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Abstract
Despite deep neural networks (DNNs) having
found great success at improving performance
on various prediction tasks in computational ge-
nomics, it remains difficult to understand why
they make any given prediction. In genomics, the
main approaches to interpret a high-performing
DNN are to visualize learned representations via
weight visualizations and attribution methods.
While these methods can be informative, each has
strong limitations. For instance, attribution meth-
ods only uncover the independent contribution
of single nucleotide variants in a given sequence.
Here we discuss and argue for global importance
analysis which can quantify population-level im-
portance of putative features and their interactions
learned by a DNN. We highlight recent work that
has benefited from this interpretability approach
and then discuss connections between global im-
portance analysis and causality.

Overview
Deep neural networks (DNNs) have demonstrated improved
performance in many prediction tasks in computational bi-
ology (Zhou & Troyanskaya, 2015; Alipanahi et al., 2015;
Zeng et al., 2016; Eraslan et al., 2019; Hiranuma et al., 2017;
Angermueller et al., 2017; Kelley et al., 2016). Despite their
promise, the main drawback of DNNs is the difficulty in un-
derstanding why they make any given prediction. Treated as
a black box, it is challenging to decipher whether improved
predictions result from learning novel biological features not
captured by previous methods or by gaining an advantage
through discriminating correlated features that are indirectly
related, such as technical biases of an experiment. Models
that exploit the latter may not necessarily generalize well,
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especially across datasets generated by different protocols,
laboratories, or sequencing technologies.

Currently, the main approach to interpret a convolutional
neural network (CNN) is to visualize learned representa-
tions in the input space. In genomics, such methods include
visualizing the convolutional filters (Alipanahi et al., 2015;
Kelley et al., 2016; Quang & Xie, 2016; Angermueller et al.,
2016; Cuperus et al., 2017; Chen et al., 2018; Ben-Bassat
et al., 2018; Wang et al., 2018), attribution methods (Ali-
panahi et al., 2015; Zhou & Troyanskaya, 2015; Kelley et al.,
2016; Shrikumar et al., 2017; Lundberg & Lee, 2017; Ghan-
bari & Ohler, 2019), and more recently in silico experiments
(Koo et al., 2018; Avsec et al., 2019). These approaches can
be grouped into local and global interpretability methods.
Local interpretability methods provide sample-level feature
importance, that is for individual sequences, while global
interpretability methods describe population-level feature
importance. Here, we give a brief overview of local and
global interpretability methods and then argue for the latter.
We highlight two applications where global interpretability
of a high-performing DNN has provided a more in-depth
understanding of the underlying biology.

Local interpretability
In genomics, attribution methods – such as in silico mutage-
nesis (Alipanahi et al., 2015; Zhou & Troyanskaya, 2015;
Kelley et al., 2016), gradients to inputs, i.e. saliency maps
(Simonyan et al., 2013), integrated gradients (Sundararajan
et al., 2017), and Deeplift (Shrikumar et al., 2017) – provide
a nucleotide-resolution map consisting of an importance
score for each nucleotide variant at each position for a given
sequence. There are several other interpretability meth-
ods that have not been thoroughly explored in regulatory
genomics applications, including deconvolution (Zeiler &
Fergus, 2014), GRAD-CAM (Selvaraju et al., 2017), SHAP
(Lundberg & Lee, 2017), and LIME (Ribeiro et al., 2016),
among others not cited here. The main benefit of attribution
methods is that they provide importance scores related to
decisions, considering the entire DNN.

In practice, many applications have utilized attribution meth-
ods to validate that their model has learned meaningful biol-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.956896doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956896
http://creativecommons.org/licenses/by-nc-nd/4.0/


Interpreting Deep Neural Networks Beyond Attribution Methods

ogy. For example, gradients (from predictions to the inputs)
have been employed to reveal known transcription factor
(TF) binding sites when trained to predict read profiles from
high-throughput sequencing datasets (Kelley et al., 2018).
Integrated gradients were used to uncover motifs for RNA-
protein interactions (Ghanbari & Ohler, 2019). Recently,
DeepLift was used to uncover known and novel TF binding
sites, including their syntax with respect to other binding
sites (Avsec et al., 2019). In silico mutagenesis - the gold
standard for local interpretability in genomics - has been
shown to uncover known motifs related to TF binding and
chromatin accessibility (Alipanahi et al., 2015; Zhou &
Troyanskaya, 2015; Kelley et al., 2016). Collectively, these
approaches have been useful to validate DNN predictions
for known disease-associated variants, albeit on an anecdo-
tal basis. More recently, local interpretability has helped
to understand the role of noncoding mutations in autism
spectrum disorder and to prioritize high-impact mutations
for further study (Zhou et al., 2019).

Global interpretability
Although attribution methods can be informative, their main
drawback is that it can only be applied locally to individual
sequences. However, any putative patterns that are identi-
fied in a given sequence may be influenced by other factors,
such as the 3D structure of the sequence or interactions with
other proteins. It remains difficult to disentangle whether
attribution scores are noisy due to an artifact of the attribu-
tion method itself or a consequence of poor representations
learned by the DNN. To convert sample-level representa-
tions captured locally in attribution maps into global repre-
sentations at the population-level, TF-MoDISco splits attri-
bution maps into smaller segments about learned patterns
called seqlets and clusters these seqlets to find averaged
representations, which reduces noise from any individual
seqlet (Shrikumar et al., 2018). Alternatively, global feature
representations can be identified by visualizing first layer
convolutional filters. This can be accomplished by directly
plotting their weights or via activation-based sequence align-
ments, which are converted to a position frequency matrix.
Recent advances have made it possible to intentionally de-
sign CNNs to learn more human-interpretable patterns in
convolutional filters. This includes design principles based
on spatial information flow through the network and em-
ploying highly divergent activation functions such as the
exponential function (Koo & Eddy, 2019; Koo & Ploenzke,
2019). In parallel, advances have been developed to make
direct weight visualization more interpretable (Ploenzke &
Irizarry, 2018).

Visualizing convolutional filters has the benefit of revealing
global sequence features. However, information about inter-
actions between first layer features is captured in the deeper

layers. For CNNs that employ pooling, deeper layers cannot
be visualized by the standard activation-based alignments
because spatial information of filter activations is lost after
each pooling operation. Another drawback is the lack of cor-
respondence between first layer features to decision making
(the output layer). TF-MoDISco uses attribution maps, so it
should, in principle, provide class-specific representations.
Nevertheless, it is still unable to quantify the importance or
effect size of the class-specific features. Recently, it was
shown that networks that make state-of-the-art predictions
can still yield unreliable attribution scores (Tsipras et al.,
2018; Alvarez-Melis & Jaakkola, 2018; Koo et al., 2019).
Thus, there are no guarantees that attribution maps in ge-
nomics will provide biologically meaningful representations
just because the DNN makes accurate classifications.

Global importance analysis: a quantitative
interpretability approach.

Heretofore, interpretability methods have been primarily
used in genomics to show that a DNN has learned repre-
sentations that match previously known motifs, serving as
validation for its performance. While attribution methods
provide a quantitative importance score for individual nu-
cleotide variants, they do not provide the statistical impor-
tance of any putative features, like motifs. To quantitatively
uncover the global importance of a motif, we would ideally
average the model predictions over a corpus of sequences
which contain the motif under investigation, while also ran-
domizing the other positions so that background noise and
extraneous confounding signals may be allayed. Mathemat-
ically, this is expressed as:

Importance(global) = E[y|xi = pattern)]− E[y|x] , (1)

where E is an expectation, y are the network predictions for
input sequences x, and xi represents the input sequences
with the studied pattern embedded starting at the ith position.
Equation 1 quantifies the effect size of just the embedded
feature at a specific position by marginalizing out the contri-
butions of the other positions.

Important to this approach is the randomization of all other
positions. Since the necessary sequences to calculate Eq. 1
may not exist in a given dataset, one solution is to generate
synthetic sequences. Such a procedure requires selection
of an appropriate sequence model to minimize any distri-
bution shift between the synthetic sequences and the exper-
imental data. One approach can be to sample sequences
from a profile based on a site-independent sequence model.
Here, one would expect that the profile model captures all
position-dependent biases that are present across the entire
experimental dataset but not any position-independent pat-
terns, like motifs. Alternative null models include random
shuffling and dinucleotide shuffling of the real sequences in
the dataset. If there exists high-order dependencies in the
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observed sequences, such as RNA secondary structure or
motif interactions, or if background features do not have a
strict positional dependence, a distribution shift may arise
between the null model and data distribution, which can
lead to misleading results. In genomics, prior knowledge
can help design a suitable null sequence model. Another
strategy can be to “knocked-in” candidate motifs into real
genomic sequences to measure the effect size that the motif
has on model predictions. Suitable genomic sequences may
come from the negative class in binary classification tasks.

Global importance analysis can be employed to uncover
higher-order interactions by embedding two (or more) can-
didate motifs in null model sequences and varying their
spacing. Occluding regions or patches in the data is another
powerful method to discover important features in images
(Zeiler & Fergus, 2014). In genomics, this is analogous to
an in silico CRISPR experiment.

Beyond validation - discovering new biology
To the authors knowledge, (Koo et al., 2018) was the first
demonstration of interpreting a DNN in genomics using
global importance analysis. They employed global impor-
tance analysis to show that their DNN, called ResidualBind,
trained to infer sequence-structure preferences of RNA bind-
ing proteins (RBPs), learned not only the underlying se-
quence motifs, but also based predictions on the number
of motifs, their spacing, and secondary structure context.
At the time, other DNNs had been applied to the same
RNAcompete dataset (Ray et al., 2013), including Deep-
bind (Alipanahi et al., 2015), DeeperBind (Hassanzadeh &
Wang, 2016), DLPRB (Ben-Bassat et al., 2018), and cDeep-
bind (Gandhi et al., 2018). Each method benchmarked their
performance on held out test data from RNAcompete and
also on in vitro-to-in vivo generalization tasks. For inter-
pretability, Deepbind and DLPRB demonstrated that a few
first layer convolutional filters learn representations that
represent known RBP motifs. Deepbind and cDeepbind per-
formed in silico mutagenesis anecdotally on a few sequences
to show that their models have learned representations that
resemble known RBP motifs.

In contrast, to interpret ResidualBind, (Koo et al., 2018)
initially employed first-order in silico mutagenesis to show
that canonical motifs are indeed learned. But this in itself
does not explain ResidualBind’s improved performance be-
cause previous methods also converged on similar motif
representations. By performing in silico mutagenesis on a
ResidualBind model trained on the RNAcompete dataset
for RBFOX1, which has an experimentally validated mo-
tif ‘UGCAUG’, they were able to generate hypotheses that
ResidualBind is learning to count the number of motifs,
consider spacing between the motifs and their positions
along the RNA probes. Using global importance analysis,

they carried out in silico experiments to test each hypoth-
esis. For instance, they systematically varied the number
of RBFOX1 motifs in synthetic sequences to verify that
ResidualBind integrates the presence of multiple binding
sites in a given sequence with an additive model. They also
varied the spacing between two RBFOX1 motifs in synthetic
sequences to show that ResidualBind’s predictions are con-
sistent with a biophysical intuition of steric hindrance. They
also interpreted a ResidualBind model trained on an RNA-
compete dataset for VTS1, which has a sequence preference
‘GCUGG’ in the context of a hairpin loop. Using in silico
mutagenesis, they found that the VTS1 motif was important
for the network, but there were many other nucleotides that
also exhibited high importance. These noisy positions were
presumably features related to RNA secondary structure. To
test this, they performed global importance analysis by de-
signing synthetic sequences embedded with the VTS1 motif
within the loop of a hairpin structure and the stem. Indeed
the VTS1 motif had a statistically significant effect size in
the hairpin loop. As a control, they embedded the VTS1
motif at similar positions in random sequences. These exper-
iments support that ResidualBind has learned both positive
and negative contributions of RNA structure context directly
from the sequence despite never explicitly being trained to
do so. Further, global importance analysis revealed that
ResidualBind has learned a significant 3’ GC-bias for a
subset of RBPs in the RNAcompete dataset.

Another demonstration of global importance analysis was
in a recent study by (Avsec et al., 2019). They trained their
DNN, called BPNet, to predict ChIP-nexus binding profiles
for various transcription factors. To interpret BPNet, they
first employed Deeplift, a local interpretability method, to
quantify the contribution of each base pair in an input se-
quence. To summarize recurring patterns, they employed
TF-MoDISco, a global interpretability method, to cluster
Deeplift scores into motif representations called contribu-
tion weight matrices. They found 51 motifs, but focused on
a subset of 11 TF motifs for further analysis, including the
Nanog, Oct4, Sox2, and Klf4 motifs. They then performed
global importance analysis to study properties of the learned
motifs. Specifically, they designed in silico experiments in
which they embed two TF motifs in synthetic sequences
and systematically vary their separation. They found the
Nanog motif was strongly enhanced by the presence of an-
other Nanog motif nearby. Similar findings were noted for
the Sox2 motif. Interestingly, they found directional depen-
dencies in the enhancement of Nanog and Sox2 binding.
They also performed occlusion experiments by removing
motifs from real sequences and replacing them with random
sequences. They found that Nanog motif instances exhibit
a 10.5 basepair periodicity which corresponds to the helix
property of DNA.

Together, these examples demonstrate the potential for inter-
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preting high-performing models beyond local interpretabil-
ity. Follow up global importance analysis can highlight
patterns that are shared across the dataset, elucidating more
informative representations that the model has learned, the
specific function it has fit, and ultimately deeper insight into
the underlying biology.

Connection to causality
Recently, attribution methods for deep neural networks have
been recast in a causal inference framework following the
do(.) calculus (Chattopadhyay et al., 2019; Pearl, 2012). In
this context, current attribution methods that are conditioned
on a single data example are identifiable as a special instance
of an individual causal effect (ICE). For a given data sam-
ple, x ∈ {xi}Li=1 – where xi is the ith feature and L is the
number of input features – the ICE of setting the ith feature
to a value α is estimated by: ICE = ydo(xi=α)(x)− y(x) ,
where ydo(xi=α)(x) denotes the output y of a DNN when
setting xi to a value α and y(x) represents the DNN output
for the unperturbed data sample. Setting a specific input fea-
ture to a value α is called an intervention and is represented
with the do operation. Thus ICE estimates the effect size
of an intervention to the ith feature for a given data sample.
Employing an intervention with a small perturbation to a
nucleotide variant is proportional to calculating the partial
derivative with respect to the input, while intervening at the
position level is similar to in silico mutagenesis. System-
atically calculating ICE separately for each input feature
generates an attribution map for a single sequence.

The causal effect of features identified by ICE are local
to an individual data sample and hence may not necessar-
ily generalize to the population level due to unaccounted
feature interactions (endogenous confounders). To address
this limitation, the average causal effect (ACE) calculates a
feature’s causal effect globally (Pearl, 2009), according to:

ACE = E
[
ydo(xi=α)(x)

]
− E[y(x)] (2)

where E[·] is an expectation over the data distribution. For
high-dimensional continuous random variables, such as im-
ages, ACE requires approximations to make the expectation
tractable (Chattopadhyay et al., 2019).

In genomics, the causal effect of a specific sequence pat-
tern with respect to a given molecular phenotype, such as
protein binding, can be estimated by experimentally mea-
suring the phenotypic outcome of sequences designed to
contain a fixed, known pattern (intervention) and randomiz-
ing the other positions within the sequences as well as the
intervention assignment. This process ensures ignorability
of treatment assignment and a common support between
treated and untreated, allowing for valid statistical inference
of the causal effect. Equation 2 can thus be calculated di-
rectly with experimental measurements. In practice, this

approach can be time consuming and costly due to the large
number of sequences and experiments required to calculate
Eq. 2. Alternatively, a well-trained neural network may be
used as a surrogate for these “causal” experiments, gener-
ating predictions in lieu of experimental measurements for
the sequences necessary to estimate Eq. 2. Indeed this is
precisely what global importance analysis is doing.

Global importance analysis does not make any claims that it
learns causal structure in the data. It is a tool that quantifies
the effect size of patterns that are causally linked to model
predictions. Hence, it should only be treated as a model
interpretability tool. Although DNNs are only capable of
learning associations, it may be possible that some of the
associations play a causal role in terms of the data generating
process. While model interpretability can suggest biological
insights and help researchers to develop hypotheses, the
patterns they learn are not proof of biological mechanisms.
Any new insights made by interpreting a DNN should be
followed up with wet lab experiments for validation.

Conclusion
Global importance analysis is a powerful interpretability
method that treats a high-performing DNN as an in silico
laboratory, where in silico experiments can be carried out
relatively cheaply. By leveraging randomized trials in the ex-
perimental design, we can quantitatively measure the effect
size of putative features and their functional relationships
– including positional dependence, sequence context, and
higher-order interactions – that are causally-linked to model
predictions. Hence, this is a powerful tool to quantitatively
interpret black box models in genomics.

To generate data-driven hypotheses, first-order and second-
order attribution methods can be employed to identify impor-
tant local features. Because attribution maps can be noisy,
it may be beneficial to employ CNNs that are designed to
learn more interpretable representations in first layer filters
(Koo & Eddy, 2019). It turns out that CNNs designed to
learn interpretable filters also yield more reliable representa-
tions with attribution methods (Koo et al., 2019). Clustering
attribution maps with TF-MoDISco may provide another
line of evidence (Shrikumar et al., 2018).

Model interpretability is a process. There is no “magic bul-
let” methodology that will uncover all relevant features and
their complex relationships. We recommend approaching
model interpretability as a good experimentalist would ap-
proach a biological problem – with steady stream of positive
and negative control experiments. Carefully designed com-
putational experiments can test alternative hypotheses and
also further support scientific claims. Global importance
analysis provides the necessary framework to carry out these
control experiments in silico in a quantitative manner.
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