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The molecular cytoarchitecture of the adult 
mouse brain

Jonah Langlieb1,7, Nina S. Sachdev1,7, Karol S. Balderrama1, Naeem M. Nadaf1, Mukund Raj1, 
Evan Murray1, James T. Webber1, Charles Vanderburg1, Vahid Gazestani1, Daniel Tward2, 
Chris Mezias3, Xu Li3, Katelyn Flowers1, Dylan M. Cable1,4, Tabitha Norton1, Partha Mitra3, 
Fei Chen1,5 ✉ & Evan Z. Macosko1,6 ✉

The function of the mammalian brain relies upon the specification and spatial 
positioning of diversely specialized cell types. Yet, the molecular identities of the cell 
types and their positions within individual anatomical structures remain incompletely 
known. To construct a comprehensive atlas of cell types in each brain structure, we 
paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2—a recently 
developed spatial transcriptomics method with near-cellular resolution—across the 
entire mouse brain. Integration of these datasets revealed the cell type composition 
of each neuroanatomical structure. Cell type diversity was found to be remarkably 
high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a 
combination of at least three discrete gene expression markers to uniquely define 
them. Using these data, we developed a framework for genetically accessing each  
cell type, comprehensively characterized neuropeptide and neurotransmitter 
signalling, elucidated region-specific specializations in activity-regulated gene 
expression and ascertained the heritability enrichment of neurological and psychiatric 
phenotypes. These data, available as an online resource (www.BrainCellData.org), 
should find diverse applications across neuroscience, including the construction of 
new genetic tools and the prioritization of specific cell types and circuits in the study 
of brain diseases.

The mammalian brain is composed of a remarkably diverse array of cell 
types that display high degrees of molecular, anatomical and physi-
ological specialization. Although the precise number of distinct cell 
types present in the brain is unknown, the number is presumed to be 
in the thousands3,4. These cell types are the building blocks of hun-
dreds of discrete neuroanatomical structures5, each of which has a 
distinct role in brain function. Advances in the throughput of single-cell 
RNA-sequencing technology have enabled the generation of cell type 
inventories in many individual brain regions6–15, as well as the con-
struction of broader atlases that coarsely cover the nervous system16,17.  
Furthermore, the application of new spatial transcriptomics techniques 
to the brain has begun to illuminate the spatial organization of brain 
cell types12,18–20. However, a full inventory of cell types across the brain, 
with their cell bodies localized to specific neuroanatomical structures, 
does not yet exist.

Transcriptional diversity and cell type representation 
across neuroanatomical structures
To comprehensively sample cell types across the brain, we used a 
recently developed pipeline for high-throughput single-nucleus RNA 
sequencing (snRNA-seq) that has high transcript capture efficiency and 

nuclei recovery efficiency, as well as consistent performance across 
diverse brain regions8,9. We dissected and isolated single nuclei from 92 
discrete anatomical locations derived from 55 individual mice (Fig. 1a, 
Methods and Supplementary Table 1). Across all 92 dissectates, after 
all quality control steps (Methods, Extended Data Fig. 1a and Supple-
mentary Table 2), we recovered a total of 4,388,420 nuclei profiles 
with a median transcript capture of 4,884 unique molecular identifiers 
(UMIs) per profile (Extended Data Fig. 1b–e). We sampled nearly equal 
numbers of profiles from male and female donors, with minimal batch 
effects across mice, such that replicates of individual dissectates con-
tributed to each cluster (Extended Data Fig. 1f). To discover cell types, 
we developed a simplified iterative clustering strategy in which the 
cells were repeatedly clustered on distinctions amongst a small set of 
highly variable genes until clusters no longer could be distinguished 
by at least three discrete markers (Methods). Our clustering algorithm 
largely recapitulated published results of the motor cortex6 and cer-
ebellum9 (Extended Data Fig. 1g), and it was scalable to support the 
computational analysis of millions of cells (Methods). In total, after 
quality control, including doublet removal and cluster annotation 
(Methods), we identified 4,998 discrete clusters, the great majority 
of which (97%) were neuronal (Fig. 1a, Extended Data Fig. 1h and Sup-
plementary Table 3), consistent with prior large-scale surveys of brain 
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Fig. 1 | Spatially mapping cell types using whole-brain snRNA-seq and 
Slide-seq datasets. a, Schematic of the experimental and computational 
workflows both for whole-brain snRNA-seq sampling (upper arrows) and for 
Slide-seq sampling and CCF alignment (lower arrows). The t-distributed 
stochastic neighbour embedding (t-SNE) representations of gene expression 
relationships amongst 1.2 million spatially mapped snRNA-seq profiles 
(downsampled from 4.3 million) are coloured by neurotransmitter identity 
(upper left panel) and most common spatially mapped main region (upper 
right panel). Adapted from ref. 5, Allen Institute. b, Ridge plot depicting the 
spatial distributions of excitatory cortical cell types along the laminar depth  
of cortex (layers 2 to 6b) in the Slide-seq dataset. c, Heat maps depicting 
expression of the main neurotransmitter genes (upper panel) and canonical 
neuronal cell type markers (lower panel) across all 1,260 spatially mapped 
neuronal clusters. Cell types are annotated by the cluster dendrogram. d, Heat 
maps showing the spatial distributions of each spatially mapped cluster (rows) 

within each DeepCCF structure (columns; a complete list is in Supplementary 
Table 4). Example mapped cell types in other panels are labelled on the heat map. 
e–h, Example confident mappings of neuronal cell types (confidence value > 0.3) 
(Methods) throughout the brain plotted in the CCF-aligned Slide-seq data 
(main plots) and in t-SNE space (insets) for the following cell types: Ex_Rorb_
Ptpn20 (e, 35 arrays, 3,140 confident beads total), Ex_Ebf2_Iigp1_1 (f, two arrays, 
84 confident beads total), SerEx_Fev_A2m (g, six arrays, 201 confident beads 
total), Inh_Nrk_Kctd16 (h, 25 arrays, 4,918 confident beads total). Scale bars, 
1 mm. CB, cerebellum; CTXsp, cortical subplate; Chol, cholinergic neurons; 
Dop, dopaminergic neurons; Ex, excitatory neurons; HPF, hippocampal 
formation; HY, hypothalamus; Inh, inhibitory neurons; L, cortical layer; MB, 
midbrain; MY, medulla; NTS, nucleus tractus solitarii; Nor, noradrenergic 
neurons; OLF, olfactory areas; P, pons; PAL, pallidum; STR, striatum; Ser, 
serotonergic neurons; TH, thalamus; QC, quality control.
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cell types16,17. Across the brain, we estimate that our sampling depth 
reached an estimated 90% saturation of cell type discovery (Methods 
and Extended Data Fig. 1i).

To determine the spatial distributions of these cell types, we next 
performed Slide-seq1,2 on serial coronal sections of one hemisphere 
of an adult female mouse brain (Methods) spaced approximately 
100 μm, matching the resolution of commonly used neuroanatomical 
atlases21,22. Slide-seq detects the expression of genes on 10-μm beads 
across the transcriptome within a fresh-frozen tissue section, providing 
near-cellular resolution data. In total, we sequenced 101 arrays, span-
ning the entire anterior–posterior axis of the brain. We aligned the 
sequencing-generated Slide-seq images to images of adjacent histologi-
cal sections, which are rich in neuroanatomical detail. To assign beads to 
specific neuroanatomical atlas structures, we aligned the adjacent his-
tological sections to the Allen Common Coordinate Framework5 (CCF) 
(Methods and Extended Data Fig. 2a). This CCF provides hierarchical 
regional definitions, allowing us to tag each Slide-seq bead with a ‘Main 
Region’—1 of 12 large structural components of the brain (enumerated 
in Fig. 1a)—as well as more fine-grained regional definitions, which we 
call ‘DeepCCF’ structures (listed in Supplementary Table 4). To confirm 
the accuracy of our alignment, we plotted the expression of three highly 
region-specific markers across our CCF-defined regions and quantified 
the distance of each expressing bead from the expected CCF region 
(Extended Data Fig. 2b). From this analysis, we estimate our alignment 
error to be in the range of 22–94 μm (Extended Data Fig. 2c).

To localize cell types to brain structures, we computationally 
decomposed individual Slide-seq beads into combinations of 
snRNA-seq-defined cluster signatures using Robust Decomposition 
of Cell Type Mixtures (RCTD)23. To handle the enormous cellular com-
plexity of these regions, we implemented RCTD in a highly parallelized 
computational environment24 and developed a confidence score that 
more accurately distinguishes among groups of highly similar cell type 
definitions (Methods). In total, we mapped 1,937 snRNA-seq-defined 
clusters (Methods) to greater than 1.7 million beads within the Slide-seq 
dataset. We computed the cortical layer depth of a set of 42 isocorti-
cal excitatory neuronal types and found that the mappings had the 
expected highly regionalized radial depth7 (Fig. 1b) when ordered by 
their best integrated match with a previous cortical atlas7, suggesting 
faithful projection of cell type signatures into spatial coordinates.

Most glial populations were distributed across large neuroanatomical 
boundaries (telencephalon, mesencephalon and rhombencephalon), 
indicating that, relative to neurons, regional gene expression differ-
ences amongst glial populations were small (Extended Data Fig. 2d).  
A single oligodendrocyte precursor cluster was identified, in contrast to 
a recent report of additional oligodendrocyte precursor subspecializa-
tion in humans25. The glial clusters with regional segmentation included 
astrocytes, which divided into olfactory-specific, telencephalic and 
non-telencephalic populations, as well as a cerebellum-specific popula-
tion (the Bergmann glia). Amongst our endothelial cell populations, 
we identified populations preferentially localized to the choroid 
plexus (Extended Data Fig. 2e). Additional regionally localized glial 
populations included the olfactory ensheathing neurons, identified by 
their expression of the known marker homeobox genes Alx3 and Alx4  
(ref. 26), and hypothalamic tanycytes, which uniquely express Rax27.

To facilitate interpretation and visualization of these large numbers 
of neuronal populations, we performed hierarchical clustering, plotting 
known markers of cell type identity across the leaves of the dendrogram 
(Methods). We assessed the consistency of expression of these known 
markers (mostly transcription factors) with the expected localizations 
of cell types across 12 main brain regions defined in the Allen Brain 
Atlas (Fig. 1c): isocortex, the olfactory areas, hippocampal formation, 
striatum, pallidum, hypothalamus, thalamus, midbrain, pons, medulla 
and cerebellum. Amongst our neuronal clusters, we identified cortical, 
amygdalar, olfactory and hippocampal excitatory projection neurons 
(Tbr1, Neurod6 and Satb2); telencephalic interneurons (Sp8, Sp9 and 

Htr3a); spiny projection neurons (SPN) of the striatum and adjacent 
pallidal structures (Ppp1r1b); hypothalamic neurons (Nkx2-1, Sim1, 
Lhx6 and Lhx8); principal neurons of the thalamus (Tcf7l2, Six3 and 
Plekhg1); neurons of the brain stem that populate mostly midbrain 
and pontine structures (Otx2, Gata3, Pax5, Pax7 and Sox14); neurons 
expressing Hox homeobox genes that are primarily in the rhomben-
cephalon; and cerebellar neurons expressing Tfap2a and Tfap2b.  
Neurons also specialize in the specific neurotransmitters they express. 
We detected discrete populations of gluatmatergic (Slc17a6, Slc17a7 
and Slc17a8), γ-aminobutyric acid (GABA)-ergic (Slc32a1), glycinergic  
(Slc6a5), cholinergic (Chat and Slc18a3), serotonergic (Slc6a4 and 
Tph2), dopaminergic (Slc6a3) and noradrenergic (Slc6a2 and Dbh) 
cell types distributed in the expected regions. By combining knowledge 
of marker expression patterns with spatial localization of cell types, 
we annotated the neuronal clusters of the dendrogram into a smaller 
set of 223 metaclusters (Supplementary Table 5), many of which cor-
responded to known, named cell types within the various structures 
of the brain (Supplementary Table 6). Together, these results indicate 
that our systematic sampling covered the expected molecular diversity 
of neurons across the mouse brain.

Most neuronal populations were mapped to specific and neuroana-
tomically related structures (Fig. 1b,d–h), reflecting the strong regional 
specificity of neuronal specializations. We assessed the distribution of 
neuronal cell types within DeepCCF structures. Most cell types showed 
highly refined regional localization; 60% of mapped clusters were confi-
dently mapped (Methods) to three or fewer DeepCCF regions, reflecting 
the extent to which neuroanatomical nuclei are individually composed 
of locally diversified cell types.

Variation in neuronal diversity across neuroanatomical 
structures
Our initial results revealed surprisingly large numbers of cell types 
distributed across the main brain regions. To explore cellular diversity 
at a finer neuroanatomical scale, we tallied the number of cell types 
confidently mapping to each DeepCCF structure, computing the 
number of types needed to occupy 95% of all mapped beads localized 
within that DeepCCF structure (Methods). Within the 12 main brain 
regions, we found the largest diversity of cell types in the midbrain, 
followed by hypothalamus, pons and medulla (Fig. 2a). Within the more 
fine-grained DeepCCF structures, we found particularly high cell type 
diversity within the periaqueductal grey matter and reticular nucleus 
of the midbrain. Regions of high diversity in other major brain areas 
included the parvicellular reticular nucleus of the medulla, the pontine 
reticular nucleus, the lateral hypothalamic area and the bed nucleus 
of the stria terminalis, consistent with our prior analysis of this area8. 
Although cell types were often highly focal within DeepCCF structures 
(Fig. 1b,d–h), some cell types also crossed DeepCCF boundaries. To 
visualize cellular compositional relationships amongst brain regions 
in greater detail, we built a force-directed graph in which the edges 
between DeepCCF regions were weighted to represent the number of 
clusters that jointly mapped in those regions (Methods and Fig. 2b). 
Cell types largely were restricted to each major brain area but showed 
greater mixing between pons and medulla compared to other regions, 
indicating more mixing of cell types specifically within those structures 
(Extended Data Fig. 3a).

Circuit-level analyses of the mouse brain have relied upon the avail-
ability of genetically delivered molecular tools to excite, inhibit and 
record from individual neuronal populations. These tools have histori-
cally been delivered to specific subpopulations of neurons through 
the use of recombinase-based systems, but more recently, RNA 
editing-based strategies have been developed to enable translation of 
transgenes only in the presence of specific endogenous messenger RNA 
transcripts28–30. Both strategies require nominating small numbers of 
high-value marker genes that can optimally distinguish amongst many 
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distinct clusters. To identify the minimum number of genes needed 
to combinatorially define each cell type in our snRNA-seq dataset, 
we framed the question as a set cover problem31 (Methods and Sup-
plementary Methods), which can be solved to optimality using mixed 
integer linear programming techniques32,33. Our algorithm effectively 
identified a minimally sized set of defining genes for a great majority 
of cell types (93%), requiring a median of three genes (Extended Data 
Fig. 3b; all combinations are detailed in Supplementary Table 7).

When we performed the analysis on each of the 12 major brain regions 
separately, twice as many cell types could be uniquely defined by up 
to two genes (Extended Data Fig. 3c). The minimally defining genes 
were enriched for transcription factors (odds ratio = 2.54, P < 0.001), 

G-protein coupled receptors (GPCRs; odds ratio = 1.83, P < 0.001) 
and neuropeptides (NPs; odds ratio = 5.76, P < 0.001) (Methods and 
Extended Data Fig. 3d), gene families that have been historically used 
to define cell types in the brain.

Similar cell types are known to populate different brain areas. For 
example, inhibitory neurons derived from the medial ganglionic emi-
nence and caudal ganglionic eminence are found throughout telence-
phalic structures, such as the striatum, amygdala, hippocampus and 
isocortex. In our neuronal dendrogram, we had identified metaclus-
ters, which included cortical medial ganglionic eminence-derived 
and caudal ganglionic eminence-derived neurons, based upon their 
isocortical localizations, as well as expression of key lineage markers, 
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such as Lhx6, Nkx2-1 and Sp8 (Supplementary Table 6). For each of these 
neuronal cell types, we defined a neighbourhood of clusters in close 
proximity within the dendrogram and examined their relative spatial 
distributions across brain areas (Methods and Extended Data Fig. 4). 
Interestingly, molecular relatives of these inhibitory neurons were 
found throughout the telencephalon—including in striatal and pallidal 
structures—as well as in the hypothalamus. By contrast, using the same 
neighbourhood definition for excitatory isocortical neurons—which 
are the long-range projection neurons of the cortex—revealed cell types 
with a more limited distribution, only within other cortical structures 
like the hippocampus and olfactory cortex (Fig. 2c).

We wondered whether the above result—observing more spatially 
restricted molecular specialization amongst projection neurons com-
pared with local interneurons—might be more generally observed 
throughout the brain. We therefore repeated the same analysis on two 
other brain areas for which the projection versus interneuron distinc-
tions amongst transcriptionally defined cell types are well known: the 
striatum and cerebellar cortex. Examination of the neighbourhoods of 
cell types in the striatum revealed the same pattern, in which the spiny 
projection neurons showed close cellular relatives within only pallidal 
and striatal structures, whereas the interneuron populations had rela-
tives spread throughout the telencephalon (Fig. 2c). Similarly, in the 
cerebellum, the projection neurons—Purkinje cells—had no molecularly 
similar relatives outside the cerebellar cortex, whereas the cerebellar 
interneurons had close relatives in several brain stem structures, such 
as the dorsal cochlear nucleus (Fig. 2d). Together, these results suggest 
that regional specialization in the brain is strongest in the principal 
projection neurons of individual structures, whereas interneurons 
are more likely to retain molecular features that are shared across dif-
ferent brain areas.

Principles of neurotransmission and NP usage
Neurons communicate with each other across synapses through the 
expression of different small molecules and peptides. We asked in which 
regions and in which combinations neurotransmitters are used across 
the cell types of the brain. Because the production and usage of these 
neurotransmitters at synapses require different sets of gene products, 
we leveraged our snRNA-seq data to assign neurotransmitter identities 
to each cell type (Methods).

Overall, amongst the neuronal snRNA-seq clusters, cell type diversity 
was well balanced between excitatory and inhibitory cell types (2,420 
excitatory and 2,246 inhibitory), and co-transmission of glutamate 
with an inhibitory neurotransmitter (GABA or glycine) was relatively 
rare (1.1% of all neuronal clusters) (Fig. 3a). Most co-expressing popula-
tions (35 of 54) expressed the glutamate transporter Slc17a8 (VGLUT3) 
and derived from a wide range of lineages, populating regions across 
the telencephalon, midbrain and hindbrain. Amongst neuron types 
expressing neuromodulators, we found that the cholinergic neurons 
were more diverse (102 clusters) compared to serotonergic and dopa-
minergic types (25 and 13 clusters, respectively) and were distributed 
much more widely across the nervous system (Extended Data Fig. 5a,b).

Although the brain-wide cellular composition was balanced between 
inhibitory and excitatory types, individual brain regions are known to 
be composed of more skewed compositions of excitatory or inhibitory 
neurons. To characterize neurotransmission balance comprehensively 
in all structures, we quantified the excitatory-to-inhibitory balance of 
each DeepCCF region by comparing the ratio of the number of beads 
mapping to excitatory cell types with those mapping to inhibitory 
cell types (Methods). The computed excitatory-to-inhibitory bal-
ances recovered the expected broad patterns, including the domi-
nance of excitatory cells in thalamic nuclei, and the lack of excitatory 
populations within the striatum (Fig. 3b). Furthermore, more subtle 
distinctions could also be appreciated, such as the higher inhibitory 
proportion in certain thalamic nuclei known to contain interneurons 

(for example, LGd, the dorsal part of the lateral geniculate complex). 
Within the telencephalon, regions were more commonly skewed toward 
a predominantly excitatory (for example, cortical regions) or predomi-
nantly inhibitory (for example, striatum) composition. In addition, 
regions with high excitatory-to-inhibitory imbalance were more likely 
to be predominantly excitatory, whereas predominantly inhibitory 
regions were less common, being largely restricted to the striatum, 
the thalamic reticular nucleus and a few brain stem nuclei.

NPs exert varied and complex neuromodulatory effects on circuits 
through downstream GPCRs. NPs are also often co-expressed with 
other neurotransmitters to directly modulate synaptic activity. We 
utilized our spatially mapped cell type inventory to characterize the 
basic rules and principles by which NPs are used throughout the brain. 
We curated a set of 65 genes that produce at least one NP with a known 
downstream GPCR (Supplementary Table 8) and quantified the number  
of NP-expressing and GPCR-expressing cell types. Amongst our 
4,998 cell types, 80.9% expressed at least one NP, underscoring the 
ubiquity of NP signalling in the mammalian central nervous system 
(Fig. 3c). Receptor expression was even more ubiquitous: 91.6% of cell 
types expressed receptors for more than three NPs. Historically, NP 
signalling has been particularly strongly associated with the hypothala-
mus, where many of the NPs were originally biochemically discovered34. 
However, our analyses did not find that, overall, hypothalamic neurons 
were any more likely to express NPs compared with neurons in other 
brain areas (Extended Data Fig. 5c). Rather, the hypothalamus, as well 
as the pallidum and midbrain, were more likely to express a subset of 
NPs—like oxytocin or vasopressin—that are highly selectively expressed, 
whereas other brain regions expressed NPs that were more ubiquitous 
throughout the nervous system (Fig. 3d).

Nearly all NPs and receptors were expressed by neuronal cell 
types (Fig. 3e). However, we identified two likely examples of NP 
signalling between neurons and glia. The expression of Cartpt was 
detected in 232 neuronal populations distributed in hypothalamic 
and midbrain regions, whereas its receptor Gpr160 (ref. 35) was 
highly restricted to microglia and macrophage populations. Inter-
estingly, Gpr160 induction was observed to be within microglia in a 
recent study of spinal cord nerve injury35. Conversely, the expression 
of the angiotensin-encoding gene Agt was found to be primarily in 
astrocytes found in non-telencephalic regions (Fig. 3e and Extended 
Data Fig. 5d), whereas its receptors Agtr1a and Agtr2 were enriched 
in non-telencephalic neurons. Astrocyte–neuron signalling through 
angiotensin could have important homoeostatic roles, particularly 
in the midbrain where dopaminergic neurons vulnerable to neurode-
generation in Parkinson’s disease were recently identified to selectively 
express Agtr1a36, and inhibition of the angiotensin receptor has been 
shown to be neuroprotective in Parkinson’s disease animal models37 
and in clinical cohorts38.

Activity-dependent gene enrichment across cell types 
and regions
Neuronal cells, in response to an increase in action potential firing, 
induce the expression of hundreds of activity-regulated genes (ARGs)39. 
The prototypical ARG is Fos, which is induced within minutes of elevated 
activity, along with several highly correlated genes, including Junb and 
Egr1, which are collectively referred to as immediate early genes (IEGs). 
These IEGs have been primarily discovered and studied in excitatory 
cortical or hippocampal cells. Our Slide-seq and snRNA-seq atlases 
provide two key advantages for assessing ARG heterogeneity across 
cell types. First, they are comprehensive in their coverage of the brain 
to enable broad comparative analysis. Second, they are performed on 
brain tissue that is frozen immediately after animal perfusion, eliminat-
ing any post-mortem effects on ARG expression40,41.

To characterize ARGs across neuronal types, we first partitioned our 
mapped clusters into 28 cell type groups defined by their Slide-seq 
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mapped region and their neurotransmitter identity (Methods). We 
then selected 406 candidate ARGs whose correlation with Fos was at 
least 0.3, met statistical significance (adjusted P < 0.05) and for which 
Fos was also above the 99.5% quantile of all correlations in at least one 
cell type group (Methods). To ensure robustness, we validated that our 
candidate ARGs were similarly correlated with another canonical IEG, 
Junb (Extended Data Fig. 6a). To identify which genes are consistently 
correlated across cell type groups, we constructed a bipartite graph, 
connecting each gene to cell type groups within which it is highly cor-
related with Fos (Methods). Examination of this graph revealed that the 
most connected genes—those that are most consistently and highly 
correlated with Fos across the brain—included most canonical IEGs, 

such as Egr1, Npas4, Arc, Junb, Btg2 and Nr4a1. We selected the eight 
most correlated of these genes to compare their relative activity across 
regions and cell types (Methods and Extended Data Fig. 6b). Expression 
of these IEGs across each region in our Slide-seq dataset was highest in 
the isocortex, olfactory bulb, striatum and amygdala, whereas regions 
of cerebellum and medulla showed the lowest average IEG expres-
sion (Fig. 4a and Extended Data Fig. 6c). Similarly, in our snRNA-seq 
clusters, IEG activity was noticeably higher in excitatory populations, 
particularly those in the isocortex, olfactory areas and hippocampal 
formation (Extended Data Fig. 6d).

Our candidate ARG set also contained many genes connected to 
only a few of the major cell type groups, suggesting heterogeneity 
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in the transcriptional programs of cell types in response to activity. 
To more deeply explore cell type-specific ARGs, we hierarchically 
clustered our gene set into seven clusters. Clusters 1–4 were the most 
universally correlated across cell types and regions (Fig. 4b, Extended 
Data Fig. 6e and Supplementary Table 9) and were highly enriched 
for known ARGs42 (Methods and Extended Data Fig. 6f). Cluster 1 also 
included Midn, recently discovered to have a key role in IEG protein 
stability43. Clusters 5–7, meanwhile, were more cell type specific; cluster 
5 was relatively specific for telencephalic excitatory neurons, cluster 6 
was more specific for telencephalic inhibitory neurons, and cluster 7  
was specific for dopaminergic neurons. Our inhibitory-specific cluster 
6 included several genes previously reported as activity regulated in 
cortical interneurons, such as Crh and Cxcl14 (ref. 41). Many of these 
genes are implicated in dendritic spine development and re-modelling, 
such as Tshr44, Nectin3 (ref. 45) and Sorcs2 (ref. 46), indicating that 
synaptic plasticity may be a particularly prominent component of 
the activity-related response in telencephalic inhibitory cell types. To 
explore how the transcription of these gene sets may be differentially 
regulated across cell types, we compared the enrichment of transcrip-
tion factor targets between genes highly correlated with Fos in either 
telencephalic excitatory or inhibitory cells (Methods). Amongst the 
46 transcription factors with significant enrichment (P < 0.05, false 
discovery rate (FDR) corrected) (Fig. 4c), most (26 transcription fac-
tors) were jointly enriched in both inhibitory and excitatory popula-
tions, but inhibitory cells were selectively enriched for the targets of 
18 transcription factors. These transcription factors included several 
well-known chromatin re-organizers, including CTCF, BCLAF1, and 
CHD1, suggesting an important role for epigenetic modification of 

inhibitory neurons in activity-dependent processes. Together, these 
analyses reveal how brain-wide, unbiased sampling of cell types can 
reveal not only the molecular markers defining these types but also 
conserved, dynamic patterns of gene regulation that occur across 
cell type groups.

Heritability enrichment of neurological and 
psychiatric traits
Over the past 10 years, genome-wide association studies (GWAS) have 
uncovered risk loci associated with numerous neuropsychiatric traits. 
Identifying the cell types and brain regions in which these loci influence 
disease risk could catalyse new directions in understanding pathogenic 
mechanisms of many difficult-to-treat brain diseases. Because of their 
comprehensive coverage, our combined spatial and single-nucleus 
transcriptomics datasets provide a unique opportunity to investigate 
the relative enrichment of disease risk alleles across the entire mam-
malian nervous system. Several studies have integrated single cell 
and GWAS by aggregating cells from the same type and computing 
an enrichment statistic between the gene expression pattern of the 
cell type and the genes associated with risk by GWAS11,36,47–49. We used 
a recently described approach specifically developed for single-cell 
datasets50 (Methods) to evaluate the relative enrichment of loci from 
16 neurological and psychiatric traits across our spatially localized cell 
types (Supplementary Table 10).

After multiple hypothesis correction testing (Methods), we iden-
tified a total of 145 cell types across 11 traits that met statistical sig-
nificance (adjusted P < 0.05) (Fig. 5a and Supplementary Table 11).  
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The significance results were robust to using either pseudocells— 
aggregated collections of cellular neighbourhoods that reduce  
both computational complexity and noise from statistical dropout 
(Methods)—or individual cells (Extended Data Fig. 7a). For Alzheimer’s 
disease, heritability enrichment was significant in macrophages and 
microglia, consistent with analyses of multiple prior datasets36,47,51. In 
autism spectrum disorder, two neuronal cell types showed statisti-
cally significant enrichment distributed within the bed nucleus of the 
stria terminalis, an area with well-established roles in mediating social 
interactions, and the inferior colliculus, a midbrain structure involved 
in modulating auditory inputs, a common symptom of patients with 
autism spectrum disorder. Educational attainment and major depres-
sive disorder—two traits with known high polygenicity—showed enrich-
ment across several regions (Extended Data Fig. 7b).

In schizophrenia (Fig. 5b) and bipolar disorder (Extended Data 
Fig. 7b), we observed enrichment signals within the excitatory neurons 
of the isocortex and the inhibitory neurons of the striatum, consistent 
both with the known shared heritability between these two disorders52,53 
and with prior enrichment studies performed on more limited collec-
tions of single-cell datasets48. Importantly, although these two signals 
rose above our stringent threshold for multiple hypothesis testing cor-
rection, numerous other subthreshold signals were present, suggest-
ing that these cell type groups are not the only neuronal populations 
harbouring enrichment for GWAS-associated genes. The significantly 
enriched excitatory populations were restricted to the lower layers 
(layers 5 and 6) of cortex (Fig. 5c) and expressed markers suggestive of 
intratelencephalic and layer 6b identities (Extended Data Fig. 7c). The 
enriched striatal neuron types all expressed the marker gene Ppp1r1b, 
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identifying them as medium spiny neurons, the principal projection 
neurons of the dorsal and ventral striatum, which also populate sev-
eral other pallidal structures. The SPNs can be subdivided by their 
projection pathway (indirect versus direct), their spatial localization54 
(to the striatal matrix or striosome compartments) or more recently, 
molecular differences with as yet unclear functional implications17,55 
(called ‘eccentric’ SPNs versus canonical SPNs). We found that the SPN 
clusters with the strongest enrichment for schizophrenia heritability 
expressed markers of an eSPN identity, such as Casz1, Htr7 and Col11a1, 
and were found within both the dorsal and ventral striatum as well as 
other striatal and pallidal structures (Fig. 5d,e). Together, these results 
lend additional support to the potential importance of corticostriatal 
circuitry in the pathogenesis of schizophrenia and highlight the value 
of a brain-wide atlas for nominating disease-relevant cell types.

Discussion
Here, we combined snRNA-seq and high-resolution spatial transcrip-
tomics with Slide-seq to generate a comprehensive inventory of cell 
types across each region of the mouse brain. In total, we identified 
4,998 clusters of cells, mostly neuronal, with the diversity distributed 
primarily in subcortical areas, most especially in the midbrain, pons, 
medulla and hypothalamus. We utilized the data to uncover specific NP 
signalling interactions, leveraging the specificity of several NPs and/or 
their receptors. We also characterized activity-related gene expression 
patterns across all cell types, identifying conserved genes associated 
with activity as well as activity-related genes that are more specific to 
subtypes of neurons. Finally, we nominated specific cell types that are 
preferentially enriched for the expression of genes associated with 
human neurological and psychiatric diseases.

We found that interneurons share molecular features with each other 
across a far wider diversity of neuroanatomical structures than projec-
tion neurons, which tend to be more unique to each region. In the cortex 
and hippocampus, where the functions of interneurons have been 
studied in the greatest detail, distinct interneuron types are known 
to have specific circuit roles, such as modulating burst firing, tuning 
spike timing and mediating disinhibition56. Many of these same circuit 
features are widespread throughout brain areas; for example, local 
disinhibition modulates respiratory microcircuitry in the medulla57,58 
and fear learning in the amygdala59. Interneuron populations may, 
therefore, maintain more similar molecular identities to serve these 
common circuit roles, even while the principal projection neurons 
of individual structures become more specialized. We restricted our 
analysis to three structures for which the interneuron and projection 
neuron identities of transcriptionally defined cell types are well known 
(cortex, striatum and cerebellum); as circuit mapping technologies 
mature and provide this information for other regions, it will be impor-
tant to extend these analyses to those areas as well.

A comprehensive inventory of mouse brain cell types should find 
numerous other immediate uses. One major implication of our analyses 
is that a substantial fraction of cell types we define are largely unstudied 
by modern neuroscience methods. To facilitate their interrogation, 
we deployed an algorithm to identify the minimal set of genes able 
to specifically define each of our 4,998 clusters. We hope that these 
genes provide a clear path toward the development of genetic tools that 
can access a wider portion of the astonishing diversity of the nervous 
system. Interestingly, we noted a large enrichment of transcription 
factors amongst the list of genes that most concisely define individual 
cell types. Combinatorial transcription factor expression is a recurring 
theme, across central nervous system structures, in the neurodevel-
opmental specification of diverse neural cell types60. Although it is 
clear in our data that many of these transcription factor combinations 
represent fixed cell type specifications (based upon our knowledge of 
how certain transcription factors control development in particular 
brain areas), additional single-cell data—acquired at different times 

of day and in response to different environmental challenges—will be 
needed to understand which of these clusters represent populations 
fixed in development and which are more mutable in response to chal-
lenges experienced in adulthood.

Beyond achieving more comprehensive access to brain cell types, 
we anticipate that our dataset will drive computational innovations 
that better neuroanatomically partition the nervous system and that 
can integrate other important features of cell type identity, such as 
connectivity, morphology and physiology. Finally, we expect that 
our atlas will provide a useful scaffold for interpreting and contex-
tualizing the cell types that are discovered by similar efforts to con-
struct cellular inventories of the human brain61. To facilitate these 
kinds of applications across neuroscience, we have built a portal to 
visualize, interact with and download these data (www.BrainCell-
Data.org). Functions have been implemented to plot gene expres-
sion and co-expression in CCF-registered space and within each cell 
type and to identify genes and cell types enriched within particular 
brain regions. We also enable the visualization of spatial localizations 
of each cell type to specific neuroanatomical structures and pro-
vide a list of minimum marker genes needed to uniquely distinguish 
them. We hope that facile access to and interaction with these rich 
datasets will provide a firm foundation for functionally character-
izing the extraordinarily diverse set of cell types that compose the  
mammalian brain.
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Methods

Animal housing
Animals were group housed with a 12-h light–dark schedule and 
allowed to acclimate to their housing environment (20–22.2 °C, 
30–50% humidity) for 2 weeks post-arrival. All procedures involving 
animals at Massachusetts Institute of Technology were conducted in 
accordance with the US National Institutes of Health Guide for the 
Care and Use of Laboratory Animals under protocol number 1115-
111-18 and approved by the Massachusetts Institute of Technology 
Committee on Animal Care. All procedures involving animals at the 
Broad Institute were conducted in accordance with the US National 
Institutes of Health Guide for the Care and Use of Laboratory Animals 
under protocol number 0120-09-16.

Brain preparation
At 56 days of age, C57BL/6J mice were anaesthetized by administration 
of isoflurane in a gas chamber flowing 3% isoflurane for 1 min. Anaes-
thesia was confirmed by checking for a negative tail pinch response.  
Animals were moved to a dissection tray, and anaesthesia was prolonged 
with a nose cone flowing 3% isoflurane for the duration of the proce-
dure. Transcardial perfusions were performed with ice-cold pH 7.4 
HEPES buffer containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 
75 mM sucrose, 7.5 mM MgCl2 and 2.5 mM KCl to remove blood from 
brain and other organs sampled. For use in regional tissue dissections, 
the brain was removed immediately; the meninges was peeled away 
from the entire brain surface, then frozen for 3 min in liquid nitrogen 
vapour and moved to −80 °C for long-term storage. For use in genera-
tion of the Slide-seq dataset through serial sectioning, the brains were 
removed immediately, blotted free of residual liquid, rinsed twice with 
OCT to assure good surface adhesion and then oriented carefully in 
plastic freezing cassettes filled with OCT. These cassettes were vibrated 
in a Branson sonic bath for 5 min at room temperature to remove air 
bubbles and adhere OCT well to the brain surface. The brain’s precise 
orientation in the x–y–z axes was then reset just before freezing over 
a bath of liquid nitrogen vapour. Frozen blocks were stored at −80 °C.

Construction of the brain-wide snRNA-seq dataset. Regional dissec-
tions. Frozen mouse brains were securely mounted by the cerebellum 
or by the olfactory/frontal cortex region onto cryostat chucks with 
OCT embedding compound such that the entire anterior or posterior 
half (depending on dissection targets) was left exposed and thermally 
unperturbed. Dissection of anterior–posterior spans of the desired 
anatomical volumes was performed by hand in the cryostat using an 
ophthalmic microscalpel (Feather Safety Razor #P-715) precooled to 
−20 °C and donning 4× surgical loupes. To microanatomically assess 
dissection accuracy, 10 μm coronal sections were taken at relevant 
anterior–posterior dissection junctions and imaged following Nissl 
staining. Each excised tissue dissectate was placed into a precooled 
0.25 ml polymerase chain reaction tube using precooled forceps and 
stored at −80 °C. Nuclei were extracted from these frozen tissue dis-
sectates within 2 days using gentle detergent-based dissociation as 
described below.
Generation of nuclei suspension and construction of snRNA-seq 
libraries. Nuclei were isolated from regionally dissected mouse 
brain samples as previously described9,62. All steps were performed 
on ice or cold blocks, and all tubes, tips and plates were precooled for 
longer than 20 min before starting isolation. Dissected frozen tissue 
in the cryostat was placed in a single well of a 12-well plate, and 2 ml 
of extraction buffer was added to each well. Mechanical dissociation 
was performed by trituration using a P1000 pipette, pipetting 1 ml of 
solution slowly up and down with a 1 ml Rainin tip (number 30389212), 
without creation of froth or bubbles, a total of 20 times. The tissue was 
allowed to rest in the buffer for 2 min, and trituration was repeated. In 
total, four or five rounds of trituration and rest were performed. The 

entire volume of the well was then passed twice through a 26 gauge 
needle into the same well. Approximately 2 ml of tissue solution was 
transferred into a 50 ml Falcon tube and filled with wash buffer for a 
total of 30 ml of tissue solution, which was then split across two 50 ml 
Falcon tubes (approximately 15 ml of solution in each tube). The tubes 
were then spun in a swinging-bucket centrifuge for 10 min at 600g and 
4 °C. Following spinning, the majority of supernatant was discarded 
(approximately 500 μl remaining with the pellet). Tissue solutions 
from two Falcon tubes were then pooled into a single tube of approxi-
mately 1,000 μl of concentrated nuclear tissue solution. DAPI was then 
added to the solution at the manufacturer’s (Thermo Fisher Scientific, 
number 62248) recommended concentration (1:1,000). Following 
sorting, nuclei concentration was counted using a hemocytometer 
before loading into a 10X Genomics 3’ V3 Chip.
snRNA-seq library preparation and sequencing. The 10X Genomics 
(v.3) kit was used for all single-nucleus experiments according to the 
manufacturer’s protocol recommendations. Library preparation was 
performed according to the manufacturer’s recommendation. Libraries 
were pooled and sequenced on NovaSeq S2.
snRNA-seq reads pre-processing. Sequencing reads were demulti-
plexed and aligned to a GRCm39.103 reference using CellRanger v.5.0.1 
using default settings (except for an additional parameter to include 
introns). We used CellBender v.3-alpha63 to remove cells contaminated 
with ambient RNA.

Construction of the brain-wide Slide-seq dataset. Generation of 
larger surface area Slide-seq arrays. Slide-seq arrays were generated 
as previously described2 with slight modifications. Larger-diameter gas-
kets were used to generate 5.5 × 5.5 mm2, 6.0 × 6.2 mm2 and 6.5 × 7.5 mm2 
bead arrays. These sizes were chosen to facilitate different anterior 
to posterior coronal section sizes. To facilitate image processing, 
we utilized 2 × 2 digital binning on the collected data, resulting in 
1.3 μm per pixel.
Serial sectioning procedure. An OCT embedded P56 wild-type female 
mouse brain was thermally equilibrated in the cryostat at −20 °C for 
30 min and then mounted precisely such that an accurate anatomical 
alignment was maintained. Just anterior to the end of the olfactory 
bulb region, a 10-μm-thick coronal slice was set as a starting slide. This 
starting slide was marked, and the following adjacent 10 μm section 
was used for Slide-seq library preparation. For each tissue slice used for 
Slide-seq, a 10 μm pre-slide and a 10 μm post-slide were collected for 
histology. These histology slides were Nissl stained according to our 
previously released protocol64. After each 10 μm post-slice, an 80 μm 
gap was trimmed before the next set of serial sections was collected, 
making each Slide-seq slide interval 100 μm apart. A total of 114 sets 
of three consecutive slides were collected. All pre- and post-slides for 
histology registration were stored at −80 °C until the slides were Nissl 
stained. Optimizations were performed to be able to hold the Slide-seq 
tissue slices frozen onto their respective pucks at −80 °C during the 
2 days required to complete serial sectioning.
Library generation and sequencing. Following the serial sectioning 
procedure, to process multiple samples at the same time, 10-μm-thick 
tissue slice sections were melted onto Slide-seq arrays and stored at 
−80 °C for 2 days. On the third day, the frozen tissue sections on the 
puck were thawed and transferred to a 1.5 ml tube containing hybridi-
zation buffer (6× sodium chloride sodium citrate with 2 U μl−1 Lucigen 
NxGen RNAse inhibitor) for 30 min at room temperature. To generate 
libraries, the Slide-seqV2 protocol was adapted from the previously 
published Slide-seqV2 protocol2,65, in which the volume of reagents was 
scaled to accommodate the larger surface array of the arrays. Libraries 
were sequenced using the standard Illumina protocol. The samples 
were sequenced on either NovaSeq 6000 S2 or S4 flow cells at a depth 
of 1.1–1.5 billion reads per array, adjusting for the array size. Samples 
were pooled at a concentration of 4 nM and followed the read structure 
previously described2.
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Imaging of Nissl sections. We acquired Nissl images on an Olympus 
VS120 microscope using a ×20, 0.75 numerical aperture objective. 
Images were captured with a Pike 505C VC50 camera under autoexpo-
sure mode with a halogen lamp at 92% power. The pixel size in all images 
was 0.3428 μm in both the height and width directions. We acquired a 
total of 114 Nissl images, each from an adjacent section of the brain to a 
corresponding section that was processed using the Slide-seq pipeline. 
Of the 114 sections, we removed 10 from the posterior medulla and 
upper spinal cord that were outside of the area of the CCF reference 
brain. Of the remaining 104 images, we removed an additional three 
sections because of the unsatisfactory quality of the corresponding 
Slide-seq puck data. The remaining 101 images comprise the final data-
set that we use for all our analyses.
Slide-seq reads pre-processing. The sequenced reads were aligned to 
GRCm39.103 reference and processed using the Slide-seq tools pipeline 
(https://github.com/MacoskoLab/slideseq-tools; v.0.2) to generate 
the gene count matrix and match the bead barcode between array 
and sequenced reads.

Registration of Slide-seq data to CCF. Alignment of Slide-seq 
arrays to adjacent Nissl sections. As a pre-processing step for the 
alignment of Slide-seq arrays to Nissl images, for each puck we gener-
ated a greyscale intensity image from the Slide-seq data by summing 
the UMI counts (across all genes) at each bead location on the puck 
and normalizing by the maximum UMI count value across the entire 
puck. We then performed the alignment of these images to the adjacent 
Nissl images in two steps. First, we transformed each Nissl image to 
an intermediate coordinate space using a manual rigid transforma-
tion. The purpose of this first transformation is to bring all the Nissl 
images to an approximately equivalent upright orientation, which 
made the second step of alignment easier. In the second step, we man-
ually identified corresponding fiducial markers in the Nissl images 
and Slide-seq intensity images using the Slicer3D tool v.4.11 (ref. 66) 
along with the IGT fiducial registration extension67. We then computed 
the bead positions for all beads through thin-plate spline interpola-
tion, where the spline parameters were determined using the fiducial  
markers.
Alignment of Nissl sections to the CCF. Our series of Nissl sections, 
downsampled to 50 μm resolution by local averaging, were aligned 
to the 50 μm CCF by jointly estimating three transformations. First, 
a three-dimensional diffeomorphism modelled any shape differ-
ences between our sample and the atlas brain. This transformation is 
modelled in the Large Deformation Diffeomorphic Metric Mapping  
framework68. Second, a three-dimensional affine transformation 
(12 degrees of freedom) modelled any pose or scale differences between 
our sample and the deformed atlas. Third, a two-dimensional rigid 
transformation (three degrees of freedom per slice) on each slice mod-
elled positioning of samples onto microscopy slides.

Dissimilarity between the transformed atlas and our imaging data 
was quantified using an objective function we developed previously69,70, 
equal to the weighted sum of square error between the transformed 
atlas and our dataset, after transforming the contrast of the atlas to 
match the colour of our Nissl data at each slice. To transform contrasts, 
a third-order polynomial was estimated on each slice of the transformed 
atlas to best match the red, green and blue channels of our Nissl dataset 
(12 degrees of freedom per slice). During this process, outlier pixels 
(artifacts or missing tissue) are estimated using an expectation maxi-
mization algorithm, and the posterior probabilities that pixels are 
not outliers are used as weights in our weighted sum of square error.

This dissimilarity function, subject to Large Deformation Diffeo-
morphic Metric Mapping regularization, is minimized jointly over 
all parameters using a gradient-based approach, with estimation of 
parameters for linear transforms accelerated using Reimannian gra-
dient descent as recently described71. Gradients were estimated auto-
matically using pytorch, and source code for our standard registration 

pipelines is available online at https://github.com/twardlab/emlddmm. 
The transformations above were used to map annotations from the 
CCF onto each slice. The boundaries of each anatomical region were 
rendered as black curves and overlaid on the imaging data for quality 
control. We visually inspected the alignment accuracy on each slice and 
identified 15 outliers, where our rigid motion model was insufficient 
owing to large distortions of tissue slices. For these slices, we included 
an additional two-dimensional diffeomorphism to model distortions 
that are independent from slice to slice and cannot be represented as 
a three-dimensional shape change, as in our previous work72. Extended 
Data Fig. 2a shows accuracy before and after applying the additional 
two-dimensional diffeomorphism.
CCF groups used in visualization. For ease of visualization, we 
grouped the CCF hierarchy into 12 ‘main regions’: isocortex, olfactory 
areas (OLF), hippocampal formation (HPF), striatum (STR), pallidum 
(PAL), hypothalamus (HY), thalamus (TH), midbrain (MB), pons (P), 
medulla (MY) and cerebellum (CB). For many of our analyses, we also 
grouped into ‘DeepCCF’ regions, detailed in Supplementary Table 4.
Analysis of CCF accuracy. We analysed three genes with highly ste-
reotyped and regional expression, Dsp, Ccn2 and Tmem212, which 
correspond to the CCF regions detailed in Supplementary Table 12.

For each bead with non-zero expression of the specified genes, we 
calculated the distance to the corresponding CCF regions. For prelimi-
nary quality control, we used the dbscan package73 with eps=3 to filter 
the points and used the full width at half maximum metric to summarize 
the distances (Extended Data Fig. 2c).

Clustering of snRNA-seq data. Overview. Clustering was performed 
hierarchically starting from the full dataset of approximately 6 mil-
lion single nuclei. Each round of clustering consisted of (1) gene selec-
tion based on a binomial model; (2) square-root transformation of 
the counts; (3) construction of the k nearest neighbour and shared 
neighbour graphs; and (4) Leiden clustering over a range of resolution 
parameters to find the lowest resolution that yielded multiple clusters. 
The resulting clusters were then each iteratively re-clustered, and the 
process was repeated until either (1) no Leiden resolution resulted in a 
valid clustering or (2) the resulting clusters did not have at least three 
differentially expressed genes distinguishing them. A key goal of this 
clustering strategy was to re-calculate gene selection for every cluster-
ing, as the relevant variable genes depend on the overall context of the 
cells being clustered. This resulted in a distributed design in which the 
data were stored on a disk in a compressed representation that could 
be efficiently accessed using parallel processes. This allowed us to 
perform clustering thousands of times without creating redundant 
copies of the data.
Variable gene selection. To identify variable genes, we used a binomial 
model of homogenous expression and looked for deviations from that 
expectation, similar to a recently described approach74. Specifically, 
for each gene we computed the relative bulk expression by summing 
the counts across cells and dividing by the total UMIs of the population. 
This is the proportion of all counts that are assigned to that gene. We 
use this value as p in a binomial model for observing the gene in a cell 
with n counts (equivalently, np is equivalent to λ in a Poisson model). 
The expected proportion with non-zero counts is thus

P x( > 0) = 1 − e .λ−

We compared this expected value with the observed percentage of 
non-zero counts and selected all genes that are observed at least 5% less 
than expected in a given population.
Construction of shared nearest neighbour graphs. After selecting 
variable genes, we constructed a shared nearest neighbour graph75,76. 
First, we transformed the counts with the square-root function and 
then computed the k-nearest neighbour (kNN) graph using cosine 
distance and k = 50 (not including self-edges). From the kNN graph, we 

https://github.com/MacoskoLab/slideseq-tools
https://github.com/twardlab/emlddmm


compute the shared neighbour graph, where the weight between a pair 
of cells is the Jaccard similarity over their neighbours:
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∣ ∣
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where A and B represent the sets of neighbours for two cells in the kNN 
graph.
Leiden clustering. Once we computed the shared nearest neighbour 
graph, we used the Leiden algorithm to identify cell clusters using the 
Constant Potts Model for modularity77. This method is sensitive to a 
resolution parameter, which can be interpreted as a density threshold 
that separates intercluster and intracluster connections. To find a rel-
evant resolution parameter automatically, we implemented a sweep 
strategy. We started with a very low-resolution value, which results in 
all cells in one cluster. We gradually increased the resolution until there 
were at least two clusters and the size ratio between the largest and 
second-largest cluster was at most 20, meaning that at least 5% of the 
cells are not in the largest cluster. Any cluster of fewer than N  cells 
was discarded, where N was the number being clustered in that round. 
This discarded set constituted roughly 1.6% of the total cells 
(100,280 of 5.9 million).
Clustering termination and marker gene search. The clustering 
strategy described above was applied recursively on the leaves of the 
tree until one of the following conditions was met.
•	 If the shared neighbour graph was not a single connected component, 

there is no resolution low enough to form a single cluster, and so, the 
resolution sweep was not possible. This would typically occur if there 
were very few variable genes, which is indicative of a homogenous 
cell population.

•	 If the resolution sweep concluded at the highest resolution without 
ever finding multiple clusters, this is also indicative of a homogenous 
population, and clustering was considered completed.

•	Finally, we truncated the tree when the resulting clusters did not have 
differentially expressed markers that defined them.

To test for differential markers, we considered each leaf versus its 
sibling leaves. We used a Mann–Whitney U-test to assess whether any 
genes are differentially expressed. As an additional filter, we required 
that a gene be observed in less than 10% of the lower population and 
observed at a rate at least 20% higher in the higher population to ensure 
that there is a discrete difference in expression between the two popu-
lations. We required every cluster to have at least three marker genes 
distinguishing it from its neighbours as well as three marker genes in 
the other direction. If a cluster failed that test, all leaves were merged, 
and the parent was considered the terminal cluster.

The only exception to the above was if the next level of clustering 
resulted in a set of differential clusters that passed this test; these were 
situations where the first round of clustering split the cells on a continu-
ous difference in expression but the next round resolved the discrete 
clusters. We retained these clusters for further subclustering as they 
may contain additional structure.
Visualization of clusters. For high-dimensional visualization, as 
in Fig. 1a, we first subsampled each of the clusters to a maximum of 
2,000 nuclei. Using the Scanpy package, we calculated the first 250 prin-
cipal components of our subsampled cells. We then ran OpenTSNE 
v.1.0.0 (ref. 78) on the principal component space to generate a t-SNE 
that optimizes both local and global structure using an exaggeration 
factor of four and a perplexity of 350.
Visualization of cluster gene expression. For the heat map visu-
alization in Fig. 1c, we subsetted the 1,937 mapped cell types to the 
1,260  neuronal cell types with at least five confidently mapped beads 
in at least one puck. We normalized the data with Seurat’s LogNormal-
ize normalization (scale.factor=1e4) and averaged each cell type’s five 
nearest neighbours’ expressions. The main region assignment was 

determined by combining the 10 nearest neighbours’ imputed main 
region assignment. The matrix was plotted using the ComplexHeatmap 
package in R79.
Quality control of clusters. A strict, multistep quality assessment 
framework was used to retain only high-quality cell profiles in our analy-
ses. First, we removed nuclei with less than 500 UMIs and greater than 
1% mitochondrial UMIs. Doublet clusters were further flagged and 
excluded based on co-expression of marker genes of distinct cell classes 
(Supplementary Table 2) (for example, Mbp and Slc17a7).

Next, we constructed a cell ‘quality network’ to systematically iden-
tify and remove remaining low-quality cells and artefacts from the 
dataset. By simultaneously considering multiple quality metrics, our 
network-based approach has increased power to identify low-quality 
cells while circumventing the issues related to setting hard thresh-
olds on multiple quality metrics. To construct the quality network, 
we considered the following cell-level metrics: (1) per cent expres-
sion of genes involved in oxidative phosphorylation; (2) per cent 
expression of mitochondrial genes; (3) per cent expression of genes 
encoding ribosomal proteins; (4) per cent expression of IEG expres-
sion; (5) per cent expression explained by the 50 highest expressing 
genes; (6) per cent expression of long non-coding RNAs; (7) number of 
unique genes log2 transformed); and (8) number of unique UMIs (log2 
transformed). Given their inherently distinct distributions of quality 
metrics, we separately constructed quality networks for neurons and 
glial cells. The quality network was constructed and clustered using 
shared nearest neighbour and Leiden clustering (resolution 0.8) algo-
rithms from Seurat v.4.2.0. Our strategy was to remove any cluster 
from the quality network with ‘outlier’ distribution of quality metric 
profiles. A distribution of quality metric was considered as an outlier 
if its median was above 85% of cells in three features of the quality net-
work: oxidative phosphorylation, mitochondrial and ribosomal protein 
expression. We further removed any remaining clusters with fewer  
than 15 cells.
Estimation of snRNA-seq sampling depth. We used the R package 
SCOPIT v.1.1.4 (ref. 80) to estimate the sequencing saturation of our 
dataset. Under the prospective sequencing model, SCOPIT calculates 
the multinomial probability of sequencing enough cells, n*, above 
some success probability, p*, in a population containing k rare cell 
types of size N cells, from which we want to sample at least c cells in 
each cell type:

n n P N c N c N c p* = min{ | ( ≥ , ≥ , …, ≥ ) ≥ *}.k1 2

We assume there are k = 19 rare cell types in our population of 
mapped cells, each containing N = 101 cells (frequency of 0.0024% 
amongst all mapped cell types). We need to sequence at least c = 81 cells 
from each cell type for sufficient sampling (80% of the rarest cell type). 
We used SCOPIT to estimate the sampling saturation of our mapped 
dataset of 4,210,212 cells, and then, we used the same sampling curve 
to estimate saturation of our full dataset (mapped and unmapped) of 
4,388,420 cells.
Note about immune cell types. We identified 16 cell classes in our 
snRNA-seq data, 6 of which were excluded from the majority of our 
analyses (dendritic cell, granulocyte, lymphocyte, myeloid, olfactory 
ensheathing and pituitary). Most of these excluded clusters are clas-
sified as immune cell types and are mentioned in the following figure  
and tables: Extended Data Fig. 1a,d,h and Supplementary Tables 2 and 3.  
In addition, we mapped many immune cell populations.

Cell type mapping into the Slide-seq dataset with RCTD. We used 
RCTD to map the single-nuclei clusters onto the Slide-seq spatial beads.

For mapping we deployed a modification of the RCTD algorithm23, 
in which we increased the computational efficiency and throughput, 
modified cell type prefiltering and adjusted the metric used for the 
decomposition assignment (see below).
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Changes to RCTD for parallelizable throughput. We changed the 
quadratic programming optimizer of RCTD to use OSQP81, which scales 
better for the larger matrices resulting from larger sets of cell types to 
be mapped. We also rewrote the inner loops of the most time-intensive 
functions (choose_sigma_c and fitPixels) with Rcpp82 for efficiency. 
Additionally, we used Hail Batch (refs. 83,84) and GNU Parallel85, which 
allowed for large-scale, on-demand parallelization (to thousands of 
cores) using cloud computing services.
Changes to RCTD for cell type prefiltering. RCTD in doublet mode 
models how well explicit pairs of cell types match a bead’s expression. 
For computational efficiency, RCTD prefilters which cell type pairs are 
considered per bead. However, we found that larger cell type refer-
ences with many similar cell types led to overly sparse prefiltering, 
which impeded our ability to confidently map fine-grained cell types. 
To balance this sparsity, we added an additional ridge regression term 
to RCTD’s quadratic optimization tunable with a ridge strength param-
eter, which allowed us to control the relative sparsity and potential 
overfitting of the prefiltering stage. Our modified prefiltering stage 
used a heuristic to detect a subset of potential cell types for each bead 
by using RCTD’s full mode with two ridge strength parameters (0.01, 
0.001), as well as mapping each cell type individually.

In accordance with the explicit cell type pairs used within RCTD’s 
doublet mode, we subdivided this filtered list, pulling out the 10 cell 
types deemed most likely to be associated with the given bead. When 
modelling how well these cell types mapped to a given bead, we exhaus-
tively used one cell type from the top 10 list and one cell type from the 
rest of the prefiltered list. For the cerebellum and striatum, the number 
of cell types considered was sufficiently low that we were able to run 
the algorithm using all pairs.
Changes to RCTD for decomposition assignment. To aid in mapping 
large references with many similar clusters, we modified how RCTD 
scores explicit pairs of cell types in doublet mode. Rather than using the 
result of the single-cell type pair that fit best, we identified the cell type 
pairs that scored similar to the best-scoring pair (with likelihood score 
within 30). Then, we collated the frequency of each cell type occurring 
in these well-fitting pairs and divided by the total occurrences of all the 
cell types to make a confidence score. Throughout the paper, we use 0.3 
(of a maximum score of 0.5) as the threshold for a ‘confident’ mapping.
Creation of per-region cell type references and gene lists. To help 
reduce the computational load of combinatorially mapping the 
cell types to each bead, we created a set of tailored references for 
each region. First, we grouped the libraries into at least one of eight 
large-scale regions corresponding to (1) the basal ganglia; (2) medulla 
and pons; (3) cerebellum; (4) hippocampal formation; (5) isocortex; 
(6) midbrain; (7) olfactory bulb; and (8) striatum. For each reference 
region, the clusters used for mapping had a minimum of 50 cells from 
the aforementioned per-region libraries and at least 100 cells total.

For each reference region, we also generated a tailored gene list. 
First, for each cluster in each reference region, we ran the same Mann–
Whitney U-test as in the cluster generation (see above), where the back-
ground expression was the other clusters in the reference set. Then, 
we combined all results per gene and chose the 5,000 genes with the 
smallest P value across all the individual differential expression tests.
Running RCTD on per-region puck subsets. We assigned the CCF 
regions into at least one of the eight large-scale regions from above. 
Then, for each Slide-seq puck, we grouped the beads on the puck into 
at least one of the large-scale regions using our CCF alignment. For each 
large-scale region on each puck, we ran RCTD using the correspond-
ing tailored reference cell types and tailored gene list. We additionally 
considered only beads that had at least 150 UMIs across all genes and 
at least 20 UMIs within the tailored gene list.

Constructing and analysing cell type dendrogram. Constructing 
Paris dendrogram and aggregation into groups. To build a graph of 
cell type similarity, we used Scanpy on our subsampled data to compute 

the connectivities over a 20 neighbour local neighbourhood using 
250 principal components (the section ‘Visualization of clusters’ has 
details about subsampling). We aggregated this weighted adjacency 
matrix row and column wise by taking the average weights of all cells in a 
given cell type. We then used the Paris hierarchical clustering algorithm 
from scikit-network v.0.28.1 to build a dendrogram from our cell type 
adjacency matrix86. We plotted major cell type markers and examined 
spatial localization patterns to organize our neuronal clusters into 
larger sets, comprising a total of 223 groups (metaclusters). Using 
Scanpy’s rank_genes_groups with the Wilcoxon method, we generated 
a table of the top 50 differentially expressed genes per metacluster 
(Supplementary Table 6).
Reordering dendrogram. Given this tree structure, we optimized 
the leaf node sequence in the tree by selectively swapping the order 
of the children of internal nodes. We did so by iteratively permuting 
the columns and rows of a normalized cell type by gene matrix so that 
the elements are grouped around the diagonal. The genes Tbr1, Fezf2, 
Dlx1, Lhx6, Foxg1, Neurod6, Lhx8, Sim1, Lmx1a, Lhx9, Tal1, Pax7, Hoxc4, 
Gata3, Hoxb5 and Phox2b were chosen to be discrete, biologically inter-
pretable markers—mostly transcription factors that relate to overall 
neuronal cell lineage.

The genes and cell types were initially reordered using the R pack-
age slanter’s default permuting method87. The cell types were then 
reordered to comply with the cell type dendrogram structure using 
a dynamic programming tree-crossing minimization optimization88.
Finding proximate neighbourhoods within dendrogram. Given an 
index neuronal cell type, to find its proximate neighbourhood within 
the dendrogram, we consecutively aggregated descendants from suc-
cessively more distant ancestors. We continued aggregating until the 
number of cell types in the neighbourhood would surpass 100 or for 
neurons, if the next set of cell types was more than 60% non-neuronal.

Analyses of cluster heterogeneity across regions. Cell types needed 
for 95% beads. To assess cluster heterogeneity across regions with 
vastly different areas, we analysed the minimum number of cell types 
required to cover 95% of the mapped beads. For each region, we com-
puted the number of confidently mapped beads for each cell type 
sorted in descending order by the number of beads. Next, we deter-
mined the number of cell types necessary for the running sum of beads 
to reach 95% of the total mapped beads.
Force-directed DeepCCF region graph. To generate the force-directed 
graph of regional cell type similarity, as in Fig. 2b, we weighted each pair 
of DeepCCF regions with the weighted Jaccard similarity metric. We 
then used the R package qgraph v.1.9 to generate a force-directed graph.
Projection and interneuron ridge plots. To generate the neighbour-
hood ridge plots in Fig. 2c, we first identified the interneuron and 
projection metaclusters for the isocortex, striatum and cerebellum, 
detailed in Supplementary Table 13. Supplementary Table 5 shows the 
cell types within each metacluster.

Discovery of combinatorial marker genes needed to distinguish 
snRNA-seq cell types. To find the minimally sized gene lists that  
allowed us to distinguish one cell type from the others in the dataset, 
we framed the question as a set covering problem. In the set cover 
problem, we find the smallest subfamily of a family of sets that can still 
cover all the elements in the universe set. We can define this as a mixed 
integer linear programming model programmatically using the JuMP 
domain-specific modelling language in Julia (refs. 33,89). We optimized 
using the HiGHS open-source solver (v.1.5.1)90 or the IBM ILOG CPLEX 
commercial solver v.22.1.0.0 (ref. 91). Supplementary Methods has 
the mixed integer linear programming model derivation and CPLEX 
solver parameters used.

Neurotransmitter and NP assignment to cell types. Neurotransmit-
ter assignment. Each cell type was assigned to a neurotransmitter 



identity based upon the percentage of its cells with non-zero counts of 
genes essential for the function of that neurotransmitter. Specifically, 
we used a non-zero threshold nz = 0.35.
•	VGLUT1: Slc17a7 ≥ nz
•	VGLUT2: Slc17a6 ≥ nz
•	VGLUT3: Slc17a8 ≥ nz
•	GABA: (Gad1|Gad2 ≥ nz) and (Slc32a1 ≥ nz)
•	GLY: (Gad1|Gad2 ≥ nz) and (Slc6a5|Slc6a9 ≥ nz)
•	CHOL: Slc18a3 and Chat ≥ nz
•	DOP: Slc6a3 ≥ nz
•	NOR: Pnmt|Dbh ≥ nz
•	SER: Slc6a4|Tph2 ≥ nz

For the 166 neuronal cell types that did not meet the above nz con-
ditions, we carefully examined their top expressing transporters and 
assigned neurotransmitters accordingly.
NP assignment. Each cell type was assigned to an NP ligand identity if 
(1) the percentage of its cells with non-zero expression of the NP was 
greater than or equal to 0.3 and (2) the average expression of the NP 
was greater than or equal to 0.5 counts per cell. We observed that the 
expression of four NPs showed greater contamination across other 
cell types: OXT, AVP, PMCH and AGRP. Therefore, for these NPs, we 
required the percentage of cells with non-zero expression to be greater 
than or equal to 0.8 and average expression to be greater than or equal 
to five counts per cell.

Each cell type was assigned to an a neuropeptide receptor (NPR) iden-
tity if (1) the percentage of its cells with non-zero expression of at least 
one NPR was greater than or equal to 0.2 and (2) the average expression 
of at least one NPR was greater than or equal to 0.5 counts per cell.

Quantification of region-specific excitatory–inhibitory ratios. We 
first created inhibitory and excitatory cell type groups based on their 
neurotransmitter expression as above. We classified cell types express-
ing GABA or GLY neurotransmitters as inhibitory and those expressing 
VGLUT neurotransmitters as excitatory. In the case where a cell type 
was assigned to both an inhibitory identity and an excitatory identity, 
it was classified as inhibitory. For each region on the Slide-seq array, 
we labelled its beads as excitatory or inhibitory by whether they con-
fidently mapped into members of the corresponding cell type groups, 
with additional filtering to ensure that these mappings were one of  
top two ranked cell types per bead. Then, defining #I  and #E  as the  
number of inhibitory and excitatory mapped beads, respectively, we  
defined the excitatory-to-inhibitory fraction as #I

#I #E+
.

To quantify the uncertainty, we calculated the 95% confidence 
interval for the corresponding binomial distribution using the exact 
method of binconf function in the Hmisc R package92. For plotting 
clarity, regions with fewer than five total inhibitory and excitatory 
cells were excluded.

Analyses of activity-dependent gene expression. Pseudocell gen-
eration. Using scOnline, we aggregated our snRNA-seq expression 
data into pseudocells: aggregations of cells with similar gene expres-
sion profiles. Working at the pseudocell resolution (rather than with 
individual cells) eliminates the technical variation issues of single-cell 
transcriptomic data, such as low capture rate from dropouts and pseu-
doreplication through averaging expression of similar cells93,94, while 
avoiding issues of pseudobulk approaches, such as low statistical power 
and high variation in sample sizes95.

To generate our pseudocells, we first performed dimensional-
ity reduction at the single-cell level. Single cells were divided into 
27 groups, consisting of glial cell classes and neuronal populations 
further divided by neurotransmitter usage. Within each cell group, 
we selected genes that were highly variable in a specific number of 
mouse donors such that a maximum of 5,000 genes would be used 
for subsequent scaling by batch. We then ran principal component 

analysis on the scaled expression data (50 principal components for 
glia and 250 principal components for neurons). Next, we constructed 
pseudocells by grouping single cells within each cell type. Within a cell 
type of size n, cells were assigned to pseudocells of size s such that the 
pseudocell size correlated with cell type size:
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Pseudocell centres were identified by applying k-means clustering 
on the top principal components (50 for glia and 250 for neurons). To 
ensure the stability of results across different cell type sizes—ranging  
from rare neuronal clusters of 15 cells to a glial cluster of half a mil-
lion cells—we weighted principal components by their variance 
explained. Random walk approaches have been found to be more 
robust in identifying cells of similar gene expression profiles in con-
trast to spherical, distance-based methods96,97. Therefore, we used the 
random walk method on cell–cell distances in the principal component 
analysis space to assign cells to pseudocell centres (that is, k-means 
centroids)97. To generate our pseudocell counts matrix, we aggregated 
the raw UMI counts of cells assigned to each pseudocell. This resulted 
in representation of each cell type by one or more pseudocells, ranging 
from 1 to 2,490 pseudocells.

The pseudocell-level expression of protein-coding genes was nor-
malized by log2-transformed count per million followed by quan-
tile normalization. We further normalized the expression of each 
gene to have a mean expression of zero and a standard deviation 
of one. Normalized pseudocell counts were used for downstream  
analysis.
Candidate ARG list. To generate our candidate ARGs list, we divided 
our neuronal pseudocells into 28 cell groups such that each main region 
was assigned to an excitatory and inhibitory population, and all other 
cell types (cholinergic, dopaminergic, noradrenergic and serotonergic) 
were individually grouped across all main regions. To construct gene 
co-expression networks within each cell group, we computed pairwise 
gene correlation coefficients (Pearson) across scaled pseudocells using 
the R package psych v.2.2.5. For a gene g to be considered an ARG can-
didate, its correlation r with Fos must be the following: (1) r is greater 
than or equal to 0.3; (2) r in the greater than or equal to 99.5% quantile 
distribution of g ’s correlations with all genes; and (3) r is statistically sig-
nificant after multiple hypothesis testing (Holm-adjusted P < 0.05). To 
construct the final full ARG candidate list, we took the union of selected 
genes across all cell groups.
ARG network. To identify activity-regulated relationships between 
our candidate ARGs and regions of the brain, we constructed a 
force-directed graph of a weighted bipartite network. We used the R 
package igraph v.1.2.7 to build the network from an incidence matrix 
of candidate ARGs and excitatory/inhibitory cell types localized to 
different regions. An entry e in the matrix corresponds to a gene’s 
correlation r with Fos in a brain region scaled up by one such that all 
entries are greater than or equal to one. The nodes of the network 
comprised two disjoint sets, candidate ARGs and neuronal brain 
regions, such that there would never be an edge between a pair of 
genes or a pair of regions. Edges were weighted based on the correla-
tion entry e between a gene and region node. To emphasize the most 
central nodes in the network, we pruned edges with e less than 1.3. 
We then calculated the degree of each node in the pruned network 
and selected our core IEGs from the network based on node centrality  
(degree > 18).
Classifying ARG clusters. To further characterize our candidate ARGs, 
we performed ward.D2 hierarchical clustering based on their Fos cor-
relations across brain regions. We cut the dendrogram at a height that 
divided our ARGs into seven clusters. To assess the overlap between our 
ARG clusters and the ARGs reported in Tyssowski et al.42, we computed 
a Fisher’s exact test between two given gene sets using the R package 
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GeneOverlap v.1.30.0 (ref. 98). P values were Bonferroni corrected for 
multiple hypothesis testing in each gene cluster.
Transcription factor enrichment. To identify the transcription fac-
tors selectively enriched for telencephalic excitatory or inhibitory 
populations, we performed gene set enrichment analysis (GSEA) on a 
ranked gene list against a curated transcription factor gene set. First,  
we ranked genes from our telencephalic excitatory cells by their average 
correlation with Fos compared with a background ranking of average 
telencephalic inhibitory Fos correlations. Genes from our telence-
phalic inhibitory cells were ranked in reverse order. We built a gene 
set of transcription factors by combining enrichR99 databases from 
ARCHS4, ENCODE and TRRUST. We subsetted for human transcrip-
tion factors that showed up in at least two databases and had at least 
ten unique targets in each of those databases. The final gene set con-
sisted of these human transcription factors with targets composed 
of the intersection between any two databases. We used the R pack-
age fgsea v.1.20.0 (ref. 100) to run gene set enrichment analysis with 
a gene set size restriction of 15–500 and against a background of all 
protein-coding genes expressed in our normalized pseudocell data.  
P values were computed using a positive one-tailed test and FDR cor-
rected by fgsea.

Heritability enrichment with scDRS. To determine which of our 
snRNA-seq cell types was enriched for specific GWAS traits, we used 
scDRS (v.1.0.2)50 with default settings. scDRS operates at the single-cell 
level to compute disease association scores, while considering the 
distribution of control gene scores to identify significantly associ-
ated cells.

We used MAGMA v.1.10 (ref. 101) to map single-nucleotide poly-
morphisms to genes (GRCh37 genome build from the 1000 Genomes 
Project) using an annotation window of 10 kb. We used the resulting 
annotations and GWAS summary statistics to calculate each gene’s 
MAGMA z score (association with a given trait). Human genes were 
converted to their mouse orthologs using a homology database from 
Mouse Genome Informatics (MGI). The 1,000 disease genes used for 
scDRS were chosen and weighted based on their top MAGMA z scores. 
Many of the traits we tested for enrichment had previously computed 
MAGMA z scores50, so those scores were used instead (after applying 
MGI gene ortholog conversion).

scDRS was used to calculate the cell-level disease association scores 
for a given trait; in our case, we treated our aggregated raw pseudocell 
counts as the input single-cell dataset, validating that the pseudocell 
results largely recapitulated single cell-level results for three traits 
(Extended Data Fig. 7a). To determine trait association at the anno-
tated cell type resolution, we used the z scores computed from scDRS’s 
downstream Monte Carlo test. These Monte Carlo z scores were con-
verted to theoretical P values using a one-sided test under a normal 
distribution. Theoretical P values were FDR corrected for multiple 
hypothesis testing, considering only cell types with at least four beads 
confidently mapped to a single puck and deep CCF region, as well as 
non-neurogenesis cell types.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw single-nucleus RNA sequencing and Slide-seq data are avail-
able in the Neuroscience Multi-omic Archive (www.NeMOArchive.
org; Research Resource Identification: SCR_016152) under identifier 
nemo:dat-aa0jwmj. The genomic reference (GRCm39.103), aligned 
data (single-nucleus RNA sequencing and Slide-seq), integrated data 
and Nissl stain images are available at www.BrainCellData.org, where 
additional interactive visualizations are also available.

Code availability
The single-nucleus RNA sequencing clustering algorithm, Robust 
Decomposition of Cell Type Mixtures modifications and analysis code 
are available in the code repository at www.github.com/MacoskoLab/
brain-atlas with accompanying package versions detailed.
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Extended Data Fig. 1 | Quality control and summary statistics of the snRNA-
seq analysis. a, Sankey diagrams showing the number of nuclei (top) and 
clusters (bottom) retained and removed at each step of our quality control 
workflow. The final retained numbers include immune cells. mt (mitochondrial 
gene). b, Stacked bar plots showing the nuclei sampled per region, for each 
animal replicate. Female donor IDs contain an “F”, while male donors contain an 
“M”. The top colouring indicates the dissectate’s major region. c, Bar plots 
showing the average UMIs per nucleus in each dissectate, coloured by main 
region. Error bars indicate standard error of each dissectate’s average number 
of UMIs. n = 4388420 nuclei examined over 92 dissectates. d, Violin plots 
showing the log10 distribution of the UMIs per nucleus in each major cell class 
(including immune cell classes). n = 4407296 nuclei examined over 16 cell 
classes. Box plots centred at median, bounded by IQR (25-75th percentile),  

with lower whisker at data point >= (25th percentile − 1.5*IQR) and upper 
whisker at data point <= (75th percentile + 1.5*IQR). e, Stacked bar plots of the 
nuclei sampled in each major mouse brain region, sub-setted by individual 
dissectate. f, Histogram of the maximal proportional representation of 
individual dissectates in each snRNA-seq cluster. g, Heatmap representing a 
confusion matrix between clustering of the snRNA-seq data in the current 
study (x-axis), and published studies (y-axis), for the mouse motor cortex6 (left) 
and cerebellum9 (right). h, Histogram of the log10 nuclei recovered from each 
major cell class (including immune cell classes). i, Plot indicating the probability 
of sampling 19 very rare populations (prevalence 0.0024% among all mapped 
cell types) as a function of the total number of mapped cells profiled in 
experiment (probability estimation in Methods). Number of high-quality 
nuclei profiled here (4388420) and corresponding probability are indicated.
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Extended Data Fig. 2 | Quality control and summary statistics of CCF 
integration and cell type mapping. a, Example images of adjacent Nissl 
sections aligned to CCF with 2D rigid transformation (wireframe outline) before 
(left) and after (right) correcting alignment with a 2D diffeomorphism. Red 
arrows point to example regions with incorrect alignment, and improvement 
after application of the correction. b, Expression of three highly specific 
marker genes that label the ventricular lining (Tmem212; 309 beads with  
non-zero expression), dentate gyrus granule layer (Dsp; 318 beads with non-zero 
expression), and layer 6b of isocortex (Ccn2; 418 beads with non-zero expression) 
in Slide-seq (top row); scale bar, 1 mm. Bottom row shows the positions of 

individual beads with expression with respect to the boundaries of the expected 
CCF region (purple). c, Density plot of the distance of each bead expressing 
each of the three marker genes (or all combined) shown in b across the 
corresponding Slide-seq sections. The full width half maximum of the density 
profile is shown. d, Heatmap representing the frequency of bead mappings  
for each glial cell type, across DeepCCF regions. e, Visualization of cell type 
dendrogram where each cluster (leaf of the tree) is coloured by their CCF region 
localization. The outer ring displays the boundaries of the 223 metaclusters 
where the alternating colours signify transitions between groups.



Extended Data Fig. 3 | Extended analyses quantifying neuronal cell type 
diversity across brain areas. a, Heatmap representing the weighted Jaccard 
similarity in cell type composition between each of the 12 main brain areas 
(Methods). b, Histogram of the minimum number of genes required to uniquely 
define each cell type across the nervous system. The algorithm was repeated, 
tolerating genes to be the same amongst different numbers of nearest cluster 
neighbours. c, Cumulative distribution plots of the number of genes needed to 
label each cell type, within each of the 12 major brain areas. Within each region, 

each of the sets of individually coloured plots denotes an algorithmic run with  
a different number of nearest neighbours that are tolerated as having the  
same gene markers (absolute number in parentheses at right). The coloured 
percentages denote the proportion of cell types for which the algorithm was 
able to find a solution. d, Bar plot quantifying the significantly enriched GO 
terms using EnrichR (hypergeometric test, p-adj <0.05) in the minimum-sized 
collated gene list after hierarchical reduction (Methods), coloured by the 
absolute number of genes related.
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Extended Data Fig. 4 | Extended analyses of projection and interneuron cell 
type relationships across regions. a, Normalized gene expression heatmaps 
of the neighbouring cell types for clusters within each metacluster. The clusters 
are sorted by increasing distance to the index metacluster (nearest at top), with 
the dotted horizontal line delineating the proximate neighbourhood (Methods). 
Marker genes are plotted to show the calibration of neighbourhoods to include 

only similar cell types. b, Extended ridge plots depicting the transcriptomic 
distance from selected regions’ projection and interneuron cell types to their 
proximate neighbourhoods, separating each neighbourhood into their CCF 
regions (Methods). The neurons are split into the relevant metacluster for each 
region.



Extended Data Fig. 5 | Extended analyses of neurotransmitter and 
neuropeptide usage across the brain. a, Stacked bar plots of the number  
of cell types with confident mappings in each deep CCF region (conf. value > 0.3, 
Methods), sub-setted by neurotransmitter group. Deep CCF regions are coloured 
on the left by their corresponding major brain region. b, Representative 

sections showing the confident mappings of all cell types within three 
neurotransmitter groups (conf. value > 0.3, Methods). c, Violin plots of the 
number of neuropeptides expressed in each cluster, stratified by main brain 
region. d, Dot plot showing scaled Slide-seq counts per 10,000 of ligand- 
receptor pairs across main brain regions.
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Extended Data Fig. 6 | Extended analyses related to activity-related genes. 
a, Comparison of correlations (right) and quantile of correlation (left) between 
each gene and both Fos (x-axis) and Junb. Red dots indicate the genes that were 
selected as candidate ARGs. b, Scatter plot quantifying the node degree of  
each gene in the activity-regulated gene network. Genes labelled in red were 
selected as our core IEGs (Methods). c, Bar plots showing the average Slide-seq 
counts per 10,000 of the core IEG metagene (the eight genes highlighted in 
panel b). Error bars indicate standard error of average counts per deep CCF 
region and dashed black lines indicate average counts per main brain region.  
d, Scaled mean expression of the core IEGs, within each main region, separated 

by neurotransmitter group. e, Extended dot plot of correlation coefficients 
between Fos and candidate ARGs (columns) across major regions of the brain 
(rows). Genes are coloured by their established ARG gene set42 identity, if 
applicable. Numbers at the bottom correspond to ARG cluster identities as 
determined by hierarchical clustering. f, Enrichment analysis of each candidate 
ARG cluster with three established ARG gene sets42. P-values were computed 
from Fisher’s exact test using GeneOverlap and Bonferroni-corrected for 
multiple hypothesis testing (Methods). Dotted red line indicates an adjusted 
p-value threshold of 0.05.



Extended Data Fig. 7 | Extended analyses of heritability enrichment in 
murine brain cell types. a, Correlation plot of p-value enrichment scores 
(one-sided MC test from scDRS, FDR-corrected, Methods) for each cell type 
across different scDRS settings: A) default parameters (Methods) B) MAGMA 
gene z-score > 2.5, C) control gene set size of 2,000, D) control gene set size of 
500, E) input expression dataset at the single-cell level (versus pseudocells),  
F) adjust for cell type proportions. b, FDR-adjusted -log10 p-value enrichment 

scores for each cell type, grouped and coloured by main region, for an extended 
set of GWAS-measured traits. Squares and triangles denote excitatory and 
inhibitory clusters, respectively; glia are shown in grey on the far right of each 
plot. P-values computed by scDRS using a one-sided MC test. c, Dot plot of  
the expression of key cortical pyramidal cell type markers within the eight 
isocortical clusters that were significantly enriched (p-value < 0.05, computed 
by scDRS using one-sided MC test, FDR-corrected) for schizophrenia heritability.
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