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SUMMARY
A fundamental neuroscience topic is the link between the brain’s molecular, cellular, and cytoarchitectonic
properties and structural connectivity. Recent studies relate inter-regional connectivity to gene expression,
but the relationship to regional cell-type distributions remains understudied. Here, we utilize whole-brain
mapping of neuronal and non-neuronal subtypes via the matrix inversion and subset selection algorithm
to model inter-regional connectivity as a function of regional cell-type composition with machine learning.
We deployed random forest algorithms for predicting connectivity from cell-type densities, demonstrating
surprisingly strong prediction accuracy of cell types in general, and particular non-neuronal cells such as ol-
igodendrocytes. We found evidence of a strong distance dependency in the cell connectivity relationship,
with layer-specific excitatory neurons contributing the most for long-range connectivity, while vascular
and astroglia were salient for short-range connections. Our results demonstrate a link between cell types
and connectivity, providing a roadmap for examining this relationship in other species, including humans.
INTRODUCTION

The structural connectome, which represents the density of

physical projections between brain regions and is measured by

such techniques as viral tracing and diffusion tensor imaging,

is a coarse wiring diagram of the central nervous system

(CNS).1–4 Complex molecular processes during embryonic

development encourage the formation of connections between

brain regions, and later postnatal pruning results in structural

connectomes with a remarkable degree of conservation be-

tween healthy individuals. There is a strong interest in gaining a

rigorous measure of how gene expression and cell-type compo-

sition of brain regions relate to connectivity,5,6 which can deepen

our understanding of how brain circuits mature during the devel-

opment of the CNS and how they are disrupted in neurodegen-

erative diseases, among other areas of inquiry.

While the correlation between regional gene expression and

connectivity is well established in mice5,7–9 and humans,10–12

the methods used to determine this association are mainly

correlative or analytic. Correlation or regression with high-

dimensional input feature spaces carries a risk of overfitting,

and, as a result, often fails to generalize to unseen data.13 As

an alternative approach, Ji et al.14 applied random forest (RF)

methods to predict the presence or absence of brain connectiv-

ity from gene expression with high accuracy, but did not attempt

to predict the amount of connectivity density. Other groups5,14

report that connected regions tend to have higher correlated

gene expression patterns than regions that are not, which natu-
This is an open access article under the CC BY-N
rally raises the question of whether the connected brain regions

share common cell types. A step in this direction was taken by

Huang et al., who demonstrated BRICseq, a powerful technique

capable of mapping individual axonal projections along with the

neuronal subtypes to which they belong.15 However, their meth-

odology has not yet been scaled up to produce a dataset of com-

parable spatial coverage to the Allen Mouse Brain Connectivity

Atlas (AMBCA),2 which is perhaps the most thorough mesoscale

connectome currently available. Therefore, it is not yet clear how

distributions of different types of cells—the fundamental units of

connectivity—relate to the whole-brain connectome, nor have

any unbiased, data-driven methods been applied to attempt

to reconstruct the mouse connectome from regional cell-type

densities. Although the success of prior studies in using gene

expression-based markers to predict connectivity suggests

that cell-type distributions will also be predictive of the connec-

tome, the paucity of available whole-brain cell-type distributions

has made it difficult to test the hypothesis. Indeed, before the

advent of spatial transcriptomics and single-cell gene profiling

the question would have been impossible to answer quantita-

tively on the whole-brain level.

Here, we take advantage of these emerging technologies to

develop a comprehensive data-driven computational machinery

needed to address this question. We first implement an

algorithm to produce regional cell-type enrichment from

spatially resolved gene expression data following a specialized

method we have recently developed called matrix inversion

and subset selection (MISS).16 This method is essentially a
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Figure 1. Study design

Top left: the spatial quantification of cell-type enrichment was computed with the computational pipeline MISS16 from publicly available gene expression data.

Bottom left: the brain connectivity graph was measured by Allen Mouse Brain Connectivity Atlas using viral neuronal tracing techniques. Right: machine learning

algorithms were then implemented to predict the connectivity between each two regions.
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cell-type deconvolution algorithm that was shown to faithfully

reproduce cell-type distributions in the mouse brain using the

Allen Gene Expression Atlas (AGEA)17 and publicly available sin-

gle-cell RNA sequencing (scRNA-seq) data.18,19 Then, using in-

ferred cell-type enrichment distributions as input features, we

applied a number of machine learning methods to reconstruct

the mesoscale mouse structural connectome from AMBCA.2

Among all the models tested, the RF algorithm outperformed

other approaches at predicting both the presence or absence

of a connection between any given region pair as well as the

actual connectivity density values.

We were able to predict the structural connectome with a sur-

prisingly high level of accuracy, despite that the fact that the con-

struction of fiber connectivity is a highly complex and iterative

biological process with many determinants not strictly captured

by constituent cell types. We replicated our findings with a sec-

ond, different set of cell-type distributions inferred by MISS.

Despite the two datasets having a widely different number of in-

dividual cell types, both achieved almost identical performance

on the connectivity prediction task, indicating that our approach

is not an artifact of a particular input feature set. Our results

quantitatively demonstrate that regional cell-type distributions

can explain most of the variance in inter-regional connectivity.

To uncover the individual actors in this process, we undertook

a thorough feature importance (FI) analysis, with both confirma-

tory and surprising outcomes. Strikingly, oligodendrocytes were

implicated as the most important cell-type feature for recreating
2 Cell Reports 42, 113258, October 31, 2023
connectivity. Oligodendrocytes are the brain’s myelin and fiber

maintenance cells; their role in predicting connectivity is not un-

expected, but their prominence in this role has not received

adequate attention. A deeper dive also uncovered that non-

neuronal cells generally dominate neuronal cells as predictors

of connectivity, another surprising finding. In addition, we identi-

fied a strong distance dependency in the cell connectivity rela-

tionship, with layer-specific excitatory and medium spiny neu-

rons (MSNs) contributing most for predicting long-range

connectivity, while non-neuronal cells were more salient for

short-range connections. Indeed, the cell types necessary for re-

constructing long-range connections are generally different from

those most useful for predicting local connectivity, suggesting

that these may be maintained by distinct biological pathways.

Together, our findings suggest a hitherto under-explored role

of specific cell types that play outsize roles in forming and/or

maintaining connections.

RESULTS

Overview of the study pipeline
A schematic of the analytic pipeline is displayed in Figure 1. We

used previously computed regional densities for 200 neuronal

and non-neuronal cell types from publicly available scRNA-seq

data from Zeisel et al.19 and in situ hybridization data from the Al-

len Institute for Brain Science 17 using the MISS algorithm16 (Fig-

ure 1i). For confirmatory analyses, we also utilized the densities
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of 25 cell types from the Tasic et al. scRNA-seq dataset.16,18,20

We normalized these raw MISS-inferred densities to create

enrichment scores to prevent the scale of these features from ar-

tificially influencing the machine learning algorithms’ outputs

(see STAR Methods). The connectivity data we attempted to

reconstruct were derived from the AMBCA (http://connectivity.

brain-map.org),2 which we normalized by volume of the source

region, resulting in a 4243424 matrix of normalized connection

strengths (Figure 1ii; see also STAR Methods). Our choice of

normalization is motivated by the observation by Abdelnour

et al. and others that connectome degree is correlated with re-

gion volume21; therefore, we marginalized out the effect of

source region volume before all analyses. As we were only inter-

ested in connectivity between disparate regions and not self-

connectivity, we set all diagonal entries of the connectivity matrix

to zero. Finally, several machine learning methods were imple-

mented to infer the whole-brain connectome from the regional

cell-type enrichment scores, which we evaluated quantitatively

(Figure 1iii). We also note that we considered the enrichment

scores within regions sending out connections (‘‘source’’) and

within regions receiving connections (‘‘target’’) as separate fea-

tures, resulting in models with 400 total features for the Zeisel

et al. dataset and 50 total features for the Tasic et al. dataset.

Predicting the existence or absence of connectivity
We first addressed whether regional cell-type enrichment fea-

tures can be used to predict the existence or absence of connec-

tivity between any given pair of regions, because the underlying

biological difference between zero connectivity and non-zero

connectivity is qualitatively different from any differences in de-

gree of connectivity between region pairs (see STAR Methods).

Figure S1A shows the proportions of zero and non-zero values

within the ABMCA, indicating that the mouse brain connectome

is approximately 64% sparse. To perform this binary classifica-

tion task, we began with common unsupervised clustering

methods principal-component analysis (PCA) and t-distributed

stochastic neighbor embedding (t-SNE). Neither approach could

distinguish region pairs that form connections from those that do

not (Figures 2A and 2B, respectively). However, the RF algorithm

produced excellent classification results (Figures 2C and S2A;

Table 1; Data S2).22 The confusion matrix in Figure S2A shows

that the RF model predicted the existence of connectivity be-

tween pairs of regions with an accuracy of 0.80 for the Zeisel

et al. dataset (see also Data S2). AUROC (area under the

receiving operator characteristic) and AUPR (area under preci-

sion-recall curve) values for RF were 0.87 and 0.80, respectively

(Figure 2C). Thus, regional cell-type enrichment profiles can pre-

dict the presence of connectivity, paralleling prior findings based

on gene expression.14

Predicting connectivity density
We next turned to the task of predicting the connectivity den-

sity,2,15,23,24 which we define to be a measure proportional to

the number of axonal tracts per unit of source region volume be-

tween any region pair. We first examined whether region pairs

with similar cell-type compositions were likely to be more

densely connected. Figures 2D and 2E (left panels) depict heat

maps of the ipsilateral regional cross-correlation matrix with
respect to cell-type enrichment scores and the mouse connec-

tome, respectively (see also Figure S3). While there is a degree

of visual similarity, the two measures are only weakly correlated

(Pearson’s R = 0.32; Figure 2F). This agrees with previous work

suggesting that coupled regions tended to have higher levels

of gene expression similarity.5,14 We conclude that inter-regional

similarity in cell-type enrichment profile is related to, but insuffi-

ciently predictive of, the whole-brain connectome.

Given that the connectivity density distribution is mostly

comprised of very small values with a number of prominent out-

liers (Figure S1B), we hypothesized that nonlinear predictive

models would be more appropriate. Similar to the binary classi-

fication task, we found that the RF model recreated connectivity

from cell-type enrichment with a high degree of accuracy

(adjusted R2 = 0.60, root mean-square deviation = 0.60,

10-fold cross-validation; Table 1; Data S3). Excellent visual sim-

ilarity between the connectivity predicted by RF using cell types

and the ground truth can be observed in matrix heatmaps (Fig-

ure 2E, right) and scatterplots (Figure 2G), with a Pearson’s cor-

relation of 0.79.

To more thoroughly explore the significance of these results,

we constructed five collections of randomly generated null

models, each of which had the same number of input features

as the Zeisel et al. dataset (i.e., 200 each for source and target

region). Figure 2H displays distributions of R2 values from each

type of null distribution representing 500 random model in-

stances, and the red vertical line indicates the performance of

the cell-type-based model (Table 1; see also STAR Methods).

As expected, the least informative models incorporate no

gene-expression information. The purely randommodels (purple

curve), which involved assigning regional cell-type enrichment

scores from a uniform random distribution, were completely un-

informative. When these regional values were randomly as-

signed using distributions whose means depended on the

anatomical parcel to which each region belonged (green curve;

see also STAR Methods), the predictions improve markedly, re-

flecting key biology of the anatomical relationships between re-

gions, but remain poor. Performance further improves when

scrambling the values of the AGEA before applying MISS on

the highly informative MRx3 gene subset (yellow curve; see

STAR Methods and Mezias et al.16 for details), but it is much

lower than the true cell-type distributions. We also explored

the performance of gene expression directly with two different

sampling methods: (1) randomly selecting 200 genes within the

4,083-gene AGEA (red curve) and (2) randomly selecting 200

genes within the 1,360-gene MRx3 subset (blue curve). The

model using cell-type features significantly outperforms those

using fully random gene sampling, indicating that cell types

contain key information for predicting connectivity that is not uni-

formly reflected in the expression of individual genes. We

achieved comparable prediction accuracy using subsets of

informative MRx3 genes and cell types; given that MRx3 specif-

ically selects genes based on how well they discriminate be-

tween cell types transcriptomically,16 the agreement between

these two types of input features is expected.

In the above analyses, we separated the tasks of predicting

the presence or absence of connectivity (binary classification)

and predicting the density of connections among connected
Cell Reports 42, 113258, October 31, 2023 3
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Figure 2. Machine learning applied to regional cell-type distributions predicts both the existence of connectivity and connectivity density

(A) Principal-component analysis of the cell-type spatial quantification array.

(B) t-Distributed stochastic neighbor embedding (t-SNE) of the cell-type spatial quantification array. Neither method shows distinct clusters based on the

presence or absence of connectivity.

(C) Performance evaluation of the classifier model using 10-fold cross-validation. Left: the receiver operating characteristic curve (AUROC = 0.87). Right: the

precision recall curve (AUPR = 0.80).

(D) Cellular similarity matrix (quantified using Pearson correlation) of spatial cell-type enrichment quantification across brain regions, ipsilateral only.

(E) Left: brain connectivity matrix (log2 transformed). Right: RF prediction without splitting the training and test set. The depicted matrices’ rows and columns

represent individual regions, and the connectivity between regions is denoted by thematrix entries. The random forest model was able to qualitatively reconstruct

the whole-brain connectome.

(F) Scatterplot of pairwise cellular similarity (as depicted in D) between two regions’ cell-type distribution vectors versus the log-transformed connectivity strength

between the two regions (as depicted in E, left), and the fitted linear regression curve (Pearson’s R = 0.32, p = 0.0).

(G) Scatterplot showing the correlation between the ground truth connectivity strength between all regions pairs with non-zero connectivity and their predicted

values for connectivity using cell types as predictors in the RF model (test set only), along with the fitted linear regression curve (Pearson’s R = 0.79, p = 0.0).

(H) Distributions of R2 values from null models using five types of inputs in the figure below, each with the same number of features as the Zeisel et al. dataset (i.e.,

200): purely random white noise (purple); region-coupled white noise (green); cell-type ‘‘distributions’’ obtained from MISS after scrambling the regional gene

expression values in the AGEA (yellow); randomly selected genes from the 4083 gene AGEA (red); and randomly selected genes from the 1,360-gene ‘‘high-

information’’ subset used to infer the Zeisel et al. cell-type distributions in MISS (blue).16 The red vertical line indicates the performance of the cell-type-based

model presented in the manuscript. Each distribution represents 500 random model instances.

4 Cell Reports 42, 113258, October 31, 2023
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Table 1. Random forest model performance

Dataset Model task

Connectome

subset Accuracy R2

Zeisel

et al.19
kernel

density

estimate

all 0.864 –

kernel

density

estimate

all – 0.604

kernel

density

estimate

short range – 0.614

regression long range – 0.577

regression neocortical

to/from other

– 0.585

Tasic

et al.18,20
classification all 0.856 –

regression all – 0.587

regression short range – 0.608

regression long range – 0.581

Summary of results for the different random forest models explored,

broken up by cell-type dataset (Zeisel et al. or Tasic et al.), model task

(classification to predict binary connectivity or regression to predict con-

nectivity density), and connectome subset (portion of the connectivity

matrix being predicted). We report accuracy for classification models

and mean R2 values for the regression models. See also Data S2–S6.

Article
ll

OPEN ACCESS
region pairs (regression). From both biological and machine

learning perspectives, these are distinct questions and therefore

we chose to address them individually. Nevertheless, we also

implemented an RF algorithm to predict connectivity density in

the AMBCA without first removing unconnected region pairs

(Figure S4). As expected, we found that agreement was not as

strong between ground truth and predicted connectivity when

the zeroes were not first filtered out; however, the adjusted R2

was 0.42. We also achieved strong performance (R2 = 0.50)

when we split our training and test sets by source region rather

than purely randomly (Data S4). Several other common machine

learning algorithms were implemented to reconstruct both the

binary connectome and predict connectivity density, which,

however, fail to achieve superior performance over RF (Data

S2 and S3).

Confirmation with an independent cell-type dataset
We tested whether the RF algorithm could also recreate whole-

brain connectivity using an independently curated collection of

cell types to form the input feature space. For this purpose we

used MISS-inferred distributions of the scRNA-seq dataset

from Tasic et al., which sampled 25 cell types within the mouse

neocortex and thalamus.18,20 A natural question to ask is

whether the lack of sampling outside of the neocortex and thal-

amus may bias the whole-brain predictions of cell-type density

from this dataset. To address this concern, we have previously

shown that the prediction error within unsampled regions is com-

parable with that within sampled regions (reproduced from Me-

zias et al. in Figure S5).16 t-SNE and PCA were also unable to

separate region pairs that share a connection from those that
do not using the Tasic et al. dataset (Figures S6A and S6B).

But, when we used this less-expansive set of cell types, we

were still able to produce an accurate recreation of the binarized

connectome (AUROC = 0.85, AUPR = 0.78; Table 1; Fig-

ure S6C—only a modest decrease from the 200-type Zeisel

et al.-derived results [Figure 2C; Table 1]). The matrix of cell-

type similarity is, again, only weakly correlated to the connec-

tome (Pearson’s R = 0.21, p = 0.0; Figures S6D–S6F andS7).

Notably, the two cell-type similarity matrices created with 25

and 200 features, respectively, are strongly correlated with

each other (Pearson’s R = 0.79, p = 0.0; Figure S8), which we ex-

pected given the reliability of the MISS algorithm. The machine

learning models were similarly successful in predicting the con-

nectome with the Tasic et al. dataset, only modestly underper-

forming relative to the 200-type Zeisel et al. dataset (Table 1; Fig-

ure S6H; Data S5 and S6). Notably, only RF was able to perform

both the classification and regression tasks successfully (Data

S5 and S6), reinforcing that RF is uniquely suited to this problem.

Feature importance analysis to identify key cellular
mediators of connectivity
Wenext askedwhich cell types contribute themost to predictions

of inter-regional connectivity. Unlike other machine learning

models that give outputs whose dependencies are difficult to

discern, RF models are amenable to FI analysis22,25 (see also

STAR Methods). FI can be thought of as a measure of how

much information is contributed by a given feature relative to all

other features. Therefore, for each RF model we determined the

importance of each cell-type feature, and grouped them by

‘‘supertype’’ as determined by their scRNA-seq-based taxon-

omies. Please refer to Data S7–S10 for the list of cell-type names

and the supertypes to which they belong.We show these as box-

plots for the Zeisel et al. connectivity density RF model in

Figures 3A–3C, where each data point represents the average

FI score for each cell type across the 10 cross-validation test

sets. We considered the salience of each cell type in terms of

its source region (Figure 3A) and target region (Figure 3B) FI, as

well as its overall salience as an average of source and target re-

gion FI scores (Figure 3C). The corresponding results for the Tasic

et al. connectivity density RF model (Figures S6E and S6G) and

the classification RF models (Figures 2C and S6C) are shown in

Figures S9A–S9C and S10, respectively. Overall, we found that

that oligodendrocytes were the most important contributors to

both binary connectivity and connectivity density prediction at

the whole-connectome level for both the Zeisel et al. and Tasic

et al. datasets (Figures 3C, S9C, and S10). On a more granular

level, the source region cell-type FI scores strongly resembled

the averaged values, with oligodendrocytes again having the

highest scores in both the Zeisel et al. and Tasic et al. datasets

(Figures 3A andS9A). However, when considering only the target

regions’ cell-type compositions, we found that a number of

neuronal cell types had higher FI scores than oligodendrocytes,

with MSNs being a notable outlier for Zeisel et al. (Figure 3B).

We found qualitatively similar results when we retrained the RF

model to predict the connectivity densities from neocortical to

non-neocortical regions and vice versa (Figure S11). We elabo-

rate upon the implications of the divergence between source

and target cell-type compositions in the discussion.
Cell Reports 42, 113258, October 31, 2023 5



Figure 3. Interrogating the individual contri-

butions of cell types

(A) Boxplots showing the feature importance (FI)

values of all source region cell-type features in the

random forest model for Zeisel et al. cell-type

classes, with the standard error of the mean (SEM)

computed as the average across 10-fold cross-

validation. Cell types, grouped by supertype.

(B) FI values for target region cell-type features,

with the SEM computed as the average across

10-fold cross-validation.

(C) FI values for all cell-type features, with the SEM

computed as the average across 10-fold cross-

validation.

(D) Sagittal views of cell-type densities at the voxel

level as inferred by MISS for the corresponding

Zeisel et al. cell-type classes. Please refer to Data

S7–S10 for the full cell-type names and descrip-

tion.
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More generally, the non-neuronal supertypes were more

salient in the RF models than neuronal supertypes. We show

the voxel-wise distributions of these non-neuronal Zeisel et al.

and Tasic et al. supertypes in Figures 3D and S9D, respectively.

Overall, the apparent consistency of these FI results between the

two independently curated scRNA-seq datasets suggests a true

biological connection between these non-neuronal support cells

and connectivity at a whole-brain level.

The effect of inter-regional distance on predicting
connectivity density
Although adult cell-type distributions are highly informative for

reconstructing the mouse connectome, the unexplained vari-

ance in the data likely comes from other biological factors. For

instance, we found that there is a strong inverse relationship be-

tween inter-regional center-to-center distance and connectivity

density (Pearson’s R = �0.33, p = 0.0; Figure 4A), indicating

that there is a bias toward short-range connections in the mouse

brain. Using spatial distance as a sole predictor of connectivity

density produced an RF model with an average R2 of 0.12, indi-

cating that distance contributes modest but significant informa-

tion (Figure 4B). Furthermore, including it along with the cell-type

distributions produced RF models with higher R2 values

(DR2 = 0.09; Figure 4B). By contrast, using the taxonomic dis-

tance matrix as a predictor, where distance is defined in terms

of how early each region pair separated anatomically during

development,26 contributed less information than spatial dis-
6 Cell Reports 42, 113258, October 31, 2023
tance and did not provide an improve-

ment over cell-type enrichment scores

(Figure 4B; see also STAR Methods).

These results indicate that inter-regional

spatial distance contributes information

that is at least partly independent of that

contributed by regional cell-type compo-

sition, while the information from taxo-

nomic distance is fully captured by differ-

ences in regional cell-type composition.

When we looked at the distance depen-
dence of connectivity density within major anatomical region

groups, we found that each set of regions generally has a broad

distribution of connection lengths (overall interquartile range =

[2.2 mm, 4.6 mm]; Figure 4C). However, while each distribution

is left-skewed, indicating that shorter-ranged connections pre-

dominate, we found that neocortical regions mediate a dispro-

portionate number of the long-range connections in the brain.

Consequently, we were interested in whether there was a dis-

tance dependence to cell-type FI, as has been suggested previ-

ously.27,28 We therefore trained the RF algorithm on the upper

and lower quartiles of connections by distance separately and

determined the FI scores per cell supertype as above

(Figures 4D, 4E, and S12–S14). The RF models achieved similar

fits regardless of distance bin (R2 = 0.61 and 0.58 for short-range

and long-range connectivity, respectively) and performed

comparably well with the model of whole-brain connectivity (Ta-

ble 1). However, clear differences emerged at the level of FI be-

tween short-range and long-range connectivity. Although oligo-

dendrocyte distributions from the Zeisel et al. and Tasic et al.

datasets were not the strongest contributors to the RF model

of short-range connectivity as they were for whole-brain connec-

tivity, they remained among the top features, and generally non-

neuronal cells had stronger source- and target-averaged FI

scores than neurons, as above (Figures 4D and S12A). In partic-

ular, immune cells and vascular cells exhibited the strongest

contributions to short-range connectivity for the Zeisel et al.

and Tasic et al. datasets, respectively. Of the neuronal
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supertypes, forebrain glutamatergic neurons (Neo Glu, Thal Glu,

Hip Neo Glu) had particularly weak FI scores. Interestingly, this

trend is reversed for reconstructing long-range connectivity: for

both datasets, we found that these three neuronal cell-type dis-

tributions were consistently among the most salient features

(Figures 4E and S12B). As with the target region cell-type FI anal-

ysis for Zeisel et al., the supertype with the highest FI score was

striatal MSNs, which are unique to that dataset (Figure 4E). We

summarize these results in Figure 4F, which shows that, for

both the Zeisel et al. and Tasic et al. datasets: (1) non-neuronal

cell types, and in particular vascular and immune cells,

contribute predominantly to predicting short-range connectivity

as opposed to long-range connectivity and (2) telencephalic glu-

tamatergic neurons contribute little to models of short-range

connectivity, but they are over-represented among types that

predict long-range connectivity. In short, while cell-type-based

RF models can reconstruct short-range and long-range connec-

tivity with a similar degree of accuracy as the whole-brain con-

nectome, the saliency of the cell-type features markedly differs

between these models.

A more nuanced picture emerged when we considered the

source and target region cell-type contributions to short- and

long-range connectivity prediction separately (Figures S13 and

S14). The contributions of individual source and target region

non-neuronal cells were variable; as a class, they generally ex-

ceeded neuronal supertypes when considering only source re-

gion supertypes in predicting short-range connectivity. In other

words, consistent with the above analyses, while non-neuronal

contributions predominated when considering overall connec-

tivity prediction (Figures 3C and S9C), this was driven predomi-

nantly by their source region FI scores and the prediction of

shorter-distance connectivity densities. The MSN and telence-

phalic glutamatergic supertypes also exhibited interesting

trends when separating source and target region features. As

mentioned above, MSN was the strongest contributor among

target region features to overall connectivity prediction (Fig-

ure 3B) and among source- and target-averaged features to

long-range connectivity prediction (Figure 4E). However, we

found that, among only target region features, MSN was in fact

was the strongest contributor to both short- and long-range con-
Figure 4. Most important cell-type contributors vary depending on inte

(A) Scatterplot of inter-regional distance and connectivity, showing that distance

(B) Boxplots of R2 values following 10-fold cross-validation using different combi

distance matrix, cell-type enrichment scores, cell-type enrichment scores with s

(C) Kernel density estimate plot of the probability of two regions being connect

subregions comprising the neocortex (red), the combination of subregions within

lidum, and striatum (green), the combination of subregions within the hypothalamu

cerebellum, pons, and medulla (purple). Interquartile range is shown with the bla

(D) Boxplots showing the importance of cell-type classes in the random forest m

dataset, with the SEM computed as the average across 10-fold cross-validation

(E) Boxplots showing the importance of cell-type features in the random forest m

dataset, with the SEM computed as the average across 10-fold cross-validation

(F) Scatterplot of long-range versus short-range for all of the individual cell typ

telencephalic glutamatergic neurons (Tel Glu; a combination of the Tasic et al. Ne

(Oligo), vascular cell types (Vasc), immune cell subtypes (Immune), and astrocyt

(G) Scatterplots of the Zeisel et al. supertype for all connections (left), short-range

against the regional coefficient of variation (CoV) of the cell-supertype densities

between FI and CoV for all connections and short-range connections, but not long

descriptions.
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nectivity prediction (Figures S13B and S13D) and did not

strongly contribute as a source region feature to long-range con-

nectivity prediction (Figure S13C). For both the Zeisel et al. Hip

Neo Glu and Tasic et al. Neo Glu supertypes, there was no effect

of separating out source region from target region supertype fea-

tures, providing similarly weak contributions to short-range con-

nectivity prediction (Figures S13A, S13B, S14A, and S14B) and

similarly strong contributions to long-range connectivity predic-

tion (Figures S13C, S13D, and 14C–14D). In summary, while

MSNs and telencephalic glutamatergic neurons both dispropor-

tionately contributed to predicting long-range connectivity, the

contributions between source and target region enrichment

scores markedly differed between them.

To further examine the underpinnings of the discrepancy be-

tween the supertypes most critical for predicting short-range

and long-range FI, we examined whether there was a relation-

ship between how variably distributed the Zeisel et al. super-

types were across the brain and FI. We hypothesized that

more spatially homogeneous cell types would contribute less

to the RF model’s predictiveness. As shown in Figure 4G, we

indeed found that, for the RF models predicting all connectivity

(left panel) and short-range connectivity (center panel), there

was a statistically significant negative association between

each supertype’s average FI score and its spatial coefficient of

variation (CoV), with Pearson’s R values of �0.67 (p = 3:53

10� 3) and �0.69 (p = 2:03 10� 3), respectively. However, while

the association trended negative for the long-range RF model

(Figure 4G, right panel), it was weak and not statistically signifi-

cant (Pearson’s R =�0.10, p = 0.72). The two outliers with espe-

cially high long-range FI scores, MSN and Hip Neo Glu, have in-

termediate CoV values (Figure 4G, right panel), which agrees

with their distributions being highly specific to a relatively large

set of regions (Figures 5A and 5B). Therefore, we conclude that

the contributions of supertypes to long-range connectivity den-

sity predictions in particular cannot be simply explained by

spatial heterogeneity.

Neuronal contributions to long-range connectivity
To explore some of the relationships between cell-type distribu-

tions and connectivity qualitatively, we show the distributions of
r-regional distance

has a weak correlation with connection strength.

nations of input features. From left to right: spatial distance matrix, taxonomic

patial distance, cell-type enrichment scores with taxonomic distance.

ed as a function of inter-regional distance. The individual lines represent the

the amygdala, cortical subplate, hippocampal formation, olfactory bulb, pal-

s, thalamus, andmidbrain (cyan), and the combination of subregions within the

ck dashed and dotted lines.

odel for the lower 25th quartile of connections by distance for the Zeisel et al.

.

odel for the upper 75th quartile of connections by distance for the Zeisel et al.

.

es within both datasets. We highlight in color the most important cell types:

o Glu and Zeisel et al. Hip Neo Glu cell supertypes), oligodendrocyte subtypes

e subtypes (Astro).

connections only (center), and long-range connections only (right), regressed

. There is a strongly negative and statistically significant negative relationship

-range connections. Please refer to Data S7–S10 for the full cell type names and
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Figure 5. Distribution of top contributors to

long-range connectivity (from Zeisel et al.

data)

(A) Glass-brain representations of the first-principal

component of Hip Neo Glu neuronal distributions

(number of types = 24).

(B) Glass-brain representations of the first-principal

component of MSN neuronal distributions (number

of types = 6).

(C) Glass-brain representations of the long-range

connectivity from (left) and (right) neocortical re-

gions. For clarity, only the upper 95th percentile of

connections by connectivity density are depicted.

(D) Glass-brain representations of the long-range

connectivity from (left) and (right) striatal regions.

For clarity, only the upper 50th percentile of

connections by connectivity density is depicted.

The colors correspond to the following major region groups: Amy, amygdala; Cer, cerebellum; Sub, cortical subplate; Hip, hippocampus; Hyp, hypothalamus;

Neo, neocortex; Med, medulla; Mid, midbrain; Olf, olfactory; Pal, pallidum; Pons, pons; Str, striatum; Tha, thalamus.
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Hip Neo Glu and MSN, the two supertypes from the Zeisel et al.

dataset with the highest average FI for predicting long-range

connectivity (Figures 5A and 5B). The Hip Neo Glu supertype

comprises 24 individual cell types, all of which are excitatory

and located within neocortical and hippocampal regions, and

the MSN supertype comprises 6 types of striatal MSN.19 As ex-

pected based on their taxonomy, Hip Neo Glu cells are confined

to the neocortex and hippocampus, while MSN cells are entirely

within the striatum. Given the high degree of regional specificity

of these cell-type supertypes, we also show the strongest long-

range connections to and from the neocortex (Figure 5C) and the

striatum (Figure 5D). More specifically, for the neocortex, these

include projections to hindbrain nuclei and contralateral neocor-

tical-neocortical connections (Figure 5C). The main long-range

projections from the striatum originate in the olfactory tubercle

and terminate in the periacqueductal gray of the midbrain, while

it receives its strongest long-range inputs primarily from contra-

lateral neocortical regions (Figure 5D). In this way, we can link the

anatomical distributions of cell types to specific subsets of inter-

regional connections.

DISCUSSION

Summary of key results
Our results constitute practical applications of data-driven ma-

chine learning models for reconstructing whole-brain inter-

regional connectivity using spatial cell-type enrichment distribu-

tions. We split this reconstruction into two tasks: a classification

task to predict the existence and absence of connections be-

tween each region pair, and a regression task to predict the

values of connectivity density between all connected region

pairs. We find that, using the comprehensively sampled Zeisel

et al. cell-type distributions,16,19 RF models are able to perform

both tasks with a high degree of accuracy (Figure 2; Table 1),

which we replicate using the smaller Tasic et al. dataset (Fig-

ure S6; Table 1).16,18,20 Post hoc FI analyses implicate oligoden-

drocytes as especially critical in correctly recreating the whole-

brain connectome (Figures 3 and S9). We further consider

inter-regional distance as an important predictor of the density

of brain connectivity (Figure 4). When FI is evaluated separately
for short-range versus long-range connections, we find that

MSNs and telencephalic glutamatergic neurons appear to be

far more important for recreating long-range connectivity than

for short-range connectivity, while non-neuronal cell types are

more important for recreating short-range connectivity. We

discuss below the implications of our findings, some confirma-

tory and some unexpected, in the context of current literature.

Predicting binary as well as weighted connectomes
We divided our machine learning prediction tasks by separately

predicting the absence or presence of a connection and the con-

nectivity density between any given region pair for two reasons.

First, the connectivity data are quite sparse (36% nonzero region

pairs), which can significantly impact the ability of the model to

generalize. Second, a zero connectivity density value might not

necessarily mean there is no connectivity between two regions

at all; rather, it might only mean the intensity was not able to

pass the threshold of observability imposed by the mesoscale

connectome methodology.2 Nevertheless, when we attempted

to predict connectivity density for the whole connectome

(including region pairs with zero connectivity density), the RF

model exhibited strong agreement with the ground-truth con-

nectome, although not nearly as high as that with the zero values

removed (Figure S4).

Model performance is replicated across two different
scRNA-seq datasets
Wewere able to replicate the results of our primary dataset—the

200-type Zeisel et al. dataset19—using a separate, 25-type data-

set from Tasic et al.18,20 (Figures 2 and S6; see also STAR

Methods). Interestingly, we found that the Zeisel et al. dataset

performed only modestly better despite containing a far more

diverse array of cell types sampled from a more comprehensive

set of brain regions. One possibility is that, because training ac-

curacy is close to 1 even for the Tasic et al. dataset, there is a

limit to how well cell-type features in the test set can reconstruct

connectivity using machine learning. This observation is sup-

ported by the results from the RFmodels using subsets of genes

(Figure 2H, red and blue curves), whose performance also did

not exceed that of either cell-type model. It is possible that a
Cell Reports 42, 113258, October 31, 2023 9
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subset of the Zeisel et al. cell types might outperform the 25 cell

types from Tasic et al., but the current study design is not well-

suited for exploring all combinatorial possibilities. Alternatively,

it may be that the 25 cell types inferred from the Tasic et al.

dataset, despite representing only a subset of mouse neuronal

diversity, provide close to maximal information content for re-

constructing brain connectivity. For example, the four non-

neuronal supertypes (astrocytes, oligodendrocytes, immune

cells, and vascular cells) from the two datasets are qualitatively

very similar in spatial distribution (Figures 3D and S9D) and

consistently have higher FI scores than most neuronal super-

types (Figures 3C and S9C). Furthermore, for the more regionally

specific long-range connections (Figure 4C), both datasets have

robust supertypes of the telencephalic glutamatergic neurons

that were especially important in reconstructing the long-range

connectome (Figures 4E and S13B). Nevertheless, that we

were able to create models with high predictive accuracy with

two sets of cell-type enrichment scores coming from indepen-

dently sampled scRNA-seq datasets reinforces the central claim

that adult cell-type distributions strongly reflect the brain

connectome.

Comparison with previous work
Our work is preceded by several previous attempts to model the

wiring diagram of the brain. Henriksen et al. modeled the mouse

mesoscale connectome with graph-theory-based approaches,7

and Reimann et al. built a null model for the micro-connectome

integrating the macro- and mesoscale connectomics.9 Although

these studies are not directly related to our current effort, they

highlight the importance of graph-theoretic features and gener-

ative models in studying the mesoscale mouse connectome. In

this study, we have focused almost exclusively on molecular or

cellular signatures of connectivity, but these studies indicate

that future work incorporating additional graph theoretic contrib-

utors for predicting brain wiring diagram could be fruitful.

An approach much closer to ours was taken by French and

Pavlidis, who built statistical models correlating the gene expres-

sion signatures of 17,530 genes in 142 anatomical regions from

the Allen Brain Atlas, and identified a subset of genes that are

statistically correlated with the brain’s wiring diagram.5 They

found a strong association between transcriptomic data and

the connectome, which motivated us to create a predictive

model of whole-brain connectivity from spatially distributed bio-

logical features. Ji et al. went a step further by performing ma-

chine learning to predict the existence or absence of brain con-

nectivity from gene expression, using a previous version of the

AMBCA as a target.14 Their approach yielded a very similar pre-

dictive accuracy and AUC as the classification results we pre-

sent here, and their results underscore that RF appears to be

an excellent approach, whether the features are based on

regional gene expression or cell-type distributions. However, in

addition to predicting the existence of connectivity, here we

also demonstrate that cell-type densities can be used to recreate

the actual connectivity density values with high accuracy. An

alternative, experimental approach linking cell types to connec-

tivity is BRICseq, which allows for the high-throughput mapping

of axonal tracts alongside the transcriptomic profiling of the pro-

jecting neurons.15 However, BRICseq has not yet been scaled up
10 Cell Reports 42, 113258, October 31, 2023
to produce a connectivity map of comparable spatial resolution

and coverage as the AMBCA.2,15 Therefore, to our knowledge,

no prior approach has been able to computationally link regional

cell-type composition and whole-brain connectivity.

Cell-type density versus gene expression as predictors
of connectivity
We propose here that cell type features are a valuable alternative

to gene expression for recreating the brain connectome for the

following reasons: (1) cells are the most fundamental unit respon-

sible for inter-regional connectivity. (2) Most neural cell types have

roughly fixed functions and spatial locations in the adult brain,

whereas expression for many genes is highly temporally variable.

(3) Using gene expression requires informed feature selection

given the sheer number of mammalian genes and gene variants.

While previous authors have reported such feature selection pro-

cedures, they necessarily rely on prior assumptions or knowledge.

(4) The larger the feature set (e.g., using the entire mouse tran-

scriptome), the higher the risk of overfitting and non-generaliz-

ability. Throughout our study, we have taken care to address

these challenges, and the use of a small number of cell-type fea-

tures, particularly for the confirmatory Tasic et al. dataset, was

considered a means of avoiding these pitfalls. Compared with

the thousands of gene features used in prior studies,5,14 the sets

of 25 and 200 cell types should form a more parsimonious input

feature space. That being said, tremendous effort has been in-

vested in obtaining gene profiles of cell-type-specific marker

genes aswell as genes involved in processes related to the forma-

tion and maintenance of projections between brain regions. Our

work both complements those efforts and also shows that we

can obtain cellular signatures from genes using the MISS algo-

rithm that are not necessarily single-cell markers but nevertheless

contribute significant information for predicting connectivity.

Oligodendrocytes are disproportionately associated
with whole-brain connectivity patterns
Our analysis demonstrated the importance of oligodendrocyte

cell types in recreating the whole-brain connectome. Oligoden-

drocytes are the most predictive feature in the RF model for

both datasets (Figures 3A–3C and S9A–S9C), and are also

among the highly predictive features when analyzing the FI for

the classification task (Figure S10). Biologically, oligodendro-

cytes produce the myelin sheath insulating neuronal axons.29,30

They help protect the vulnerable axons from parenchymal che-

mokines and cytokines, and ensure the fast and efficient move-

ment of action potentials.29–31 Dysfunction of oligodendrocytes

can interfere with normal micro-structure and functional connec-

tivity in themouse brain.32 Oligodendrocytemyelination was also

shown in previous work to be able to regulate the loss of synap-

ses.33 Moreover, recent work from Buchanan et al. showed that

oligodendrocyte precursor cells can prune axons in the mouse

neocortex.34 When we modeled short-range and long-range

connectivity separately, we found that while oligodendrocytes

contributed strongly to short-range connectivity, they were

somewhat less informative for reconstructing long-range con-

nectivity for the Zeisel et al. dataset (Figures 4D and 4E). Overall,

our results underscore the critical role this cell type plays inmain-

taining white matter integrity.
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Non-neuronal cells contribute to whole-brain and short-
range connectivity
Non-neuronal cell types also had high FI and we highlight them

below. Brain vascular cells compose the blood-brain barrier,

which protects the vulnerable CNS, and they interact with the

CNS for supporting neuronal cells with nutrients, energy, and ox-

ygen.35–39 Their breakdown is strongly correlated with brain con-

nectivity disruption and cognitive defects.35,39 Brain endothelial

cells are involved in the process of neurovascular coupling,40,41

whereby local neural activity stimulates subsequent blood flow

changes in the corresponding downstream locations.41,42 That

endothelial cells are more important for short- and medium-

range connections but not for long-range ones supports a role

in local circuit maintenance rather than long projections. We

also found that immune cell and astrocytes play an outsize role

in predicting connectivity compared with neuronal cell types.

Previous studies have indicated that there is an association be-

tween inflammation and functional brain connectivity.43,44 Simi-

larly, astrocytes, the most abundant glial cells in the CNS, have

critical impact in maintaining many physiological functions of

neurons. Germane to this investigation, previous experimental

work has shown the existence of bidirectional interactions be-

tween astrocytes and synapses.45

Furthermore, we found that non-neuronal cell types contribute

disproportionately to predicting short-range connectivity. Of

these, immune cells were the most important supertype for the

Zeisel et al. dataset and vascular cells were the most important

supertype for the Tasic et al. dataset, although all non-neuronal

supertypes tended to have higher FI scores than most of the

neuronal supertypes (Figures 4D and S12A). There are multiple

reasons why these non-neuronal cells have higher FI scores for

predicting short-range as opposed to long-range connectivity.

Generally, many non-neuronal cell types are thought to impact

and interact with neighboring neuronal cell bodies in the gray

matter, which may result in the mediation of more local, short-

range connectivity. Alternatively, it is possible that non-neuronal

cells, in their various roles supporting neuronal function, are

important in the formation and maintenance of all connections

in the CNS (Figures 3A–3C and S9A–S9C). However, given that

FI is a relative measure of the model information provided by a

given feature, non-neuronal cell types contribute at most moder-

ately to the long-range models of connectivity because certain

neuronal cell types have an outsize distance-dependent effect

(see below; Figures 4E and S12B). The distance dependence

of cell-type contributions to connectivity is an important line of

inquiry for future studies.

Neuronal subtypes differentially mediate long-range
connectivity
In addition to oligodendrocytes, we found that telencephalic glu-

tamatergic neurons and striatal MSNs were among the most

salient classes of cell types, but only for predicting long-range

connections (Figures 4E and S12B). The former are well known

to project to remote locationswithin and outside of the neocortex

(Figures 5A and 5C), and therefore their prominence in long-

range but not shorter connections is consistent with their neuro-

biology. It is particularly striking that the telencephalic glutama-

tergic cell supertypes in both the Zeisel et al. and Tasic et al.
datasets (Neo Glu and Hip NeoGlu, respectively) are also among

the least important features for predicting short-range connec-

tivity (Figures 4D and S12A), suggesting that these neurons pre-

dominantly engage in long-range connections. Similarly, the high

FI of MSNs is concordant with their function, as these are long-

range-projecting, inhibitory neurons. MSNs comprise a signifi-

cant fraction of neurons in the striatum and are involved in dopa-

mine signaling; notably, these neurons selectively exhibit altered

behavior in several psychiatric disorders.46 When we look at the

FI of individual cell types between the two datasets, we see a

similar pattern as we do at the supertype level (Figure 4G). In

particular, telencephalic glutamatergic neurons contribute

weakly to predicting short-range connectivity and are overrepre-

sented among types with high FI scores for predicting long-

range connectivity. Since telencephalic glutamatergic neurons

comprise many of the long-range, inter-regional connections of

the brain, the distance dependence we observed is biologically

plausible.

One interesting difference in the ways in which these two clas-

ses of cell types contribute to connectivity density prediction

emerges when examining the contributions of source and target

region cell-type features separately. The Neo Glu and Hip Neo

Glu supertypeswere disproportionately informative for predicting

long-range connectivity when considering either source or target

(Figures S13C, S13D, and 14C–14D), whereas the target region

MSN supertype had more relative importance for predicting

both short- and long-range connectivity andwas onlymoderately

informative as a source region feature (Figure S13). As shown in

Figure 5A, the distribution of Hip NeoGlu is entirely telencephalic;

these regions are involved in a disproportionate fraction of long-

range connections (Figure 4C), the strongest of which tended to

be contralateral and intra-neocortical (Figure 5C). That source

and target region FI valueswere both high for Hip NeoGlu reflects

the intra-cortical nature of these connections. By contrast, the

striatum, and caudoputamen in particular, have many more

incoming long-range connections than outgoing long-range con-

nections (Figure 5D), and therefore there should be a large differ-

ence between source and target region FI values forMSNs,which

we observed (Figures S13B and S13D). Taken together, these re-

sults suggest that the formation and maintenance of brain con-

nections requires a wide array of cell types. However, we caution

that this kind of FI analysis will benefit from further experimental

work to elucidate in more detail the biological roles of the identi-

fied cell types with respect to connectivity.

Future directions
One extension of the current method would be to apply feature

selection on either of the cell-type datasets used here, which

may facilitate the development of more predictive models. In

addition, machine learning models that integrate both cellular

features and anatomic/morphological features can be expected

to improve current predictions. Creating cell-to-cell or even

voxel-to-voxel level connectivity and benchmarking against

known neuronal cell-type-specific signaling pathways would

be beneficial for future research but will require higher-resolution

data. Given the conservation of CNS properties in mammals, we

may also be able to apply these data-driven methods to the hu-

man brain.
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Limitations of the study
The primary limitation of the current work is that cell-type

enrichment does not accommodate other factors critical for

determining brain connectivity, including neural polarity, cell

maturation, and migration. Furthermore, despite their ability

to produce FI, RF models are less interpretable than general-

ized linear models. RF models, an ensemble of decision trees,

can also suffer from overfitting, since any constituent decision

tree may be sensitive to data variations and noise. However,

we note that the issue of overfitting cuts across almost all ma-

chine learning methods and is not specific to RF. In this study

we have taken great care at various steps to minimize this

risk, starting from the basic design of using only the cell-

type features from the two connecting regions, and eschewing

full brain or neighboring regional features. Also, as mentioned

above, we have not explored feature selection to produce a

minimal set of informative cell types, either for the 25-type Ta-

sic et al. or the 200-type Zeisel et al. dataset, and therefore it

is possible that the model performance demonstrated here

could be further enhanced. Finally, we were still limited by

the resolution of both the mouse brain connectome and cell-

type density maps, and therefore did not attempt to sepa-

rately predict additional features of keen interest, such as

cell polarity.

Several caveats are worth mentioning in regard to the input

features used here. First, we used the coronal series of the

AGEA, which contains far fewer unique genes (4,083) than the

sagittal series and has a neuron and hippocampal bias17 for

the MISS pipeline and the null models of Figure 2H. The coronal

series, however, has a superior spatial resolution of 200 mm; ul-

timately, we decided that higher accuracy in regional quantifi-

cation of gene expression was more important than the limita-

tions inherent to the gene set. Similarly, our choice to use cell

densities inferred using the MISS algorithm was motivated by

its comprehensive spatial coverage. Within the MISS pipeline,

we apply a gene selection algorithm called MRx3 to filter out

thousands of uninformative genes for the purpose of recon-

structing cell-type densities,16 so having a more expansive

gene set may not necessarily lead to significantly better predic-

tions. However, we note that several promising technologies

are emerging that have demonstrated single-cell-level resolu-

tion of brain tissue, such as STARmap,47 osmFISH,48 and mer-

FISH.49,50 While the spatial resolution and direct transcriptomic

mapping of cell types using these methods is impressive, they

have not yet been scaled up beyond single regions. More

recent work using BARseq mapped approximately 1.2 million

individual cells within the mouse forebrain and labeled them us-

ing 107marker genes51; however, the authors biased their sam-

pling toward neocortical glutamatergic neurons and so this da-

taset lacks the breadth of transcriptomic diversity captured

within the Zeisel et al. dataset used here. Therefore, for

exploring the architecture of the whole-brain connectome at a

mesoscopic scale as it relates to cell-type distributions, we

chose to use MISS for its breadth of spatial coverage and

amount of cell-type diversity. Many questions about whole-

brain microarchitecture, which would require mapping cell

types and projections at a single-cell level to answer, remain

the subject of future work in this area.
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Conclusions
We report a data-driven approach that successfully predicts

whole-brain connectivity from regional cell-type information in

the mouse brain. We report quantitative evidence of the vital

importance of interareal distance and non-neural cell types in

recreating connectivity, especially of oligodendrocytes and

other non-neuronal cell types. Our results may provide guide-

lines for future experimental analysis, and can be extended to

other mammals, including humans.
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METHOD DETAILS

We use two primary sources of data: MISS-derived cell type enrichment scores, which are themselves a function of gene expression

data and serve as our models’ input features, and the Allen Mouse Brain Connectivity Atlas (AMBCA), which serves as our empirical

ground truth for training and testing our models. These data are available at the DOI listed in the key resources table above.

MISS-derived cell type features
Although the Allen Gene Expression Atlas (AGEA) contains spatially resolved gene expression information for thousands of genes,17 a

similar dataset directly mapping a comprehensive set of cell types in the mouse brain has not been produced. The lack of such a cell

type atlas has thwarted efforts at quantitatively exploring the dependence of connectivity on cell type composition. However, our lab

has recently developed the the Matrix Inversion and Subset Selection (MISS) pipeline,16,52 which is capable of deconvolving the
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spatial gene expression data from the AGEA into cell type densities with cell-type-specific single-cell RNA-seq (scRNAseq) data.

First, MISS uses an information-theoretic criterion to identify an informative gene subset, and then it solves a nonnegative least

squares problem to infer the densities of each cell type per voxel of the AGEA. These values were then averaged over the 424 regions

of the mouse Common Coordinate Framework (CCF) to obtain regional densities that could be used as input features in our machine

learning approach. The primary scRNAseq dataset used here contains 200 cell types from the Mouse Brain Atlas (mousebrain.org),

which were sampled from 12 locations throughout the mouse cortex.19 A second, confirmatory dataset comprised of 25 cell types,

which were sampled from the primary visual cortex, the anterior lateral motor cortex, and the dorsal lateral geniculate complex, uses

scRNAseq data made available by the Allen Institute for Brain Science (AIBS).18,20 These cell type densities are min-max normalized

to avoid the bias from the cell types’ own artificial scales to create our cell type enrichment features, ensuring that each regional cell

type value falls in the range ½0;1�. For further methodological details on the MISS algorithm, refer to the original publication by Mezias

et al.16

Mouse connectivity
We use the AMBCA as the source of the mouse connectome we reconstruct from cell type features (http://connectivity.brain-map.

org), which was assembled using viral tracing.2 Briefly, the authors injected enhanced green fluorescent protein (EGFP)-expressing

adeno-associated viral vectors to trace axonal projections from defined regions, which were then imaged using high-throughput se-

rial two-photon tomography. For full methodological details, please refer to Oh et al.2

The resulting mesoscale connectome, C, is represented as a 4263426 matrix, with Cði; jÞ representing the total connectivity from

region i to region j. The left and right ansiform lobules were removed due to the missing values in the AGEA, leaving a 4243 424

connectome. We also removed self-connectivity, since we are primarily interested in reconstructing inter-regional connectivity.

We followed the instructions provided by the Allen Institute for Brain Science (AIBS) to compute the connectivity density from the

total connectivity by dividing the values by the outputting regions’ volumes (http://connectivity.brain-map.org). To transform skewed

data to approximately conform to normality, we log-transformed the resulting connectivity densities.

For the classification task, we processed raw connectivity data to convert the raw continuous variables to binary values (1 and 0).

Work by Ji et al. set an artificial threshold tomake their two outcomes’ portion balanced.14We decided against thresholding because

wewanted tomaintain the sparsity of the brain connectome (only 36%non-zero values). The resulting data imbalance certainly made

our prediction task harder but we believe this is necessary for capturing the real biology germane to the brain connectome. After

removing the self-connectivity, there remained in total 179,352 data samples, pertaining to all connected region pairs. For the regres-

sion task (predicting connectivity density), we first removed all unconnected region pairs, leaving 64,566 samples.

Machine learning methods
We implemented several machine learning methods for predicting brain connectivity. We divided our ML prediction tasks by sepa-

rately predicting the absence or presence of a connection and the connectivity density between any given region pair. For all

methods, we randomly split the connectivity data and performed a 10-fold cross-validation, assigning 90 percent of the data points

to the training set while leaving 10 percent for testing in each iteration. All reported evaluations were performed on the test set, the

average of which were calculated for 10 iterations.

Cell type input features
For both the prediction tasks, we used the 200 cell-type enrichment vectors from both the source and target regions, resulting in 400

total features. We also explored additional feature engineering methods to generate more informative feature sets, but the prediction

accuracy did not increase significantly; therefore, in this study we report results based on only these cell-type features. For the in-

dependent Tasic et al. dataset, we use 25 cell-type enrichment vectors from both the source and target regions, resulting in 50 input

features in total. Other settings were kept identical to the analysis of the main Zeisel et al. dataset.

Null model input features
To benchmark the performance of our 200-feature model using the Zeisel et al. cell types, we five types of ‘‘null’’ input features, each

of which is 42431 vector of regional values:

1. Purely random: For each of the 200 input features, each regional value is independently sampled from a uniform random dis-

tribution.

2. Region-coupled: The 424 connectome regions are grouped into 13 major anatomical parcels (Data S11) and each of these

parcels is assigned a normal distribution with a standard deviation of 1 and a mean specific to that parcel (i.e., the distribution

for parcel 1 has a mean of 1, the distribution for parcel 2 has a mean of 2, etc.). Then, for each of the 200 input features, each

regional value is sampled from the distribution corresponding to the parcel within which that region resides.

3. Scrambled MISS: 200 pseudo cell-type densities were obtained by performing nonnegative matrix inversion on a spatial gene

expression matrix where each gene’s regional expression values were scrambled. We used the same 1360 MRx3 genes that

were used to infer the true densities of the 200 Zeisel et al. cell types for the inversion problem (see the Supplement andMezias

et al.16 for further details on the MISS algorithm).
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4. Random genes: Each of the 200 input features is the min-max normalized regional expression vector of a randomly selected

gene from the 4083-gene AGEA.

5. Random MRx3: Each of the 200 input features is the min-max normalized regional expression vector of a randomly selected

gene from the 1360-gene MRx3 subset that was used to infer the true Zeisel et al. cell-type densities.

We created 500 input feature sets for each of these null model types.

Random forest
The main findings reported in this study were obtained from random forest models for both the classification task and the regression

task.53–55 This model generates a number of decision trees on various sub-samples of the dataset and uses averaging to improve the

predictive accuracy and control overfitting. For each task, 300 random trees were generated and evaluated during each of 10 iter-

ations. Since the random forest model is well-known to suffer from a risk of overfitting,55,56 we employed several means to reduce this

risk. First, employing lower-dimensional cell type features in comparison to prior work that uses a much larger number of gene

expression features helps to mitigate overfitting issues. Our model design also excluded the use of higher-order features - e.g.,

from multiple brain regions - this also serves to reduce overfitting risk. We further set the maximal number of features for each

tree at 20 and the maximal depth for each tree at 15. The specific random forest model we implemented was the one contained

in the Python package Scikit-learn v0:20:222.

Other ML models
In addition to random, we implemented and tested several common machine learning algorithms including linear models such as

ridge57 and LASSO.58 We also implemented support vector machines (SVMs) with a Radial (RBF) kernel for the task.59,60 SVMs

are suitable for generating classification hyperplanes such that the margins between the hyperplane and the nearest instances of

the classified sample categories are maximized. In doing so, they allow for achieving global optimal solutions and hence aid in

the generalizations of the resultant classifiers. The rationale for adopting SVM was primarily due to the overfitting issue noted above

for the random forest model. Ridge regression, LASSO, and SVM were also implemented using the Scikit-learn v0:20:2 code

library. Other models including DecisionTree, GrandientBoosting, ExtraTrees and KNeighbors are implemented by Scikit-learn.

Neural network models
The above models are all conventional MLmethods that excel at lower-dimensional and small sample size scenarios, which are suit-

able for the current task. However, it is possible that modern neural-network-basedmodels might perform better - an empirical ques-

tion we subsequently attempted to explore using shallow and deep learning models. We first implemented the most common and

practical feedforward artificial neural network, the multilayer perceptron (MLP). We first constructed the common multilayer percep-

tron model, for both classifier and regressor tasks using Scikit-learn v0:20:2. The sizes of each MLP are as follows: 1st hidden

layer size, 256; 2nd hidden layer size, 64; 3rd hidden layer size: 256. In each, activation leaky RELU (the rectified linear activation func-

tion) was implemented. This model did not achieve results comparable to the above classical ML models (see Data S2 and S3). It is

possible that these results might be poor due to our choice of the MLP model in Scikit-learn, which is by design simplified and does

not admit more advanced algorithmic choices. To address this aspect we also built more advanced neural network models using a

Pytorch-based multi-layer perceptron. The network structure is as follows: number of input features, 400; number of neurons in each

layer, 512-64-16-4-1 (the final prediction value). A stochastic gradient descent algorithm that sought to minimize the mean squared

error (MSE) loss was used for model training and optimization. The drop-out ratio was set to 0.5 and batch normalization was

performed.

Model performance evaluation
As mentioned above, all the model evaluation results in this paper are reported for the testing dataset only, after 10-fold cross-

validation. For the classification task, precision and recall metrics are reported:

precision =
TP

TP+FP
recall =
TP

TP+FN

where TP is true positives, TN is true negatives and FP is false positives.

For the regression task, Root-Mean-Square Error (RMSE) was used to evaluate the quality of predictions:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1ðtrue � predictedÞ2

N

s
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R-squared score, also known as the the coefficient of determination, is defined as the proportion of the variation in the dependent

variable that is predictable from the independent variable(s):

R2 = 1 � RSS

TSS

where RSS is sum of square residuals and TSS is total sum of squares.

3D brain visualization
We used Brainframe, an in-house MATLAB package developed at the Raj laboratory, to generate the 3D mouse brains, the distribu-

tion of gene expression and cell-type patterns within, and the brain connectome. The cell-type maps shown here, which were first

presented by Mezias et al., 16 are rendered per-voxel level after applying a threshold for clarity. For the neuronal supertypes from the

Zeisel et al., we perform principal component analysis on the cell types that comprise each supertype and then plot the first principal

component scores of each voxel after min-max normalization. We render connectivity as a sphere-and-arrow plot, where each

sphere and arrow is color-coded by major region group and connections are thresholded by density for clarity. For more details,

view the Brainframe documentation (https://github.com/Raj-Lab-UCSF/Brainframe).

Inter-regional distance matrix calculation
To calculate the distance between each region-pair in the mouse CCF,2 we first determine the center of mass of each region by aver-

aging across the x, y, and z coordinates of all voxels with that region label. We then use the pairwise Euclidean distance between

these regional centers of mass as a proxy for the lengths of the white matter tracts connecting them. We note that these distances

based on center of mass are not a perfect analog for fiber length, as projections can take circuitous routes to connect regions that

may be otherwise close in spatial proximity. However, these fiber lengths are challenging to determine from the available data from

the AIBS, and for most region pairs Euclidean center-of-mass distance is a reasonable approximation.We alsomanually constructed

a taxonomic distance matrix based on the AIBS developmental atlas, where the timing of anatomical splits in the developing mouse

brain defines a hierarchical relationship between each pair of regions in the adult mouse brain.26 In all there were 6 such splits consid-

ered, with an emphasis on splits within the forebrain. Each region-pair was then assigned a distance from 0 to 6, which represents the

number of branch points separating them in the hierarchical clustering tree (Figure S15; see also Data S12 for the taxonomy derived

from the AIBS atlas).

Feature interpretation from random forest models
To decompose the random forestmodel and calculate the importance of each input feature, we used Scikit-learn v0:20:2 Python

package.22 For each decision tree t, Scikit-learn calculates a node’s importance, assuming only two child nodes per parent node

(binary tree):

NIj = wjIj � wleftðjÞIleftðjÞ � wrightðjÞIrightðjÞ;

whereNIj is the node importance of node j,wj is the weighted number of samples reaching node j, Ij is the impurity value of node j, and

the subscripts leftðjÞ and rightðjÞ indicate the left and right child nodes of node j, respectively.

Impurity for a node, Ij, is calculated differently depending on whether the task is regression or classification. The regression task

impurity is defined as the variance reduction across instances:

I =
1

N

XN
i = 1

ðyi � yÞ2;

where yi is label/value for an instance, N is the number of instances and y is the mean across instances.

For the classification task, we used the Gini impurity:

I =
XC
i = 1

fið1 � fiÞ;

where fi is frequency of label i at a node and C is the number of unique labels (e.g., C = 2 for the binary classification task).

The importance for the i th input feature on a decision tree, FIi, is then calculated from node importance as:

FIiðtÞ =

PNi

j = 1NIjðtÞPN
k = 1NIkðtÞ

;

where Ni is the number of nodes using feature i, N is the total number of nodes in the tree, and t is individual decision tree index.

These raw FIi values are then normalized such that the sum of F.I. across all features is 1:

FIiðtÞ =
FIiðtÞPM

k = 1FIkðtÞ
;
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where M is the total number of input features and t is individual decision tree.

The final F.I. at the Random Forest level is its average over all the trees:

FIi =

PT
t = 1FIiðtÞ
T

;

where T is the total number of trees and t is individual decision tree index. For more operation details, please refer to Scikit-learn

v0:20:2 Python package.22

We note that there are two region-level input features for each cell type in the dataset, one for the receiving region and one for the

outgoing region. The reported F.I. values for each cell supertype are averaged across their corresponding input cell-type features.

Distributions of F.I. represent the results of 10-fold cross-validation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Python and MATLAB programming languages. Machine learning approaches were as-

sessed and averaged over 10-fold cross-validation, with the Standard Error of the Mean (SEM) computed for precision and disper-

sion. Statistical significance was defined based on p values, and appropriate techniques were used for randomization, stratification,

and sample size estimation. Accuracy and AUROC for the classification tasks were obtained directly from the Python implementation

of random forest. R2 and Pearson’s R values were obtained using standard linear regression. Two-sample t-tests following Fisher’s

R-to-Z transformation were used to compare model performance. Preliminary analyses were conducted to ensure data met the as-

sumptions of the chosen statistical methods, addressing any deviations through data transformation or non-parametric alternatives.
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