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The function of the mammalian brain relies upon the specification and spatial
positioning of diversely specialized cell types. Yet, the molecular identities of the cell
types and their positions within individual anatomical structures remain incompletely
known. To construct acomprehensive atlas of cell types in each brain structure, we
paired high-throughput single-nucleus RNA sequencing with Slide-seq"*—a recently
developed spatial transcriptomics method with near-cellular resolution—across the
entire mouse brain. Integration of these datasets revealed the cell type composition
of each neuroanatomical structure. Cell type diversity was found to be remarkably

highin the midbrain, hindbrain and hypothalamus, with most clusters requiring a
combination of at least three discrete gene expression markers to uniquely define
them. Using these data, we developed a framework for genetically accessing each
celltype, comprehensively characterized neuropeptide and neurotransmitter
signalling, elucidated region-specific specializations in activity-regulated gene
expression and ascertained the heritability enrichment of neurological and psychiatric
phenotypes. These data, available as an online resource (www.BrainCellData.org),
should find diverse applications across neuroscience, including the construction of
new genetic tools and the prioritization of specific cell types and circuits in the study

of braindiseases.

The mammalian brainis composed of aremarkably diverse array of cell
types that display high degrees of molecular, anatomical and physi-
ological specialization. Although the precise number of distinct cell
types present in the brain is unknown, the number is presumed to be
in the thousands®*. These cell types are the building blocks of hun-
dreds of discrete neuroanatomical structures’, each of which has a
distinct rolein brain function. Advancesin the throughput of single-cell
RNA-sequencing technology have enabled the generation of cell type
inventories in many individual brain regions® ™, as well as the con-
struction of broader atlases that coarsely cover the nervous system'®".
Furthermore, the application of new spatial transcriptomics techniques
to the brain has begun to illuminate the spatial organization of brain
celltypes’#2°, However, a full inventory of cell types across the brain,
with their cellbodieslocalized to specific neuroanatomical structures,
does not yet exist.

Transcriptional diversity and cell type representation
across neuroanatomical structures

To comprehensively sample cell types across the brain, we used a
recently developed pipeline for high-throughput single-nucleus RNA
sequencing (snRNA-seq) that has high transcript capture efficiency and

nucleirecovery efficiency, as well as consistent performance across
diverse brain regions®’. We dissected and isolated single nuclei from 92
discrete anatomical locations derived from 55 individual mice (Fig. 1a,
Methods and Supplementary Table 1). Across all 92 dissectates, after
all quality control steps (Methods, Extended Data Fig. 1a and Supple-
mentary Table 2), we recovered a total of 4,388,420 nuclei profiles
withamediantranscript capture of 4,884 unique molecular identifiers
(UMIs) per profile (Extended Data Fig. 1b-e). We sampled nearly equal
numbers of profiles from male and female donors, with minimal batch
effects across mice, such that replicates of individual dissectates con-
tributed to each cluster (Extended DataFig. 1f). To discover cell types,
we developed a simplified iterative clustering strategy in which the
cells were repeatedly clustered on distinctions amongst a small set of
highly variable genes until clusters no longer could be distinguished
by atleast three discrete markers (Methods). Our clustering algorithm
largely recapitulated published results of the motor cortex® and cer-
ebellum® (Extended Data Fig. 1g), and it was scalable to support the
computational analysis of millions of cells (Methods). In total, after
quality control, including doublet removal and cluster annotation
(Methods), we identified 4,998 discrete clusters, the great majority
of which (97%) were neuronal (Fig. 1a, Extended Data Fig. 1h and Sup-
plementary Table 3), consistent with prior large-scale surveys of brain
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Fig.1|Spatially mapping cell types using whole-brainsnRNA-seq and
Slide-seqdatasets. a, Schematic of the experimental and computational
workflows both for whole-brain snRNA-seq sampling (upper arrows) and for
Slide-seq sampling and CCF alignment (lower arrows). The t-distributed
stochastic neighbour embedding (-SNE) representations of gene expression
relationships amongst 1.2 million spatially mapped snRNA-seq profiles
(downsampled from 4.3 million) are coloured by neurotransmitter identity
(upper left panel) and most common spatially mapped main region (upper
right panel). Adapted fromref.5, Allen Institute. b, Ridge plot depicting the
spatial distributions of excitatory cortical cell types along the laminar depth
of cortex (layers2to 6b) in the Slide-seq dataset. ¢, Heat maps depicting
expression of the main neurotransmitter genes (upper panel) and canonical
neuronal cell type markers (lower panel) across all 1,260 spatially mapped
neuronal clusters. Cell types are annotated by the cluster dendrogram. d, Heat
maps showing the spatial distributions of each spatially mapped cluster (rows)
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within each DeepCCF structure (columns; acompletelistisin Supplementary
Table 4). Example mapped cell typesin other panels arelabelled on the heat map.
e-h, Example confident mappings of neuronal cell types (confidence value > 0.3)
(Methods) throughout the brain plotted in the CCF-aligned Slide-seq data
(main plots) and in t-SNE space (insets) for the following cell types: Ex_Rorb_
Ptpn20 (e, 35arrays, 3,140 confident beads total), Ex_Ebf2_ligpl_1 (f, two arrays,
84 confident beads total), SerEx_Fev_A2m (g, six arrays, 201 confident beads
total), Inh_Nrk_Kctd16 (h,25arrays, 4,918 confident beads total). Scale bars,
1mm. CB, cerebellum; CTXsp, cortical subplate; Chol, cholinergic neurons;
Dop, dopaminergic neurons; Ex, excitatory neurons; HPF, hippocampal
formation; HY, hypothalamus; Inh, inhibitory neurons; L, cortical layer; MB,
midbrain; MY, medulla; NTS, nucleus tractus solitarii; Nor, noradrenergic
neurons; OLF, olfactory areas; P, pons; PAL, pallidum; STR, striatum; Ser,
serotonergic neurons; TH, thalamus; QC, quality control.



cell types'®Y. Across the brain, we estimate that our sampling depth
reached an estimated 90% saturation of cell type discovery (Methods
and Extended Data Fig. 1i).

To determine the spatial distributions of these cell types, we next
performed Slide-seq"? on serial coronal sections of one hemisphere
of an adult female mouse brain (Methods) spaced approximately
100 um, matching the resolution of commonly used neuroanatomical
atlases??. Slide-seq detects the expression of genes on 10-um beads
acrossthe transcriptome within afresh-frozen tissue section, providing
near-cellular resolution data. In total, we sequenced 101 arrays, span-
ning the entire anterior—posterior axis of the brain. We aligned the
sequencing-generated Slide-seqimages toimages of adjacent histologi-
calsections, whicharerichinneuroanatomical detail. To assign beads to
specific neuroanatomical atlas structures, we aligned the adjacent his-
tological sections to the Allen Common Coordinate Framework® (CCF)
(Methods and Extended Data Fig. 2a). This CCF provides hierarchical
regional definitions, allowing us to tag each Slide-seq bead with a‘Main
Region’—10of12large structural components of the brain (enumerated
in Fig. 1a)—as well as more fine-grained regional definitions, which we
call’‘DeepCCF’structures (listed in Supplementary Table 4). To confirm
theaccuracy of our alignment, we plotted the expression of three highly
region-specific markers across our CCF-defined regions and quantified
the distance of each expressing bead from the expected CCF region
(Extended DataFig.2b). From this analysis, we estimate our alignment
error to be in the range of 22-94 um (Extended Data Fig. 2c).

To localize cell types to brain structures, we computationally
decomposed individual Slide-seq beads into combinations of
snRNA-seq-defined cluster signatures using Robust Decomposition
of Cell Type Mixtures (RCTD)?. To handle the enormous cellular com-
plexity of these regions, we implemented RCTD in a highly parallelized
computational environment* and developed a confidence score that
more accurately distinguishes among groups of highly similar cell type
definitions (Methods). In total, we mapped 1,937 snRNA-seq-defined
clusters (Methods) to greater than 1.7 million beads within the Slide-seq
dataset. We computed the cortical layer depth of a set of 42 isocorti-
cal excitatory neuronal types and found that the mappings had the
expected highly regionalized radial depth’ (Fig. 1b) when ordered by
their best integrated match with a previous cortical atlas’, suggesting
faithful projection of cell type signatures into spatial coordinates.

Mostglial populations were distributed across large neuroanatomical
boundaries (telencephalon, mesencephalon and rhombencephalon),
indicating that, relative to neurons, regional gene expression differ-
ences amongst glial populations were small (Extended Data Fig. 2d).
Asingle oligodendrocyte precursor cluster was identified, in contrast to
arecentreport of additional oligodendrocyte precursor subspecializa-
tionin humans?. Theglial clusters with regional segmentation included
astrocytes, which divided into olfactory-specific, telencephalic and
non-telencephalic populations, as well as a cerebellum-specific popula-
tion (the Bergmann glia). Amongst our endothelial cell populations,
we identified populations preferentially localized to the choroid
plexus (Extended Data Fig. 2e). Additional regionally localized glial
populationsincluded the olfactory ensheathing neurons, identified by
their expression of the known marker homeobox genes Alx3 and Alx4
(ref. 26), and hypothalamic tanycytes, which uniquely express Rax?.

Tofacilitate interpretation and visualization of these large numbers
of neuronal populations, we performed hierarchical clustering, plotting
known markers of cell type identity across the leaves of the dendrogram
(Methods). We assessed the consistency of expression of these known
markers (mostly transcription factors) with the expected localizations
of cell types across 12 main brain regions defined in the Allen Brain
Atlas (Fig.1c):isocortex, the olfactory areas, hippocampal formation,
striatum, pallidum, hypothalamus, thalamus, midbrain, pons, medulla
and cerebellum. Amongst our neuronal clusters, we identified cortical,
amygdalar, olfactory and hippocampal excitatory projection neurons
(Tbrl, Neurodé6 and Satbh2); telencephalic interneurons (Sp8, Sp9 and

Htr3a); spiny projection neurons (SPN) of the striatum and adjacent
pallidal structures (Ppp1rib); hypothalamic neurons (Nkx2-1, Sim1,
Lhx6 and Lhx8); principal neurons of the thalamus (7¢cf712, Six3 and
Plekhgl); neurons of the brain stem that populate mostly midbrain
and pontine structures (Otx2, Gata3, Pax5, Pax7 and Sox14); neurons
expressing Hox homeobox genes that are primarily in the rhomben-
cephalon; and cerebellar neurons expressing Tfap2a and Tfap2b.
Neurons also specialize inthe specific neurotransmitters they express.
We detected discrete populations of gluatmatergic (Slc17a6, Slc17a7
andSlci17a8),y-aminobutyricacid (GABA)-ergic (S[c32al), glycinergic
(Slc6as), cholinergic (Chat and Slc18a3), serotonergic (Slc6a4 and
Tph2), dopaminergic (Slc6a3) and noradrenergic (Slc6a2 and Dbh)
celltypesdistributed inthe expected regions. By combining knowledge
of marker expression patterns with spatial localization of cell types,
we annotated the neuronal clusters of the dendrograminto a smaller
set of 223 metaclusters (Supplementary Table 5), many of which cor-
responded to known, named cell types within the various structures
ofthe brain (Supplementary Table 6). Together, these resultsindicate
that our systematic sampling covered the expected molecular diversity
of neurons across the mouse brain.

Most neuronal populations were mapped to specific and neuroana-
tomically related structures (Fig.1b,d-h), reflecting the strong regional
specificity of neuronal specializations. We assessed the distribution of
neuronal cell types within DeepCCF structures. Most cell types showed
highly refined regional localization; 60% of mapped clusters were confi-
dently mapped (Methods) to three or fewer DeepCCF regions, reflecting
the extent to which neuroanatomical nuclei are individually composed
of locally diversified cell types.

Variationinneuronal diversity across neuroanatomical
structures

Our initial results revealed surprisingly large numbers of cell types
distributed across the mainbrain regions. To explore cellular diversity
at afiner neuroanatomical scale, we tallied the number of cell types
confidently mapping to each DeepCCF structure, computing the
number of types needed to occupy 95% of allmapped beads localized
within that DeepCCF structure (Methods). Within the 12 main brain
regions, we found the largest diversity of cell types in the midbrain,
followed by hypothalamus, pons and medulla (Fig. 2a). Within the more
fine-grained DeepCCF structures, we found particularly high cell type
diversity within the periaqueductal grey matter and reticular nucleus
of the midbrain. Regions of high diversity in other major brain areas
included the parvicellular reticular nucleus of the medulla, the pontine
reticular nucleus, the lateral hypothalamic area and the bed nucleus
of the stria terminalis, consistent with our prior analysis of this area.
Although cell types were often highly focal within DeepCCF structures
(Fig.1b,d-h), some cell types also crossed DeepCCF boundaries. To
visualize cellular compositional relationships amongst brain regions
in greater detail, we built a force-directed graph in which the edges
between DeepCCF regions were weighted to represent the number of
clusters that jointly mapped in those regions (Methods and Fig. 2b).
Celltypeslargely were restricted to eachmajor brainareabut showed
greater mixing between pons and medullacompared to other regions,
indicating more mixing of cell types specifically within those structures
(Extended Data Fig. 3a).

Circuit-level analyses of the mouse brain have relied upon the avail-
ability of genetically delivered molecular tools to excite, inhibit and
record fromindividual neuronal populations. These tools have histori-
cally been delivered to specific subpopulations of neurons through
the use of recombinase-based systems, but more recently, RNA
editing-based strategies have been developed to enable translation of
transgenes only in the presence of specific endogenous messenger RNA
transcripts®°, Both strategies require nominating small numbers of
high-value marker genes that can optimally distinguishamongst many
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distinct clusters. To identify the minimum number of genes needed
to combinatorially define each cell type in our snRNA-seq dataset,
we framed the question as a set cover problem® (Methods and Sup-
plementary Methods), which can be solved to optimality using mixed
integer linear programming techniques®?*. Our algorithm effectively
identified a minimally sized set of defining genes for a great majority
of cell types (93%), requiring a median of three genes (Extended Data
Fig. 3b; all combinations are detailed in Supplementary Table 7).
Whenwe performed the analysis on each of the 12 major brain regions
separately, twice as many cell types could be uniquely defined by up
to two genes (Extended Data Fig. 3c). The minimally defining genes
were enriched for transcription factors (odds ratio =2.54, P< 0.001),
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types to their proximate neighbourhoods, separating each neighbourhood
into their CCF regions (Methods).d, Example confident mappings of the
nearest neighbour cell types (confidence value > 0.3) (Methods) for cerebellar
interneurons grouped by excitatory and inhibitory index cell types. Inset
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fromthe Allen Mouse Reference Atlas. Adapted fromref.5, Allen Institute.
Scalebars,1mm. CBN, cerebellar nuclei; CBX, cerebellar cortex; CNU, cerebral
nuclei; HB, hindbrain; Isoctx, isocortex.

G-protein coupled receptors (GPCRs; odds ratio =1.83, P< 0.001)
and neuropeptides (NPs; odds ratio =5.76, P < 0.001) (Methods and
Extended Data Fig. 3d), gene families that have been historically used
to define cell types in the brain.

Similar cell types are known to populate different brain areas. For
example, inhibitory neurons derived from the medial ganglionic emi-
nence and caudal ganglionic eminence are found throughout telence-
phalic structures, such as the striatum, amygdala, hippocampus and
isocortex. In our neuronal dendrogram, we had identified metaclus-
ters, which included cortical medial ganglionic eminence-derived
and caudal ganglionic eminence-derived neurons, based upon their
isocortical localizations, as well as expression of key lineage markers,



such as Lhx6, Nkx2-1and Sp8 (Supplementary Table 6). For each of these
neuronal cell types, we defined a neighbourhood of clusters in close
proximity within the dendrogram and examined their relative spatial
distributions across brain areas (Methods and Extended Data Fig. 4).
Interestingly, molecular relatives of these inhibitory neurons were
found throughout the telencephalon—includingin striatal and pallidal
structures—as well asin the hypothalamus. By contrast, using the same
neighbourhood definition for excitatory isocortical neurons—which
arethelong-range projection neurons of the cortex—revealed cell types
withamorelimited distribution, only within other cortical structures
like the hippocampus and olfactory cortex (Fig. 2c).

We wondered whether the above result—observing more spatially
restricted molecular specialization amongst projection neurons com-
pared with local interneurons—might be more generally observed
throughout the brain. We therefore repeated the same analysis on two
other brain areas for which the projection versusinterneuron distinc-
tionsamongst transcriptionally defined cell types are well known: the
striatum and cerebellar cortex. Examination of the neighbourhoods of
celltypesinthestriatumrevealed the same pattern,in which the spiny
projection neurons showed close cellular relatives within only pallidal
andstriatal structures, whereas theinterneuron populations had rela-
tives spread throughout the telencephalon (Fig. 2c). Similarly, in the
cerebellum, the projection neurons—Purkinje cells—had no molecularly
similar relatives outside the cerebellar cortex, whereas the cerebellar
interneurons had close relativesin several brain stem structures, such
asthe dorsal cochlear nucleus (Fig. 2d). Together, these results suggest
that regional specialization in the brain is strongest in the principal
projection neurons of individual structures, whereas interneurons
aremore likely to retain molecular features that are shared across dif-
ferent brain areas.

Principles of neurotransmission and NP usage

Neurons communicate with each other across synapses through the
expression of different small molecules and peptides. We asked in which
regions and inwhich combinations neurotransmitters are used across
the cell types of the brain. Because the production and usage of these
neurotransmitters at synapsesrequire different sets of gene products,
we leveraged our snRNA-seq datato assign neurotransmitter identities
to each cell type (Methods).

Overall,amongst the neuronal snRNA-seq clusters, cell type diversity
was well balanced between excitatory and inhibitory cell types (2,420
excitatory and 2,246 inhibitory), and co-transmission of glutamate
with an inhibitory neurotransmitter (GABA or glycine) was relatively
rare (1.1% of all neuronal clusters) (Fig. 3a). Most co-expressing popula-
tions (35 of 54) expressed the glutamate transporter Slc17a8 (VGLUT3)
and derived from a wide range of lineages, populating regions across
the telencephalon, midbrain and hindbrain. Amongst neuron types
expressing neuromodulators, we found that the cholinergic neurons
were more diverse (102 clusters) compared to serotonergic and dopa-
minergictypes (25and 13 clusters, respectively) and were distributed
much more widely across the nervous system (Extended Data Fig. 5a,b).

Although the brain-wide cellular composition was balanced between
inhibitory and excitatory types, individual brain regions are known to
be composed of more skewed compositions of excitatory or inhibitory
neurons. To characterize neurotransmission balance comprehensively
inallstructures, we quantified the excitatory-to-inhibitory balance of
each DeepCCF region by comparing the ratio of the number of beads
mapping to excitatory cell types with those mapping to inhibitory
cell types (Methods). The computed excitatory-to-inhibitory bal-
ances recovered the expected broad patterns, including the domi-
nance of excitatory cells in thalamic nuclei, and the lack of excitatory
populations within the striatum (Fig. 3b). Furthermore, more subtle
distinctions could also be appreciated, such as the higher inhibitory
proportionin certain thalamic nuclei known to contain interneurons

(for example, LGd, the dorsal part of the lateral geniculate complex).
Within the telencephalon, regions were more commonly skewed toward
apredominantly excitatory (for example, cortical regions) or predomi-
nantly inhibitory (for example, striatum) composition. In addition,
regions with high excitatory-to-inhibitory imbalance were more likely
to be predominantly excitatory, whereas predominantly inhibitory
regions were less common, being largely restricted to the striatum,
the thalamic reticular nucleus and a few brain stem nuclei.

NPs exert varied and complex neuromodulatory effects on circuits
through downstream GPCRs. NPs are also often co-expressed with
other neurotransmitters to directly modulate synaptic activity. We
utilized our spatially mapped cell type inventory to characterize the
basicrulesand principles by which NPs are used throughout the brain.
We curated aset of 65 genes that produce at least one NP with aknown
downstream GPCR (Supplementary Table 8) and quantified the number
of NP-expressing and GPCR-expressing cell types. Amongst our
4,998 cell types, 80.9% expressed at least one NP, underscoring the
ubiquity of NP signalling in the mammalian central nervous system
(Fig.3c).Receptor expression was even more ubiquitous: 91.6% of cell
types expressed receptors for more than three NPs. Historically, NP
signalling has been particularly strongly associated with the hypothala-
mus, where many of the NPs were originally biochemically discovered.
However, our analyses did not find that, overall, hypothalamic neurons
were any more likely to express NPs compared with neurons in other
brain areas (Extended Data Fig. 5¢). Rather, the hypothalamus, as well
as the pallidum and midbrain, were more likely to express a subset of
NPs—like oxytocinor vasopressin—that are highly selectively expressed,
whereas other brain regions expressed NPs that were more ubiquitous
throughout the nervous system (Fig. 3d).

Nearly all NPs and receptors were expressed by neuronal cell
types (Fig. 3e). However, we identified two likely examples of NP
signalling between neurons and glia. The expression of Cartpt was
detected in 232 neuronal populations distributed in hypothalamic
and midbrain regions, whereas its receptor Gpr160 (ref. 35) was
highly restricted to microglia and macrophage populations. Inter-
estingly, Gpr160 induction was observed to be within microgliain a
recent study of spinal cord nerve injury®. Conversely, the expression
of the angiotensin-encoding gene Agt was found to be primarily in
astrocytes found in non-telencephalic regions (Fig. 3e and Extended
Data Fig. 5d), whereas its receptors Agtrla and Agtr2 were enriched
in non-telencephalic neurons. Astrocyte-neuron signalling through
angiotensin could have important homoeostatic roles, particularly
inthe midbrain where dopaminergic neurons vulnerable to neurode-
generationin Parkinson’s disease were recently identified to selectively
express Agtrla®, and inhibition of the angiotensin receptor has been
shown to be neuroprotective in Parkinson’s disease animal models®
and in clinical cohorts®,

Activity-dependent gene enrichment across cell types
and regions

Neuronal cells, in response to an increase in action potential firing,
induce the expression of hundreds of activity-regulated genes (ARGs)*.
The prototypical ARG s Fos, whichisinduced within minutes of elevated
activity, along with several highly correlated genes, including Junb and
Egr1,whicharecollectively referred to asimmediate early genes (IEGs).
These IEGs have been primarily discovered and studied in excitatory
cortical or hippocampal cells. Our Slide-seq and snRNA-seq atlases
provide two key advantages for assessing ARG heterogeneity across
celltypes. First, they are comprehensive in their coverage of the brain
toenable broad comparative analysis. Second, they are performed on
braintissue thatis frozenimmediately after animal perfusion, eliminat-
ing any post-mortem effects on ARG expression*®#,

To characterize ARGs across neuronal types, we first partitioned our
mapped clusters into 28 cell type groups defined by their Slide-seq
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Fig.3|Neurotransmissionand NP usage acrossregions of the mouse brain.
a, Upset plot of the frequency of neurotransmitter usage by individual
snRNA-seq-defined cell types (upper panel). Dot plot depicting the spatial
distribution of cell typesin each of the neurotransmitter groups across major
brainareas (lower panel). B, interbrain. b, Point estimates of the fraction of
each DeepCCFregion composed of mapped inhibitory cell types. Dataare
presented as this calculated proportion (central dots) with the 95% confidence
interval of the corresponding binomial distribution denoted by the error bars
(Methods). ¢, Histograms denoting the number of distinct NPs (upper panel)
and neuropeptide receptors (NPRs; lower panel) expressedineach

mapped region and their neurotransmitter identity (Methods). We
then selected 406 candidate ARGs whose correlation with Fos was at
least 0.3, met statistical significance (adjusted P < 0.05) and for which
Foswas also above the 99.5% quantile of all correlationsin at least one
celltype group (Methods). To ensure robustness, we validated that our
candidate ARGs were similarly correlated with another canonical IEG,
Junb (Extended Data Fig. 6a). To identify which genes are consistently
correlated across cell type groups, we constructed a bipartite graph,
connecting each gene to cell type groups within whichitis highly cor-
related with Fos (Methods). Examination of this graph revealed that the
most connected genes—those that are most consistently and highly
correlated with Fos across the brain—included most canonical IEGs,
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snRNA-seq-defined neuronal cell type.d, Fraction of all cells expressing each
NP (y axis) ineach of the 12 main brain areas. Regions accounting for more than
50% of total expression of that NP are coloured and labelled. n =43 NPs
examined over1,182 cell types. Box plots are centred at the median and
bounded by the interquartile range (IQR; 25th-75th percentiles), with the lower
whisker at the data point greater than or equal to (25th percentile - 1.5 x IQR)
and the upper whisker at the data pointless thanor equal to (75th percentile +
1.5x1QR). e, Dot plot depicting the number of cells expressing each NP (left of
thedottedline) and NPR (right of the dotted line) within each major cell class.
OPC, oligodendrocyte precursor.

such as £grl, Npas4, Arc, Junb, Btg2 and Nr4al. We selected the eight
most correlated of these genesto compare their relative activity across
regions and cell types (Methods and Extended Data Fig. 6b). Expression
ofthese IEGs across eachregioninour Slide-seq dataset was highestin
theisocortex, olfactory bulb, striatum and amygdala, whereas regions
of cerebellum and medulla showed the lowest average IEG expres-
sion (Fig. 4a and Extended Data Fig. 6¢). Similarly, in our snRNA-seq
clusters, IEG activity was noticeably higher in excitatory populations,
particularly those in the isocortex, olfactory areas and hippocampal
formation (Extended Data Fig. 6d).

Our candidate ARG set also contained many genes connected to
only a few of the major cell type groups, suggesting heterogeneity
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Fig.4 |Patterns of activity-dependent gene expression across brain
regions. a, Box plots quantifying mean core IEG Slide-seq counts per 10,000
coloured by main brainregions. n=232DeepCCF regions examined across12
mainregions. Box plots are centred at the median and bounded by the IQR
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lessthan or equal to (75th percentile + 1.5 x IQR). b, Downsampled dot plot of
correlation coefficients between Fosand candidate ARGs (columns) across

in the transcriptional programs of cell types in response to activity.
To more deeply explore cell type-specific ARGs, we hierarchically
clustered our gene set into seven clusters. Clusters 1-4 were the most
universally correlated across cell types and regions (Fig. 4b, Extended
Data Fig. 6e and Supplementary Table 9) and were highly enriched
for known ARGs** (Methods and Extended Data Fig. 6f). Cluster 1also
included Midn, recently discovered to have a key role in IEG protein
stability*’. Clusters 5-7, meanwhile, were more cell type specific; cluster
Swasrelatively specific for telencephalic excitatory neurons, cluster 6
was more specific for telencephalic inhibitory neurons, and cluster 7
was specific for dopaminergic neurons. Ourinhibitory-specific cluster
6 included several genes previously reported as activity regulated in
cortical interneurons, such as Crh and Cxcli4 (ref. 41). Many of these
genesareimplicated in dendritic spine development and re-modelling,
such as Tshr**, Nectin3 (ref. 45) and Sorcs2 (ref. 46), indicating that
synaptic plasticity may be a particularly prominent component of
the activity-related response in telencephalicinhibitory cell types. To
explore how the transcription of these gene sets may be differentially
regulated across cell types, we compared the enrichment of transcrip-
tion factor targets between genes highly correlated with Fos in either
telencephalic excitatory or inhibitory cells (Methods). Amongst the
46 transcription factors with significant enrichment (P < 0.05, false
discovery rate (FDR) corrected) (Fig. 4c¢), most (26 transcription fac-
tors) were jointly enriched in both inhibitory and excitatory popula-
tions, but inhibitory cells were selectively enriched for the targets of
18 transcription factors. These transcription factorsincluded several
well-known chromatin re-organizers, including CTCF, BCLAF1, and
CHDI, suggesting an important role for epigenetic modification of
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major regions of the brain (rows). Genes are coloured by their established ARG
gene set*identity if applicable. Numbers at the bottom correspond to ARG
clusteridentities as determined by hierarchical clustering. PRG, primary
response gene; SRG, secondary response gene. ¢, Scatterplot quantifying
transcription factorenrichment (P < 0.05, FDR corrected) between excitatory
and inhibitory populations. Enrichmentscores are computed by fgsea using a
positive one-tailed test. Transcription factors are coloured by their cell type
enrichmentspecificity.

inhibitory neurons in activity-dependent processes. Together, these
analyses reveal how brain-wide, unbiased sampling of cell types can
reveal not only the molecular markers defining these types but also
conserved, dynamic patterns of gene regulation that occur across
cell type groups.

Heritability enrichment of neurological and
psychiatric traits

Over the past 10 years, genome-wide association studies (GWAS) have
uncovered risk loci associated with numerous neuropsychiatric traits.
Identifying the cell types and brain regions in which theselociinfluence
diseaserisk could catalyse new directionsin understanding pathogenic
mechanisms of many difficult-to-treat brain diseases. Because of their
comprehensive coverage, our combined spatial and single-nucleus
transcriptomics datasets provide a unique opportunity to investigate
the relative enrichment of disease risk alleles across the entire mam-
malian nervous system. Several studies have integrated single cell
and GWAS by aggregating cells from the same type and computing
an enrichment statistic between the gene expression pattern of the
cell type and the genes associated with risk by GWAS™3%4"* We used
arecently described approach specifically developed for single-cell
datasets®® (Methods) to evaluate the relative enrichment of loci from
16 neurological and psychiatric traits across our spatially localized cell
types (Supplementary Table 10).

After multiple hypothesis correction testing (Methods), we iden-
tified a total of 145 cell types across 11 traits that met statistical sig-
nificance (adjusted P < 0.05) (Fig. 5a and Supplementary Table 11).
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Fig.5|Heritability enrichment for traits studied by GWAS across brain cell
types. a, Bar plots quantifying significantly enriched (P < 0.05, computed by
single-cell diseaserelevance score (scDRS) using the one-sided Monte Carlo
test, FDR corrected) (Methods) cell types for each traitin non-neurons (grey)
and neurons (coloured by mainregion). b, FDR-adjusted (adj.) -log,, Pvalue
enrichmentscores for each celltype, grouped and coloured by their main
regions, for schizophrenia. Squares and triangles denote excitatory and
inhibitory clusters, respectively; gliaare shownin grey on the far right. Pvalues
are computed by scDRS using aone-sided Monte Carlo test. ¢, Ridge plots
showing the layer distribution of each excitatory cortical cell type found to
besignificantly enriched (P<0.05, computed by scDRS using the one-sided
Monte Carlo test, FDR corrected) for schizophrenia heritability. d, Dot plot of
expression of markers of striatal SPN subtype identity grouped by category

The significance results were robust to using either pseudocells—
aggregated collections of cellular neighbourhoods that reduce
both computational complexity and noise from statistical dropout
(Methods)—orindividual cells (Extended DataFig. 7a). For Alzheimer’s
disease, heritability enrichment was significant in macrophages and
microglia, consistent with analyses of multiple prior datasets®**”*, In
autism spectrum disorder, two neuronal cell types showed statisti-
cally significantenrichment distributed within the bed nucleus of the
striaterminalis, an area with well-established roles in mediating social
interactions, and the inferior colliculus, amidbrainstructure involved
in modulating auditory inputs, a common symptom of patients with
autismspectrumdisorder. Educational attainment and major depres-
sive disorder—two traits with known high polygenicity—showed enrich-
ment across several regions (Extended Data Fig. 7b).
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(overall cell class identity, pathway identity, matrix versus striosome and eSPN
identity). Six additional genes thatare enriched in the schizophrenia-enriched
(P<0.05,computed by scDRS using the one-sided Monte Carlo test, FDR
corrected) SPNtypesare also shown.STRd, striatum dorsal region; STRy,
striatum ventral region; SCZ, schizophrenia. e, Representative sections showing
the confident mappings of three SPN cell types (confidence value > 0.3)
(Methods) significantly enriched (P < 0.05, computed by scDRS using the
one-sided Monte Carlo test, FDR corrected) for schizophrenia heritability
exemplifying Inh_Ppplrlb_Drd2_Sema5d_2 (top panel; 9 arrays, 178 confident
beadstotal), Inh_Ppplrlb_Drd2_Sema5d_1(middle panel; 6 arrays, 119 confident
beadstotal),and Inh_Ppplrlb_Drd1l_Zp3r_4 (bottom panel; 19 arrays,

1,008 confident beadstotal). Scale bars,1 mm.

In schizophrenia (Fig. 5b) and bipolar disorder (Extended Data
Fig.7b), we observed enrichment signals within the excitatory neurons
oftheisocortexand the inhibitory neurons of the striatum, consistent
bothwith the known shared heritability between these two disorders®>>
and with prior enrichment studies performed on more limited collec-
tions of single-cell datasets*®. Importantly, although these two signals
rose above our stringent threshold for multiple hypothesis testing cor-
rection, numerous other subthreshold signals were present, suggest-
ing that these cell type groups are not the only neuronal populations
harbouring enrichment for GWAS-associated genes. The significantly
enriched excitatory populations were restricted to the lower layers
(layers 5and 6) of cortex (Fig. 5¢c) and expressed markers suggestive of
intratelencephalic and layer 6b identities (Extended DataFig.7c). The
enriched striatal neuron types all expressed the marker gene PppIrib,



identifying them as medium spiny neurons, the principal projection
neurons of the dorsal and ventral striatum, which also populate sev-
eral other pallidal structures. The SPNs can be subdivided by their
projection pathway (indirect versus direct), their spatial localization™*
(to the striatal matrix or striosome compartments) or more recently,
molecular differences with as yet unclear functional implications”
(called ‘eccentric’ SPNs versus canonical SPNs). We found that the SPN
clusters with the strongest enrichment for schizophrenia heritability
expressed markers of an eSPNidentity, suchas Casz1, Htr7 and Colllal,
and were found within both the dorsal and ventral striatum as well as
other striatal and pallidal structures (Fig. 5d,e). Together, these results
lend additional support to the potentialimportance of corticostriatal
circuitry inthe pathogenesis of schizophrenia and highlight the value
of abrain-wide atlas for nominating disease-relevant cell types.

Discussion

Here, we combined snRNA-seq and high-resolution spatial transcrip-
tomics with Slide-seq to generate a comprehensive inventory of cell
types across each region of the mouse brain. In total, we identified
4,998 clusters of cells, mostly neuronal, with the diversity distributed
primarily in subcortical areas, most especially in the midbrain, pons,
medullaand hypothalamus. We utilized the data to uncover specific NP
signallinginteractions, leveraging the specificity of several NPs and/or
their receptors. We also characterized activity-related gene expression
patterns across all cell types, identifying conserved genes associated
with activity as well as activity-related genes that are more specific to
subtypes of neurons. Finally, we nominated specific cell types that are
preferentially enriched for the expression of genes associated with
human neurological and psychiatric diseases.

We found thatinterneurons share molecular features with each other
across afar wider diversity of neuroanatomical structures than projec-
tion neurons, which tend to be more unique to each region. In the cortex
and hippocampus, where the functions of interneurons have been
studied in the greatest detail, distinct interneuron types are known
to have specific circuit roles, such as modulating burst firing, tuning
spike timing and mediating disinhibition®. Many of these same circuit
features are widespread throughout brain areas; for example, local
disinhibition modulates respiratory microcircuitry in the medulla®”*®
and fear learning in the amygdala®. Interneuron populations may,
therefore, maintain more similar molecular identities to serve these
common circuit roles, even while the principal projection neurons
of individual structures become more specialized. We restricted our
analysis to three structures for which the interneuron and projection
neuronidentities of transcriptionally defined cell types are well known
(cortex, striatum and cerebellum); as circuit mapping technologies
mature and provide this information for other regions, it willbe impor-
tant to extend these analyses to those areas as well.

A comprehensive inventory of mouse brain cell types should find
numerous otherimmediate uses. One major implication of our analyses
isthatasubstantial fraction of cell types we define are largely unstudied
by modern neuroscience methods. To facilitate their interrogation,
we deployed an algorithm to identify the minimal set of genes able
to specifically define each of our 4,998 clusters. We hope that these
genes provide aclear pathtoward the development of genetic tools that
can access awider portion of the astonishing diversity of the nervous
system. Interestingly, we noted a large enrichment of transcription
factors amongst the list of genes that most concisely define individual
celltypes. Combinatorial transcription factor expressionisarecurring
theme, across central nervous system structures, in the neurodevel-
opmental specification of diverse neural cell types®. Although it is
clearinour datathat many of these transcription factor combinations
represent fixed cell type specifications (based upon our knowledge of
how certain transcription factors control development in particular
brain areas), additional single-cell data—acquired at different times

of day and in response to different environmental challenges—will be
needed to understand which of these clusters represent populations
fixed in development and which are more mutable in response to chal-
lenges experienced in adulthood.

Beyond achieving more comprehensive access to brain cell types,
we anticipate that our dataset will drive computational innovations
that better neuroanatomically partition the nervous system and that
canintegrate other important features of cell type identity, such as
connectivity, morphology and physiology. Finally, we expect that
our atlas will provide a useful scaffold for interpreting and contex-
tualizing the cell types that are discovered by similar efforts to con-
struct cellular inventories of the human brain®'. To facilitate these
kinds of applications across neuroscience, we have built a portal to
visualize, interact with and download these data (www.BrainCell-
Data.org). Functions have been implemented to plot gene expres-
sion and co-expression in CCF-registered space and within each cell
type and to identify genes and cell types enriched within particular
brainregions. We also enable the visualization of spatial localizations
of each cell type to specific neuroanatomical structures and pro-
vide a list of minimum marker genes needed to uniquely distinguish
them. We hope that facile access to and interaction with these rich
datasets will provide a firm foundation for functionally character-
izing the extraordinarily diverse set of cell types that compose the
mammalian brain.
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Methods

Animal housing

Animals were group housed with a 12-h light-dark schedule and
allowed to acclimate to their housing environment (20-22.2 °C,
30-50% humidity) for 2 weeks post-arrival. All procedures involving
animals at Massachusetts Institute of Technology were conducted in
accordance with the US National Institutes of Health Guide for the
Care and Use of Laboratory Animals under protocol number 1115-
111-18 and approved by the Massachusetts Institute of Technology
Committee on Animal Care. All procedures involving animals at the
Broad Institute were conducted in accordance with the US National
Institutes of Health Guide for the Care and Use of Laboratory Animals
under protocol number 0120-09-16.

Brain preparation

At 56 days of age, C57BL/6) mice were anaesthetized by administration
of isoflurane in a gas chamber flowing 3% isoflurane for 1 min. Anaes-
thesia was confirmed by checking for a negative tail pinch response.
Animals were moved toadissection tray, and anaesthesia was prolonged
with a nose cone flowing 3% isoflurane for the duration of the proce-
dure. Transcardial perfusions were performed with ice-cold pH 7.4
HEPES buffer containing 110 mM NacCl, 10 mM HEPES, 25 mM glucose,
75 mM sucrose, 7.5 mM MgCl, and 2.5 mM KCI to remove blood from
brainand other organs sampled. For usein regional tissue dissections,
the brain was removed immediately; the meninges was peeled away
from the entire brain surface, then frozen for 3 min in liquid nitrogen
vapour and moved to -80 °C for long-term storage. For use in genera-
tionofthe Slide-seq dataset through serial sectioning, the brains were
removed immediately, blotted free of residual liquid, rinsed twice with
OCT to assure good surface adhesion and then oriented carefully in
plasticfreezing cassettes filled with OCT. These cassettes were vibrated
in a Branson sonic bath for 5 min at room temperature to remove air
bubbles and adhere OCT well to the brain surface. The brain’s precise
orientation in the x-y-z axes was then reset just before freezing over
abath of liquid nitrogen vapour. Frozen blocks were stored at —80 °C.

Construction of the brain-wide snRNA-seq dataset. Regional dissec-
tions. Frozen mouse brains were securely mounted by the cerebellum
or by the olfactory/frontal cortex region onto cryostat chucks with
OCT embedding compound such that the entire anterior or posterior
half (depending ondissection targets) was left exposed and thermally
unperturbed. Dissection of anterior-posterior spans of the desired
anatomical volumes was performed by hand in the cryostat using an
ophthalmic microscalpel (Feather Safety Razor #P-715) precooled to
-20 °C and donning 4x surgical loupes. To microanatomically assess
dissection accuracy, 10 pm coronal sections were taken at relevant
anterior—posterior dissection junctions and imaged following Nissl
staining. Each excised tissue dissectate was placed into a precooled
0.25 ml polymerase chain reaction tube using precooled forceps and
stored at =80 °C. Nuclei were extracted from these frozen tissue dis-
sectates within 2 days using gentle detergent-based dissociation as
described below.

Generation of nuclei suspension and construction of snRNA-seq
libraries. Nuclei were isolated from regionally dissected mouse
brain samples as previously described®®. All steps were performed
oniceor coldblocks, and all tubes, tips and plates were precooled for
longer than 20 min before starting isolation. Dissected frozen tissue
in the cryostat was placed in a single well of a 12-well plate, and 2 ml
of extraction buffer was added to each well. Mechanical dissociation
was performed by trituration using aP1000 pipette, pipetting 1 ml of
solution slowly up and downwithal mlRainintip (number30389212),
without creation of froth or bubbles, atotal of 20 times. The tissue was
allowed torestinthe buffer for 2 min, and trituration was repeated. In
total, four or five rounds of trituration and rest were performed. The

entire volume of the well was then passed twice through a 26 gauge
needle into the same well. Approximately 2 ml of tissue solution was
transferred into a 50 ml Falcon tube and filled with wash buffer for a
total of 30 ml of tissue solution, which was then split across two 50 ml
Falcontubes (approximately 15 ml of solutionineach tube). The tubes
were then spuninaswinging-bucket centrifuge for 10 minat 600gand
4 °C. Following spinning, the majority of supernatant was discarded
(approximately 500 pl remaining with the pellet). Tissue solutions
fromtwo Falcon tubes were then pooled into a single tube of approxi-
mately 1,000 pl of concentrated nuclear tissue solution. DAPI was then
added to the solution at the manufacturer’s (Thermo Fisher Scientific,
number 62248) recommended concentration (1:1,000). Following
sorting, nuclei concentration was counted using a hemocytometer
before loadinginto a10X Genomics 3’ V3 Chip.

snRNA-seq library preparation and sequencing. The 10X Genomics
(v.3) kit was used for all single-nucleus experiments according to the
manufacturer’s protocol recommendations. Library preparation was
performedaccording to the manufacturer’'srecommendation. Libraries
were pooled and sequenced on NovaSeq S2.

snRNA-seq reads pre-processing. Sequencing reads were demulti-
plexed and aligned toa GRCm39.103 reference using CellRanger v.5.0.1
using default settings (except for an additional parameter to include
introns). We used CellBender v.3-alpha® to remove cells contaminated
with ambient RNA.

Construction of the brain-wide Slide-seq dataset. Generation of
larger surface areaSlide-seq arrays. Slide-seq arrays were generated
aspreviously described?with slight modifications. Larger-diameter gas-
kets were used to generate 5.5 x 5.5 mm?, 6.0 x 6.2 mm?and 6.5 x 7.5 mm?
bead arrays. These sizes were chosen to facilitate different anterior
to posterior coronal section sizes. To facilitate image processing,
we utilized 2 x 2 digital binning on the collected data, resulting in
1.3 pm per pixel.

Serial sectioning procedure. An OCT embedded P56 wild-type female
mouse brain was thermally equilibrated in the cryostat at —20 °C for
30 minand then mounted precisely such that an accurate anatomical
alignment was maintained. Just anterior to the end of the olfactory
bulbregion, a10-um-thick coronal slice was set as astarting slide. This
starting slide was marked, and the following adjacent 10 pm section
was used for Slide-seq library preparation. For each tissue slice used for
Slide-seq, a10 um pre-slide and a 10 um post-slide were collected for
histology. These histology slides were Nissl stained according to our
previously released protocol®. After each 10 pm post-slice, an 80 pm
gap was trimmed before the next set of serial sections was collected,
making each Slide-seq slide interval 100 pm apart. A total of 114 sets
of three consecutive slides were collected. All pre- and post-slides for
histology registration were stored at —80 °C until the slides were Nissl
stained. Optimizations were performed to be able to hold the Slide-seq
tissue slices frozen onto their respective pucks at -80 °C during the
2 days required to complete serial sectioning.

Library generation and sequencing. Following the serial sectioning
procedure, to process multiple samples at the same time, 10-pum-thick
tissue slice sections were melted onto Slide-seq arrays and stored at
-80 °C for 2 days. On the third day, the frozen tissue sections on the
puck were thawed and transferred to a1.5 ml tube containing hybridi-
zation buffer (6x sodium chloride sodium citrate with2 U pl™ Lucigen
NxGen RNAse inhibitor) for 30 min at room temperature. To generate
libraries, the Slide-seqV2 protocol was adapted from the previously
published Slide-seqV2 protocol>®,in which the volume of reagents was
scaledtoaccommodate thelarger surface array of the arrays. Libraries
were sequenced using the standard lllumina protocol. The samples
were sequenced on either NovaSeq 6000 S2 or S4 flow cellsatadepth
of 1.1-1.5 billion reads per array, adjusting for the array size. Samples
were pooled ata concentration of 4 nM and followed the read structure
previously described®.
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Imaging of Nissl sections. We acquired Nissl images on an Olympus
VS120 microscope using a x20, 0.75 numerical aperture objective.
Images were captured with a Pike 505C VC50 camera under autoexpo-
sure mode with a halogenlamp at 92% power. The pixel sizein allimages
was 0.3428 puminboth the height and width directions. We acquired a
total of 114 Nisslimages, each from an adjacent section of the brainto a
correspondingsection that was processed using the Slide-seq pipeline.
Of the 114 sections, we removed 10 from the posterior medulla and
upper spinal cord that were outside of the area of the CCF reference
brain. Of the remaining 104 images, we removed an additional three
sections because of the unsatisfactory quality of the corresponding
Slide-seq puck data. Theremaining 101images comprise the final data-
set that we use for all our analyses.

Slide-seqreads pre-processing. The sequenced reads were aligned to
GRCm39.103 reference and processed using the Slide-seq tools pipeline
(https://github.com/MacoskoLab/slideseq-tools; v.0.2) to generate
the gene count matrix and match the bead barcode between array
and sequenced reads.

Registration of Slide-seq data to CCF. Alignment of Slide-seq
arrays to adjacent Nissl sections. As a pre-processing step for the
alignment of Slide-seq arrays to Nissl images, for each puck we gener-
ated a greyscale intensity image from the Slide-seq data by summing
the UMI counts (across all genes) at each bead location on the puck
and normalizing by the maximum UMI count value across the entire
puck. We then performed the alignment of these images to the adjacent
Nissl images in two steps. First, we transformed each Nissl image to
anintermediate coordinate space using a manual rigid transforma-
tion. The purpose of this first transformation is to bring all the Nissl
images to an approximately equivalent upright orientation, which
made the second step of alignment easier. In the second step, we man-
ually identified corresponding fiducial markers in the Nissl images
and Slide-seq intensity images using the Slicer3D tool v.4.11 (ref. 66)
along with the IGT fiducial registration extension®. We then computed
the bead positions for all beads through thin-plate spline interpola-
tion, where the spline parameters were determined using the fiducial
markers.

Alignment of Nissl sections to the CCF. Our series of Nissl sections,
downsampled to 50 pm resolution by local averaging, were aligned
to the 50 pm CCF by jointly estimating three transformations. First,
a three-dimensional diffeomorphism modelled any shape differ-
ences between our sample and the atlas brain. This transformation is
modelled in the Large Deformation Diffeomorphic Metric Mapping
framework®®. Second, a three-dimensional affine transformation
(12 degrees of freedom) modelled any pose or scale differences between
our sample and the deformed atlas. Third, a two-dimensional rigid
transformation (three degrees of freedom per slice) on each slice mod-
elled positioning of samples onto microscopy slides.

Dissimilarity between the transformed atlas and our imaging data
was quantified using an objective function we developed previously®”®,
equal to the weighted sum of square error between the transformed
atlas and our dataset, after transforming the contrast of the atlas to
match the colour of our Nissl dataat eachslice. To transform contrasts,
athird-order polynomial was estimated on each slice of the transformed
atlastobest matchthered, green and blue channels of our Nissl dataset
(12 degrees of freedom per slice). During this process, outlier pixels
(artifacts or missing tissue) are estimated using an expectation maxi-
mization algorithm, and the posterior probabilities that pixels are
notoutliers are used as weights in our weighted sum of square error.

This dissimilarity function, subject to Large Deformation Diffeo-
morphic Metric Mapping regularization, is minimized jointly over
all parameters using a gradient-based approach, with estimation of
parameters for linear transforms accelerated using Reimannian gra-
dient descentas recently described”. Gradients were estimated auto-
matically using pytorch, and source code for our standard registration

pipelinesis available online at https://github.com/twardlab/emlddmm.
The transformations above were used to map annotations from the
CCF onto eachslice. The boundaries of each anatomical region were
rendered as black curves and overlaid on the imaging data for quality
control. We visually inspected the alignmentaccuracy oneachsliceand
identified 15 outliers, where our rigid motion model was insufficient
owingto large distortions of tissue slices. For these slices, we included
anadditional two-dimensional diffeomorphism to model distortions
thatareindependent fromsslice to slice and cannot be represented as
athree-dimensional shape change, asin our previous work”. Extended
Data Fig. 2a shows accuracy before and after applying the additional
two-dimensional diffeomorphism.
CCF groups used in visualization. For ease of visualization, we
grouped the CCF hierarchyinto12 ‘mainregions’:isocortex, olfactory
areas (OLF), hippocampal formation (HPF), striatum (STR), pallidum
(PAL), hypothalamus (HY), thalamus (TH), midbrain (MB), pons (P),
medulla (MY) and cerebellum (CB). For many of our analyses, we also
grouped into ‘DeepCCF’ regions, detailed in Supplementary Table 4.
Analysis of CCF accuracy. We analysed three genes with highly ste-
reotyped and regional expression, Dsp, Ccn2 and Tmem212, which
correspond to the CCF regions detailed in Supplementary Table 12.
For each bead with non-zero expression of the specified genes, we
calculated the distance to the corresponding CCF regions. For prelimi-
nary quality control, we used the dbscan package” with eps=3 to filter
the points and used the full width at half maximum metric to summarize
the distances (Extended Data Fig. 2c).

Clustering of snRNA-seq data. Overview. Clustering was performed
hierarchically starting from the full dataset of approximately 6 mil-
lion single nuclei. Each round of clustering consisted of (1) gene selec-
tion based on a binomial model; (2) square-root transformation of
the counts; (3) construction of the k nearest neighbour and shared
neighbour graphs; and (4) Leiden clustering over arange of resolution
parameters to find the lowest resolution that yielded multiple clusters.
Theresulting clusters were then eachiteratively re-clustered, and the
process was repeated until either (1) no Leidenresolutionresultedina
valid clustering or (2) the resulting clusters did not have at least three
differentially expressed genes distinguishing them. A key goal of this
clustering strategy was tore-calculate gene selection for every cluster-
ing, asthe relevant variable genes depend on the overall context of the
cellsbeing clustered. This resulted in adistributed designinwhich the
datawere stored on adisk in acompressed representation that could
be efficiently accessed using parallel processes. This allowed us to
perform clustering thousands of times without creating redundant
copies of the data.

Variable geneselection. To identify variable genes, we used abinomial
model of homogenous expression and looked for deviations from that
expectation, similar to a recently described approach™. Specifically,
for each gene we computed the relative bulk expression by summing
the countsacross cells and dividing by the total UMIs of the population.
This is the proportion of all counts that are assigned to that gene. We
use this value as p in abinomial model for observing the geneina cell
with n counts (equivalently, np is equivalent to A in a Poisson model).
The expected proportion with non-zero counts is thus

P(x>0)=1-¢e™"

We compared this expected value with the observed percentage of
non-zero counts and selected all genes that are observed at least 5% less
than expected inagiven population.

Construction of shared nearest neighbour graphs. After selecting
variable genes, we constructed a shared nearest neighbour graph™7,
First, we transformed the counts with the square-root function and
then computed the k-nearest neighbour (kNN) graph using cosine
distance and k=50 (not including self-edges). Fromthe kNN graph, we
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compute the shared neighbour graph, where the weight between a pair
of cellsis the Jaccard similarity over their neighbours:

|A N B|

j(A’B)=|AUB|’

whereA and Brepresent the sets of neighbours for two cells in the ANN

graph.

Leiden clustering. Once we computed the shared nearest neighbour

graph, we used the Leiden algorithm toidentify cell clusters using the

Constant Potts Model for modularity”. This method is sensitive to a

resolution parameter, which can beinterpreted as a density threshold

that separatesintercluster and intracluster connections. Tofind arel-
evant resolution parameter automatically, we implemented a sweep
strategy. We started with a very low-resolution value, which results in
allcellsinone cluster. We gradually increased the resolution until there
were at least two clusters and the size ratio between the largest and
second-largest cluster was at most 20, meaning that at least 5% of the
cells are not in the largest cluster. Any cluster of fewer than \/N cells
wasdiscarded, where Nwas the number being clustered in that round.

This discarded set constituted roughly 1.6% of the total cells

(100,280 of 5.9 million).

Clustering termination and marker gene search. The clustering

strategy described above was applied recursively on the leaves of the

tree until one of the following conditions was met.

« Ifthe shared neighbour graph was not asingle connected component,
thereis noresolution low enoughto formasingle cluster, and so, the
resolution sweep was not possible. This would typically occur if there
were very few variable genes, which is indicative of a homogenous
cell population.

« Ifthe resolution sweep concluded at the highest resolution without
ever finding multiple clusters, thisis also indicative of ahomogenous
population, and clustering was considered completed.

« Finally, we truncated the tree when the resulting clusters did not have
differentially expressed markers that defined them.

To test for differential markers, we considered each leaf versus its
sibling leaves. We used a Mann-Whitney U-test to assess whether any
genes are differentially expressed. As an additional filter, we required
that a gene be observed in less than 10% of the lower population and
observed atarateatleast20% higher inthe higher populationto ensure
thatthereisadiscrete difference inexpressionbetween the two popu-
lations. We required every cluster to have at least three marker genes
distinguishing it from its neighbours as well as three marker genes in
the other direction. If a cluster failed that test, all leaves were merged,
and the parent was considered the terminal cluster.

The only exception to the above was if the next level of clustering
resultedinaset of differential clusters that passed this test; these were
situations where the first round of clustering split the cells ona continu-
ous difference in expression but the next round resolved the discrete
clusters. We retained these clusters for further subclustering as they
may contain additional structure.

Visualization of clusters. For high-dimensional visualization, as
inFig. 1a, we first subsampled each of the clusters to a maximum of
2,000 nuclei. Using the Scanpy package, we calculated the first 250 prin-
cipal components of our subsampled cells. We then ran OpenTSNE
v.1.0.0 (ref. 78) on the principal component space to generate a t-SNE
that optimizes both local and global structure using an exaggeration
factor of four and a perplexity of 350.

Visualization of cluster gene expression. For the heat map visu-
alization in Fig. 1c, we subsetted the 1,937 mapped cell types to the
1,260 neuronal cell types with at least five confidently mapped beads
inatleastone puck. We normalized the datawith Seurat’s LogNormal-
ize normalization (scale.factor=1e4) and averaged each cell type’s five
nearest neighbours’ expressions. The main region assignment was

determined by combining the 10 nearest neighbours’ imputed main
region assignment. The matrix was plotted using the ComplexHeatmap
package in R”.

Quality control of clusters. A strict, multistep quality assessment
framework was used to retain only high-quality cell profilesin our analy-
ses. First, we removed nuclei with less than 500 UMIs and greater than
1% mitochondrial UMIs. Doublet clusters were further flagged and
excluded based on co-expression of marker genes of distinct cell classes
(Supplementary Table 2) (for example, Mbp and Sic17a7).

Next, we constructed a cell ‘quality network’ to systematically iden-

tify and remove remaining low-quality cells and artefacts from the
dataset. By simultaneously considering multiple quality metrics, our
network-based approach has increased power to identify low-quality
cells while circumventing the issues related to setting hard thresh-
olds on multiple quality metrics. To construct the quality network,
we considered the following cell-level metrics: (1) per cent expres-
sion of genes involved in oxidative phosphorylation; (2) per cent
expression of mitochondrial genes; (3) per cent expression of genes
encoding ribosomal proteins; (4) per cent expression of IEG expres-
sion; (5) per cent expression explained by the 50 highest expressing
genes; (6) per cent expression of long non-coding RNAs; (7) number of
unique geneslog, transformed); and (8) number of unique UMIs (log,
transformed). Given their inherently distinct distributions of quality
metrics, we separately constructed quality networks for neurons and
glial cells. The quality network was constructed and clustered using
shared nearest neighbour and Leiden clustering (resolution 0.8) algo-
rithms from Seurat v.4.2.0. Our strategy was to remove any cluster
from the quality network with ‘outlier’ distribution of quality metric
profiles. A distribution of quality metric was considered as an outlier
ifitsmedian was above 85% of cells in three features of the quality net-
work: oxidative phosphorylation, mitochondrial and ribosomal protein
expression. We further removed any remaining clusters with fewer
than15 cells.
Estimation of snRNA-seq sampling depth. We used the R package
SCOPIT v.1.1.4 (ref. 80) to estimate the sequencing saturation of our
dataset. Under the prospective sequencing model, SCOPIT calculates
the multinomial probability of sequencing enough cells, n*, above
some success probability, p* in a population containing k rare cell
types of size N cells, from which we want to sample at least c cells in
each cell type:

n*=min{n | P(lec,szc, o Nezc)zp*}.

We assume there are k=19 rare cell types in our population of

mapped cells, each containing N =101 cells (frequency of 0.0024%
amongst allmapped celltypes). We need to sequence at least ¢ = 81 cells
from each cell type for sufficient sampling (80% of the rarest cell type).
We used SCOPIT to estimate the sampling saturation of our mapped
dataset 0f 4,210,212 cells, and then, we used the same sampling curve
to estimate saturation of our full dataset (mapped and unmapped) of
4,388,420 cells.
Note about immune cell types. We identified 16 cell classes in our
snRNA-seq data, 6 of which were excluded from the majority of our
analyses (dendritic cell, granulocyte, lymphocyte, myeloid, olfactory
ensheathing and pituitary). Most of these excluded clusters are clas-
sified asimmune cell types and are mentioned in the following figure
andtables: Extended DataFig.1a,d,h and Supplementary Tables 2 and 3.
In addition, we mapped many immune cell populations.

Cell type mapping into the Slide-seq dataset with RCTD. We used
RCTD to map the single-nuclei clusters onto the Slide-seq spatial beads.

For mapping we deployed a modification of the RCTD algorithm?,
inwhich we increased the computational efficiency and throughput,
modified cell type prefiltering and adjusted the metric used for the
decomposition assignment (see below).
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Changes to RCTD for parallelizable throughput. We changed the
quadratic programming optimizer of RCTD to use OSQP®, whichscales
better for the larger matricesresulting from larger sets of cell types to
be mapped. We also rewrote the inner loops of the most time-intensive
functions (choose_sigma_c and fitPixels) with Rcpp®? for efficiency.
Additionally, we used Hail Batch (refs. 83,84) and GNU Parallel®, which
allowed for large-scale, on-demand parallelization (to thousands of
cores) using cloud computing services.

Changes to RCTD for cell type prefiltering. RCTD in doublet mode
models how well explicit pairs of cell types match abead’s expression.
For computational efficiency, RCTD prefilters which cell type pairs are
considered per bead. However, we found that larger cell type refer-
ences with many similar cell types led to overly sparse prefiltering,
whichimpeded our ability to confidently map fine-grained cell types.
Tobalance this sparsity, we added an additional ridge regression term
toRCTD’s quadratic optimization tunable with aridge strength param-
eter, which allowed us to control the relative sparsity and potential
overfitting of the prefiltering stage. Our modified prefiltering stage
used a heuristic to detect asubset of potential cell types for eachbead
by using RCTD’s full mode with two ridge strength parameters (0.01,
0.001), as well as mapping each cell type individually.

In accordance with the explicit cell type pairs used within RCTD’s

doublet mode, we subdivided this filtered list, pulling out the 10 cell
types deemed most likely to be associated with the given bead. When
modelling how well these cell types mapped to agiven bead, we exhaus-
tively used one cell type fromthe top 10 list and one cell type from the
rest of the prefiltered list. For the cerebellum and striatum, the number
of cell types considered was sufficiently low that we were able to run
the algorithm using all pairs.
Changes to RCTD for decomposition assignment. To aid in mapping
large references with many similar clusters, we modified how RCTD
scores explicit pairs of cell types indoublet mode. Rather than using the
result of the single-cell type pair that fit best, we identified the cell type
pairsthatscored similar to the best-scoring pair (with likelihood score
within30). Then, we collated the frequency of each cell type occurring
inthese well-fitting pairs and divided by the total occurrences of all the
celltypestomake a confidence score. Throughout the paper, we use 0.3
(ofamaximum score of 0.5) as the threshold for a ‘confident’ mapping.
Creation of per-region cell type references and gene lists. To help
reduce the computational load of combinatorially mapping the
cell types to each bead, we created a set of tailored references for
eachregion. First, we grouped the libraries into at least one of eight
large-scaleregions corresponding to (1) the basal ganglia; (2) medulla
and pons; (3) cerebellum; (4) hippocampal formation; (5) isocortex;
(6) midbrain; (7) olfactory bulb; and (8) striatum. For each reference
region, the clusters used for mapping had aminimum of 50 cells from
the aforementioned per-region libraries and at least 100 cells total.

For each reference region, we also generated a tailored gene list.
First, for each clusterin each reference region, we ran the same Mann-
Whitney U-test asin the cluster generation (see above), where the back-
ground expression was the other clusters in the reference set. Then,
we combined all results per gene and chose the 5,000 genes with the
smallest Pvalue across all the individual differential expression tests.
Running RCTD on per-region puck subsets. We assigned the CCF
regions into at least one of the eight large-scale regions from above.
Then, for each Slide-seq puck, we grouped the beads on the puckinto
atleastoneof the large-scale regions using our CCF alignment. For each
large-scale region on each puck, we ran RCTD using the correspond-
ingtailored reference cell types and tailored gene list. We additionally
considered only beads that had at least 150 UMIs across all genes and
atleast 20 UMIs within the tailored gene list.

Constructing and analysing cell type dendrogram. Constructing
Paris dendrogram and aggregationinto groups. To build agraph of
celltype similarity, we used Scanpy on our subsampled data to compute

the connectivities over a 20 neighbour local neighbourhood using
250 principal components (the section ‘Visualization of clusters’ has
details about subsampling). We aggregated this weighted adjacency
matrix row and column wise by taking the average weights of all cellsina
givencell type. We thenused the Paris hierarchical clustering algorithm
from scikit-network v.0.28.1to build adendrogram from our cell type
adjacency matrix®. We plotted major cell type markers and examined
spatial localization patterns to organize our neuronal clusters into
larger sets, comprising a total of 223 groups (metaclusters). Using
Scanpy’s rank_genes_groups with the Wilcoxon method, we generated
atable of the top 50 differentially expressed genes per metacluster
(Supplementary Table 6).

Reordering dendrogram. Given this tree structure, we optimized
the leaf node sequence in the tree by selectively swapping the order
of the children of internal nodes. We did so by iteratively permuting
the columns and rows of anormalized cell type by gene matrix so that
theelements are grouped around the diagonal. The genes Tbrl, Fezf2,
DIx1,Lhx6, Foxgl, Neurod6,Lhx8, Sim1,Lmx1a, Lhx9, Tall, Pax7, Hoxc4,
Gata3, HoxbS and Phox2b were chosen to be discrete, biologically inter-
pretable markers—mostly transcription factors that relate to overall
neuronal cell lineage.

The genes and cell types were initially reordered using the R pack-
age slanter’s default permuting method®. The cell types were then
reordered to comply with the cell type dendrogram structure using
adynamic programming tree-crossing minimization optimization®®,
Finding proximate neighbourhoods within dendrogram. Given an
index neuronal cell type, to find its proximate neighbourhood within
thedendrogram, we consecutively aggregated descendants from suc-
cessively more distant ancestors. We continued aggregating until the
number of cell types in the neighbourhood would surpass 100 or for
neurons, ifthe next set of cell types was more than 60% non-neuronal.

Analyses of cluster heterogeneity across regions. Cell types needed
for 95% beads. To assess cluster heterogeneity across regions with
vastly different areas, we analysed the minimum number of cell types
required to cover 95% of the mapped beads. For each region, we com-
puted the number of confidently mapped beads for each cell type
sorted in descending order by the number of beads. Next, we deter-
mined the number of cell types necessary for the running sum of beads
to reach 95% of the total mapped beads.

Force-directed DeepCCF regiongraph. Togenerate the force-directed
graphofregional cell type similarity, as in Fig. 2b, we weighted each pair
of DeepCCF regions with the weighted Jaccard similarity metric. We
thenused the R package qgraphv.1.9 to generate aforce-directed graph.
Projection and interneuronridge plots. To generate the neighbour-
hood ridge plots in Fig. 2c, we first identified the interneuron and
projection metaclusters for the isocortex, striatum and cerebellum,
detailedin Supplementary Table 13. Supplementary Table 5 shows the
cell types within each metacluster.

Discovery of combinatorial marker genes needed to distinguish
snRNA-seq cell types. To find the minimally sized gene lists that
allowed us to distinguish one cell type from the others in the dataset,
we framed the question as a set covering problem. In the set cover
problem, we find the smallest subfamily of a family of sets that can still
cover allthe elementsin the universe set. We can define this as amixed
integer linear programming model programmatically using the JuMP
domain-specific modelling language inJulia (refs. 33,89). We optimized
using the HiGHS open-source solver (v.1.5.1)°° or the IBMILOG CPLEX
commercial solver v.22.1.0.0 (ref. 91). Supplementary Methods has
the mixed integer linear programming model derivation and CPLEX
solver parameters used.

Neurotransmitter and NP assignment to cell types. Neurotransmit-
ter assignment. Each cell type was assigned to a neurotransmitter



identity based upon the percentage of'its cells with non-zero counts of
genes essential for the function of that neurotransmitter. Specifically,
we used anon-zero threshold nz=0.35.

« VGLUTI: Slc17a7 2 nz

« VGLUT2: Slc17a6 > nz

* VGLUT3:Slc17a8>nz

* GABA: (Gadl|Gad2 = nz) and (Slc32al = nz)

» GLY: (Gadl|Gad2 = nz) and (Slc6aS5|Slc6a9 > nz)

e CHOL:Slc18a3 and Chat = nz

« DOP:Slc6a3=nz

* NOR: Pnmt|Dbh > nz

« SER: Slc6a4|Tph2 > nz

For the 166 neuronal cell types that did not meet the above nz con-

ditions, we carefully examined their top expressing transporters and
assigned neurotransmitters accordingly.
NP assignment. Each cell type was assigned to an NP ligand identity if
(1) the percentage of its cells with non-zero expression of the NP was
greater than or equal to 0.3 and (2) the average expression of the NP
was greater than or equal to 0.5 counts per cell. We observed that the
expression of four NPs showed greater contamination across other
cell types: OXT, AVP, PMCH and AGRP. Therefore, for these NPs, we
required the percentage of cells with non-zero expressionto be greater
thanorequalto 0.8 and average expression to be greater than or equal
to five counts per cell.

Each celltype was assigned to ananeuropeptide receptor (NPR) iden-
tity if (1) the percentage of its cells with non-zero expression of at least
one NPRwas greater thanorequal to 0.2 and (2) the average expression
of atleast one NPR was greater than or equal to 0.5 counts per cell.

Quantification of region-specific excitatory-inhibitory ratios. We
first created inhibitory and excitatory cell type groups based on their
neurotransmitter expression as above. We classified cell types express-
ing GABA or GLY neurotransmitters as inhibitory and those expressing
VGLUT neurotransmitters as excitatory. In the case where a cell type
was assigned toboth aninhibitory identity and an excitatory identity,
it was classified as inhibitory. For each region on the Slide-seq array,
we labelled its beads as excitatory or inhibitory by whether they con-
fidently mappedinto members of the corresponding cell type groups,
with additional filtering to ensure that these mappings were one of
top two ranked cell types per bead. Then, defining #/ and #£ as the
number of inhibitory and excitatory mapped beads, respectively, we
defined the excitatory-to-inhibitory fractionas ..

To quantify the uncertainty, we calculated the 95% confidence
interval for the corresponding binomial distribution using the exact
method of binconf function in the Hmisc R package®?. For plotting
clarity, regions with fewer than five total inhibitory and excitatory
cells were excluded.

Analyses of activity-dependent gene expression. Pseudocell gen-
eration. Using scOnline, we aggregated our snRNA-seq expression
datainto pseudocells: aggregations of cells with similar gene expres-
sion profiles. Working at the pseudocell resolution (rather than with
individual cells) eliminates the technical variationissues of single-cell
transcriptomic data, suchas low capture rate from dropouts and pseu-
doreplication through averaging expression of similar cells®***, while
avoidingissues of pseudobulk approaches, such as low statistical power
and high variation in sample sizes®.

To generate our pseudocells, we first performed dimensional-
ity reduction at the single-cell level. Single cells were divided into
27 groups, consisting of glial cell classes and neuronal populations
further divided by neurotransmitter usage. Within each cell group,
we selected genes that were highly variable in a specific number of
mouse donors such that a maximum of 5,000 genes would be used
for subsequent scaling by batch. We then ran principal component

analysis on the scaled expression data (50 principal components for
gliaand 250 principal components for neurons). Next, we constructed
pseudocells by grouping single cells within each cell type. Within a cell
type of size n, cells were assigned to pseudocells of size ssuch that the
pseudocell size correlated with cell type size:

. n
s= mm[ZOO, max(ZO, SOJJ'

Pseudocell centres were identified by applying k-means clustering
onthe top principal components (50 for gliaand 250 for neurons). To
ensure the stability of results across different cell type sizes—ranging
from rare neuronal clusters of 15 cells to a glial cluster of half a mil-
lion cells—we weighted principal components by their variance
explained. Random walk approaches have been found to be more
robust inidentifying cells of similar gene expression profiles in con-
trast tospherical, distance-based methods®*”. Therefore, we used the
randomwalk method on cell-cell distancesin the principal component
analysis space to assign cells to pseudocell centres (that is, k-means
centroids)”. To generate our pseudocell counts matrix, we aggregated
the raw UMI counts of cells assigned to each pseudocell. This resulted
inrepresentation of each celltype by one or more pseudocells, ranging
from1t0 2,490 pseudocells.

The pseudocell-level expression of protein-coding genes was nor-
malized by log,-transformed count per million followed by quan-
tile normalization. We further normalized the expression of each
gene to have a mean expression of zero and a standard deviation
of one. Normalized pseudocell counts were used for downstream
analysis.

Candidate ARG list. To generate our candidate ARGs list, we divided
our neuronal pseudocellsinto 28 cell groups such that each main region
was assigned to an excitatory and inhibitory population, and all other
celltypes (cholinergic, dopaminergic, noradrenergic and serotonergic)
were individually grouped across all main regions. To construct gene
co-expression networks within each cell group, we computed pairwise
gene correlation coefficients (Pearson) across scaled pseudocells using
the R package psychv.2.2.5.Foragene gto be considered an ARG can-
didate, its correlation r with Fos must be the following: (1) ris greater
thanorequal to 0.3; (2) rin the greater than or equal to 99.5% quantile
distribution of g’s correlations with all genes; and (3) ris statistically sig-
nificant after multiple hypothesis testing (Holm-adjusted P< 0.05). To
construct the final full ARG candidate list, we took the union of selected
genes across all cell groups.

ARG network. To identify activity-regulated relationships between
our candidate ARGs and regions of the brain, we constructed a
force-directed graph of a weighted bipartite network. We used the R
package igraph v.1.2.7 to build the network from an incidence matrix
of candidate ARGs and excitatory/inhibitory cell types localized to
different regions. An entry e in the matrix corresponds to a gene’s
correlation r with Fos in a brain region scaled up by one such that all
entries are greater than or equal to one. The nodes of the network
comprised two disjoint sets, candidate ARGs and neuronal brain
regions, such that there would never be an edge between a pair of
genes or a pair of regions. Edges were weighted based on the correla-
tion entry e between a gene and region node. To emphasize the most
central nodes in the network, we pruned edges with eless than 1.3.
We then calculated the degree of each node in the pruned network
and selected our core IEGs from the network based on node centrality
(degree >18).

Classifying ARG clusters. To further characterize our candidate ARGs,
we performed ward.D2 hierarchical clustering based on their Fos cor-
relations across brainregions. We cut the dendrogram at a height that
divided our ARGs into seven clusters. To assess the overlap between our
ARG clusters and the ARGs reported in Tyssowski et al.*2, we computed
aFisher’s exact test between two given gene sets using the R package
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GeneOverlapv.1.30.0 (ref. 98). Pvalues were Bonferroni corrected for
multiple hypothesis testing in each gene cluster.

Transcription factor enrichment. To identify the transcription fac-
tors selectively enriched for telencephalic excitatory or inhibitory
populations, we performed gene set enrichment analysis (GSEA) ona
ranked gene list against a curated transcription factor gene set. First,
we ranked genes from our telencephalic excitatory cells by their average
correlation with Fos compared with a background ranking of average
telencephalicinhibitory Fos correlations. Genes from our telence-
phalicinhibitory cells were ranked in reverse order. We built a gene
set of transcription factors by combining enrichR® databases from
ARCHS4, ENCODE and TRRUST. We subsetted for human transcrip-
tion factors that showed up in at least two databases and had at least
ten unique targets in each of those databases. The final gene set con-
sisted of these human transcription factors with targets composed
of the intersection between any two databases. We used the R pack-
age fgsea v.1.20.0 (ref. 100) to run gene set enrichment analysis with
agene set size restriction of 15-500 and against a background of all
protein-coding genes expressed in our normalized pseudocell data.
Pvalues were computed using a positive one-tailed test and FDR cor-
rected by fgsea.

Heritability enrichment with scDRS. To determine which of our
snRNA-seq cell types was enriched for specific GWAS traits, we used
scDRS (v.1.0.2)* with default settings. scDRS operates at the single-cell
level to compute disease association scores, while considering the
distribution of control gene scores to identify significantly associ-
ated cells.

We used MAGMA v.1.10 (ref. 101) to map single-nucleotide poly-
morphisms to genes (GRCh37 genome build from the 1000 Genomes
Project) using an annotation window of 10 kb. We used the resulting
annotations and GWAS summary statistics to calculate each gene’s
MAGMA z score (association with a given trait). Human genes were
converted to their mouse orthologs using ahomology database from
Mouse Genome Informatics (MGI). The 1,000 disease genes used for
scDRS were chosen and weighted based on their top MAGMA zscores.
Many of the traits we tested for enrichment had previously computed
MAGMA zscores®™, so those scores were used instead (after applying
MGl gene ortholog conversion).

scDRS was used to calculate the cell-level disease association scores
foragiventrait;inour case, we treated our aggregated raw pseudocell
counts as the input single-cell dataset, validating that the pseudocell
results largely recapitulated single cell-level results for three traits
(Extended Data Fig. 7a). To determine trait association at the anno-
tated celltype resolution, we used the zscores computed from scDRS’s
downstream Monte Carlo test. These Monte Carlo z scores were con-
verted to theoretical P values using a one-sided test under a normal
distribution. Theoretical P values were FDR corrected for multiple
hypothesis testing, considering only cell types with at least four beads
confidently mapped to a single puck and deep CCF region, as well as
non-neurogenesis cell types.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw single-nucleus RNA sequencing and Slide-seq data are avail-
able in the Neuroscience Multi-omic Archive (www.NeMOArchive.
org; Research Resource Identification: SCR_016152) under identifier
nemo:dat-aa0jwmyj. The genomic reference (GRCm39.103), aligned
data (single-nucleus RNA sequencing and Slide-seq), integrated data
and Nissl stain images are available at www.BrainCellData.org, where
additional interactive visualizations are also available.

Code availability

The single-nucleus RNA sequencing clustering algorithm, Robust
Decomposition of Cell Type Mixtures modifications and analysis code
areavailableinthe coderepository at www.github.com/MacoskoLab/
brain-atlas with accompanying package versions detailed.
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Extended DataFig.1| Quality control and summary statistics of the snRNA-
seq analysis. a, Sankey diagrams showing the number of nuclei (top) and
clusters (bottom) retained and removed at each step of our quality control
workflow. The final retained numbersinclude immune cells. mt (mitochondrial
gene). b, Stacked bar plots showing the nuclei sampled per region, for each
animalreplicate. Female donor IDs contain an “F”, while male donors contain an
“M”.The top colouringindicates the dissectate’s major region. ¢, Bar plots
showing the average UMIs per nucleusin each dissectate, coloured by main
region. Error barsindicate standard error of each dissectate’s average number
of UMIs. n =4388420 nuclei examined over 92 dissectates. d, Violin plots
showing thelogl0 distribution of the UMIs per nucleus in each major cell class
(including immune cell classes). n =4407296 nuclei examined over 16 cell
classes. Box plots centred at median, bounded by IQR (25-75th percentile),

with lower whisker at data point >=(25th percentile - 1.5*IQR) and upper
whisker at data point <= (75th percentile +1.5*IQR). e, Stacked bar plots of the
nucleisampledin each major mouse brainregion, sub-setted by individual
dissectate. f, Histogram of the maximal proportional representation of
individual dissectatesin each snRNA-seq cluster. g, Heatmap representinga
confusion matrix between clustering of the snRNA-seq datain the current
study (x-axis), and published studies (y-axis), for the mouse motor cortex® (left)
and cerebellum’ (right). h, Histogram of the log10 nucleirecovered from each
major cell class (includingimmune cell classes). i, Plotindicating the probability
of sampling 19 very rare populations (prevalence 0.0024% among all mapped
celltypes) asafunction of the total number of mapped cells profiled in
experiment (probability estimation in Methods). Number of high-quality
nucleiprofiled here (4388420) and corresponding probability are indicated.
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Extended DataFig.2| Quality control and summary statistics of CCF
integration and cell type mapping. a, Example images of adjacent Nissl
sectionsaligned to CCF with 2D rigid transformation (wireframe outline) before
(left) and after (right) correcting alignment with a 2D diffeomorphism. Red
arrows point to exampleregions withincorrect alignment, and improvement
afterapplication of the correction. b, Expression of three highly specific
marker genes that label the ventricular lining (Tmem212; 309 beads with
non-zero expression), dentate gyrus granule layer (Dsp; 318 beads withnon-zero
expression), and layer 6b of isocortex (Ccn2; 418 beads with non-zero expression)
inSlide-seq (top row); scale bar,1 mm. Bottom row shows the positions of

individualbeads with expression withrespect to the boundaries of the expected
CCFregion (purple).c, Density plot of the distance of each bead expressing
each ofthe three marker genes (or all combined) showninbacross the
corresponding Slide-seq sections. The full width half maximum of the density
profileisshown.d, Heatmap representing the frequency of bead mappings
foreachglial celltype, across DeepCCF regions. e, Visualization of cell type
dendrogramwhere each cluster (leaf of the tree) is coloured by their CCF region
localization. The outer ring displays the boundaries of the 223 metaclusters
where the alternating colours signify transitions between groups.
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Extended DataFig. 3 | Extended analyses quantifying neuronal cell type
diversity acrossbrainareas. a, Heatmap representing the weighted Jaccard
similarity in cell type composition between each of the 12 main brain areas
(Methods). b, Histogram of the minimum number of genes required to uniquely
define eachcelltype across the nervous system. The algorithm was repeated,
tolerating genes to be the same amongst different numbers of nearest cluster
neighbours. ¢, Cumulative distribution plots of the number of genes needed to
label each cell type, within each of the 12 major brain areas. Withineach region,

-log,, adj. p-value

eachof the sets of individually coloured plots denotes an algorithmic run with
adifferent number of nearest neighbours that are tolerated as having the
same gene markers (absolute number in parentheses atright). The coloured
percentages denote the proportion of cell types for which the algorithm was
abletofind asolution. d, Bar plot quantifying the significantly enriched GO
terms using EnrichR (hypergeometric test, p-adj<0.05) in the minimum-sized
collated gene list after hierarchical reduction (Methods), coloured by the
absolute number of genes related.
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neuropeptide usage across the brain. a, Stacked bar plots of the number neurotransmitter groups (conf. value > 0.3, Methods). ¢, Violin plots of the

of celltypes with confident mappingsineachdeep CCF region (conf.value>0.3, number of neuropeptides expressedineach cluster, stratified by main brain
Methods), sub-setted by neurotransmitter group. Deep CCF regionsarecoloured  region.d, Dot plot showingscaled Slide-seq counts per10,000 of ligand-
ontheleft by their corresponding major brainregion. b, Representative receptor pairsacross main brainregions.



Article

a Isocortex Ex |  OLF_Ex HPF_Ex [ CTxspEx || STREx lsocortex Ex__ | OLF Ex ][ HPF Ex [ CTxsp Ex [ STR Ex i |
o0 . . 1o g g . = -
. ——
05 - ° . . © 5 =
00 4
4 Main region
09 M Isocortex
PAL Ex | THEx | HY Ex [ wmBeEx | P_Ex e HPF
10 . . s . CTxsp
. " STR
05 . &) 1 . M PAL
. ¥ B TH
00 . M HY
J * & mB
05 P
¥ 2 MY
MY_Ex |  CBEx Isocortex_Inh | OLF_Inh || MY Ex [ CB Ex | Isocortex inh [ OLF_Inh ][ HPF_inh cB
coies 10 . . .
.
05 & o .
: . ) .
.
c ‘ i f
2 S k 4
= T os " & w
] ° 8
T CTXsp_inh [ STR_Inh PAL_Inh I CTxspnh [ STRInh ][ PALInh [ THIinh ][ HYInh g
2 o O O 2
< Q
3 S .
S o5 .
S &g o 2 &2 .
00 E 3 ,
05
MB_Inh [ P_Inh [ MY_inh [ cemh Dop
10 . . .
05 N . .
- ¥ . o
E 4 ’ ’
05
Nor T Sor T Chot "G5 00 05 10 05 G0 05 10
10 . .
.
S .

e

o
G 25 S0 75 1000 25 S0 75 100025 50 75 100

Fos quantile

Fos correlation

55 00 05 10 - T 7 3
Core IEG metagene counts per 10,000

N85 Eqrr-
0SB Junbz
Nréal Bigz
ler2
Sik1

—

Tyssowski et al
gene set

@ Rapid PRG
@ Delayed PRG
@ SRaG

15 .

—log10(pval.adjust)

Tyssowski et al gone st

W rocrro
] |

Main region
B ssocoiex
olF
He
s

TR

-
. e

p— \

Extended DataFig. 6 | Extended analysesrelated to activity-related genes.
a, Comparison of correlations (right) and quantile of correlation (left) between
eachgene andboth Fos (x-axis) and Junb.Red dots indicate the genes that were
selected as candidate ARGs. b, Scatter plot quantifying the node degree of
eachgeneintheactivity-regulated gene network. Geneslabelledinred were
selected as our core IEGs (Methods). ¢, Bar plots showing the average Slide-seq
counts per 10,000 of the core IEG metagene (the eight genes highlighted in
panelb).Errorbarsindicate standard error of average counts per deep CCF
regionand dashed black lines indicate average counts per mainbrainregion.
d, Scaled mean expression of the core IEGs, within each main region, separated

I b

4
Gene cluster

o
<

Il \ \
oy HHH \I\ ” |I iIH
Il \‘\ ‘ Eort

L i w| It A

‘H Il I‘ I ] I \‘ Il ‘ A Hl\r H“\I‘ |||I| [ AR

main region
Il neurotransmitter

\ Fos
| | Nraat

Btg2

)
R

Sik1
Average expression

by neurotransmitter group. e, Extended dot plot of correlation coefficients
between Fosand candidate ARGs (columns) across major regions of the brain
(rows). Genes are coloured by their established ARG gene set* identity, if
applicable.Numbers at the bottom correspond to ARG cluster identities as
determined by hierarchical clustering. f, Enrichment analysis of each candidate
ARG cluster with three established ARG gene sets*2. P-values were computed
from Fisher’s exact test using GeneOverlap and Bonferroni-corrected for
multiple hypothesis testing (Methods). Dotted red lineindicates an adjusted
p-value threshold of 0.05.



N ™
N Bipolar Disorder Schizophrenia S&sesy¥zo¥ysd
a Alzheimer’s Disease 1 C s % Sé& g8388ag g
A . ‘. ‘ .. o - @ ° ° Ex_Fezf2_Lipm
- 9@c0 ' O000 - 0000 @0 0. - o feon o
@®:-0: - -® - o o - |Exslc30a3_Sulfi_Aprki
i K 1.00 1.00
099 066 C ’ ‘ 100 100 | C .‘. c .. . lo.s . ©cooc @@ - @@ ° - o - |Ex Oprkl Collial
097 068 099 D 1.00 1.00 D .. 1.00  1.00 1.00 D . . . e ° 0 .. s .. Ex_Nxph4_Lman1l
) : ) . e o 0 o .. ° - e .. Ex_Nxph4_Moxd1_Htr2c
e ‘ 0.89 089 089 089 E ’ 079 | 079 079 079 | E ‘ @ - -o@ - - @@ NphiKens
@ - 0@ - - @®|Ex Nxphd_Moxdi_lgibps
. . . . .72
0.86 060 086 085 055 E 0.94 094 093 | 0.93  0.91 F 0.90  0.90 | 0.90 0.90 | O F U,
avg expression _
. . 0.00 0.25 0.50 0.75
. ) Isocortex [ HPF STR [ TH MB || MY | Glia
b Main region OLF cTxsp [ PAL [ HY p cB % expressed - 0.00 @ 0.25 @ 0.50 @ 0.75
Alzheimer's Disease Anorexia Nervosa Autism Spectrum Disorder
=87 Macro_Mrc1_H2-Aao o= 20 BST: Inh_Pde118_Pgms 7 1C: Ex_Tiap2d_Crhr22
—~20- e —
3 B - B = 5‘5
5‘5, Micro_Selplg_Siglech i‘ﬂ T 4 2 i ,,,,,,,1"'1{?%3“,’5,25 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
B . Macro M1 0200 g | & . a 3 .
g SR A RS -t
go . se 5. 1 § e 2 . . e g
> > § > Y
k- o 2 o HE o = 8 s EREN
T g S, | E R ta { 2ot 1y .
; ST LE AT QU Y ¥y o e,
] ° afip a” o i
L& v s gt w0 Ma  g-ga it £ LR E ﬁggfm
Bipolar Disorder Body Mass Index Crohn's Disease
4 ° b 8
R R ST
=T L B il K] H
A R S B i’ . L .
3, s e ada 3 E
£ . ame . 2 r
sl et b i g : $
Sos| g ERIEEN Bt .g N g B oo ooam 8 B4 - a g g
‘. . E b . % @ g i g
o & o T ., _ &« 2 2w @ m} B  Loccccccsssssssssssssssssssssssssssssssss==== ==
3 B T &oﬁ&&a,@% PR - b i a0
Educational Attainment Height Major Depressive Disorder
2 . o .
3 = 8
@ 4 84 3
¥ E S £ N a8 - .
.
B 2 2 b 2 oam & s
g Ef---- A m e e e e e mmeem oo e--- 8 cH o
BN
RS PO - [PV, t %gﬂgﬁ ie““tll
Extended DataFig.7|Extended analyses of heritability enrichmentin scores foreachcelltype, grouped and coloured by mainregion, for an extended
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of ways. Raw single-nucleus RNA-seq and Slide-seq data is available in the NeMO Archive (www.nemoarchive.org). The snRNA-seq clustering algorithm is available
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Data exclusions  For transcriptomic data, pre-established exclusion criteria of a minimum of 500 UMI/nucleus and a maximum of 1% mitochondrial nUMIswere
used, as these were standard thresholds used in previous studies.

Replication Clusters generated from the transcriptomic data were examined to ensure that multiple technical replicates contributed to individual clusters.
Analyses relevant to replication can be found in Extended Data Figure 1.

Randomization  No differential experimental treatments were applied to individuals or samples in this study.
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Mouse transcriptomic data was generated from adult female and adult male mice (60 days old; C57BL/6J, Jackson Labs). Specific
data about the mice used can be found in Extended Data Figure 1.

Wild animals No wild animals were used in the study.
Reporting on sex Both male and female mice were jointly used in the generation of the single cell clustering data.
Field-collected samples  No field-collected samples were used in the study.

Ethics oversight All procedures involving animals were conducted in accordance with the US National Institutes of Health Guide for the Care and Use
of Laboratory Animals under protocol number 1115-111-18 and approved by the Massachusetts Institute of Technology Committee
on Animal Care.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A

=)
Q
o
(=
€
D
)
@)
=
S
<
-
D
@)
@)
=
=]
Q
wv
=
3
3
Q
<L

£20Z Judy




	The molecular cytoarchitecture of the adult mouse brain

	Transcriptional diversity and cell type representation across neuroanatomical structures

	Variation in neuronal diversity across neuroanatomical structures

	Principles of neurotransmission and NP usage

	Activity-dependent gene enrichment across cell types and regions

	Heritability enrichment of neurological and psychiatric traits

	Discussion

	Online content

	Fig. 1 Spatially mapping cell types using whole-brain snRNA-seq and Slide-seq datasets.
	Fig. 2 Variation in neuronal diversity across neuroanatomical structures.
	Fig. 3 Neurotransmission and NP usage across regions of the mouse brain.
	Fig. 4 Patterns of activity-dependent gene expression across brain regions.
	Fig. 5 Heritability enrichment for traits studied by GWAS across brain cell types.
	Extended Data Fig. 1 Quality control and summary statistics of the snRNA-seq analysis.
	Extended Data Fig. 2 Quality control and summary statistics of CCF integration and cell type mapping.
	Extended Data Fig. 3 Extended analyses quantifying neuronal cell type diversity across brain areas.
	Extended Data Fig. 4 Extended analyses of projection and interneuron cell type relationships across regions.
	Extended Data Fig. 5 Extended analyses of neurotransmitter and neuropeptide usage across the brain.
	﻿Extended Data Fig. 6 Extended analyses related to activity-related genes.
	Extended Data Fig. 7 Extended analyses of heritability enrichment in murine brain cell types.




