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Single-cell spatial metabolomics with
cell-type specific protein profiling for
tissue systems biology

Thomas Hu1,2,10, Mayar Allam 1,10, Shuangyi Cai1, Walter Henderson 3,
Brian Yueh4, Aybuke Garipcan4, Anton V. Ievlev 5, Maryam Afkarian 6,
Semir Beyaz4 & Ahmet F. Coskun 1,7,8,9

Metabolic reprogramming in cancer and immune cells occurs to support their
increasing energy needs in biological tissues. Here we propose Single Cell
Spatially resolved Metabolic (scSpaMet) framework for joint protein-
metabolite profiling of single immune and cancer cells in male human tissues
by incorporating untargeted spatial metabolomics and targeted multiplexed
protein imaging in a single pipeline. We utilized the scSpaMet to profile cell
types and spatial metabolomic maps of 19507, 31156, and 8215 single cells in
human lung cancer, tonsil, and endometrium tissues, respectively. The
scSpaMet analysis revealed cell type-dependent metabolite profiles and local
metabolite competition of neighboring single cells in human tissues. Deep
learning-based joint embedding revealed unique metabolite states within cell
types. Trajectory inference showed metabolic patterns along cell differentia-
tion paths. Here we show scSpaMet’s ability to quantify and visualize the cell-
type specific and spatially resolvedmetabolic-proteinmapping as an emerging
tool for systems-level understanding of tissue biology.

Spatially resolved metabolomic analysis of human tissues is para-
mount for the study of chemical balances and alterations in health
and disease. Metabolites and lipids play a regulatory role in
immune responses and cancer1,2. Particularly, metabolism in
tumors has demonstrated vital mechanisms in understanding the
functional changes in immune and cancer cell interactions3.
Immune cell types experience significant metabolic programming
when infiltrating the tumor ecosystem4–6. Cancer progression
controls multiple immune and stromal cell types and their meta-
bolic functional roles in tumors due to the rapid nutrient depletion
and accumulation of waste products during rapid proliferation7.

Thus, it is crucial to identify cell types and their metabolism in
biological tissues.

Recent advances in Mass spectrometry imaging (MSI) techniques
have allowed spatial profiling of a large number of proteins and
metabolites. MSI methods have provided capabilities to capture
metabolite information within its spatial context to address the loss of
spatial details in bulk-level mass spectrometry techniques8. Several
technological advancements in mass spectrometry imaging have
allowed the acquisition of spatialmetabolite features includingmatrix-
assisted laser desorption/ionization (MALDI), desorption electrospray
ionization (DESI), and secondary ion mass spectrometry (SIMS)9. MSI
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methods characterizedmetabolic heterogeneity in tissue sampleswith
different sensitivity, spatial resolution, and chemical coverage. MALDI
and DESI efficiently map metabolites at 10-100 µm spatial resolution
while Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)
acquires lipids and metabolic fragments at sub-micron spatial
details10–12. However, these MSI approaches lacked cell type tagging,
causing the loss of key cell-specific correlates in tissues.

Characterization of the single-cell level metabolomic profile
remains a difficult task. A recently proposed method called SpaceM13

performed an integrated analysis ofMALDI-basedmetabolicmaps and
fluorescence microscopy images in single cultured cells but lacked
high-resolution details of “true” single cells in dense tissues. Instead,
SpaceMmappedout pixelated correlations ofmetabolic targets within
cytosolic boundaries of large cells in cultures. Another method called
SEAM14 was proposed for single nuclear metabolomic profiling in the
native tissue microenvironment using TOF-SIMS. While this method
has allowed submicron metabolite mapping in cells and tissues, the
association of specific cell types to the metabolic profiles has been
lacking and only nuclei patterns are extracted from the entire cells
without the cytosolic boundaries. On the other hand, Imaging Mass
Cytometry (IMC) has provided multiplex imaging of 35 protein mar-
kers in the spatial context of patients’ samples at subcellular resolution
(1-µm)15–17, albeit without metabolic target information. Recently, a
three-dimensional (3D) spatially resolved metabolic profiling frame-
work (3D-SMF)18 was demonstrated to incorporate isotope tagging of
cell-type specific channels measured by TOF-SIMS. While this method
showed promising results for detecting correlations of cell types with
metabolic channels, the capability of achieving single-cell details of
joint protein and metabolite analysis has not fully been realized in
spatially crowded human tissues.

Several algorithms have been developed for the integration of
multi-omics data such as MNN19, Scanorama20, Conos21, MARIO22,
Seurat23, LIGER24, and SEAM14. MNN, Scarnorama, and Conos provide
computational pipelines for batch effect removal from multiple data-
sets. MARIO integrates multi-omics datasets by matching with partial
overlap accounting for both shared and distinct features. Seurat uses
an unsupervised framework to integrate multi-omics datasets by
assigning relative weights of each data type in each cell. LIGER for-
mulates an integrative nonnegative matrix factorization problem to
address multi-omics data integration from different modalities and
protocols. While multi-omics integration methods are being devel-
oped, spatial metabolomic data are unsuitable for integration with
other modalities because of their untargeted nature, lack of shared
markers, and identified cell types. On the other hand, single-cell ana-
lysis methods such as VEGA25, scDHA26, scMM27, SPADE28, DPT29,
Squidpy30, Athena31, and SPEX32 were developed for latent embedding
generation, cell lineage reconstruction, and spatial analysis. Using an
autoencoder model, VEGA, scDHA, and scMM proposed methods for
extracting single-cell level latent variables suitable for downstream
analysis such as clustering and visualization. SPADE and DPT are
methods developed for inferring single-cell developmental progress
from data. Squidpy, Athena, and SPEX are a suite of algorithms for
analyzing spatial omics data by introducing graph construction from
single-cell spatial data and characterization of cell type neighboring
frequency and spatial properties. While those methods showed great
progress in the analysis of proteomics data, they are not tailored for
single-cell metabolomics and no work is focusing on single-cell
competition33,34. It is therefore important to introduce specific analy-
sis pipelines adapted for joint metabolomic and proteomic datasets.

To provide a complementary solution to the need for simulta-
neous whole-cell metabolic and protein analysis in situ, we propose
Single Cell SPAtially resolved METabolic (scSpaMet) framework for
profiling immune cells and cancer cells in human tissues at the single-
cell level by incorporating untargeted spatial metabolomics and tar-
geted multiplexed protein imaging in a single pipeline. scSpatMet

combines previously developed 3D-SMF18, a framework that achieves
submicron resolution for metabolic imaging, with multiplex IMC
proteomic imaging for cell-type characterization in the same tissue
sample. scSpaMet enables the correlation of more than 200metabolic
markers and 25proteinmarkers in individual cellswithinnative tissues.
Moreover, scSpaMet introduces additional analysis capabilities for
joint metabolomic and proteomic single-cell data.

Results
With the advent of the current immunotherapy approaches, it is
becoming critical to develop a comprehensive understanding of
immune metabolism. The multi-omics scSpaMet approach has the
great potential to link the multi-layer information of the proteomics
data with the metabolism data on the same biological tissue. The
scSpaMet starts with staining the tissues with the metal-isotope con-
jugated antibodies, performing the metabolic profiling using the ToF-
SIMS imaging, and finally performing the proteomic profiling using
IMC. 3D-SMF18 was developed to profile hundreds of metabolic frag-
ments’ mass spectrum peaks in tonsils using ToF-SIMS at the tissue
level and the protein expression profile at the single cell level of
immune cells in tonsil and lung tissues using IMC35,36. Every multi-
plexed imaging region in the SIMS data has a resolution of better than
1 μmper pixel for over 200m/z peaks. Further, IMC provides targeted
multiplex protein imaging data for deciphering distinct cell types (for
instance, cancer/epithelial, stroma, and immune cells) at 1μmper pixel
resolution for up to 40 markers. Compared to existing metabolomic
profiling methods, scSpaMet allows correlation of multiplex cell types
to metabolic profile at the single-cell level. Compared to 3D-SMF, the
scSpaMet imaging pipeline incorporated in situ sequential detection
ofmetabolomic andproteomicwithin the same tissue (Supplementary
Fig. 1a and Supplementary Table 1), providing correlative proteomics/
metabolomics analysis at the single-cell level by cross-modality spatial
registration (Supplementary Fig. 1b). Accurate single-cell segmenta-
tion from the scSpaMet pipeline allowed single-cell level joint meta-
bolite and protein downstream analysis, whereas 3D-SMF only allowed
metabolite channel-level correlation, channel embedding, and pixel
clustering from tissue regions (Supplementary Fig. 1c).

In the scSpaMetpipeline, the sequential ToF-SIMSand IMCdatasets
were combined and matched to the single cell level to integrate the
information and perform comparative analysis (Fig. 1a). The scSpaMet
was used to dissect the metabolism in lung tumors (Fig. 1b) and tonsil
tissues (Fig. 1c). First, a consecutive tissue slide is stained separately
using Hematoxylin and Eosin (H&E) to identify the imaging region of
interest before scSpaMet profiling and downstream analysis (Supple-
mentary Figs. 2a and 3 and 4). Next, sequential ToF-SIMS and IMC
imaging procedures are performed to extract spatial maps of metabo-
lites andproteins. Pixel clustering of SIMSdata reveals uniquemetabolic
variation in the spatial context (Supplementary Figs. 5–7 and Methods).
To quantify cell-type specificmetabolic profiles, a cross-modality single-
cell registration pipeline was developed utilizing Histone 3 and Inter-
calator markers in the IMC dataset, and Phosphate 79m/z channels in
TOF-SIMS dataset, allowing the joint analysis of protein-metabolite
modalities in single cells (Fig. 2, SupplementaryFigs. 8–10andMethods).
Using affine transformation, the cross-modality pipeline yields higher
structural similarity (SSIM) and normalized root mean square error
(NRMSE) compared to rotation only and random shift. The registration
quality was quantified using the same metrics of SSIM and NRMSE.
Single-cell segmentation was used to extract the protein andmetabolite
expression levels and their spatial locations.

Due to the untargeted discovery nature and low variability nature
of metabolomic data (Fig. 3a), it is important to develop and identify
suitable analysis tools. Existing computational pipelines for integrative
analysis of single-cell data are developed for (1) same-modality
integration19–21, (2) cross-modality integration with shared
features22,23, (3) cross-modality multi-modal on same cell23,24 (Fig. 3b).
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The first data integration (1) is for the same type of sequencing mod-
ality for batch effect removal in the data. This is also applied to each
modality in our metabolomic and proteomic data. The second type of
algorithm (2) works under the assumption that multi-omics data share
the same marker set to some extent and multi-omics integration is
achieved by finding matching cells in the overlapping feature space

across data. The third type of analysis work (3) is for sequencing on the
same cell under the assumption of matching cell types across mod-
alities in multimodal analysis. These methods achieve successful
integration by looking at sharedmarkers or cell types. Our proteomic/
metabolomic single-cell data does not share the same modality nor
marker set. Moreover, single-cell metabolomic profiles are less variant

Fig. 1 | The scSpaMetpipeline for integratedmetabolite andproteinprofilingat
the single-cell resolution. a Overview of scSpaMet. Tissue samples on glass slides
are labeled with metal-isotope conjugated antibodies followed by metabolic pro-
filing with 3D-SMF and finally proteomic profiling using IMC. Created with Bior-
ender.com. b Examples of scSpaMet generated data in lung cancer tissues. Left to
right: PO3- channel ion, multiplexed metabolic data processed by pixel clustering,
IMC imaging Histone H3 marker, multiplexed IMC data overlaid with pseudo-

coloring, virtual reconstructedH&E staining from IMCmultiplexedproteomic data.
n = 7 biologically independent samples on 21 FOVs. Scale bar 100μm. c Examples of
scSpaMet generated data in tonsil tissues. Left to right: PO3- channel ion, multi-
plexed metabolic data analyzed by pixel clustering, IMC imaging of Intercalator
marker for DNA, multiplexed IMC proteomic data overlaid with pseudo-coloring,
virtual reconstructed H&E staining from IMC multiplexed data. n = 2 biologically
independent samples on 11 FOVs. Scale bar 100 μm.
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across cell types, therefore unsuitable for using algorithms on inte-
gration for same cell sharing cell types. (Supplementary Table 2).

The scSpaMet pipeline provides three additional analysis cap-
abilities for the understanding of multimodal single-cell level data
combining protein markers and metabolite channels: (1) muti-omics
cell competition (Supplementary Fig. 2b), (2) multi-modal data

integration (Supplementary Fig. 2c) and (3) multi-omics trajectory
inference (Supplementary Fig. 2d). In themulti-omics cell competition
pipeline (1), we extracted cell type, cellmetabolomics profile, and their
spatial location and compared local neighboring cell metabolomic
profile variation to infer the local competition of metabolite at the
single cell level. In the multi-modal data integration pipeline (2), we

Fig. 2 | Single-cell cross-modality registration pipeline. a Single-cell protein-
metabolite bi-modal registration pipeline. Input images consist of 3D-SMF and IMC-
generated images. First, a template matching algorithm is used to find the corre-
sponding matching region between the 3D-SMF region (smaller) inside the IMC
region (larger). Next, the rotation offset between the two aligned and cropped
images is calculated. Finally, the affine transformation of the two images is calcu-
lated to obtain bi-modal matched images. b Registration result from the compar-
ison between random, rotation registration, and affine registration. Left: Examples

of the three registrationmethodsbetween IMC (gray) and 3D-SMF (red) images and
their corresponding inset. Scale bar 100 μm. c Comparison of Structural/structure
Similarity (SSIM) and Normalized Root Mean Square Error (NRMSE) between the
three registration methods (n = 24 FOVs). Mann–Whitney-Wilcoxon test two-sided
with Bonferroni correction (ns: 0.05 p, *: 0.01 p < =0.05, **: 0.001 p < =0.01, ***:
0.0001 < p < =0.001, ****: p < =0.0001). All box plots with center lines showing the
medians, boxes indicating the interquartile range, and whiskers indicating a max-
imum of 1.5 times the interquartile range beyond the box.
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adopted a cross-modality Variational Autoencoder (VAE) pipeline to
integrate proteomics and metabolomic profiles from the same cell.
Because of the imbalance of both data variability (i.e., low variation in
metabolomic data compared to high variation in proteomic data) and
size of the modality (i.e., 25 protein markers compared to more than
200metabolite channels), VAE was used to detect specific

metabolomic states of cell type subsets. Finally, in the multi-omics
trajectory inference (3) we first used cell proteomics data to recon-
struct cell differentiation trajectory in their spatial domain and corre-
latedwithmetabolomic profile to extract the chemical pathways along
cell trajectories. This sequential approach allows the study of meta-
bolomic variation along cell trajectory defined by proteomic data.

Fig. 3 |Metabolomic and proteomicmodalities need to be integratedwith data
analysis. a Overview of metabolomic and proteomic data generated by scSpaMet.
Tissue samples onglass slides are labeledwithmetal-isotopeconjugatedantibodies
followed bymetabolic profiling with TOF-SIMS and sequential proteomic profiling
using IMC. The resulting outputs are n cells with distinct pm metabolomic feature
and pp proteomic features. The modalities have distinct feature spaces due to

differences in feature number and variability across datasets. Created with Bior-
ender.com.b Examples of existing spatial-omics data integration pipelines show (i)
same-modality integration, (ii) cross-modality integrationwith shared features, and
(iii) cross-modality multi-modal on the same cell. (i) is applied to remove the batch
effect from both metabolite and protein datasets. Our scSpaMet data lacked any
shared features (markers) or cell types. Created with Biorender.com.

Article https://doi.org/10.1038/s41467-023-43917-5

Nature Communications |         (2023) 14:8260 5



Taking into account the large number of proteinmarkers profiled
using IMC, we applied the Leiden algorithm37 for unsupervised clus-
tering of single-cell proteomics data. The Leiden algorithm is widely
used in unsupervised single-cell expression clustering38. After
inspecting the resulting cluster and assigning it to the corresponding
cell phenotype, we studied the correlation of cell type withmetabolite
channels in situ. Moreover, high-resolution in situ imaging data pro-
vided critical spatial information at the single-cell level and allowed
cell-cell distance quantification. Currently, most of the spatial omics
frameworks study the cell type neighboring frequency30, probability39,
and cell-cell interaction40 but not in cell competition from a metabo-
lomic aspect. Therefore, we developed a single-cell multi-omics com-
petition framework by comparing neighboring cell type metabolite
ratios and as a function of distances to other cell types such as endo-
thelial cells. Next, VAE41 has shown an improved ability tomodel single-
cell data distribution in both proteomics27 and transcriptomics25 with
the ability to integrate different modalities and therefore was adopted
here to extract joint latent representation from the proteomic and
metabolomic data. Finally, single-cell trajectories have largely been
limited to RNA-based technologies42 due to higher throughput gene
sequencing and proteomic trajectory analysis for well-defined cell
lineages43. Here, single-cell trajectories were reconstructed with dif-
fusion pseudotime analysis29 using the previously established devel-
opmental progression of B-cells in human tonsil follicles characterized
by their protein expression.

Cell type-specific metabolic states in lung cancer tissues
Cancer cells can change their metabolic programming to meet their
increasing energy needs for rapid progression and aggressive growth.
This results in a tumor microenvironment (TME) depleted of critical
nutrients, causing hypoxic and acidic conditions. These factors can
lead to the lower recruitment and activation of the tumor-effector
immune cells. It is critical to assess the differential metabolic
requirements of the diverse immune cells in response to the growing
tumors to uncover novel metabolic relations that can open the door
for therapeutic interventions combining chemical perturbations with
targeted immunotherapies3.

We applied scSpaMet to a lung tumor microarray for the char-
acterization of the protein-metabolic environment inside the TME
(Supplementary Figs. 11–13). A tumor microarray of lung adenocarci-
noma (grade III) with the tissue (TissueArray, ID: BS04081a) was
stained with an antibody panel of 21 markers (Supplementary Table 3)
spanning tumor, stromal, endothelial, and immune markers. The
scSpaMet first identified single-cell protein phenotypes from the
isotope-conjugated antibody panel of IMC using the Leiden algorithm
to find the clusters of cells (n = 10) with similar expression profiles and
annotated clusters by calculating their mean expression (Fig. 4a).
Cancerous/paracancerous regions were labeled with clusters contain-
ing high expression level of pan-keratin and e-cadherin whereas stro-
mal regions were marked by the expression of smooth muscle α-
smoothmuscle actin (α-SMA) and collagen type 1 (COL1). Immune cells
were extracted based on the expression of specific protein markers
(CD4, CD8, CD68, andCD3). The representative patients’ tissue images
were then reconstructed from the cell masks and their clustering
results by assigning each segmented cell to its corresponding cluster
(Fig. 4b and Supplementary Fig. 14). In eachpatient tissue image, single
cells (n = 19507) were then classified into tumor and stroma regions
based on their protein phenotypes and spatial localization enabling
comparison of highly expressed metabolites at the single cell level in
each of the two regions (Fig. 4c).

The scSpaMet captures the products of glycolysis metabolism
instead of directly profiling glucose-associated small molecules due to
inefficient detection by the TOF-SIMS instrument. Cancer cells upre-
gulate the glycolytic catabolism of glucose into lactate even under
normoxia. That leads to elevated levels of lactate, adenosine,

kynurenine, ornithine, reactive oxygen species (ROS), and potassium,
contributing to the suppression of an anti-tumor response. Mass
channels characterized by mass-to-charge ratios (M/z) were obtained
from scSpaMet and correlated with known annotation from literature
search and categorized the corresponding metabolite peaks into glu-
cose, cholesterol, amino acid, and lipid fragments (See Methods).
Selected mass channels of 74.0m/z Glycine, 89.0m/z Lactaid acids,
and 122.0 m/z Adenine related to glucose metabolism have higher
expression in tumor regions (Fig. 4d). On the other hand, Cholesterol
fragmentation channels show higher cholesterol expression levels in
stromal regions compared to tumor regions. Cholesterol is one of the
most essential lipids for the cells’ development, but cancer cells show
more rapid depletion of the cholesterol than normal cells indicating
their uncontrolled proliferation44. For identified amino acid and lipid-
related channels, the single-cell expression levels inside stroma and
tumor regions exhibit high variability (Fig. 4e). Single-cell metabolite
spatialmapswere reconstructed to visualizemetabolic variation across
regions in patients’ tissue images. The 25m/z lipid, 74m/z Glycine, and
109m/z Cholesterol fragments were shown in their spatial localization
with correlation to define tumor and stromal regions (Fig. 4f).

Metabolite competition of cell neighborhoods as a function of
distance to vessels
Metabolic reprogramming occurs in tumor and non-tumor compo-
nents of the TME by metabolic competition around tumor cells for a
steady supply of nutrients even under hypoxic conditions45. Endo-
thelial cells inside the lining of the vascular system play essential roles
in the TME for promoting or preventing tumor progression46 to sup-
port tumor metabolism47 and metabolic reprogramming4.

To study the impact of nutrient delivery around vascularization
sites on chemical regulation, we developed a framework for single-cell
local metabolite competition analysis in the lung TME. First, by lever-
aging CD31 protein markers from IMC multiplex data, we defined
CD31+ endothelial cells in each patient tissue image. To consider the
small size of the imaging field of view (FOV) in the 3D-SMFpipeline, we
used the whole Tissue Micro Array (TMA) core IMC images to detect
CD31-positive cells. Single-cell CD31 intensity expression followed a bi-
modal Gaussian distribution and cells with higher intensities were
defined as CD31+ endothelial cells and validated by inspecting original
CD31 marker images (Supplementary Fig 15). We matched each 3D-
SMF image region back into the IMC images (Supplementary Figs. 16
and 17). Then, for each segmented cell in the 3D-SMF image region, the
minimum distance to CD31+ endothelial cells is extracted by identi-
fying the cell centroids’ position closest to the CD31+ endothelial cells
from larger IMC-CD31 images by k-nearest neighbor algorithm (k-NN)
search with spatial data of single-cells (Fig. 5a and Supplementary
Figs. 16–18). In each tissue sample, the distances to CD31+ cells are
used to generatemetabolomic gradients (normalized in the range of 0
to 1) from distance maps by binning distance into 20 bins and aver-
aging cell metabolite expression per bins (Fig. 5b). Specific lipid
channels such as 25.0m/z, 49.0m/z, and 33.0m/z are up-regulated
around the CD31+ endothelial cells whereas 26.0m/z, 74.0m/z, and
98.0m/z are up-regulated further away from CD31+ endothelial cells
(Supplementary Fig. 19).

Neighboring cells in the TME enter a local nutrient competition
due to the high proliferation nature of tumor cells and their need for
nutrients. Here, we quantify themetabolite ratio of neighboring T- and
tumor cells by modeling the local metabolite competition of tumor
and CD3 + T-cells as a function of distance to CD31+ endothelial cells
(Fig. 5c and Supplementary Fig. 20a). First, we construct a single-cell
neighboring map from single-cell spatial data by specifying a radius of
20 µm. For each cell, we define themetabolite competition ratio as the
metabolite expression of the cell divided by the median metabolite
expression of its neighboring cells (i.e., a ratio of 1 would mean an
equal metabolite level between a cell and its neighbors). Finally, we
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combined the analysis of cell competition with distance to CD31+
endothelial cells. The mass channels of 148.0m/zMethionine, 42.0m/
z lipid, 94.0m/z, and 45m/z lipid fragments have higher expression in
tumor cells compared to T-cells at a further distance from CD31+

endothelial cells. On the other hand, the mass channels of 145.0m/z
Glutamine, 48.0m/z, and 27.0m/z exhibited higher expression in
tumor cells compared to T-cells in the proximity of CD31+ endothelial
cells. For T-cells, 148.0m/zMethionine, 42.0, 81.0, and 100.0m/z lipid

Fig. 4 | The scSpaMet pipeline identifiesmetabolite differences between tumor
and stromal regions in human lung cancer tissues. a Unsupervised single cell
clusters from protein profiles in human lung cancer tissues. Created with Bior-
ender.com. b Spatial projection of corresponding cell clusters from a. c Left: defi-
nition of stroma and tumor region in tissue sample based on single cell phenotypes
from (a). Right: The most expressed metabolite channels in stroma and tumor
region from the differential analysis. d Comparison of single cell metabolite
expression level for identifiedmass channels. Left: Themetabolite channels related

to Glucose pathway and Cholesterol fragments. Middle: The metabolite channels
related to amino acid fragments. Right: Bar graph of selected metabolite channels
(n = 19507 cells). Mann-Whitney-Wilcoxon test was two-sided with Bonferroni cor-
rection (ns: 0.05 < p, ****: p < =0.0001). All box plots with center lines showing the
medians, boxes indicating the interquartile range, and whiskers indicating a max-
imum of 1.5 times the interquartile range beyond the box. e Metabolite channels
related to identified lipid fragments. f Spatial projection of single cell metabolite
expression level for selected metabolite channels.
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fragments were upregulated near CD31+ cells. The scSpaMet recon-
structed the metabolite competition maps of neighboring cells as a
function of relative distances to theCD31+ endothelial cells overlaid on
a spatial metabolomics map of the tissue.

Similarly, we analyzed the tumor and CD68+ cells’ local metabo-
lite competition as a distance from CD31+ endothelial cells (Fig. 5d
Supplementary Fig. 20b). The mass channels of 129.0m/z, 134.0m/z
Adenine, and 126.0m/z Glycerophosphate demonstrated higher

Fig. 5 | The scSpaMet pipeline quantifies local metabolite competition in lung
cancer as a function of distance to the endothelial cells. a Representative
schematic showing the definition of distance to CD31+ cells in lung cancer tissues.
Created with Biorender.com. b Pearson correlation of metabolic signals compared
to single cell distance to CD31+ cells. Left: Heatmap showing Pearson correlation of
selectedmetabolite channels compared to thedistance toCD31+ cells. Right: Single
cell spatial distance map to CD31+ cells in lung cancer tissues. c Local metabolite
competition as a distance of CD31+ cells between T-cells and tumor cells. Left:

Selected metabolite channels showing positive and negative correlation of tumor
cells (top) and T-cells (bottom). Right: spatial projection of T-cells and tumor cells’
local metabolite competition for 48m/z. d Local metabolite competition as a dis-
tance of CD31+ cells between CD68 positive cells and tumor cells. Left: Selected
metabolite channels showing positive and negative correlation of tumor cells (top)
and CD68 cells (bottom). Right: spatial projection of CD68 cells and tumor cells’
local metabolite competition for 74m/z.
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expression in tumor cells compared to CD68+ cells at a further dis-
tance from CD31+ endothelial cells. On the other hand, the mass
channels of 165.0m/z Hydroquinone, 41.0, 42.0, 167.0m/z lipid frag-
ments, and 131 Asparagine exhibited higher expression in tumor cells
compared to CD68+ cells in the proximity of CD31+ endothelial cells.
ForCD68+ cells, only themass channel of 208.9m/z lipid fragmentwas
upregulated further fromCD31+ cells. Themass channels of 61.0, 60.0,
77.0, and 28.0m/z yieldedhigh expression inCD68+ cells compared to
tumor cells consistently. In the proximity of CD31+ endothelial cells,
the mass channels of 134.0m/z Adenine, 118.0m/z Threonine, and
144.0m/z were upregulated in CD68+ cells. The corresponding spatial
map of local metabolite competition was visualized for cancer and
CD68+ cells.

Spatial metabolomic differences of lung tissues from distinct
cancer patients
Lung cancer is heterogeneous not only at a cellular level48 but also at
the patient level with implications in the understanding of pathogen-
esis, diagnosis, andpersonalized therapy49. It is therefore imperative to
decode the patient-to-patient variability of protein and metabolite
distributions in single cells from different tumor biospecimens. The
scSpaMet pipeline enabled the quantification and comparison of
metabolite profiles at the patient level in lung cancer data. For each
patient, scSpaMet was used to image 3 regions of interest per tumor.
We then extracted the patient-level metabolite distribution and com-
pared it across patients (Supplementary Fig. 21a).

Patient-level metabolite distributions were stratified into high-
variation and low-variation metabolite channels (Supplementary
Fig. 21b and Supplementary Table 4). By comparing patient-level
metabolite distribution, lipid fragmentsweredistributedbetweenhigh
and low-variation channels. Cholesterol fragment channels (95.0m/z
and 147.0m/z) indicated low variation across patients. Glucose
pathway-related channels such as 71.0m/z, 87.0m/z pyruvic acids,
89.0m/z lactic acid, and 119.0m/z demonstrated considerable varia-
tion across samples. Next, we quantified the variability of single-cell
competition for tumor/T-cells and tumor/CD68+ cells for annotated
metabolite channels (Supplementary Fig. 22). For T-cells and CD68+
cells, we plotted the mean competition expression for metabolite
channels corresponding to glucose, cholesterol, amino acid, and lipid
fragments.

To enable robust comparisons across metabolic and proteomic
profiles of distinct patients, the scSpaMet analyzed joint protein-
metabolitemaps with a VAE architecture (Supplementary Figs. 21c and
23a and Methods). The VAE takes input from both the metabolite and
protein profile of single cells and outputs the reconstructed profiles,
that is a vector of size 21 for protein data and size 198 for metabolite
data. The embedding layer of the VAE was used to capture a latent
variable of the joint protein-metabolite profile at the single-cell level by
combining a latent vector of size 8 from each modality. The resulting
latent space embedding is used for clustering and showedmultimodal
phenotyping showing distinct metabolite states in tumor and stromal
cell types (Supplementary Fig. 23b). By stratifying single-cell bi-modal
spatial maps using self-supervised learning (Methods), we uncover the
intra- and inter-patient variability at the analyzed region of interest
level. Moreover, we decode the spatial joint metabolic-proteomic
signatures for different groups of patients. To generate spatial sig-
natures incorporating joint metabolomic and proteomics levels, we
obtain unsupervised clustering labels for each cell based on their VAE
latent embedding andwe extract each cell neighboring information by
taking a radius threshold of 25 μm. For each cell, we count the unsu-
pervised cluster labels in its neighborhood and obtain a vector corre-
sponding to the count of each clustering type around its
neighborhood. After normalization of the vectors by their total count
(i.e., with a density equal to one per cell), we perform a second unsu-
pervised clustering using the spatial signature of joint metabolic and

proteomics profiles (Fig. 6a). We uncover the intra- and inter-patient
spatial signature variability in each region of interest (Fig. 6c, d).

Cell type-specificmetabolic states aroundB cell follicles in tonsil
tissues
Tonsils play an important role in the immune system and are part of
the secondary lymphoidorgans. They are composed predominantly of
B- and T-cell populations in coordination with other immune cells and
epithelial cells around the tonsil follicle regions35,50,51. We reasoned that
deciphering spatially resolved cellular composition around B-cell fol-
licles and how metabolic variations occur within B-cell subsets would
be informative for decoding the role of chemical balance in humoral
immunity. The scSpaMet was applied to healthy human tonsil tissues
(Supplementary Table 5) to characterize the protein-metabolic envir-
onment around B-cell follicles (Supplementary Figs. 25–27). Herein, an
antibody panel of 25 markers included immune surface markers,
cytokine markers, epigenetic regulators, and extracellular matrix
proteins (Supplementary Data 1). The scSpaMet first identified single-
cell protein phenotypes (n = 6) using the Leiden algorithm (Fig. 7a) and
representative patients’ tissue images were then reconstructed from
the cell masks, and their clustering results by assigning each seg-
mented cell to its corresponding cluster (Fig. 7b and Supplementary
Fig. 28a). In each patient tissue image, single-cell phenotypes
(n = 31156) from unsupervised clustering were classified into the folli-
cle zone, outside follicle zone, germinal center (GC) light zone (LZ) and
GC dark zone (DZ) defining inside and outside GC regions, enabling
comparisonof highly expressedmetabolites in each region (Fig. 7c and
Supplementary Fig. 28b, c).

The inside and outside GC regions demonstrated statistically
significant variations of metabolite distributions and the mass chan-
nels obtained from the scSpaMet were correlated with metabolite
peaks annotated as glucose, cholesterol, amino acid, and lipid frag-
ments. Rapid proliferation is key to affinity maturation, but little is
known about how GC B cells fulfill the metabolic demands required to
achieve the GC reactions. In lymphoid organs, B cells inside the GC
undergo changes that lead to increased glucose consumption52. When
B cells get stimulated through their B cell receptor (BCR) or the cost-
imulatory protein CD40 or the Toll-like receptors (TLRs), the Hypoxia-
inducible factor-1 (HIF-1) and the c-Myc expression are enhanced,
leading to higher oxygen consumption, enhanced glycolysis, and
increased production of lactate. This process causes higher con-
sumption of amino acids including alanine and glutamine used as
carbon and energy sources. Recent evidence suggested that GC B cells
obtained the required energy from the fatty acid oxidation (FAO)
pathway53–55. This finding was counterintuitive because other highly
proliferative B cell blasts still exhibited high glycolysis activity, but GC
B cells upregulated FAO while performing minimal glycolysis. Inside
the GC regions, scSpaMet provided overall higher metabolite expres-
sion related to glucose fragments (71,.0, 87.0, 99.0, 119.0, 141.0m/z),
glucose pathway fragments (74.0m/z Glycine, 89.0m/z Lactic acids),
cholesterol fragment channels, and amino acid-related channels but
selected Fatty Acid channels (253.3m/z and 277.0m/z) showed higher
expression outside of GC (Fig. 7c, d). Analysis of lipid-related channels
demonstrated up-regulation in lipid fragments inside GC compared to
outside GC (Fig. 7e). The mass channels of 25.0m/z lipid fragment,
58.0m/z lipid fragment, and 74m/z Glycine fragment were shown in
their spatial localization with correlation to distinct GC regions
(Fig. 7f). We also used VAE architecture for joint protein-metabolite
embedding. The result showed unique metabolic states inside and
outside of GCs (Supplementary Fig. 29).

Single-cell metabolite local competition around germinal
centers
Humoral immunity against infections depends on the GC differentia-
tion process in the B cell follicles of secondary lymphoid organs. In
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GCs, naïve B cells rapidly proliferate in response to T cell-dependent
antigens and somatically mutate into high-affinity antibody-secreting
cells, i.e., plasma cells56. In this GC process, B cells rapidly alternate
between distinct “metabolic states” across quiescence, proliferation,
and differentiation57. Rapid proliferation is key to affinity maturation,
but little is known about how GC B cells fulfill the metabolic demands
required to achieve the GC reactions. The scSpaMet enables the
characterization of neighboring cell-to-cell local metabolite competi-
tion inside theGC. Thephenotypes of single cellswere identified inside
the tonsil GCs using cell protein profiles to determine GC B-cells, T-cell
follicular helper cells (TFHs), and Follicular dendritic cells (FDCs) with
their corresponding metabolic distributions in their spatial environ-
ment. Similar to the lung cancer competition pipeline, local cell

competition of per-cell metabolite ratios was calculated as the meta-
bolite expression of the cell divided by the average metabolite
expression of its neighboring cells. (Fig. 8a, b and Supplementary
Fig. 30). In human tonsil tissues, because of the high density of single
cells in GCs, we defined local cells in competition when the single cell
masks shared a boundary.

B-cell tonsil GCs arepolarized into a LZ andDZwith functional and
phenotypicdistinction at the single-cell level58. Ki67 is a proteinmarker
for the characterization of cell proliferation59. The scSpaMet identified
GC LZ and DZ using Ki67, CD20, CD21, CD38, and EZH2 markers
(Fig. 8c), and their metabolic distributions were compared. GC LZ
exhibited a higher expression of 89.0m/z lactic acid, 88.0m/z Alanine,
and several other amino acid channels.

Fig. 6 | The scSpaMet pipeline identifies spatial signatures of joint protein-
metabolite signatures in lung cancer tissues across patients. a Overview of
spatial joint protein-metabolite signatures identification by the scSpaMet pipeline.
Using VAE joint embedding, cells are clustered based on their joint protein-
metabolite profiles. A neighborhood graph is constructed based on cell spatial
location. The corresponding cell neighborhood cell type frequencies are used to

determine spatial joint protein-metabolite signatures across patients. Created with
Biorender.com. b Count of corresponding spatial joint protein-metabolite sig-
natures across imaging regions in all the patients and their lung cancer tissues.
c Frequency of corresponding spatial joint protein-metabolite signatures across
patients in lung cancer tissues. d Spatial projection of cell corresponding spatial
joint protein-metabolite signatures from (a).
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Metabolic trajectory analysis of pseudotime B cell
differentiation
GCs of lymphoid organs are the place where activated B-cells undergo
differentiation across DZ B-cells, LZ B cells, Memory B-cells, and

Plasma cells60–62. DZ contains the rapidly dividing B-cells undergoing
somatic hypermutation (SHM) and LZ contains FDCs, TFH, and B-cells
that are exiting the GC area. B-cell migration happens inside GC from
DZ to LZ63. Moreover, recent studies have provided ample

Fig. 7 | The scSpaMetpipeline identifiesmetabolite differences ofB cell follicles
regions in human tonsil tissues. a Unsupervised single cell clusters from protein
profiles in human tonsil tissues. Created with Biorender.com. b Spatial projection
of corresponding cell clusters from a). c The top expressedmetabolite channels in
regions inside and outside germinal centers across tonsil tissues from the differ-
ential analysis. d Comparison of single cell metabolite expression levels for iden-
tifiedmass channels. Left: Themetabolite channels related to Glucose pathway and
Cholesterol fragments. Middle: The metabolite channels related to amino acid

fragments. Right: Bar graphof selectedmetabolite channels (n = 31156 cells).Mann-
Whitney-Wilcoxon test was two-sided with Bonferroni correction (****:
p < =0.0001). All box plots with center lines showing themedians, boxes indicating
the interquartile range, and whiskers indicating a maximum of 1.5 times the inter-
quartile range beyond the box. e Metabolite channels related to identified lipid
fragments. f Spatial projection of single-cell metabolite expression levels for
selected metabolite channels.
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experimental evidence for the re-entry of selected B cells from LZ to
DZ upon antigen-driven selection64–66. B-cell pseudotime analysis
inside germinal centers has been used to trace their developmental
trajectories usingRNA-seq andprotein data67–70. The scSpaMet enables
B-cell trajectory analysis from single-cell protein expression with
metabolite correlation in their spatially resolved tissue coordinates. By

incorporating the single-cell protein phenotypes inside tonsil GC, the
scSpaMet infers the pseudotime trajectory of the GC B-cells (Fig. 9a).

Using multiplexed protein markers, B-cells inside of GC
(n = 15655) were selected for unsupervised phenotyping with the Lei-
den algorithm (Supplementary Fig. 31a), projected into their
t-distributed stochastic neighbor (t-SNE) embedding space, and their

Fig. 8 | ScSpaMet pipeline quantifies cell type-specific local metabolite com-
petition in germinal centers. a Representative schematic showing the definition
of local cell metabolite competition in human tonsil germinal center regions.
Created with Biorender.com. b Local competition of metabolites between B cells
and FDCs (top, n = 4371 cells), B cells and TFHs (middle, n = 2807 cells), and B cells
in LZ with DZ (bottom, n = 1870 cells). Mann-Whitney-Wilcoxon test was two-sided
with Bonferroni correction (ns: 0.05 <p, ****: p < =0.0001). All box plots with center

lines showing the medians, boxes indicating the interquartile range, and whiskers
indicating a maximum of 1.5 times the interquartile range beyond the box.
c Comparison of selected metabolite channels between GC LZ and GZ DZ. Mann-
Whitney-Wilcoxon test was two-sided with Bonferroni correction (ns: 0.05 < p, ****:
p < =0.0001). All box plots with center lines showing themedians, boxes indicating
the interquartile range, and whiskers indicating a maximum of 1.5 times the inter-
quartile range beyond the box.
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pseudotime ordering was inferred by determining the cell state and
calculating the respective probability of differentiating into each
terminal state71 (Supplementary Fig. 31b, c). This process computa-
tionally reconstructed two different differentiation trajectories of B
cells inside GC (Fig. 9b). Here we infer single-cell hierarchy from their
protein profiles. We selected the starting point from single-cell

expression corresponding to DZ B-cells. After plotting the cells in
the embedding space (Fig. 9b), we determine two distinct trajectories
that represented DZ to LZ and DZ to activated B cells from single-cell
protein expression across trajectories and their corresponding value
for the diffusion pseudotime. The bifurcation point was determined
empirically by the embedding plot of single cells. The scSpaMet then

Fig. 9 | The scSpaMet pipeline infers metabolites trajectory for B cell differ-
entiation inside of germinal centers. a Representative schematic showing the
definition of germinal center B cell trajectories. Created with Biorender.com. b B
cell trajectories in the germinal center from protein markers in scSpaMet. Left:
Unsupervised clustering of B cell protein markers and corresponding TSNE plot.
Middle: Pseudotime analysis of B cell protein phenotype. Right: Identified B cell

trajectories fromsingle-cell phenotype. (1) theGCDZB-cells toGCLZB-cells and (2)
the GC DZ B-cells to the activated B-cells. c Identified germinal center DZ to LZ and
DZ to Activated B-cell trajectory. Left: Variation of protein marker intensity along
identified trajectories, right: Variation of selected metabolite channel along iden-
tified trajectories. d Spatial plot of germinal center DZ to LZ trajectory (left) and
germinal center dark zone to Activated B cell trajectory (right).
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characterized the metabolic variations along the defined B-cell tra-
jectories, including the pseudotime path (1) the GCDZ B-cells to GC LZ
B-cells and (2) the GCDZ B-cells to the activated B-cells demonstrating
higher CD38 expression (Fig. 9c).

To visualize the gradients of B-cell trajectory in the spatial
domain, we projected defined B-cell phenotypes from trajectory ana-
lysis onto their spatial domain. Each cell is represented by a scatter
point with the color corresponding to its cluster information. Follow-
ing the identified trajectory paths for each cell in a cluster along a path,
we define the spatial direction by taking the five nearest neighbors of
the cell in the next cluster on the path and plot an arrow to the cen-
troids of the nearest neighbors (Fig. 9d and Supplementary Fig. 32).
This allows the spatial reconstruction of B-cell differentiation trajec-
tory inside of the GC in human tonsil tissues. Similarly, the corre-
sponding states of single-cell differentiation were projected back into
their t-SNE embedding space for visualization and represented as a
graph-directed method (Supplementary Fig. 33). On the other hand,
we projected the values of single-cell pseudotime into their spatial
domain and the corresponding pseudotime trajectory gradient to
visualize the spatial spread of these trajectories (Supplementary
Figs. 34 and 35).

Spatial metabolomic profiling in endometrium tissues
Human endometrium, the mucous membrane lining the uterus,
undergoes dynamic changes through remodeling, shedding, and
regeneration during the menstrual cycle72. The temporal and spatial
dynamics of endometrium cells have been studied at the single-cell
level to dissect the signaling pathways that determine the cell fate of
the epithelial lineages in the luminal and glandular
microenvironments73. Studies have shown that increased body mass
index is most strongly associated with endometrial cancer incidence
and mortality74,75. It is therefore important to characterize the meta-
bolomic variation between cell types and across conditions to better
dissect themolecularmechanisms underlying howobesity contributes
to endometrial cancer.

The scSpaMet was applied to human endometrium tissues for
characterization of their protein-metabolic environment (Supple-
mentary Fig. 36). Herein, an antibody panel of 9markers comprised of
immune surface markers, epithelial markers, and extracellular matrix
proteins (Supplementary Table 6). The scSpaMet first identified single-
cell protein phenotypes (n = 4) using the Leiden algorithm (Fig. 10a)
and representative patients’ tissue images were then reconstructed
from the cell masks, and their clustering results by assigning each
segmented cell to its corresponding cluster (Fig. 10b). In multiplexed
images of each patient tissue, we extracted single-cell protein profiles
(n = 8125) to characterize cell phenotype and conducted a comparison
of highly expressed metabolites for cell type (Fig. 10d, e). Single-cell
metabolite spatial maps were reconstructed to visualize metabolic
variations across regions in lean and obese benign patients’ tissues
(Fig. 10f). Next, we quantified themetabolomic variation between lean
and obese benign patient samples by comparing the annotated mass
channel associated with glucose, cholesterol, amino acids, and lipids
(Supplementary Fig. 37). Glucose pathway-related channels such as
74.0m/z Glycine and 89.0m/z Lactic acids showed high expression in
obese benign samples whereas other glucose fragments (71.0m/z,
87.9m/z Pyruvic acids, 99.0m/z) showed higher expression in the lean
benign patient.

Discussion
In this study, we developed ScSpaMet, a framework for joint protein-
metabolite imaging at the single-cell level. The scSpaMet framework
allowed systematic single-cell segmentation, phenotyping from
protein data, and metabolite profiling on the same tissues at high
spatial submicron resolution. While 3D-SMF captured incomplete
molecular fragments76, it produced highly multiplex metabolite

imaging and minimal sample alteration allowing further correlative
imagingwith IMC. This study shows the segmentation and analysis of
single-cell protein andmetabolic feature profiles directly in the same
tissue section. We applied scSpaMet to human lung cancer, tonsil,
and endometrium tissues. The scSpaMet identified metabolic varia-
tionbetween cells in the tumor and stromal regions, cell type-specific
local metabolic competition, metabolic trajectories, and patient-
level molecule variation in lung cancer tissues (Supplementary
Fig. 38a). Similarly, scSpaMet quantified metabolic changes around
B-cell follicles in human tonsil tissues by analyzing B-cells, T-cells,
and FDCs inside GC LZ/DZ regions (Supplementary Fig. 38b), cell
type-specific local metabolic competition inside of GC, and meta-
bolomic changes along B-cell differentiation trajectories. Finally, we
profiled human endometrium tissues using scSpaMet to decipher the
metabolic composition of cell types from lean and obese benign
conditions.

One potential limitation of this study is the challenge in metabo-
lite annotation and coverage for lipids, amino acids, and themetabolic
pathways from TOF-SIMS. Another limitation is the relatively small
imaging regions from tissue samples. This is a trade-off between ima-
ging speed and spatial resolution in the TOF-SIMS. However, multi-
plexed protein images from IMC were able to discern the cell type
heterogeneity of the TME. The immune panel can be expanded to
analyze further phenotypes such as macrophage M1/M2 or B-cells
subtypes. Optimal cutting temperature (OCT)-embedded frozen tis-
sues also showed better metabolite preservation compared to
formalin-fixed paraffin-embedded (FFPE) samples, but the tissue
structures were less preserved therefore the need to incorporate cryo-
TOF-SIMS imaging into the pipeline (Supplementary Figs. 39 and 40).
Finally, another aspect of this studywas the lack of information related
to the treatment history of the patients as it can alter the metabolite
state within the tumors and help explain metabolic variation across
patients.

Despite these limitations, the scSpaMet provided a com-
plementary solution to theneed for simultaneouswhole-cellmetabolic
and protein analysis in situ by incorporating untargeted spatial meta-
bolomics and targeted multiplexed protein imaging in a single pipe-
line. The scSpaMet registered single-cell measurements in bi-modality
and enabled accurate identification of various cell types with their
corresponding metabolomic profiles.

In summary, scSpaMet allows high-resolution joint protein and
metabolite profiling at the single-cell level in the same tissue. Using
protein markers, single cells are annotated, and their metabolic var-
iation is quantified. Combining cell type spatial information and
metabolic profile, a local cell metabolite competition framework is
proposed. Moreover, metabolic reprogramming along cell differ-
entiation trajectories can be retraced and projected spatially. With the
advancement of spatial mass spectrometry imaging resolution, mole-
cule annotation capabilities, and efficiency, scSpaMet paves theway to
systematic single-cell metabolite and protein profiling in their tissue
environment.

Methods
Ethics statement
Lung cancer and tonsil tissues were obtained from TissueMicroarray
(Previously: BioMax) vendor where they were collected with patients’
consent following high ethical and medical standards with the donor
being informed completely and with their consent. All human tissues
are collected under HIPPA-approved protocols. Due to the limited
samples available, sex and gender were not considered in the study
design. Endometrium tissues were obtained from patients with
informed consent undergoing surgical resection procedures at
Northwell Health Long Island Jewish Medical Center and shipped to
Cold Spring Harbor Laboratory for processing (Collected by S. B.).
Study protocols were reviewed and approved by the Northwell Health
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Biospecimen Repository (Protocol number: NHBR 18-0897). Tissue
samples were kept in RPMI medium (Cat#, 10-040-CV, Corning) until
processing. The study was conducted following the criteria set by the
Declaration of Helsinki.

Tissue preparation and isotope-conjugated antibody labeling
Patients’ samples for lung tumors were obtained from a TMA pur-
chased froma third-party vendor (TissueArray.com,US)with the tissue
ID: BS04081a. This TMA included a total of 63 tissue cores of FFPE non-

Fig. 10 | The scSpaMet pipeline characterizes proteins and metabolites in
human endometrium samples. a Unsupervised single cell clusters from protein
profiles in human endometrium tissues. Created with Biorender.com. b Spatial
projection of corresponding cell clusters from a. c The top expressed metabolite
channels in identified cell types across endometrium tissues from the differential
analysis. d Comparison of single cell metabolite expression levels for identified
mass channels. Left: The metabolite channels related to Glucose pathway and
Cholesterol fragments. Middle: The metabolite channels related to amino acid

fragments. Right: Bar graph of selected metabolite channels (n = 8215 cells). Mann-
Whitney-Wilcoxon test was two-sided with Bonferroni correction (****:
p < =0.0001). All box plots with center lines showing themedians, boxes indicating
the interquartile range, and whiskers indicating a maximum of 1.5 times the inter-
quartile range beyond the box. e Metabolite channels related to identified lipid
channels fragmentation. f Spatial projection of single-cell metabolite expression
levels for selected metabolite channels in obese benign (top) and lean benign
(bottom) tissues.
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small cell lung adenocarcinoma and adjacent normal lung tissue
samples obtained from 7 patients. We profiled 21 regions of interest
from 7 cores. Each tissue core had a diameter of 1mm and a thickness
of 5-µm which is within the tissue thickness recommended for IMC
( ≤ 7-µm). The tissue labeling protocol was followed as previously
reported in the protocol35, including antigen retrieval, protein block-
ing, metal-tagged antibody labeling, and nucleus counterstains. The
protocol starts with baking the FFPE sections at 60 oC for 2 hours to
ensure that the tissues adhere to the glass slides. The samples were
then dewaxed by immersing the slides into xylene and hydrated by
sequential immersion in descending concentrations of ethanol (100%,
95%, 80%, 70%, and 50%). This step was then followed by several
washes in Maxpar water (Catalog number 201069, Standard BioTools)
where they were left to incubate for 5minutes before proceeding with
the antigen retrieval step. The heat-induced epitope retrieval method
was used under basic conditions (pH =9) using Dako’s target retrieval
solution (Catalog number: S2367, Agilent Dako). A pressure cooker
wasused and set to high temperature for 15minutes. The sampleswere
then left to reach room temperature while immersed in the antigen
retrieval buffer. The slides were washed with Maxpar Water and Max-
par PBS (Catalog number 201058, Fluidigm). A PAP pen was then used
to draw a hydrophobic barrier around the tissues and Dako’s ready-to-
use protein-blocking buffer solution (Catalog number: X090930-2,
Agilent Dako) was used to avoid non-specific binding for the anti-
bodies. The antibody cocktail mix was prepared in the protein-
blocking buffer and was left to incubate with the samples overnight at
4 oC. The next day, the samples werewashed with 0.2% Triton X-100 in
Maxpar PBS with gentle agitation. The samples were then stained with
Intercalator-191Ir/193Ir prepared in Maxpar PBS for 30minutes at
room temperature. After the staining process was complete, the
stained tissueswere stored at 4oC until imaging time. The human tonsil
tissue sections were from TissueArray.com with the tissue group ID:
HuFPT161. Tonsil sample 1 had tissue ID SU1 and tonsil sample 2 had
tissue ID SM2. Tonsil sample 1 had 5 imaging regions of interest and
tonsil sample 2 had 6 imaging regions of interest.

IMC imaging
To set up the Hyperion imaging system, regions of interest of 1500-μm
x1500-μm were chosen within each tissue core to cover most of the
tissue. To choose the most optimum laser ablation power, several
testing points were chosen from the tissue cores that represent the
tissue heterogeneity. The acquired data is automatically saved in.MCD
format that can be viewed using Fluidigm’s MCD Viewer software (v
1.0.560.2).

IMC image processing
Each region of interest image was extracted using MCD Viewer (v
1.0.560.2) with a minimum threshold intensity of 0 and maximum
threshold intensity of 50. Each image intensity range was then scaled
to 0.1 and 99.9th intensity percentile for processing. Noise removal
using a k-NN filter77 is applied to reduce noise in the dataset.

TOF-SIMS imaging
The TOF-SIMS (IONTOF 5 GmbH, Münster, Germany) instrument uses
a bismuth liquid metal ion gun as the primary ion source to generate
secondary ions from the sample surface, followed by identification of
m/z of secondary ions by a TOF analyzer. The bismuth source can be
used in different modes: Singly charged 25-kV monoatomic (Bi + ),
singly charged 25-kV three-atom cluster (Bi3 + ), or doubly charged 50-
kV cluster (Bi3 + +) mode. Distinct modes exhibit extra cluster mass
and energy that can increase the yield (i.e., the number of secondary
ions per primary ion) of heavier molecular weight secondary ion spe-
cies. The Bi3 + + mode was chosen based on single-cell features (Sup-
plementary Fig. 41a). Regions of 300-μm x300-μm to 400-μm x400-
μm area were raster scanned at 512×512 pixels. Pixel densities were

chosen empirically (Supplementary Fig. 41b). The bright field images
were used to find imaging regions identified in H&E sequential tissues
(Supplementary Figs. 42 and 45). In this device, the secondary ions
were collected and then accelerated across a voltage gap and directed
into an ultrahigh-vacuum flight tube toward the detector (a combina-
tion channel plate and photomultiplier tube). The flight time of sec-
ondary ions is proportional to the ionm/z; thus, lighter ions (lower m/
z) arrive at the detector more quickly, and the heavier the ion, the
longer the TOF. For depth profiling, another cesium ion gun (Cs+ ions,
2-kV energy, andmicroampere current) was used to iteratively sputter
away very thin layers, followed by bismuth (Bi) bombardment to
generate secondary ions from the tissue sample before and after Cs
sputtering cycles. Depth profiling allowed the detection of more
molecules in imaging regions (Supplementary Fig. 46). Depth profiling
in the TOF-SIMSwasperformed around 30-40 slices for 10 s ablation at
2-kV per slice for an estimated ablation of 1micron per hour. In the 3D-
SMF platform, negative and positive modes were experimentally tes-
ted. As themetabolomic profilingmeasurements in unlabeled samples
provided more noteworthy single-cell spatial distributions in the
negative mode, the rest of the experiments were performed to detect
the negatively charged compounds as the selection of polarity (Sup-
plementary Fig. 47).

SIMS data preprocessing
The IONTOF SurfaceLab software (version 6) was used to perform
basic image processing operations on the acquired spatial mass
spectra. The spatial distribution for each selectedpeakwas exported in
files containing the coordinates and pixel intensity values. Around 200
peaks were selected using Surface Lab. The data were then exported in
American Standard Code for Information Interchange (ASCII) format
into a text file. For putative annotation of the metabolite channels, we
used published work of TOF-SIMS metabolite imaging literature
(Supplementary Data 2 and 3). For SIMS data, the mean ion count
normalization was applied for intra-sample normalization78. Each pixel
in the imaging data is normalized by their mean intensity over all
extracted ion channels. If the pixel i in the imaging data is represented
by a vector Xi = (xi,1,..., xi,p) ∈ Rp, the normalization is defined as

Y i =
Xi

Pp
j = ixij

P ð1Þ

Pixel clustering
Pixels in each imaged region of interest are concatenated and were
downsampled by 20 folds to extract a subsampling of the whole
dataset. The selected pixels were normalized to a mean of 0 and a
standard deviation of 1. Then, a Leiden clustering algorithm was
applied to the down-sampled dataset to assign a cluster label to each
pixel. Finally, pixels of the entiredatasetwere assigned to the cluster of
most likely neighbors among the 30 nearest neighbors in pixel feature
space in the down-sampled dataset.

Image registration
A two-step image registrationwas performed tomatch and align cross-
modality images (SIMS, IMC, and H&E). First using a Fast Fourier
transform (FFT) algorithm the cross-correlation between two images is
calculated to get translational offsets. The position of the maximal
correlation coefficient was identified and used to match images. After
finding a translational offset and matching region, the rotation offset
between the two aligned and cropped images is calculated using FFT
on the polar space transformed of the images. Finally, the affine
transformation of the two images is found by applying a Difference of
Gaussian (DoG) filter local maxima above a selected threshold were
selected as features and matched with the RANSAC algorithm79. To
match the pixel density of the two modalities, we downsampled the
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higher-density SIMSmodality using bi-quadratic interpolation without
anti-aliasing (Supplementary Figs. 48 and 50).

Single-cell segmentation
In cancer tissues, single-cell nuclei regions were also segmented using
the deep learningmodel Cellpose80 by usingHistoneH3marker in lung
cancer samples, combining DNA1, DNA2, Ki67, and PD1 markers in
tonsil samples and combining DNA1, DNA2 markers in endometrium
samples from IMC modality. The cytosol region was calculated by
expanding the nuclei-segmented region by 2 pixels. In tonsil tissues,
we use the best available nuclei marker (Histone H3 in tonsil data) and
we combine multiple protein markers using maximum projection to
get the whole cell area (Selected for the tonsil data: CD38, Vimentin,
CD21, BCL6, ICOS1, CD11b, CD86, CXCR4, CD11c, FoxP3, CD4, CD138,
CXCR5, CD20, CD8, C-Myc, PD1, CD83, Ki67, COL1, CD3, CD27, and
EZH2). To get the cytosolic region of each cell, we subtract the nuclei
image from the combined protein marker image. Finally, we use the
deepcell81 Mesmer model for single-cell nuclei and cytosol segmenta-
tion. This 2-step segmentation pipeline better captures the overall
cytosolic region of single cells by incorporating the majority of avail-
able multiplex imaging panels. The combined multiplex images were
used for single-cell cytosol and nuclei segmentation. We compared it
to a segmentation using a registered PO3- channel image from 3D-SMF
imaging which provided nuclei signals in cells. We showed that the
average captured nuclei area using the IMCmodality yields higher cell
areas compared to 3D-SMF and 2-fold higher in IMC cytosol segmen-
tation compared to SIMS nuclei (Supplementary Figs. 51 and 52).

Clustering algorithm
Single-cell unsupervised clustering was performed using the Leiden
algorithm37 a graph-based community detection algorithm. From each
segmented cell region, the mean intensity of each marker expression
was calculated. The resulting featurematrix consisted of n rows of the
total number of cells (n = 19507 for lung, n = 31156 for tonsil, n = 8215
for endometrium) and p columns of marker expression. Each column
of the feature matrix was normalized z-score and batch correction
between samples was performed using Scanorama pipeline20. The
neighborhood graph in the embedding space was constructed and
used for unsupervised community detection. Each cell was associated
with a cell phenotype cluster and attributed a cluster color showing the
cell-level clustering of each region of interest.

Spatial Neighboring map
From single-cell segmentation and clustering, cell centroids, and cor-
responding clusters were extracted. Spatial Neighboring maps were
created by connecting centroids within 20-μm of each other in lung
cancer and touching cell masks in tonsil samples, thus generating a
spatial proximity network for each region of interest with corre-
sponding cell phenotype. The average minimum and maximum axis
length of single cellswere used to infer ameandiameter of 10μmand a
distance of 20 μm was chosen based on 1 cell distance. Cell contacts
are extracted by binary dilatation of single-cell masks and cells that
overlap were considered to have contact31. We choose cell mask con-
tact for spatial neighboringmaps generation in tonsil samples because
of the higher density of cells.

Local cell competition
Cell localmetabolite competition is defined by cell spatial neighboring
map. For each cell, we define the metabolite competition ratio as the
metabolite expression of the cell divided by the average metabolite
expression of its neighboring cells. This gives a metabolite competi-
tion ratioequal to 1when themetabolite of a cell is equal to the average
of its neighboring cells, a competition ratio less than 1 when the
metabolite of a cell is less than the average of its neighboring cells, and
a competition ratio greater than 1 when the metabolite of a cell is

greater than the average of its neighboring cells. Let mi be the meta-
bolite expression level of cell i and mNi the average metabolite
expression level of cell i neighbors, the cell metabolite competition
ratio is defined as: mi

mNi
.

Variational autoencoder embedding
For protein andmetabolites data integration at the single cell level, a
Variational autoencoder (VAE) was used for embedding extraction41.
The VAE has input x for single-cell, fE, and fD represent the transfor-
mation by encoder and decoder layers. In addition to the standard
autoencoder, two transformations fμ and fσ are added to the output e
of the encoder to generate the parameters μ and σ (μ,σ ∈ Rm). The
compressed data z is now sampled from the normal distributionwith
mean μ and standard deviation σ. In contrast to the standard auto-
encoder, VAE uses z as the input of the decoder instead of e. By
adding randomness in generating z, VAE prevents overfitting by
avoidingmapping the original data to the compressed space without
learning a generalized representation of data. Formally given an
input dataset x we want to infer the characteristics of z by learning
the posterior distribution p(z | x) with likelihood distribution p(x | z).
The likelihood function p(x | z) is learned with our decoder. The
posterior distribution p(z | x) is learned through variational inference
by our encoder q. The distribution of z is learned with the re-
parameterization trick to ensuremodel gradient backpropagation by
considering our latent space as multivariate Gaussian distributions.
The VAE implementation maximizes the evidence of lower bound
(ELBO) during training:

LðX Þ= Eðqðzjx,ϕÞÞ½00log 00pðxjz,θÞ� � KLðqðzjx,ϕÞjjpðzÞÞ ð2Þ

The variational autoencoder consists of two encoder-decoder
networks for proteomic (AEp) andmetabolomic (AEm) with a different
number of layers and layer embedding sizes. The AEp consists of a
2-layer encoder of embedding sizes 16 and 8 respectively and a
decoder of embedding sizes 16, and 21 (proteomics dimension size).
The AEm consists of a 3-layer encoder of embedding sizes 128, 64, and
32, respectively, and a decoder of embedding sizes 64, 128, and 200
(metabolomics dimension size). The joint embedding h is obtained by
concatenating the output of the encoder from AEp and AEm feed-
forward to a dense layer of embedding size 16. Then h is used to derive
the normal distribution with mean μ and standard deviation σ. During
training, to learn joint embedding frommetabolic and protein profiles,
we trained two separate encoder-decoder networks: one formetabolic
and one for protein profile reconstruction. The two networks share the
same embedding space by concatenating the output of the two net-
work encoders and sampling from the same distribution (Supple-
mentary Fig. 53). We compared the joint embedding VAE
reconstruction mean absolute error with single modality VAE and
showed similar ability for single modality reconstruction with both
models (Supplementary Fig. 54a, b). Moreover, when combining lung
cancer and tonsil datasets with common metabolite and protein
markers, VAE successfully separated the two tissue types (Supple-
mentary Fig. 54c).

Pseudotime analysis
Single cell pseudotime analysis was performed using protein markers
for cell type definition. Two methods, Palentir71, and Diffusion
pseudotime29 were compared to capture the cell trajectory of B cells
inside the GC from protein data. Pseudotime based on single-cell
protein marker phenotypes was used to correlate single-cell metabo-
lite across B-cell GC trajectories.

Statistic and reproducibility
The details of statistical tests employed in each case were provided in
thefigure captions. All p valueswere corrected formultiple testing and
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the statistical testing method was indicated in the figure captions. We
used the following convention to indicate significance with asterisks:
not significant (ns) (P > 0.1), * (0.1 > P >0.01), ** (0.01 > P > 0.001), ***
(0.001 > P >0.0001), and **** (P ≤0.0001).

For each tissue type, H&E staining was first performed on
sequential tissues to determine the region of interest in imaging. 21
regions from tumor microarray, 11 regions from tonsil slides, and 5
regions from large endometrium slides were used. No data were
excluded from the analyses. The experiments were not randomized.
The Investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The IMC and 3D-SMF image data generated in this study have been
deposited at Zenodo with identifier 6784251. The mass spectro-
metry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD045840. Themetabolomic raw data have been
deposited to MetaboLights with the dataset identifier MTBLS8685.
Source Data are provided in this paper. Source data are provided
with this paper.

Code availability
The analysis codes are available at https://github.com/coskunlab/
ScSpaMet. The IMCdata was exported usingMCDViewer (v.1.0.560.2).
Analysis used Anaconda (v. 4.12.0) and Jupyterlab (v. 3.2.8) with
custom-written Python code.
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