1 2	The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1
3 ⊿	Rodrigo Romero ¹ Tinvi Chu ^{2,§} Tania I. González-Robles ^{3,4,§} Perianne Smith ^{1,§} Vubin
5	Xie ² , Harmanpreet Kaur ¹ , Sara Yoder ⁵ , Huiyong Zhao ⁶ , Chenyi Mao ⁷ , Wenfei Kang ⁷ ,
6	Maria V. Pulina ⁷ , Kayla E. Lawrence ¹ , Anuradha Gopalan ¹ , Samir Zaidi ^{1,8} , Kwangmin
7	Yoo ⁹ , Jungmin Choi ⁹ , Ning Fan ⁷ , Olivia Gerstner ¹ , Wouter R. Karthaus ¹ , Elisa
8 9	DeStanchina [®] , Kelly V. Ruggles ³ , Peter M.K. Westcott ¹⁰ , Ronan Chaligné ^{2,11} , Dana Pe'er ^{2,11,12} , and Charles L. Sawyers ^{1,12,*}
10 11	1. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer
12	Center, New York, NY 10065, USA.
13	2. Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial
14	Sloan Kettering Cancer Center, New York, NY 10065, USA.
15	3. Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman
16	School of Medicine, New York, NY 10061, USA.
17	4. Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of
18	Medicine, New York, NY 10061, USA.
19	5. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
20	10065, USA.
21	6. Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New
22	York, NY 10065, USA.
23	7. Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New
24	York, NY 10065, USA.
25	8. Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center,
26	New York, NY 10065, USA.
27	9. Department of Biomedical Sciences, Korea University College of Medicine, Seoul,
28	Korea.
29	10. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
30	11. Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan
31	Kettering Cancer Center, New York, NY 10065, USA.
32	12. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
33	[§] Equal contribution to this work
34	*Corresponding Author, email: <u>sawyersc@mskcc.org</u>

1 ABSTRACT:

Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy 2 3 outcomes. The underlying cellular and molecular mechanisms mediating lineage 4 plasticity remain poorly understood. Here, we describe a versatile in vivo platform to 5 identify and interrogate the molecular determinants of neuroendocrine lineage 6 transformation at different stages of prostate cancer progression. Adenocarcinomas 7 reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1^{-/-}; Trp53^{-/-}; cMyc⁺ or 8 9 Pten^{-/-}; Trp53^{-/-}; cMyc⁺), but only those with Rb1 deletion progress to ASCL1+ 10 neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor 11 signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition 12 requires a native in vivo microenvironment not replicated by conventional organoid 13 culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and 14 PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells 15 arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1⁺;KRT8⁻ NEPC clusters. Ascl1 loss in established 16 17 NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding 18 19 adenocarcinomas with elevated AR expression and marked sensitivity to castration. The 20 dynamic feature of this model reveals the importance of timing of therapies focused on 21 lineage plasticity and offers a platform for identification of additional lineage plasticity 22 drivers.

23

1 INTRODUCTION:

Prostate cancer is the leading cause of cancer death globally in men¹. Survival has 2 3 improved through development of next generation ARSIs; however, patients eventually progress to castration-resistant prostate cancer². Although men receiving ARSIs are living 4 5 longer, an increasing fraction display features of lineage plasticity at relapse, 6 characterized by reduced or absent expression of luminal lineage markers such as AR 7 and the downstream target gene prostate specific antigen^{3,4}. In its most extreme form, lineage plasticity manifests as a transition to neuroendocrine (NE) histology called NEPC. 8 9 with expression of synaptophysin (SYP) and chromogranin⁴. NEPC histology is more 10 commonly seen in patients with metastasis to soft tissue (e.g., liver) rather than bone, 11 raising a potential role of the tumor microenvironment (TME) in this transition^{5,6}. Similar 12 lineage transitions are observed in other tumor types treated with targeted therapies, such as EGFR-, ALK-, and KRAS^{G12C}-mutant lung adenocarcinoma, underscoring the broad 13 relevance of lineage plasticity in tumor progression and therapy resistance⁷⁻¹¹. 14

15

16 The molecular details underlying these lineage transitions are poorly understood, largely 17 owing to a shortage of tractable model systems that accurately and dynamically replicate 18 plasticity-associated transitions observed in patients. Autochthonous models of prostate cancer have contributed substantially to our understanding of prostate tumor progression, 19 20 but few capture the transition at all stages or are amenable to intervention in a timely and cost-effective manner^{12–17}. Conversely, studies using prostate tumor cell line transplant 21 22 models can be completed more quickly, but the number of models is limited, and they fail 23 to replicate all stages of the lineage transition that occurs in patients. To gain a better

understanding of NEPC and to develop intervention strategies that curtail lineage
plasticity, model systems that accurately reproduce the molecular and morphologic
features of these lineage transitions over time are needed.

4

5 Organoid technology has greatly expanded our ability to model epithelial biology, 6 including prostate cancer initiation and progression^{18,19}. Previously, we described a 7 strategy to assess putative genetic drivers of prostate adenocarcinoma (PRAD), as well as tumor cells of origin using mouse prostate organoids coupled with orthotopic 8 transplantation²⁰ (OT). Here, we optimize this approach into a robust platform that 9 10 enables rapid, side-by-side assessment of cancer initiation and progression phenotypes 11 using multiple combinations of human-relevant cancer drivers in vivo. Using multiplexed 12 spatial techniques, we detect isolated NE cells emerging from luminal epithelial cells, 13 which subsequently evolve to fully penetrant NEPC, together with temporal changes 14 within the TME, and perform functional perturbations that dramatically impact the lineage 15 plasticity program.

16

17 **RESULTS**:

18 Rapid tumor phenotyping across an allelic series of prostate cancer drivers

We sought to develop a platform to interrogate prostate cancer drivers rapidly and comprehensively at larger scale compared to traditional genetically-engineered mouse models (GEMMs), focusing particularly on the unmet need to dynamically model the PRAD-to-NEPC transition observed in patients. Using multiplexed editing approaches²⁰ and lentiviral oncogene delivery, we established organoids with six relevant combinations

1 of cancer drivers selected based on their enrichment and co-occurrence in human prostate cancer (Fig. 1a, Extended Data Fig. 1a-c, and Supplementary Table 1; 2 hereafter: *Pten-'-*; *Trp53-'-* = PtP, *Rb1-'-*; *Trp53-'-* = RP, *Pten-'-*; *Rb1-'-* = PtR, *Pten-'-*; *Trp53-*3 4 ^{/-}; *cMyc*⁺ = PtPM, *Rb1*^{-/-}; *Trp53*^{-/-}; *cMyc*⁺ = RPM, *Pten*^{-/-}; *Rb1*^{-/-}; *cMyc*⁺ = PtRM). In line with 5 previous work, histological assessment of edited mouse organoids grown in 3D culture 6 conditions revealed a mixture of KRT5+ basal and KRT8+ luminal cells, with both 7 populations staining for nuclear AR (ref. 18; Extended Data Fig. 1d-e). All cultured organoids lacked expression of the NE transcription factors achaete-scute family bHLH 8 9 transcription factor 1 (ASCL1) and Neuronal Differentiation 1 (NEUROD1), critical 10 regulators of the neuronal and NE lineages in mammalian development, despite 11 prolonged in vitro culture (Extended Data Fig. 1d-e).

12

13 Having generated this allelic series, we next evaluated tumorigenicity following OT (Fig. 14 **1a**). Because expansion of organoids grown in 3D culture is labor intensive (requiring 15 serial propagation of single cell suspensions embedded in matrigel), we compared 3D 16 expansion to short term (five day) monolayer expansion as a simpler alternative 17 (Extended Data Fig. 2a-c). Although monolayer expansion was fast and yielded highly penetrant tumor growth for most genotypes (PtP, RP, PtPM, RPM), pathologic evaluation 18 revealed a high frequency of sarcomatoid-like histology that is not seen in typical human 19 20 prostate cancers²¹ (Extended Data Fig. 2d-g). In contrast, tumors arising from organoids 21 expanded exclusively in 3D culture consistently and reliably established histologic 22 phenotypes and lineage marker expression that closely mirror the human disease, 23 particularly for the PtPM and RPM genotypes as detailed below (Extended Data Fig. 2d-

h). Phenotypes of each of the six combinations of genetic drivers, expanded using 3D or
monolayer culture, are summarized in **Supplementary Table 2**. Due to the sarcomatoidlike histology seen following monolayer culture, all subsequent experiments were
performed using 3D expansion only.

5

6 *<u>Rb1 loss is a critical gatekeeper event for NEPC transformation</u>*

7 Based on the rapid, highly penetrant development of PRAD using PtPM and RPM organoids, we comprehensively evaluated disease progression across both models 8 9 (hereafter called PtPM and RPM mice). In these models, we consistently observed PRAD 10 with moderate to poorly differentiated histology during the first 2-3 weeks post 11 transplantation (Fig. 1b-c); however, RPM tumors also contained pockets of small cell-12 like tumors with "salt-and-pepper" chromatin and a mixture of trabecular or diffuse 13 architecture suggestive of NEPC (Fig. 1c). The mitotic index in RPM tumors, particularly 14 in large areas of NEPC that emerged late (8-10 weeks), was greater than PtPM tumors, 15 consistent with the rapid disease progression seen clinically in patients with NEPC 16 transformation (Fig. 1d). Despite this difference in proliferation rate, the overall survival 17 of PtPM mice was shorter, likely due to higher tumor engraftment potential of PtPM 18 organoids, since a 250-fold reduction in the number of cells injected results in comparable 19 survival to RPM mice (Fig. 1e and Extended Data Fig. 2i).

20

21 Consistent with the moderately differentiated luminal histology, early RPM tumors 22 displayed significantly more KRT8+ cells compared to KRT5+ cells, markers of luminal 23 and basal identity respectively (**Supplementary Fig. 1a**). Moreover, ASCL1 expression

1 was observed as early as 4 weeks post-engraftment, with a significant increase in the 2 proportion of ASCL1+ cells by 8-10 weeks (Supplementary Fig. 1b). These late stage 3 NEPC regions also expressed canonical NE markers such as FOXA2, DLL-3, SYP, 4 NCAM-1, and rarely NEUROD1^{4,5,22} (Fig. 2a-b). In contrast, tumors in PtPM mice rarely 5 contained ASCL1+ cells and never progressed to NEPC (Fig. 2a and Supplementary 6 **Fig. 1c-d**). We therefore conclude that functional *Rb1* loss is a critical gatekeeper event 7 required for NEPC transformation, consistent with preclinical and clinical datasets demonstrating enrichment of *RB1* pathway mutations in small cell lung cancer (SCLC) 8 and NEPC^{22,23}. 9

10

11 PtPM and RPM mice both developed regional metastases in the draining iliac lymph 12 nodes, but RPM mice also established distant metastases (primarily liver and lung; Fig. 13 **1b-c**, **f**). Metastases in RPM mice mostly retained the same NEPC profile seen in primary 14 tumors, except for rare ASCL1-negative patches that were also negative for SYP, NCAM-15 1, and NEUROD1 but occasionally positive for vimentin (VIM), a marker of mesenchymal-16 like cells (Extended Data Fig. 3a-d). Whether these ASCL1-negative regions reflect 17 ongoing lineage plasticity after metastasis of ASCL1+ cells, or independent metastatic events prior to NEPC transformation, requires further investigation. Interestingly, lung 18 metastases in RPM mice contained a higher proportion of ASCL1+/KRT8+ (double-19 20 positive) cells compared to liver metastases (mostly ASCL1 single-positive), and AR 21 expression was absent in tumor cells at both metastatic sites (Extended Data Fig. 3e-f). 22

1 To further benchmark the PtPM and RPM models relative to autochthonous prostate 2 cancer models and human samples, we performed bulk RNA-sequencing of tumors 3 harvested early (PtPM \leq 4 weeks, RPM \leq 6 weeks) and late (PtPM = 5 weeks, RPM = 10 4 weeks). Consistent with the immunohistochemical findings, we observed progressive upregulation of genes involved in neuronal differentiation in RPM compared to PtPM 5 6 tumors, including Ascl1, Foxa2, Sox1, Chga, and Olig3, several NOTCH pathway ligands^{4,24} (e.g., *DII1*, *DII3*, *Hes5*), as well as downregulation of AR and several AR-target 7 genes (e.g., Tmprss2, Pmepa1, Folh1; Fig. 2c-d, Extended Data Fig. 4a-b, and 8 9 Supplementary Table 3). Critically, RPM tumors were significantly enriched for 10 transcriptional signatures derived from prostate GEMMs that undergo NEPC 11 transformation and from human NEPC specimens, demonstrating that RPM transplants 12 rapidly establish and recapitulate key molecular features observed in gold-standard preclinical models and clinical samples¹³ (Fig. 2e, Extended Data Fig. 4c, and 13 14 **Supplementary Table 4).** Further highlighting the critical role of the *in vivo* TME in 15 initiating NEPC transformation, Ascl1 transcript levels were ~2000-fold higher in RPM 16 tumors compared to long-term cultured RPM organoids. Moreover, the *in vivo* TME is 17 required for maintenance of the NEPC state as Ascl1 expression progressively declined 18 in RPM tumor-derived organoids (tumoroids; **Extended Data Fig. 4d**).

19

20 Dynamic tumor microenvironment changes during adenocarcinoma to NEPC transition

Because the *in vivo* setting is required to trigger lineage plasticity in the RPM model, we were particularly interested in surveying changes in the TME. Toward that end, we developed a 20-plex immunofluorescence panel to visualize prostate tumor cells (PRAD

1 and NEPC) in the context of adjacent immune populations, vasculature, and stroma (Fig. 3a-g, and Supplementary Tables 5 and 6). We focused our analysis on the later stages 2 3 of tumor progression within the RPM model to identify changes to the TME within large 4 patches of NEPC histology (Fig. 3b). We used GFP expression to define tumor cells, 5 together with co-expression of either KRT8 and AR or ASCL1 to distinguish PRAD from 6 NEPC (Extended Data Fig. 5a). We selected co-expression of EGFP+/ASCL1- and EGFP+/ASCL1+ as the principal metric to score PRAD and NEPC (see Methods). After 7 mapping these respective regions across multiple tissue sections from RPM tumors 8 containing patches of NEPC differentiation, we then looked for selective changes in cell 9 10 type composition within the TME.

11

Focusing initially on stroma, we noted that mesenchymal cells were abundant in regions of PRAD but depleted in regions of NEPC. We observed a similar trend for LYVE1+ lymphatics although this did not reach statistical significance. However, there were no obvious differences in CD31+ endothelial populations which localized primarily to the boundaries of NEPC and PRAD (**Supplementary Fig. 2a-c**).

17

We next turned our attention to immune cells and noted striking depletion of CD8+ and FOXP3+;CD4+ regulatory T cells (Treg) as well as F4/80+ macrophages across all NEPC regions, consistent with reports showing similar absence of immune cells within human NE cancers^{23,25,26}. Conversely, FOXP3-;CD4+ T cells were equally distributed within PRAD and NEPC, with a high fraction located at PRAD boundaries, suggestive of differential recruitment and retention of T cell subsets between histologies (**Fig. 3d-e, h-i**

and Extended Data Fig. 5b-d). Of the CD8+ T cells within PRAD regions, the vast
 majority (~96%) were TCF1-negative, consistent with prior work demonstrating
 downregulation of TCF1 and upregulation of an effector program in tumor infiltrating
 compared to draining lymph node resident CD8 T cells²⁷ (Extended Data Fig. 5e-f).

5

We identified five distinct myeloid populations which we labeled Mac1 (CD11b+;F4/80-), 6 7 Mac2 (CD11b^{lo}:CD11c+:F4/80+). Mac3 (CD11b+:F4/80+). neutrophil (CD11b+;Ly6G+;S100A9+) and DC (CD11c+;F4/80-; Extended Data Fig. 6a and 8 9 Supplementary Table 6). Neutrophil infiltration was low and confined to the outer 10 boundary of PRAD regions (Fig. 3f and Extended Data Fig. 6a-b). Mac1 and Mac3 11 populations were largely absent from the NEPC TME; however, Mac2, which harbors 12 similar marker expression as alveolar and wound-healing macrophages was present within NEPC²⁸ (Fig. 3f-g,j and Extended Data Fig. 6c-e). We were surprised to also see 13 14 substantial numbers of CD11c+;F4/80- cells within NEPC regions of primary tumors, 15 raising the possibility of dendritic cell infiltration (Fig. 3f and Extended Data Fig. 6a-b).

16

To determine if the differences in PRAD versus NEPC immune infiltrates in RPM mice are seen in human prostate cancer, we examined a recently published human single cell RNA-sequencing dataset that includes PRAD and NEPC samples¹³. Both histologies had evidence of myeloid infiltration, but NEPC harbored fewer tumor associated macrophages (hereafter abbreviated TAM) relative to PRAD (**Extended Data Fig. 6f; see Methods**). However, CD11c (*ITGAX*) expression was evident across TAM populations within both PRAD and NEPC, and highest in *IL1B*+ TAMs (**Extended Data Fig. 6f-h**). We also

1 observed decreased immune infiltration in the NEPC regions of a human prostatectomy 2 specimen from a patient with mixed PRAD/NEPC histology but confirmed the presence 3 of CD11c+;CD68+ macrophage populations within ASCL1+ tumor regions (Extended 4 Data Fig. 6i-j). Whether these CD11c+ myeloid populations correspond to professional 5 antigen presenting cells remains uncertain and will require further phenotypic (e.g., MHC-6 II, CD103, BATF3 expression) and functional characterization. Nonetheless, the evidence 7 of early CD8+ T cell infiltration in PRAD and persistence of potential dendritic cells in late 8 stage NEPC in this model suggest that deeper analysis may be informative in addressing 9 the disappointing clinical results to date using conventional immune checkpoint blockade 10 therapy in prostate cancer.

11

12 We next profiled the TME of RPM metastases, a clinically relevant site of NEPC histology 13 (Fig. 4a-c). Turning first to RPM lymph node metastases, there was a striking absence of 14 CD45+ cells within ASCL1+ tumor nests, thus highlighting the capacity of NE tumors to 15 promote immune exclusion within lymphocyte-dense microenvironments (Fig. 4a,d). 16 Within distant metastases (liver and lung), we also observed exclusion of Treg, CD4+ and 17 CD8+ T cell subsets but retention of IBA-1+ macrophages that co-stain with markers consistent with the Mac1, Mac2, or Mac3 identities seen in the primary tumors, with 18 19 findings confirmed by neighborhood composition analysis (Fig. 4b-c, e-i, see Methods). 20 Taken together, spatial profiling of primary tumors and metastases demonstrates exclusion of nearly all T cell populations within NEPC regions but not PRAD. However, 21 22 subsets of myeloid cells such as Mac2 and those with DC-like cell surface marker 23 expression (CD11c+ F4/80-) are retained in NEPC. Critically, our syngeneic models are

readily suited for studies using model antigens to evaluate strategies to overcome the
immunosuppressive prostate tumor microenvironment.

3

4 Origin and progression of neuroendocrine cells within prostate adenocarcinoma

In addition to tracking changes in the TME, the dynamic nature of the RPM model allows 5 6 a careful examination of the earliest stages of NEPC transformation. ASCL1, a marker of emerging NE cells, was first detected at 4-6 weeks with the appearance of 7 EGFP+;KRT8+;ASCL1+ tumor cell clusters (Fig. 5a, Extended Data Fig. 5a, and 8 9 Supplementary Fig. 1a-b). By 10 weeks, larger homogeneous clusters of 10 ASCL1+;KRT8- tumor cells with small cell NEPC histology were easily visible. The 11 observation that the earliest detectable ASCL1+ cells also co-express KRT8 suggests 12 that NE cells may arise from KRT8+ luminal cells. Indeed, KRT8+;ASCL1+ cells were 4to 5-fold more abundant than KRT5+;ASCL1+ cells at intermediate timepoints (6-weeks, 13 p = 0.025 two-tailed *t*-test, Fig. 5b). At later time points (8-10 weeks) primary and 14 15 metastatic tumor cells were mostly AR-negative and ASCL1-positive with heterogenous 16 expression of KRT8 and E-cadherin (Fig. 3b, Fig. 5b, and Extended Data Fig. 3e-f and 17 5a).

18

The appearance of histologically homogeneous, spatially separate clusters of highly proliferative NE cells within weeks of detecting isolated ASCL1+;KRT8+ cells is consistent with a clonal expansion model. To further characterize the level of transcriptomic heterogeneity, we performed spatial transcriptomics (st; 10X Visium) using tissue sections containing both PRAD and NEPC, coupled with single cell nuclear RNA

sequencing (snRNA-seq) from 10-week RPM tumors (Fig. 5c and Supplementary Fig.
 3a). We observed distinct NE tumor cell clusters from snRNA-seq with variable KRT8
 expression (Supplementary Fig. 3a-b), consistent with the evidence of heterogeneity
 within NEPC seen by multiplexed immunofluorescence.

5

6 Given the mixture of multiple cell types within individual tissue spots used for spatial transcriptomic sequencing, we applied BayesPrism^{29,30} to deconvolve tumor cell from 7 non-tumor cell transcripts using the snRNA-seq data as the reference (Fig. 5d). 8 9 BayesPrism integrates a single cell genomics reference with spatial transcriptomics data 10 to deconvolve each spot into the cell type fractions present and provide a cell type specific 11 count matrix for each spot, while accounting for differences between Visium and single 12 cell reference. This method has superior performance in deconvolving spatial transcriptomics data using ground truth datasets^{29,30}. Prior to deploying BayesPrism for 13 14 further downstream analysis, we assessed the robustness of the inferred deconvolution 15 by comparing BayesPrism on technical replicates profiled from adjacent tissues and 16 found strong correspondence of inferred cell type fraction (Supplementary Fig. 4a-b). 17 Specifically, the tumor cell type fraction inferred by BayesPrism recapitulates the 18 distribution of NEPC observed by histology (Fig. 5c).

19

We next investigated the expression of TFs within regions with NEPC histology as well as those containing a high content of NEPC as inferred by BayesPrism. Consistent with its role regulating neuronal expression programs, all NEPC regions showed *Ascl1* expression with minimal *Neurod1* and *Pou2f3* expression (**Supplementary Fig. 5**).

1 Conversely, other TFs previously implicated in NEPC (e.g. Mycn, Onecut2, Pou3f2, 2 Pou3f4) and cerebellar development (Olig3) were expressed only within subsets of the NEPC regions examined^{16,31–34} (Supplementary Fig. 5). The spatial heterogeneity in 3 4 expression of these selected TFs, as well as similar TF heterogeneity reported in SCLC 5 (a tumor of NE origin)^{35–39}, led us to examine the structure underlying this heterogeneity 6 using Hotspot⁴⁰, which identifies spatially-varying genes. However, the limited resolution 7 of Visium technology makes identification of gene modules specifically associated with a 8 single cell type of interest challenging because direct application of Hotspot would detect 9 co-localization of genes expressed within multiple cell types or between a pair of 10 colocalized cell types, resulting in false positives when studying cell type-specific gene 11 modules. To overcome this, we leveraged a powerful feature of BayesPrism: inference of 12 cell-type specific count matrices, thereby associating each transcript with its respective 13 cell type (see Methods). Therefore, as input to Hotspot, we used the deconvolved tumor 14 count matrices, a strategy we have termed "PrismSpot" resulting from a combination of 15 BayesPrism and Hotspot (Fig. 5d). Compared to directly applying Hotspot on un-16 deconvolved Visium data, the spatial auto- and pairwise-correlation computed by 17 PrismSpot showed significantly stronger signal-to-noise ratio for tumor-specific gene modules (Extended Data Fig. 7a-g and Supplementary Fig. 6a-c). Application of 18 19 PrismSpot identified five distinct spatial modules (**Supplementary Table 7**). To ensure 20 robustness of the clustering of gene modules, we selected genes with the highest co-21 occurrence within each gene module upon iterative subsampling of the Visium data (see 22 **Methods**), which narrowed down our gene list to 71 TFs spanning three of the original 23 five modules (Supplementary Table 7).

1

2 We label these three final (robust) TF modules defining two NEPC states (stNE-1, stNE-3 2) and a single PRAD state (stNonNE; Fig. 5e-f and Supplementary Table 7). stNE-1, 4 whose leading genes include coordinated expression of Ascl1 and other TFs implicated in neuronal biology⁴¹ (Hes6, Ascl1, Prox1, Insm1), was enriched across all NEPC regions. 5 6 The stNE-1 regions correspond to those with a high density of *Mycn* and *Olig3* expression 7 (by spatial transcriptomics) and KRT8+;ASCL1+ (double-positive) tumor cells (by 8 multiplexed IF; Fig. 3b and Supplementary Fig. 5). stNE-2, defined primarily by Nfatc2 (a regulator of Tox expression within lymphocytes⁴²⁻⁴⁴) but also includes the epithelial-to-9 10 mesenchymal (EMT) TF Snai3 was enriched in some but not all NEPC regions (Fig. 5f 11 and Extended Data Fig. 7h). Of note, Nfatc2 expression has been linked with an EMT-12 like state in melanoma⁴⁵. As further validation of these spatially derived signatures, both 13 stNE modules are selectively enriched in the NEPC signature derived from previously reported scRNA-seq data of prostate GEMMs¹³ (Extended Data Fig. 7i) as well as 14 15 human NEPC samples previously characterized using RNAseq⁴⁶ (stNE-1 p = 1.17E-7, stNE-2 p = 5.50E-4, stNonNE p = 0.742, two-sided Wilcoxon test; Fig. 5g and 16 17 Supplementary Table 8). Collectively, multiplexed IF and spatial transcriptomics combined with PrismSpot analysis suggest that NE differentiation arises from KRT8+ 18 19 luminal epithelial cells which progressively evolve into spatially distinct ASCL1+ 20 subpopulations with heterogeneous expression of other NE-associated TFs in various 21 combinations.

22

23 Ascl1 is essential for NEPC transformation

In addition to its role as a master TF in neural lineage specification^{47,48}, several human 1 SCLC cell lines and at least one human NEPC xenograft model are dependent on ASCL1 2 for proliferation^{39,49,50}. Whether ASCL1 upregulation is required during the transition from 3 4 PRAD to NEPC progression is unknown. The reliable kinetics of disease progression in 5 the RPM model, coupled with the flexibility to perform multiplexed genome editing, allow 6 us to rapidly address this guestion through CRISPR editing of the Ascl1 locus in RPM organoids (hereafter called Asc/1^{KO}; Supplementary Table 9 and Supplementary Fig. 7 7a-b). To assess the requirement of Ascl1 for NEPC transformation, we compared the 8 growth and histologic features of Ascl1^{wt} versus Ascl1^{KO} RPM tumors following either OT 9 or subcutaneous (SQ) transplantation (Fig. 6a-d). As expected, Ascl1wt RPM mice 10 11 developed PRAD initially that, over 6-10 weeks, progressed to NEPC. Of note, we also 12 observed a reproducible NE-lineage transition, with similar kinetics, following SQ 13 injection, indicating that the in vivo signal that triggers lineage plasticity is not restricted 14 to the prostate microenvironment. Multiplexed IF revealed that the TME of these SQ 15 tumors shared many of the features seen in the OT tumors (Supplementary Fig. 8a-c). In stark contrast, all AscI1^{KO} RPM tumors (OT and SQ) developed PRAD with moderate 16 17 to well-differentiated glandular histology, slower growth kinetics than Ascl1^{wt} RPM tumors and, importantly, no evidence of NE transformation (Fig. 6b-f and Extended Data Fig. 18 8a-f). Furthermore, no metastases were detected in Asc/1^{KO} RPM mice after OT, 19 20 compared to 50% incidence in Ascl1^{wt} RPM mice, despite comparable end-stage tumor 21 weights at the primary OT site in either intact or castrated hosts (Fig. 6g and Extended 22 **Data Fig. 8g**). Thus, *Ascl1* is obligately required for transition to NEPC and for metastasis 23 in the RPM model.

1

We and others previously found that perturbations preventing lineage plasticity may 2 restore sensitivity to androgen deprivation therapy in prostate cancer^{13,50}. To address if 3 4 this is also true in the context of Ascl1 loss, we compared the tumorigenicity and histologic features of Asc/1^{wt} and Asc/1^{KO} RPM tumors following OT or SQ injection into intact 5 versus castrated mice. Of note, Asc/1^{KO} tumors grew significantly slower in castrated 6 7 versus intact hosts in both the OT and SQ settings, an intriguing result given that loss of RB1 and TP53 are strongly linked to castration-resistance in multiple prostate models and 8 9 in patients (Fig. 6b and Extended Data Fig. 8a-f). To distinguish between effects of 10 castration on tumor engraftment versus tumor maintenance, we initiated chemical 11 castration therapy (degarelix) in established SQ tumors (≥ 150 mm³). Degarelix treatment completely abrogated the growth of Ascl1^{KO} RPM tumors and significantly extended 12 survival whereas progression of Ascl1^{WT} RPM tumors was only marginally impacted (Fig. 13 14 6c, Extended Data Fig. 8h-i, and Supplementary Fig. 9). Interestingly, one castrated mouse injected with AscI1^{KO} RPM organoids developed a tumor with chondrocyte-like 15 histology, reminiscent of a similar phenotype reported in RPM-driven; Ascl1^{KO} SCLC 16 17 mouse models⁴⁹ (Extended Data Fig. 8j).

18

To investigate why tumors with *Rb1* and *Trp53* loss display increased androgen dependence in the context of *Ascl1* loss, we examined the expression of AR as well as luminal (KRT8) and basal (KRT5) cytokeratins. Consistent with their well-differentiated glandular morphology, RPM-*Ascl1^{KO}* tumors were dominated by AR+;KRT8+ tumor cells (**Fig. 7a and Extended Data Fig. 9a-c**). Furthermore, the intensity of nuclear AR staining

was significantly elevated relative to RPM-*Ascl1^{WT}* tumors (Fig. 7b-d and Extended Data
Fig. 9d-f). Notably, degarelix treated RPM SQ tumors harbored an increase in NEPC
tumor area as measured by histological evaluation (see Methods), with an increase in
the fraction of ASCL1+, but decreased AR+ tumor cells relative to vehicle treated RPM
SQ tumors (Extended Data. Fig. 8k). Taken together, these data suggest that *Ascl1^{KO}*tumors are phenotypically and transcriptionally bottlenecked into a luminal AR-dependent
state.

8

9 Loss of Ascl1 in established NEPC promotes tumor heterogeneity

10 Given the exquisite dependence on Ascl1 for the transition to NEPC, we next asked if Ascl1 is also required for the maintenance of established RPM-NEPC tumors. To address 11 12 this question, we introduced a doxycycline (Dox) regulatable Ascl1 cDNA (with a cislinked *mScarlet* reporter allele) into RPM-Ascl1^{KO} organoids and performed OT 13 experiments in mice receiving Dox (Fig. 8a and Extended Data Fig. 10a). As expected, 14 15 mScarlet-positive OT primary tumors developed quickly (within 5 weeks) in mice transplanted with RPM-Ascl1^{KO} organoids harboring the Dox-Ascl1 allele (hereafter 16 Asc/1^{ON}) whereas tumors in mice transplanted with RPM-Asc/1^{KO} organoids containing 17 the Dox-*mScarlet* allele alone were delayed (*Ctrl^{ON}*) (Fig. 8b and Extended Data Fig. 18 10b-c). Asc/1^{ON} mice also developed metastases whereas Ctrl^{ON} mice did not (Extended 19 20 **Data Fig. 10d**), thus fully recapitulating the findings reported earlier (**Fig. 6g**).

21

Having established the fidelity of the Dox-*Ascl1* rescue allele, we asked if ASCL1 is required for the sustained growth of $Ascl1^{ON}$ tumors in a second cohort of $Ascl1^{ON}$ mice

and *Ctrl^{ON}* mice that received Dox until tumors were established ($\geq 100 \text{ mm}^3$) followed by withdrawal (hereafter *Ascl1^{OFF}* and *Ctrl^{OFF}*; **Fig. 8a and Extended Data Fig. 10b**). Consistent with prior evidence that *ASCL1*-knockdown delays the growth of human NEPC xenografts, most *Ascl1^{OFF}* tumors regressed within one week of Dox withdrawal but resumed growth within 2-3 weeks. Although short lived, Dox withdrawal resulted in a statistically significant (albeit modest) survival benefit (log-rank Mantel-Cox test, *p* < 0.0001; **Fig. 8b and Extended Data Fig. 10e-f**).

8

9 To gain insight into the mechanism of relapse after Dox withdrawal, we examined the histologic features and lineage of relapsed Ascl1^{OFF} tumors. To avoid the confounding 10 issue of PRAD cells within RPM primary transplants (recall that RPM tumors retain mixed 11 12 PRAD and NEPC histology), we focused our analysis solely on NEPC cells by isolating a pure population of RPM-NEPC from primary Ascl1^{ON} OT tumors then retransplanting 13 14 these cells SQ into secondary recipients (Fig. 8c and Supplementary Fig. 10; see 15 Methods). As expected, the SQ transplants mirrored the results seen by OT in that Asc/1^{ON} tumors grew rapidly, whereas Asc/1^{OFF} tumors had slower growth with a modest 16 17 but significant extension in survival (log-rank Mantel-Cox test, p = 0.0007; Fig. 8d and Extended Data Fig. 10g). As expected, Ascl1^{OFF} tumors lacked nuclear ASCL1 18 expression, confirming the fidelity of the Dox^{ON}/Dox^{OFF} platform (Fig. 8e). While loss of 19 20 ASCL1 expression resulted in the reacquisition of some histologic features of PRAD (with pockets of moderate- to well-differentiated adenocarcinoma harboring KRT8 and AR 21 expression), the predominant histologic phenotypes were high-grade ASCL1- NEPC and 22 23 regions of sarcomatoid-like differentiation (Fig. 8e-g, Extended Data Fig. 10h, and

1 Supplementary Fig. 11a-c). In contrast to the RPM tumors discussed earlier where we found no evidence of NEUROD1 expression (Fig. 2b), we now observed several regions 2 3 of NEUROD1+ NEPC (Fig. 8f-g and Extended Data Fig. 10i). In summary, and in 4 contrast to clear dependency on Ascl1 for the initiation of NE plasticity, Ascl1-dependency 5 in established NEPC tumors is rapidly circumvented, revealing unique pathologies and marker profiles not seen previously in RPM or RPM-Ascl1^{KO} tumors. Moreover, these 6 results provide evidence of selective pressure to maintain the NE state through 7 8 upregulation of NEUROD1 and perhaps other TF programs that remain to be identified.

9

10 **DISCUSSION**:

11 Because lineage plasticity in cancer is a dynamic process that evolves over time, a 12 precise understanding of the underlying molecular events requires a model amenable not 13 only to repetitive interrogation but also rapid perturbation and reconstitution of the full 14 repertoire of cells found within the TME. Through application of organoid techniques, 15 genome engineering and *in vivo* transplantation assays, we have generated a scalable, 16 flexible, and robust platform that captures the evolution from PRAD to NEPC with highly 17 reproducible kinetics in a manner that closely resembles human disease. As with human NEPC, the mouse NEPC transition is accelerated by castration, although it is worth noting 18 19 that plasticity also occurs in hormonally intact mice. Using this platform, we have identified 20 at least two steps that are required for plasticity to develop. The first is *Rb1* loss which we 21 postulate creates a cell state poised for lineage transformation. This is followed by a 22 second "trigger" derived from the TME that initiates and cooperates with lineage-defining 23 TFs such as Ascl1 to complete the transition from an epithelial to NE lineage. Detailed

characterization of the chromatin state of tumor cells in this model prior to and during the lineage transition, coupled with side-by-side analysis of signaling crosstalk with the TME in $Rb1^{-/-}$ versus $Rb1^{+/+}$ backgrounds (e.g., RPM versus PtPM) and cross referenced with published Rb1 chromatin residence data should shed light on the underlying molecular events⁵¹.

6

7 Application of spatial methods to this model allowed us to gain additional insight into the 8 origin of NEPC and its subsequent evolution as well as changes to the local TME. For 9 example, the earliest detectable ASCL1+ cells nearly always co-express KRT8 or are 10 adjacent to KRT8+ epithelial cells. In addition to implicating luminal cells as a likely cell of 11 origin, this may provide an important clue as to the source of the TME trigger. Our spatial 12 analysis also allowed us to track the expansion of ASCL1+ cells following the initial 13 lineage transformation event, where we see further evolution into transcriptionally distinct 14 NE clusters that continue to express ASCL1 but now gain expression of other TFs 15 associated with neural lineage development. This NEPC evolution is also associated with 16 substantial changes in the TME, such as near complete loss of mesenchymal cells and 17 loss of infiltrating CD8+ T cells and CD4+ Tregs.

18

In addition to the unique capability of capturing critical aspects of lineage plasticity that are not recapitulated *in vitro*, the platform is well positioned for rapid throughput functional studies. For example, application of multiplexed gene editing at the time of tumor initiation established the critical role of ASCL1 in NE transformation in a matter of months (versus 1-2 years required for multigenic crosses using GEMMs). The role of ASCL1 in the

1 development and maintenance of NE cancers has been previously addressed in the 2 context of SCLC but, importantly, that dependency is a consequence of tumor initiation in pre-existing ASCL1+ NE cells^{39,49}. By contrast, ASCL1 is not expressed in prostate 3 4 cancer except during the epithelial to NE lineage transition. While prior work has shown 5 delayed growth of ASCL1-expressing human xenograft models following ASCL1 6 knockdown⁵⁰, the dynamic nature of our platform allowed us to document an essential 7 role of Ascl1 in initiating the transformation of PRAD to NEPC. Deletion of Ascl1 prior to 8 histological transformation resulted in homogeneous well-differentiated adenocarcinomas 9 with no evidence of escape to another lineage despite Rb1/Trp53 loss and c-Myc 10 overexpression.

11

12 In addition to evaluating the importance of genes such as Ascl1 in initiating the lineage 13 plasticity program, the model is also well positioned, through use of a Dox-inducible 14 rescue alleles, to address dependencies on such genes once NEPC is fully established. 15 In contrast to the absolute dependence on Ascl1 for the NEPC transition, termination of 16 Ascl1 expression within established NEPC resulted in transient tumor regressions. 17 Notably, the relapsed tumors contained small foci of AR+, KRT8+ PRAD (indicative of some lineage reversion) but are dominated by sarcomatoid features and regions of 18 19 NEUROD1+ NEPC that rapidly progress. In addition to revealing additional layers of 20 phenotypic plasticity, this result underscores the advantage of early pharmacologic 21 intervention to prevent plasticity rather than intervening after plasticity is fully established. 22 Whether such an approach is clinically feasible with ASCL1 remains to be determined as 23 we are unaware of any drug development efforts that have succeeded in directly targeting

ASCL1. However, clinical benefit has been reported using a bi-specific T cell engager
 targeting the downstream cell surface protein DLL3 in SCLC, and other DLL3-directed
 radio-ligand and cell-based therapies are also in development^{52–54}.

4

The establishment of this model in a fully immunocompetent setting provides an 5 6 opportunity to address several unresolved topics regarding the immunobiology of prostate 7 cancer. In contrast to cell lines derived from tumors that have escaped immune 8 suppression (and are commonly used to evaluate novel immunotherapies), the immune 9 evasive mechanisms in the current model develop without any pre-transplantation 10 immune-mediated selective pressure. This scenario allows deeper analysis of the earliest 11 steps in immune escape and may shed light on novel strategies to buttress immunity 12 before tumors become depleted of T cells. Indeed, our spatial analysis shows that CD8 T 13 cells are present early in PRAD but absent in NEPC. We hope to unravel these details using prostate tumors expressing model antigens, combined with tetramer-based 14 15 monitoring of T cell responses and selective depletion of specific myeloid and Treg 16 subpopulations.

17

Although the work reported here is exclusively based on prostate cancer models, the platform is, in principle, adaptable to other epithelial lineages in which short-term organoid culture and orthotopic transplantation methods have been developed. One disease that closely approximates the lineage transitions observed in prostate cancer is *EGFR*- or *ALK*-mutant lung adenocarcinoma where epithelial to NE transition is seen as a mechanism of escape from EGFR or ALK inhibition, particularly in patients with co-

1 occurring loss of function mutations in TP53 and RB1, and recently demonstrated in an EGFR-driven GEMM^{7,8,11,55,56}. KRAS^{G12C}-mutant lung adenocarcinoma is a second 2 3 example where transition to squamous histology is a resistance mechanism for RAS 4 inhibitor therapy^{10,57}. Other applications in bladder, pancreas, breast, and gastrointestinal 5 cancer can also be easily envisioned. In closing, we report a robust, scalable platform to 6 study lineage plasticity in a format amenable to deep molecular interrogation and 7 perturbation and identify Ascl1 as a critical gatekeeper of NE transformation and tumor 8 heterogeneity in prostate cancer.

9

10 **ACKNOWLEDGEMENTS**:

11 We thank members of the Sawyers and Pe'er labs for valuable discussions. We thank 12 Y.M. Soto-Feliciano, F.J. Sánchez-Rivera, T. Tammela, T. Papagiannakopoulos, C. 13 Concepcion-Crisol, S. Naranjo, E.E. Gardner, B.D. Stein, C. Burdziak, P. McGillivray, and 14 T. Baslan for their critical feedback. We thank the core facilities at MSKCC for their 15 support, including the Molecular Cytology Core, Flow Cytometry Core, Mouse facilities, 16 and N. Mao and J. Lawson for their administrative support. R.R. was supported by NIH 17 Translational Research Oncology Training Program (T32CA160001) and Charles H. Revson Senior Fellowship in Biomedical Science (22-23). T.C. was supported by William 18 19 Raveis Charitable Fund Damon Runyon Quantitative Biology postdoctoral fellowship 20 (DRQ: 10-21). T.J.G.R. was supported by NIH Institutional Cell Biology training grant 21 (T32GM136542) and Howard Hughes Medical Institute Gilliam Fellowship program 22 (GT15758). S.Z. is supported by NIH K08 CA282978 and Burroughs Wellcome Fund 23 Career Award for Medical Scientists. We acknowledge the use of the Integrated

1 Genomics Operation Core, funded by the NCI Cancer Center Support Grant (CCSG, P30 2 CA08748), Cycle for Survival, Marie-Josée and Henry R. Kravis Center for Molecular 3 Oncology and the Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center. 4 This work was supported by the Howard Hughes Medical Institute; Calico Life Sciences; 5 NIH grants CA193837, CA092629, CA224079, CA155169, CA008748, and CA274492. 6 The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, Howard Hughes Medical Institute, 7 8 Damon Runyon Cancer Research Foundation, or the Charles H. Revson Foundation. 9 D.P. and C.L.S. are Howard Hughes Medical Institute investigators.

10

11 AUTHOR CONTRIBUTIONS:

12 R.R. and C.L.S. designed the study and wrote the manuscript with comments from all 13 authors. R.R. designed, analyzed, and oversaw all experiments. R.R., P.S., K.E.L., H.K., 14 and O.G. performed experiments. R.R., P.S., and K.E.L. performed mouse work. T.C., 15 T.J.G.R, and Y.X. performed computational analysis. T.C. developed PrismSpot, 16 analyzed snRNA-seq, scRNA-seq and spatial transcriptomics data. T.J.G.R. performed 17 bulk RNA-sequencing and immunofluorescence spatial analysis. Y.X. analyzed COMET spatial immunofluorescence datasets. H.Z. and E.D. performed or oversaw orthotopic 18 19 surgeries, respectively. S.Y. and R.R. optimized Lunaphore COMET multiplexed 20 immunofluorescence. C.M., W.K., and M.V.P. performed 7-plex immunofluorescence. 21 R.R. performed immunohistochemical staining and confocal microscopy. A.G. assessed 22 and cross-validated histopathology and grade of tumors. S.Z., K.Y., and J.C. performed 23 macrophage subset scRNAseg analyses across human prostate tumor samples. N.F.

performed tissue embedding and preparation for 10X Visium spatial transcriptomics.
W.R.K. was involved in optimization of improved organoid culture methods. K.V.R.
oversaw bulk RNA sequencing analysis. P.M.K.W. was involved in optimization of
organoid transplantation assays. D.P. oversaw all snRNA-seq, spatial transcriptomics,
and multiplexed immunofluorescence analyses. D.P. and C.L.S. oversaw the project. **COMPETING INTERESTS:**C.L.S. is on the board of directors of Novartis, is a cofounder of ORIC Pharmaceuticals,

and is a co-inventor of the prostate cancer drugs enzalutamide and apalutamide, covered
by US patents 7,709,517; 8,183,274; 9,126,941; 8,445,507; 8,802,689; and 9,388,159
filed by the University of California. C.L.S. is on the scientific advisory boards for the
following biotechnology companies: Beigene, Blueprint Medicines, Column Group,
Foghorn, Housey Pharma, Nextech, PMV Pharma and ORIC. D.P. is on the scientific
advisory board of Insitro.

15

16 MAIN FIGURES 1-8

17 EXTENDED DATA FIGURES 1-10

18 SUPPLEMENTARY FIGURES 1-11

Supplementary Table 1: Mutational co-occurrence analyses in prostate cancer patients
 for all genetic combinations modeled in mouse prostate organoids.

Supplementary Table 2: Summary table of organoid genotypes and in vivo
 transplantation efficiency and histology.

- 1 Supplementary Table 3: PtPM and RPM tumor bulk RNAseq normalized (log₂(X+1))
- 2 read counts. Related to Fig. 2c-d and Extended Data Fig. 5e.
- 3 **Supplementary Table 4:** Gene set enrichment analysis (REACTOME) results from RPM
- 4 vs PtPM tumors processed for bulk RNAseq. Related to Supplementary Table 3.
- 5 Supplementary Table 5: Antibodies used for multiplexed immunofluorescence
- 6 (Lunaphore COMET).
- 7 **Supplementary Table 6:** Marker co-expression used for cell typing COMET datasets.
- 8 **Supplementary Table 7:** PrismSpot module analysis. Related to Fig. 5e.
- 9 **Supplementary Table 8**: PrismSpot consensus TF differential gene expression in human
- 10 NEPC versus PRAD.
- 11 **Supplementary Table 9:** *Ascl1* edited alleles in RPM-*Ascl1^{KO}* pooled clones.
- 12 Supplementary Table 10: Antibodies and concentrations used for IHC, multiplexed IF,
- 13 western blot, and flow cytometry.
- 14 Supplementary Table 11: Supplementary sequences.
- 15 **Source Data Figure 1:** Unedited western blot scans (related to Extended Data Fig. 2c).

Figure 1: Rapid establishment of genetically-defined prostate cancer with prostate organoids transplanted into immunocompetent syngeneic hosts.

Schematic of timeline required to establish, propagate, edit, and select for 3 a. 4 organoids harboring mutations in cancer-associated genes prior to transplantation into 5 immunocompetent hosts for tumor establishment. b. Representative microscopy of Pten-^{/-}; *Trp53^{-/-}*; *cMyc^{T58A}* (PtPM) organoids, and stereoscopic and fluorescence images of 6 7 orthotopic (OT) prostate tumors with prostate adenocarcinoma (PRAD) histology. Tumor 8 images are representative of n=22 independent mice. H&E, hematoxylin and eosin. c. Top: Representative microscopy of Rb1-/-; Trp53-/-; cMycT58A (RPM) organoids, and 9 10 stereoscopic and fluorescence images of OT prostate tumors and lung metastases. 11 Bottom: Representative histological assessment of RPM-PRAD and RPM-12 neuroendocrine prostate cancer (NEPC) primary tumor or metastases histology at varying 13 magnifications. Primary and metastatic histology are representative of *n*=25 independent 14 mice. LN, lymph node (iliac). d. Phospho-Histone H3 (Ser10; pHH3) positive tumor cells per total tumor area (µm²). Each data point represents the average number of pHH3+ 15 cells per individual tumor subset by tumor histology (PRAD vs NEPC) and experimental 16 end point. PtPM-Early (<4 weeks), n=14; PtPM-Late (>6 weeks), n=8; RPM-PRAD, n=11; 17 18 RPM-NEPC, *n*=14. Statistics derived using one-way ANOVA with Tukey's multiple 19 comparisons correction. Error bars denote mean and standard deviation, e. Survival of 20 mice transplanted with the indicated cell numbers of PtPM, RPM, and Pten-/-; Rb1-/-; cMyc^{758A} (PtRM) ex-vivo edited organoids. PtPM 1k, n=5; PtPM 250k, n=5; RPM 250k, 21 *n*=14; PtRM 250k, *n*=8. Statistics derived from the Log-rank (Mantel-Cox) test for each 22 23 pair-wise comparison. f. Metastatic disease penetrance of the indicated organoid transplants. Regional metastases include dissemination into the iliac lymph nodes. Distal 24 metastases include dissemination to kidney, pancreas, liver, or lungs. Statistics derived 25 from two-sided Fisher's exact test. Number of biological replicates indicated within the 26 27 figure. Scale bars indicated within each figure panel.

Figure 2: Molecular characterization of PtPM and RPM primary prostate tumor transplants demonstrates emergence of neuroendocrine carcinoma marker expression.

4 Representative histological analysis of PtPM (top) and RPM (bottom) tumors a. 5 isolated at 4-weeks post-transplantation. Serial sections depict immunohistochemical staining of the indicated markers. Data are representative of n=22 independently 6 7 transplanted tumors. **b.** Representative histological analysis of RPM tumors isolated at 10-weeks post-transplantation. Serial sections depict immunohistochemical staining of 8 9 the indicated markers. Data are representative of n=25 independently transplanted 10 tumors. **c.** Volcano plot depiction of the log₂ fold change in RNA expression of primary 11 (OT) RPM tumors relative to primary (OT) PtPM tumors. Genes that meet or surpass the indicated thresholds of significance and fold change in expression are color coded as 12 13 depicted in the figure legend. Data derived from the comparison of PtPM (*n*=10) and RPM 14 (n=8) independent prostate tumors. **d.** Heatmap depicting the Z-score normalized differential expression of select genes in PtPM versus RPM tumors. Time points of 15 isolation are color coded in the figure as they are in Fig. 2a. Genes are grouped by the 16 listed class or pathway. Early PtPM ≤4 weeks, early RPM ≤6 weeks. Late PtPM =5 weeks, 17 18 late RPM =10 weeks. Data related to samples used in Fig. 2f. e. Enrichment plots (GSEA) of established expression signatures of (left) genetically engineered mouse model 19 (GEMM) of NEPC harboring conditional deletion of Pten, Rb1, and Trp53 (PtRP), and 20 21 (right) histologically verified human NEPC within RPM primary tumors. FDR and NES indicated in the figure. Analysis derived from the transcriptional profiles of multiple 22 23 independent RPM tumors (*n*=8) relative to PtPM tumors (*n*=10). Data related to samples 24 used in Fig. 2d. All scale bars noted in each panel and are of equivalent magnification 25 across each marker.

1 Figure 3: Multiplexed immunofluorescence identifies unique spatial distribution of

immune cells within RPM prostate tumors, with local depletion of immune cell types in NEPC areas.

4 Schematic representation of the methods used to process RPM tumors for 20-plex a. 5 cyclic immunofluorescence. b. (Top) Representative H&E and (bottom) serial section depicting a 3-marker pseudo-colored 10-week RPM tumor. Histological regions (PRAD 6 7 vs. NEPC) are denoted in the H&E and demarcated by dotted yellow line. c. 8 Representative enhanced magnification of lymphoid (left) and myeloid cell markers (middle), and serially sectioned H&E (right). d. Representative segmented field of view 9 (FoV) for the indicated general lymphoid cell types in a 10-week RPM tumor. e. 10 Representative immunofluorescence of the indicated pseudo-colored lymphocyte 11 markers within NEPC (left) or PRAD (middle). (Right) Data presented as a segmented 12 FoV indicating the localization of each lymphoid and tumor cell type in space. f. 13 14 Representative segmented field of view (FoV) for the indicated general myeloid cell types in a 10-week RPM tumor. q. Representative immunofluorescence of the indicated 15 pseudo-colored myeloid and tumor histotype markers. (Right) Segmented FoV indicating 16 the localization of each myeloid and tumor cell type in space. h. Frequency distribution of 17 18 CD8+ T cells within binned distance outside or inside the defined interface region (NEPC 19 or PRAD). Scale bar represents mean and standard error of the mean of the cell counts per bin. i. Mean distance of the indicated cell types to the nearest histotype boundary. 20 21 Error bars denote mean and standard deviation. j. Frequency distribution of Mac2 cells (CD11b^{lo}; CD11c+; F4/80+) within each binned distance outside or inside of the defined 22 23 interface region (NEPC or PRAD). Scale bar represents mean and standard error of the mean of the cell counts per bin. Data calculated as in h. Shaded regions in panels h and 24 j approximated through Loess method. Dotted line in h-j represents the boundary of the 25 tumor histotype or tumor edge. All scale bars denoted within each panel. Data derived 26 27 from n=3 independent tumor samples. Infiltration analyses representative of n>3 distinct NEPC and PRAD boundaries. 28

1 Figure 4: NEPC metastatic lesions are T cell excluded but retain macrophage 2 infiltrates.

3 Representative segmented field of view (FoV) for the indicated cell types within 4 a. 4 independent draining lymph node metastases derived from n=2 mice transplanted OT 5 with RPM organoids. b. Representative segmented FoV of macrophages (IBA-1+) within liver or lung sections obtained from mice transplanted OT with RPM organoids. Note, 6 7 liver-resident macrophages (Kupffer cells) are IBA-1+. c. Representative segmented FoV 8 of T cells (CD4+ or CD8+) within liver or lung sections obtained from mice transplanted 9 OT with RPM organoids. d. Representative zoomed in segmented FoV for all cell types 10 listed within a draining lymph node metastasis. Scale denotes relative cell size. e. 11 Representative zoomed in segmented FoV across serial lung sections obtained from mice 12 transplanted OT with RPM organoids, identifying NEPC metastatic nodules infiltrated with 13 (left) macrophage subsets or (right) T cell subsets. f. Representative multiplexed 14 immunofluorescence of the indicated cell type markers across distinct metastatic sites obtained from mice OT transplanted with RPM organoids. g. Neighborhood composition 15 16 heatmap of cell types found within RPM draining lymph node metastases demonstrating 17 the proximity of the source cell relative to a neighboring cell (20-pixel distance). Data are 18 derived from *n*=4 independent metastatic lymph node samples isolated from *n*=2 mice. **h**. 19 Frequency distribution for Macrophages (IBA1+) or T cells (CD4+ or CD8+) within each 20 binned distance outside or inside of RPM lung metastatic samples. i. Frequency 21 distribution for Macrophages (IBA1+) or T cells (CD4+ or CD8+) within each binned distance outside or inside of RPM liver metastatic samples quantified as in Fig. 4h. 22 23 Shaded region in h-i approximated through Loess method. Scale bar in h-i represents mean and standard error of the mean of the cell counts per bin. Dotted line in h-i 24 25 represents the boundary of a tumor histotype or tumor edge. All metastatic tumors per section within an individual mouse were combined for infiltration analysis and 26 27 subsequently averaged between replicates (n=3 independent mice).

FIGURE 5:

1 Figure 5: PrismSpot reveals spatial transcriptomic heterogeneity within NEPC 2 marked by *Ascl1* co-expressed with distinct NE-related TFs.

3 Representative confocal images of 7-plex IF of the indicated markers. Second and a. 4 fourth images are digitally magnified versions of the first and third panel from the left. 5 Data are representative of *n*=29 individual RPM tumors at varying time points post OT 6 transplantation. b. Percentage of all ASCL1+ cells co-expressing KRT5, KRT8, or KRT-7 negative within an individual RPM OT tumor. Data is derived from the average percentage 8 of cells within each tumor across n=10 independent tumors 6-weeks post OT 9 transplantation. c. (Left) H&E stains of two independent 10-week RPM tumors. Tumors A 10 and B are outlined in red and blue dotted lines, respectively. NEPC regions are highlighted in black dotted lines. (Middle) BayesPrism inferred cell type fraction for NEPC. (Right) 11 Log₂ fold expression of Ascl1 overlayed on the tumor histology. **d.** Workflow of PrismSpot 12 13 method. BayesPrism infers the posterior of cell type-specific gene expression, U, and cell 14 type fraction, μ , of each spot. The expression profile of the cell type of interest (NEPC) was selected as the input for Hotspot analysis. e. Heatmap shows PrismSpot output of 15 the pairwise local correlation Z-scores of 71 TFs of high consensus scores (>0.8) and 16 significant spatial autocorrelation (FDR<0.01). TFs are clustered into 3 modules based 17 18 on pairwise local correlations between all TFs of significant spatial autocorrelation. f. 19 Spatial expression patterns of TFs within each module are visualized using smoothed summary module scores. g. Beeswarm plot shows the log2 fold change in expression of 20 21 TFs in each module between bulk RNA-seq of human NEPC and PRAD samples. Dot size shows the two-sided *p*-values based on Wilcoxon test. All scale bars indicated within 22 23 each figure panel.

1 Figure 6: Loss of *Ascl1* results in abrogated NEPC establishment and castration-2 sensitivity.

Schematic for the generation of RPM-Asc/1^{WT} and RPM-Asc/1^{KO} tumors 3 a. transplanted into the flanks or prostates of immunocompetent C57BL6/J hosts. b. 4 5 Longitudinal subcutaneous (SQ) tumor volumes of the indicated tumor genotypes and host backgrounds. Statistics derived using two-way ANOVA with Tukey's multiple 6 7 comparisons correction for data collected between days 0-56 to ensure equal sample size comparisons. Error bars denote mean and standard error of the mean. *n*=6 independent 8 9 tumors across each group. Castration or sham surgery performed 14 days post SQ 10 transplantation. c. Longitudinal SQ tumor volumes of the indicated tumor genotypes and 11 host backgrounds. Statistics derived using two-way ANOVA with Tukey's multiple 12 comparisons correction for data collected between 0-16 days post treatment start to 13 ensure equal sample size comparisons. Error bars denote mean and standard deviation. 14 Asc/1^{WT}-vehicle, Asc/1^{WT}-vehicle, and Asc/1^{KO}-degarelix, n=8; Asc/1^{KO}-vehicle, n=9independent tumors. Vehicle or degarelix treatment was initiated upon tumor 15 16 establishment (≥150 mm³). **d.** Representative H&E of SQ (top) and OT (bottom) tumors 17 isolated at endpoint. Genotype and treatment groups listed within the figure panel. Data related to mice in Fig. 5b-c. Scale bars denoted within the figure panel. Data are 18 19 representative of 4-6 independent tumors per experimental group. e. Stacked bar charts representing percentage of OT tumor area composed of the histological categories 20 21 depicted in the figure legend. Data are quantified histology of tumors generated in Fig. 5b and represent average tumor area. f. Stacked bar charts representing percentage of SQ 22 23 tumor area composed of the histological categories depicted in the figure legend. Data 24 are quantified histology of tumors generated in Fig. 5c and represent the average tumor 25 area. g. Pie charts representing percentage of mice with metastatic disease (regional and distal) in intact or castrated hosts of the indicated genotypes. Statistics derived from two-26 27 sided Fisher's exact test, p=0.0137. Number of biological replicates indicated in the figure panel. All scale bars denoted in the figure panels. 28

FIGURE 7:

b. C. ASCL1 Ascl1^{KO} Ita Density ຄື Ascl1^{wt} astrate Ascl1^{KO}

5.0

Log₂ nuclear mean intensity (FAU)

0.0

2.5

Ascl1^{wt}

7.5

1 Figure 7: Loss of *Ascl1* results in enhanced AR expression and proportion of 2 KRT8+ tumor cells.

Representative confocal images of the tumors isolated from mice in Fig. 5b-c. 3 a. 4 Scale bars and pseudocolor legend indicated within the figure. b. Density plots of the 5 log₂(x+1) transformed ASCL1 mean fluorescence intensity from all (OT and SQ) tumor cells. Tumor cells subset by all cells staining negatively for VIMENTIN. Tumor genotype 6 7 and treatment indicated in the figure panel. Data derived from n < 10 independent RPM 8 tumors per group. c. Density plots of the $log_2(X+1)$ transformed AR mean fluorescence intensity from all OT tumor cells within the indicated genotypes and treatment groups. 9 10 Tumor cells subset by all cells staining negatively for VIMENTIN and positively for KRT8 and AR. d. Area under the curve for all KRT8+:AR+ tumor cells (VIMENTIN-) across both 11 SQ and OT tumor transplants, containing a log₂ transformed nuclear AR intensity score 12 13 ≥3. Statistics derived using two-way ANOVA with Tukey's multiple comparisons 14 correction. Error bars indicate mean and standard deviation. Combined OT and SQ tumor sample sizes for all quantification and analysis performed in Fig. 7: n=11 (Ascl1^{wt} and 15 Asc/1^{KO} intact groups), n=12 (Asc/1^{Wt} castrate group), n=9 (Asc/1^{KO} castrate group). 16 FAU=fluorescence arbitrary units. 17

1 Figure 8: Loss of *Ascl1* in established NEPC results in modest tumor control and 2 increased tumor heterogeneity.

Schematic of Ascl1 doxycycline (dox)-inducible in vivo platform. RPM-Ascl1^{KO} 3 a. 4 organoids infected with inducible mScarlet (Ctrl) or Ascl1-P2A-mScarlet (Ascl1) vectors 5 were transplanted OT into mice fed dox-chow (primary recipient host, 1°). Tumor volume was monitored by ultrasound. Upon primary tumor establishment, mice were randomized 6 7 into dox ON (maintained) or dox OFF (withdrawal) groups. b. Survival curves of Ctrl or 8 Ascl1 induced OT tumors following dox-maintenance (ON groups) or withdrawal groups (OFF groups). Statistics derived from log-rank (Mantel-Cox) test comparing primary Ascl1 9 10 ON to primary Ascl1 OFF groups. Ctrl ON n=7, Ctrl OFF n=8, Ascl1 ON n=11, Ascl1 OFF *n*=13 independent mice. **c.** Schematic of SQ *Ascl1* doxycycline (dox)-inducible *in vivo* 11 platform (secondary recipient host, 2°). Ascl1 ON primary tumors were dissociated for 12 13 flow cytometry to enrich for RPM-NEPC cells used for transplantation assays into the 14 flanks of secondary recipient mice fed dox-chow. Tumor volume was monitored by caliper. Upon tumor establishment, mice were randomized into dox ON (maintained) or 15 16 dox OFF (withdrawal) groups. **d.** Survival curves of *Ctrl* or *Ascl1* induced secondary 17 tumors following dox-maintenance (ON groups) or withdrawal groups (OFF). Stats derived from Log-rank (Mantel-Cox) test. Ascl1 ON n=5, Ascl1 OFF n=7 independent 18 19 mice per group. e. Serial sections from secondary transplanted mice (SQ) stained for the 20 indicated markers by H&E and IHC. f. Representative NEUROD1 IHC within a secondary 21 transplant containing mostly NEPC histology. Data representative of n=5 independent tumors. g. (Left) Average percent marker positive nuclei or (right) cells across biologically 22 23 independent secondary SQ Asc/1 ON (n=5) or OFF (n=4) tumors. Statistics derived from 24 two-sided *t*-test. Error bars indicate mean and standard deviation. All scale bars depicted 25 in the figure panels.

1 METHODS:

2 Mice

Animal studies were carried out in full compliance with Research Animal Resource Center 3 4 guidelines and the MSKCC Institutional Animal Care and Use Committee under protocol 5 #06-07-012). Only male mice were used for transplantation studies. All mice used for 6 transplantation harbored conditional EGFP alleles to tolerize against EGFP-derived antigens expressed within organoids (Jax, #026179). All studies employed \geq 3 animals 7 per genotype per experimental cohort. Mice were maintained on a pure C57BL/6J genetic 8 9 background. At established experimental end-point, mice were euthanized by CO₂ 10 asphyxiation followed by cervical dislocation.

11

12 Orthotopic prostatic organoid transplantation: For tumor transplant studies, 8-12-weekold animals with appropriate genotypes were randomized for surgical implantation of ex-13 *vivo* manipulated organoids as described previously²⁰. Briefly, the ventral abdomen was 14 15 depilated (using clippers) the day prior to surgery. Animals were anesthetized with 16 isoflurane and the surgical area was disinfected three times with alternating 17 Betadine/Isopropanol. Eye lubrication was used to maintain eye health. Sterile tools were 18 used for all procedures. A 0.5 cm midline incision was made along the lower abdominal 19 midline and peritoneal wall to allow for exteriorization of the bladder, prostate, and seminal 20 vesicles. Local analgesia was used at the incision site (bupivacaine). Using straight 21 forceps, the bladder was gently pressed down caudally, exposing the dorsal prostate 22 lobes. A 30-gauge needle was inserted into the right dorsal prostatic parenchyma and 20 23 µL (containing single cell suspensions of organoids in 50% PBS + 50% matrigel) was

1 injected. Organoid/matrigel mix was kept on ice throughout the entire procedure. 2 Successful injection was visualized by local expansion in volume of the right dorsal lobe without leakage. The prostate, bladder, and seminal vesicles were gently internalized, 3 and the peritoneal layer was sutured using 5-0 vicryl sutures. The outer skin layer was 4 5 closed with 3 to 4 wound clips. All mice received pre- and post-operative analgesia with 6 buprenorphine and meloxicam and were followed post-operatively for any signs of 7 discomfort or distress. Tumor-containing area was measured on hematoxylin and eosin 8 (H&E) slides. Histological assessment was performed in consultation with clinical 9 pathologist Dr. Anuradha Gopalan.

10

Subcutaneous prostatic organoid transplantation: For allograft experiments, 250k single cell suspension of organoids in 100 μ L 50% + 50% matrigel were injected into the depilated flanks (clippers) of isoflurane anesthetized C57BL/6J mice. Mice were followed for tumor measurement and signs of discomfort or distress. Subcutaneous tumor volumes (mm³) were calculated using the formula: $(a^{2*}b)^*(\pi/6)$, where *a* and *b* are the smaller and larger dimensions, respectively.

17

Castration surgery: Mice harboring orthotopic prostate tumors were randomized into castration or sham surgeries 2 weeks post orthotopic surgery. Mice were anesthetized with isoflurane. Eye lubrication was used to maintain eye health. The perineal region was cleaned three times with alternating Betadine/Isopropanol. Sterile tools were used for the procedure. A 0.5 cm incision was made in the scrotal sack. Forceps were used to locate and exteriorize the testes. Using a cauterizing iron, the testes were amputated via the

seminal tubules. The scrotum was closed shut with 2-3 wound clips. A local triple antibiotic
was applied over the region to facilitate healing. All mice received pre- and post-operative
analgesia with meloxicam and were followed post-operatively for any signs of discomfort
or distress.

5

Chemical castration studies (GnRH antagonist): 1E6 RPM-Ascl1^{WT} or RPM-Ascl1^{KO} 6 7 organoids were injected into the flanks (one tumor per mouse) of immunocompetent mice as described above. Mice were randomized into vehicle (5% D-Mannitol, Sigma M4125-8 9 500G) or Degarelix (15 mg/kg, Sigma SML2856-25MG) groups once tumors measured ≥ 10 150 mm³. Treatment was performed by subcutaneous delivery once every 14-days in a 11 total of 100 uL. Tumor volumes were obtained and calculated as above. At sacrifice, blood 12 was collected from mice and coagulated for 1hr on ice, followed by centrifugation at 1000 g for 30 min to isolate serum. Successful serum testosterone depletion was assessed by 13 ELISA according to manufacturer recommendations (Abcam, ab285350). 14

15

Transplantation of dox inducible Ascl1 organoids: 100E5 RPM-Ascl1^{KO} organoids 16 17 harboring dox-inducible Ascl1-P2A-mScarlet or mScarlet alone were injected (50%) matrigel) into the prostates of C57BL/6J Prkcd^{KO} mice (Jax, #001913) to avoid rtTA-18 mediated rejecton. Dox chow (Inotiv, 0.625 g/kg) was started 1 week prior to 19 20 transplantation ensure immediate induction of transgene expression. Mice were randomized into Ascl1^{ON} (maintained on dox) or Ascl1^{OFF} (withdrawn from dox) cohorts 21 when tumor volumes reached \geq 50mm³, as measured by small animal ultrasound. For 22 23 secondary transplantation assays of pure RPM-NEPC tumor cells, 5-week Ascl1^{ON}

1 tumors were harvested as described for primary prostate organoid single cell suspensions, and sorted (Sony MA900, Sony Biotechnology, 100-µm sorting chip (Sony 2 Biotechnology, #LE-C3210) for DAPI-, EGFP+, mScarlet+ (Ascl1 reporter), EPCAM+, 3 NCAM-1+ cells (gating strategy Supplementary Fig. 10). Antibodies used for flow 4 cytometry listed in **Supplementary Table 10**. Post sort, 100E5 cells were immediately 5 injected (50% matrigel) into the flanks of secondary C57BL/6J *Prkcd^{KO}* mice pre-fed dox 6 7 diet for 1 week pre-transplantation. Tumor volumes were assessed by caliper measurements as above. Mice were randomly separated into Ascl1^{ON} or Ascl1^{OFF} groups 8 when flank tumors reached \geq 50mm³. At experimental end-point, secondary tumors from 9 Asc/1^{ON} or Asc/1^{OFF} groups as well as RPM organoids and primary Ctrl ON tumors 10 11 (mScarlet-induced expression alone) were harvested for FFPE and processed for flow-12 cytometry for the markers listed above (Supplementary Fig. 11a-c).

13

Small animal ultrasound: Animals were anesthetized using isoflurane and the ventral 14 15 abdominal areas were depilated with Nair. Eye lubrication was used to maintain eye 16 health. Animals were imaged using the Vevo2100 ultrasound and photoacoustic imaging 17 system (Fujifilm-Visualsonics). Animals were placed on the imaging platform in the supine position and a layer of ultrasound gel was applied over the entirety of the abdominal area. 18 19 The ultrasound transducer was placed on the abdomen orthogonal to the plane of the 20 imaging platform. The bladder and urethra were used as landmark organs to define the 21 area of the prostate. The transducer was set at the scanning midpoint of the normal 22 prostate or prostatic tumor and a 3D image of 10-20 mm, depending on tumor size, at a 23 Z-slice thickness of 0.04mm. 3D images were uploaded to the Vevo Lab Software and

volumetric analysis function was used to determine the tumor border at various Z-slices
through the entirety of the tumor and derive the final calculated tumor volume.

3

4 Human Specimens:

5 Informed consent was obtained for all patients and approved by MSKCC's Institutional 6 Review Board (IRB) #12-245 (NCT: 01775072) and #06-107. The human prostate tumor 7 specimen was collected from a 62-year-old male with localized PRAD undergoing XRT followed by salvage prostatectomy post ADT and docetaxel. Tumor in the bladder arose 8 9 by extension of a prostate tumor recurrence in the surgical bed. Pathological evaluation 10 showed small cell carcinoma arising from PRAD. Tumor cells were focally positive for 11 SYP, CHGA (patchy), PSA (focal), and PSMA (focal weak). Tumor sample was sectioned 12 and processed for COMET-based multiplexed IF according to the antibodies listed in Supplementary Table 10. 13

14

15 Immunohistochemistry and Immunofluorescence

16 Immunohistochemistry: Prostate tumors were cleaned under a stereomicroscope, fixed 17 overnight in zinc-formalin, washed in PBS, transferred to 70% ethanol, and embedded in paraffin. Sections were cut to six micrometers and stained with H&E. Chromogenic 18 19 immunohistochemistry (IHC) was performed on fresh cut sections. Briefly, slides were 20 heated for 30 min at 58°C and deparaffinized. Antigen retrieval was performed in freshly prepared citrate buffer (pH 6.0) followed by Tris-EDTA (pH 9.0, Abcam #ab93684) in a 21 22 decloaking chamber and subsequently slowly cooled on ice. Slides were washed in PBS 23 + 0.1% Tween (PBST) followed by an endogenous peroxidase block (Bloxall, Vector 1 Labs, SP-6000-100). Slides were subsequently blocked in 2.5% normal horse serum and stained overnight in primary antibodies at 4°C in PBS + 0.01% Tween-20. The following 2 day, slides were washed in PBST and stained with the secondary-HRP conjugated 3 antibodies, washed in PBST, and developed with 3,3'-diaminobenzidine (DAB, Vector 4 5 Labs, SK-4100). For mouse-IgG primary, a M.O.M. kit was used after the peroxidase 6 block (Vector Labs, MP-2400). Antibodies used for IHC are listed in **Supplementary** 7 Table 10. Slides were scanned on a Pannoramic Scanner (3DHistech) with a 20X/0.8NA 8 objective and visualized in ImageJ or QuPath (v0.4.2).

9

10 Multiplexed immunofluorescence (Leica Bond RX): Samples were pretreated with EDTA-11 based epitope retrieval ER2 solution (Leica, AR9640) for 20 minutes at 95°C. The 6-plex 12 antibody staining and detection were conducted sequentially. Antibodies used for multiplexed IF are listed within Supplementary Table 10. After 1 hr incubation, Leica 13 14 Bond Polymer anti-rabbit HRP was applied followed by Alexa Fluor tyramide conjugate 15 488 and 647 (Life Technologies, B40953, B40958), or CF® dye tyramide conjugate 430, 16 543, 594, and 750 (Biotium, 96053, 92172, 92174, 96052) for signal amplification-based 17 detection. At each round, epitope retrieval was performed for denaturation of primary and 18 secondary antibodies before the following primary antibody was applied. Slides were 19 washed in PBS and incubated in 5 µg/ml 4',6-diamidino-2-phenylindole (DAPI; Sigma 20 Aldrich) in PBS for 5 min, rinsed in PBS, and mounted in Mowiol 4–88 (Calbiochem). 21 Slides were scanned on a Pannoramic Scanner (3DHistech) with a 20X/0.8NA objective 22 and visualized in ImageJ or QuPath. Confocal microscopy was performed on a Leica 23 Stellaris 8.

1

Multiplexed immunofluorescence (Lunaphore COMET): Tissue was cut at 4 mm onto
 positively charged glass slides. Slides were baked at 64°C for 1 hr. Dewaxing and antigen
 retrieval was performed on the Leica Bond RX with 30 min retrieval EDTA-based epitope
 retrieval ER2 solution. Before loading onto the COMET, slides were washed 3X for 1 min
 in DI water. 20-plex antibody panel and dilutions can be found in Supplementary Table
 5.

8

9 Immunoblotting

10 Single cell organoid suspensions or monolayer cells were lysed in 125-250 µL ice-cold 11 RIPA buffer (Pierce, #89900) supplemented with 1x Complete Mini inhibitor mixture 12 (Roche, #11836153001) and mixed on a rotator at 4°C for 30 minutes. Protein concentration was quantified using the Bio-Rad DC Protein Assay (Catalog #500-0114). 13 14 10–20 µg of total protein was separated on 4–12% Bis-Tris gradient gels (Bio-Rad) by 15 SDS-PAGE and then transferred to nitrocellulose membranes. Antibodies used for 16 western blots are listed in **Supplementary Table 10**. Blots were developed in Amersham 17 ECL western detection region (Cytiva, RPN2236) and imaged on a Cytiva Amersham 18 ImageQuant 800.

19

20 Lentiviral production

Lentiviruses were produced by co-transfection of 293T cells (Takara, #632180) with lentiviral backbone constructs and packaging vectors (psPAX2 and pMD2.G; Addgene #12260 and #12259) using TransIT-LT1 (Mirus Bio #MR 2306). Virus was concentrated

through ultracentrifugation (Beckman, Optima L-100 XP) at 25,000 RPM for 2hrs. The
viral pellet was resuspended in OptiMEM (Thermo, 31985062), aliquoted, frozen at -80°C,
and titered through serial dilution assays.

4

5 Organoid culture

Murine prostate organoids were established and maintained as previously described^{18,19}. 6 7 Full prostate organoid media composed of: 1X ADMEM, 10 mM HEPES, 1X Glutamax, 0.5X Pen/Strep, 1X B27 (Fisher Scientific, #17504-044), 1.25 mM N-acetylcysteine 8 (Sigma, A9165-100G), 10 mM Nicotinamide (Sigma, N0636-500G), 500 nM A83-01 9 10 (Tocris, #2939), 5 ng/mL recombinant murine EGF (Peprotech, #315-09), 10 ng/mL 11 recombinant NRG1 (Peprotech, #100-03), 1 nM Dihydrotestosterone (Selleck Chemicals, 12 S4757) 10% NOGGIN conditioned media, 5% RSPO-I conditioned media. Single cell 13 embedded prostate organoids were supplemented with 10 µM Y-27632 (Fisher Scientific, 14 #50-863-7) for the first 2-3 days in culture prior to change with fresh organoid media 15 lacking Y-27632. Ex-vivo transformed organoids were seeded at 3E3 cells per 20 µL 16 matrigel dome and passaged every 3-4 days. Wild-type organoids were seeded at 10E3 17 cells per 20 µL matrigel dome and passaged every 5-7 days. For monolayer adaptation, 18 western blot validated knockout organoids were dissociated using methods described 19 above and seeded at 1E5 cells/mL in full organoid media containing 10 µM Y-27632 on a 20 collagen I coated 10 cm plate (Fisher Scientific, #08-772-75). After 5 days adaptation and 21 expansion, cells were processed for protein lysates, or dissociated for orthotopic 22 transplantation.

23

1 Organoid Cas9 ribonucleoprotein electroporation

Organoids were electroporated as previously described²⁰. Briefly, organoids were
electroporated with Cas9-RNP complexes (IDT) and recovered in organoid conditions for
3-5 days. *Trp53* loss was selected by supplementing media with 5 µM Nutlin-3a (Tocris,
6075). *Rb1* loss was selected for by supplementing media with 2.5 µM Palbociclib (Tocris,
4786). *Pten* loss can be optionally selected for by growing EGF and NRG1 knockout
organoid media. Sequences for sgRNAs can be found in **Supplementary Table 11**.

8

9 **Organoid lentiviral infection**

10 RNP-edited and selected single cell organoid suspensions were infected with concentrated lentiviral supernatants at predetermined titers as previously described¹⁸. 3-11 12 5 days post lentiviral infection, organoids were dissociated with TrypLE (see above) and resuspended in 0.1% BSA in PBS + 1 mM EDTA and supplemented with 10 µM Y-27632. 13 14 Single cell suspensions were passed through a sterile 5 mL polypropylene tube with cell 15 strainer (Corning, #352235) and enriched by sorting for DAPI- EGFP+ cells using a Sony 16 MA900 (Sony Biotechnology) with a 130-µm sorting chip (Sony Biotechnology, #LE-17 C3213). Sorted organoids were expanded for 5-6 days before transplantation.

18

19 Molecular Cloning

Lentiviral vector (LVt-UBC-cMYC-P2A-EGFP) was generated using Gibson assembly. Briefly, PCR fragments were amplified containing UBC promoter, *cMyc*^{758A} codon optimized cDNA, and a P2A-EGFP sequence, mixed within a Gibson master mix reaction and transformed into Stbl3 chemically competent *E. coli* (Thermo, #C737303). All

plasmids were purified (Qiagen, #12943) and sequence validated through long-read
sequencing (SNPsaurus). Lentiviral construct UT4GEPIR (Addgene #186712) was used
for cloning Dox-inducible *Ascl1* and *mScarlet* constructs. Briefly, UT4GEPIR was digested
with BamHI and I-Scel and a geneblock (IDT) encoding mouse codon-optimized *Ascl1*-*T2A-mScarlet* or *mScarlet* sequences with compatible overhangs was cloned by ligation
and transformation as above.

7

8 Isolation and validation of *Ascl1* knockout organoid clones

9 Asc/1 sgRNA targeted RPM organoids with Cas9 RNP were expanded for 5 days post 10 electroporation and gently triturated in 0.5% BSA in PBS. Intact spheres were 11 subsequently diluted 1:10 in PBS and placed in a 6 well plate (Fisher Scientific, #07-000-12 646). Using a standard tissue culture microscope and a 20 uL pipet tip, individual intact 13 spheres with a healthy morphology were isolated and individually dissociated in 100 µL 14 TrypLE and guenched in 1 mL of 0.5% BSA in PBS. Organoid clones were centrifuged at 15 600g for 3 min in protein low-bind microcentrifuge tubes and resuspended in 50 µL of 16 matrigel and plated into 24-well suspension plates. Full organoid media supplemented 17 with 10 µM Y-27632 was added after 10 min. Individual organoid clones were expanded 18 in parallel and genomic DNA was isolated using a DNeasy Blood & Tissue kit (Qiagen, 19 69506). 35 cycle PCR reactions with an input of 100 ng of gDNA and an annealing 20 temperature of 58°C were performed using primers flanking the sgAscl1 edit site and 21 KAPA mouse genotyping kit following manufacturer protocols (Fisher Scientific, #50-196-22 5243; Supplementary Table 11). A PCR product of 170 bp was purified using the 23 QIAquick Gel Extraction Kit (Qiagen, 28706) and submitted for library preparation and

1 next generation sequencing at the Integrated Genomics Operation (IGO) at MSKCC. A

2 total of 6 sequence-validated bi-allelic RPM-Ascl1 KO clones were subsequently pooled

- 3 and expanded for transplantation experiments.
- 4

5 CRISPR sequencing

6 Sequencing libraries were prepared from amplicons with an average size of 200-280bp 7 (see **Supplementary Table 11** for PCR primer sequences). The reported concentration 8 of 500 ng was used as input for the KAPA Hyper Library Preparation Kit (Kapa Biosystems 9 KK8504) according to the manufacturer's instructions with 8 cycles of PCR. Barcoded 10 libraries were pooled at equal volumes and run on NovaSeg 6000 in a PE150 run, using 11 the NovaSeg 6000 S4 Reagent Kit (300 Cycles) (Illumina). The average number of read 12 pairs per sample was 1.3M. Alignment and modification guantification was done with CRISPResso2 (http://crispresso.pinellolab.org/) using default parameters. 13

14

15 RNA isolation from organoid cultures and bulk tumors

16 Tumors were isolated from euthanized mice and validated for EGFP fluorescence under 17 fluorescence stereomicroscope. Tumors were quickly placed within 250-500 µL of RLT 18 buffer supplemented with B-mercaptoethanol into 2mL tube with ceramic beads (MP, 19 6910500). Tumor samples were lysed on a Fisher Bead Mill 24 using manufacturer 20 recommended settings. Lysates were passed through a Qiashredder (Qiagen, 79656) 21 and RNA isolated using the Qiagen RNeasy kit (Qiagen, 74106) with manufacturer 22 recommended protocols. Organoids were dissociated as above and resuspended in 300 23 µL of RLT buffer supplemented with B-mercaptoethanol and spun through a Qiashredder.

Qiagen RNeasy kit was performed to isolate RNA using manufacturer recommended
 protocols. For qPCR, purified RNA was reverse transcribed (Thermo, 4368814) and
 quantified (Applied Biosystems, Quantstudio 6) with SYBR green reagent (Thermo,
 A46110). See **Supplementary Table 11** for primer sequences used for qPCR.

5

6 Bulk Transcriptome sequencing and gene set enrichment analysis

7 After RiboGreen guantification and guality control by Agilent BioAnalyzer, 500 ng of total 8 RNA with RIN values of 8.3-10 underwent polyA selection and TruSeq library preparation 9 according to instructions provided by Illumina (TruSeg Stranded mRNA LT Kit, catalog # 10 RS-122-2102), with 8 cycles of PCR. Samples were barcoded and run on a NovaSeq 11 6000 in a PE100 run, using the NovaSeg 6000 SX Reagent Kit (Illumina). An average of 12 24 million paired reads was generated per sample. Ribosomal reads represented 0.4-1.5% of the total reads generated and the percent of mRNA bases averaged 86%. 13 Analysis of bulk RNA sequencing was performed at NYULMC HPC UltraViolet (formerly 14 15 cluster using software provided BigPurple) in the Seq-N-Slide pipeline 16 (https://github.com/igordot/sns), through the rna-star followed by rna-star-groups-dge routes. Briefly, after quality control assessment with MultiQC⁵⁸ (python/cpu/v2.7.15) and 17 sequencing adaptor trimming with Trimmomatic⁵⁹ (v0.36), reads were aligned to the 18 mm10/GRCm38 mouse reference genome with a splice-aware⁶⁰ (STAR v2.7.3a) 19 20 alignment, followed by featureCounts⁶¹ (subread/v1.6.3) to generate the RNA counts 21 table. Counts were normalized for gene length and sequencing depth and tested for 22 differential mRNA expression between groups using negative binomial generalized linear models implemented by the DESeq2⁶² 1.40.1 R package (r/v4.1.2). Differential 23

1 expression was assessed by principal component analysis (prcomp function from the 2 stats v4.3.1 R package) or unsupervised hierarchical clustering (pheatmap v1.0.12 and ComplexHeatmap v2.16.0) and visualized by a volcano plot (EnhancedVolcano v1.18.0) 3 and TPM expression heatmap illustrating genes of interest. Differentially expressed 4 5 genes (DEGs) identified were further analyzed for gene set enrichment analysis (GSEA) 6 and pathway analysis with R packages: fgsea v1.26.0 and msigdbr v7.5.1. Moreover, DEGs were analyzed for enrichment of previously curated neuroendocrine signatures¹³. 7 8 For this, we used the java GSEA Desktop Application (v4.3.2) with the GSEA Preranked 9 module using the variance-stabilized log fold changes as metric to rank the DEG list in a 10 descending order.

11

12 snRNA sequencing

Briefly, a single 10-week RPM tumor was extracted from the mouse prostate, and EGFP 13 14 signal assisted in tumor microdissection (Nikon, SMZ18). Tumor sample was sliced into 15 \sim 5 mm x 5 mm pieces, dabbed on a kimwipe to remove moisture, and flash frozen in 16 liquid nitrogen. Tumor piece was loaded onto a Singulator 100 (S2 Genomics) cartridge 17 supplemented with 3.5 µL of 1 M DTT (Sigma, 43816-10mL) and 87.5 units of Protector 18 RNAse inhibitor (Sigma, 3335402001). Nuclei were isolated with standard-nuclei isolation 19 protocol according to manufacturer recommendations. Nuclei suspension was cleaned 20 with sucrose density gradient (Sigma, NUC201-1KT) in protein low-bind microcentrifuge 21 tubes (Eppendorf, 0030108442) at 500g for 5 min. Nuclei were subsequently 22 resuspended in nuclei wash buffer: 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl₂, 1 23 mM DTT, 1% BSA, 1 U/µL Protector RNAse inhibitor, strained through blue-capped 35

1 µm FACS tube, and flow sorted for 7-AAD+ population to obtain single nuclei suspension. Sorted nuclei were submitted to the Single Cell Analytics Innovation Lab (SAIL) at 2 MSKCC. Nuclei were validated for integrity under phase-contrast microscopy, and 3 processed on Chromium instrument (10X Genomics) following user guide manual for 3' 4 5 v3.1 snRNAseq. Nuclei were captured in droplets, emulsions were broken, and cDNA 6 purified using Dynabeads (Thermo, 37012D) followed by PCR amplification per manual 7 instruction. ~10,000 cells were targeted for each sample. Final libraries were sequenced on Illumina NovaSeq S4 platform (R1 - 28 cycles, i7 - 8 cycles, R2 - 90 cycles) at the 8 9 Integrated Genomics Operation (MSKCC). FASTQ files were processed using the 10X 10 Cell Ranger 6.1.2. Cell Ranger count was used to align reads to the GRCm38 (mm10) 11 reference genome for snRNAseg samples and a modified version of GRCm38 (mm10) 12 that includes the Myc-P2A-EGFP transgene sequences, given that organoids were infected with lentiviruses harboring its expression (Extended Data Fig. 1b). We set 13 14 "include introns=TRUE" to accommodate the higher rate of intronic reads in snRNA. 15 Finally, Cell Ranger count was used to generate feature-barcode matrices for subsequent 16 bioinformatic analyses.

17

18 Spatial transcriptomics by 10X Genomics Visium

We generated Visium data from two adjacent sections as technical replicates, with each slide containing 10-week RPM tumor tissues from two individual mice. Visium Spatial Gene Expression slides were prepared with FFPE sections by the Molecular Cytology Core at MSKCC. Tumor samples with a target RIN value > 0.5 were processed for spatial transcriptomics. Probe pairs targeting the whole transcriptome were added to slide

1 capture areas and allowed to hybridize overnight at 50°C. Bound pairs were ligated to 2 one another, then released from the tissue by RNase treatment and permeabilization and 3 captured by oligos bound to the slide. Probe extension and library preparation proceeded using the Visium Spatial for FFPE Gene Expression Kit, Mouse Transcriptome (10X 4 5 Genomics, 1000337) according to the manufacturer's protocol. After evaluation by real-6 time PCR, sequencing libraries were prepared with 11-14 cycles of PCR. Indexed libraries 7 were pooled equimolar and sequenced on a NovaSeg 6000 in a PE28/88 run using the 8 NovaSeq 6000 SP Reagent Kit (100 cycles) (Illumina). FASTQ files from sequencing 9 (NovaSeq) were processed via spaceranger count (version 2.0.0) to align reads to the 10 GRCm38 (mm10) reference genome and generate count matrices for subsequent 11 bioinformatic analyses. An average of 74 million paired reads was generated per sample, 12 corresponding to 37,000 reads per spot.

13

14 Pathology annotation and spatial immunofluorescence analysis

Sections processed for H&E and multiplexed IF were reviewed by a board-certified
genitourinary pathologist (A.G.). Graded histological areas were used to identify regions
of PRAD and NEPC on serially sectioned samples processed for 10X Visium and
multiplexed IF.

1 *Cell segmentation:* We utilized Mesmer⁶³, a deep-learning algorithm designed for cell 2 segmentation, to identify cell boundaries in COMET images. The input to Mesmer is a single nuclear image and single membrane or cytoplasm image. We used DAPI as a 3 4 nuclear marker. To demarcate various cell types, we merged images from multiple cell-5 type-specific markers of membranes or cytoplasm by applying min-max normalization to 6 each channel before summing them. The min-max scaling was performed using the 7 *MinMaxScaler* function in *sklearn.preprocessing* package using default parameters. For 8 COMET, we combined CD45, CD20, CD4, CD8, CD11b, CD11c, Ly6G (immune cells), 9 CD31 (endothelial cell), GFP, KRT8 (tumor epithelial cells), VIM, a-SMA (stromal cells). 10 The markers were chosen because they cover the cell types of our interests. We ran 11 Mesmer on these images with standard parameters to predict cell boundaries (modified 12 slightly to exclude cells smaller than 36 pixels), and calculated the cell size, eccentricity, and centroid of each cell boundary. We preprocessed COMET images to half their size 13 14 (to 0.46µm per pixel) to accommodate system memory constraints (128 GB). 15

1 Normalization: Initially, we quantified raw per-cell marker expressions by aggregating 2 pixel brightness within each cell boundary. To neutralize cell size variance in our 3 analysis, expressions per channel were normalized against cell boundary area. We found bimodal distributions of cell size and DAPI expression in our dataset. The lower 4 5 mode of DAPI contained primarily empty regions and the upper mode of cell size 6 contained cell segmentation errors. We then filtered all cells with DAPI value less than 7 2096 (estimated from the distribution) and cell size larger than 2500 (estimated from the 8 distribution). The marker intensity signals then underwent logarithmic transformation. 9

10 *Cell type identification:* For tumor cell identification within our dataset, we used K-11 nearest neighbor analysis (k=30) and clustered normalized marker expressions using the Leiden algorithm⁶⁴, yielding 27 distinct clusters. These clusters were labeled as 12 stromal, tumor (notably marked by GFP, ASCL1, KRT8), or artifacts (characterized by 13 14 low marker expression), with artifact cells excluded from further analysis. Cell types 15 were then classified based on marker intensity distributions: lymphatic endothelial cells 16 (LYVE1>7.5), blood vessel endothelial (CD31>8), and immune (CD45>8). The 17 distribution patterns of this coarse classification is reported in **Figure 4a**. With the same approach, we identified sub population in immune cell one by one: CD4 T cell (CD4>7), 18 19 B cell (CD20>8), CD8 T cell (CD8>8.3), Treg (FoxP3>8), CD11b F4/80+ myeloid (Mac3; 20 CD11b>7 & F4/80>7), CD11b F4/80- myeloid (Mac1; CD11b>7 & F4/80<7), CD11c 21 F4/80+ myeloid (Mac2; CD11c>8.5 & F4/80>7).

22

1 Spatial analysis: To examine cellular organization within lymph node (LN) tissue, 2 particularly dense with immune cells, we constructed a spatial neighborhood graph by 3 linking cells within a 20-pixel radius, approximately 2.5 times the median cell radius. 4 This analysis indicated an average of 4.5 neighbors per cell. A neighborhood 5 enrichment matrix was generated to map interactions between cell types, with axis 6 labeling indicating source and neighboring cell types and matrix values representing 7 total neighboring counts. Normalizing these counts by the total number of neighbors per 8 cell type produced a cell proximity frequency matrix (illustrated in **Figure 4g**), 9 showcasing the likelihood of each cell type neighboring another. The spatial 10 neighborhood graph and the neighborhood enrichment matrix were implemented 11 utilizing Squidpy⁶⁵.

12

For infiltration analyses, we employed HALO and HALO A.I. module v.3.6.4134 (Indica 13 14 Labs). HALO A.I. module was used to obtain nuclear and cytoplasmic segmentation masks from a set of training slides. Cell nuclei were segmented using the DAPI channel. 15 16 The trained module was then applied to each experimental slide. Annotations of nuclear, 17 cytoplasmic, and background staining were reviewed manually for each slide. Thresholding parameters for each marker were kept consistent across all slides. Single 18 19 cells were filtered to exclude errors in cell segmentation through DAPI-based criteria, including: 1) nuclear DAPI measurements above a user-input threshold, and 2) the 20 nuclear/cytoplasmic ratio DAPI measurement was above a user-input threshold. Cell 21 22 types were classified based on a hierarchy for positive or negative stains. Each cell is 23 evaluated based on predetermined marker co-expression and then assigned as cell types

1 in a layered fashion (**Supplementary Table 6**). PRAD and NEPC regions were manually 2 annotated as above. Exported data files were used for image analysis. For distance 3 infiltration metrics, each individual primary tumor region was separated into 15 bins spanning a total of 1000 µm inside and outside the region of interest and within the 4 5 confines of the tumor boundary. For smaller metastatic nodules in the lung and liver, 10 6 bins spanning a total of 500 µm inside and outside and within the confines of the tissue 7 were used for cell infiltration analysis. All tumors within an individual metastatic tissue 8 sample were pooled together for infiltration analysis. Cells residing within each bin were 9 guantified and normalized to the bin area. Subsequently, the data mean cell density per 10 bin was averaged across independent mouse samples. Biological replicate samples ($n \ge n$ 11 3) were used to calculate standard error. Data visualized in R using the gpplot2 package. 12 Loess function was implemented to visualize smoothened error curves across the defined 13 tissue region. For histological characterization and quantification of tumor area, a 14 Random Forest tissue classifier was created on the HALO platform and iteratively refined 15 using a training set of *n*=10 primary and metastatic RPM tumors containing examples of 16 NEPC, PRAD, and stroma. A single primary RPM tumor derived from a castrated host 17 was used as training input for chondrosarcoma histology. All tissue classification was 18 subsequently cross-referenced with G.U. pathologist, Dr. Gopalan.

19

20 snRNA-seq analysis

Preprocessing: We first used CellBender⁶⁶ to remove ambient RNA molecules from the
 raw count matrices with the parameter --expected-cells 5000 and --total-droplets-included
 20000. These parameters were chosen by inspecting the barcode rank plot generated by

1 Cell Ranger, following author recommendations. Defaults were used for all other parameters. All downstream processing of snRNA-seg data and scRNA-seg data, 2 discussed in the section "Reclustering of the public scRNA-seg dataset", were performed 3 4 in Scanpy⁶⁷. We next removed low quality cells, unexpressed genes, and potential doublets from the CellBender output. We filtered to exclude i) genes detected in fewer 5 6 than 3 cells, ii) cells with under 200 genes or 1000 UMIs, and iii) cells with a mitochondrial fraction above 10%. Mitochondrial and protein-coding ribosomal protein coding genes 7 were also omitted from downstream analyses, as these are often a large source of 8 spurious variance that can dominate clustering and confound deconvolution²⁹. We used 9 Scrublet⁶⁸ to remove doublets. After Scrublet, 4,872 cells were retained for downstream 10 11 analyses, with a median of 7055.5 UMIs per cell. Raw counts were normalized by log₂ 12 (X+1) transformation, where X = library size of each cell / 10^4 .

13

14 Dimension reduction, clustering and cell type annotation: We selected the top 3000 highly 15 variable genes in each dataset using the Scanpy function pp.highly variable genes with 16 raw counts as input, n top genes = 3000, flavor = 'seurat v3' and span = 1. We applied 17 PCA to these genes using the scanpy.tl.pca function with the arpack solver. We selected 30 PCs, which explain 40% of variance. For clustering, we used Phenograph⁶⁹ with k =18 30 and clustering algo = 'leiden', which generated 19 clusters. Cell typing was performed 19 20 using marker genes as shown in **Supplementary Fig. 4**. To distinguish malignant cells 21 from non-malignant cells, we performed copy number analysis inference using inferCNV⁷⁰ 22 (Trinity CTAT Project, https://github.com/broadinstitute/inferCNV). We used myeloid 23 and endothelial cells determined based on marker expression as the normal cell reference. inferCNV showed a major CNV group of low CNV score containing two additional phenograph clusters, which were labeled as normal epithelial and mesenchymal cells. All other clusters show significant CNV changes, and were labeled as NE (neuroendocrine), EMT (epithelial-to-mesenchymal transition) and Tumor Luminal/Basal according to expression of marker genes, with each subtype containing 6, 4 and 5 cell states respectively.

7

8 Reclustering of the public scRNA-seq dataset

9 To support BayesPrism and PrismSpot, we used an independent scRNA-seq data from prostates derived from Pten^{fl/fl}; Rb1^{fl/fl}; Trp53^{fl/fl}; Probasin-Cre (PtRP) GEMMs¹³. We 10 11 chose to use this dataset as 1) to demonstrate generality, as the dataset was generated 12 from an independent experiment using a mouse model that similarly transitions from an 13 adenocarcinoma to neuroendocrine prostate cancer, 2) it contains increased cell type 14 diversity due to the mechanical and enzymatic digestion that skews towards non-tumor 15 cells (total cells n = 67,622). To improve resolution for our BayesPrism deconvolution 16 and PrismSpot analysis, we re-clustered the data to improve the granularity of 17 mesenchymal cells. Specifically, as mesenchymal cells were not the focus of the original 18 paper, authors only clustered it into two populations: endothelium and mesenchymal.

19

However, given the observed heterogeneity in this population, we subsetted GFPnegative mesenchymal cells from this dataset, and reclustered this population. We selected the top 3000 highly variable genes in each dataset using the Scanpy function pp.highly_variable_genes with raw counts as input, n_top_genes = 3000, flavor =

1 'seurat v3' and span = 1. Raw counts were normalized by log_2 (X+1) transformation, where X = library size of each cell / 10^4 . We applied PCA to these genes using the 2 scanpy.tl.pca function with the arpack solver and selected 30 PCs. For clustering, we 3 4 used Phenograph with k = 30 and clustering algo = 'leiden', which generated 20 clusters. Clusters were annotated by expression of marker genes curated from Niec et al.³⁰, guided 5 6 by hierarchical clustering over the PC space. Endothelial, lymphatic, glial cell, pericytes/myofibroblast were clearly distinguishable based on the marker genes 7 8 (Supplementary Fig. 6a). The rest of the clusters fall into two major groups as shown by 9 hierarchical clustering and were annotated as Mes-1 and Mes-2 (Mesenchymal, 10 Supplementary Fig. 6a and b). The original mesenchymal cell type label was replaced 11 by this higher granular cell type annotation (**Supplementary Fig. 6c**).

12

13 Analysis of Visium dataset

Cell type deconvolution using BayesPrism: We deconvolved Visium data from two replicates using the snRNA-seq data collected from the 10-week RPM tumor. We used BayesPrism to perform statistical deconvolution as it has been previously shown to yield accurate results for Visium data and outperformed other methods in multiple settings^{30,71–} ⁷⁵. More importantly, BayesPrism jointly imputes the posterior of cell type fraction and the cell type-specific gene expression profile in each Visium spot, enabling the cell typespecific gene count matrices by PrismSpot, as described below.

21

To increase signal to noise ratio for deconvolution, we selected marker genes that are differentially upregulated in each of the 19 cell types, which was defined as the 19

1 phenograph clusters in the snRNA-seg data. We then took the union of these marker 2 genes and deconvolved over these genes. Specifically, we performed a pairwise t-test using the findMarker function from the scran package⁷⁶, provided in the wrapper function 3 get.exp.stat from the BayesPrism package. As each cell type is compared against every 4 5 other cell type, we need to summarize N-1 p-values and log₂ fold change statistics for 6 each cell type (N denotes number of total cell types). For each non-tumor cell types (4 in 7 total), i.e., mesenchymal, myeloid, normal L/B (luminal/basal) and endothelial cells, we 8 required both the maximum p value to be less than 0.01, and the minimum \log_2 fold 9 change to be above 0.1, where the max and min were taken over every other cell type. 10 For each tumor cell type (15 in total), i.e., NE, EMT and tumor L/B, we required the same 11 threshold for p-value and log₂ fold change, but the max and min were taken over every 12 other non-tumor cell type. As a result, we avoided the comparison between tumor cell 13 types when taking the max and min to retain the maximum number of tumor-specific 14 genes for PrismSpot analysis. This was achieved by defining a coarse level cell type label, where 15 tumor cell types were grouped into a single tumor cell type and using it as the 15 16 cell.type.labels argument, while setting the original 19 cell types as cell.state.labels in 17 BayesPrism's built-in function get.exp.stat. To speed up deconvolution we further 18 excluded genes expressed in less than or equal to 3 spots. This yielded 5,125 genes in 19 total used as the input for BayesPrism. We defined each of the 19 cell states as individual 20 cell types when constructing reference for deconvolution. We set pseudo.min to 0, the 21 numerical lower bound for genes with zero count in a given cell type, to maximize the 22 contrast between different cell types in the reference. All other parameters of BayesPrism

were used as default. We performed the updated Gibbs sampling for a more robust
 correction of batch effects between the snRNA-seq and the FFPE Visium.

3

Benchmarking of BayesPrism: We benchmarked both the accuracy and robustness of the 4 5 cell type fraction deconvolved by BayesPrism. A big challenge in the deconvolution field 6 is the lack of ground truth for benchmarking. To estimate some ground truth of the cell type fractions from the Visium data we used 1) histology with H&E, and 2) a marker 7 8 genes-based approach. The comparison with histologically defined NEPC regions 9 showed strong concordance with the fraction of NEPC cells inferred by BayesPrism (Fig. 10 5c). Additionally, we benchmarked the robustness of cell type fraction inferred by 11 BayesPrism by assessing the concordance across 5 histologically defined regions 12 between two technical replicates, which includes 3 neuroendocrine regions and 2 nonneuroendocrine regions. As tissues are slightly shifted between technical replicates, we 13 14 manually adjusted the selected regions to achieve better spatial concordance on the x-y 15 plane. For each region, we compute the average fractions for each cell type. We then computed both cell type-level and region-level Pearson's correlation coefficients, which 16 17 was shown in Supplementary Fig. 4a-b.

18

19 **PrismSpot analysis**

BayesPrism's deconvolution infers cell type-specific gene expression matrices for each spot. For the Hotspot analysis, we use spot specific tumor gene expression as the input. Specifically, to generate tumor-specific gene expression profiles, we summed up the posterior mean of cell type-specific gene expression, *Z*, across all tumor clusters (n = 15)

1 outputted by BayesPrism. As Hotspot models the raw count data using negative binomial 2 distribution, we rounded up the posterior mean of Z. An important step in Hotspot analysis 3 is to define neighborhood structure over which the spatial co-expression is defined. In our Visium data, we have two adjacent slides, referred to as technical replicates. Each 4 5 technical replicate contains tumor samples from two different mice, referred to as 6 biological replicates. To leverage the full set of Visium data points to yield higher statistical 7 power while accurately reflecting the neighborhood structure, we performed a single 8 Hotspot analysis for all Visium spots while restricting neighborhoods to be only within 9 each mouse and each technical replicate. We achieved this by shifting the coordinates of 10 Visium data points for each tumor sample in each replicate by a large numeric number, 11 e.g., 1000, such that coordinates have no overlap within the Kth (K = 6, discussed below) 12 nearest neighbor for Visium spots from different tumor samples. We excluded i) genes 13 with zero count in all spots, and ii) spots containing fewer than 1000 genes or 1000 UMIs 14 from downstream Hotspot analysis. We define n neighbors=6 in the create knn graph 15 in Hotspot to include only Visium spots that are adjacent to each other and disabled 16 weighted graph arguments to treat all adjacent spots and the self-spot equally. For the 17 analysis in **Figure 5**, we selected genes with spatial autocorrelation FDR less than 0.01 18 and transcription factors within the top 500 autocorrelation Z-score, followed by re-19 computing the pairwise local correlation between the top 500 transcription factors. To 20 cluster transcription factors into modules, we used the "create modules" function 21 Hotspot package, with parameters min gene threshold=15, provided by the 22 core only=True, fdr threshold=0.05, which performs a bottom-up clustering procedure 23 by iteratively merging two genes/modules with the highest pairwise Z-score.

1

To enhance the robustness of the identified gene modules against sampling noise, we 2 implemented a subsampling strategy. Specifically, we subsampled 60% of the reads from 3 the Visium data (tumor-specific gene expression deconvolved by BayesPrism) for each 4 5 mouse tissue on each Visium slide using multinomial distribution. This process was 6 repeated 100 times. Subsequently, we re-evaluated the clustering using the Hotspot 7 method, which reclusters the genes into modules using the recalculated pairwise local 8 correlations among genes. For each gene pair initially grouped together in a module using 9 the full dataset, we assessed their co-occurrence in the same module across the 10 subsampled datasets. This frequency of co-occurrence was defined as the consensus 11 score. We then calculated the average consensus score for each gene with all other 12 genes within the same module. A higher average consensus score indicates that a gene 13 consistently remains within its module across different subsampling simulations, and 14 hence stability within that cluster. Finally, we identified representative genes for each module by selecting those with an average consensus score \geq 0.8 (Fig. 5e and 15 16 **Supplementary Table 7**). In total, 71/181 genes from three modules were chosen as 17 their representative genes.

18

Benchmarking of PrismSpot: We compared the Hotspot results between PrismSpot and "standard" Hotspot, i.e., only un-deconvolved raw count was used as input. We compared the autocorrelation and pairwise local correlation coefficients over marker genes of different cell types. We analyzed the Hotspot local correlation statistics over a more comprehensive gene set without pre-filtering genes based on autocorrelation to

1 demonstrate the behavior of the statistics of different types of markers. We derived 2 marker genes from the GEMM scRNA-seg dataset as mentioned above and grouped the cell types such that the granularity matches that of snRNA-seg reference. Specifically, we 3 grouped Mes-1 and Mes-2 as stromal; Tff3, mutant L1, mutant L2, mutant B1, NEPC-4 5 Pou2f3 and NEPC as tumor; macrophages, neutrophils, and DC as myeloid. We then 6 performed differential expression using the pairwise *t*-test between tumor, stromal, myeloid, and endothelial cells, like the strategy described above. Genes with maximum p 7 value less than 0.01, and the minimum log₂ fold change above 0.1 were used as markers 8 9 of each cell type for benchmarking PrismSpot.

10

11 We performed one-sided paired *t*-tests to compare auto-correlation Z-scores between 12 PrismSpot and Hotspot on un-deconvolved raw counts, hereafter referred to as Hotspot. 13 To ensure the statistical power was similar in the comparison of autocorrelation scores 14 for each cell type, we selected the top 100 genes that pass the threshold mentioned above 15 based on log₂ fold change. For non-tumor cell types, i.e., endothelial, myeloid, and 16 mesenchymal cells, we define null hypothesis H_0 : PrismSpot Z > Hotspot Z, while for tumor cells we define H₀: PrismSpot Z < Hotspot Z. The *p*-values were 4.0×10^{-3} , 2.1×10^{-3} 17 ⁶, 6.0×10⁻⁹, and 3.8×10⁻³ for endothelial, myeloid, mesenchymal and tumor cells, 18 19 respectively (Extended Data Fig. 7c).

20

Likewise, we performed one-sided paired *t*-tests to compare local pairwise correlation *Z*scores between PrismSpot and Hotspot across three categories, 1) between a pair of tumor marker genes, 2) between a tumor marker gene and a marker gene for non-tumor

1 cell types, and 3) between a pair of marker gene for non-tumor cell types. As pairwise local correlation can be both positive and negative, we performed statistical tests on the 2 3 absolute value of Z-scores. For tumor vs. non-tumor and non-tumor vs. non-tumor categories, we define null hypothesis H_0 : |PrismSpot| > |Hotspot|, while for tumor vs. 4 5 tumor category, we define H_0 : |PrismSpot| < |Hotspot|. The p-value of tumor vs tumor 6 category was 3.3×10^{-5} . For tumor vs. non-tumor and non-tumor vs. non-tumor categories, p values were less than the numeric limit 2.2×10^{-16} (**Extended Data Fig. 7g**). 7 8

9 Analysis of human scRNAseq PRAD and NEPC myeloid subsets

10 FASTQ files from a previously published single cell dataset of 12 prostate cancer patients¹³ (histologically verified CRPC–PRAD (n=9) and NEPC (n=3)) was mapped to 11 12 human reference genome GRCh38 using cellranger-7.0.1 to generate count matrices (transcripts/features x cells). Downstream analyses were performed using the Seurat R 13 package (version 4.4.0). Cells were removed if features were not detected in at least 10 14 15 cells. Cells were filtered based on the following criteria: 1) less than 500 features; 2) \geq 16 30% mitochondrial counts and \leq 500 UMI counts. Putative doublets were removed 17 using scDblFinder⁷⁷. Combining samples from all CRPC-PRAD and NEPC sampled yielded 63,834 cells x 30,519 features. To normalize the data, the "LogNormalize" 18 19 method was used with a pseudocount of 1 and a scale factor of 10,000. The top 2,000 20 highly variable genes were identified using the FindVariableFeatures() function. As 21 patient tended to cluster by sample instead of by cell type, fastMNN was utilized across 22 all cell types to perform batch correction (using all 30,519 features). Clustering was 23 performed using FindNeighbors() and FindClusters() functions with a resolution of 0.3

1 on the batch-corrected count matrix. The resolution value was determined to be 0.3 as 2 it best matched the expression patterns of all lineage markers. The clustered cells were visualized using RunUMAP() with the first 30 dimensions from the dimensional 3 4 reduction 'MNN', and the clusters expressing myeloid lineage markers (CD14, LYZ and 5 *IL1B*) were identified with these cells being subsetted for downstream analysis (N=7,004 6 myeloid cells). Re-clustering with a resolution of 1 was then conducted these putative 7 myeloid cells using the batch-corrected matrix (from the upstream correction) yielded 17 8 clusters. Differentially expressed genes (DEGs) for each cluster were identified using 9 FindMarkers() with MAST algorithm (version 1.24.1) and thresholds of Bonferroni adjusted P value < 0.05 and $log_2FC > 0.5$. Of note, 4 clusters (N=1,282 cells) had low 10 11 UMI counts, 1 cluster (N=382 cells) showed top DEGs possibly indicative of doublet cell 12 types expressing markers for both epithelial cells and myeloid cells (KLK3 and CD14) and 1 cluster (N=42 cells) expressed high levels of proliferation related genes (MKI67, 13 14 TOP2A and STMN1) and therefore were removed. This yielded a total of 5,298 myeloid 15 cells (4,348 CRPC-PRAD and 950 NEPC cells). To identify the subtypes of tumor-16 associated macrophages (TAMs), module scores from pre-defined gene sets for each 17 TAM⁷⁸ were used and scores were calculated using AddModuleScore(). Cells were 18 labeled based on the median and maximum signature scores per cluster.

19

20 Analysis of human prostate SU2C dataset

21 The FPKM-normalized RNA-seq from Abida et al., was downloaded from

22 <u>https://github.com/cBioPortal/datahub/tree/master/public/prad_su2c_2019 (ref. 45)</u>. We

23 selected patient samples sequenced by the poly-A enrichment protocol, as it contains
more samples with histologically verified NEPC. In total there were 9 patients with
neuroendocrine features, and 50 patients with non-neuroendocrine features. To
compute the log₂ fold change between neuroendocrine and non-neuroendocrine
samples, we computed the log₂ ((mean expression of neuroendocrine samples +1) /
mean expression of non-neuroendocrine samples +1)). The statistical significance was
computed using a two-sided Wilcoxon test.

7

8 Statistics and reproducibility

9 We used GraphPad Prism software v.9.5.1 for statistical analyses or in-house scripts in 10 R v.4.3.1 which are available from the corresponding author upon reasonable request. 11 Variance was similar between compared groups and p-values were determined by two-12 tailed Student's t-test for all measurements comparing untreated to treated samples of 13 single time points. One-way analysis of variance (ANOVA) with Sidak's or Tukey's 14 multiple comparisons correction listed in the figure legends for comparisons across more 15 than two groups. For analysis between groups over multiple time measurements (growth 16 curves), two-way ANOVA was used with appropriate multiple comparisons testing listed 17 in the figure legends. Figure legends denominate statistical analysis used. No statistical method was used to predetermine the required sample size. No data were excluded from 18 19 this study. Investigators were not blinded to allocation during experiments and outcome 20 assessment, except for mouse specific study analyses.

21

73

REFERENCES:

- Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).
- 2. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. *Nat. Rev. Cancer* **15**, 701–711 (2015).
- Rubin, M. A., Bristow, R. G., Thienger, P. D., Dive, C. & Imielinski, M. Impact of Lineage Plasticity to and from a Neuroendocrine Phenotype on Progression and Response in Prostate and Lung Cancers. *Mol. Cell* 80, 562–577 (2020).
- 4. Quintanal-Villalonga, Á. *et al.* Lineage plasticity in cancer: a shared pathway of therapeutic resistance. *Nat. Rev. Clin. Oncol.* **17**, 360–371 (2020).
- 5. Yamada, Y. & Beltran, H. Clinical and biological features of neuroendocrine prostate cancer. *Curr. Oncol. Rep.* 23, 15 (2021).
- Zaidi, S. *et al.* Multilineage plasticity in prostate cancer through expansion of stem–like luminal epithelial cells with elevated inflammatory signaling. *bioRxiv* (2021) doi:10.1101/2021.11.01.466599.
- Zakowski, M. F., Ladanyi, M., Kris, M. G. & Memorial Sloan-Kettering Cancer Center Lung Cancer OncoGenome Group. EGFR mutations in small-cell lung cancers in patients who have never smoked. *N. Engl. J. Med.* 355, 213–215 (2006).
- 8. Sequist, L. V. *et al.* Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. *Sci. Transl. Med.* **3**, 75ra26-75ra26 (2011).
- Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K.-K. The current state of the art and future trends in RAS-targeted cancer therapies. *Nat. Rev. Clin. Oncol.* **19**, 637–655 (2022).
- Awad, M. M. *et al.* Acquired resistance to KRASG12C inhibition in cancer. *N. Engl. J. Med.* 384, 2382–2393 (2021).
- 11. Lovly, C. M. & Shaw, A. T. Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. *Clin. Cancer Res.* **20**, 2249–2256 (2014).

- 12. Ku, S. Y. *et al.* Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. *Science* **355**, 78–83 (2017).
- Chan, J. M. *et al.* Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. *Science* **377**, 1180–1191 (2022).
- 14. Arriaga, J. M. & Abate-Shen, C. Genetically engineered mouse models of prostate cancer in the postgenomic era. *Cold Spring Harb. Perspect. Med.* **9**, a030528 (2019).
- Han, M. *et al.* FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. *Cancer Cell* 40, 1306-1323.e8 (2022).
- Dardenne, E. *et al.* N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. *Cancer Cell* **30**, 563–577 (2016).
- 17. Zou, M. *et al.* Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. *Cancer Discov.* **7**, 736–749 (2017).
- Karthaus, W. R. *et al.* Identification of multipotent luminal progenitor cells in human prostate organoid cultures. *Cell* **159**, 163–175 (2014).
- Drost, J. *et al.* Organoid culture systems for prostate epithelial and cancer tissue. *Nat. Protoc.* **11**, 347–358 (2016).
- Feng, W. *et al.* Rapid interrogation of cancer cell of origin through CRISPR editing. *Proc. Natl. Acad. Sci. U. S. A.* **118**, e2110344118 (2021).
- Humphrey, P. A. Histopathology of prostate cancer. *Cold Spring Harb. Perspect. Med.* 7, a030411 (2017).
- 22. Beltran, H. *et al.* Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. *Cancer Discov.* **1**, 487–495 (2011).
- 23. Quintanal-Villalonga, A. *et al.* Multiomic analysis of lung tumors defines pathways activated in neuroendocrine transformation. *Cancer Discov.* **11**, 3028–3047 (2021).
- 24. Shue, Y. T. *et al.* A conserved YAP/Notch/REST network controls the neuroendocrine cell fate in the lungs. *Nat. Commun.* **13**, 2690 (2022).

- 25. Bhinder, B. *et al.* The immunogenomic landscape of neuroendocrine prostate cancer. *Clin. Cancer Res.* (2023) doi:10.1158/1078-0432.CCR-22-3743.
- 26. Chan, J. M. *et al.* Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. *Cancer Cell* **39**, 1479-1496.e18 (2021).
- Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. *Nat. Rev. Immunol.* (2021) doi:10.1038/s41577-021-00574-3.
- Guilliams, M. *et al.* Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. *J. Exp. Med.* **210**, 1977–1992 (2013).
- Chu, T., Wang, Z., Pe'er, D. & Danko, C. G. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. *Nat. Cancer* **3**, 505–517 (2022).
- Niec, R. E. *et al.* Lymphatics act as a signaling hub to regulate intestinal stem cell activity. *Cell Stem Cell* 29, 1067-1082.e18 (2022).
- Bhagirath, D. *et al.* BRN4 is a novel driver of neuroendocrine differentiation in castrationresistant prostate cancer and is selectively released in extracellular vesicles with BRN2. *Clin. Cancer Res.* 25, 6532–6545 (2019).
- Bishop, J. L. *et al.* The master neural transcription factor BRN2 is an androgen receptorsuppressed driver of neuroendocrine differentiation in prostate cancer. *Cancer Discov.* 7, 54–71 (2017).
- 33. Lowenstein, E. D. et al. Olig3 regulates early cerebellar development. Elife 10, (2021).
- 34. Guo, H. *et al.* ONECUT2 is a driver of neuroendocrine prostate cancer. *Nat. Commun.* **10**, 278 (2019).
- Rudin, C. M. *et al.* Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. *Nat. Rev. Cancer* 19, 289–297 (2019).
- 36. Mollaoglu, G. et al. MYC drives progression of small cell lung cancer to a variant

neuroendocrine subtype with vulnerability to Aurora kinase inhibition. *Cancer Cell* **31**, 270–285 (2017).

- Lim, J. S. *et al.* Intratumoural heterogeneity generated by Notch signalling promotes smallcell lung cancer. *Nature* 545, 360–364 (2017).
- Wu, X. S. *et al.* OCA-T1 and OCA-T2 are coactivators of POU2F3 in the tuft cell lineage.
 Nature 607, 169–175 (2022).
- Borromeo, M. D. *et al.* ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. *Cell Rep.* 16, 1259–1272 (2016).
- DeTomaso, D. & Yosef, N. Hotspot identifies informative gene modules across modalities of single-cell genomics. *Cell Syst.* **12**, 446-456.e9 (2021).
- Pozo, K. *et al.* ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in smallcell lung cancer. *iScience* 24, 102953 (2021).
- Khan, O. *et al.* TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion.
 Nature 571, 211–218 (2019).
- Scott, A. C. *et al.* TOX is a critical regulator of tumour-specific T cell differentiation. *Nature* 571, 270–274 (2019).
- 44. Alfei, F. *et al.* TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. *Nature* **571**, 265–269 (2019).
- 45. Perotti, V. *et al.* An actionable axis linking NFATc2 to EZH2 controls the EMT-like program of melanoma cells. *Oncogene* **38**, 4384–4396 (2019).
- Abida, W. *et al.* Genomic correlates of clinical outcome in advanced prostate cancer. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 11428–11436 (2019).
- Wapinski, O. L. *et al.* Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. *Cell* **155**, 621–635 (2013).
- 48. Chanda, S. et al. Generation of induced neuronal cells by the single reprogramming factor

ASCL1. Stem Cell Reports 3, 282–296 (2014).

- 49. Olsen, R. R. *et al.* ASCL1 represses a SOX9+ neural crest stem-like state in small cell lung cancer. *Genes Dev.* **35**, 847–869 (2021).
- 50. Nouruzi, S. *et al.* ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. *Nat. Commun.* **13**, 2282 (2022).
- 51. Sanidas, I. *et al.* Chromatin-bound RB targets promoters, enhancers, and CTCF-bound loci and is redistributed by cell-cycle progression. *Mol. Cell* **82**, 3333-3349.e9 (2022).
- Giffin, M. J. *et al.* AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. *Clin. Cancer Res.* 27, 1526–1537 (2021).
- 53. Jaspers, J. E. *et al.* IL-18-secreting CAR T cells targeting DLL3 are highly effective in small cell lung cancer models. *J. Clin. Invest.* **133**, (2023).
- 54. Ahn, M.-J. *et al.* Tarlatamab for patients with previously treated small-cell lung cancer. *N. Engl. J. Med.* (2023) doi:10.1056/NEJMoa2307980.
- Offin, M. *et al.* Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. *J. Thorac. Oncol.* 14, 1784–1793 (2019).
- 56. Gardner, E. E. *et al.* Lineage-specific intolerance to oncogenic drivers restricts histological transformation. *Science* **383**, eadj1415 (2024).
- 57. Tong, X. *et al.* Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer. *Cancer Cell* **42**, 413-428.e7 (2024).
- 58. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics* **32**, 3047–3048 (2016).
- 59. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).
- 60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

- 61. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).
- Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 550 (2014).
- Greenwald, N. F. *et al.* Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. *Nat. Biotechnol.* 40, 555–565 (2022).
- Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing wellconnected communities. *Sci. Rep.* 9, 5233 (2019).
- Palla, G. *et al.* Squidpy: a scalable framework for spatial omics analysis. *Nat. Methods* **19**, 171–178 (2022).
- Fleming, S. J. *et al.* Unsupervised removal of systematic background noise from dropletbased single-cell experiments using CellBender. *Nat. Methods* (2023) doi:10.1038/s41592-023-01943-7.
- 67. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. *Genome Biol.* **19**, (2018).
- Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational identification of cell Doublets in Single-cell transcriptomic data. *Cell Syst.* 8, 281-291.e9 (2019).
- 69. Levine, J. H. *et al.* Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. *Cell* **162**, 184–197 (2015).
- Patel, A. P. *et al.* Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. *Science* **344**, 1396–1401 (2014).
- Glasner, A. *et al.* Conserved transcriptional connectivity of regulatory T cells in the tumor microenvironment informs new combination cancer therapy strategies. *Nat. Immunol.* 24, 1020–1035 (2023).
- 72. Castillo, R. L. et al. Spatial transcriptomics stratifies psoriatic disease severity by emergent

cellular ecosystems. Sci. Immunol. 8, eabq7991 (2023).

- 73. Ray, A., Morford, R. K., Ghaderi, N., Odde, D. J. & Provenzano, P. P. Dynamics of 3D carcinoma cell invasion into aligned collagen. *Integr. Biol. (Camb.)* **10**, 100–112 (2018).
- McKellar, D. W. *et al.* Spatial mapping of the total transcriptome by in situ polyadenylation.
 Nat. Biotechnol. 41, 513–520 (2023).
- McKellar, D. W. *et al.* Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. *Commun. Biol.* 4, 1280 (2021).
- 76. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. *F1000Res.* **5**, 2122 (2016).
- 77. Germain, P.-L., Lun, A., Garcia Meixide, C., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. *F1000Res.* **10**, 979 (2021).
- 78. Mulder, K. *et al.* Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. *Immunity* **54**, 1883-1900.e5 (2021).