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Abstract

Across all branches of life, transcription elongation is a crucial, regulated phase in gene expression.
Many recent studies in eukaryotes have focused on the regulation of promoter-proximal pausing of RNA
Polymerase II (Pol II), but rates of productive elongation also vary substantially throughout the gene
body, both within and across genes. Here, we introduce a probabilistic model for systematically evalu-
ating potential determinants of the local elongation rate based on nascent RNA sequencing (NRS) data.
Our model is derived from a unified model for both the kinetics of Pol II movement along the DNA
template and the generation of NRS read counts at steady state. It allows for a continuously variable
elongation rate along the gene body, with the rate at each nucleotide defined by a generalized linear
relationship with nearby genomic and epigenomic features. High-dimensional feature vectors are ac-
commodated through a sparse-regression extension. We show with simulations that the model allows
accurate detection of associated features and accurate prediction of local elongation rates. In an anal-
ysis of public PRO-seq and epigenomic data, we identify several features that are strongly associated
with reductions in the local elongation rate, including DNA methylation, splice sites, RNA stem-loops,
CTCF binding sites, and several histone marks, including H3K36me3 and H4K20me1. By contrast,
low-complexity sequences and H3K79me2 marks are associated with increases in elongation rate. In
an analysis of DNA k-mers, we find that cytosine nucleotides are strongly associated with reductions
in local elongation rate, particularly when preceded by guanines and followed by adenines or thymines.
Increases in elongation rate are associated with thymines and A+T-rich k-mers. These associations are
generally shared across cell types, and by considering them our model is effective at predicting features
of held-out PRO-seq data. Overall, our analysis is the first to permit genome-wide predictions of rela-
tive nucleotide-specific elongation rates based on complex sets of genomic and epigenomic covariates.
We have made predictions available for the K562, CD14+, MCF-7, and HeLa-S3 cell types in a UCSC
Genome Browser track.

Introduction

An enduring challenge in the study of eukaryotic gene regulation is that there is no single, well-defined point
of control for gene expression. Instead, rates and patterns of expression are influenced at a broad array of cel-
lular stages, ranging from pre-transcriptional chromatin remodeling to transcriptional, post-transcriptional,
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translational and post-translational steps. Even within the critical stage of transcription—where research has
traditionally focused on control of transcription initiation—many different steps can be regulated.

After RNA Polymerase II (Pol II) has been recruited to a promoter, and together with its cofactors,
unwound the DNA and established a stable RNA-DNA hybrid, it begins to translocate along the DNA
template and synthesize a nascent RNA molecule [1, 2]. This process of “productive elongation” is not
perfectly homogenous but occurs at variable rates along the DNA template, sometimes pausing entirely
for minutes at a time. A particular focus of recent research has been the tendency of Pol II to exhibit a
pronounced pause ∼20–60 bp downstream of the TSS. It has become evident that such promoter-proximal
pausing is remarkably widespread, both across metazoan species and across genes, and escape from such
pausing appears to be regulated in many cases [3, 4]. A great deal of attention has been devoted to working
out the molecular mechanisms underlying this process.

Rates of elongation also vary throughout the gene body, but the determinants of this less stereotypical
rate variation are less well understood. What is known is the following. First, productive elongation rates
vary considerably across genes. In mammals, elongation through gene bodies occurs at an average rate of
roughly 2 kb/min but this rate can vary by fourfold or more across genes, and it can also vary considerably
for the same gene across cell types or conditions [5–10]. Second, the local elongation rate changes along
each individual gene body, tending to increase with distance from the TSS but becoming reduced, again, at
exons and near the termination site [5, 6]. Third, average elongation rates for genes are correlated with a
wide variety of genomic and epigenomic features, including G+C content, exon density, nucleosome density,
DNA methylation, histone marks such as H3K4me1, H3K4me3, H3K36me3, H3K79me2, and H4K20me1,
stability of the DNA-RNA hybrid, the density of low-complexity sequences, as well as various DNA 5-mer
frequencies [5–7, 9, 11, 12] (reviewed in [4, 13–15]). Fourth, elongation rates are also positively correlated
with the Pol II density itself, suggesting that the activity of one polymerase somehow facilitates the progress
of others (perhaps through phenomena such as gradual loss of pausing factors, chromatin remodeling, or
impact on DNA torsion) [5]. Elongation rates are similarly positively correlated with gene length [7]. Fi-
nally, in at least some cases, it is clear that elongation rates are not only indirectly influenced by structural
features of DNA, RNA, or chromatin, but are actively regulated in response to various cellular stimuli, with
dysregulation of elongation rates potentially contributing to disease progression [14].

Other studies have focused specifically on pausing of Pol II. Aside from the pronounced pausing that
occurs proximal to the promoter, many, typically more subtle, pause sites occur within gene bodies, and,
in the aggregate, these sites have a major effect on the dynamics of transcription elongation [16–19] (see
also [20] for a recent study in yeast). These gene-body pause sites replicate well across experiments but vary
substantially in their density across genes; they also occur in divergent antisense transcripts and enhancer
RNAs as well as in gene bodies [18]. Such pausing has been reported to be associated with intron-exon
boundaries, alternative splicing, certain properties of DNA shape and the RNA-DNA hybrid, DNA methy-
lation, binding sites for factors such as ESR1, PAX5, SMAD3, YY1, and CTCF, and particular sequence
motifs, some of which are distinct from those associated with promoter-proximal pausing [18, 19, 21–23].

Despite these findings, much remains unclear about the determinants of local elongation rates through
gene bodies. Most studies have either been based on the measurement of rates of progress of Pol II “waves”
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in time-course experiments [5–10], or on pre-identified gene-body pause sites [18, 19]. The wave experi-
ments have limited genomic resolution, because waves tend to move tens of kilobases between time points,
and are therefore better suited for evaluating correlates of average genic elongation rates than of local rates.
They also are restricted to subsets of genes at which transcription can be induced or repressed, and to longer
genes. The experiments based on pre-identified pause sites have better genomic resolution but tend to reflect
only the most extreme reductions in rate—ones sufficient to produce a statistically significant local peak in
nascent RNA sequencing read counts. Furthermore, with both types of studies, it is difficult to make sense
of the observed genomic and epigenomic covariates because many of them are also strongly correlated with
one another.

In this study, we revisit these questions using a fundamentally different statistical modeling approach.
Our method is based on a recently developed “unified model” for nascent RNA sequencing (NRS) data,
which describes both the kinetics of Pol II movement on the DNA template and the generation of NRS read
counts [24, 25]. We adapt this model to allow for a continuously variable elongation rate along the genome,
using a generalized linear model to capture the relationship between the local rate and nearby genomic
features. In this way, we avoid a dependency on predefined pause-sites, and jointly consider the influences
of a large and diverse collection of features on elongation rate. By accounting for differences across genes
in initiation rate, we are able to efficiently pool information across all genes in the genome, and extract
high-resolution information about relative local elongation rate from steady-state data. This strategy avoids
a dependency on specially designed time-course experiments, and enables application to a wide variety of
existing public data sets. We consider both epigenomic and DNA-sequence covariates of elongation rate,
and after showing that our methods are effective with simulated data, we apply them to public data for four
mammalian cell lines, identifying a number of both previously known and novel correlates of elongation rate.
We then use our models to predict relative nucleotide-specific elongation rates genome-wide and make our
predictions available in a UCSC Genome Browser track (available at https://bit.ly/elongation-rate-tracks).

Results

A generalized linear model for variable elongation rates

Our previous “unified model” describes both the stochastic movement of Pol II along a DNA template and
the probabilistic generation of nascent RNA sequencing (NRS) read counts from underlying Pol II densi-
ties [24]. The model has two layers: a continuous-time Markov model for the movement of polymerases, and
a conditional Poisson sampling model for the generation of site-specific read counts. We recently adapted
this model to characterize the equilibrium dynamics of transcription initiation and promoter-proximal paus-
ing based on steady-state NRS data [25], ignoring variability in elongation rate throughout the gene body.
Here, we take a complementary approach, focusing on gene-body elongation rates but ignoring promoter-
proximal pausing. We focus in particular on the relationships between local rates of elongation and various
kinds of genomic and epigenomic features (Fig. 1).
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A key challenge in this analysis is that the information about elongation rate at any individual site is
weak: it is provided only by local increases or decreases in NRS read-depth, which are often subtle. In
addition, the stochastic sampling of Pol II densities via NRS sequencing causes the signal in the raw data to
be noisy. We address these problems by describing the relationship between an arbitrary vector of genomic
features at each site i, denoted Yi, and the elongation rate at that site, ζi, by a generalized linear relationship,
ζi = exp(κ·Yi), where κ is a vector of coefficients that is shared across all sites and all genes (Fig. 1A&B).
In this way, the model can efficiently pool information about local rate across many sites in the genome and
circumvent the problem of noise at each site.

A second challenge is that NRS read counts reflect differences in gene-level initiation rates as well as
both gene-level and local elongation rates (Fig. 1C). In particular, at steady state, the average read depth
within each gene body j reflects the ratio of the productive initiation rate ωj to the average elongation rate
ζ̄j along the gene body [24,25]; thus, these two influences cannot be disentangled when interpretting differ-
ences between genes in average read depth. Therefore, we focus instead on local variability in elongation
rate. We estimate a separate compound parameter χj for each gene j, which can be interpreted as a read-
depth-scaled initiation-to-elongation rate ratio for the gene as a whole (χj =

λωj
ζ̄j

; see Methods). Then
we allow each site i in gene j to have a different relative local elongation rate ζi,j , which is defined as a
function of the local features via the generalized linear model. These ζi,j can be thought of as scale factors
for the average elongation rate, taking values <1 for local slow-downs and values >1 for local speed-ups
in polymerase movement. The model accounts for the observed read-depth Xi,j at each site i by assuming
Xi,j is Poisson-distributed with mean χi/ζij . Thus, the model accounts for genewise differences in average
read depth using the free χj parameters, but explains local variation within each gene using the generalized
linear model.

The model recovers true elongation rates and epigenetic correlates in realistic simulations

We first tested our modeling approach on simulated data, making use of a recently developed simulator for
nascent RNA sequencing data called SimPol (“Simulator of Polymerases”) [25]. SimPol works by tracking
the movement of individual polymerases along the DNA templates in thousands of cells, under user-defined
initiation, pause-escape, and elongation rates. After the Pol II density along the DNA templates reaches
equilibrium, the program uses Poisson sampling to generate synthetic NRS read counts that reflect that
density. These read counts are designed to be realistically sparse. For a typical gene in our simulations, the
majority of nucleotides have counts of zero, most of the remainder have counts of one, and only a few have
counts of greater than one (Fig. 2A; Methods). Importantly, SimPol tracks potential collisions between
polymerases and prohibits one polymerase from passing another along the same template, despite that our
model ignores these phenomena.

For this study, we ignored the components of SimPol concerned with promoter-proximal pausing but
extended the simulation scheme to allow for correlations between the elongation rate at each nucleotide
site and a variety of (synthetic) epigenomic covariates. We based our synthetic covariates on real data
from K562 cells (as discussed further below), focusing on CTCF transcription binding sites, four different
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histone marks, and RNA stem-loops as representative features. We tiled each synthetic DNA template with
associated covariates using a block-sampling approach based on real data, to maintain realistic genomic
densities and correlation patterns among the covariates (Fig. 2B; see Methods). We then determined the
“true” elongation rate at each site as the sum of an exponentiated linear function of the associated covariates
(using coefficients derived from real data) and independent Gaussian “noise,” to simulate other sources of
variation not included in the model. These true per-nucleotide elongation rates were passed to SimPol such
that the same per-nucleotide elongation rates applied to each of the 5,000 cells used in data generation.
While our simulation scheme shares some assumptions of our model, it is nevertheless useful for evaluating
our estimation of both the GLM coefficients and the predicted local elongation rates from sparse NRS data
in the presence of correlated covariates.

We carried out 10 identical experimental replicates with SimPol, each time simulating NRS data for 100
transcription units (TUs) 10 kbp in length. Each TU had its own initiation rate, sampled from estimates from
real data (see Methods and Supplementary Fig. S1A). For each replicate, we used the simulated NRS data
for 80 of the simulated TUs as “training” data (for parameter estimation), and set aside the remaining 20 as
“testing” data. We then estimated the coefficient vector κ from the training data by maximum likelihood
under our model (see Methods). Overall, the estimated coefficients showed excellent agreement with the
true values, with some variation across replicates (Fig. 2C). As expected, some of the sparser covariates—
such as H3K4me2—resulted in somewhat greater variance in the estimated coefficients than did the denser
covariates—such as the stem-loops. We observed a slight estimation bias in some cases (most notably,
H3K36me3), perhaps owing to unmodeled correlations between covariates. In most cases, however, the
estimated coefficients appeared to be approximately unbiased, with median values close to the truth.

In a second experiment, we re-estimated the coefficient vector κ from all “training” TUs, pooled across
replicates (10 replicates × 80 TUs = 800 TUs), and used these estimates to predict per-nucleotide values of
the elongation rate ζi in each of the 20× 10 = 200 TUs held out for testing. In this setting, where the “true”
values also reflect a generalized linear model, the predicted elongation rates were well correlated with the
true values (r2 = 0.748; Fig. 2D), with the unexplained variance approximately equal to the contribution of
Gaussian noise to the true values (∼25%; see Supplementary Fig. S2). A version without the addition of
Gaussian noise showed almost perfect performance (Supplementary Fig. S2A–D). When visualized along
an individual TU, the predictions can be seen to form a smooth line near the middle of the cloud of site-to-
site variability in true rates, which reflects the addition of Gaussian noise (Fig. 2E). While the precise degree
of predictivity in these experiments depends on the details of our scheme for simulating “true” elongation
rates, these results nevertheless demonstrate that our model can produce accurate predictions of ζi provided
informative covariates are available.

Several epigenomic and sequence features are correlated with local elongation rate

Having established that our model works well with simulated data, we applied it to real PRO-seq data from
K562 cells [26], a cell type for which abundant data is available from epigenomic assays. Based in part
on previous reports of features associated with elongation rate [5–8], we selected a diverse collection of
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twelve features as covariates, including: 5′ and 3′ splice sites evident from cell-type-matched RNA-seq
data, DNA methylation based on whole-genome bisulfite sequencing data, CTCF binding sites based on
ChIP-seq data, six histone modifications (H3K4me1, H3K9me1, H3K9me3, H3K36me3, H4K20me1, and
H3K79me2) based on ChIP-seq data (all from ENCODE [27]), as well as apparent RNA stem-loops based
on DMS data [28] and low-complexity sequences annotated in the UCSC Genome Browser [29]. At this
stage, we omitted features strongly correlated with the DNA-sequence base composition (to be addressed
in the next section), such as DNA melting temperature and stability of the DNA-RNA duplex. We also
excluded several histone marks whose potential association with elongation rate appears to be limited to
the region immediately downstream of the TSS, which is not our focus in this study (see Supplementary
Fig. S3).

Real PRO-seq data has the difficulty that, in addition to reflecting local elongation rates, it is also strongly
influenced by phenomena such as promoter-proximal pausing, unannotated transcription start sites (TSSs),
overlapping isoforms, and enhancers within TUs. We therefore preprocessed the raw data in several ways
(see Methods for details). Briefly, we adjusted annotated TSSs as needed using cell-type-matched CoPRO-
cap data, which enriches for capped 5′ ends [30]. We used DENR [31] to select the dominant pre-mRNA
isoform for each TU, as supported by our PRO-seq data. We then stringently masked out regions within the
selected TUs that could plausibly represent internal TSSs (from enhancers or other TUs), based on dREG
predictions [32] and GRO-cap data [33] (see example in Supplementary Fig. S4). Because our analysis
focuses on elongation dynamics in the gene body, we also eliminated the first 2250 bp downstream of the
TSS—which appeared to include all promoter-proximal pause sites—as well as the final 250 kbp upstream
of the annotated transcription termination site (TTS).

Following the application of these filters, the remaining PRO-seq read depths still exhibited a char-
acteristic “U-shape” along gene bodies (Supplementary Fig. S5), which has previously been noted and
hypothesized to reflect a tendency for acceleration of Pol II following pause-release and deceleration prior
to termination [6]. To ensure that this broad pattern did not interfere with our more local analysis, we
followed previous work [31] in adjusting the read depths so that they were globally uniform on average.
Finally, because our features of interest have quite different levels of precision along the genome—e.g.,
splice-site annotations pinpoint individual nucleotides whereas ChIP-seq-based signals have resolutions of
hundreds or thousands of nucleotides—and because features can influence elongation rate at adjacent nu-
cleotides, we devised “smoothing filters” that could be applied to each feature, distributing its information
along the genome sequence in an appropriate manner. This system essentially allows the features to be
placed on the same genomic scale as one another and as our nucleotide-level PRO-seq data (see Methods
and Supplementary Fig. S6A–C). After filtering, we evaluated the correlation structure of the epigenomic
features and found relative low correlation overall, except among the histone marks where correlation was
stronger (Supplementary Fig. S6D).

We applied our model to the filtered data for a large collection of robustly expressed protein-coding
genes, first selecting the 6,000 genes with the highest PRO-seq signals in their gene bodies, then randomly
sampling 2,000 genes in each of ten rounds of analysis. For each sample of 2,000 genes, we estimated the
coefficient vector κ by maximum likelihood, and we used the variation in these estimates to obtain standard
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errors for the coefficients. We found that the estimated coefficients were mostly negative in sign, indicating
associations with a reduction in elongation rate (Fig. 3A). The strongest signal, by far, was associated with
DNA methylation (κ = −0.20). Moderately strong reductions in elongation rate were also associated with
H3K36me3 (κ = −0.095), H3K9me1 (κ = −0.067), and RNA stem-loops (κ = −0.051). Somewhat
weaker reductions were associated with both 3′ (κ = −0.033) and 5′ (κ = −0.019) splice sites, CTCF
binding sites (κ = −0.022), and other histone modifications (H4K20me1, H3K9me3, H3K4me1; (κ ∈
[−0.041,−0.024]). Only two coefficients were positive, indicating associations with increases in elongation
rate: those for low-complexity sequence (κ = 0.016) and the H3K79me2 histone mark (κ = 0.030).

These observations are generally consistent with previous observations at the level of entire genes, with
negative correlations having been reported for DNA methylation [6, 7], H3K36me3 [6], H4K20me1 [4],
splice sites [17, 22, 34], and CTCF binding [17, 19, 21], and positive correlations having been reported for
H3K79me2 [6–8] and low-complexity sequences [7]. Our analysis shows, however, that changes in the
presence or absence of these features are directly associated with nearby changes in elongation rate, further
suggesting underlying mechanistic relationships with the movement of Pol II (see Discussion).

To validate that our model-based associations were well supported by the raw data, we carried out a
simpler, non-model-based analysis that compared the average read depths in sites within gene bodies that
were annotated (“covered”) and were not annotated (“noncovered”) by each feature (Fig. 3B). To account
for differences in initiation and/or average elongation rates, we first divided all read counts by their average
value within each gene body. We then examined the ratio of the resulting relative read depth in the “covered”
regions to that in the “uncovered” regions, pooling data across all 6,000 robustly expressed genes. A ratio of
>1 therefore indicates an increase in PRO-seq read depth at annotated sites, whereas a ratio of <1 indicates
a decrease in read depth.

This simple measure was generally consistent with the estimated coefficients under our model, with
features that had negative coefficients under the model (indicating an association with reduced elongation
rate) showing ratios > 1 and features that had positive coefficients showing ratios < 1 (Fig. 3B). The only
exception was the H3K79me2 histone modification, which showed a weakly positive estimate of κ. but a
slight enrichment for higher read PRO-seq read counts. This difference may be attributable to coincidence
of H3K79me2 marks with other features, which is not considered in the non-model-based analysis. The
tendency for a local increase or decrease in read depth associated with genomic annotations could also
be clearly observed in metaplots centered on annotated sites (Fig. 3C). Notably, among the features with
negative coefficients, the absolute values of the coefficients were also roughly consistent with the fold-
changes in read depth (Fig. 3B), with some differences in rank order probably owing to the independent
consideration of each feature in the non-model-based analysis. Overall, this comparison shows that our
model-based analysis does faithfully reflect first-order patterns of relative read depth, but makes a number
of adjustments in magnitude—and occasionally in sign—by jointly considering all features together in one
unified framework.

Another way to validate our model would be to test its ability to predict held-out PRO-seq data. However,
the predictive power for read counts at individual nucleotide sites is poor, even with simulated data, because
the data are so sparse (see Supplementary Fig. S2D&E). We carried out two modified experiments to
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circumvent the problem of sparse data. First, we tested the ability of the model to predict “pausing locations”
within gene bodies, defined as 200-bp intervals having the highest average read counts for each gene (see
Methods). We found, even with held-out genes, that model-based predictions of such pausing locations
agreed quite well with the truth (r2 = 0.60; Fig. 3D). Second, we tested the ability of the model to predict
average read counts across larger windows, spanning 1000 bp. At this level of resolution, the predictions
for held-out genes are still approximate but much better than for individual nucleotides (r2 = 0.28; Fig.
3E). These results suggest that the model is effective at getting at underlying elongation rates even if the
predictive power for nucleotide-level PRO-seq read counts remains weak.

An extension to the model accommodates DNA-sequence k-mers

In addition to epigenomic factors, it is well known that DNA sequences can also influence local elongation
rates, based on studies ranging from bacteria [35] to yeast [36] and mammals [37] (reviewed in [14]).
Promoter-proximal pausing in Drosophila and mammals is also associated with particular sequence motifs
[9,37–39]. Recently it was shown using NET-seq and PRO-seq data for S. cereviseae that nucleotide 5-mers
were strongly predictive of local elongation rates, beyond what could be explained by G+C content, DNA
folding energy, or sequencing bias [11].

We therefore extended our generalized linear model to consider the k-mer content of the local DNA
sequence. Following ref. [11], we initially considered 5-mers only (k = 5). These 5-mers are accommodated
using indicator features in our regression framework: at each position i, the indicator feature associated with
the 5-mer centered at i is set to 1 and the remaining 5-mer indicator features are set to 0. These features can
be used alone or together with epigenomic features.

The challenge with this strategy is that it requires a high-dimensional feature vector. The 5-mer features
alone number 45 = 1024. We therefore added a sparsity penalty to our likelihood function, which has the
effect of limiting the set of features that have non-zero coefficients and forcing the model to choose the ones
that are most informative. After experimentation, we settled on an L1 (lasso) penalty and determined the
strength of the penalty by cross-validation (see Methods and Supplementary Fig. S7 for details).

We first tested this approach with simulated data. Briefly, we sampled 20,000 sequences of length 1 kbp
from the human genome. We randomly drew 100 5-mers from these sequences and assigned them negative
or positive correlations with local elongation rate, with κ values ranging from −0.3 to +0.3. All other 5-
mers were assigned κ = 0, indicating no correlation. Based on these coefficents, we then generated “true”
nucleotide-specific elongation rates along the sampled DNA sequences under the assumptions of our expo-
nentiated linear model. As in our previous experiments, we passed these local elongation rates to SimPol,
which used them to generate synthetic NRS read counts. When we fitted our GLM to these sequences, using
5-mer features only and the L1 penalty, non-zero coefficients were assigned to 100 features, which heavily
overlapped the set of features that had truly been assigned non-zero coefficients (Supplementary Fig. S7).
In addition, the estimates of κ were generally close to the true values (Fig. 4A; r2 = 0.89) as were the
predictions of local elongation rate (Supplementary Fig. S7D; r2 = 0.88). Overall, the method appears to
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be effective both at recovering 5-mers correlated with elongation rate and at predicting the local elongation
rate itself.

Several k-mers are strongly associated with local elongation rates in K562 cells

With this sparse-regression, k-mer-based version of the model in hand, we re-analyzed the PRO-seq data
from K562 cells, this time considering DNA sequence k-mers only (i.e., omitting the epigenomic features;
they will be re-introduced below). We started with the same 6,000 genes as in the epigenomic analysis
but this time sampled four batches of 500 genes to limit computational cost. Also, instead of considering
5-mers only, we allowed for k-mers of any length up to and including five nucleotides (k ∈ {1, 2, 3, 4, 5}).
In this version of the model, the k-mers of different sizes compete with one another, and the smallest
k-mer that adequately explains the data will tend to be selected. For example, if the correlations with
elongation rate are truly driven by G+C content, the model will tend to choose the G and C 1-mers rather
than many different 5-mers containing Gs and Cs. In addition, because the model is additive, larger k-mers
are assigned coefficients representing their contributions beyond those of shorter k-mers nested within them.
For example, if both G and AG are included in the model, then the coefficient assigned to G will reflect its
marginal contribution and the coefficient assigned to AG will reflect only the additional contribution of a
preceding A.

When we fitted the model to the K562 PRO-seq data we found that the strongest signals, by far, were
for a negative correlation of cytosine (C) nucleotides (κ = −0.24) and a positive correlation of thymine (T)
nucleotides (κ = 0.15) with local elongation rate (Fig. 4B). The negative correlation was enhanced when
the C was followed by an A (CA) or a T (CT) or when it was preceded by a G (GCA, GCT). The nucleotide
trimer AGT was also negatively correlated with elongation rate. The positive correlation of a T was enhanced
when it was preceded or followed by additional Ts (TTT, TTG). In some cases, a positive correlation also
occurred with As or Gs in place of Ts in the central position (TAA, TAG, AA, TAC, TGG, TGC). In general,
the k-mers associated with increased elongation rate were A+T-rich, with some presence of Gs, and they
were particularly enriched for A/T dinucleotides (TT, TA, AA). The negative correlation with cytosines
echoes similar findings in E. coli [35] and findings for promoter-proximal pausing in mammals [9, 37, 39],
and the positive correlation with A+T-rich sequences is consistent with reports of negative correlations with
G+C content [6, 7, 15] with some differences (see Discussion). Altogether, between 159 and 232 k-mers
were assigned non-zero coefficients across replicates (Supplementary Fig. S8B).

As with the epigenomic version of the model, we validated these k-mer associations by examining
the corresponding relative read depths. We found that the k-mers that had negative coefficients (implying
slower elongation rates) did indeed exhibit higher relative read depths, and the k-mers associated with
positive coefficients (implying faster elongation rates) did have lower relative read depths (Fig. 4C). In
this analysis, the larger k-mers had more divergent relative read depths despite having smaller absolute κ
estimates, because, as noted, the κ estimates reflect only the additional contribution associated with the
larger k-mer context. For example, GCA has higher relative read depth than CA, which in turn has a higher
relative read depth than C, but the κ estimates for GCA and CA are smaller than for C because they represent
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only the additional contributions. A trend in the reverse direction can be seen with T and TTT. When relative
read depths for each k-mer are plotted along the genome sequence, the local departures from the background
levels can be clearly observed (Fig. 4D). By contrast, the relative read depths for insignificant k-mers are
much less pronounced (Fig. 4E).

For comparison with the k-mers of various sizes, we also analyzed the data with a version of the model
that allowed for 5-mers only. To make sense of the identified k-mers, we separately clustered the ones
positively or negatively associated with elongation rate and summarized each cluster using a sequence logo
(Fig. 4F; see Methods for details). The clusters negatively associated with elongation rate were clearly
dominated by a central C, which tended to be followed by A or T and tended to be preceded by G or A. The
positively associated clusters were clearly dominated by Ts with a secondary signal from As.

We also evaluated the performance of the k-mer model in predicting pausing locations within gene
bodies and held-out read counts in 1 kbp intervals (Supplementary Fig. S9A&B). While it performed
slightly better at predicting pausing locations (r2 = 0.64 compared with r2 = 0.60 for the epigenomic
model), its predictions of read counts were substantially better (r2 = 0.65 compared with r2 = 0.28).

A possible concern with this analysis is that the k-mer associations we find with elongation rate, which
reflect nucleotide preferences at the 3′ ends of aligned PRO-seq reads, might be influenced by biases in
the PRO-seq protocol. Several lines of evidence, however, suggest that such biases are not driving our
results, including comparisons of the bulk distribution of 3′ nucleotides across data sets (Supplementary
Fig. S10A&B), an analysis of possible ligation biases (Supplementary Fig. S10C,D&E), and analyses
with a version of the model that explicitly allows for 3′ nucleotide biases (Methods and Supplementary
Fig. S9C). It is also notable that a strong preference for cytosines at sites of promoter-proximal pausing has
been noted with NET-seq data as well [9], and the NET-seq protocol does not include the biotin run-on step
of PRO-seq (see [30]). Overall, while we cannot rule out some influence from the protocol on our k-mer
associations, these findings suggest that any such bias should be minimal (see Discussion).

Most associations with local elongation rate are shared across cell types

To examine the generality of these correlations with local elongation rate, we carried out a similar analysis
of PRO-seq data sets from three other cell types: CD14+ [31], MCF-7 [40] and HeLa-S3 [41] cells. These
data sets were generated by three different laboratories using slightly different methods, making them also
informative about the sensitivity of our conclusions to variations on the PRO-seq protocol. For comparison
with our results for K562 cells, we analyzed them separately with the epigenomic and k-mer versions of our
model. Epigenomic data was available from the ENCODE project for all three cell types [27].

We found that the epigenomic correlates were generally fairly consistent across cell types overall, with
the exception of DNA methylation, which showed a strong negative correlation with local elongation rate in
K562 and MCF-7 cells, but a strong positive correlation in CD14+ and HeLa-S3 cells (Fig. 5A). On further
inspection, we found that this difference traced back to secondary TSSs within TUs (e.g., from transcribed
enhancers), which were filtered out in K562 and MCF-7 cells using available GRO-cap data but could not be
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efficiently identified and removed in CD14+ and HeLa-S3 cells, for which no GRO-cap or PRO-cap data was
available. An analysis of K562 cells with and without this filter for internal TSSs shows that the correlation
with DNA methylation is highly sensitive to the filter (Supplementary Fig. S11). Because these internal
TSSs tend to be both unmethylated and transcribed, leading to a high PRO-seq read depth, they appear
in the context of our model to suggest that unmethylated DNA has a reduced elongation rate, implying a
positive correlation between methylation and elongation rate. This spurious signal of positive correlation
overwhelms the true signal for negative correlation that occurs elsewhere throughout the gene bodies. We
therefore disregard the positive κ estimates for CD14+ and HeLa-S3 cells as artifacts of unfiltered internal
TSSs. Once DNA methylation was excluded, the κ estimates for K562, CD14+, and HeLa-S3 were all
strongly correlated, with pairwise r > 0.85 in all cases (Supplementary Fig. S12A). The MCF-7 data set
showed somewhat weaker correlation with the others (r ≈ 0.7 with K562 and HeLa-S3, r = 0.43 with
CD14+).

We observed a few other, more minor, differences in epigenomic correlations. For example, the positive
correlation of H3K79me2 with local elongation rate was considerably strengthened in MCF-7 cells, whereas
the positive correlation of low-complexity sequences was lost in MCF-7. These differences traced back to
an anomalous pattern of relative read depths around these two features in the MCF-7 data, with increases in
H3K79me2 and decreases in low-complexity sequences relative to the background, for reasons we could not
discern. Conversely, the negative coefficient for H3K36me3 was smaller in MCF-7 cells. These differences
contributed to the reduced global correlation between MCF-7 and the other cell lines—particularly with
CD14+, which itself was an outlier in having a positive H3K9me3 coefficient.

With the k-mer version of the model, we also observed general agreement across cell types, with pair-
wise r values of ∼0.8 or greater in all cases (Supplementary Fig. S12B). Among the most prominent
k-mers (Fig. 5B), the most striking difference was in the κ estimate for cytosines, which in CD14+ and
MCF-7 cells was about half that in K562 cells, and in HeLa-S3 cells was nearly cut to zero. On further
investigation, we found that the HeLa-S3 data set has a different bulk distribution of 3′ nucleotides, with
much less enrichment for cytosines than the others (Supplementary Fig. S13). This difference may also
help to explain the unusually strong positive correlation for T-containing k-mers in HeLa-S3 cells. Despite
reprocessing the raw data and re-mapping the reads for HeLa-S3, we were unable to uncover the reasons
for this difference. One possible contributing factor, however, is pronounced aneuploidy in HeLa-S3 cells,
which can distort copy numbers of transcripts and create challenges in read mapping.

The estimates for cytosines in CD14+ and MCF-7, while reduced compared with K562, were still among
the largest (in absolute value) κ estimates for those cell types, indicating that cytosines are associated with
a substantial reduction in elongation rate across cell types. Nevertheless, these differences in absolute value
do suggest that the strength of the correlation measured by our model may be sensitive to details of the
PRO-seq protocol. Notably, the CD14+ data set is based on a 2 dNTP run-on protocol (with UTP and CTP),
whereas the others are based on 4 dNTP run-on protocols.
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Some distinct k-mers are associated with elongation rate upstream and downstream of the
active site

We also wondered whether k-mers upstream or downstream of the active site might be correlated with elon-
gation rate, for example, owing to the energetics of the DNA-RNA hybrid, Pol II-nucleic acid interactions,
or structure in the nascent RNA. We therefore applied the k-mer model to the data sets for all four cell types,
but this time, instead of considering k-mers centered at the 3′ end of aligned PRO-seq reads, we separately
considered k-mers that were shifted upstream (in the 5′ direction) or shifted downstream (past the nascent
RNA) by 5, 10, 15, 20, or 25 nt. For this analysis, we used the 5-mer-only version of the model, followed by
clustering of 5-mers positively or negatively associated with elongation rate, as introduced above (see also
Methods).

Upstream of the active site, we found that the k-mers positively correlated with elongation rate were
dominated by A+T-rich sequences, somewhat like those at the active site itself. Farther upstream, how-
ever, they included As and Ts in roughly equal proportions, whereas closer to the active site, they were
clearly dominated by Ts (Fig. 5C; Supplementary Fig. S14). By contrast, the upstream k-mers negatively
correlated with elongation rate showed a distinctive enrichment for A and G, particularly in alternating pat-
terns. These patterns are reminiscent of GAGA-factor binding sites, which are known to be associated with
promoter-proximal pausing of Pol II [34, 38, 42]. These patterns were most pronounced at −5 nt, weaker
at −10 nt, and no longer evident by −15 nt, where they were replaced by weakly C+T-rich sequences. No-
tably, the alternating A and G pattern was not strongly evident at the active site itself, although one of the
identified k-mers was consistent with it (AGT; see Fig. 4B).

Downstream of the active site, both the positively and negatively correlated k-mers were much less well-
defined. The k-mers with positive coefficients, however, were still somewhat A+T-rich, with a preference
for T over A. The k-mers with negative coefficients at +5 nt still showed some preference for A and G, but
it was much less pronounced than upstream of the active site (Fig. 5C; Supplementary Fig. S15).

Predicted local elongation rates are available as UCSC Genome Browser tracks

The separate epigenomic and k-mer versions of the model both exhibited reasonably good predictive per-
formance on held-out PRO-seq data (Fig. 3D&E and Supplementary Fig. S9A&B), but we wondered if
performance could be improved by combining all features into one model. We therefore devised a version
of the model with all twelve epigenomic features and the k-mer features of sizes 1–5, applying the lasso
penalty to induce sparsity in the high-dimensional feature vector. We fitted this model to the PRO-seq data
for K562 cells and tested it on held-out data, as in the previous experiments. We found that the combined
model did perform better than the two separate models, but the improvement relative to the k-mer-only
model was slight (Supplementary Fig. S16). This result suggests that most of the information in the epige-
nomic model can be extracted from the k-mer composition of the underlying DNA sequences, and overall,
the k-mers are more predictive than the epigenomic features, perhaps owing to their much denser coverage
along the genome.
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Based on this combined model, we created a UCSC Genome Browser track showing the predicted
nucleotide-specific local elongation rates genome wide (Fig. 6; available at https://bit.ly/elongation-rate-tracks).
This track allow our model-based predictions to be viewed alongside gene annotations, epigenomic data, and
many other types of genomic data. In this browser track, each of the four cell types (K562, CD14+, MCF-7,
and HeLa-S3) is configured as a separate, selectable subtrack, allowing them to be compared to one another
easily. Across much of the genome, the subtracks are similar, but in places, differences occur that can be
traced to cell-type-specific epigenomic signatures. These tracks are publicly available either for browsing
or for download of raw data.

Discussion

In this article, we have introduced a new probabilistic model for evaluating correlations between local elon-
gation rate and a wide variety of genomic and epigenomic features. Our model explains nucleotide-specific
NRS read counts by assuming they are Poisson distributed with mean inversely proportional to the lo-
cal elongation rate, which in turn is determined by an exponentiated linear function of nearby genomic and
epigenomic features. An optional L1 sparsity penalty can be used to accommodate high-dimensional feature
vectors. Simulations show that the model is effective in both identifying correlated features and predicting
elongation rates based on those features.

We have separately applied epigenomic and DNA k-mer versions of the model to data for four mam-
malian cell types. DNA methylation emerged as the strongest epigenomic correlate of local elongation rate,
followed by H3K36me3 and H3K9me1 histone marks and RNA stem-loops, all of which were associated
with slow-downs of Pol II. Other significant negative correlates of rate included splice sites, CTCF binding
sites, and several other histone marks. Low complexity sequences and H3K79me2 marks were positively as-
sociated with elongation rate. In our DNA k-mer analysis, the strongest signals came from cytosines, which
were associated with reductions in elongation rate, and thymines, which were associated with increases in
elongation rate. We showed that models based on these features have reasonably good prediction power
both for pausing locations and held-out PRO-seq read counts. We have used our model to generate publicly
available UCSC Genome Browser tracks for the K562, CD14+, MCF-7, and HeLa-S3 cell types.

A key feature of our model is that it directly predicts a local, nucleotide-specific elongation rate from
features at, or within a few bases of, each nucleotide site. By contrast, most previous studies have focused
on correlations at the level of entire genes. The local rate predicted by our model takes values greater
than one in regions where Pol II appears to speed up and values less than one in regions where it appears
to slow down relative to the average for the gene. Differences in average read-depth betwen genes are
separately accommodated through the parameter χ, which can be thought of as a gene-wide, read-depth-
scaled initiation-to-elongation rate ratio. A disadvantage of our approach is that, because it is based on a
single time point and assumes Pol II occupancy is at steady state, it cannot estimate absolute elongation rates.
On the other hand, it provides high-resolution preditions of the relative local rate, and it identifies covariates
of rate whose presence or absence is physically proximal to changes in NRS read depth. This physical
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proximity increases the likelihood that these correlations reflect mechanistic, causal relationships—although
we still cannot prove causality in this setting.

Despite this difference in our model, the correlations it revealed were generally consistent with previous
reports. For example, several studies have identified negative correlations of elongation rate with DNA
methylation in mammalian cells [6, 7] (see also [12]). In addition, there have been reports of positive
correlations with H3K79me2 [6–8] as well as negative correlations with H3K36me3 [6] and H4K20me1 [4].
It is now well established that elongation rates are negatively correlated with exon density [6, 7, 17], and
this relationship appears to be driven, at least in part, by a local reduction in rate at splice sites [17, 22,
34], likely from co-transcriptional splicing. A negative correlation of elongation rate with CTCF binding
has also been noted, which in some cases influences splicing [17, 19, 21]. The relationship between RNA
secondary structure and elongation rates does not appear to have been examined genome-wide in mammals,
but associations of such structure with reduced elongation rates have been observed in bacteria, yeast, and in
vitro systems [17, 43–45]. A positive correlation of elongation rate with low complexity sequences has also
been reported [7]. Our analysis shows that these correlations hold at the local level as well as at the level of
averages across genes.

Another important difference is that previous studies have generally considered each potential covariate
separately, whereas our model combines them in a unified framework, in such a way that their relative
contributions to elongation rate can be compared. As a result, we can say, for example, that the impact
of DNA methylation on elongation rate is about twice that of H3K36me3 marks in K562 cells, accounting
for all other covariates (Fig. 3A). Perhaps owing to our joint model, we do see some minor differences
from previous results; for example, H4K20me1 [7] and H3K4me1 [6] have been reported to be positively
correlated with elongation rate, whereas we find negative correlations. In an analysis of this kind, the
directionality of a relationship can change depending on whether or not other correlated covariates are
considered, as was observed with H3K79me2 in Fig. 3B.

The negative correlation we observe with a cytosine at the 3′ end of a nascent transcript echoes a similar
finding for promoter-proximal pausing, where paused Pol II shows a strong preference for cytosines at the
active site [9, 37, 39]. These studies have also shown some enrichment for G at the preceding position, as in
our findings, although the motifs they identified were generally more dominated by Cs and Gs than ours. A
similar, but weaker, preference for cytosines was also previously observed outside of the promoter-proximal
region based on CoPRO-cap and PRO-seq data [30]. This preference for cytosines has been conjectured to
be a consequence of cytosine being the least abundant nucleotide and therefore the slowest to incorporate
into nascent transcripts [30]. A similar association between cytosines and pausing of RNA polymerase
(RNAP) has been observed in E. coli, where it appears to result from RNAP-nucleic acid interactions that
inhibit next-nucleotide addition [35] (see also [46]). In this case, however, the preference is for either C or
T, both of which tend to be followed by G.

The positive correlation we find between A+T-rich sequences and elongation rate is consistent with
many reports indicating a general correlation with G+C content, with slower elongation rates in G+C-rich
sequences—and, accordingly, faster rates in A+T-rich sequences—likely resulting from stronger RNA-DNA
hybrids and a tendency to form stable RNA secondary structures [6, 7, 15]. It has also been reported that
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increased elongation rates in A+T-rich introns are stimulated by the U1 snRNP at 5′ splice sites [47]. Our
findings differ from these previous reports, however, in indicating that the effect seems to be driven by
thymine somewhat more than adenine bases.

Our analysis assumes that Pol II occupancy along the genome is at a steady-state equilibrium among the
cells in the sample. While this assumption undoubtedly does not strictly hold, it seems likely to be reason-
ably approximated in cell lines that have not been subjected to a treatment or stimulus (control samples).
The averaging effect of sequencing a pool of cells should help further in establishing a reasonable proxy for
such an equilibrium. Importantly, by operating under this steady-state paradigm, we are able to analyze all
expressed genes, not just a subset at which expression can be induced, as in strategies that measure elonga-
tion rates from time-course data (e.g., [5–7]). We also avoid the off-target effects of chemical treatments that
block initiation or pause escape. Nevertheless, it may be worthwhile, in future work, to extend our general-
ized linear model for transcription elongation to the nonequilibrium setting and see whether new correlates
of elongation rates can be detected from time course data (see [24]).

A second, perhaps more delicate, assumption is that NRS read counts faithfully reflect the density of
transcriptionally engaged polymerases across the genome. The main concern here is that read counts could
be influenced by biases in library preparation, sequencing, read mapping, or other processes. In principle,
any genomic or epigenomic feature favored or disfavored in these processes could spuriously appear to be
associated with elongation rate in our analysis. Most of our epigenomic associations should be fairly robust
to such biases, since they reflect modifications to the DNA template rather than the nascent RNA. RNA
stem loops are a possible exception, but our findings suggest that they are over-represented in PRO-seq read
counts, rather than under-represented, as might be expected from interference in capturing structured RNAs.

On the other hand, it is easy to imagine biases that would affect the k-mer associations that we detect,
particularly the single nucleotides that we find to be over-represented (C) or under-represented (T) at the
3′ ends of aligned reads. In several follow-up analyses, however, we could find no evidence that biases
in the protocol were responsible for the cytosine and thymine associations with elongation rate. First, we
found that the bulk distribution of 3′ nucleotides for PRO-seq reads was fairly consistent across data sets,
even when generated by different research groups (Supplementary Fig. S10A&B), suggesting that it is not
highly sensitive to variations of the protocol. Second, we found that the cytosine enrichment and thymine
depletion were present with or without removal of PCR duplicates. Third, we tested directly for a ligation
bias, despite that T4 RNA ligase has been reported to have little sequence bias [48]. Specifically, we made
use of adapter sets in which the 5′ adapter incorporates a UMI with randomly occurring nucleotides at its 3′

end, and compared adapter dimers that contained inserts with ones that did not, finding no difference in their
cytosine frequencies and little difference overall (Supplementary Fig. S10C,D&E. Finally, we devised a
“sequence-biased” version of the model that expects the 3′-most base to appear in proportion to its bulk
distribution, under the assumption that an unknown bias drives its frequency, and fitted it to the data, finding
that, while the coefficients for C and T were greatly reduced (by design), the coefficients for most larger
k-mers were relatively unaffected (Methods and Supplementary Fig. S9C). Altogether, we could find no
aspect of the protocol that could explain our associations with C, T, or other k-mers. It is also worth noting
that NET-seq data—which is produced using a quite different protocol from PRO-seq, without run-on—also
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shows a strong preference for cytosines at sites of promoter-proximal pausing [9].

To our knowledge, this study represents the first attempt to model local rates of transcription elongation
across mammalian genomes. Overall, we find that many features that correlate with elongation rates at the
level of entire genes do appear to result in local changes to the elongation rate along gene bodies. By con-
sidering these features together in a unified probabilistic model, we can obtain fairly accurate predictions of
the local rate, as indicated by our simulations and tests with held-out data. We have made predictions for
four cell types publicly available in a UCSC Genome Browser track. We anticipate that they will be useful
in a wide variety of downstream analyses, for example, by helping to identify potential cases where tran-
scriptional output is regulated through changes in elongation rate or providing hypotheses about mechanistic
influences on elongation rate.

Materials & Methods

Unified probabilistic model for nascent RNA sequencing data

Our unified model has been detailed in refs. [24, 25]. Briefly, it consists of two layers: a continuous-time
Markov model for the movement of individual polymerases along a TU, and a conditionally independent
generating process for the read counts at each nucleotide site (Fig. 1). Together, these components produce
a full generative model for NRS read counts along the TU, permitting inference of transcriptional rate
parameters from the raw data. The model assumes (1) that collisions between polymerases are rare, allowing
the movement of each one to be considered independently of the others; and (2) that premature termination
of transcription is sufficiently rare that each polyermase can be assumed to traverse the entire DNA template
if it is given enough time.

The key extension for the purposes of this work is to allow for a different elongation rate at each nu-
cleotide position, instead of a constant rate across all nucleotides. For reasons that will become clear below,
we express the elongation rate for position i and gene j as a product of a gene-wide average elongation
rate ζ̄j and a position-specific scale factor (hereafter, the “local elongation rate”), ζi,j . In this version of the
model, we ignore promoter-proximal pausing and termination and focus on the gene body, where the elon-
gation signal is easiest to interpret. With these changes, the steady-state density for polymerase occupancy
at nucleotide i along the body of gene j is given by:

πi,j =
1

Zj
ωj

ζ̄jζi,j
, (1)

where ωj is the gene-specific productive initiation rate and the normalization constant for gene j of length
Nj is given by Zj =

ωj
ζ̄j

∑Nj
i=1

1
ζi,j

.

In turn, the local elongation rate ζi,j is defined by a generalized linear function of features along the
genome,

ζi,j = eκ·Yi,j , (2)
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where Yi,j is the feature vector at site i of gene j and κ is a corresponding vector of real-valued coefficients,
whose first element is assumed to be a constant of 1 to accommodate an intercept for the linear function at
the corresponding position in κ. The use of a single set of coefficients κ for all analyzed sites allows sparse
information about correlates of elongation rate to be pooled efficiently across many sites and many genes.

As in previous work [24, 25], we assume that the NRS read counts Xi,j for nucleotide i of gene j are
generated by a Poisson process, conditional on the steady-state density πi,j . In particular, we assume that

Xi,j ∼ Pois
(
λωj
ζ̄jζi,j

)
, where λ is a scale parameter for sequencing read depth. Thus, the expected NRS

read counts in gene j are proportional to the read depth and the productive initiation rate ωj and inversely
proportional to the gene-wide and local elongation rates ζ̄j and ζi,j . The parameters λ, ωj , and ζ̄j , however,
are nonidentifiable from steady-state data; only the compound parameter χj =

λωj
ζ̄j

can be estimated from

the data (see [24] for discussion). Thus, Xi,j ∼ Pois
(
χj
ζi,j

)
.

With these assumptions, the joint log likelihood function for M independent genes is given by:

`(X;χ,κ,Y) =

M∑
j=1

Nj∑
i=1

log


(
χj
ζi,j

)Xi,j
e
−
χj
ζi,j

Xi,j !


=

M∑
j=1

Nj∑
i=1

Xi,j log

(
χj
ζi,j

)
− χj
ζj,i
− logZ

=
M∑
j=1

Nj∑
i=1

Xj,i log (χj)−Xj,i (κ ·Yj,i)− χje−κ·Yj,i − logZ

=
M∑
j=1

sj log (χj)− κ ·Tj − χjUj − logZ, (3)

where Z does not depend on the free parameters and can be omitted in optimization, sj is the sum of read
counts for gene j, sj =

∑Nj
i=1Xi,j , and Tj and Uj are defined analogously as,

Tj =

Nj∑
i=1

Xi,jYi,j , (4)

Uj =

Nj∑
i=1

e−κ·Yi,j . (5)

This joint log likelihood can be maximized easily by gradient ascent, in a manner similar to standard
Poisson regression. The partial derivative with respect to the nth component of κ is given by,

∂

∂κn
`(X;χ,κ,Y) =

M∑
j=1

χjVj,n −Tj,n, (6)

where the final subscript n indicates the nth element of a vector, and Vj is defined as,

Vj =

Nj∑
i=1

e−κ·Yi,jYi,j . (7)
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For a given value of κ, the maximum for χj can be determined analytically as,

χ̂j =
sj
λUj

, (8)

where λ is approximated as the average read depth across all genes (see [24]). Thus, the gradient ascent
algorithm iteratively improves estimates of κ and, on each iteration, fully optimizes χj conditional on
the other parameters. Notice that the sufficient statistics sj and Tj need only be computed once, in pre-
processing, but Uj and Vj must be recomputed on each iteration of the gradient ascent algorithm. We used
a learning rate of 10−7 (i.e., the multiplier for the gradient on each iteration) for gradient ascent.

Penalized likelihood extension

In the case of a high-dimensional feature vector (i.e., with the k-mer or combined versions of the model)
we augmented the log likelihood with a sparsity penalty. We experimented with L1 (lasso), L2 (ridge
regression), and combined L1/L2 (elastic net) penalties but found the L1 version to work best in this setting.
In this version, the objective function to maximize is (cf., equation 3),

`′(X;χ,κ,Y, ν) =

M∑
j=1

[sj log (χj)− κ ·Tj − χjUj ]− ν
∑
n

|κn|, (9)

where ν is a hyperparameter determining the strength of the penalty and the final sum is over all features.
Here, the partial derivative with respect to the nth component of κ is given by,

∂

∂κn
`′(X;χ,κ,Y, ν) =

M∑
j=1

[χjVj,n −Tj,n]− ν sgn(κn). (10)

We determine a value for the hyperparameter ν separately for each analysis by cross validation. Specifi-
cally, we set ν to the value that maximized the Akaike Information Criterion (AIC) for held-out testing data,
using 80% of the data for training and 20% for testing (see Supplementary Fig. S7).

Extension allowing for sequence bias

We also implemented a version of the k-mer model that allows for some, potentially unknown, source of
nucleotide bias at the 3′ ends of aligned PRO-seq reads, and attempts to find k-mer associations relative to
that bias. The idea behind this model is to see if larger k-mer associations persist even if the nucleotides at
the apparent active site are somehow biased by the the protocol (see Supplementary Fig. S9C).

This version of the model allows for arbitrary relative frequencies of 3′ nucleotides πA, πC, πG, and πT,
which in practice are pre-estimated from the bulk distribution of 3′ nucleotides in the PRO-seq reads. They
are accommodated in the model by replacing the single read-depth scale parameter λ with a separate scale
factor for each nucleotide, λA, λC, λG, and λT, such that for each base b ∈ {A,C,G,T}, λb = 4λπb. For
mathematical convenience, we then reparameterize using ρb = λb

λ = 4πb.
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After this generalization, the (unpenalized) log likelihood becomes (cf. equation 3),

`(X;χ,κ,Y) =

M∑
j=1

sj log (χj)− κ ·Tj +

 Nj∑
i=1

Xij log ρi

− χjU ′j − logZ, (11)

where we use the notation ρi to indicate the value of ρb corresponding to the nucleotide at position i, and
where U ′j is like Uj (cf. equation 5) but has its terms weighted by the corresponding ρb parameters:

U ′j =

Nj∑
i=1

ρie
−κ·Yi,j

=

Nj∑
i=1

e−(κ·Yi,j−log ρi). (12)

The effect of this model is to add to each dot product κ ·Yi,j a quantity of − log ρi. Thus, nucleotides b
that are over-represented (with ρb > 1) are penalized, whereas nucleotides that are under-represented (with
ρb < 1) are rewarded. As a result, k-mer associations that simply reflect the background distribution are
down-weighted and ones that represent departures from that distribution are up-weighted. If the nucleotides
are uniformly distributed (with ρb = 1), the model collapses to the original version.

Smoothing filters for genomic features

As specified, the model requires that any influence on the elongation rate at nucleotide i of gene j must be
captured by the feature vector for the same position, Yi,j . Some features, however, appear to have broader
effects that spread out to adjoining nucleotide positions. For example, 3′ and 5′ splice sites are narrowly
defined at a few nucleotide positions, but metaplots of NRS data suggest that their effects on elongation
rate extend for as much as a hundred nucleotides (see, e.g., Supplementary Fig. S6A–C), likely because
physical interactions between Pol II and the spliceosome can occur over a fairly broad region.

To address this problem, we introduced a preprocessing device called a smoothing filter that can be
applied to any genomic feature to cause its influence to be distributed to adjacent nucleotide positions.
Even for features that are not narrowly defined at a few nucleotides, smoothing filters can be useful in
compensating for different levels of genomic resolution across features, for example, to put different ChIP-
seq data sets on the same genomic scale.

Formally, a filter Fr,σ,δ is a function defined by three parameters: a radius of application r, a smoothing
bandwidth σ, and an offset δ. Applying a filter requires replacing each (scalar) covariate Y (n)

i,j with a filtered

version, Ȳ (n)
i,j such that,

Ȳ
(n)
i,j =

1

Z

+r∑
k=−r

Y
(n)
i+k+δ,jFr,σ,δ(k), where Z =

+r∑
k=−r

Fr,σ,δ(k). (13)
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The filter Fr,σ,δ(k) can take a variety of functional forms, and simple filters can be composed to create
more complex ones (see [24]). In this work, however, we found it most useful to work with a Gaussian filter,

Fr,σ,δ(k) =
1

σ
e−

1
2

(k/σ)2 , (14)

and a generalized filter,
Fr,σ,δ(k) = λk+r, (15)

which is defined by a vector of nonnegative scale factors, λ = {λ0, ..., λ2r} that were estimated from
metaplots of PRO-seq data centered on the feature of interest. We used the generalized filter for the 3′

and 5′ splice-site features, and the Gaussian filter for the ChIP-seq-based features, including the histone
modifications and CTCF (r = 400 bp, σ = 100 bp; see examples in Supplementary Fig. S6). We also
applied a Gaussian filter (with r = 500 bp, σ = 200 bp) to the stem-loop feature, matching it to the
corresponding metaplot.

Standardization of feature values

As with any linear modeling application, the epigenomic and k-mer features needed to be standardized to al-
low the estimated coefficients to be on the same scale and comparable with one another. We used the simple
approach of shifting and rescaling the values for each feature to have a mean of zero and standard deviation
of one. Some features were defined for only a subset of genomic positions (such as DNA methylation,
which was relevant only at CpG dinucleotides); in these cases, the defined values were first standardized
and the remaining positions were subsequently assigned values of zero, to ensure that they had no positive
or negative effect in the linear model.

Standardization of the indicator features for k-mers led to a computational problem that required special
attention. Prior to standardization, these features had values of zero at the vast majority of genomic positions,
but after standardization these zeroes were converted to negative real values. As a result, the calculation of
the Uj and Vj values needed for each iteration of the gradient ascent algorithm (equations 5 and 7) became
considerably more laborious. We addressed this problem by first calculating the Uj and Vj values from
the unstandardized feature values (containing mostly zeroes) and using a linear transformation to convert
them to the corresponding values for the standardized features. In this way, the speed of processing the
unstandardized values could be maintained while properly considering the effects of standardization.

SimPol simulator

The SimPol (“Simulator of Polymerases”) program tracks the independent movement of RNA polymerases
along the DNA templates of a large number of cells (Fig. 2A). As detailed in ref. [25], the original program
accepts user-specified parameters for the initiation pause-escape, and elongation rates, as well as the number
of cells being simulated, the gene length, and the total time of transcription. For this study, we modified
the simulator to accept a vector of position-specific elongation rates, which could be pre-computed based
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on covariates (see below). We also omitted the pause-escape portion of the simulation model. Based on the
specified parameters, the simulator simply allows each polymerase to move forward or not at the specified
rates, in time slices of 10−4 minutes, assuming at most one movement per time slice, and prohibiting move-
ment if another polymerase blocks forward progress. The program was run until polymerase occupancy
along the gene body reached equilibrium (20 min simulated time), and then the empirical density was out-
put as a file in csv format. From this output, an accompanying R script was used to sample synthetic NRS
read counts at each nucleotide position (as in [25]), with a target mean read depth equal to that observed in
the real PRO-seq data for K562 cells (Supplementary Fig. S1B).

Generation of synthetic NRS data

For the epigenomic simulations, we used SimPol to simulate 10 replicates of 100 TUs of length 10 kbp in
5,000 cells. In each replicate, gene-specific initiation rates were sampled from real data for K562 cells [25],
by rescaling the estimated χ values as initiation rates α having a median of 1 event per min. We selected
six representative epigenomic features from real data for K562 cells: CTCF binding sites, four histone
marks, and RNA stem-loops (see Fig. 2B). To generate synthetic covariates, we sampled combinations of
these covariates from the real data in 1 kbp blocks (Supplementary Fig. S1C & D), ensuring that their
correlation structure was preserved. We then generated feature-specific local elongation rates according to
the same generalized linear model used for inference, but with the addition of Gaussian noise. Specifically,
we assigned a κ coefficient to each feature and set it equal to a value estimated in a preliminary analysis of
the K562 data, and then we set the local elongation rate for each position i to be ζi = exp(κ·Yi)+δi, where
δi ∼ N (0, 0.1). The vector of simulated ζi values was then passed to SimPol for simulation of polymerase
movement and NRS read counts (above). We also experimented with a version of these simulations without
Gaussian noise (Supplementary Fig. S2A–D).

The simulations for the 5-mer model were similar, but in this case we simulated 200 TUs in each repli-
cate, owing to the high-dimensional feature vector. We randomly sampled 100 5-mers and assigned them
coefficients ranging from −0.3 to 0.3, while the remaining 5-mers were assigned a coefficient of 0. The
initiation rates and position-specific elongation rates were determined as above, but without the addition of
Gaussian noise.

Analysis of real data

We acquired PRO-seq data sets for K562, CD14+, Hela-S3, and MCF-7 cell lines from published sources
[26, 31, 40, 41] and processed them using the proseq2.0 pipeline (https://github.com/Danko-Lab/proseq2.0)
[49]. The data were processed exactly as described in ref. [25]. Briefly, mapping was performed with
human genome assembly GRCh38.p13. The 3′ ends of mapped reads—which we take to represent the active
sites of transcriptionally engaged polymerases—were recorded in bigWig files and used for analysis. Gene
annotations were downloaded from Ensembl (release 99) in GTF [50]. Annotations of protein-coding genes
from the autosomes and sex chromosomes were used, excluding overlapping genes on the same strand.
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DENR [31] was applied separately to each data set to select dominant pre-mRNA isoforms and estimate
corresponding expression levels. Genes with a DENR-estimated abundance of <10 TPM (Transcripts Per
Kilobase Million) were removed.

We took several measures to refine gene annotations, select regions for analysis, and remove signals
not representative of elongation rates. First, we refined the annotated TSS positions using cell-type-matched
NRS data. For the K562 data, we used available CoPRO-cap (Coordinated Precision Run-On and sequencing
with 5′ Capped RNA) data [30] to re-position the TSS within a region −1500 bp to +1500 bp of the
annotated TSS selected by DENR. In the other three cell lines, we performed a similar refinement using the
5′ ends of aligned PRO-seq reads (as in [25]). Second, we conservatively defined the “gene body” for each
gene as the interval from 2250 bp downstream of the refined TSS (a distance we verified was sufficient to
eliminate all pause peaks) to 250 bp upstream of the annotated TTS. Gene bodies <6 kbp were omitted.
Finally, to eliminate potential internal TSSs—which create PRO-seq peaks not representative of gene-body
elongation rates—we used GRO-cap (Global Nuclear Run-On and sequencing with 5′ Capped RNA) [33]
or PRO-cap (Precision Run-On and sequencing with 5′ Capped RNA) [51] data where available, as well
as dREG [32] predictions from the primary PRO-seq data. Specifically, we masked out predicted dREG
peaks and 2-kbp intervals centered on GRO-cap or PRO-cap peaks (with read counts >10) (see example in
Supplementary Fig. S4). In later analyses (with MCF-7), we omitted the less reliable dREG filter and used
PRO-cap only. The final data sets consisted of 6,391 genes for K562, 5,336 for CD14+, 6,657 for HeLa,
6,193 for MCF-7. For the comparison of cell lines, we considered the intersection of these sets, which
consisted of 3,716 genes.

To eliminate the shared “U-shape” pattern along gene bodies, we first merged the data for all genes after
standardizing their lengths to a common scale and normalizing the raw read counts by dividing them by the
median for each gene (see Supplementary Fig. S5). We then smoothed the merged data using the LOESS
method, creating a gently U-shaped curve with an average height of one. We then adjusted the raw read
counts by dividing by the height of the LOESS curve at the corresponding positions, ensuring that the data
were flat on average. These adjusted read counts served as the inputs Xi,j for our model.

For the analysis of pausing locations within gene bodies (Fig. 3E and Supplementary Fig. S9A), we
partitioned each gene body into 200 bp intervals, summed the PRO-seq read counts within each window,
and identified the top 5 intervals for each gene as putative pausing locations.

Test for ligation bias

To test for a nucleotide bias in ligation, we leveraged the particular adapter design used for our CD14+ PRO-
seq library, as follows. These adapter designs, denoted as RA3 and RA5, incorporate a UMI consisting of
random bases (NNNNNN) at the 3′ end of the 5′ adapter (see Supplementary Fig. S10C). In this configura-
tion, the 3′ end of a UMI mirrors the 3′ end of an insert, allowing for a natural comparison of the nucleotide
composition of insert-adapter dimers with no-insert adapter dimers. We first established that the 3′ ends
of the synthesized UMIs have a uniform distribution of nucleotides (Supplementary Fig. S10D). Next, we
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examined the 3′ ends of UMIs that were either ligated to RA3 (no inserts) or inserts (with inserts). In a pool
of ∼20 million sequenced reads, about ∼90% were insert-adaptor dimers, and ∼3% were no-insert adapter
dimers. We found no major difference between the 3′-most nucleotides in these two sets (Supplementary
Fig. S10E), suggesting no ligation bias. In particular, the cytosine frequencies in the two sets were nearly
identical.

Enrichment logos for 5-mer candidates

To determine the enrichment logos of the 5-mer model, we clustered them using a K-means algorithm. The
5-mers were divided into two groups based on their positive or negative κ values, with the top 50 candidates
selected for each group. For each group, a K-means method with K = 2 was applied to cluster 5-mers with
similar κ values. The enrichment of the sequence logos for each cluster was visualized using ggseqlogo [52].
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Figure 1: A. Conceptual illustration of kinetic model for Pol II movement along DNA template in gene body.
At nucleotide site i, local elongation rate ζi is an exponentiated linear function of features Yi and coeffi-
cients κ. Promoter-proximal pausing and termination are ignored here. B. Graphical model representation
showing unobserved continuous-time Markov chain (Zi) and observed NRS read counts (Xi). C. Con-
ceptual illustration showing that differences in average gene-body read depth are explained by the scaled
initiation rate χ, while relative read depth is explained by the generalized linear model for local elongation
rate ζi. Read count Xi is assumed to be Poisson distributed with mean χ

ζi
. Pause and termination peaks are

omitted.
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Figure 2: A. The SimPol simulator tracks the movement of virtual polymerases across DNA templates in
a population of cells (left). Once an equilibrium is reached, read counts per site are sampled in proportion
to the simulated Pol II density, such that the average read depth is matched to real PRO-seq data (right).
B. Correlation map of selected epigenomic features for simulations (Spearman’s ρ). C. Box plots for es-
timated coefficients κ in ten replicates compared with ground truth in simulations (crosses). D. Estimated
vs. true nucleotide-specific elongation rates ζi across all simulated TUs (r2 = 0.748). E. Estimated vs. true
nucleotide-specific elongation rates ζi along an individual TU in ten replicates (r2 = 0.869).
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Figure 3: A. Estimated coefficients κ for the twelve epigenomic features considered, based on PRO-seq data
for K562 cells [26]. Sign indicates direction and absolute value indicates strength of correlation with local
elongation rate. Error bars indicate one standard error in each direction. B. Ratio of relative average PRO-
seq read depth in regions covered by each feature to that in regions not covered by it (see text). C. Metaplot
of relative read depths centered on four selected features. Dashed line represents average across all gene
bodies. D. Estimated vs. true locations of pausing locations within gene bodies (see text) (r2 = 0.60).
E. Predicted vs. true PRO-seq read depths (Xi) for held-out data averaged over 1kb intervals for all TUs
(r2 = 0.28).
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Figure 4: A. Estimated vs. true nucleotide-specific elongation rates ζi in ten rounds of simulated k-mer
data (r2 = 0.89). B. Estimated coefficients κ for top k-mers (k ≤ 5) based on PRO-seq data for K562
cells [26]. Sign indicates direction and absolute value indicates strength of correlation with local elongation
rate. Error bars indicate one standard error in each direction. C. Ratio of relative average PRO-seq read
depth at sites associated with each k-mer to that at sites not associated with it (see text). D. Metaplot of
relative read depths for three k-mers with positive coefficients (top) and three with negative coefficients
(bottom). E. Metaplot of relative read depths for six k-mers having coefficients close to zero. F. Sequence
logos summarizing clusters of 5-mers five nucleotides centered on the active site that are positively (left) or
negatively (right) associated with elongation rate.
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Figure 5: A. Estimated coefficients κ for twelve epigenomic features based on PRO-seq data for four mam-
malian cell lines: K562 [26], CD14+ [31], HeLa-S3 [41], and MCF-7 [40]. Sign indicates direction and
absolute value indicates strength of correlation with local elongation rate. Error bars indicate one standard
error in each direction. B. Estimated coefficients κ for top k-mers (k ≤ 5) in the same cell lines. C. Se-
quence logos summarizing clusters of 5-mers five nucleotides upstream of the active site that are positively
(left) or negatively (right) associated with elongation rate (see Methods).
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Figure 6: Screenshot from UCSC Genome Browser track showing predicted local elongation rates for the
K562, CD14+, HeLa-S3, and MCF-7 cell types in a region of the RAB10 gene. These predictions are
based on the combined k-mer and epigenomic model, but tracks are also available for the epigenomic model
only. Notice the elevated predicted rates at poly-T sequences, the reductions at cytosines, and the general
reduction throughout the exon.
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