. Acad. Sci. USA 103 (2006) 5781–5786. [263] R.A. Gupta, N. Shah, K.C. Wang, J. Kim, H.M. Horlings, D.J. Wong, M.C. Tsai, T. Hung, P. Argani, J.L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R.B. West, M. J. van de Vijver, S. Sukumar, H.Y. Chang, Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis, Nature 464 (2010) 1021 1026 1071-1076.
- [264] A. Bhan, S.S. Mandal, LncRNA HOTAIR: a master regulator of ch
- dynamics and cancer, Biochim. Biophys. Acta 1856 (2015) 151–164.
 [265] A.R. Amàndio, A. Necsulea, E. Joye, B. Mascrez, D. Duboule, Hotair is disperied by the statement of the statement
- r mouse development, PLoS Genet, 12 (2016), e1006232
- for mouse development, PLoS Genet. 12 (2016), e1006232.
 S. Tao, H. He, Q. Chen, Estradiol induces HOTAIR levels via GPER-mediated miR-148a inhibition in breast cancer, J. Transl. Med. 13 (2015) 131.
 [267] J. Russo, J. Santucci-Pereira, R.L. de Cicco, F. Sheriff, P.A. Russo, S. Peri, M. Slifker, E. Ross, M.L.S. Mello, B.C. Vidal, I. Belitskaya-Lévy, A. Arslan, A. Zeleniuch-Jacquotte, P. Bordas, P. Lenner, J. Ahman, Y. Afanasyeva, G. Hallmans, P. Toniolo, I.H. Russo, Pregmancy-induced chromatin remodeling in the breast of postmenopausal women, Int. J. Cancer 131 (2012) 1059–1070.
 [268] J.L.C. Richard, P.J.A. Eichhorn, Deciphering the roles of IncRNAs in breast development and disease. Oncotarget 9 (2018) 20179–20212.
 [259] S. Obad, C.O. dos Santos, A. Petri, M. Heidenblad, O. Broom, G. Ruse, C. Fu, M. Lindow, J. Stenvang, E.M. Straarup, H.F. Hansen, T. Koch, D. Pappin, G. J. Hannon, S. Kauppinen, Silencing of microRNA families by seed-targeting tiny LNAs, Nat. Genet. 43 (2011) 371–378.
 [270] E.C. Kordon, G.H. Smith, An enttre functional mammary gland may comprise the progeny from a single cell, Development 125 (1998) 1921–1930.

- cell. Devel ent 125 (1998) 1921-1930 [271] J. Stingl, P. Eirew, I. Ricketson, M. Shackleton, F. Vaillant, D. Choi, H.I. Li, C.
- J. Eaves, Purification and unique properties of mammary epithelial stem cells,
- Laves, Furnication and unique properties of mammary epithelia stem cens, Nature 439 (2006) 993-997, https://doi.org/10.1038/nature04496.
 [272] L.R. Rohrschneider, J.M. Custodio, T.A. Anderson, C.P. Miller, H. Gu, The intron 5/6 promoter region of the ship1 gene regulates expression in stem/progenitor cells of the mouse embryo, Dev. Biol. 283 (2005) 503-521.
 [273] A.C. Rios, N.Y. Fu, G.J. Lindeman, J.E. Visvader, In situ identification of bipotent stem cells in the mammary gland, Nature 506 (2014) 322-327.
 [274] C.L. Trejo, G. Luna, C. Dravis, B.T. Spike, G.M. Wahl, Lgr5 is a marker for fetal

- [274] C.L. Trejo, G. Luna, C. Dravis, B.T. Spike, G.M. Wahi, Lgro is a marker tor retain mammary stem cells, but is not essential for stem cell activity or tumorigenesis, npj Breast Cancer 3 (2017) 16.
 [275] C.O. dos Santos, C. Rebbeck, E. Rozhkova, A. Valentine, A. Samuels, L.R. Kadiri, P. Osten, E.Y. Harris, P.J. Uren, A.D. Smith, G.J. Hannon, Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells, Proc. Natl. Acad. Sci. 110 (2013) 7123–7130. [276] L. Bai, L.R. Rohrschneider, s-SHIP promoter expre
- on marks activated stem cells
- [106] It Jun, Itz Gunkenheuter Griff Formand arthread Heinry F. de method, K. H. Joeck, R. Van Kylloudar, T. Wei, G. Balland, Heterotypic cell-cell communication regulates glandular stem cell multipotency, Nature 584 (2020) 608–613, https://doi.org/10.1038/s41586-020-2632-y. S. Cristea, K. Polyak, Dissecting the mammary gland one cell at a time, Nat. [278] S. Cristea, K. Polyak, Dis
- mmun, 9 (2018) 2473.
- [279] A. Wuldart, A. Sifrim, M. Fioramonti, S. Matsumura, A. Brisebarre, D. Brown, A. Centonze, A. Dannau, C. Dubois, A. Van Keymeulen, T. Voet, C. Blanpain, Early lineage segregation of multipotent embryonic mammary gland progenitors, Nat. Cell Biol. 20 (2018) 666-676.
- Cell Biol. 20 (2018) 666–676.
 R.R. Giraddi, C.Y. Chung, R.E. Heinz, O. Balcioglu, M. Novotny, C.L. Trejo,
 C. Dravis, B.M. Hagos, E.M. Mehrabad, L.W. Rodewald, J.Y. Hwang, C. Fan,
 R. Lasken, K.E. Varley, C.M. Perou, G.M. Wahl, B.T. Spike, Single-cell [280] inscriptomes distinguish stem cell state changes and lineage specification ograms in early mammary gland development, Cell Rep. 24 (2018) 1653-1666.
- [281] S. Elias, M.A. Morgan, E.K. Bikoff, E.J. Robertson, Long-lived unipotent Blimp1-[281] S. Eitas, M.A. Morgan, E.K. Bikoti, E.J. Kobertson, Long-Iven unipotent simpli-positive luminal stem cells drive mammary gland organogenesis throughout adult life, Nat. Commun. 8 (2017) 1714.
 [282] A.M. Lilja, V. Rodilla, M. Huyghe, E. Hannezo, C. Landragin, O. Renaud, O. Leroy,
- nds, B.D. Simons, S. Fre, Clonal analysis of Notch1-expressing cells re

Seminars in Cell and Developmental Biology 114 (2021) 93-112

- the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland, Nat. Cell Biol. 20 (2018) 677-687.
 [283] C.-Y. Chung, Z. Ma, C. Dravis, S. Preissi, O. Polrion, G. Luna, X. Hou, R.R. Giraddi, B. Ren, G.M. Wahl, Single-cell chromatin analysis of mammary gland development reveals cell-state transcriptional regulators and lineage relationships, Cell Rep. 29 (2019) 495-510.ce.
 [284] B. Pal, Y. Chen, F. Vaillant, P. Jamieson, L. Gordon, A.C. Rios, S. Wilcox, N. Fu, K.

- [284] B. Pal, Y. Chen, F. Vaillant, P. Jamieson, L. Gordon, A.C. Rios, S. Wilcox, N. Fu, K. H. Liu, F.C. Jackling, M.J. Davis, G.J. Lindeman, G.K. Smyth, J.E. Visvader, Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling, Nat. Commun. 8 (2017) 1627.
 [285] C.L.G.J. Scheele, E. Hannezo, M.J. Muraro, A. Zomer, N.S.M. Langedijk, A. van Oudenaarden, B.D. Simons, J. van Rheenen, Identity and dynamics of mammary stem cells during branching morphogenesis, Nature 542 (2017) 313–317.
 [286] H. Sun, Z. Miao, X. Zhang, U.I. Chan, S.M. Su, S. Guo, C.K.H. Wong, X. Xu, C. X. Deng, Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia, J. Biol. Chem. 293 (2018) 8315–8329.
 [287] S. Cai, T. Kalisky, D. Sahoo, P. Dalerba, W. Feng, Y. Lin, D. Qian, A. Kong, J. Yu, F. Wang, E.Y. Chen, F.A. Scheeren, A.H. Kuo, S.S. Silandar, S. Hiasmori, L.J. van Weele, D. Heiser, S. Sim, J. Lam, S. Quake, M.F. Clarke, A quiescent Bell 1b high stem cell 20 (2017) 247–2602. Stem Cell 20 (2017) 247-260.e5.
- Stem Cell 20 (2017) 247–266.e5.
 [288] K. Bach, S. Pensa, M. Grzehak, J. Hadfield, D.J. Adams, J.C. Marioni, W.T. Khaled, Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing, Nat. Commun. 8 (2017) 2128.
 [289] D. Wang, C. Cai, X. Dong, Q.C. Yu, X.O. Zhang, L. Yang, Y.A. Zeng, Identification of multipotent mammary stem cells by protein C receptor expression, Nature 517
- (2015) 81-84.
- (2015) 81–84.
 N. Kanaya, G. Chang, X. Wu, K. Saeki, L. Bernal, H.J. Shim, J. Wang, C. Warden, T. Yamamoto, J. Li, J.S. Park, T. Synold, S. Vonderfecht, M. Rakoff, S. L. Neuhausen, S. Chen, Single-cell RNA-sequencing analysis of estrogen- and endocrine-disrupting chemical-induced reorganization of mouse mammary gland, [290] un, Biol. 2 (2019) 406.
- [291] C.M.-C. Li, H. Shapiro, C. Tsiobikas, L. Selfors, H. Chen, G.K. Gray, Y. Oren, L. Pinello, A. Regev, J.S. Brugge, Aging-associated alterations in the mammary gland revealed by single-cell RNA sequencing, bioRxiv (2019), https://doi.org/ 0.1101/77340
- [292] Q.H. Nguyen, N. Pervolarakis, K. Blake, D. Ma, R.T. Davis, N. James, A.T. Phur E. Willey, R. Kumar, E. Jabart, I. Driver, J. Rock, A. Goga, S.A. Khan, D.A. Lawson L. Windy, R. Kalmani, Estabardi, F. Derrich, J. Rosz, and Gogl, J. St. Mani, Est. Lands, and S. K. Kessenbrock, Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity, Nat. Commun. 9 (2018) 2028. M.D. Luceken, F.J. Theis, Current best practices in single-cell RNA-seq analysis: a tutorial, Mol. Syst. Biol. 15 (2019), e6746. [293]
- ns and
- [294] M. Simian, et al., The interplay of matrix metalloproteinases, morphog growth factors is necessary for branching of mammary epithelial cells, Development 128 (2001) 3117–3131.
- [295] E.R. Shamir, A.J. Ewald, Three-dimensional organotypic culture: experimental models of mammalian biology and disease, Nat. Rev. Mol. Cell Biol. 15 (2014) 47-664.
- [296] J.T. Emerman, S.J. Burwen, D.R. Pitelka, Substrate properties influencing structural dif entiation of mammary epithelial cells in culture, Tissue Cell 11 (1979) 109-119.
- J.M. Shannon, D.R. Pitelka, The influence of cell shape on the inducti [297] functional differentiation in mouse mammary cells in vitro, Vitro 17 (1981) 1016-1028
- T. Emerman, D.R. Pitelka, Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen
- differentiation in dissociated mammary epithelium on floating collagen membranes, Virto 13 (1977) 316–328.
 J.T. Emerman, J. Enami, D.R. Pitelka, S. Nandi, Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes, Proc. Natl. Acad. Sci. USA 74 (1977) 4466–4470.
 Q.J. Tonelli, S. Sorof, Induction of biochemical differentiation in three-dimensional collagen cultures of manmary epithelial cells from virgin mice, Differentiation 22 (1982) 195–200.
 H. Beanie, J. Kanel, K. Sanel, E. Beaerenan, H. Beasie, J. Beasing, J. Be [299]
- [3001
- M. Hacuptle, Y. Suard, E. Bogenmann, H. Reggio, L. Racine, J. Krachenbuhl, [301] ect of cell shape change on the function and differentiation of rabbit mann ls in culture, J. Cell Biol. 96 (1983) 1425–1434.
- cells in culture, J. Cell Biol. 96 (1983) 1425–1434.
 [302] E.M. Durban, D. Medina, J.S. Butch, Comparative analysis of casein synthesis during mammary cell differentiation in collagen and mammary gland development in vivo, Dev. Biol. 109 (1985) 288–298.
 [303] D. Flynn, J. YANG, S. NANDI, Growth and differentiation of primary cultures of
- se mammary epithelium embedded in collagen gel, Differentiation 22 (1982)
- 191–194. E.Y. Lee, G. Parry, M.J. Bissell, Modulation of secreted proteins of n [304] mammary epithelial cells by the collagenous substrata, J. Cell Biol. 98 (1984) 146-155
- E.Y. Lee, W.H. Lee, C.S. Kaetzel, G. Parry, M.J. Bissell, Interaction of mou [305] mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion, Proc. Natl. Acad. Sci. USA 82 (1985) 1419–1423.
- J. Aggeler, et al., Cytodifferentiation of mouse mammary epith on a reconstituted basement membrane reveals striking simila [306] nilarities to
- levelopment in vivo. J. Cell Sci. 99 (Pt 2) (1991) 407-417. ent membrane matrix with biological
- acveropment in vivo, J. Cell Sci. 99 (PLZ) (1991) 407–417.
 [307] H.K. Kleinman, G.R. Martin, Matrigle basement membrane matrix with biologica activity, Semin. Cancer Biol. 15 (2005) 378–386.
 [308] K. Wolf, S. Alexander, V. Schacht, L.M. Coussens, U.H. von Andrian, J. van Rheenen, E. Deryugina, P. Friedl, Collagen-based cell migration models in vitro and in vivo, Semin. Cell Dev. Biol. 20 (2009) 931–941.

111
P.F. Slepicka et al.

- [309] P.R. Jamieson, J.F. Dekkers, A.C. Rios, N.Y. Fu, G.J. Lindeman, J.E. Visvader, Derivation of a robust mouse mammary organoid system for studying tissue dynamics, Development 144 (2017) 1065–1071.
- dynamics, Development 144 (2017) 1065–1071.
 S. Florian, Y. Ivawanoto, M. Coughlin, R. Weissleder, T.J. Mitchison, A human organoid system that self-organizes to recapitulate growth and differentiation of a benign mammary tumor, Proc. Natl. Acad. Sci. USA 116 (2019) 11444–11453.
 J. Sumbal, A. Chiche, E. Charifou, Z. Koledova, H. Li, Primary mammary organoid
- [311] J. Sumara, A. Suncie, E. Gaarino, Z. Korckova, H. L., Frimary manimary organic model of lactation and involution, Front. Cell Dev. Biol. 8 (2020) 68.
 [312] Z. Koledova, P. Lu, A 3D fibroblast-epithelium co-culture model for understandii microenvironmental role in branching morphogenesis of the mammary gland,
- Methods Mol. Biol. 1501 (2017) 217–231.
 [313] S. Krause, M.V. Maffini, A.M. Soto, C. Sonnenschein, A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland, Tissue Eng. Part C Methods 14 (2008) 261-271.
- [314] J.A. Reid, P.A. Mollica, R.D. Bruno, P.C. Sachs, Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform, Breast Cancer Res. 20 (2018) 122.
 [315] M.H. Barcellos-Hoff, et al., Functional differentiation and alveolar morphogenesis
- of primary mammary cultures on reconstituted basement membrane, Development 105 (1989) 223–235.
 [316] L.H. Chen, M.J. Bissell, A novel regulatory mechanism for whey acidic protein
- [310] LAT. CHELL, M.J. DISSEL, A TOYCE (Equilation for Winey actual: protein gene expression, Cell Regul. 1 (1989) 45–54.
 [317] R. Mroue, M.J. Bissell, Three-dimensional cultures of mouse mammary epithelial cells, Methods Mol. Biol. 945 (2013) 221–250.
- cetis, Methods Mol. Biol. 945 (2013) 221–230.
 [318] C.Q. Lin, P.J. Dempsey, R.J. Coffey, M.J. Bissell, Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-alpha in mouse mammary epithelial cells: studies in culture and in transgenic mice, J. Cell Biol. 129 (1995) 1115-1126.
- [319] C.H. Streuli, N. Bailey, M.J. Bissell, Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in absence of cell-cell interaction and morphological polarity, J. Cell Biol. 115 (1991) 1383-1395.
- J. Alcaraz, R. Xu, H. Mori, C.M. Nelson, R. Mroue, V.A. Spencer, D. Brownfield, D. C. Radisky, C. Bustamante, M.J. Bissell, Laminin and biomimetic extracellular [320] elasticity enhance functional differentiation in mammary epithelia, EMBO J. 27 (2008) 2829-2838
- (2009) 2627-2636.
 [321] E.M. Michalak, M.J.G. Milevskiy, R.M. Joyce, J.F. Dekkers, P.R. Jamieson, B. Pal, C.A. Dawson, Y. Hu, S.H. Orkin, W.S. Alexander, G.J. Lindeman, G.K. Smyth, J. E. Visvader, Canonical PRC2 function is essential for mammary gland development and affects chromatin compaction in mammary granoids, PLoS Biol. 16 (2018), e2004986.
 [322] T. Jardé, B. Lloyd-Lewis, M. Thomas, H. Kendrick, L. Melchor, L. Bougaret, P.
- D. Watson, K. Ewan, M.J. Smalley, T.C. Dale, Wnt and Neuregulin1/ErbB D. Walson, K. Lewan, M.; Smaney, L.S. Dure, Yint and Reargement Labor signalling extends 3D culture of hormone responsive mammary organoids, Nat. Commun. 7 (2016) 13207.
 [323] B. Mohapatra, N. Zutshi, W. An, B. Goetz, P. Arya, T.A. Bielecki, I. Mustaq, M.
- D. Storck, J.L. Meza, V. Band, H. Band, An essential role of CBL and CBL-E

Seminars in Cell and Developmental Biology 114 (2021) 93-112

ubiquitin ligases in mammary stem cell maintenance, Development 144 (2017) 1072-1086.

- [324] S. Horibata, K.E. Rogers, D. Sadegh, L.J. Anguish, J.L. McElwee, P. Sha B. Forbata, R.Z. Toguas, D. Jacquin, E.Z. Forquin, J.Z. Hickney, F. Shin, F. R. Thompson, S.A. Coonrod, Role of periphylarginine deminase 2 (PAD2) in mammary carcinoma cell migration, BMC Cancer 17 (2017) 378. A.R. Lourenço, M.G. Roukens, D. Seinstra, C.L. Frederiks, C.E. Pals, S.J. Vervoort,
- [325] A.S. Margarido, J. van Rheenen, P.J. Coffer, C/EBPo is crucial determinant of epithelial maintenance by preventing epithelial-to-mesenchymal transition, Nat. Commun. 11 (2020) 785.
- [326] B.C. Hacker, J.D. Gomez, C.A.S. Batista, M. Rafat, Growth and characterization of Tradiated organoids from mammary glands, J. Vis. Exp. (2019), https://doi.org. 10.3791/59293.
 M.F. Ciccone, M.C. Trousdell, C.O. dos Santos, Characterization of 3D organoid
- [327] culture to study the effects of pregnancy hormones on the epigenome and transcriptional output of mammary epithelial cells, J. Mammary Gland Nec nary Gland Neoplasia .020).
- [328] J.M. Rosenbluth, R.C.J. Schackmann, G.K. Gray, L.M. Selfors, C.M.C. Li, M. Boddicker, H.J. Kuiken, A. Richardson, J. Brock, J. Garber, D. Dillon, N. Sachs, H. Clevers, J.S. Brugge, Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages, Nat. Commun. 11 (2020)
- [329] S.H. Moolgavkar, et al., Two-stage model for carcinogenesis: epidemiology of breast cancer in females, J. Natl. Cancer Inst. (1980).
 [330] M.C. Pike, M.D. Krailo, B.E. Henderson, J.T. Casagrande, D.G. Hoel, "Hormonal" Trisk factors, "Breast tissue age" and the age-incidence of breast cancer, Nature 303 (1983) 767–770, https://doi.org/10.1038/303767a0.
 B. Rosner, G.A. Colditz, W.C. Willett, Reproductive risk factors in a prospective
- [331] study of breast cancer the nurses health study. Am. J. Epidemiol. 139 (1994)
 819–835, https://doi.org/10.1093/oxfordjournals.aje.a117079.
 [332] H.J. Bowers, E.E. Fannin, A. Thomas, J.A. Weis, Characterization of multicellular
- breast tumor spheroids using image data-driven biophysical mathematical modeling, Sci. Rep. 10 (2020) 11583, https://doi.org/10.1038/s41598-020-
- [333] E. Koedoot, M. Fokkelman, V.M. Rogkoti, M. Smid, I. van de Sandt, H. de Bont, C. Pont, J.E. Klip, S. Wink, M.A. Timmermans, E.A.C. Wiemer, P. Stoilov, J. G. Foin, S.L. Eup, G. Huns, and H. Hannehmus, Leve. Henry, F. Sotto, J. A. Foekens, S.E. Le Devedee, J.W.M. Martens, B. van de Water, Uncovering the signaling landscape controlling breast cancer cell migration identifies novel metastasis driver genes, Nat. Commun. 10 (2019) 2983, https://doi.org/10.1038/
- s41467-019-11020-3. [334] C. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintai [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [334] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [335] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [336] S. Wang, J.R. Christin, M.H. Oktay, W. Guo, Lineage-biased stem cells maintain [336] S. Wang, M. S. Wa estrogen-receptor-positive and -negative mouse mammary luminal lineages, Cell Rep. 18 (2017) 2825-2835.
- Rep. 16 (2017) 2625–2635.
 T. Bouras, B. Pal, F. Vaillant, G. Harburg, M.L. Asselin-Labat, S.R. Oakes, G. J. Lindeman, J.E. Visvader, Notch signaling regulates mammary stem cell function and luminal cell-fate commitment, Cell Stem Cell 3 (2008) 429–441. [335]

Article

Cell Reports

Parity-induced changes to mammary epithelial cells control NKT cell expansion and mammary oncogenesis

Graphical abstract

Authors

Amritha Varshini Hanasoge Somasundara, Matthew A. Moss, Mary J. Feigman, ..., Semir Beyaz, John E. Wilkinson, Camila O. dos Santos

Correspondence

dossanto@cshl.edu

In brief

Parity influences mammary cancer progression. Hanasoge Somasundara et al. demonstrate how pregnancyinduced changes modulate the communication between MECs and immune cells and establish a causal link between pregnancy, the immune microenvironment, and mammary oncogenesis in models of cMYC overexpression and Brca1 loss of function.

Highlights

- Post-pregnancy MECs express higher levels of the antigenpresenting molecule CD1d
- γδTCR-expressing NKT cells are expanded in postpregnancy mammary glands
- NKTs and CD1d expression associate with oncogenesis inhibition after pregnancy
- Loss of γδNKTs and CD1d expression supports mammary oncogenesis after pregnancy

Hanasoge Somasundara et al., 2021, Cell Reports 37, 110099 December 7, 2021 © 2021 The Author(s). https://doi.org/10.1016/j.celrep.2021.110099

⁽R) Ouest for

Cell Reports

Article

Parity-induced changes to mammary epithelial cells control NKT cell expansion and mammary oncogenesis

Amritha Varshini Hanasoge Somasundara,^{1,2,6} Matthew A. Moss,^{3,6} Mary J. Feigman,^{1,6} Chen Chen,¹ Samantha L. Cyrill,¹ Michael F. Ciccone,¹ Marygrace C. Trousdell,¹ Macy Vollbrecht,⁴ Siran Li,¹ Jude Kendall,¹ Semir Beyaz,¹

John E. Wilkinson,⁵ and Camila O. dos Santos^{1,7,*}

¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

²CSHL School of Biological Sciences, Cold Spring Harbor, NY, USA

³Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA ⁴Department of Biology, Stanford University, Stanford, CA, USA

⁵Department of Comparative Medicine, University of Washington, Seattle, WA, USA

⁶These authors contributed equally

7Lead contact

*Correspondence: dossanto@cshl.edu

https://doi.org/10.1016/j.celrep.2021.110099

SUMMARY

Pregnancy reprograms mammary epithelial cells (MECs) to control their responses to pregnancy hormone re-exposure and carcinoma progression. However, the influence of pregnancy on the mammary microenvironment is less clear. Here, we used single-cell RNA sequencing to profile the composition of epithelial and non-epithelial cells in mammary tissue from nulliparous and parous female mice. Our analysis indicates an expansion of $\gamma\delta$ natural killer T-like immune cells (NKTs) following pregnancy and upregulation of immune signaling molecules in post-pregnancy MECs. We show that expansion of NKTs following pregnancy is due to elevated expression of the antigen-presenting molecule CD1d on MECs. Loss of CD1d expression on post-pregnancy MECs, or overall lack of activated NKTs, results in mammary oncogenesis. Collectively, our findings illustrate how pregnancy-induced changes modulate the communication between MECs and the immune microenvironment and establish a causal link between pregnancy, the immune microenvironment, and mammary oncogenesis.

INTRODUCTION

Changes to the functions of immune cells modulate both the mammary immune microenvironment and mammary epithelial cell (MEC) lineages during all stages of mammary development, with CD4⁺ T cells guiding lineage commitment and differentiation of MECs, while macrophages provide growth factors and assist in removal of cellular debris from apoptotic events (Dawson et al., 2000; Hitchcock et al., 2020; Plaks et al., 2015; Rahat et al., 2016; Stewart et al., 2019; Wang et al., 2020). Accordingly, changes that impact immune cell function and abundance can also influence the development and progression of mammary oncogenesis, particularly in tissue reconstruction during post-partum involution (Bach et al., 2015; Freire-de-Lima et al., 2006; Guo et al., 2017; Fornetti et al., 2012; O'Brien et al., 2010).

Conversely, cell-autonomous processes in post-pregnancy MECs contribute to a lasting effect that decreases the risk of breast cancer by ~30% in rodents and humans (Medina et al., 2004; Britt et al., 2007; Terry et al., 2018). Epigenetic-mediated alterations of post-pregnant MECs have been shown to suppress mammary oncogenesis via oncogene-induced senescence (Feigman et al., 2020). Given that oncogene-induced senescence signals influence the immune system, a link between normal pregnancy-induced mammary development, the immune microenvironment, and oncogenesis needs to be addressed to fully understand the effects of pregnancy on breast cancer development.

In this study, we characterize the interactions between cellautonomous (MECs) and non-cell-autonomous (immune cells) factors that are part of normal pregnancy-induced mammary development and are involved in inhibiting mammary oncogenesis. Our analysis identified that pregnancy induces the expansion of natural killer T-like cells (NKT) during the late stages of involution, which preferentially populates the fully involuted, post-pregnancy mammary tissue. Unlike typical NKTs that bear aß T cell receptors (TCRs), pregnancy-induced NKTs express $\gamma\delta$ TCRs on their surface, indicating a role in specialized antigen recognition. NKT cell expansion was linked with increased expression of the antigen-presenting molecule, CD1d, on the surface of post-pregnancy MECs, which was associated with the stable gain of active transcription marks at the Cd1d locus and increased mRNA levels. Further analysis demonstrated that gain of CD1d expression on post-pregnancy

Cell Reports 37, 110099, December 7, 2021 © 2021 The Author(s). 1 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

MECs, and expansion of $\gamma\delta NKTs$ was observed in tissues that failed to undergo mammary oncogenesis in response to oncogenic signals, such as cMyc overexpression or Brca1 loss of function. Altogether, our findings elucidate how signals brought to MECs during pregnancy-induced development regulate epigenomic changes, gene expression, and immune surveillance, which together control mammary oncogenesis.

RESULTS

Identification of transcriptional programs and immune cellular heterogeneity in mammary tissue from parous female mice

The use of single cell RNA sequencing (scRNA-seq) has elucidated the dynamics of epithelial cell-lineage specification and differentiation across major mammary developmental stages (Bach et al., 2017; Chung et al., 2019; Li et al., 2020a; Pal et al., 2017, 2021). Previous studies have indicated that post-

2 Cell Reports 37, 110099, December 7, 2021

Figure 1. Identification of transcriptional programs and immune cellular heterogeneity in mammary tissue from parous female mice

(A) UMAP of mammary epithelial cells from preand post-pregnancy mammary glands.

(B) mRNA levels of senescence-associated, immune communication genes Cxcl1, Ccl2, II6, Cxcl5, Mhc-ii, and Cd1d in pre- and post-pregnancy MECs.

(C) UMAP of T cells (CD3e⁺ cells) from pre- and post-pregnancy mammary glands.

(D) Feature plots showing the expression of T cell markers Cd4, Cd8, Klrk1, and Gzma.

(E) Dendrogram clustering and dot plot showing the molecular signature and lineage identity of preand post-pregnancy mammary resident CD3⁺ immune cells.

See also Figures S1-S4.

pregnancy epithelial cells bear an altered transcriptome and epigenome, thus suggesting that pregnancy stably alters the molecular state of MECs (Blakely et al., 2006; Feigman et al., 2020; Huh et al., 2015; dos Santos et al., 2015). However, it is unclear whether pregnancy leads to disproportionate changes in the transcriptome of specific mammary cell populations.

In order to characterize the effects of parity on the cellular composition and heterogeneity of mammary glands, we used scRNA-seq to compare the abundance, identity, and gene expression of mammary epithelial and non-epithelial cells from nulliparous (virgin, never pregnant) and parous (20 days gestation, 21 days lactation, 40 days post-weaning) female mice. scRNA-seq clustering defined 20

clusters (TCs), which were further classified into five main cell types: epithelial cells (Krt8⁺ and Krt5⁺), B lymphocytes (CD20⁺), and T lymphocytes (CD3e⁺) and two smaller clusters, encompassing fibroblast-like cells (Rsg5⁺) and myeloid-like cells (Itgax⁺), with similar cell-cycle states (Figures S1A–S1C).

To characterize the cellular heterogeneity across pre- and post-pregnancy MECs, we used a re-clustering approach that resolved 11 clusters of mammary epithelial cells (ECs) (Henry et al., 2021) (Figure 1A). Analysis of cellular abundance and lineage identity revealed that clusters EC7 (mature myoepithelial MEC), EC9 (luminal common progenitor-like MEC), EC10, and EC11 (bi-potential-like MECs) were evenly represented in preand post-pregnancy mammary tissue, thus demonstrating populations of cells that are mostly unchanged by a pregnancy cycle. We also identified clusters predominantly represented in pre-pregnancy mammary tissue (EC2, EC4, and EC8), and those biased toward a post-pregnancy state (EC1, EC3, EC5, and EC6), classified as luminal alveolar-like clusters (EC1, EC2, EC4, and EC6), classified as luminal alveolar-like clusters (EC1, EC2, and

Cell Reports Article

Article

CellPress OPEN ACCESS

EC6), myoepithelial progenitor-like clusters (EC3 and EC4), and luminal ductal-like clusters (EC5 and EC8) (Figures S1D–S1F). Comparative gene-expression analysis indicated that processes associated with immune cell communication were markedly enriched in luminal and myoepithelial cell clusters biased toward the post-pregnancy state (Figure 1B; Figures S1G and S1H; Table S1). This observation was supported by analysis of previously published pre- and post-pregnancy bulk RNA-seq data, which suggested an overall enrichment for immune communication signatures in epithelial cells after a full pregnancy cycle (Feigman et al., 2020) (Figure S1I; Table S2).

Changes in the immune microenvironment are known to contribute to pregnancy-induced mammary development and cancer (Coussens and Pollard, 2011; Bach et al., 2021; Dawson et al., 2020; Saeki et al., 2021). Therefore, and in light of the potentially altered epithelial-immune cell communication identified in post-pregnancy MECs suggested above, we set out to understand the effects of pregnancy on the mammary resident immune compartment using scRNA-seq. Transcriptional analysis of clusters representing B lymphocytes (CD20*) did not identify major differences between cells from pre- and postpregnancy mammary glands, suggesting that B cells may not be significantly altered in fully involuted mammary tissue (Figure S2A). Re-clustering of CD3e+ T lymphocytes identified nine distinct immune cell clusters (IC) marked by the expression of immune lineage genes such as Cd4, Cd8, Klrk1, and Gzma (Figures 1C and 1D). Classification according to cell abundance and lineage identity of mammary resident lymphocytes revealed two cell clusters, IC1 (CD4+ memory-like T cells) and IC2 (CD8⁺ T cells), which were evenly represented across pre- and post-pregnancy mammary tissue (Figures S2B and S2C). Differential gene-expression analysis of clusters IC1 and IC2 identified minimal expression changes, suggesting that the transcriptional output of CD8+ T cells (IC2), and certain populations of CD4⁺ T cells (IC1) were not substantially altered by parity (Figures S2D and S2E).

Analysis of clusters biased toward a pre-pregnancy state identified several populations of CD4⁺ T lymphocytes, with gene identifiers supporting their identity as CD4⁺ Tregs (IC3), CD4⁺ naive T cells (IC7 and IC8), and CD4⁺ helper T cells (IC4), suggesting that pre-pregnancy mammary tissues are enriched for populations of CD4⁺ T cells (Figure 1E). Conversely, clusters enriched with post-pregnancy mammary immune cells (IC5, IC6, and IC9) were classified as NKT cells, a specialized population of T cells involved in immune recruitment and cytotoxic activity (Godfrey et al., 2004) (Figure 1E). These clusters expressed master regulators of NKT cell fate, including transcription factors (TFs) Tbx21 (Toet) and Zbtb16 (Pizt) (Townsend et al., 2004); Savage et al., 2008).

While natural killer (NK) cells are known to play a role in mammary gland involution and parity-associated mammary tumorigenesis (Fornetti et al., 2012; Martinson et al., 2015), the role of NKT cells in this process has yet to be determined. Therefore, we analyzed clusters of immune cells expressing the common NK/NKT marker *Nkg7* to further define the influence of pregnancy on the abundance and identity of NK and NKT cells. Deep-clustering analysis of Nkg7⁺ immune cells revealed six distinct cell clusters (NC1-6). Cells classified under cluster NC5, which includes cells from both the pre- and post-pregnancy mammary tissue, lacked expression of *Cd3e* and therefore represents the only cluster with an NK cell identity in our dataset (Figures S2F–S2H). Further gene-expression analysis confirmed that post-pregnancy mammary glands are enriched with a variety of NKTs, including those expressing markers of cell activation (*Gzmb* and *Ccr5*) and of a resting state (*Bcl11b*) (Figure S2H). In agreement, each of the post-pregnancy-biased NKT cell clusters was enriched with an array of immune-activation signatures, suggesting an altered state for these cell populations after pregnancy (Figure S2I).

Collectively, our scRNA-seq analysis of fully involuted mammary tissue confirmed that pregnancy leads to a stable alteration of the transcriptional output of post-pregnancy MECs, including gene-expression signatures that suggest enhanced communication with the immune microenvironment. In addition, our study also indicates that mammary resident NKTs are present at higher levels in post-pregnancy glands, suggesting that pregnancy plays a role in inducing changes to the mammary immune microenvironment.

Pregnancy induces the expansion of a specific population of NKTs

The post-partum mammary gland involution is marked by an influx of infiltrating mast cells, macrophages, neutrophils, dendritic cells, and natural killer cells, which remove apoptotic epithelial cells and support the remodeling of the gland (Guo et al., 2017; Kordon and Coso, 2017; O'Brien et al., 2010; Schwertfeger et al., 2001). Since our scRNA-seq analyses suggested that post-pregnancy mammary glands are enriched for populations of NKT cells, we next used a series of flow cytometry analyses to validate this observation.

Analysis using the markers NK1.1 and CD3, which defines NKTs (NK1.1+CD3+), identified a 12-fold increase in the abundance of NKTs in post-pregnancy mammary tissue, consistent with the results of our scRNA-seg data (Figure 2A). Further analvsis indicated a 2.3-fold higher abundance of NKT cells in recently involuted mammary tissue (15 days post-offspring weaning), compared to mammary glands from nulliparous mice, or those exposed to pregnancy hormones for 12 days (mid-pregnancy), suggesting that the expansion of NKTs takes place at the final stages of post-pregnancy mammary involution (Figure S3A). The selective expansion of NKTs was further supported by the analysis of markers that define mammary resident neutrophils (Ly6G⁺) and macrophages (CD206⁺), which were largely unchanged between pre- and post-pregnancy mammary tissue (Figures S3B and S3C). Immunofluorescence analysis of Cxcr6-GFP-KI mammary tissue, previously described to label NKTs (Germanov et al., 2008), demonstrated several GFP⁺ cells surrounding ductal structures, an observation that supports the presence of NKTs within the mammary tissue (Figure S3D). Moreover, analysis of bone marrow and spleen from nulliparous and parous mice showed no difference in the abundance of NKTs, suggesting that pregnancy-induced expansion of these cells is mammary specific (Figures S3E and S3F).

To further characterize the identity of the post-pregnancy, mammary resident NKTs, we combined cellsurface and intracellular staining to detect canonical NKT lineage markers, including

the NKT master regulator Tbet, the NKT/T cell secreted factor interferon- γ (lfn- γ), and the NKT lineage marker Nkp46 (CD335) (Yu et al., 2011). Pre- and post-pregnancy, mammary resident NK1.1*CD3* cells expressed all three markers, supporting their NKT identity. However, we detected a 2-fold increase in the percentage of post-pregnancy cells expressing Tbet, Ifn- γ , and CD335, suggesting that specific populations of NKTs are expanded in post-involuted mammary tissue (Figure 2B).

We also investigated whether pregnancy-induced NKTs represented a specialized population of CD8⁺ T cells, a cytotoxic cell type reported to reside in mammary tissue (Wu et al., 2019). We found that a fraction of NKTs present in both preand post-pregnancy mammary tissue expressed CD8 on their surface, accounting for 41% and 35% of the total NKTs, respectively (Figure S3G). To determine whether the triple-positive (CD3⁺NK1.1⁺CD8⁺) cells contributed significantly to the expanded population of post-pregnancy NKTs, we analyzed

4 Cell Reports 37, 110099, December 7, 2021

Cell Reports Article

Figure 2. Pregnancy induces the expansion of a specific population of NKTs

(A) Flow cytometry analysis of resident CD45* NK1.1*CD3* NKTs from pre- and post-pregnancy mammary tissue. n = 5 nulliparous and 5 parous female mice. γ = 0.0004.

(B) Flow cytometry analysis of the classic NKT cell markers T-bet, CD335, and IFN- γ in NKTs (CD45*NK1.1*CD3*) from pre- and post-pregnancy mammary tissue. For Tbet analysis, n = 4 nulliparous and 4 parous female mice. *p = 0.016. For CD335 analysis, n = 7 nulliparous and 7 parous female mice. *p = 0.03.

(C) Flow cytometry analysis of β and $\gamma\delta$ TCRs of pre- and post-pregnancy mammary NKTs. n = 5 nulliparous and 5 parous female mice. *p = 0.005. (D) Gene set enrichment analysis of differentially expressed genes in FACS-isolated NKTs from pre- and post-pregnancy mammary tissue.

(E) Venn diagram demonstrating the number of shared and exclusive ATAC-seq peaks of FACSisolated NKTs from pre- (blue circle) and postpregnancy (orange circle) mammary tissue.

(F) Genome browser tracks showing distribution of MACS-called, ATAC-seq peaks at the *Pclk4*, *Maged1*, and *Lypla1* genomic loci from pre- and post-pregnancy NKTs. For all analyses, error bars indicate standard error of mean across samples of the same experimental group. Statistically significant differences were considered with Student's t test p < 0.05.</p>

See also Figures S5 and S6 and Table S3.

the mammary tissue of nulliparous and parous RAG1 knockout (KO) mice, which lack mature CD8⁺ T cells (Mombaerts et al., 1992). We observed a 10-fold expansion of NKTs in RAG1^{KO} post-pregnancy mammary tissue, suggesting that CD8-expressing cells do not comprise a significant fraction of pregnancy-induced NKTs (Figure S3H). These results are consistent with our scRNA-seq data and further validate the existence of specific

NKT subtypes in mammary glands after a full pregnancy cycle.

NKTs have multiple roles, including tissue homeostasis, host protection, microbial pathogen clearance, and anti-cancer activity, mediated through their ability to recognize both foreign- and self-antigens via TCRs (Balato et al., 2009). Therefore, we next investigated changes to the TCR repertoire of mammary resident, post-pregnancy NKTs. We found that 17% of pre-pregnancy NKTs, which mostly expressed $\gamma\delta$ TCRs (44%) (Figure 2C, top panels). A pregnancy cycle did not alter TCR composition across all immune cells, given that mammary resident, pre- and post-pregnancy CD8⁺ T cells mostly express $\alpha\beta$ TCRs, suggesting that parity promotes expansion of subtypes of NKTs that bear a specific TCR repertoire (Figure 2C, bottom panels).

We next investigated the molecular signatures of fluorescence-activated cell sorting (FACS)-isolated, mammary resident, NKTs. Unbiased pathway analysis of bulk RNA-seq

Cell Reports Article

datasets revealed the enrichment of post-pregnancy NKTs for processes controlling overall NKT development and activation, such as Notch signaling, tumor necrosis factor-α (TnfNF-α) signaling, transforming growth factor-B (Tgf-B) signaling, response to estrogen, and cMYC targets (Oh et al., 2015; Almishri et al., 2016; Doisne et al., 2009; Huber, 2015; Mycko et al., 2009). Conversely, pre-pregnancy NKTs were mainly enriched for processes previously associated with reduced immune activation, such as Ifn-α response (Bochtler et al., 2008) (Figure 2D; Table S3).

The activation of specific processes in post-pregnancy NKTs was also evident from analysis of their accessible chromatin landscape. ATAC sequencing (ATAC-seq) profiles showed similar genomic distributions of accessible regions across pre- and post-pregnancy NKTs, with a 93% overlap of their total accessible chromatin regions, suggesting that parityinduced changes did not substantially alter the chromatin accessibility associated with NKT lineage (Figure 2E; Figure S4A). General TF motif analysis identified chromatin accessible regions bearing classic NKT regulator DNA binding motifs such as Tbet, Plzf, and Egr2, further supporting their NKT lineage identity (Seiler et al., 2012) (Figure S4B). Analysis of accessible chromatin exclusive to post-pregnancy NKTs showed an enrichment for terms/genes associated with regulation of the adaptive immune response, killer cell activation, and antigen presentation, such as Pdk4, Maged1, and Lypla1, all involved in enhanced immune activation (Na et al., 2020; Connaughton et al., 2010; Lee et al., 2016; Jehmlich et al., 2013) (Figure 2F; Figure S4C). DNA motif analysis at accessible regions exclusive to post-pregnancy NKTs identified enrichment of specific TF motifs, including those recognized by Maf, a factor associated with an activated NKT state, and previously predicted by our scRNA-seq data to be expressed in cell clusters with an NKT identity (Figure S4D).

Overall, our analyses confirmed that post-pregnancy mammary tissue has an altered voNKT cell composition, which bears molecular and cellular signatures of activated and mature adaptive immune cells.

NKT expansion requires CD1d expression on postpregnancy MECs

Classically, NKTs are subdivided based on their activating antigens, including the main antigen-presenting molecules MHC class I, MHC class II, and the non-classical class I molecule, CD1d, which can be expressed on the surface of macrophages and dendritic cells, as well on the surface of epithelial cells (Gapin et al., 2013; Rizvi et al., 2015; Thibeault et al., 2009), Therefore, we next analyzed whether the expression of antigen-presenting factors on the surface of mammary epithelial and non-epithelial cells could underlie NKT cell expansion after pregnancy.

Flow cytometry analysis detected a 5-fold increase in CD1d levels on the surface of post-pregnancy luminal and myoepithelial MECs, in marked contrast to the levels of MHC-I and MHC-II proteins, which were largely unchanged across pre- and postpregnancy MECs (Figures 3A and 3B; Figures S5A and S5B). No difference in surface expression of CD1d on mammary CD45⁺ immune cells was detected, suggesting that signals pro-

vided by CD1d⁺ MECs could promote the post-pregnancy expansion of mammary NKT cells (Figure S5C).

Gene-expression analysis of scRNA-seq datasets and qPCR quantification of FACS-isolated epithelial cells confirmed that post-pregnancy MECs express higher levels of Cd1d mRNA, supporting that pregnancy-induced molecular alterations may represent the basis for the observed increase in percentage of CD1d⁺ MECs (Figure 1D: Figure S5D). In agreement, we observed increased levels of the active transcription marker histone H3 lysine 27 acetylation (H3K27ac) at the Cd1d genomic locus in FACS-isolated post-pregnancy MECs, suggesting that increased mRNA levels could be associated with parity-induced epigenetic changes at the Cd1d locus (Figure 3C). These observations were confirmed in organoid systems that mimic the transcription and epigenetic alterations brought to MECs by pregnancy signals (Ciccone et al., 2020), where pregnancy hormones induced upregulation of Cd1d mRNA levels and increased H3K27ac levels at the Cd1d locus (Figures S5E and S5F). Thus, pregnancy-associated signals may induce epigenetic alterations that subsequently increase Cd1d mRNA and CD1d protein levels in post-pregnancy MECs.

To investigate whether CD1d expression is required for the expansion of NKTs after parity, we analyzed mammary glands from CD1dKO mice, which bear reduced levels of activated NKTs (Faunce et al., 2005; Macho-Fernandez and Brigl, 2015; Mantell et al., 2011), Mammary glands from nulliparous and parous CD1d^{KO} mice displayed similar numbers of ductal structures as CD1d wild-type (WT) female mice, suggesting that loss of CD1d does not majorly alter mammary tissue homeostasis (Figure 3D). Further flow cytometry analysis indicated no statistically significant changes in the percentage of NKTs in mammary glands of nulliparous CD1d^{KO} mice (2.2% ± 0.8), compared to nulliparous CD1dWT mice (3% ± 1.6) (Figures 2A, left panel, and 3E, left panel). Conversely, we found a 7-fold decrease in the percentage of NKTs in mammary tissue from fully involuted, parous CD1d^{KO} female mice (3% ± 1.5) compared to parous CD1dWT mammary tissue (26% ± 4), supporting the role of CD1d in regulating NKT activation after pregnancy (Figures 2A, right panel, and 3E, right panel), Moreover, we found no difference in the abundance of NKTs in glands from pre- and postpregnancy CD1d^{KO} female mice, consistent with lack of CD1d expression reducing the activation of NKTs (Figure 3E). The analysis of an additional mouse strain that is deficient in mature/activated NKTs, due to the deletion of the histone-demethylase Kdm6 (UtxKO mouse model), failed to detect an expansion of NKTs post-pregnancy, thus supporting that pregnancy induces the expansion of mature/active subtypes of NKTs (Beyaz et al., 2017) (Figure S5G). Moreover, NKTs observed in post-pregnancy CD1d^{KO} mammary tissue mainly expressed $\alpha\beta$ TCR on their surface, in contrast to the $\gamma \delta NKTs$ observed in CD1d^{WT} post-pregnancy glands, further confirming that loss of CD1d expression affects the expansion and activation of specific populations of NKTs in post-pregnancy mammary tissue (Figure 3F).

Collectively, our studies identified pregnancy-induced epigenetic changes that may control the increased expression of Cd1d mRNA in post-pregnancy MECs and elucidated a role for CD1d in mediating communication between MECs and the γδNKTs, unique to post-pregnancy mammary glands.

Figure 3. NKT expansion depends on CD1d expression on post-pregnancy MECs

(A and B) Flow cytometry analysis and quantification of CD1d⁺ MECs harvested from pre-pregnancy (black bars, n = 8) and post-pregnancy (pink bars, n = 10) mammary tissue. *p = 0.0036 for luminal MECs and **p = 0.0006 for myoepithelial MECs.

(C) Genome browser tracks showing MACS-called, H3K27ac ChIP-seq peaks at the Cd1d genomic locus in FACS-isolated, pre- and post-pregnancy luminal MECs.

(D) H&E-stained histological images and duct quantification from mammary glands harvested from nulliparous (top left, n = 6) and parous (bottom left, n = 7) CD1d^{WT} female mice and nulliparous (top right, n = 6) and parous (bottom right, n = 7) CD1d^{KO} female mice. p = 0.86 for pre-pregnancy glands and p = 0.78 for post-pregnancy glands. Scale: 7 mm. Zoom-in panels, scale 500 µm.

(E) Flow cytometry analysis of mammary resident NKTs from pre- and post-pregnancy CD1d^{KO} mammary tissue. n = 4 nulliparous and n = 4 parous female mice. *p = 0.3.

(F) Flow cytometry analysis of α and γδ TCRs of mammary resident NKTs from pre- (n = 3) and post-pregnancy (n = 3) CD1d^{KO} mammary tissue. *p = 0.5. For all analyses, error bars indicate standard error of mean across samples of the same experimental group. Statistically significant differences were considered with Student's t test p < 0.05. See also Figure S7.

Lack of mammary oncogenesis is marked by NKT expansion and CD1d⁺ MECs

investigated whether pregnancy-induced mammary cancer protection was associated with the expansion of NKTs.

Parity resulted in the expansion of $\gamma \delta NKTs$ in the mammary gland in response to the upregulation of CD1d on MECs, thus pointing to a mechanistic connection between pregnancy-induced changes to MECs and immune cell biology. Pregnancy-induced molecular modifications to MECs have also been associated with an oncogene-induced senescence response to cMyc overexpression, and suppression of mammary oncogenesis (Feigman et al., 2020). Therefore, we next

Flow cytometry analysis of pre- and post-pregnancy mammary tissue from cMyc-overexpressing female mice (DOXtreated, CAGMYC model) demonstrated a 1.5-fold increase in the abundance of total CD3⁺ T cells (Figure S6A). CD3⁺ T cell expansion was also observed in mammary tissue transplanted with CAGMYC post-pregnancy MECs and in organoid cultures derived from post-pregnancy CAGMYC MECs; both conditions previously shown to lack mammary oncogenesis, thus further

(legend on next page)

Cell Reports 37, 110099, December 7, 2021 7

Cell Reports Article

suggesting a link between pregnancy-induced tumorigenic inhibition and specific changes to the adaptive immune system (Figures S6B and S6C). This selective expansion of CD3⁺ T cells was further supported by the analysis of markers that define mammary resident neutrophils (Ly6G⁺) and macrophages (CD206⁺), which were largely unchanged in mammary tissue transplanted with either pre- or post-pregnancy CAGMYC MECs (Figure S6B).

Further flow cytometry analysis identified a 6-fold increase in the percentage of NKTs in mammary tissue from parous CAG-MYC female mice, which predominantly expressed $\gamma\delta$ TCRs (Figure 4A; Figure S6D). No changes in the abundance of CD8⁺ T cells or CD4⁺ T cells was observed between mammary tissue from nulliparous and parous CAGMYC female mice, supporting the parity-induced expansion of $\gamma\delta$ NKTs (Figures S6E and S6F) and suggesting that specific constituents of the mammary immune microenvironment may control tumorigenesis. In agreement, we also found a 5-fold higher percentage of CD1d⁺ luminal MECs in post-pregnancy mammary tissue, thus linking gain of CD1d expression and the expansion of $\gamma\delta$ NKTs, which may collectively play a role in blocking tumorigenesis (Figure 4B).

cMYC overexpression is present in approximately 60% of basal-like breast cancers, with cMYC gain of function commonly found in BRCA1-mutated breast cancers (Chen and Olopade, 2008; Grushko et al., 2004). Interestingly, women harboring BRCA1 mutations with a full-term pregnancy before the age of 25 benefit from pregnancy-induced breast cancer protection (Medina et al., 2004; Terry et al., 2018). Therefore, we developed an inducible mouse model of Brca1 loss of function, for the purpose of investigating how pregnancy-induced changes influence Brca1-null mammary tumor development. In this model, tamoxifen (TAM) induces homozygous loss of Brca1 function in cells that express the cytokeratin 5 gene (Krt5⁺ cells), which include MECs (dos Santos et al., 2013), cells from gastrointestinal tract (Sulahian et al., 2015), reproductive organs (Ricciardelli et al., 2017), and additional epithelial tissue (Castillo-Martin et al., 2010; Majumdar et al., 2012), in a p53 heterozygous background (Krt5^{CRE-ERT2}Brca1^{fl/fl} p53^{-/+}, hereafter referred as Brca1^{KO} mouse).

Nulliparous Brca1^{KO} mice exhibited signs of mammary hyperplasia approximately 12 weeks post-TAM treatment, which gradually progressed into mammary tumors at around 20 weeks after *Brca1* deletion (Figures S6G and S6H). Brca1^{KO} mammary tumors display cellular and molecular features similar to those previously described in human breast tissue from *BRCA1* mutation carriers and animal models of Brca1 loss of function, including high EGFR and KRT17 protein levels and altered copy-number variation marked by gains and losses of genomic regions (Annunziato et al., 2019) (Figures S6I and S6J).

To investigate the effects of pregnancy on the mammary immune microenvironment and oncogenesis, age-matched, TAM-treated, Brca1^{KO} nulliparous and parous female mice were monitored for tumor development (Figure S7A). Our study demonstrated that only 20% of the parous Brca1^{KO} female mice developed mammary tumors (one out of five), compared to 100% of nulliparous Brca1^{KO} female mice with mammary tumors (five out of five mice), thus indicating that a full pregnancy cycle decreases the frequency of Brca1^{KO} mammary tumors by 80% (Figures 4C and 4D).

Histopathological analysis suggested that pre-pregnancy mammary tumors were quite diverse, as previously reported for tumors from Brca1^{KO} mice (Brodie et al., 2001). These included poorly differentiated tumors, such as micro-lobular carcinomas with squamous trans-differentiation (Figure 4D, top rows, far-left panel), medullary-like carcinomas (Figure 4D, top rows, right panel), and solid carcinomas resembling high-grade invasive ductal carcinoma (IDC) (Figure 4D, top rows, left and far-right panels). Accordingly, the only tumor-bearing parous Brca1^{KO} female mouse developed a poorly differentiated carcinoma with extensive squamous trans-differentiation and extensive necrosis, also previously reported for tumors from Brca1^{KO} mice (Figure 4D, bottom rows, far-right panels). Additional histopathological analysis confirmed that mammary tissues from the remaining parous Brca1KO female mice (four out of five) were largely normal (Figure 4D, bottom rows, far-left, left and right panels; Figure S7B). Immunofluorescence analysis confirmed that both pre-pregnancy mammary tumors and post-pregnancy normal mammary tissue were indeed deficient for Brca1⁺ epithelial cells, indicating that the lack of mammary tumors in parous female mice was not due to inefficient Brca1 deletion (Figure S7C).

Flow cytometry analysis of Brca1^{KO} MECs demonstrated a progressive loss of CD24^{mid}CD29^{high} myoepithelial cells in tumor

Figure 4. Lack of mammary oncogenesis is marked by NKT expansion and CD1d⁺ MECs

(A) Flow cytometry analysis of mammary resident NKTs (CD45*NK1.1*CD3*) from DOX-treated, nulliparous (left panel, n = 5) and parous (right panel, n = 5) CAGMYC female mice. *p = 0.002.

(B) Flow cytometry quantification of CD1d* luminal and myoepithelial MECs from DOX-treated, nulliparous (left panel, n = 16) and parous (right panel, n = 11) CAGMYC female mice. *p = 0.02.
 (C) Mammary tumor-free survival plot of nulliparous (black line, n = 5) and parous (pink line, n = 5) Brca1^{KO} female mice.

(D) H&E-stained histological images from mammary tissue and tumors from nulliparous (top panels) and parous (bottom panels) Brca1^{KO} female mice. Scale: 5 mm. Zoom-in panels, scale: 500 um.

(E) Flow cytometry quantification of CD1d*CD24^{high} luminal MECs from Brca1^{KO} pre-pregnancy mammary tumors (black bar, n = 3), Brca1^{KO} post-pregnancy healthy mammary tissue (pink bar, n = 4), and Brca1^{KO} post-pregnancy mammary tumor (blue bar, n = 1), *p = 0.02.

(F) Flow cytometry analysis of NKTs in normal mammary tissue from nulliparous, tumor-bearing, Brca1^{KO} female mice (left panel, n = 4) and normal mammary tissue from healthy parous Brca1^{KO} female mice (right panel, n = 4). *p = 0.003.

(G) Quantification of y₀NKTs in normal mammary tissue from nulliparous, tumor-bearing, Brca1^{KO} female mice (black bar panel, n = 4), in mammary tumor tissue from nulliparous Brca1^{KO} female mice (blue bar, n = 3), and in normal mammary tissue from healthy parous Brca1^{KO} female mice (black bar panel, n = 2). *p = 0.023 and **p = 0.008.

For all analyses, error bars indicate standard error of mean across samples of the same experimental group. Statistically significant differences were considered with Student's t test p < 0.05. See also Figures S8–S12.

Cell Reports Article

Article

CellPress OPEN ACCESS

tissue from nulliparous (2.5-fold) and parous (2-fold) Brca1^{KO} female mice, and a marked increase in the percentage of CD24^{high}CD29^{fow} luminal-like MECs (Figure 57D). These results suggest that tumor progression in this model is accompanied by changes to the population of CD24^{high} MECs, which has been associated with poor clinical outcomes in patients with triplenegative breast cancer (Chan et al., 2019). Further cellular analysis indicated a 2.7-fold increase in the percentage of CD24^{high}/ luminal CD1d⁺ cells in healthy, post-pregnancy Brca1^{KO} mammary tissue compared to tissue from tumor-bearing nulliparous and parous Brca1^{KO} mice, supporting that parity-induced expression of CD1d at the surface of MECs associates with inhibition of mammary oncogenesis (Figure 4E).

Given the increased levels of CD1d expression, we next investigated the presence of NKTs in mammary tissue from nulliparous and parous Brca1^{KO} female mice. Flow cytometry analysis demonstrated a 3.8-fold increase in the percentage of NKTs in healthy, post-pregnancy Brca1^{KO} mammary tissue compared to non-affected normal mammary tissue from tumor-bearing nulliparous Brca1^{KO} mice, and mammary tumors from parous Brca1^{KO} mice (Figure 4F; Figure S7E). Additional flow cytometry analysis demonstrated that approximately 70% of total NKTs from healthy, post-pregnancy Brca1^{KO} mammary tissue expressed $\gamma\delta$ TCR, in marked contrast to NKTs from healthy (2.7%) and tumor-bearing (8.6%) mammary tissue from nulliparous Brca1^{KO} mice (Figure 4G).

Collectively, our findings show that pregnancy-induced gain of CD1d expression at the surface of MECs and expansion of $\gamma\delta$ NKTs associates with lack of mammary oncogenesis in response to cMyc overexpression or Brca1 loss of function. These results support the link between pregnancy-induced molecular changes, mammary tissue immune alteration, and inhibition of mammary tumorigenesis in clinically relevant mouse models of breast cancer.

Functionally active NKTs are required to block malignant progression of post-pregnancy MECs

Given that we demonstrated that pregnancy-induced changes block mammary oncogenesis in two distinct models (Figure 4), and that cMyc gain of function is commonly found in Brca1mutated breast cancers, we utilized the cMyc overexpression mouse model to further characterize the effects of the immune microenvironment on the malignant development of post-pregnancy MECs. Analysis of fat-pad transplantations into severely immune-deficient NOD/SCID female mice, which lack T cells, B cells, NK, and NKTs, indicated that 100% of mammary tissue injected with pre-pregnancy (n = 5) or post-pregnancy (n = 5) CAGMYC MECs developed adeno-squamous-like carcinomas with acellular lamellar keratin, high levels of cell proliferation (Ki67 staining), and increased collagen deposition (Trichrome blue staining) (Figures S8A-S8C). Therefore, NKTs, or associated adaptive immune cells, are required for the parity-associated protection from oncogenesis in the CAGMYC model.

Bulk RNA-seq analysis demonstrated that post-pregnancy CAGMYC MECs transplanted into the fat pad of NOD/SCID female mice were less effective at activating the expression of canonical cMyc targets and estrogen response genes, compared to transplanted pre-pregnancy CAGMYC MECs, in agreement with the previously reported transcriptional state of post-pregnancy CAGMYC MECs (Feigman et al., 2020) (Figure S&D). We also found that organoid cultures derived from post-pregnancy CAGMYC MECs transplanted into NOD/SCID female mice retained a senescent-like state, characterized by reduced p300 protein levels and moderately increased p53 protein levels, in agreement with the previously reported senescent state of post-pregnancy CAGMYC MECs (Feigman et al., 2020) (Figure S&E). Together, these findings indicate that oncogenic progression of post-pregnancy CAGMYC MECs is associated with the immune-deficient mammary microenvironment of NOD/SCID mice.

While our investigation of post-pregnancy CAGMYC MECs that were transplanted into the mammary tissue of immunosuppressed animals alluded to the importance of a robust immune system in blocking mammary tumorigenesis, it did not uncouple whether functionally active NKTs, or CD1d expression at the surface of MECs, act to block oncogenesis in post-pregnancy mammary tissue. Therefore, to determine whether signaling between CD1d* MECs and NKTs is critical for the development of mammary oncogenesis after pregnancy, we developed a double-transgenic mouse model by crossing the DOX-inducible CAGMYC mice into a CD1d^{KO} background (CAGMYC-CD1d^{KC}).

Histology analysis indicated that mammary tissue from DOXtreated, nulliparous, and parous CAGMYC-CD1dKO female mice showed signs of hyperplasia with atypia and abnormal ductal structures (Figure 5A, left and far-right panels; Figure S9A). Conversely, mammary tissue from DOX-treated, CAGMYC-CD1dWT parous female mice lacked malignant lesions in response to cMyc overexpression, thus suggesting that CD1d expression is required to inhibit the development of malignant lesions in post-pregnancy mammary gland (Figure 5A, right panels; Figure S9A). Flow cytometry analysis showed a lack of KTs in mammary tissue from both nulliparous and parous CAGMYC-CD1d^{KO} female mice, in marked contrast to the observed expansion of $\gamma \delta \text{NKTs}$ in healthy post-pregnancy CAGMYC-CD1d^{WT} mammary glands that lacked tissue hyperplasia, supporting that CD1d expression may control pregnancy-induced expansion/activation of NKTs, and thus block mammary tumorigenesis (Figure S9B; Figure 4A). To further determine whether loss of CD1d expression underlies the malignant transformation of post-pregnancy MECs, we performed mammary transplantation assays of CAGMYC-CD1dKO MECs into the fat pad of syngeneic animals (CD1dWT female mice). We found that 100% of mammary tissue injected with pre-pregnancy CAGMYC-CD1dKO MECs and 70% of mammary glands injected with post-pregnancy CAGMYC-CD1d^{KO} MECs developed signs of malignant lesions, supporting that loss of CD1d expression impacts with pregnancy-induced breast cancer protection (Figure 5B, black font; Figures S9C and S9D). This last observation was in marked contrast to the finding in glands transplanted with post-pregnancy CAGMYC-CD1d^{WT} MECs, which, as previously reported, did not present signs of malignant transformation (Feigman et al., 2020) (Figure 5B, blue font; Figures S9E and S9F).

Altogether, these results suggest that loss of CD1d, with concomitant loss of pregnancy-induced expansion of NKTs,

Figure 5. Functionally active NKTs are required to block malignant progression of post-pregnancy MECs (A) H&E-stained images of mammary tissue harvested from DOX-treated (DD5), nulliparous CAGMYC-CD1d^{WT} (far-left panels), nulliparous CAGMYC-CD1d^{KD} (left panels), parous CAGMYC-CDId^{WT} (right panels), and parous CAGMYC-CD1d^{KO} (far right panels) female mice. Green arrows indicate signs of malignant

(B) H&E-stained images of DOX-treated, CD1d^{WT} mammary tissue transplanted with pre-pregnancy CAGMYC-CD1d^{WT} MECs (blue font, top far left panel), pre-pregnancy CAGMYC-CD1d^{KO} MECs (black font, top panel), post-pregnancy CAGMYC-CD1d^{WT} (blue font, bottom far left panel), or post-pregnancy CAGMYC-CD1dKO MECs (black font, bottom panel). Green arrows indicate signs of malignant lesions/mammary hyperplasia. Green asterisks indicate normal-like ductal structures, Scale; 500 um, See also Figure S13,

supports the development of mammary malignant lesions, independently of parity. Moreover, our study elucidates that parity blocks the malignant transformation of MECs, both by inducing cell-autonomous, epigenetic alterations within the MECs, and non-autonomous communication between CD1d* MECs and NKTs in the mammary gland.

DISCUSSION

In mammals, reprogramming of the immune system is initiated after birth and continues throughout the lifespan of an individual due to exposure to pathogens, hormonal fluctuations, and aging. This dynamic reprogramming is part of an immune surveillance system that detects abnormal cells across many tissues, helping to prevent cancer. Here, we characterized a population of NKTlike immune cells (NKTs) in post-pregnancy mammary tissue, and their role in inhibiting mammary oncogenesis.

10 Cell Reports 37, 110099, December 7, 2021

Our findings suggest that post-pregnancy mammary homeostasis does not rely on the presence of $\gamma \delta NKTs$, given the normal histology of mammary tissue in mice deficient for this cell type. It is possible that NKTs expand in response to the re-setting of whole-body immunity post-partum, with the child-bearing event providing signals that alter antigens across all maternal tissues as well as expanding specific immune cell populations. YoNKTs have been found in the pregnant uterus across many mammalian species, linking NKT specialization and the pregnancy cycle (Mincheva-Nilsson, 2003). Our results support that the expansion of NKTs was predominantly observed in post-involution tissue, thus suggesting that the immune reprogramming of mammary tissue takes place after lactation.

Several other immune subtypes have been described to be enriched in mammary tissue during gestation, lactation, and involution stages of mammary gland development. These studies identified alterations in leukocyte interaction with

Cell Reports

Article

CellPress OPEN ACCESS

mammary ductal structures, as well as specific transcriptional changes, suggesting that cell interaction and cellular identity of mammary resident cells are affected by pregnancy-induced development (Dawson et al., 2020; Hitchcock et al., 2020). Our analysis of leukocytes, specifically macrophages and neutro-phils, did not show alterations to such cell populations in healthy parous murine mammary tissue or in post-pregnant CAGMYC mammary tissue lacking malignant lesions. However, given that leukocytes have been implicated in the activation of NKTs (Macho-Fernandez and Brigl, 2015; Rizvi et al., 2015), it is possible that molecular alterations, rather than changes to cellular abundance or antigen presentation of leukocytes, could play a role in inducing or sustaining the population of NKTs in post-pregnancy mammary tissue.

Our studies also provide evidence linking pregnancy-induced immune changes with the inhibition of mammary oncogenesis. Our previous research focused on how post-pregnancy MECs assume a senescence-like state in response to cMvc overexpression, an oncogene-induced response that activates the immune system via the expression of senescence-associated genes (Braig and Schmitt, 2006). Here, we found that CD1d expression at the surface of post-pregnancy MECs and the presence of NKTs were linked with the inhibition of mammary oncogenesis in two independent models of breast cancer, illustrating how epithelial and immune cells communicate to support pregnancy-induced mammary cancer prevention. Given that NKTs were previously shown to interact with senescent cells, it is possible that pregnancy-induced activation of CD1d expression and NKTs expansion represent additional responses to oncogene-induced cellular senescence (Kale et al., 2020).

Women completing a full-term pregnancy before the age of 25 have an approximate one-third reduction of the risk of breast cancer (Medina et al., 2004). This benefit applies to the risk of all breast cancer subtypes, including those from women harboring BRCA1 mutations (Terry et al., 2018). Thus, our findings supporting a role for pregnancy in inhibiting the development of Brca1^{KO} mammary tumors lends a clinical relevance to our studies. Interestingly, the mammary tumor from parous Brca1^{KO} female mouse was associated with low abundance of γδNKTs and CD1d⁺ MECs, suggesting that loss of the pregnancy-induced epithelial to immune microenvironment communication may be part of cellular changes that support mammary tumorigenesis. In fact, the genetically engineered loss of CD1d expression, with a consequent deficiency in activated NKTs, supported the malignant progression of cMYC-overexpressing MECs, further illustrating a link between epithelial and immune cells in supporting pregnancy-induced mammary cancer prevention.

Our findings are based on studies performed in mice that became pregnant at a young age (~8 weeks old), which reinforced pregnancy-induced changes to epithelial cells, and their effect on immune recruitment and oncogenesis inhibition. However, it remains unclear why such strong, pregnancy-induced changes do not fully prevent the development of breast cancer (Nichols et al., 2019). It has been suggested that specific mammary epithelial clones with oncogenic properties reside within the mammary tissue after pregnancy and may give rise to lateonset mammary oncogenesis in aged mice (Li et al., 2020b).

is possible that such populations of rare MECs lose some of their pregnancy-induced molecular signatures over time, thereby bypassing oncogene-induced senescence and immune recognition, and ultimately developing into mammary tumors. Moreover, given that pregnancy-induced breast cancer protection becomes apparent ~5–8 years after pregnancy, it is possible that additional immune reprogramming influenced by genetic makeup, age at pregnancy, and/or overall post-partum health may further modify breast tissue and erase pregnancy-induced changes that inhibit breast cancer development.

Nonetheless, the connection between pregnancy, immunity, and oncogenesis could be used to develop therapies to block cancer development. Indeed, a series of preclinical models have been developed to optimize the delivery of CD1d stimulatory factors, such as a Galcer and KRN7000, and induce expansion of NKTs (Zhang et al., 2019). Such strategies are mostly side-effect free and, if proven to support the expansion of pregnancy-induced NKT cells, could be used in cases of high breast cancer risk. including those with genetic alterations and/or family histories of breast cancer. Additionally, the characterization of specific, pregnancy-induced TCR rearrangements may be leveraged in CAR-NKT immunotherapy, for example, which could also efficiently target disease that has already developed. Collectively, such strategies could improve breast health and decrease cancer risk in women who experience their first pregnancy after 35 years of age, when they are at a greater risk to develop breast cancer.

Limitations of the study

The majority of existing transgenic and knockout models of breast cancer utilize mammary gland-specific promoters to control oncogene activation, such as MMTV, BLG, and WAP, which are enhanced/activated by signals present during pregnancy and lactation, thus potentially confounding the analysis of the molecular basis of pregnancy and mammary cancer risk. Therefore, the development of new model systems of mammary tumorigenesis, that do not rely on pregnancy-induced promoters, will allow us to further understand the effect of pregnancy on oncogenesis across all breast cancer subtypes.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead contact
 - Materials availability
 - Data and code availability
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
- Animal studies
 METHOD DETAILS
- METHOD DETAIL
 Antibodies
- O Antibodie
- Mammary gland isolation
- Flow cytometry analysis
- Mammary organoid culture
- O RT-qPCR
- Mammary fat pad transplantation

- Histological analysis
- Immunofluorescence analysis
- Doxycycline treatment
- Tamoxifen treatment
- Monitoring tumor growth
- O Western blot
- o scRNA-seq data analysis
- O RNA-seq library preparation and analysis
- O ChIP-seq library analysis
- O Cut&Run library analysis
- ATAC-seq library preparation and analysis
- O DNA motif analysis
- Genomic library preparation and copy-number variation analysis
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j. celrep.2021.110099,

ACKNOWLEDGMENTS

This work was performed with assistance from the following CSHL Shared Core Resources: Animal Facility, Tissue Histology, NextGen Sequencing, Single Cell, Flow Cytometry, and Microscopy, which are supported by the CSHL Cancer Center Support Grant 5P30CA045508. This work was financially supported by the CSHL and Northweil Health affiliation, the CSHL and Simons Foundation Award, the Ritt Allen Scholar Award, the Pershing Square Sohn Prize for Cancer Research, the AACR-Breast Cancer Research Foundation, the NIH/NCI grant R01CA248158-01, and the NIH/NIA grant R01 AG069727-01 (C.O.d.S.). Whole-genome sequencing (CNV analysis) was performed with financial support provided to Dr. Michael Wigler by The Breast Cancer Research Foundation (BCRF-19-174) and the Simons Foundation, Life Sciences Founder Directed Giving-Research (519054). We would like to thank Mrs. Shih-Ting Yang for the mouse illustrations.

AUTHOR CONTRIBUTIONS

C.O.d.S. designed and supervised the research; C.O.d.S., A.V.H.S., M.A.M., M.J.F., and S.L.C. wrote the manuscript. A.V.H.S., M.A.M., M.J.F., C.C., S.L.C., M.F.C., M.C.T., and M.V. performed experiments and analyzed the results. M.A.M. and M.C.T. performed bioinformatics analyses. S.L., and J.K. performed and analyzed whole-genome sequencing (CNV analysis). S.B. provided reagents and critical feedback. J.E.W. performed histopathological analysis.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 15, 2021 Revised: August 25, 2021 Accepted: November 15, 2021 Published: December 7, 2021

REFERENCES

Almishri, W., Santodomingo-Garzon, T., Le, T., Stack, D., Mody, C.H., and Swain, M.G. (2016). TNFxNF6n omingo-Garzon competing interests to disclose.TNFR2. J. Innate Immun. 8, 617–629.

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11, R106.

12 Cell Reports 37, 110099, December 7, 2021

Andrews, S. (2015), FASTQC A Quality Control tool for High Throughput Sequence Data (Babraham Institute).

Angerer, P., Haghverdi, L., Büttner, M., Theis, F.J., Marr, C., and Buettner, F. (2016). destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243.

Annunziato, S., de Ruifer, J.R., Henneman, L., Brambillasca, C.S., Lutz, C., Vaillant, F., Ferrante, F., Drenth, A.P., van der Burg, E., Siteur, B., et al. (2019). Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer. Nat. Commun. *10*, 397.

Bach, K., Pensa, S., Grzelak, M., Hadfield, J., Adams, D.J., Marioni, J.C., and Khaled, W.T. (2017). Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat. Commun. 8, 2128,

Bach, K., Pensa, S., Zarocsinceva, M., Kania, K., Stockis, J., Pinaud, S., Lazarus, K.A., Shehata, M., Simões, B.M., Greenhalgh, A.R., et al. (2021). Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors. Nat. Commun. 12, 1502.

Balato, A., Unutmaz, D., and Gaspari, A.A. (2009). Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J. Invest. Dermatol. *129*, 1628–1642.

Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., Troge, J., Ravi, K., Esposito, D., Lakshmi, B., et al. (2012). Genome-wide copy number analysis of single cells. Nat. Protoc. 7, 1024–1041.

Benner, C., Heinz, S., and Glass, C.K. (2017). HOMER - Software for motif discovery and next generation sequencing analysis.

Beyaz, S., Kim, J.H., Pinello, L., Xifaras, M.E., Hu, Y., Huang, J., Kerenyi, M.A., Das, P.P., Barritz, R.A., Herault, A., et al. (2017). The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells, Nat. Immunol. 18, 184–195.

Blakely, C.M., Stoddard, A.J., Belka, G.K., Dugan, K.D., Notarfrancesco, K.L., Moody, S.E., D'Cruz, C.M., and Chodosh, L.A. (2006). Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res. 66, 6421–6431.

Bochtler, P., Kröger, A., Schirmbeck, R., and Reimann, J. (2008). Type I IFNinduced, NKT cell-mediated negative control of CD8 T cell priming by dendritic cells. J. Immunol. *181*, 1633–1643.

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

Braig, M., and Schmitt, C.A. (2006). Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res. 66, 2881–2884.

Britt, K., Ashworth, A., and Smalley, M. (2007). Pregnancy and the risk of breast cancer. Endocr. Relat. Cancer 14, 907–933.

Brodie, S.G., Xu, X., Qiao, W., Li, W.M., Cao, L., and Deng, C.X. (2001). Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20, 7514–7523.

Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218.

Castillo-Martin, M., Domingo-Domenech, J., Karni-Schmidt, O., Matos, T., and Cordon-Cardo, C. (2010). Molecular pathways of urothelial development and bladder tumorigenesis. Urol. Oncol. 28, 401–408.

Chan, S.H., Tsai, K.W., Chiu, S.Y., Kuo, W.H., Chen, H.Y., Jiang, S.S., Chang, K.J., Hung, W.C., and Wang, L.H. (2019). Identification of the novel role of CD24 as an oncogenesis regulator and therapeutic target for triple-negative breast cancer. Mol. Cancer Ther. *18*, 147–161.

Chen, Y., and Olopade, O.I. (2008). MYC in breast tumor progression. Expert Rev. Anticancer Ther. 8, 1689–1698.

Chung, C.Y., Ma, Z., Dravis, C., Preisel, S., Poirion, O., Luna, G., Hou, X., Giraddi, R.R., Ren, B., and Wahl, G.M. (2019). Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. Cell Rep. 29, 495–510.

CelPress PEN ACCESS

Ciccone, M.F., Trousdell, M.C., and Dos Santos, C.O. (2020), Characterization of Organoid Cultures to Study the Effects of Pregnancy Hormones on the Epine and Transcriptional Output of Mammary Epithelial Cells, J. Mammary Gland Biol, Neoplasia 25, 351-366,

Connaughton, S., Chowdhury, F., Attia, R.R., Song, S., Zhang, Y., Elam, M.B., Cook, G.A., and Park, E.A. (2010). Regulation of pyruvate dehy nase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol. Cell. Endocrinol. 315, 159-167.

ens, L.M., and Pollard, J.W. (2011). Leukocytes in mammary development and cancer. Cold Spring Harb. Perspect. Biol. 3, a003285.

Dawson, C.A., Pal, B., Vaillant, F., Gandolfo, L.C., Liu, Z., Bleriot, C., Ginhoux, F., Smyth, G.K., Lindeman, G.J., Mueller, S.N., et al. (2020). Tissue-res ductal macrophages survey the mammary epithelium and facilitate tissue remodelling, Nat. Cell Biol, 22, 546-558,

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner, Bioinformatics 29, 15-21,

Doisne, J.M., Bartholin, L., Yan, K.P., Garcia, C.N., Duarte, N., Le Luduec, J.B., Vincent, D., Cyprian, F., Horvat, B., Martel, S., et al. (2009). iNKT cell develo ment is orchestrated by different branches of TGF-B signaling, J. Exp. Med. 206, 1365-1378.

dos Santos, C.O., Rebbeck, C., Rozhkova, E., Valentine, A., Samuels, A., Kadiri, L.R., Osten, P., Harris, E.Y., Uren, P.J., Smith, A.D., et al. (2013). Molecular erarchy of mammary differentiation yields refined markers of mammary stem cells. Proc. Natl. Acad. Sci. USA 110, 7123-7130.

dos Santos, C.O., Dolzhenko, E., Hodges, E., Smith, A.D., and Hannon, G.J. (2015). An epigenetic memory of pregnancy in the mouse mammary gland. Cell Rep. 11, 1102-1109.

Dreszer, T.R., Karolchik, D., Zweig, A.S., Hinrichs, A.S., Raney, B.J., Kuhn, R.M., Meyer, L.R., Wong, M., Sloan, C.A., Rosenbloom, K.R., et al. (2013). The UCSC Genome Browser database: Extensions and updates 2011, Nucleic Acids Res. 41, D64-D69,

Faunce, D.E., Palmer, J.L., Paskowicz, K.K., Witte, P.L., and Kovacs, E.J. (2005). CD1d-Restricted NKT Cells Contribute to the Age-Associated Decline of T Cell Immunity. J. Immunol. 175, 3102-3109.

nan, M.J., Moss, M.A., Chen, C., Cyrill, S.L., Ciccone, M.F., Trousd M.C., Yang, S.T., Frey, W.D., Wilkinson, J.E., and Dos Santos, C.O. (2020). Pregnancy reprograms the epigenome of mammary epithelial cells and blocks ment of premalignant lesions. Nat. Commun. 11, 2649. the devel

Fornetti, J., Martinson, H., Borges, V., and Schedin, P. (2012). Emerging targets for the prevention of pregnancy-associated breast cancer. Cell Cycle 11, 639-640.

Freire-de-Lima, C.G., Xiao, Y.O., Gardai, S.J., Bratton, D.L., Schiemann, W.P., and Henson, P.M. (2006), Apoptotic cells, through transforming growth factorβ, coordinately induce anti-inflammatory and suppress pro-inflammatory icosanoid and NO synthesis in murine macrophages. J. Biol. Chem. 281, 38376_38384

Gapin, L., Godfrey, D.I., and Rossjohn, J. (2013). Natural Killer T cell obsession with self-antigens. Curr. Opin. Immunol. 25, 168-173.

Germanov, E., Veinotte, L., Cullen, R., Chamberlain, E., Butcher, E.C., and Johnston, B. (2008). Critical Role for the Chemokine Receptor CXCR6 in H meostasis and Activation of CD1d-Restricted NKT Cells. J. Immunol. 181, 81-91.

Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J., and Van Kaer, L. (2004). NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231-237.

Grant, C.E., Bailey, T.L., and Noble, W.S. (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017-1018.

Grushko, T.A., Dignam, J.J., Das, S., Blackwood, A.M., Perou, C.M., Ridderstrale, K.K., Anderson, K.N., Wei, M.J., Adams, A.J., Hagos, F.G., et al. (2004). MYC Is Amplified in BRCA1-Associated Breast Cancers. Clin. Cancer Res. 10, 499-507,

Guo, Q., Betts, C., Pennock, N., Mitchell, E., and Schedin, P. (2017), Mammary Gland Involution Provides a Unique Model to Study the TGF-B Cancer Paradox, J. Clin. Med. 6, E10.

Henry, S., Trousdell, M.C., Cyrill, S.L., Zhao, Y., Feigman, M.J., Bouhuis, J.M., Aylard, D.A., Siepel, A., and Dos Santos, C.O. (2021). Characterization of Gene Expression Signatures for the Identification of Cellular Heterogeneity in the Developing Mammary Gland, J. Mammary Gland Biol. Neoplasia 26, 43-66. Hitchcock, J.R., Hughes, K., Harris, O.B., and Watson, C.J. (2020), Dynamic een leucocytes and mami architectural interplay bet harv epithelial cells. FEBS J. 287, 250-266

Huber, S. (2015). ER/J and ER/2 Differentially Regulate NKT and Vy4+ T-cell Activation and T-regulatory Cell Response in Coxsackievirus B3 Infected Mice. J. Clin. Cell Immunol. 6, 1-9.

Huh, S.J., Clement, K., Jee, D., Merlini, A., Choudhury, S., Maruyama, R., Yoo, R., Chytil, A., Boyle, P., Ran, F.A., et al. (2015). Age- and pregnancy-associ-ated DNA methylation changes in mammary epithelial cells. Stem Cell Reports 4. 297-311

Ibrahim, A.M., Moss, M.A., Gray, Z., Rojo, M.D., Burke, C.M., Schwertfeger, K.L., Dos Santos, C.O., and Machado, H.L. (2020). Diverse Macrophage Pr ulations Contribute to the Inflammatory Microenvironment in Premalionant Lesions During Localized Invasion. Front. Oncol. 10, 569985.

Jehmlich, U., Alahmad, A., Biedenweg, D., and Hundt, M. (2013). The role of ases in T cell activation (P1398), J. Imr palmitoyl-protein thioes unol. 190. 204.2.

Kale, A., Sharma, A., Stolzing, A., Desprez, P.Y., Campisi, J., Desprez, P.Y., Campisi, J., and Campisi, J. (2020). Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing 17, 16.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements, Nat, Methods 12, 357-360.

Kordon, E.C., and Coso, O.A. (2017). Postlactational Involution: Molecular Mechanisms and Relevance for Breast Cancer Development. Curr. Topics Lactation, Published: May 10, 2017. https://doi.org/10.5772/6652

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human geno Genome Biol. 10, R25.

Lee, Y.J., Starrett, G.J., Lee, S.T., Yang, R., Henzler, C.M., Jameson, S.C., and Hogquist, K.A. (2016). Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst $\gamma\delta$ T, Innate Lymphoid, and Th Cells. J. Immunol. 197, 1460-1470.

Li, C.M.C., Shapiro, H., Tsiobikas, C., Selfors, L.M., Chen, H., Rosenbluth, J., Moore, K., Gupta, K.P., Gray, G.K., Oren, Y., et al. (2020a). Aging-Asso Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing, Cell Rep. 33, 108566,

Li, S., Gestl, S.A., and Gunther, E.J. (2020b). A multistage murine breast cancer model reveals long-lived premalignant clones refractory to parity-induced protection, Cancer Prev. Res. (Phila.) 13, 173-184.

Liao, Y., Smyth, G.K., and Shi, W. (2014), featureCounts; an efficient general nce reads to genomic features. Bioinforpurpose program for assigning s matics 30, 923-930.

Lyons, T.R., O'Brien, J., Borges, V.F., Conklin, M.W., Keely, P.J., Eliceiri, K.W., Marusyk, A., Tan, A.C., and Schedin, P. (2011). Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat. Med. 17, 1109-1115.

Macho-Fernandez, E., and Brigl, M. (2015). The extended family of CD1drestricted NKT cells: Sifting through a mixed bag of TCRs, antigens, and functions, Front, Immunol, 6, 362,

Majumdar, D., Tiernan, J.P., Lobo, A.J., Evans, C.A., and Corfe, B.M. (2012). Keratins in colorectal epithelial function and disease, Int. J. Exp. Pathol. 93, 305-318.

Mantell, B.S., Stefanovic-Racic, M., Yang, X., Dedousis, N., Sipula, I.J., and O'Doherty, R.M. (2011). Mice lacking NKT cells but with a complete comp ment of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity. PLoS ONE 6, e19831.

Cell Reports

Martinson, H.A., Jindal, S., Durand-Rougely, C., Borges, V.F., and Schedin, P. (2015). Wound healing-like immune program facilitates postpartum mammary gland involution and tumor progression. Int. J. Cancer *136*, 1803–1813.

McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501.

McLeay, R.C., and Bailey, T.L. (2010). Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics *11*, 165,

Medina, D., Come, S., Santen, R., Ellis, M., Green, J., Nicholson, R., Brown M., and Lee, A. (2004). Breast Cancer: The Protective Effect of Pregnancy Clin. Cancer Res. 10, 380S, 4S.

Meers, M.P., Tenenbaum, D., and Henikoff, S. (2019). Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics Chromatin 12, 42.

Mincheva-Nilsson, L. (2003), Pregnancy and gamma/delta T cells: taking on the hard questions. Reprod. Biol. Endocrinol. 1, 120.

Mombaerts, P., Iacomini, J., Johnson, R.S., Herrup, K., Tonegawa, S., and Papaioannou, V.E. (1992). RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877.

Mycko, M.P., Ferrero, I., Wilson, A., Jiang, W., Bianchi, T., Trumpp, A., and MacDonald, H.R. (2009). Selective requirement for c-Myc at an early stage of V(z)14i NKT cell development. J. Immunol. *182*, 4641–4648.

Na, Y.R., Jung, D., Song, J., Park, J.W., Hong, J.J., and Seok, S.H. (2020). Pyruvate dehydrogenase kinase is a negative regulator of Interleukin-10 production in macrophages. J. Mol. Cell Biol, 12, 543–555.

Nichols, H.B., Schoemaker, M.J., Cai, J., Xu, J., Wright, L.B., Brook, M.N., Jones, M.E., Adami, H.O., Baglietto, L., Bertrand, K.A., et al. (2019). Breast cancer risk after recent childbirth: A pooled analysis of 15 prospective studies. Ann. Intern. Med. 170, 22–30.

O'Brien, J., Lyons, T., Monks, J., Lucia, M.S., Wilson, R.S., Hines, L., Man, Y.G., Borges, V., and Schedin, P. (2010). Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am. J. Pathol. 176, 1241–1255.

Oh, S.J., Ahn, S., Jin, Y.-H., Ishifune, C., Kim, J.H., Yasutomo, K., and Chung, D.H. (2015). Notch 1 and Notch 2 synergistically regulate the differentiation and function of invariant NKT cells. J. Leukoc. Biol. 98, 781–789.

Pal, B., Chen, Y., Vaillant, F., Jamieson, P., Gordon, L., Rios, A.C., Wilcox, S., Fu, N., Liu, K.H., Jackling, F.C., et al. (2017). Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat. Commun. 8, 1627.

Pal, B., Chen, Y., Milevskiy, M.J.G., Vaillant, F., Prokopuk, L., Dawson, C.A., Capaldo, B.O., Song, X., Jackling, F., Timpson, P., et al. (2021). Single cell transcriptome atlas of mouse mammary epithelial cells across development. Breast Cancer Res. 23, 69.

Plaks, V., Boldajipour, B., Linnemann, J.R., Nguyen, N.H., Kersten, K., Wolf, Y., Casbon, A.J., Kong, N., van den Bijgaart, R.J.E., Sheppard, D., et al. (2015). Adaptive Immune Regulation of Mammary Postnatal Organogenesis. Dev. Cell 34, 493–504.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842.

R Core Team (2019). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing),

Rahat, M.A., Coffeit, S.B., Granot, Z., Muthana, M., and Amedei, A. (2016) Macrophages and Neutrophils: Regulation of the Inflammatory Microenvironment in Autoimmunity and Cancer. Mediators Inflamm. 2016, 5894347.

Ricciardelli, C., Lokman, N.A., Pyragius, C.E., Ween, M.P., Macpherson, A.M., Ruszkiewicz, A., Hoffmann, P., and Oehler, M.K. (2017). Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. Oncotareat 8, 17819–1782.

Rizvi, Z.A., Puri, N., and Saxena, R.K. (2015). Lipid antigen presentation through CD1d pathway in mouse lung epithelial cells, macrophages and dendritic cells and its suppression by poly-dispersed single-walled carbon nanotubes. Toxicol. In Vitro 29, 1275–1282.

14 Cell Reports 37, 110099, December 7, 2021

Saeki, K., Chang, G., Kanaya, N., Wu, X., Wang, J., Bernal, L., Ha, D., Neuhausen, S.L., and Chen, S. (2021). Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis. Commun. Biol 4, 660.

Savage, A.K., Constantinides, M.G., Han, J., Picard, D., Martin, E., Li, B., Lantz, O., and Bendelac, A. (2008). The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403.

Schwertfeger, K.L., Richert, M.M., and Anderson, S.M. (2001). Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol. 15, 867–881.

Seiler, M.P., Mathew, R., Liszewski, M.K., Spooner, C.J., Barr, K., Meng, F., Singh, H., and Bendelac, A. (2012). Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat. Immunol. 13, 264–271.

Seshan, V.E., and Olshen, A.B. (2014). DNAcopy: A Package for Analyzing DNA Copy Data (Bioconductor Vignette).

Stewart, T.A., Hughes, K., Hume, D.A., and Davis, F.M. (2019). Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Front. Cell Dev. Biol. 7, 250.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550.

Sulahian, R., Chen, J., Arany, Z., Jadhav, U., Peng, S., Rustgi, A.K., Bass, A.J., Srivastava, A., Hornick, J.L., and Shivdasani, R.A. (2015). SOX15 Governs Transcription in Human Stratified Epithelia and a Subset of Esophageal Adenocarcinomas. Cell Mol. Gastroenterol. Hepatol. 1, 598–609.

Terry, M.B., Liao, Y., Kast, K., Antoniou, A.C., McDonald, J.A., Mooij, T.M., Engel, C., Nogues, C., Buecher, B., Mari, V., et al. (2018). The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations. JNCI Cancer Spectr. 2, pkv078.

Thibeault, S.L., Rees, L., Pazmany, L., and Birchall, M.A. (2009). At the crossroads: mucosal immunology of the larynx. Mucosal Immunol. 2, 122–128.

Townsend, M.J., Weinmann, A.S., Matsuda, J.L., Salomon, R., Famham, P.J., Biron, C.A., Gapin, L., and Gimcher, L.H. (2004). T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20, 477–494.

Wang, Y., Chaffee, T.S., LaRue, R.S., Huggins, D.N., Witschen, P.M., Ibrahim, A.M., Nelson, A.C., Machado, H.L., and Schwertfeger, K.L. (2020). Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. eLife 9, e57438.

Wu, Y., Kyle-Cezar, F., Woolf, R.T., Naceur-Lombardelli, C., Owen, J., Biswas, D., Lorenc, A., Vantourout, P., Gazinska, P., Grigoriadis, A., et al. (2019). An innate-like Vd1+ gd T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci. Transl. Med. 11, eaax9364.

Yu, J., Mitsui, T., Wei, M., Mao, H., Butchar, J.P., Shah, M.V., Zhang, J., Mishra, A., Alvarez-Breckenridge, C., Liu, X., et al. (2011). NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J. Clin. Invest. 127, 1456–1470.

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Modelbased analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

Zhang, Y., Springfield, R., Chen, S., Li, X., Feng, X., Moshirian, R., Yang, R., and Yuan, W. (2019). α -GalCer and iNKT cell-based cancer immunotherapy: Realizing the therapeutic potentials. Front. Immunol. 10, 1126.

Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017). Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049.

STAR*METHODS

KEY RESOURCES TABLE

Reagent or resource	Source	Identifier
Antibodies		
Biotinylated anti-CD45	Thermo Fisher Scientific	Cat# 13-0451-85; RRID:AB_466447
Biotinylated anti-CD31	Thermo Fisher Scientific	Cat# 13-0311-85; RRID:AB_466421
Biotinylated anti-Ter119	Thermo Fisher Scientific	Cat# 13-5921-85; RRID:AB_466798
Biotinylated anti-CD34	Thermo Fisher Scientific	Cat# 13-0341-82; RRID:AB_466425
eFluor 450 conjugated anti-CD24	Thermo Fisher Scientific	Cat# 48-0242-82; RRID:AB_1311169
PE-Cy7 conjugated anti-CD29	BioLegend	Cat# 102222; RRID:AB_528790
7-AAD viability staining solution	BioLegend	Cat# 420404; RRID:SCR_020993
PerCP-Cy5.5 conjugated anti-CD1d	BioLegend	Cat# 123514; RRID:AB_2073523
PE conjugated anti-CD1d	BioLegend	Cat# 140805; RRID:AB_10643277
APC conjugated anti-CD45	BioLegend	Cat# 103112; RRID:AB_312977
FITC conjugated anti-CD3	BioLegend	Cat# 100204; RRID:AB_312661
Alexa Fluor 700 conjugated. anti-NK1.1	BioLegend	Cat# 108730; RRID:AB_2291262
APC/Cy7 conjugated anti-CD8	BioLegend	Cat# 100714; RRID:AB_312753
PE conjugated anti-TCR g/d	BioLegend	Cat# 118108; RRID:AB_313832
APC conjugated anti-TCR b	BioLegend	Cat# 109212; RRID:AB_313435
APC conjugated anti-H-2Kb	BioLegend	Cat# 116517; RRID:AB_10568693
Pacific Blue conjugated anti-I-Ab	BioLegend	Cat# 116421; RRID:AB_10613291
Brilliant Violet 421 conjugated anti-CD206	BioLegend	Cat# 141717; RRID:AB_2562232
Alexa Fluor 700 conjugated anti-Ly6G	BioLegend	Cat# 127621; RRID:AB_10640452
PE conjugated anti-IFNg	BioLegend	Cat# 505808; RRID:AB_315402
Pacific Blue conjugated anti-T-bet	BioLegend	Cat# 644807; RRID:AB_1595586
eFluor 450 conjugated mouse IgG	Thermo Fisher Scientific	Cat# 48-4015-82; RRID:AB_2574060
FITC conjugated rat IgG	Thermo Fisher Scientific	Cat# 11-4811-85; RRID:AB_465229
PE-Cy7 conjugated mouse IgG	BioLegend	Cat# 405315; RRID:AB_10662421
biotinylated anti-CD1d	BioLegend	Cat# 123505; RRID:AB_1236543
anti-p300 antibody	Santa Cruz Biotechnology	Cat# SC-585; RRID:AB_2231120
anti-Vinculin antibody	Abcam	Cat# ab129002; RRID:AB_11144129
anti-p53 antibody	Leica Biosystems	Cat# P53-CM5P; RRID:AB_2744683
goat anti-rabbit IgG HRP	Abcam	Cat# ab6721; RRID:AB_955447
goat anti-mouse IgG HRP	Abcam	Cat# ab97051; RRID:AB_10679369
anti-Cytokeratin 5 (KRT5)	BioLegend	Cat# 905501; RRID:AB_2565050
anti-Cytokeratin 7/17 (KRT7/17)	Santa Cruz Biotechnology	Cat# sc-8421; RRID:AB_627856
anti-EGFR	Santa Cruz Biotechnology	Cat# sc-373746; RRID:AB_10920395
anti-AR	Santa Cruz Biotechnology	Cat# sc-7305; RRID:AB_626671
anti-Ki67	Spring Bioscience	Cat# M3062; RRID:AB_11219741
Alexa Fluor 647 conjugated anti-Cytokeratin 5 (KRT5)	Abcam	Cat# AB193895; RRID:AB_2728796
unconjugated rabbit anti-BRCA1	Bioss	Cat# bs-0803R; RRID:AB_10858843
Alexa Fluor 568 conjugated goat anti-rabbit IgG	Thermo Fisher Scientific	Cat# A-11036; RRID:AB_10563566
Alexa Fluor 488 conjugated anti-GFP	BioLegend	Cat# 338007; RRID:AB_2563287
Alexa Fluor 405 conjugated anti-Cytokeratin 8 (KRT8)	Abcam	Cat# ab210139; RRID:AB_2890924
Chemicals, peptides, and recombinant proteins		
DNase I	Sigma	Cat #D4263
Collagenase A, type IV solution	Sigma	Cat #C5138-1G
ITS (Insulin/Transferrin/Sodium selenite)	GIBCO	Cat #41400-045

(Continued on next page)

Continued		
Reagent or resource	Source	Identifier
FGF-2	PeproTech	Cat #450-33
Progesterone	Sigma	Cat #P8783
17-β-Estradiol	Sigma	Cat #E2758
Prolactin	Sigma	Cat #L4021
Doxycycline	Clontech	Cat# 631311
Collagenase/Hyaluronidase 10x solution	Stem Cell Technology	Cat #07912
Growth factor reduced matrigel solution	Corning	Cat #356230
Frilogy	Cell Marque	Cat# 920P-10
ProLong Glass Antifade Mountant	Invitrogen	Cat# P36980
17b-Estradiol (0.5 mg/pellet) + Progesterone (10 mg/ pellet)	Innovative Research of America	Cat# HH-112
uminata Crescendo Western HRP substrate	Millipore	Cat# WBLUR0100
rypLE Express	Thermo Fisher Scientific	Cat #12604-013
Dispase	Stem Cell Technology	Cat #07913
Critical commercial assays		
Ovation ultralow DR multiplex system	Nugen Technologies	Cat #0331-32
Vextera DNA sample Preparation kit	Illumina	Cat #FC-121-1031
Dvation RNA-seg system (V2)	Nugen Technologies	Cat #7102-32
DNeasy Blood & Tissue Kit	QIAgen	Cat# 69504
SuperScript III kit	Thermo Fisher Scientific	Cat #18080-051
Deposited data		
ATAC-seq data	This paper	PB.INA708263
NA-sec data	This paper	PB.INA708263
NGS data	This paper	PR INA708263
coRNA-seg data Eigure 1 (pre-pregnancy)	Henny et al. 2021	PR INA677888
2NA cog (pro. and post programa)	dec Sentes et al. 2012	PR INA 102515
12K27ac ChIP-seq (pre- and post-pregnancy)	Eeigman et al. 2020	PRINA544746
19K27ac Cutte Bun, Figure S7E	Ciscope et al. 2020	PD INASSOCS
	01000116 61 01., 2020	FRINAUSUBUS
Aurora BALD/a	Charles Diver	
Nouse: BALB/C	Charles River	https://www.cnver.com/
Nouse: NOD/SCID	Jackson Laboratory	https://www.jax.org/
Nouse: CAGMYC	Feigman et al., 2020	N/A
Nouse: Cxcrb-GFP KI	Jackson Laboratory	https://www.jax.org/strain/005693
Nouse: RAG1 KO	Jackson Laboratory	https://www.jax.org/
Nouse: UTX KO	Beyaz et al., 2017	N/A
Nouse: CD1d KO	Jackson Laboratory	https://www.jax.org/
Aouse: Krt5 ^{one-Enre} Brca1 ^m p53 ^{met}	This paper	N/A
Digonucleotides		
Cd1d qPCR FWD: 5' TCC GGT GAC TCT TCC TTA CA 3'	This paper	N/A
Cd1d qPCR REV: 5' CTG GCT GCT CTT CAC TTC TT 3'	This paper	N/A
p-actin qPCR FWD: 5' TGT TAC CAA CTG GGA CGA CA 3'	This paper	N/A
p-actin qPCR REV: 5' GGG GTG TTG AAG GTC TCA AA 3'	This paper	N/A
Software and algorithms		
=iji	ImageJ	Version 2.1.0
Zen lite software, Blue edition	ZEN Digital Imaging for Light Microscopy	Version 2.0.0.0
lowJo	BD Biosciences	Version 10.0
Prism	Graphpad	Version 9.0
		(Continued on next pad

e2 Cell Reports 37, 110099, December 7, 2021

Cell Reports

Continued Reagent or resource Identifier Source CellRanger Zheng et al., 2017 Version 3.1.0 Seurat Stuart et al., 2019 Version 3.1.1 GSEA Broad Institute Version 3.0 BD FACSDiva Software **BD** Biosciences Version 6.0 STAR Dobin et al., 2013 Version 2.4.0 Bowtie2 Langmead et al., 2009 Version 2.4.2 MACS2 Zhang et al., 2008 Version 2.2.5 GREAT McLean et al. 2010 Version 404 HOMER Benner et al., 2017 Version 4.11 Bedtools Quinlan and Hall, 2010 Version 2.28.0 UCSC Genome Browser Dreszer et al., 2013 N/A Hisat2 Kim et al. 2015 version 2.1.0 DNAcopy Seshan and Olshen, 2014 version 1.50.1

RESOURCE AVAILABILITY

Lead contact

DESeq

Further information for resources and reagents should be directed to and will be fulfilled by the lead contact, Camila dos Santos (dossanto@cshl.edu).

Anders and Huber, 2010

N/A

Materials availability

All unique/stable reagents generated in this study are available from the lead contact upon request.

Data and code availability

scRNA-seq, RNA-seq, ATAC-seq datasets were deposited into BioProject database under number PRJNA708263 [https://www. ncbi.nlm.nih.gov/bioproject/PRJNA708263], and are publicly available as of the date of publication. All accession numbers are listed in the key resources table. Results shown in Figure 1 (pre-pregnancy scRNA-seq) were previously deposited into BioProject database number PRJNA677888 [https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA677888]. Results shown in Figure S2C (preand post-pregnancy RNA-seq), Figure 3C (pre- and post-pregnancy H3K27ac ChIP-seq) were previously deposited in the BioProject database under numbers PRJNA192515 [https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA192515] and PRJNA544746 [https://www.ncbi.nlm.nih.gov/bioproject/PR.NA544746]. Results shown on Figure S7F (H3K27ac Cut&Run of organoid cultures) were previously deposited in the BioProject database under number PRJNA656955 [https://www.ncbi.nlm.nih.gov/sra/? term=PRJNA656955]. This manuscript does not report original code. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal studies

All experiments were performed in agreement with approved CSHL Institutional Animal Care and Use Committee (IACUC). All animals were housed at a 12 hour light/12 hour dark cycle, with a controlled temperature of 72°F and 40%–60% of humidity. Balb/C female mice were purchased from The Jackson Laboratory and Charles River. RAG1^{KO} mice (B6.129S7-Rag1^{km1Mom/}), IMSR Cat# JAX:002216, RRID:IMSR_JAX:002216) were purchased from The Jackson Laboratory. VavCre UTX^{KO} were generated as previously described (Beyaz et al., 2017). CXCR6-KO-EGFP-KI mice (B6.129P2-Cxcr6^{im1Litt}/J, IMSR Cat# JAX:005693) were purchased from The Jackson Laboratory. CAGMYC transgenic mouse strain was generated as previously described (Feigman et al., 2020). CD1d^{KO} CAGMYC transgenic mouse stain was generated by crossing CD1d^{KO} (C.129S2-Cd1^{Im1Gru}/J, IMSR Cat# JAX:003814, RRID:IMSR_JAX:003814) mice with CAGMYC mice. Krt5^{CRE-ERT2} Brca1^{ft/II}p53^{het} (Brca1^{KO}) transgenic mouse strain was generated by crossing Blg^{CRE}Brca1^{ft/II}p53^{het} transgenic mouse strain (Trp53^{Im1Brd}Brca1^{ImAaaIT}g(B-cre)74Acl/J, IMSR Cat# JAX:0020, RRID:IMSR_JAX:012620) with Krt5^{CRE-ERT2} transgenic mouse strain (B6N.129S6(Cg)-Krt5^{Im11(ore/ERT2)Bi/J}, IMSR Cat# JAX:029155, RRID:IMSR_JAX:029155). Female mice ranging from 3 weeks old to 30 weeks old were utilized in the described research.

METHOD DETAILS

Antibodies

All antibodies were purchased from companies as indicated below and used without further purification. Antibodies for lineage depletion: biotinylated anti-CD45 (Thermo Fisher Scientific Cat# 13-0451-85, RRID:AB_466447), biotinylated anti-CD31 (Thermo Fisher Scientific Cat# 13-0311-85, RRID:AB_466421), biotinylated anti-Ter119 (Thermo Fisher Scientific Cat# 13-5921-85, RRID:AB 466798) and biotinylated anti-CD34 (Thermo Fisher Scientific Cat# 13-0341-82, RRID:AB 466425). Antibodies for cell surface flow cytometry: eFluor 450 conjugated anti-CD24 (Thermo Fisher Scientific Cat# 48-0242-82, RRID:AB 1311169), PE-Cy7 conjugated anti-CD29 (BioLegend Cat# 102222, RRID:AB_528790), 7-AAD viability staining solution (BioLegend Cat# 420404, RRID:SCR_020993), PerCP-Cy5.5 conjugated anti-CD1d (BioLegend Cat# 123514, RRID:AB_2073523), PE conjugated anti-CD1d (BioLegend Cat# 140805, RRID:AB_10643277), APC conjugated anti-CD45 (BioLegend Cat# 103112, RRID:AB_312977), FITC conjugated anti-CD3 (BioLegend Cat# 100204, RRID:AB_312661), Alexa Fluor 700 conjugated. anti-NK1.1 (BioLegend Cat# 108730, RRID:AB_2291262), APC/Cy7 conjugated anti-CD8 (BioLegend Cat# 100714, RRID:AB_312753), PE conjugated anti-TCR γ/δ (BioLegend Cat# 118108, RRID:AB_313832), APC conjugated anti-TCR β (BioLegend Cat# 109212, RRID:AB_313435), APC conjugated anti-H-2Kb (BioLegend Cat# 116517, RRID:AB_10568693), Pacific Blue conjugated anti-I-Ab (BioLegend Cat# 116421, RRID:AB_10613291), Brilliant Violet 421 conjugated anti-CD206 (BioLegend Cat# 141717, RRID:AB_2562232), Alexa Fluor 700 conjugated anti-Ly6G (BioLegend Cat# 127621, RRID:AB_10640452). Antibodies for intracellular flow cytometry: PE conjugated anti-IFNY (BioLegend Cat# 505808, RRID:AB_315402), Pacific Blue conjugated anti-T-bet (BioLegend Cat# 644807, RRID:AB_1595586). Antibodies for negative controls: eFluor 450 conjugated mouse IgG (Thermo Fisher Scientific Cat# 48-4015-82, RRID:AB_2574060), FITC conjugated rat IgG (Thermo Fisher Scientific Cat# 11-4811-85, RRID:AB_465229), and PE-Cy7 conjugated mouse IgG (BioLegend Cat# 405315, RRID:AB_10662421). Antibody for MaSC enrichment: biotinylated anti-CD1d (BioLegend Cat# 123505, RRID:AB_1236543). Antibodies for Western Blot: anti-p300 antibody (Santa Cruz Biotechnology Cat# SC-585, RRID:AB_2231120), anti-Vinculin antibody (Abcam Cat# ab129002, RRID:AB_11144129), anti-p53 antibody (Leica Biosystems Cat# P53-CM5P, RRID:AB_2744683), goat anti-rabbit IgG HRP (Abcam Cat# ab6721, RRID:AB_955447) and goat anti-mouse IgG HRP (Abcam Cat# ab97051, RRID:AB_10679369). Antibodies for Immunohistochemistry (IHC) staining: anti-Cytokeratin 5 (KRT5) (BioLegend Cat# 905501, RRID:AB 2565050), anti-Cvtokeratin 7/17 (KRT7/17) (Santa Cruz Biotechnology Cat# sc-8421, RRID:AB_627856), anti-EGFR (Santa Cruz Biotechnology Cat# sc-373746, RRID:AB_10920395), anti-AR (Santa Cruz Biotechnology Cat# sc-7305, RRID:AB_626671), and anti-Ki67 (Spring Bioscience Cat# M3062, RRID:AB_11219741). Antibodies for Immunofluorescence (IF) staining: Alexa Fluor 647 conjugated anti-Cytokeratin 5 (KRT5) (Abcam Cat# AB193895, RRID:AB_2728796), unconjugated rabbit anti-BRCA1 (Bioss Cat# bs-0803R, RRID:AB_10858843), Alexa Fluor 568 conjugated goat anti-rabbit IgG (Thermo Fisher Scientific Cat# A-11036, RRID:AB_10563566), Alexa Fluor 488 conjugated anti-GFP (BioLegend Cat# 338007, RRID:AB_2563287), Alexa Fluor 405 conjugated anti-Cytokeratin 8 (KRT8) (Abcam Cat# ab210139, RRID:AB_2890924).

Mammary gland isolation

Female mice classified as Pre-pregnancy (nulliparous, never pregnant), Post-pregnancy (parous, 1 gestation cycle, 21 days of lactation and 40 days of involution post offspring weaning), were housed together for 1-2 weeks to allow for estrous cycle synchronization prior to mammary gland isolation. For the experiments utilizing exposure to pregnancy hormones (EPH), never pregnant female mice (~8 weeks old) were implanted with 21 days-slow-release estrogen and progesterone pellets (17β-Estradiol (0.5 mg/pellet) + Progesterone (10 mg/pellet) - Innovative Research of America Cat# HH-112) prior to mammary gland isolation (at D12 post pellet implantation). Females classified as involution D15 had 1 gestation cycle, 21 days of lactation and 15 days of involution post offspring weaning. In all cases, mammary gland isolation was performed as previously described (dos Santos et al., 2013). In short, mammary glands (one to four pairs per mouse) were harvested, minced, and incubated for 2 hours with 1x Collagenase/Hyaluronidase (10x solution, Stem Cell Technology Cat# 07912) in RPMI 1640 GlutaMAX supplemented with 5% FBS. Digested mammary gland fragments were washed with cold HBSS (Thermo Fisher Scientific Cat# 14175103) supplemented with 5% FBS, followed by incubation with TrypLE Express (Thermo Fisher Scientific Cat# 12604-013) and an additional HBSS wash. Cells were incubated with 2 mL of Dispase (Stem Cell Technology Cat# 07913) supplemented with 40 µL DNase I (Sigma Cat# D4263) for 2 minutes and then filtered through a 100 µm Cell Strainer (BD Falcon Cat# c352360). The single cell suspension was incubated with lineage depletion antibodies and loaded onto a MACS magnetic column (Miltenyi Biotec Cat# 130-042-401). Lineage negative, flow-through cells (epithelial cells) were utilized for flow cytometry, and transcriptomic analysis. Lineage positive cells (immune cells) were eluted from column with 3ml of MACS buffer and utilized for flow cytometry, transcriptomic and epigenomic analysis. For cell analysis, Dual Fortessa II cell analyzer (BD Biosciences) was used. Data analysis was performed using BD FACSDiva Software (RRID:SCR_001456) or FlowJo (FlowJo, RRID:SCR_008520). Statistically significant differences were considered with Student's t test p-value lower than 0.05 (p < 0.05)

Flow cytometry analysis

Mammary resident cells (epithelial and non-epithelial) were harvested from both top and bottom mammary glands, and analyzed according to the bellow indicated strategy. For all flow cytometry analysis an average of 300,000 cells live cells (7-AAD negative) were recorded. Gating strategy for all flow cytometry analysis is available in Methods S1.

e4 Cell Reports 37, 110099, December 7, 2021

Mammary organoid culture

Mammary tissue dissected was minced and digested for ~40 minutes in Collagenase A, type IV solution (Sigma, Cat# C5138-1G), following a series of centrifugations to enrich for mammary organoids. Freshly isolated mammary organoids were cultured with Essential medium (Advanced DMEM/F12, supplemented with ITS (Insulin/Transferrin/Sodium selenite, GIBCO Cat# 41400-045, and FGF-2 (PeproTech, Cat# 450-33)) prior to analysis. For experiments shown in Figures S5E and S5F, organoid cultures were derived from normal mammary tissue from pre- or post-pregnancy Balb/C female mice (RRID:IMSR_CRL:028), cultured in the presence of FGF-2 for 6 days, following FGF-2 withdrawal for 24 hr and then incubated with Complete medium (AdDF+++, supplemented with ITS (Final Concentration:1x, Insulin/Transferrin/Sodium Selenite, GIBCO Cat# 41400-045), 17-β-Estradiol (Final concentration: 20ng/mL, Sigma Cat# E2758), Progesterone (Final concentration: 120ng/mL, Sigma Cat# P8783), Prolactin (Final concentration: 120ng/mL, Sigma Cat# L4021), as previously described (Ciccone et al., 2020). For experiments shown in Figure S6C, organoids cultures were derived from pre- or post-pregnancy CAGMYC MECs, following treatment with doxycycline (DOX, 0.1mg/mL, Clontech Cat# 631311) for 2 days (DD2). For experiments shown in Figure S8E, organoid cultures were derived from NOD/SCID female mice, transplanted with either pre- or post-pregnancy CAGMYC MECs, following treatment with doxycycline (DOX, 0.1mg/mL) for 2 days (DD2).

RT-qPCR

Lineage depleted MECs or organoid cultures were washed with 0.5mL 1x PBS, following RNA extraction with Trizol (0.5mL, Thermo Fisher Scientific, Cat# 15596018). Reverse transcription was carried out using SuperScript III kit (Thermo Fisher Scientific, Cat# 18080-051). RT-qPCR was performed using a Quantstudio 6 with SYBR Green Master mix (Applied Biosystems, Cat# 4368577). Relative mRNA expression of target gene was calculated via the $\Delta\Delta$ Ct method and normalized to β -actin mRNA levels.

Cd1d qPCR primers: FWD: 5' TCC GGT GAC TCT TCC TTA CA 3' and REV: 5' CTG GCT GCT CTT CAC TTC TT 3'. β-actin qPCR primers: FWD: 5' TGT TAC CAA CTG GGA CGA CA 3' and, REV: 5' GGG GTG TTG AAG GTC TCA AA 3'.

Mammary fat pad transplantation

MaSCs-enrichment was performed as previously described (dos Santos et al., 2013). In short, lineage depleted MECs were incubated with biotinylated anti-CD1d antibody, to allow for MaSC enrichment. CD1d-enriched MEC fractions were resuspended with 50% growth factor reduced matrigel solution (Corning, Cat# 356230) and injected into the cleared fat-pad of the inguinal mammary gland (anterior part of the gland). For experiments presented on Figure S5B CD1d-enriched MECs fractions (~100K) were injected into the mammary fatpad of 12 weeks old CAG-only female mice, followed by DOX-treatment and histology analysis. For experiments presented on Figure S8 CD1d-enriched MECs fractions (~100K) were injected into the mammary fatpad of 12 weeks old CAG-only female mice, followed by DOX-treatment and histology analysis. For experiments presented on Figure S8 CD1d-enriched MECs fractions (~100K) were injected into the mammary fatpad of 12 weeks old NOD/SCID (RRID:IMSR_JAX:001303) female mice, followed by DOX-treatment and histology analysis. For experiments presented on Figure S9, pre- or post-pregnancy CAGMYC-CD1d^{WT} MECs (~10K) or CAGMYC-CD1d^{KO} MECs (~10K) were injected into the mammary fatpad of 8-10 weeks old CD1d WT female mice, and allowed 3-days of tissue engraftment prior to DOX-treatment for 5 days.

Histological analysis

For histological analysis, the left inguinal mammary gland was harvested and fixed in 4% Paraformaldehyde overnight prior to paraffin embedding. For conventional histological analysis, mammary gland tissue slides were stained with Hematoxylin and Eosin (H&E). For ductal quantification, mammary gland H&E histological images were uploaded into Fiji (Fiji, RRID:SCR_002285), and ducts present in the posterior part of the gland were manually counted. Immunohistochemistry staining (IHC) was performed on a Roche Discovery Ultra Automated IHC/ISH stainer. For Masson's trichrome staining, Leica Multistainer Stainer/Coverslipper Combo (ST5020-CV5030) was used to stain slides according to standard reagents and protocols. Images were acquired using Aperio ePathology (Leica Biosystems) slide scanner in 40X lenses.

Immunofluorescence analysis

Paraffin-embedded mammary gland sections were deparaffinized in Xylene (Sigma Cat# 534056) and rehydrated, followed by antigen retrieval in Trilogy (Cell Marque Cat# 920P-10). Tissue was washed in 1x PBS (phosphate-buffered saline) for 1 min then blocked with blocking solution (10mM Tris-HCI pH 7.4, 100mM MgCl₂, 0.5% Tween 20, 10% FBS, 5% goat serum) for 4 hours in a humidified chamber. Sections were stained with the appropriate conjugated primary antibodies in blocking solution for 16 hours at 4°C. After subsequent washings with 1x PBS and blocking solution, tissues were incubated with DAPI (Sigma Cat# 10236276001) for 10 minutes to stain nuclei, and slides were mounted in ProLong Glass Antifade Mountant (Invitrogen Cat# P36980). Cell visualization and image collection was performed on a Zeiss LSM780 confocal laser-scanning microscope utilizing Zen lite software, Blue edition (ZEN Digital Imaging for Light Microscopy, RRID:SCR_013672) version 2.0.0.

Doxycycline treatment

Doxycycline was purchased from Takara Bio USA, Inc. (Cat# 631311) and sucrose was purchased from Sigma (Cat# S7903). DOX drinking solution (1 mg/mL) was prepared using sterile 1% sucrose water.

Tamoxifen treatment

Tamoxifen USP grade was purchased from Sigma-Aldrich (Cat# 1643306) and sunflower seed oil (European Pharmacopoeia grade) was purchased from Sigma-Aldrich (Cat# 88921). To prepare the working solution, the Tamoxifen powder was weighed and dissolved in ethanol by vortexing. Heat sterilized sunflower oil was added at a ratio of 19:1 oil:ethanol mixture to a final concentration of 5mg/100ul (one dose), heated to 55°C and shaken vigorously to homogenize the mixture. Krt5^{CRE-ERT2}Brca1^{ft/II}p53^{het} transgenic female mice received a total of three intraperitoneal doses of Tamoxifen warmed to 37°C on alternate days.

Monitoring tumor growth 3 week old Krt5^{CRE-ERT2}Brca1^{fl/fl}p53^{-/+} female mice were treated with TAM. Half of TAM-treated female mice were housed together (pre-pregnancy/nulliparous group), and the other half were paired with a male (1 female and 1 male per breeding cage). Breeding TAM-treated females were allowed to give birth, nurse the offspring (21 days), and were considered post-pregnant (parous) after 40 days from offspring weaning. Both pre- and post-pregnancy mice were monitored for signs of tumor growth, and added to the Kaplan-Meier curve as soon as there was a palpable tumor. Mice with a tumor burden exceeding the limit of the animal's well-being (> 2 cm), or mice showing signs of distress independently of tumor development were euthanized. At experimental end point, mammary tissue or mammary tumors were harvested for histological and flow cytometry analysis. Statistical analysis was performed with Logrank (Mantel-Cox) test.

Western blot

DOX-treated and control organoid cultures were homogenized in 1x Laemmli sample buffer (Bio-Rad, Cat# 1610747). Samples were loaded into homemade 10% SDS-PAGE gel and transferred overnight to PVDF membrane (Bio-Rad, Cat# 162-0177) using wettransfer apparatus. Membranes were blocked with 1% BSA solution and incubated overnight with a diluted solution of primary antibody, followed by incubation with HRP-conjugated antibody for 40 minutes. HRP signal was developed with Luminata Crescendo Western HRP substrate (Millipore, Cat# WBLUR0100) in autoradiography film (Lab Scientific, Cat# XARALF2025). Developed films were scanned on Epson Perfection 2450 photo scanner.

scRNA-seg data analysis

Single cell RNA-seq data (pre-pregnancy mammary glands = 3,439 cells from n = 2 biological replicates; post-pregnancy mammary glands = 4,412 cells from n = 2 biological replicates) were aligned to mm10 using CellRanger v.3.1.0 (10x Genomics) (Cell Ranger, RRID:SCR_017344) (Zheng et al., 2017), and downstream processing was performed using Seurat v3.1.1 (SEURAT, RRID:SCR_007322) (Stuart et al., 2019). Cells with fewer than 250 features or higher than 10% mitochondrial gene content were removed prior to further analysis. Genes with fewer than 3 cells expressing them were removed, and the data were then log-normalized. Post-filtering analysis was performed on 3,075 cells (pre-pregnancy) and 4,029 cells (post-pregnancy). Principal component analysis was performed using the top 2,000 variable genes. This analysis was used to identify the number of significant components before clustering. Clustering was performed by calculating a shared nearest neighbor graph, using a resolution of 0.6. Subsetting into different cell types was performed using known markers for MECs, T cells, Myeloid cells, B cells and NK cells. Epithelial cells for both datasets were defined by the expression of Epcam, Krt8, Krt18, Krt5 and Krt14(cluster average expression > 2). Non-epithelial were cells considered having low expression of Epcam, Krt8, Krt18, Krt5 and Krt14, Epithelial lineage identification and T cell lineage identification was performed utilizing a previously validated gene signature (Henry et al., 2021). Genes used to define each immune cluster (differentially expressed genes, DEGs) were determined using known cell type markers and using the FindAllMarkers function, which uses a Wilcoxon Rank Sum test to identify differentially expressed genes between all clusters in the dataset. Cell cycle scoring was performed with the CellCycleScoring function, using the default gene lists provided by Seurat. Cell dendrograms were generated using the BuildClusterTree function in Seurat, using default arguments. Diffusion mapping was performed using the DiffusionMap function from the "destiny" R package (Angerer et al., 2016). Gene Set Enrichment Analysis (GSEA, RRID:SCR_003199) (Subramanian et al., 2005) was used for global analyses of differentially expressed genes.

RNA-seg library preparation and analysis

FACS-isolated pre- and post-pregnancy NKTs were collected and homogenized in TRIzol LS (Thermo Fisher Scientific, Cat# 10296010) for RNA extraction. Double stranded cDNA synthesis and Illumina libraries were prepared utilizing the Ovation RNAseq system (V2) (Nugen Technologies, Cat# 7102-32). RNA-seq libraries were prepared utilizing the Ovation ultralow DR multiplex system (Nugen Technologies, Cat# 0331-32). Each library (n = 2 biological replicates per experimental condition) was barcoded with Illumina TrueSeq adaptors to allow sample multiplexing, followed by sequencing on an Illumina NextSeq500, 76bp singleend run. Analyses were performed with command-line interfaced tools such as FastQC (FastQC, RRID:SCR_014583) (Andrews, 2015) for quality control and Trimmomatic (Trimmomatic, RRID:SCR_011848) (Bolger et al., 2014) for sequence trimming. We used STAR (STAR, RRID:SCR_004463) for mapping reads (Dobin et al., 2013), FeatureCounts (featureCounts, RRID:SCR_012919) for assigning reads to genomic features (Liao et al., 2014) and DESeg (DESeg, RRID:SCR_000154) to assess changes in expression levels simultaneously across multiple conditions and in multi-factor experimental designs, incorporating information from multiple replicates (Anders and Huber, 2010). Genes with a statistically significant pvalue of p < 0.05 were considered differentially expressed. Gene Set Enrichment Analysis (GSEA) (Gene Set Enrichment Analysis, RRID:SCR_003199) was used for global analyses

e6 Cell Reports 37, 110099, December 7, 2021

of differentially expressed genes (Subramanian et al., 2005). GSEA terms with statistically significant pvalue of p < 0.05 were selected for data plotting and data interpretation. For experiments presented on Figure 2D, FACS-isolated, pre- and post-pregnancy CD45*NK1.1*CD3* NKT cells (n = 2 females per experimental group, n = 4 pairs of mammary glands per female, n = 2 biological replicates per experimental group) were utilized. For experiments presented on Figure S8D, total mammary tissue isolated from DOX-treated, NOD/SCID female mice transplanted with either pre- or post-pregnancy CAGMYC MECs (n = 2 biological replicates per group) were utilized.

ChIP-seq library analysis

Previously published H3K27ac ChIP-seq datasets (Feigman et al., 2020) were mapped to the indexed mm9 genome using bowtie2 short-read aligner tool (Langmead et al., 2009), using default settings. MACS2 peak-calling program (MACS, RRID:SCR_013291) (Zhang et al., 2008) was used to identify enriched genomic regions in this data by comparing the pulldown ChIP data to the control (Input) data using a q-value cutoff of 1.00⁻³. Identification of genes closest to these differentially called peaks was performed using Genomic Regions Enrichment of Annotations Tool (UCSC Genome Browser, RRID:SCR_005780) (McLean et al., 2010). Peak visualizations were generated using the UCSC Genome Browser (UCSC Genome Browser, RRID:SCR_005780) (McLean et al., 2013).

Cut&Run library analysis

Previously published H3K27ac Cut&Run datasets (Ciccone et al., 2020), were mapped to the indexed mm9 genome using bowtie2 short-read aligner tool (Langmead et al., 2009) using default settings. Sparse Enrichment Analysis for Cut&Run (SEACR) peak-calling program (Meers et al., 2019) was used to identify enriched genomic regions with an empirical threshold of n = 0.01, returning the top n fraction of peaks based on total signal within peaks. The stringent argument was implemented, which used the summit of each curve. Identification of genes closest to these differentially called peaks was performed using Genomic Regions Enrichment of Annotations Tool (UCSC Genome Browser, RRID:SCR_005780) (McLean et al., 2010). Peak visualizations were generated using the UCSC Genome Browser (UCSC Genome Browser, RRID:SCR_005780) (Dreszer et al., 2013).

ATAC-seq library preparation and analysis

Nuclei of FACS-isolated, pre- and post-pregnancy NKTs were isolated utilizing hypotonic lysis buffer and incubated with Tn5 enzyme from Nextera DNA sample Preparation kit (Illumina, Cat# FC-121-1031) for the preparation of ATAC libraries. Each library (n = 2 per experimental condition) was amplified and barcoded as previously described (Buerrostro et al., 2013), then pooled for sequencing on an Illumina Nextseq500, 76bp single-end run. ATACseq library reads (n = 2 per cell condition) were mapped to the indexed mm9 genome using Bowtie2 short read-aligner (Bowtie 2, RRID:SCR_016368) (Langmead et al., 2009) and replicate alignment files were merged. MACS2 (MACS, RRID:SCR_013291) (Zhang et al., 2008) was used to identify enriched genomic regions in both conditions using a tag size of 25bp and a q-value cutoff of 1.00^{-2} . Peaks were annotated using Homer (HOMER, RRID:SCR_010881) (Benner et al., 2017) with standard mm9 genome reference. Location of peaks was then grouped into intergenic, promoter and genic (containing 5'UTR, Exons, Introns, Transcription Termination Sites, 3'UTR, ncRNA, miRNA, snoRNA, and rRNA) regions. The UCSC genome browser (UCSC Genome Browser, RRID:SCR_005780) (Dreszer et al., 2013) was used to analyze genomic regions for overlap, using the Bedtools intersect function (BEDTools, RRID:SCR_006646) (Quintan and Hall, 2010) . Any base pair overlap was enough to consider two regions "shared" and regions where no overlap existed defined the regions as exclusively being in one condition. The comparison was made into a Venn-diagram using tool available at https://www.meta-chart.com/venn.

DNA motif analysis

Peaks from pre- and post-pregnancy NKTs ATAC-seq libraries were utilized as input for an unbiased transcription factor analyses using Analysis of Motif Enrichment (AME) (McLeay and Bailey, 2010) and Find Individual Motif Occurrences (FIMO) (MEME Suite - Motif-based sequence analysis tools, RRID:SCR_001783) (Grant et al., 2011) was used to computationally define DNA binding motif regions to identify sequences of known motifs, with a statistical threshold of 0.0001.

Genomic library preparation and copy-number variation analysis

Mammary normal tissue and tumor from nulliparous Brca1^{KO} female mice were dissociated as above described. Lineage depleted tumor cells were utilized for DNA extraction using DNeasy Blood & Tissue Kit (QIAGEN Cat# 69504). Genomic DNA was sonicated to an average of 300bp using Covaris E220 Focused-ultrasonicator. For library preparation, fragmented DNA went through standard end-repair (NEB Cat# E6050), dA-tailing (NEB Cat# E6053), and sequencing adaptor ligation (NEB Cat# M2200) steps. Following universal adaptor ligation, eight cycles of PCR was performed for each sample. During the PCR step, a unique pair of Illumina TrueSeq i7 index and i5 index was added to each sample. The PCR library was purified with AMPure XP beads (Beckman Coulter Cat# A63881), and quantified using NanoDrop spectrophotometer and Agilent Technologies 2100 Bioanalyzer. Whole-genome-sequencing libraries with different combination of Illumina indexes were pooled together for one lane of Illumina MiSeq. 150 base pairs from both ends were sequenced along with two 8-bp indexes. For CNV analysis, Read 1 of the sequence data was mapped to the mm9 reference genome using Hisat2 version 2.1.0 in single read alignment mode (Kim et al., 2015). The reference genome was divided into 5,000 variable-length bins with equal mappability as previously described (Baslan et al., 2012). The ratio of mapped reads in the diploid sample (normal tissue) was used to compute a fitted piecewise constant function

(segmentation). This segmentation used DNAcopy version 1.50.1 implementation of the circular binary segmentation algorithm (Seshan and Olshen, 2014) and the copy number profiles were plotted using R version 3.4.4 (R Core Team, 2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data represent results from three or more independent biological replicates, unless otherwise specified. Sequencing data are from two biological replicates from each condition. All statistical analyses were performed using GraphPad Prism V9 software. For all analyses, error bars indicate standard error of mean across samples of the same experimental group. Statistically significant differences were considered with *p*-values lower than 0.05 (p < 0.05) from unpaired Student's t tests, or otherwise indicated, as described in the figure legends.

e8 Cell Reports 37, 110099, December 7, 2021