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Gene expression predicts tumor characteristics such as resistance to anticancer therapy. However,
generalizing these predictors to multiple cancer types and data sets to motivate new therapeutic
strategies has proven difficult. Here, we present a nonnegative matrix factorization (NMF) approach
that decomposes gene expression into a universal set of “archetype” fingerprints. By restricting our
analysis to five well-defined biological pathways, we show that trade-offs between normal tissues
constrain oncogenic heterogeneity. Thus, the resulting six archetypes unify gene expression variation
across 54 tissue types, 1504 cancer cell lines, and 1770 patient samples. The archetype mixtures
correlate with cancer cell line sensitivity to several common anticancer therapies, even among cancers
of the same type. They also explain subtype-specific breast cancer characteristics and define poor
prognostic subgroups in breast, colorectal, and pancreatic cancers. Overall, the approach offers an
evolvable resource for understanding commonalities across cancers, which could eventually lead to
more robust therapeutic strategies.

INTRODUCTION

Tumors, even those derived from the same tissue
type, can exhibit very different gene expression profiles
and treatment responses. However, recent evidence has
emerged that these patterns often follow similar rules
across different cancers [1–3]. For example, many can-
cers exhibit subtypes that are relatively enriched for ei-
ther glycolytic or oxidative metabolism (the “Warburg
effect” [4, 5]). However, three fundamental questions re-
main unanswered. What do these patterns represent?
How do we identify these patterns from molecular data?
And how might we exploit them in the clinic?

A major aspect of cancer heterogeneity can be under-
stood in terms of trade-offs. Trade-offs are ubiquitous in
nature and explain, for example, why the human body re-
quires a diversity of specialized tissues and why cancers
adapt to different environmental conditions [5–9]. The
Warburg effect exemplifies the concept of an oncogenic
trade-off, or a constraint involving the gain of a tumori-
genic quality in lieu of another [4, 10]. The Warburg
phenotype is observed as an increase in glycolysis in ex-
change for reduced oxidative phosphorylation, which can
promote tumor growth. This effect has been described in
breast cancer across molecular subtypes, where basal-like
tumors exhibit greater glycolytic metabolism compared
to luminal-like breast tumors [1]. Another key oncogenic
trade-off includes the migration/proliferation dichotomy,
where typically proliferative cancer cells can adapt to a
low-proliferation and high-motility state in response to
hypoxia, which then may support the development of in-
vasive metastatic disease [11].

Recently developed mathematical tools have enabled
trade-offs to be identified in high-dimensional settings,
such as cancer gene expression data. Here, the data
are modeled as mixtures of a set of fully-specialized ex-
trema called archetypes [12]. As a model, archetypes
can be used to identify distinct patterns of cellular fea-
tures associated with biological trade-offs and are capa-
ble of describing heterogeneity across numerous cell types
[13, 14]. In cancer, these archetypes represent unique
gene expression programs associated with enrichment for
different biological pathways and distinct cancer hall-
marks [8, 10, 14]. Improving our understanding of can-
cer archetypes could, in turn, enable future therapeutic
strategies that exploit oncogenic trade-offs to improve
outcomes and limit tumor evolution [10, 15, 16].

While archetypal analysis is fairly mature, its ap-
plication to biology has not been fully realized [12].
Archetypal analysis typically involves a dimensionality-
reduction technique such as nonnegative matrix factor-
ization (NMF) or principal component analysis (PCA)
[13, 17, 18]. Biological applications of archetypal analy-
sis have relied primarily on a combination of PCA and
convex hull optimization, which, when applied to non-
negative data such as RNA sequencing read counts, can
produce spurious results and fail to identify archetypes
even in highly heterogeneous cancer samples [13, 14, 19–
23]. By contrast, NMF is widely used in many fields to
identify latent archetypes in data by enforcing a non-
negativity constraint, providing an interpretable, low-
dimensional approximation [17, 18, 24–26]. In previ-
ous biological analyses, NMF has been demonstrated as
a robust tool for the classification of cancer subtypes
and identifying context-dependent gene expression pro-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536595doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536595
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

files [27–30].
The aim of this study is to leverage the archetypal

analysis technique and the availability of multiple com-
plementary gene expression datasets to comprehensively
resolve cancer trade-offs. Our overarching strategy makes
use of normalized nonnegative matrix factorization (N-
NMF) to quantify the mixture of archetypes in a given
gene expression sample (Fig. 1). We train our method
on a variety of normal tissue samples to place the hetero-
geneity of cancer gene expression within the framework
of normal cellular variation. In doing so, we demonstrate
with two publicly available cancer data sets that multi-
gene functional trade-offs are crucial to understanding
the effects of common oncogenic mutations, the efficacy
of chemotherapy, and the survival outcomes of patient
subgroups across a range of cancer types. Ultimately,
this study demonstrates a simple framework for informa-
tive and interpretable archetypal analysis of cancer gene
expression data with potential for translational impact
in oncology.

RESULTS

Archetype Analysis Captures Tissue-Specific
Heterogeneity in Gene Expression

Previous applications of archetype analysis found that
healthy cells lie closer to trade-off boundaries (i.e., they
are more specialized) than tumors [19]. Therefore, we
utilized the 54 distinct, healthy tissue samples from the
Genotype-Tissue Expression (GTEx) project to cover the
breadth of gene expression space and to provide an en-
hanced signal for resolving archetypes [31]. GTEx was es-
tablished to characterize the tissue-specific determinants
of human traits and diseases and provides expression lev-
els for 44,219 different genes. Here, however, we honed
in on commonly enriched pathways in cancer by utiliz-
ing 780 genes from five established biological pathways
in MSigDB: apoptosis, DNA repair, glycolysis (combined
with gluconeogenesis), hypoxia, and oxidative phospho-
rylation [32, 33]. This was essential for removing many
tissue-specific genes that would hinder the generalizabil-
ity of our archetypes to multiple types of cancer [34].

Following our general approach for archetype mix-
ture analysis (see Methods: N-NMF), we identified six
archetypes of pan-cellular gene expression (see SI Fig. 1),
each associated with enrichment for different biological
pathways (Fig. 2). Each tissue contained a different mix-
ture of archetypes (Fig. 2a), with related tissues, such
as the constituents of the cerebrum, having more simi-
lar archetype scores. These scores also reflected known
functional trade-offs (Fig. 2b) across tissues, such as
the sizable oxidative requirements of the brain and heart
(Archetypes 4 and 6, [35]), the task of glycogen produc-
tion in the liver (Archetype 5), and the protection and

regulation of genetic material in the testis (Archetype 2).
In addition, some tissues expressed multiple archetypes
and thus balance several functions. The cerebellum, for
example, is both resilient to aging (like the testis [36, 37])
and oxygen-demanding (like the brain, [38]), while the
kidney is responsible for multiple broad cellular func-
tions, expresses about 70% of the genes in the human
body, and is enriched for far fewer proteins compared to
most other tissues [39]. Overall, we observed complete
agreement between the functional properties of each tis-
sue and their relative mixture of archetypes.

Archetypes Associate Molecular Pathways with
Cancer Characteristics

We next compiled expression levels, drug sensitivities
(of 24 anti-cancer therapies), and mutation profiles from
the Cancer Cell Line Encyclopedia (CCLE) [40, 41], and
observed that the previous archetypes also predict pan-
cancer disease characteristics (Figure 3). Each archetype,
for example, was significantly associated with a distinct
set of drug sensitivities (Fig. 3a) and mutations (Fig.
3b). The observed patterns of drug sensitivities natu-
rally follow from the pathway-specific characteristics of
each archetype: Archetype 1 is associated with apoptosis
and sensitivity to IAP inhibitors (LBW242), Archetype
2 with DNA repair and sensitivity to topoisomerase in-
hibitors (Irinotecan and Topotecan), and Archetype 5
with glycolysis/gluconeogenesis and sensitivity to EGFR
inhibitors (AZD0530, Lapatinib, and Erlotinib). Simi-
larly, TP53 mutations disrupt cellular DNA repair and
thus modulate Archetype 2. The mixture of archetypes
in a given cancer type also depends, unsurprisingly, on
the tissue lineage of origin (Fig. 3c). However, only
select cancer lineages, such as those of the thyroid and
liver, manifested archetypes consistent with their normal
counterparts. Furthermore, recent studies have observed
similar patterns of tumor initiation and proliferation in
cancers of the pancreas, stomach, kidney, and liver [42].
Thus, the observed classification of different cancers in
terms of their archetype mixtures warrants further study.

To test whether the previous sensitivity findings (Figs.
3a,b) were simply a result of known tissue-specific cancer
characteristics (Fig. 3c), we repeated the previous analy-
ses broken down by individual cancer lineages. SI Figure
2 shows the positive association between Irinotecan sen-
sitivity and Archetype 2 (a) and Lapatinib sensitivity
and Archetype 5 (b) across a few well-sampled cancer
lineages. By contrast, mutations (SI Fig. 3) had a com-
parably smaller effect (a) and were poorly predictive of
archetype scores as determined by a multilinear regres-
sion analysis (b). Thus, the effect size, compounded by
the rarity of many of the mutations examined, was de-
termined to be too small to be resolvable in individual
cancer lineages. Overall, we found that archetype mix-
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FIG. 1: Normalized Nonnegative Matrix Factorization (N-NMF) identifies biological trade-offs. a.
N-NMF clusters the data (both the N samples and the M genes) into K (here 3) different groups based on their
similarity to representative signatures called “archetypes”. Unlike traditional clustering, each sample and gene can
belong to multiple groups; the normalized gene and sample group weights, given by inferred matrices W and H
respectively, are chosen to best approximate the original data (see Methods: Choosing the number of archetypes). b.
The sample group weights (H) thus provide the coordinates (black) for a K-way archetype trade-off.
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FIG. 2: Six archetypes characterize gene expression heterogeneity across healthy tissues (N = 54). a.
The median expression of each tissue (grey circle) from GTEx projected onto the six archetypes derived by N-NMF.
Each archetype corresponds to a vertex of a centered, unit hexagon. Thus, tissues favoring a single archetype (e.g.,
liver) lie on the vertices, while tissues expressing a mixture of archetypes lie either on the edges (cerebellum) or in
the center (kidneys). b. Hallmark expression pathways associated with each archetype (p < 0.05, t-test)

ture scores reliably predict some anti-cancer drug sen-
sitivities, even within individual cancer types, and were
only weakly associated with individual mutations.

Archetype Mixtures Reveal Non-Canonical
Associations within Molecular Subtypes of Breast

Cancer

Individual cancers are often subclassified based on
their genomic characteristics, pathology, and treatment
responses. In contrast to archetypes, however, this local

approach to tumor classification can limit our ability to
translate insights between cancer types. Thus, we next
tested whether such differences can be more broadly un-
derstood in terms of our common archetype framework.
Breast cancer provides a model system for such an anal-
ysis as it is well-studied and well-classified into five stan-
dard subtypes [43]: normal-like, luminal A and B, basal,
and HER2+. To augment the limited breast cell lines
from CCLE (N = 63), however, we first projected the
breast patient expression data (N = 1111) from the Can-
cer Genome Atlas (TCGA) onto the previous archetypes
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FIG. 3: Archetype mixtures quantify oncogenic characteristics across cancer cell lines. Archetype
mixture scores were computed by aligning CCLE expression profiles to GTEx and projecting the resulting
expression levels onto the six previously-identified archetypes (see SI Figure 1). Shown are the significant
(Spearman) correlations of CCLE (N = 1405, p < 0.05, t-test) archetype scores with (a) the sensitivities (quantified
using activity areas [40]) of 21/24 screened anticancer drugs and (b) 18/73 recurrent (TCGA hotspot) cancer
mutations. Positive (red) associations depict drug sensitivity and high mutation frequency, respectively; negative
(blue) associations relay the opposite trend. (c). Average Z-score (across all cell lines from the same tissue type) of
each archetype. While several lineages (and thus cancer types) are preferentially associated with specific archetypes
(red), these associations are less well defined compared to healthy tissues (see Fig. 2).

([44–47], see Methods: N-NMF). This provided both an
enhanced sample size and a validation of our comparisons
in cell lines and direct patient samples.

While the subtypes provided in each data set dif-
fer slightly, we observed common subtype-specific pat-
terns in both Archetype 2 and 5 (Figure 4). Compared
to other breast subtypes (particularly luminal A, [1]),
basal tumors were enriched for glycolysis and thus as-
sociated with higher levels of Archetype 2 (Figs. 4a,b).
Since luminal B tumors have characteristics of both lu-
minal A and basal subtypes, they intuitively had inter-
mediate Archetype 2 scores [48]. HER2+ tumors, on
the other hand, overexpress HER2, a protein related to
EGFR, potentially explaining why they were enriched for
Archetype 5 compared to other breast cancer subtypes
(Figs. 4c,d). Deviating from the standard breast classi-
fication scheme, CCLE further splits basal breast cancer
into types A and B, with basal A being described as hav-
ing more luminal-like properties [49]. However, compar-
ing Archetype 5 (Fig. 4c) suggests that basal A tumors

also have characteristics in line with HER2+ positive tu-
mors and that these features are distinct from the canon-
ical luminal-to-basal spectrum [49]. More broadly, the
substantial variability in archetype mixture scores within
individual subtypes suggests that the current classifica-
tion scheme may group together cancers with very dif-
ferent characteristics that could be further distinguished
using archetypes.

Archetypes Delineate Cohorts with Distinct
Survival Advantages

As archetypes encode information about tumor drug
sensitivities and enriched biological pathways, we hy-
pothesized that could also explain, in part, differences in
patient survival within specific cancers. Figure 5 shows
the Kaplan-Meier survival curves of these distinct sur-
vival groups found for three different TCGA cohorts:
Breast Invasive Carcinoma (5a, N = 1111), Colon Ade-
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FIG. 4: Archetype composition varies across breast cancer subtypes. Shown are box plots of the Archetype
2 (a,b) and Archetype 5 (c,d) scores across breast cancer cell lines in CCLE (a,c) and primary tumors in TCGA
(b,d). Red asterisks denote outlier samples with archetype scores beyond 1.5 times the interquartile range away
from the box.

nocarcinoma (5b, N = 481), and Pancreatic Adenocarci-
noma (5c, N = 178).

We found the best separation to be achieved using a
different archetype (2, 4, and 6, respectively) for each co-
hort. However, we note that these three archetypes are
intimately related: Archetype 2 is associated with gly-
colysis, while 4 and 6 are associated with oxidative phos-
phorylation. Thus, the survival groups quantify the ob-
servation that Warburg (Archetype 2) tumors tend to be
far more aggressive than oxidative tumors (Archetypes 4
and 6) [4, 7]. As seen for breast cancer (5a), intermediate
archetype scores can also reveal novel vulnerable groups.
Luminal B breast cancer, associated with an intermedi-
ate phenotype between luminal A (oxidative) and basal
(Warburg), is typically associated with worse patient out-
comes [48]. However, we observed poorer survival in this

intermediate archetype group even when luminal B sam-
ples were removed (SI Figure 4a). More strikingly, these
survival differences were more significant than even those
between the original PAM50 subgroups (SI Figure 4b).
Thus, archetype mixture analysis may provide a com-
plementary and, in some ways, improved classification
scheme for breast cancer.

DISCUSSION AND CONCLUSIONS

We have presented a novel strategy for resolving the
trade-offs between multi-gene signatures, also known as
archetypes, and how they affect particular tumor charac-
teristics. According to our analysis, six archetypes model
gene expression heterogeneity in healthy and cancer cells.
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FIG. 5: Archetype mixture scores distinguish groups with poor survival in (a) Breast, (b) Colon, and
(c) Pancreatic cancers from TCGA. Kaplan-Meier survival curves were separated according to bins of
Archetype score. Tables below indicate the number of surviving patients at each time point. Significance was
determined using a log-rank test.

In contrast to previous studies, we demonstrated our
model on three independent data sets to show its applica-
bility in quantifying the heterogeneity of healthy tissues
and different cancers. Moreover, despite the fact that the
current study’s goal was purely exploratory, we discov-
ered that the archetypes identified by our method were
strongly associated with various tumor characteristics,
such as drug sensitivities and cancer subtypes. This, we
underscore, may enable broad and direct application to
future gene expression studies.

Several predictions of our unsupervised archetype
framework have also been confirmed by recent clini-
cal studies. Sorafenib, for example, is predicted to be
effective only against tumors expressing Archetype 2.
This comes as no surprise given that Sorafenib is known
to provide little clinical efficacy against melanoma, ef-
ficacy at high doses against hepatocellular carcinoma
and kidney cancer, and efficacy at lower doses in acute
myeloid leukemia, which is in agreement with the ob-
served Archetype 2 scores [50–54]. Given this agreement,
archetypal analysis may then be able to provide useful a
priori information for clinical therapeutic strategy and
future clinical trials.

A few archetypes we found are weakly associated with
gene mutations (such as BRAF and PIK3CA) known to
confer specific drug resistances [55]. One possible expla-
nation is that these mutations drive a tumor away from
its default archetype (the one being targeted) and into a
new archetype [14]. Consequently, such mutations may

inadvertently sensitize tumors to drugs associated with
their new archetype composition, a phenomenon referred
to as collateral drug sensitivity [56, 57]. While such phe-
nomena were not detectable in the current study, a future
experiment could target drug sensitivity genes in cell lines
to more directly examine the resulting archetype pertur-
bations.

The archetype mixture model was trained using
healthy tissues to maximize signal-to-noise and func-
tionally validate the archetypes against known cellular
trade-offs. However, tumors may also exhibit additional
clinically significant archetypes not observed in healthy
tissues [10]. While we restricted our gene set to five
hallmark pathways of broad relevance to cancer, addi-
tional archetypes are also likely contained in the remain-
ing genes. However, even with these restrictions, our
archetypes are in broad agreement with known cancer
hallmarks [7] and tumor archetypes [10]. Furthermore,
the utilization of N-NMF allows our framework to be eas-
ily augmented with additional archetypes and data con-
straints while preserving our current archetypes [26, 58].

Our framework can also be extended to probe intra-
tumor heterogeneity through the use of single-cell gene
expression data. Given the observed applicability to dif-
ferent sources of data, the current archetypes may be
useful for identifying treatment-resistant cells [10]. Other
components of the tumor microenvironment, such as im-
mune cells and fibroblasts, could be identified as well
[59, 60].
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As previously discussed, N-NMF can identify
archetypes while avoiding some of the methodological
limitations of other methods. However, N-NMF requires
that the inferred archetype weights sum to 1. This
can introduce spurious gene anticorrelations into the
data and make it more sensitive to differences in data
pre-processing. As a result, archetypes should be
independently validated through known biological and
functional experiments, as is done here and in any
unsupervised analysis.

In conclusion, our work identifies broad patterns of
gene expression heterogeneity, observed across normal
cells and different cancers, that predict cellular charac-
teristics and patient outcomes. By doing so, we summa-
rize the numerous genetic differences among cells with a
few quantitative biomarkers that can be more easily un-
derstood and more systematically perturbed in a future
clinical setting.

METHODS

Gene Expression Data

GTEx

GTEx (version 8) gene-level TPM-normalized expres-
sion data were downloaded from the GTEx Portal [31].
The data set, consisting of 54 distinct tissues, is one of the
most comprehensive resources for studying tissue-specific
gene expression. To minimize bias in our archetypes to-
ward highly-expressed genes, however, we divided the ex-
pression of each gene by its standard deviation across tis-
sues. These expression levels were then normalized across
the genes in each tissue to prepare the data for archetype
analysis.

CCLE

Gene-level TPM-normalized expression from the Can-
cer Cell Line Encyclopedia (CCLE, N = 1405) along
with matched drug sensitivities (N = 469) and muta-
tions (N = 1250) were downloaded from the public De-
pendency Map (DepMap) portal (version 22Q2) [40].

TCGA

Gene-level TPM-normalized expression data from
The Cancer Genome Atlas (TCGA) within the breast
(BRCA, N = 1111), colon (COAD, N = 481), and pan-
creatic (PAAD, N = 178) cancer cohorts were down-
loaded via the TCGAbiolinks R package [44–47]. Sam-
ples were restricted to primary tumors.

Normalized Nonnegative Matrix Factorization
(N-NMF)

As already described, the key methodology used in this
paper is nonnegative matrix factorization (NMF). In gen-
eral, the heterogeneous data collected in medicine repre-
sent the integrated result of several inter-related variables
or are combinations of several latent components, or fac-
tors. Such complex datasets must be decomposed into
their underlying components to find key structures and
extract hidden information. Thus, approximate low-rank
matrix and tensor factorizations play a pivotal role in en-
hancing the data. This impacts many major medical data
problems, including dimension reduction, discrimination,
and clustering. Nonnegative matrix factorization, in par-
ticular, has led to numerous applications in biology, as
previously discussed. We now give the mathematical de-
tails of the exact formulation we employed in the present
work.
Normalized non-negative matrix factorization (N-

NMF) is applied as a tool to establish a low-dimensional
representation of the variability in gene expression pro-
files for a given dataset. The N × M data matrix V ,
representing N gene expression values of M samples, is
approximated as the product of two low-rank matrices
W and H:

V ≈ WH, (1)

where W is an N × k matrix representing coefficients
of each gene contribution to k archetypes, and H is a
k ×M matrix representing weights of each archetype to
approximate each sample of gene expression.
More rigorously, the matrices W and H are found by

minimizing the error under the Frobenius norm:

min
W>0,H>0

||V −WH||F

We recall that for a generalm×nmatrix A, the Frobenius
norm is the square root of the sum of the absolute squares
of its elements.
We fit the NMF approximation with an iterative al-

gorithm that alternates updating the W and H matrices
for each iteration and exhibits monotonic convergence
similar to an Expectation-Maximization (EM) algorithm
[24]. The iterative algorithm applies the following update
rules:

W ′ = W ⊙ (V H ′ ⊙ 1

WHH ′ ),

H ′ = H ⊙ (W ′V ⊙ 1

W ′WH
),

(2)

where ⊙ indicates element-wise multiplication. To avoid
degeneracy in fitting, the H matrix is normalized after
each iteration such that the coefficients of each archetype
score sum to 1 for each sample.
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After determining the ideal number of archetypes as
rank k (see below), we randomly initialize the W and
H matrices and train the archetype approximation over
1,000 iterations. Subsequently, the trained archetypes
are used to define archetype scores on a new dataset (i.e.,
CCLE and TCGA data) with matched gene order, using
the same iterative algorithm but keeping the W gene-
archetype coefficient matrix fixed.

Choosing the number of archetypes

The optimal number of archetypes was chosen follow-
ing the method of profile log-likelihood [61]. This models
the unknown number of archetypes as a latent variable
that can be directly optimized over. This method was se-
lected due to its simplicity to implement and its superior
performance compared to multiple other methods for se-
lecting the number of factors in NMF [62]. For N-NMF,
the minimum number of factors was set as k = 2 (due
to the normalization constraint), and the maximum (a
requirement of the approach) was chosen to be k = 30.
The optimal number of archetypes was then determined
as the number that maximized the resulting profile log-
likelihood (k = 6 for GTEx, see SI Fig 1).

Statistical Analysis

For statistical comparison, we utilize the Spear-
man’s rank correlation t-test, following the Benjamini-
Hochberg procedure for multiple comparisons with a sig-
nificance threshold of FDR< 0.05 [63].
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SI2: Archetypes predict anti-cancer drug sensitivities within different cancer types. Shown are scatter
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(b) across several representative cancer types in CCLE.
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SI3: Mutations are weakly associated with archetype scores. (a). Histograms of archetype 2 scores in TP53
mutated (orange) and wild type (blue) cell lines. (b). Scatter plot of true versus predicted archetype 2 scores using
mutation status alone. Predicted values were determined from a standard multivariate linear regression on 73
recurrent hotspot mutations annotated as part of CCLE (R2 = 0.0967).
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