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Abstract 
 
The function of the mammalian brain relies upon the specification and spatial positioning 
of diversely specialized cell types.  Yet, the molecular identities of the cell types, and 
their positions within individual anatomical structures, remain incompletely known.  To 
construct a comprehensive atlas of cell types in each brain structure, we paired high-
throughput single-nucleus RNA-seq with Slide-seq–a recently developed spatial 
transcriptomics method with near-cellular resolution–across the entire mouse brain.   
Integration of these datasets revealed the cell type composition of each neuroanatomical 
structure.  Cell type diversity was found to be remarkably high in the midbrain, hindbrain, 
and hypothalamus, with most clusters requiring a combination of at least three discrete 
gene expression markers to uniquely define them.  Using these data, we developed a 
framework for genetically accessing each cell type, comprehensively characterized 
neuropeptide and neurotransmitter signaling, elucidated region-specific specializations 
in activity-regulated gene expression, and ascertained the heritability enrichment of 
neurological and psychiatric phenotypes. These data, available as an online resource 
(BrainCellData.org) should find diverse applications across neuroscience, including the 
construction of new genetic tools, and the prioritization of specific cell types and circuits 
in the study of brain diseases.  
 
The mammalian brain is composed of a remarkably diverse array of cell types that display high 
degrees of molecular, anatomical and physiological specialization.  Although the precise 
number of distinct cell types present in the brain is unknown, the number is presumed to be in 
the thousands1,2.  These cell types are the building blocks of hundreds of discrete 
neuroanatomical structures3, each of which plays a distinct role in brain function.  Advances in 
the throughput of single-cell RNA sequencing (scRNAseq) technology has enabled the 
generation of cell type inventories in many individual brain regions4–13, as well as the 
construction of broader atlases that coarsely cover the nervous system14,15.  Furthermore, 
application of new spatial transcriptomics techniques to the brain has begun to illuminate the 
spatial organization of brain cell types10,16–18.   However, a full inventory of cell types across the 
brain, with their cell bodies localized to specific neuroanatomical structures, does not yet exist.   
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Transcriptional diversity and cell type representation across neuroanatomical 
structures 
 
To comprehensively sample cell types across the brain, we employed a recently developed 
pipeline for high-throughput single-nucleus RNA-seq (snRNA-seq) that has high transcript 
capture efficiency and nuclei recovery efficiency, as well as consistent performance across 
diverse brain regions6,7.  We dissected and isolated single nuclei from 92 discrete anatomical 
locations, derived from 55 individual mice (Fig. 1a, Methods, Supplemental Table 1).  Across all 
92 dissectates, after all quality control steps (Methods), we recovered a total of 4,388,420 nuclei 
profiles with a median transcript capture of 4,884 unique molecular identifiers (UMIs) per profile 
(Extended Data Fig. 1a-d).  We sampled nearly equal numbers of profiles from male and female 
donors, with minimal batch effects across mice, such that replicates of individual dissectates 
contributed to each cluster (Extended Data Fig. 1e).  To discover cell types, we developed a 
simplified iterative clustering strategy in which the cells were repeatedly clustered on distinctions 
amongst a small set of highly variable genes until clusters no longer could be distinguished by 
at least 3 discrete markers (Methods).  Our clustering algorithm largely recapitulated published 
results of the motor cortex4 and cerebellum7 (Extended Data Fig. 1f), and was scalable to 
support the computational analysis of millions of cells (Methods).  In total, after quality control 
and cluster annotation (Methods), we identified 4,998 discrete clusters, the great majority of 
which (97%) were neuronal (Fig. 1a, Extended Data Fig. 1g), consistent with prior large-scale 
surveys of brain cell types14,15.  Across the brain, we estimate that our sampling depth reached 
an estimated 90% saturation of cell type discovery (Methods, Extended Data Fig. 1h).   
 
To determine the spatial distributions of these cell types, we next performed Slide-seq19,20 on 
serial coronal sections of one hemisphere of an adult female mouse brain (Methods), spaced 
~100 μm, matching the resolution of commonly used neuroanatomical atlases21,22.  Slide-seq 
detects the expression of genes on 10 μm beads across the transcriptome within a fresh-frozen 
tissue section, providing near-cellular resolution data.   In total, we sequenced 101 arrays, 
spanning the entire anterior-posterior axis of the brain.  We aligned the sequencing-generated 
Slide-seq images to adjacent Nissl sections, which were themselves aligned to the Allen 
Common Coordinate Framework3 (CCF Framework) (Methods, Extended Data Fig. 2a), 
enabling us to assign a neuroanatomical structure to each bead (Fig. 1a).  To confirm the 
accuracy of our alignment, we plotted expression of three highly region-specific markers across 
our CCF-defined regions, and quantified the distance of each expressing bead from the 
expected CCF region (Extended Data Fig. 2b).  From this analysis, we estimate our alignment 
error to be in the range of 22 - 94 μm (Extended Data Fig. 2c). 
 
To localize cell types to brain structures, we computationally decomposed individual Slide-seq 
beads into combinations of snRNA-seq-defined cluster signatures using Robust Decomposition 
of Cell Type Mixtures (RCTD)23.  To handle the enormous cellular complexity of these regions, 
we implemented RCTD in a highly parallelized computational environment24, and developed a 
confidence score that more accurately distinguishes among groups of highly similar cell type 
definitions (Methods).  In total, we mapped 1,931 snRNA-seq-defined clusters (Methods) to 
greater than 1.7 million beads within the Slide-seq dataset.  We computed the cortical layer 
depth of a set of 42 isocortical excitatory neuronal types and found the mappings had the 
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expected highly-regionalized radial depth5 (Fig. 1b) when ordered by their best integrated match 
with a previous cortical atlas5, suggesting faithful projection of cell type signatures into spatial 
coordinates. 
 
We next evaluated the consistency and comprehensiveness of our cluster set by plotting known 
markers of cell-type identity across the clusters (Methods).  We assessed the consistency of 
expression of these known markers (mostly transcription factors) with the expected localizations 
of cell types across twelve main brain regions defined in the Allen Brain Atlas (Fig. 1c): 
isocortex, the olfactory areas (OLF), hippocampal formation (HPF), striatum (STR), pallidum 
(PAL), hypothalamus (HY), thalamus (TH), midbrain (MB), pons (P), medulla (MY), and 
cerebellum (CB).   Amongst our neuronal clusters, we identified cortical, amygdalar, olfactory, 
and hippocampal excitatory projection neurons (Tbr1, Neurod6, and Satb2); telencephalic 
interneurons (Sp8, Sp9, and Htr3a); spiny projection neurons of the striatum and adjacent 
pallidal structures (Ppp1r1b); hypothalamic neurons (Nkx2-1, Sim1, Lhx6, and Lhx8); principal 
neurons of the thalamus (Tcf7l2, Six3, and Plekhg1); neurons of the brainstem that populate 
mostly midbrain and pontine structures (Otx2, Gata3, Pax5, Pax7, and Sox14); neurons 
expressing Hox homeobox genes that are primarily in the rhombencepthalon; and cerebellar 
neurons expressing Tfap2a and Tfap2b.  Neurons also specialize in the specific 
neurotransmitters they release.  We detected discrete populations of gluatmatergic (Slc17a6, 
Slc17a7, and Slc17a8), GABAergic (Slc32a1), glycinergic (Slc6a5), cholinergic (Chat and 
Slc18a3), serotonergic (Slc6a4 and Tph2), dopaminergic (Slc6a3), and noradrenergic (Slc6a2 
and Dbh) cell types, distributed in the expected regions.  Together, these results indicate that 
our systematic sampling covered the expected molecular diversity of neurons across the mouse 
brain. 
 
Many glial populations were distributed across large neuroanatomical boundaries 
(telencephalon, mesencephalon, and rhombencephalon), indicating that, relative to neurons, 
regional gene expression differences amongst glial populations were small (Extended Data Fig. 
2d).  Indeed, neuronal populations mapped to much more specific and related structures (Fig. 
1b,d-h), reflecting the strong regional specificity of neuronal specializations.  We assessed the 
distribution of neuronal cell types within a more granular set of 256 CCF (termed “DeepCCF”) 
structures (Supplemental Table 2).  Most cell types showed highly refined regional localization: 
60% of mapped clusters were confidently mapped (Methods) in 3 or fewer DeepCCF regions, 
reflecting the extent to which neuroanatomical nuclei are individually composed of locally 
diversified cell types. 
 
Variation in neuronal diversity across neuroanatomical structures 
 
Our initial results revealed surprisingly large numbers of cell types distributed across the main 
brain regions.  To explore cellular diversity at a finer neuroanatomical scale, we tallied the 
number of cell types confidently mapping to each DeepCCF structure, computing the number of 
types needed to occupy 95% of all mapped beads localized within that DeepCCF structure 
(Methods). Within the main 12 brain regions, we found the largest diversity of cell types in the 
midbrain, followed by hypothalamus, pons, and medulla (Fig. 2a).  Within the more fine-grained 
DeepCCF structures, we found particularly high cell type diversity within the periaqueductal gray 
matter (PAG) and midbrain reticular nucleus (MRN) of the midbrain.  Regions of high diversity in 
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other major brain areas included the parvicellular reticular nucleus of the medulla (PARN), the 
pontine reticular nucleus (PRNr), the lateral hypothalamic area (LHA), and the bed nucleus of 
the stria terminalis (BST), consistent with our prior analysis of this area6.  Although cell types 
were often highly focal within DeepCCF structures (Fig. 1b, d-h), some cell types also crossed 
DeepCCF boundaries.  To visualize cellular compositional relationships amongst brain regions 
in greater detail, we built a force-directed graph in which the edges between DeepCCF regions 
were weighted to represent the number of clusters that jointly mapped in those regions 
(Methods, Fig. 2b). Cell types largely were restricted to each major brain area, but showed 
greater mixing between pons and medulla than other regions, indicating more mixing of cell 
types specifically within those structures (Extended Data Fig. 3a). 
 
Circuit-level analyses of the mouse brain have relied upon the availability of genetically 
delivered molecular tools to excite, inhibit, and record from individual neuronal populations.  
These tools have historically been delivered to specific subpopulations of neurons through the 
use of recombinase-based systems, but more recently, RNA editing-based strategies have been 
developed to enable translation of transgenes only in the presence of specific endogenous 
mRNA transcripts25–27.   Both strategies require nominating small numbers of high-value marker 
genes that can optimally distinguish amongst many distinct clusters.  To identify the minimum 
number of genes needed to combinatorially define each cell type in our snRNA-seq dataset, we 
framed the question as a set cover problem28 (Methods), which can be solved to optimality 
using mixed integer linear programming techniques29,30.  For a great majority of cell types 
(93%), our algorithm was able to recover a minimally sized set of defining genes (all 
combinations are available in Supplemental Table 3).  
 
Examination of the overall results revealed that across the 4,990 clusters used, the median 
minimally sized gene set was 3.  Depending on the tolerance we set for the number of 
neighbors that co-express the same selected gene markers, between 13 and 89 cell types could 
be uniquely defined by a single gene, while between 422 and 1,156 cell types could be uniquely 
defined by two genes.  When we performed the analysis on each of the 12 major brain regions 
separately, more than 70% of cell types could be uniquely defined, within that area, by up to 3 
genes (Fig. 2c, Extended Data Fig. 3b). However, there was considerable variation in these 
minimal gene sets when stratifying by brain region: more than 45% of cell types within 
telencephalic brain areas could be uniquely defined by up to two genes, while in the midbrain 
and medulla only 17% and 22% could be, respectively (Fig. 2d). These results suggest that the 
molecular diversity of brainstem areas is especially combinatorial, and motivates the 
development of molecular strategies that can provide intersectional expression gating in order to 
properly isolate them and characterize their unique functions. 
 
We also discovered that most cell types had more than one distinct minimally sized gene list.  
We leveraged this redundancy to determine the smallest set of genes that would encompass at 
least one gene list from each cell type (Methods). We identified a set of 1,905 genes that 
covered each cell type (Fig. 2e). This minimum gene set included many genes with existing Cre 
lines31, and was highly enriched for transcription factors (OR=2.54, p < 0.001), G-protein 
coupled receptors (OR=1.83, p < 0.001), and neuropeptides (OR=5.76, p < 0.001) (Fig. 2f, 
Extended Data Fig. 3c), gene families that have been historically used to define cell types in the 
brain.   
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Principles of neurotransmission and neuropeptide usage 
 
Neurons communicate with each other across synapses, through the release of different small 
molecules and peptides.  We asked in which regions, and in which combinations, 
neurotransmitters are used across the cell types of the brain. Since the production and usage of 
these neurotransmitters at synapses requires different sets of gene products, we leveraged our 
snRNA-seq data to assign neurotransmitter identities to each cell type (Methods). 
 
Overall, amongst the neuronal snRNA-seq clusters, cell type diversity was well balanced 
between excitatory and inhibitory cell types (2,420 excitatory, 2,246 inhibitory), and co-
transmission of glutamate with an inhibitory neurotransmitter (GABA or glycine) was relatively 
rare (1.1% of all neuronal clusters, Fig. 3a).  Most co-releasing populations (35 out of 54) 
expressed the glutamate transporter Slc17a8 (VGLUT3) and derived from a wide range of 
lineages, populating regions across the telencephalon, midbrain, and hindbrain.  Amongst 
neuron types releasing neuromodulators, we found the cholinergic neurons were more diverse 
(102 clusters) than serotonergic and dopaminergic types (25 and 13 clusters respectively), and 
were distributed much more widely across the nervous system (Extended Data Fig. 4a,b).  
 
Although the brain-wide cellular composition was balanced between inhibitory and excitatory 
types, individual brain regions are known to be composed of more skewed compositions of 
excitatory or inhibitory neurons.  To characterize neurotransmission balance comprehensively in 
all structures, we quantified the excitatory-to-inhibitory (E-I) balance of each DeepCCF region by 
comparing the ratio of the number of beads mapping to excitatory cell types, to those mapping 
to inhibitory cell types (Methods).  The computed E-I balances recovered the expected broad 
patterns, including the dominance of excitatory cells in thalamic nuclei, and the lack of excitatory 
populations within the striatum (Fig. 3b).  Furthermore, more subtle distinctions could also be 
appreciated, such as the higher inhibitory proportion in certain thalamic nuclei known to contain 
interneurons (e.g. LGd).  Within the telencephalon, regions were more commonly skewed 
towards a predominantly excitatory (e.g. cortical regions), or predominantly inhibitory (e.g. 
striatum) composition.  In addition, regions with high E-I imbalance were more likely to be 
predominantly excitatory, while predominantly inhibitory regions were less common, being 
largely restricted to the striatum, the thalamic reticular nucleus, and a few brainstem nuclei. 
 
Neuropeptides (NPs) exert varied and complex neuromodulatory effects on circuits through 
downstream G-protein coupled receptors (GPCRs).  Neuropeptides are also often co-released 
with other neurotransmitters to directly modulate synaptic activity.  We utilized our spatially 
mapped cell type inventory to characterize the basic rules and principles by which NPs are used 
throughout the brain.  We curated a set of 61 genes that produce at least one NP with a known 
downstream GPCR (Supplemental Table 4), and quantified the number of NP-expressing, and 
NP-sensing, cell types.   Amongst our 4,998 cell types, 80.9% expressed at least one 
neuropeptide, underscoring the ubiquity of NP signaling in the mammalian central nervous 
system (Fig. 3c).  Neuropeptide sensing was even more ubiquitous: 91.6% of cell types 
expressed receptors for more than three NPs.   Historically, NP signaling has been particularly 
strongly associated with the hypothalamus, where many of the NPs were originally 
biochemically discovered32.   However, our analyses did not find that, overall, hypothalamic 
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neurons were any more likely to release neuropeptides, compared with neurons in other brain 
areas (Extended Data Fig. 4c).  Rather, the hypothalamus, as well as the pallidum and 
midbrain, were more likely to release a subset of neuropeptides–like oxytocin or vasopressin–
that are highly selectively expressed, while other brain regions expressed NPs that were more 
ubiquitous throughout the nervous system (Fig. 3d). 
 
Nearly all neuropeptides were both expressed and sensed by neuronal cell types (Fig. 3e).  
However, we identified two likely examples of NP signaling between neurons and glia. The 
expression of Cartpt was detected in 232 neuronal populations, distributed in hypothalamic and 
midbrain regions, while its receptor Gpr16033 was highly restricted to microglia and macrophage 
populations. Interestingly, Gpr160 induction was observed to be within microglia in a recent 
study of spinal cord nerve injury33.  Conversely, the expression of the angiotensin-encoding 
gene Agt was found to be primarily in astrocytes found in non-telencephalic regions (Fig. 3e, 
Extended Data Fig. 4d), while its receptors Agtr1a and Agtr2 were enriched in non-telencephalic 
neurons.  Astrocyte-neuron signaling through angiotensin could play important homeostatic 
roles particularly in the midbrain, where DA neurons vulnerable to neurodegeneration in 
Parkinson’s disease (PD) were recently identified to selectively express Agtr1a34, and inhibition 
of the angiotensin receptor has been shown to be neuroprotective in PD animal models35 and in 
clinical cohorts36. 
 
Activity-dependent gene enrichment across cell types and regions 
 
Neuronal cells, in response to an increase in action potential firing, induce the expression of 
hundreds of activity-regulated genes (ARGs)37.  The prototypical ARG is Fos, which is induced 
within minutes of elevated activity, along with several highly correlated genes including Junb 
and Egr1, which are collectively referred to as immediate early genes (IEGs).   These IEGs 
have been primarily discovered and studied in excitatory cortical or hippocampal cells.  Our 
Slide-seq and snRNA-seq atlases provide two key advantages for assessing ARG 
heterogeneity across cell types.  First, they are comprehensive in their coverage of the brain to 
enable broad comparative analysis.  Second, they are performed on brain tissue that is frozen 
immediately after animal perfusion, eliminating any postmortem effects on ARG expression38,39.  
 
To characterize ARGs across neuronal types, we first partitioned our mapped clusters into 28 
cell type groups defined by their Slide-seq mapped region, and their neurotransmitter identity 
(Methods).  We then selected 407 candidate ARGs whose correlation with Fos was at least 0.3, 
met statistical significance (adjusted p-value < 0.05), and for which Fos was also above the 
99.5% quantile of all correlations, in at least one cell type group (Methods). To ensure 
robustness, we validated that our candidate ARGs were similarly correlated with another 
canonical IEG, Junb (Extended Data Fig. 5a). To visualize which genes are consistently 
correlated across cell type groups, we constructed a bipartite graph, connecting each gene to 
cell type groups within which it is highly correlated with Fos (Methods, Fig. 4a).  Examination of 
this graph revealed that the most connected genes–those that are most consistently and highly 
correlated with Fos across the brain–-included most canonical IEGs, such as Egr1, Npas4, Arc, 
Junb, Btg2, and Nr4a1 (center of graph, Fig. 4a).  We selected the eight most correlated of 
these genes to compare their relative activity across regions and cell types.  Expression of 
these IEGs across each region in our Slide-seq dataset was highest in the isocortex, olfactory 
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bulb, striatum, and amygdala, while regions of cerebellum and medulla showed the lowest 
average IEG expression (Fig. 4b, Extended Data Fig. 5b).  Similarly, in our snRNA-seq clusters, 
IEG activity was noticeably higher in excitatory populations, particularly those in isocortex,  
olfactory areas, and hippocampal formation (Extended Data Fig. 5c).   
 
Our candidate ARG set also contained many genes connected to only a few of the major cell 
type groups, suggesting heterogeneity in the transcriptional programs of cell types in response 
to activity. To more deeply explore cell-type-specific ARGs, we hierarchically clustered our gene 
set into 7 clusters.  Clusters 1-4 were the most universally correlated across cell types and 
regions (Fig. 4c, Extended Data Fig. 5d), and were highly enriched for known ARGs40 (Methods, 
Extended Data Fig. 5e), while clusters 5-7 were more cell-type-specific: cluster 5 was relatively 
specific for telencephalic excitatory neurons, cluster 6 was more specific for telencephalic 
inhibitory neurons, and cluster 7 was specific for dopaminergic neurons. Our inhibitory-specific 
cluster 6 included several genes previously reported as activity-regulated in cortical 
interneurons, such as Crh and Cxcl1439.  Many of these genes are implicated in dendritic spine 
development and remodeling, such as Tshr41, Shisa842, and Sorcs243, indicating that synaptic 
plasticity may be a particularly prominent component of the activity-related response in 
telencephalic inhibitory cell types.  To explore how the transcription of these gene sets may be 
differentially regulated across cell types, we compared the enrichment of transcription factor 
(TF) targets between genes highly correlated with Fos in either telencephalic excitatory or 
inhibitory cells (Methods).  Amongst the 54 TFs with significant enrichment (p < 0.05, FDR-
corrected; Fig. 4d), most (35 TFs) were jointly enriched in both inhibitory and excitatory 
populations, but inhibitory cells were selectively enriched for the targets of 15 TFs.  These TFs 
included several well-known chromatin re-organizers, including CTCF, BCLAF1, and CHD1, 
suggesting an important role for epigenetic modification of inhibitory neurons in activity-
dependent processes.  Together, these analyses reveal how brain-wide, unbiased sampling of 
cell types can reveal not only the molecular markers defining these types, but also conserved, 
dynamic patterns of gene regulation that occur across cell type groups. 
 
Heritability enrichment of neurological and psychiatric traits 
 
Over the past ten years, genome-wide association studies (GWAS) have uncovered risk loci 
associated with numerous neuropsychiatric traits.  Identifying the cell types and brain regions in 
which these loci influence disease risk could catalyze new directions in understanding 
pathogenic mechanisms of many difficult-to-treat brain diseases.  Because of their 
comprehensive coverage, our combined spatial and single-nucleus transcriptomics datasets 
provide a unique opportunity to investigate the relative enrichment of disease risk alleles across 
the entire mammalian nervous system.  Several studies have integrated single cell and GWAS 
by aggregating cells from the same type and computing an enrichment statistic between the 
gene expression pattern of the cell type and the genes associated with risk by GWAS9,34,44–46.  
We used a recently described approach specifically developed for single-cell datasets47 
(Methods) to evaluate the relative enrichment of loci from 16 neurological and psychiatric traits 
across our spatially localized cell types (Supplemental Table 5).  
 
After multiple hypothesis correction testing (Methods), we identified a total of 154 cell types, 
across 11 traits, that met statistical significance (adjusted p-value < 0.05; Fig. 5a, Supplemental 
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Table 6). The significance results were robust to using either pseudocells–aggregated 
collections of cellular neighborhoods that both reduce computational complexity and noise from 
statistical drop-out (Methods)–or individual cells (Extended Data Fig. 6a).   For Alzheimer’s 
disease (AD), heritability enrichment was significant in macrophages and microglia, consistent 
with analyses of multiple prior datasets34,48,49. In autism spectrum disorder, two neuronal cell 
types showed statistically significant enrichment, distributed within the bed nucleus of the stria 
terminalis (BNST), an area with well-established roles in mediating social interactions, and the 
inferior colliculus, a midbrain structure involved in modulating auditory inputs, a common 
symptom of ASD patients.  Educational attainment and major depressive disorder–two traits 
with known high polygenicity–showed enrichment across several regions (Extended Data Fig. 
6b). 
 
In schizophrenia (Fig. 5b) and bipolar disorder (Extended Data Fig. 6b), we observed 
enrichment signals within the excitatory neurons of the isocortex and the inhibitory neurons of 
the striatum, consistent both with the known shared heritability between these two disorders,50,51 
and prior enrichment studies performed on more limited collections of single cell datasets45.  
Importantly, although these two signals rose above our stringent threshold for multiple 
hypothesis testing correction, numerous other sub-threshold signals were present, suggesting 
that these cell type groups are not the only neuronal populations harboring enrichment for 
GWAS-associated genes.  The significantly enriched excitatory populations were restricted to 
the lower layers (layers 5 and 6) of cortex (Fig. 5c), and expressed markers suggestive of 
intratelencephalic and layer 6b identities (Extended Data Fig. 6c).  The enriched striatal neuron 
types all expressed the marker gene Ppp1r1b, identifying them as medium spiny neurons, the 
principal projection neurons (SPNs) of the dorsal and ventral striatum, which also populate 
several other pallidal structures.  The SPNs can be subdivided by their projection pathway 
(indirect versus direct), their spatial localization52 (to the striatal matrix or striosome 
compartments), or more recently, by molecular differences with as-yet unclear functional 
implications15,53 (called “eccentric” SPNs versus canonical SPNs).  We found that the SPN 
clusters with the strongest enrichment for schizophrenia heritability expressed markers of an 
eSPN identity, such as Casz1, Htr7, and Col11a1, and were found within both the dorsal and 
ventral striatum, as well as other striatal and pallidal structures (Fig. 5d,e).  Together, these 
results lend additional support to the potential importance of corticostriatal circuitry in the 
pathogenesis of schizophrenia, and highlight the value of a brain-wide atlas for nominating 
disease-relevant cell types. 
 
Discussion 
 
Here, we combined snRNA-seq and high-resolution spatial transcriptomics with Slide-seq to 
generate a comprehensive inventory of cell types across each region of the mouse brain. In 
total, we identified 4,998 clusters of cells, mostly neuronal, with the diversity distributed primarily 
in subcortical areas, most especially in the midbrain, pons, medulla, and the hypothalamus.  We 
utilized the data to uncover specific neuropeptide signaling interactions, leveraging the 
specificity of several neuropeptides and/or their receptors.  We also characterized activity-
related gene expression patterns across all cell types, identifying conserved genes associated 
with activity, as well as activity-related genes that are more specific to subtypes of neurons.  
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Finally, we nominated specific cell types that are preferentially enriched for the expression of 
genes associated with human neurological and psychiatric diseases.  
 
A comprehensive inventory of mouse brain cell types should find numerous other immediate 
uses.  One major implication of our analyses is that a substantial fraction of cell types we define 
are largely unstudied by modern neuroscience methods.  To facilitate their interrogation, we 
deployed an algorithm to identify the minimal set of genes able to specifically define each of our 
4,998 clusters. We hope these genes provide a clear path towards the development of genetic 
tools that can access a wider portion of the astonishing diversity of the nervous system.  Beyond 
achieving more comprehensive access to brain cell types, we anticipate our dataset will drive 
computational innovations that better neuroanatomically partition the nervous system, and that 
can integrate other important features of cell type identity such as connectivity, morphology, and 
physiology.  Finally, we expect that our atlas will provide a useful scaffold for interpreting and 
contextualizing the cell types that are discovered by similar efforts to construct cellular 
inventories of the human brain54. 
 
To facilitate these kinds of applications across neuroscience, we have built a portal to visualize, 
interact with, and download these data (www.braincelldata.org).  Functions have been 
implemented to plot gene expression and co-expression in CCF-registered space, and within 
each cell type, and to identify genes and cell types enriched within particular brain regions.   We 
also enable the visualization of spatial localizations of each cell type to specific neuroanatomical 
structures, and provide a list of minimum marker genes needed to uniquely distinguish them.   
We hope that facile access to, and interaction with, these rich datasets will provide a firm 
foundation for functionally characterizing the extraordinarily diverse set of cell types that 
compose the mammalian brain. 
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Materials and correspondence 
Fei Chen, chenf@broadinstitute.org; Evan Z. Macosko, emacosko@broadinstitute.org 

Methods 
Animal housing. Animals were group housed with a 12-hour light-dark schedule and allowed to 
acclimate to their housing environment for two weeks post arrival. All procedures involving 
animals at MIT were conducted in accordance with the US National Institutes of Health Guide 
for the Care and Use of Laboratory Animals under protocol number 1115-111-18 and approved 
by the Massachusetts Institute of Technology Committee on Animal Care. All procedures 
involving animals at the Broad Institute were conducted in accordance with the US National 
Institutes of Health Guide for the Care and Use of Laboratory Animals under protocol number 
0120-09-16.  
 
Brain preparation. At 56 days of age, C57BL/6J mice were anesthetized by administration of 
isoflurane in a gas chamber flowing 3% isoflurane for 1 minute. Anesthesia was confirmed by 
checking for a negative tail pinch response. Animals were moved to a dissection tray and 
anesthesia was prolonged via a nose cone flowing 3% isoflurane for the duration of the 
procedure. Transcardial perfusions were performed with ice cold pH 7.4 HEPES buffer 
containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM MgCl2, and 
2.5 mM KCl to remove blood from brain and other organs sampled. For use in regional tissue 
dissections, the brain was removed immediately and frozen for 3 minutes in liquid nitrogen 
vapor and then moved to -80oC for long term storage.  For use in generation of the Slide-seq 
data set via serial sectioning, the brains were removed immediately, blotted free of residual 
liquid, rinsed twice with OCT to assure good surface adhesion, and then oriented carefully in 
plastic freezing cassettes filled with OCT.  These cassettes were vibrated in a Branson sonic 
bath for five minutes at room temperature to remove air bubbles and adhere OCT well to the 
brain surface.  The brain’s precise orientation in the X-Y-Z axis was then reset just before 
freezing over a bath of liquid nitrogen vapor.  Frozen blocks were stored at -80oC. 
 
Construction of brain-wide snRNA-seq dataset 
 
Regional dissections. Frozen mouse brains were securely mounted by the cerebellum or by the 
olfactory/frontal cortex region onto cryostat chucks with OCT embedding compound such that 
the entire anterior or posterior half (depending on dissection targets) was left exposed and 
thermally unperturbed.  Dissection of anterior-posterior (A-P) spans of the desired anatomical 
volumes were performed by hand in the cryostat using an ophthalmic microscalpel (Feather 
safety Razor #P-715) precooled to -20oC and donning 4x surgical loupes.  In order to 
microanatomically assess dissection accuracy, 10 μm coronal sections were taken at relevant 
A-P dissection junctions and imaged following Nissl staining. Each excised tissue dissectate 
was placed into a pre-cooled 0.25 ml PCR tube using pre-cooled forceps and stored at -80oC.  
Nuclei were extracted from these frozen tissue dissectates within 2 days using gentle, 
detergent-based dissociation as described below.  
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Generation of nuclei suspension and construction of snRNA-seq libraries.  Nuclei were isolated 
from regionally dissected mouse brain samples as previously described7,55.  All steps were 
performed on ice or cold blocks and all tubes, tips, and plates were precooled for >20 min 
before starting isolation. Dissected frozen tissue in the cryostat was placed in a single well of a 
12-well plate and 2 ml of extraction buffer (Ext buffer) was added to each well. Mechanical 
dissociation was performed by trituration using a P1000 pipette, pipetting 1 ml of solution slowly 
up and down with a 1-ml Rainin tip (no. 30389212), without creation of froth or bubbles, a total 
of 20 times. The tissue was allowed to rest in the buffer for 2 min and trituration was repeated. In 
total, four or five rounds of trituration and rest were performed. The entire volume of the well 
was then passed twice through a 26-gauge needle into the same well. Approximately 2 ml of 
tissue solution was transferred into a 50-ml Falcon tube and filled with wash buffer (WB) for a 
total of 30 ml of tissue solution, which was then split across two 50-ml Falcon tubes (!15 ml of 
solution in each tube). The tubes were then spun in a swinging-bucket centrifuge for 10 min at 
600g and 4 °C. Following spinning, the majority of supernatant was discarded (!500 μl 
remaining with the pellet). Tissue solutions from two Falcon tubes were then pooled into a single 
tube of !1,000 μl of concentrated nuclear tissue solution. DAPI was then added to the solution 
at the manufacturer’s (Thermo Fisher Scientific, no. 62248) recommended concentration 
(1:1,000).  Following sorting, nuclei concentration was counted using a hemocytometer before 
loading into a 10X Genomics 3’ V3 Chip. 

snRNA-seq library preparation and sequencing.  The 10X Genomics (v.3) kit was used for all 
single-nuclei experiments according to the manufacturer’s protocol recommendations. Library 
preparation was performed according to the manufacturer’s recommendation. Libraries were 
pooled and sequenced on NovaSeq S2. 

 
Construction of brain-wide Slide-seq dataset 
 
Generation of larger surface area Slide-seq arrays.  Slide-seq arrays were generated as 
previously described20 with slight modifications. Larger diameter gaskets were used to generate 
5.5 mm x 5.5 mm, 6.0 mm x 6.2 mm and 6.5 mm x 7.5 mm bead arrays. These sizes were 
chosen to facilitate different anterior to posterior coronal section sizes. To facilitate image 
processing, we utilized 2 x 2 digital binning on the collected data, resulting in 1.3 μm per pixel.  
 
Serial sectioning procedure.  An OCT embedded P56 wild type female mouse brain was 
thermally equilibrated in the cryostat at -20oC for 30 minutes and then mounted precisely such 
that an accurate anatomical alignment was maintained.  Just anterior to the end of the olfactory 
bulb region, a 10 μm-thick coronal slice was set as a starting slide. This starting slide was 
marked, and the following adjacent 10 μm section was used for Slide-seq library preparation. 
For each tissue slice used for Slide-seq, a 10 μm pre and 10 μm post slide was collected for 
histology. These histology slides were Nissl stained according to our previously released 
protocol56.  After each 10 μm post slice, an 80 μm gap was trimmed before the next set of serial 
sections was collected; making each Slide-seq slide interval 100 μm apart. A total of 114 sets of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.06.531307doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531307
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12 

three consecutive slides were collected. All pre and post slides for histology registration were 
stored at -80oC until the slides were Nissl stained. Optimizations were performed in order to be 
able to hold the Slide-seq tissue slices frozen onto their respective pucks at -80oC during the 
two days required to complete serial sectioning.  
 
Library generation and sequencing. Following the serial sectioning procedure, to process 
multiple samples at the same time, 10 μm thick tissue slice sections were melted onto Slide-seq 
arrays and stored at -80oC for two days. On the third day, the frozen tissue sections on the puck 
were thawed and transferred to a 1.5 mL tube containing hybridization buffer (6X sodium 
chloride sodium citrate (SSC) with 2 U/μL Lucigen NxGen RNAse inhibitor) for 30 minutes at 
room temperature. To generate libraries, Slide-seqV2 protocol was adapted from the previously 
published Slide-seqV2 protocol20,57, in which the volume of reagents was scaled to 
accommodate the larger surface array of the arrays.  Libraries were sequenced using the 
standard Illumina protocol. The samples were sequenced on either NovaSeq 6000 S2 or S4 
flowcells, at a depth of 1.1 - 1.5 billion reads per array, adjusting for the array size. Samples 
were pooled at a concentration of 4 nM and followed the read structure previously described20.  
 
Imaging of Nissl sections.  We acquired Nissl images on an Olympus VS120 microscope using 
a 20x 0.75NA objective. Images were captured with a Pike 505C VC50 camera, under auto-
exposure mode with a halogen lamp at 92% power. The pixel size in all images was 0.3428 μm, 
in both the height and width directions. We acquired a total of 114 Nissl images, each from an 
adjacent section of the brain to a corresponding section that was processed using the Slide-seq 
pipeline. Of the 114 sections, we removed 10–from the posterior medulla and upper spinal 
cord–that were outside of the area of the CCF reference brain. Of the remaining 104 images, we 
removed an additional 3 sections because of unsatisfactory quality of the corresponding Slide-
seq puck data. The remaining 101 images comprise the final dataset that we use for all our 
analyses. 
 
Registration of Slide-seq data to common coordinate framework 
 
Alignment of Slide-seq arrays to adjacent Nissl sections.  As a preprocessing step for the 
alignment of Slide-seq arrays to Nissl images, for each puck, we generated a grayscale intensity 
image from the Slide-seq data by summing the UMI counts (across all genes) at each bead 
location on the puck and normalizing by the maximum UMI count value across the entire puck. 
We then performed the alignment of these images to the adjacent Nissl images in two steps. 
First, we transformed each Nissl image to an intermediate coordinate space using a manual, 
rigid transformation. The purpose of this first transformation is to bring all the Nissl images to an 
approximately equivalent, upright orientation, which made the second step of alignment easier. 
In the second step, we manually identified corresponding fiducial markers in the Nissl images 
and Slide-seq intensity images using Slicer3D tool58 along with the IGT fiducial registration 
extension59. We then computed the bead positions for all beads via thin plate spline 
interpolation, where the spline parameters were determined using the fiducial markers. 
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Alignment of Nissl sections to the CCF.  Our series of Nissl sections, downsampled to 50 μm 
resolution by local averaging, were aligned to the 50 μm CCF by jointly estimating 3 
transformations.  First, a 3D diffeomorphism modeled any shape differences between our 
sample and the atlas brain.  This transformation is modeled in the Large Deformation 
Diffeomorphic Metric Mapping (LDDMM) framework60.  Second, a 3D affine transformation (12 
degrees of freedom) modeled any pose or scale differences between our sample and the 
deformed atlas.  Third, a 2D rigid transformation (3 degrees of freedom per slice) on each slice 
modeled positioning of samples onto microscopy slides. 
 
Dissimilarity between the transformed atlas and our imaging data was quantified using an 
objective function we developed previously61,62, equal to the weighted sum of square error 
between the transformed atlas and our dataset, after transforming the contrast of the atlas to 
match the color of our Nissl data at each slice.  To transform contrasts, a 3rd order polynomial 
was estimated on each slice of the transformed atlas to best match the red, green, and blue 
channels of our Nissl dataset  (12 degrees of freedom per slice).  During this process, outlier 
pixels (artifacts or missing tissue) are estimated using an expectation maximization algorithm, 
and the posterior probabilities that pixels are not outliers are used as weights in our weighted 
sum of square error.   
 
This dissimilarity function, subject to LDDMM regularization, is minimized jointly over all 
parameters using a gradient-based approach, with estimation of parameters for linear 
transforms accelerated using Reimannian gradient descent as recently described63. Gradients 
were estimated automatically using pytorch, and source code for our standard registration 
pipelines are available online at https://github.com/twardlab/emlddmm.  The transformations 
above were used to map annotations from the CCF onto each slice.  The boundaries of each 
anatomical region were rendered as black curves, and overlaid on the imaging data for quality 
control (QC).  We visually inspected the alignment accuracy on each slice and identified 15 
outliers, where our rigid motion model was insufficient due to large distortions of tissue slices.  
For these slices we included an additional 2D diffeomorphism to model distortions that are 
independent from slice to slice and cannot be represented as a 3D shape change, as in our 
previous work64.  Extended Data Fig. 2a shows accuracy before and after applying the 
additional 2D diffeomorphism. 
 
Analysis of CCF accuracy.   We analyzed three genes with highly stereotyped and regional 
expression: Dsp, Ccn2, and Tmem212 which correspond to the following CCF regions: 
 
 

Gene CCF Region (Acronym) 

Dsp DG-sg (Dentate gyrus, granule cell layer) 

Ccn2 L6b Layers of the Isocortex: 
FRP6b; MO6b; MOp6b; MOs6b; SS6b; SSp6b; SSp-n6b; SSp-bfd6b; VISrll6b; 
SSp-ll6b; SSp-m6b; SSp-ul6b; SSp-tr6b; SSp-un6b; SSs6b; GU6b; VISC6b; 
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AUDd6b; VISlla6b; AUDp6b; AUDpo6b; AUDv6b; VIS6b; VISal6b; VISam6b; 
VISl6b; VISp6b; VISpl6b; VISpm6b; VISli6b; VISpor6b; ACA6b; ACAd6b; 
ACAv6b; PL6b; ILA6b; ORB6b; ORBl6b; ORBm6b; ORBvl6b; AId6b; AIp6b; 
AIv6b; RSPagl6b; VISmma6b; VISmmp6b; VISm6b; RSPd6b; RSPv6b; 
PTLp6b; VISa6b; VISrl6b; TEa6b; PERI6b; ECT6b; ENTl6b; 6b 

Tmem212 VS (Ventricular systems): 
VS; VL; RC; SEZ; chpl; chfl; IVF; V3; AQ; V4; V4r; c 

 
 
For each bead with non-zero expression of the specified genes, we calculated the distance to 
the corresponding CCF regions. For preliminary quality control, we used the dbscan package65 
with eps=3 to filter the points, and used the full width at half maximum metric to summarize the 
distances (Extended Data Fig. 2c). 
 
Clustering of snRNA-seq data 
 
Overview.  Clustering was performed hierarchically, starting from the full dataset of ~6 million 
single nuclei. Each round of clustering consisted of: 1) gene selection based on a binomial 
model; 2) square-root transformation of the counts; 3) construction of the k nearest neighbor 
and shared neighbor graphs; and 4) Leiden clustering over a range of resolution parameters to 
find the lowest resolution that yielded multiple clusters. The resulting clusters were then each 
iteratively re-clustered, and the process was repeated until either: a) no Leiden resolution 
resulted in a valid clustering or b) the resulting clusters did not have at least three differentially 
expressed genes distinguishing them.  A key goal of this clustering strategy was to re-calculate 
gene selection for every clustering, as the relevant variable genes depend on the overall context 
of the cells being clustered. This resulted in a distributed design in which the data was stored on 
disk in a compressed representation that could be efficiently accessed using parallel processes. 
This allowed us to perform clustering thousands of times without creating redundant copies of 
the data. 
 
Variable gene selection.  To identify variable genes, we used a binomial model of homogenous 
expression, and looked for deviations from that expectation, similar to a recently described 
approach66. Specifically, for each gene we computed the relative bulk expression by summing 
the counts across cells and dividing by the total UMIs of the population. This is the proportion of 
all counts that are assigned to that gene. We use this value as p in a binomial model for 
observing the gene in a cell with n counts (equivalently, np is equivalent to 𝜆 in a Poisson 
model). The expected proportion with non-zero counts is thus:  

𝑃(𝑥	 > 	0) 	= 	1	 −	𝑒!" 

We compared this expected value to the observed percentage of non-zero counts, and selected 
all genes that are observed at least 5% less than expected in a given population. 
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Construction of shared nearest neighbor graphs.  After selecting variable genes, we constructed 
a shared nearest neighbor (SNN) graph67,68.  First, we transformed the counts with the square 
root function, and then computed the k-nearest neighbor (kNN) graph using cosine distance and 
𝑘	 = 	50 (not including self-edges). From the kNN graph we compute the shared neighbor graph, 
where the weight between a pair of cells is the Jaccard similarity over their neighbors: 

𝐽(𝐴, 𝐵) 	= 	 |$	∩	'||$	∪	'|
, 

where A and B represent the sets of neighbors for two cells in the kNN graph. 

Leiden clustering.  Once we computed the SNN graph, we used the Leiden algorithm to identify 
cell clusters, using the Constant Potts Model for modularity69. This method is sensitive to a 
resolution parameter, which can be interpreted as a density threshold that separates inter-
cluster and intra-cluster connections. To find a relevant resolution parameter automatically, we 
implemented a sweep strategy. We started with a very low resolution value, which results in all 
cells in one cluster. We gradually increased the resolution until there were at least two clusters 
and the size ratio between the largest and second-largest cluster was at most 20, meaning that 
at least 5% of the cells are not in the largest cluster.  Any cluster of fewer than √𝑁 cells was 
discarded, where N was the number being clustered in that round. This discarded set 
constituted roughly 1.6% of the total cells (100,280 out of 5.9M). 

Clustering termination and marker gene search. The clustering strategy described above was 
applied recursively on the leaves of the tree until one of the following conditions was met: 

● If the shared neighbor graph was not a single connected component, there is no 
resolution low enough to form a single cluster, and so the resolution sweep was not 
possible. This would typically occur if there were very few variable genes, which is 
indicative of a homogenous cell population. 

● If the resolution sweep concluded at the highest resolution without ever finding multiple 
clusters, this is also indicative of a homogenous population and clustering was 
considered completed. 

● Finally, we truncated the tree when the resulting clusters did not have differentially 
expressed markers that defined them. 

To test for differential markers, we considered each leaf versus its sibling leaves. We used a 
Mann-Whitney U test to assess whether any genes are differentially expressed. As an additional 
filter, we required that a gene be observed in less than 10% of the lower population, and 
observed at a rate at least 20% higher in the higher population, to ensure that there is a discrete 
difference in expression between the two populations. We required every cluster to have at least 
three marker genes distinguishing it from its neighbors, as well as three marker genes in the 
other direction. If a cluster failed that test, all leaves were merged and the parent was 
considered the terminal cluster. 

The only exception to the above was if the next level of clustering resulted in a set of differential 
clusters that passed this test–these were situations where the first round of clustering split the 
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cells on a continuous difference in expression but the next round resolved the discrete clusters. 
We retained these clusters for further sub-clustering as they may contain additional structure. 
 
Visualization of clusters.  For high-dimensional visualization, as in Fig. 1a, we first subsetted 
each of the clusters to a maximum of 2,000 nuclei. We then performed t-SNE with the Seurat 
package using 250 principal components over a shared nearest-neighbor graph with a 20 
neighbor local neighborhood.  
 
Visualization of Cluster Gene Expression. For the heatmap visualization in Fig. 1c, we subsetted 
the 1,937 mapped cell types to the 1,260 neuronal cell types with at least 5 confidently mapped 
beads in at least one puck. We normalized the data with Seurat’s LogNormalize normalization 
(scale.factor=1e4) and averaged each cell type’s 5 nearest neighbors’ expressions. The 
main region assignment was determined by combining the 10 nearest neighbors’ imputed main 
region assignment. The matrix was plotted using the ComplexHeatmap package in R70. 
 
Quality control of clusters.  A strict, multi-step quality assessment framework was employed to 
retain only high quality cell profiles in our analyses. First, we removed nuclei with less than 500 
UMIs and greater than 1% mitochondrial UMIs. Doublet clusters were further flagged and 
excluded based on co-expression of marker genes of distinct cell classes (e.g. Mbp and 
Slc17a7).  
 
Next, we constructed a cell “quality-network” to systematically identify and remove remaining 
low quality cells and artifacts from the dataset. By simultaneously considering multiple quality 
metrics, our network-based approach has increased power to identify low quality cells while 
circumventing the issues related to setting hard thresholds on multiple quality metrics. To 
construct the quality-network we considered the following cell-level metrics: 1) percent 
expression of genes involved in oxidative phosphorylation (OXPHOS), 2) percent expression of 
mitochondrial (MT) genes, 3) percent expression of genes encoding ribosomal proteins, 4) 
percent expression of immediate early gene (IEG) expression, 5) percent expression explained 
by 50 highest expressing genes, 6) percent expression of long non-coding RNAs (lncRNA), 7) 
number of unique genes (nGene) (log2-transformed), and 8) number of unique UMIs (nUMI) 
(log2-transformed). Given their inherently distinct distributions of quality metrics, we separately 
constructed quality-networks for neurons and glial cells. The quality-network was constructed 
and clustered using shared-nearest neighbor and Leiden clustering (resolution 0.8) algorithms 
from Seurat v4.2.0. Our strategy was to remove any cluster from the quality-network with 
“outlier” distribution of quality metric profiles. A distribution of quality metric was considered as 
an outlier if its median was above 85% of cells in three features of the quality-network: 
OXPHOS, MT, and ribosomal protein expression. We further removed any remaining clusters 
with <15 cells.  
 
Estimation of snRNA-seq sampling depth.  We used the R package SCOPIT v1.1.471 to 
estimate the sequencing saturation of our dataset. Under the prospective sequencing model, 
SCOPIT calculates the multinomial probability of sequencing enough cells, n*, above some 
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success probability, p*, in a population containing k rare cell types of size N cells, from which we 
want to sample at least c cells in each cell type:  

𝑛 ∗= 𝑚𝑖𝑛{	𝑛	|	𝑃(𝑁! ≥ 𝑐,𝑁" ≥ 𝑐,… ,𝑁# ≥ 𝑐) ≥ 	𝑝 ∗ }.  

We assume there are k=19 rare cell types in our population, each containing N=101 cells 
(frequency of 0.0024%). We need to sequence at least c=81 cells from each cell type for 
sufficient sampling (80% of the rarest cell type). We used SCOPIT to estimate the sampling 
saturation of our full dataset of 4,388,420 cells.  
  
Cell type mapping into the Slide-seq dataset with RCTD 
 
We used RCTD to map the single-nuclei clusters onto the Slide-seq spatial beads.  
For mapping we deployed a modification of the RCTD algorithm72 in which we increased the 
computational efficiency and throughput, modified cell type prefiltering, and adjusted the metric 
used for the decomposition assignment (see below). 
 
Changes to RCTD for parallelizable throughput.  We changed the quadratic programming 
optimizer of RCTD to OSQP73 which scales better for the larger matrices resulting from larger 
sets of cell types to be mapped.  We also rewrote the inner loops of the most time-intensive 
functions (choose_sigma_c and fitPixels) with Rcpp74 for efficiency. Additionally, we used 
Hail Batch75,76 and GNU Parallel77  which allowed for large-scale, on-demand parallelization (to 
thousands of cores) using cloud computing services.  
 
Changes to RCTD for cell-type prefiltering.  RCTD in doublet mode models how well explicit 
pairs of cell types match a bead’s expression. For computational efficiency, RCTD prefilters 
which cell type pairs are considered per bead. However, we found that larger cell type 
references with many similar cell types led to overly sparse prefiltering which impeded our ability 
to confidently map fine-grained cell types. In order to balance this sparsity, we added an 
additional ridge regression term to RCTD’s quadratic optimization, tunable with a ridge strength 
parameter, which allowed us to control the relative sparsity and potential overfitting of the 
prefiltering stage. Our modified prefiltering stage used a heuristic to detect a subset of potential 
cell types for each bead by using RCTD’s full mode with two ridge strength parameters (0.01, 
0.001), as well as mapping each cell type individually. 
 
In accordance with the explicit cell type pairs used within RCTD's doublet mode, we subdivided 
this filtered list, pulling out the ten cell types deemed most likely to be associated with the given 
bead. When modeling how well these cell types mapped to a given bead, we exhaustively used 
one cell type from the top-ten list, and one cell type from the rest of the prefiltered list. For the 
cerebellum and striatum, the number of cell types considered was sufficiently low that we were 
able to run the algorithm using all pairs. 
 
Changes to RCTD for decomposition assignment.  To aid in mapping large references with 
many similar clusters, we modified how RCTD scores explicit pairs of cell types in doublet 
mode. Rather than using the result of the single cell type pair which fit best, we identified the cell 
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type pairs which scored similar to the best-scoring pair (with likelihood score within 30). Then, 
we collated the frequency of each cell type occurring in these well-fitting pairs and divided by 
the total occurrences of all the cell types, to make a confidence score. Throughout the paper, 
we use 0.3 (out of a maximum score of 0.5) as the threshold for a ‘confident’ mapping.  
 
Creation of per-region cell type references and gene Lists.  In order to help reduce the 
computational load of combinatorially mapping the cell types to each bead, we created a set of 
tailored references for each region. First, we grouped the libraries into at least one of 8 large-
scale regions corresponding to: 1) the basal ganglia, 2) medulla and pons, 3) cerebellum, 4) 
hippocampal formation, 5) isocortex, 6) midbrain, 7) olfactory bulb, and 8) striatum. For each 
reference region, the clusters used for mapping had a minimum of 50 cells from the 
aforementioned per-region libraries and at least 100 cells total.  
 
For each reference region we also generated a tailored gene list. First, for each cluster in each 
reference region, we ran the same Mann-Whitney U test as in the cluster generation (see 
above), where the background expression was the other clusters in the reference set. Then we 
combined all results per gene and chose the 5,000 genes with the smallest p-value across all 
the individual differential expression tests.  
 
Running RCTD on per-region puck subsets. We assigned the CCF regions into at least one of 
the 8 large-scale regions from above. Then for each Slide-seq puck, we grouped the beads on 
the puck into at least one of the large-scale regions using our CCF alignment. For each large-
scale region on each puck, we ran RCTD using the corresponding tailored reference cell types 
and tailored gene list. We additionally considered only beads which had at least 150 UMIs 
across all genes and at least 20 UMIs within the tailored gene list.  
 
 
Analyses of cluster heterogeneity across regions 
 
To assess cluster heterogeneity across regions with vastly different areas, we analyzed the 
minimum number of cell types required to cover 95% of the mapped beads. For each region, we 
computed the number of confidently mapped beads for each cell type, sorted in descending 
order by the number of beads. Next, we determined the number of cell types necessary for the 
running sum of beads to reach 95% of the total mapped beads.  
 
Force-directed DeepCCF Region Graph To generate the force-directed graph of regional cell-
type similarity, as in Fig. 2b, we weighted each pair of DeepCCF regions with the weighted 
Jaccard similarity metric. We then used the R package qgraph v1.9 to generate a force-directed 
graph. 
 
Discovery of combinatorial marker genes needed to distinguish snRNA-seq cell types 
 
To find the minimally-sized gene lists which allowed us to distinguish one cell type from the 
others in the dataset, we framed the question as a set covering problem. In the set cover 
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problem, we find the smallest subfamily of a family of sets that can still cover all the elements in 
a universe set. For our use case, we examine a given cell type 𝐴 and define a family of sets, 
one set per gene. The set 𝑆$,corresponding to the gene 𝑔, contains all the other cell types which 
are ‘distinguishable’ (defined below) from 𝐴 using the gene 𝑔. In this way, the minimal set cover 
of this family of sets gives the smallest subset of genes which distinguishes 𝐴 from all the other 
cell types in the dataset (i.e. the universe set).  
 
To determine if a gene 𝑔 is ‘distinguishable’ between two cell types 𝐴	and 𝐵, first we define 𝑍%,$ 
and 𝑍',$	to be the percent of cells in cluster 𝐴 and cluster 𝐵 with nonzero values of gene 𝑔, 
respectively. Then we say 𝐴 is ‘distinguishable’ from 𝐵 using 𝑔, denoted 𝐷(𝑔, 𝐴, 𝐵) = 1, when 
𝑍%,$ 	≥ 0.25 and ((𝑍%,$ −	𝑍',$) ≥ 0.5	 or 𝑍',$ 	≤ 	0.05). Otherwise, we say 𝐴 is “indistinguishable” 
from B using gene 𝑔, denoted as 𝐷(𝑔, 𝐴, 𝐵) = 0. 
 
Then to solve each cell type’s minimum set cover to optimality (or to prove it is infeasible), we 
phrase this problem as a mixed integer linear programming (MILP) optimization problem. 
 
We’ll consider one cell type 𝐴 of which we want to find the set cover. Given the 𝐶 other cell 
types: 𝑐!, 𝑐", . . . , 𝑐(; which express 𝐺 genes: 𝑔!, 𝑔", . . . , 𝑔); we create a matrix 𝑀 of dimension 
(𝐶 × 𝐺) where 𝑀*,+ = 𝐷(𝑔+ , 𝐴, 𝐶*)	. 
We formulate our set cover model as follows: 
 

Decision variable.  The main variable we want to optimize is the choice of which genes to 
select for the set cover. So, we define the binary decision variable: 

 
Constraints.  We then define 𝑋 = 𝑀𝑈, a 𝐶-length vector where 𝑋* gives how many times cell 
type 𝑐* was covered by the genes selected in 𝑈. For 𝑈 to give a proper set cover (i.e. every 
cell type is covered at least once by the selected genes), we constrain the model such that  

𝑋* ≥ 1; 	𝑖 = 1, 2, … , 𝐶. 
Note that if we want to exclude cell types some cell types 𝐶, and 𝐶- from the optimization 
(e.g. they are the two nearest neighbors to 𝐴) we can subset 𝑋 to exclude these two rows. 
Equivalently, we instead generate a one-hot encoding for the cell types to be excluded with 

 
and redefine 𝑋 = (𝑀𝑈)	+ 	𝐸.  
 
 
Objective.  Our goal is to minimize the number of genes chosen. Formally  

𝑚𝑖𝑛∑)+.! 𝑈+. 
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We can define this mixed integer linear model programmatically using the JuMP domain-specific 
modeling language in Julia30,78. We optimized using the HiGHS open source solver79 or the IBM 
ILOG CPLEX commercial solver v22.1.0.080.  We repeated this optimization for every cell type 
in the dataset. We also group the cell types by main region and repeat this optimization 
considering only cell types within each regional group. 
 
To enumerate all possible gene lists, for use in obtaining the minimum-sized gene list (below), 
we used the IBM CPLEX solver with a 5 hour time-limit over two threads and the following 
parameters: 
    mip pool absgap 0 
    mip pool intensity 4 
    mip limits populate 10000000 
 
Creation of minimum-sized collated gene list 
 
By default, MILP optimizers will stop after finding one optimal gene list. But, upon examination, 
we found that most cell types had many distinct equally-optimally-sized gene lists. We again 
used a set cover approach to leverage this redundancy and determine the smallest possible set 
of genes that would encompass at least one gene list from each cell type. Using this method we 
found a ~25% reduction in the size of the gene list, as opposed to taking the union of first-
discovered gene lists returned by the solvers by default.  
 
We first define the 𝐺 expressed genes: 𝑔!, 𝑔", … , 𝑔). Using the above exhaustive enumeration 
using IBM CPLEX, we have a list of equally optimal gene sets for each of the 𝐶 cell types: 
𝑐!, 𝑐", … , 𝑐(. We define 𝑁!, 𝑁", … , 𝑁( to be how many gene lists each cluster has. In total we have 
𝐿	 = 	∑(*.! 𝑁* gene lists, enumerated as 𝑙!, 𝑙", … , 𝑙/. Note that lists (𝑙!, 𝑙", … , 𝑙0!) all come from 
cell type 𝑐!, lists (𝑙0!1!, 𝑙0!1", … , 𝑙0!10") all come from cell type 𝑐" and so on. For ease of further 
reference, we will use 𝑖|𝑘 to denote the index of the 𝑘’th gene list for cell type 𝐶* in the whole 𝐿-
length gene list. For example, 1|1 = 1 (the first list of the first cell type is in position 1), 𝐶|𝑁( = 𝐿 
(the last list of the last cell type is in the final or 𝐿’th position), and 2|1 = 𝑁! + 1 (above). 
 
We can encode the individual gene membership for each gene list with a (𝐿 × 𝐺)		matrix 𝑀 
where 𝑀*,+ gives whether gene 𝑔+ is a member of list 𝑙*. 
 
We define our MILP model such that:  
 

Decision Variables.  The main binary decision variable we want to optimize is again  

 
 
In this case, we need an additional decision variable for each of the 𝐿 gene lists encoding 
whether it was completely covered by the genes selected in 𝑈. As we will see, this allows us 
to require at least one gene list to be completely covered. We define the binary variable 
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Constraints. We define 𝑋 = 	𝑀𝑈, which is a 𝐿-length vector where 𝑋* gives how many genes 
in 𝑙* are covered by the genes selected in 𝑈.  
 
For each cell type 𝐶* we’ll create different constraints. Note first that 𝐶* has 𝑁* different gene 
lists 𝑙*|!, 𝑙*|", … , 𝑙*|0# all of the same (optimal) length. We’ll define that length as 𝑆*.  
 
We require at least one of these gene list to be fully covered so constrain 

 
 
Then we want to enforce the requirements of decision variable 𝑇. So, for a gene list 𝑙*|#, if all 
the genes in this set are covered by the chosen genes from 𝑈, then 𝑇*|# = 1. Using the 
counterfactual, we see that if 𝑇*|# = 0 then some number of genes in 𝑙*|# are not covered by 
the genes from 𝑈. In fact, we have an upper bound on this number, because all of the gene 
lists being examined are of size 𝑆*, so at most 𝑆* genes are missing from being covered by 𝑈 
in 𝑇*|#. 
 
Given a list 𝑙*|3 where 𝑇*|3 = 1, for it actually to be fully covered by the non-zero elements of 
𝑈, we require 𝑋*|3 ≥ 𝑆*. For a list 𝑙*|4 where 𝑇*|4 = 0, since it is already not fully covered by the 
non-zero elements of 𝑈, we can ignore its corresponding 𝑋*|4. One way of ignoring this set, 
while keeping the broader constraint in place for optimization, is by adding the upper bound of 
missing genes, 𝑆*, since 𝑋*|4 + 𝑆* 	≥ 𝑆* is true by inspection (𝑋*|4 	≥ 0  by definition). Putting 
this together we get the constraint 
 

 
We repeat this constraint for every cluster 𝐶* and for each cluster grouped by the main region. 

 
GO enrichment of genes with hierarchical reduction 
The GO enrichment analysis for the minimum-sized collated gene list was performed with 
enrichr81,82 using the GO Molecular Function 2021 list gene set83,84. This resulting enrichment 
was hierarchically reduced for visualization with rvvgo85. 
 
Neurotransmitter and neuropeptide assignment to cell types 
 
Neurotransmitter assignment.  Each cell type was assigned to a neurotransmitter identity based 
upon the percent of its cells with non-zero counts of genes essential for the function of that 
neurotransmitter.  Specifically, we used a non-zero threshold nz = 0.35: 
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● VGLUT1: Slc17a7 ≥ nz 
● VGLUT2: Slc17a6 ≥ nz 
● VGLUT3: Slc17a8 ≥ nz 
● GABA: (Gad1 | Gad2 ≥ nz) & (Slc32a1 ≥ nz) 
● GLY: (Gad1 | Gad2 ≥ nz) & (Slc6a5 | Slc6a9 ≥  nz) 
● CHOL: Slc18a3 & Chat ≥  nz 
● DOP: Slc6a3 ≥ nz 
● NOR: Pnmt | Dbh ≥ nz 
● SER: Slc6a4 | Tph2 ≥ nz 

 
For the 166 neuronal cell types that didn’t meet the above nz conditions, we carefully examined 
their top expressing transporters and assigned neurotransmitters accordingly.    
 
Neuropeptide assignment.  Each cell type was assigned to a neuropeptide (NP) ligand identity 
if: a) the percent of its cells with non-zero expression of the NP was ≥ 0.3; and b) the average 
expression of the NP was ≥ 0.5 counts per cell. We observed that the expression of four NPs 
showed greater contamination across other cell types: OXT, AVP, PMCH, and AGRP.  
Therefore, for these NPs, we required the percent of cells with non-zero expression to be ≥ 0.8 
and average expression to be ≥ 5 counts per cell.  
 
Each cell type was assigned to a neuropeptide receptor (NPR) identity if: a) the percent of its 
cells with non-zero expression of at least one NPR was ≥ 0.2; b) the average expression of at 
least one NPR was ≥ 0.5 counts per cell. 
 
Quantification of region-specific excitatory-inhibitory ratios 
 
We first created inhibitory and excitatory cell type groups based on their neurotransmitter 
expression, as above. We classified cell types expressing GABA or GLY neurotransmitters as 
inhibitory and those expressing VGLUT neurotransmitters as excitatory. In the case where a cell 
type was assigned to both an inhibitory and excitatory identity, it was classified as inhibitory. For 
each region on the Slide-seq array, we labeled its beads as excitatory or inhibitory by whether 
they confidently mapped into members of the corresponding cell type groups, with additional 
filtering to ensure these mappings were one of top 2 ranked cell types per bead. Then, defining 
#𝐼 and #𝐸 gives the number of inhibitory and excitatory mapped beads, respectively, we defined 
the excitatory-to-inhibitory balance as #6

#61#7
 . 

To quantify the uncertainty, we calculated the exact 95% confidence interval for the 
corresponding binomial distribution using the exact method of binconf function in the Hmisc R 
package86.  
 
Analyses of activity-dependent gene expression 
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Pseudocell generation.  We aggregated our snRNA-seq expression data into pseudocells: 
aggregations of cells with similar gene expression profiles. Working at the pseudocell resolution 
(rather than with individual cells) eliminates the technical variation issues of single cell 
transcriptomic data, such as low capture rate from dropouts and pseudoreplication through 
averaging expression of similar cells87,88, while avoiding issues of pseudobulk approaches, such 
as low statistical power and high variation in sample sizes89. 
 
To generate our pseudocells, we first performed dimensionality reduction at the single-cell level. 
Single cells were divided into 27 groups, consisting of glial cell classes and neuronal 
populations further divided by neurotransmitter usage. Within each cell group, we selected 
genes that were highly variable in a specific number of mouse donors, such that a maximum of 
5,000 genes would be used for subsequent scaling by batch. We then ran PCA on the scaled 
expression data (50 PCs for glia and 250 PCs for neurons). Next, we constructed pseudocells 
by grouping single cells within each cell type. Within a cell type of size n, cells were assigned to 
pseudocells of size s, such that the pseudocell size correlated with cell type size:  

𝑠	 = 	𝑚𝑖𝑛(200,𝑚𝑎𝑥(20, 8
9:
))). 

 
Pseudocell centers were identified by applying k-means clustering on the top PCs (50 for glia 
and 250 for neurons). To ensure the stability of results across different cell type sizes – ranging 
from rare neuronal clusters of 15 cells to a glial cluster of half a million cells – we weighted PCs 
by their variance explained. Random walk approaches have been found to be more robust in 
identifying cells of similar gene expression profiles, in contrast to spherical, distance-based 
methods90,91. Therefore, we used the random walk method on cell-cell distances in the PCA 
space to assign cells to pseudocell centers (i.e. k-means centroids)91. To generate our 
pseudocell counts matrix, we aggregated the raw UMI counts of cells assigned to each 
pseudocell. This resulted in representation of each cell type by one or more pseudocells, 
ranging from 1 to 2,490 pseudocells. 
 
The pseudocell-level expression of protein-coding genes was normalized by log2-transformed 
count per million (CPM), followed by quantile normalization. We further normalized the 
expression of each gene to have a mean expression of zero and standard deviation of one. 
Normalized pseudocell counts were used for downstream analysis.  
 
Candidate ARG list.  To generate our candidate activity-regulated genes (ARGs) list, we divided 
our neuronal pseudocells into 28 cell groups, such that each main region was assigned to an 
excitatory and inhibitory population, and all other cell types (cholinergic, dopaminergic, 
noradrenergic, and serotonergic) were individually grouped across all main regions. To 
construct gene co-expression networks within each cell group, we computed pairwise gene 
correlation coefficients (Pearson) across scaled pseudocells using the R package psych v2.2.5. 
For a gene g to be considered an ARG candidate, its correlation r with Fos must: 1) r ≥ 0.3; 2) r 
in the ≥ 99.5% quantile distribution of g’s correlations with all genes; and 3) r is statistically 
significant after multiple hypothesis testing (Holm adjusted p-value < 0.05).  To construct the 
final full ARG candidate list, we took the union of selected genes across all cell groups. 
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Activity-regulated gene network.  To visualize activity-regulated relationships between our 
candidate ARGs and regions of the brain, we constructed a force-directed graph of a weighted 
bipartite network. We used the R package igraph v1.2.7 to build the network from an incidence 
matrix of candidate ARGs and excitatory/inhibitory cell types localized to different regions. An 
entry e in the matrix corresponds to a gene’s correlation r with Fos in a brain region, scaled up 
by 1 such that all entries ≥ 1.The nodes of the network comprised two disjoint sets: candidate 
ARGs and neuronal brain regions, such that there would never be an edge between a pair of 
genes or a pair of regions. Edges were weighted based on the correlation entry e between a 
gene and region node. To emphasize the most central nodes in the network, we pruned edges 
with e < 1.3 and after pruning, we removed nodes with degree < 2. Gene node sizes and labels 
were also adjusted based on the scaled degree of the node to highlight the most central genes. 
Gene nodes were labeled only if they shared edges of weight e ≥ 1.3 with at least six regions. R 
packages GGally v2.1.2 and ggplot2 v3.3.6 were used to plot the network using the Kamada-
Kawai force-directed layout algorithm. We selected core IEGs from the network based on node 
centrality (degree > 18).   
 
Classifying ARG clusters.  To further characterize our candidate ARGs, we performed ward.D2 
hierarchical clustering based on their Fos correlations across brain regions. We cut the 
dendrogram at a height that divided our ARGs into 7 clusters. To assess the overlap between 
our ARG clusters and the ARGs reported in Tyssowski et al.40, we computed a Fisher’s exact 
test between two given gene sets using the R package  GeneOverlap v1.30.092. P-values were 
Bonferroni-corrected for multiple hypothesis testing in each gene cluster.  
 
Transcription factor enrichment.  To identify the transcription factors (TFs) selectively enriched 
for telencephalic excitatory or inhibitory populations, we performed GSEA on a ranked gene list 
against a curated TF gene set. First, we ranked genes from our telencephalic excitatory cells by 
their average correlation with Fos, compared to a background ranking of average telencephalic 
inhibitory Fos correlations. Genes from our telencephalic inhibitory cells were ranked in reverse 
order. We built a gene set of TFs by combining enrichR82 databases from ARCHS4, ENCODE, 
and TRRUST. We subsetted for human TFs that showed up in at least two databases and had 
at least 10 unique targets in each of those databases. The final gene set consisted of these 
human TFs, whose targets comprised the intersection between any two databases. We used 
the R package fgsea v1.20.093 to run GSEA with a gene set size restriction of 15 to 500, and 
against a background of all protein-coding genes expressed in our normalized pseudocell data.  
 
Heritability enrichment with scDRS 
To determine which of our snRNA-seq cell types were enriched for specific GWAS traits, we 
used single-cell disease relevance score (scDRS)47 with default settings. scDRS operates at the 
single-cell level to compute disease association scores, while considering the distribution of 
control gene scores to identify significantly associated cells.  
 
We used MAGMA94 to map SNPs to genes (GRCh37 genome build from 1000 Genomes 
Project) using an annotation window of 10kb. We used the resulting annotations and GWAS 
summary statistics to calculate each gene’s MAGMA z-score (association with a given trait). 
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Human genes were converted to their mouse orthologs using a homology database from Mouse 
Genome Informatics. The 1,000 disease genes used for scDRS were chosen and weighted 
based on their top MAGMA z-scores. Many of the traits we tested for enrichment had previously 
computed MAGMA z-scores from Zhang et al.47, so those scores were used instead (after 
applying MGI gene ortholog conversion).  
 
scDRS was used to calculate the cell-level disease association scores for a given trait; in our 
case, we treated our aggregated raw pseudocell counts as the input single-cell dataset, 
validating that the pseudocell results largely recapitulated single-cell-level results for three traits 
(Extended Data Fig. 6a). To determine trait association at the annotated cell type resolution, we 
used the z-scores computed from scDRS’s downstream Monte Carlo test. These MC z-scores 
were converted to theoretical p-values using a one-sided test under a normal distribution. 
Theoretical p-values were FDR-corrected for multiple hypothesis testing, considering only cell 
types with at least 4 beads confidently mapped to a single puck and deep CCF region, as well 
as non-neurogenesis cell types.   

Data and Code Availability 
 
An interactive portal is available at www.braincelldata.org, where gene expression data and 
spatial localizations of individual cell types can be visualized in a number of ways.  Raw single-
nucleus RNA-seq and Slide-seq data is available in the NeMO Archive (www.nemoarchive.org).  
The snRNA-seq clustering algorithm is available in the repository 
www.github.com/MacoskoLab/brain-atlas. This code was built on top of several existing 
packages: numpy, scipy, dask, pynndescent, leidenalg, igraph, zarr, and their dependencies. 
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Figure 1. Spatially mapping cell types using whole-brain snRNA-seq and Slide-seq datasets.  a, 
Schematic of the experimental and computational workflows for both whole-brain snRNA-seq sampling 
(top arrows) and Slide-seq sampling (bottom arrows).  Top, t-SNE representations of gene expression 
relationships amongst 1.2 million spatially mapped snRNA-seq profiles (downsampled from 4.3 million) 
colored by neurotransmitter identity (left) and most common spatially mapped main region (right).  b, 
Ridge plot depicting the spatial distributions of excitatory cortical cell types along the laminar depth of 
cortex in the Slide-seq dataset.  c, Heatmap depicting expression of main neurotransmitter genes (top) 
and canonical neuronal cell type markers (bottom) across all 1,260 spatially mapped neuronal clusters.  
d, Heat map showing the spatial distributions of each spatially mapped cluster (rows) within each 
DeepCCF structure (for complete list, see Supplemental Table 2). Example mapped cell types in other 
panels are labeled on the heat map.  e-h, Example mappings of neuronal cell types throughout the brain 
plotted in the CCF-aligned Slide-seq data (left) and in t-SNE space (with insets).       
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Figure 2.  Cell type diversity across regions of the mouse brain.  a, Cumulative number of cell types 
needed to reach 95% of mapped beads in each DeepCCF region (right) and summarized across 
individual main regions (left).  The DeepCCF regions with the largest values are labeled.  b, Force-
directed graph showing cell type sharing relationships amongst DeepCCF regions.  Edges are weighted 
by the Jaccard overlap between each region (Methods).  c, Histogram of the minimum number of genes 
required to uniquely define each cell type across the nervous system.  The algorithm was repeated, 
tolerating genes to be the same amongst different numbers of nearest cluster neighbors.  d, Cumulative 
distribution plot of minimum number of genes required to distinguish each cell type within each major 
brain region, grouped by telencephalic regions (left), and non-telencephalic regions (right).  e, Optimally-
small collated gene set needed to cover a minimal gene list from each cell type, ranked by how many cell 
types each gene reaches, colored by transcription factor identity (orange) or if it is a currently available 
Cre line (blue).  f, Barplot quantifying the significantly enriched GO terms in the minimum-sized collated 
gene list after hierarchical reduction (Methods), colored by the absolute number of genes related.  
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Figure 3.  Neurotransmission and neuropeptide (NP) usage across regions of the mouse brain.  a,  Top, 
upset plot of the frequency of neurotransmitter usage by individual snRNA-seq-defined cell types.  
Bottom, dot plot depicting the spatial distribution of cell types in each of the neurotransmitter groups 
across major brain areas.  b, Point estimates of the fraction of each DeepCCF region composed of 
mapped inhibitory cell types. Whiskers denote the exact 95% confidence interval of the corresponding 
binomial distribution. c, Histograms denoting the number of distinct NPs (top) and NP receptors (bottom) 
expressed in each snRNA-seq-defined neuronal cell type.  d, Fraction of all cells expressing each NP (y-
axis) in each of the 12 main brain areas.  Regions accounting for more than 50% of total expression of 
that NP are colored and labeled.  e, Dot plot depicting the number of cells expressing each NP (left of 
dotted line) and NP receptor (right of dotted line), within each major cell class. 
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Figure 4. Patterns of activity-dependent gene expression across brain regions. a, Force-directed graph of 
a weighted bipartite network. Nodes comprise two disjoint sets: candidate ARGs (black dots) and sets of 
neuronal cell types of the same neurotransmitter type, localized to the same brain region (shapes colored 
by region). Edges are weighted based on the correlation coefficient between a gene node and a region 
node, and edges with weight < 1.3 are pruned. After pruning, nodes with a degree < 2 are also removed. 
The sizes of nodes and node labels correlate with the degree of the node, where nodes are labeled only if 
they share edges of weight ≥ 1.3 with at least six regions.  b, Box plots quantifying mean core IEG Slide-
seq counts per 10,000, colored by main brain regions. c, Downsampled heatmap of correlation 
coefficients between Fos and candidate ARGs (columns) across major regions of the brain (rows). 
Numbers at the top correspond to ARG cluster identities. d, Scatter plot quantifying transcription factor 
enrichment (p-value < 0.05, FDR-corrected) between excitatory and inhibitory populations. TFs are 
colored by their cell type enrichment specificity. 
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Figure 5.  Heritability enrichment for traits studied by GWAS across brain cell types. a, Barplots 
quantifying significantly enriched (p-value < 0.05, FDR-corrected) cell types for each trait, in non-neurons 
(gray) and neurons (colored by main region). b, Adjusted -log10 p-value enrichment scores for each cell 
type, grouped and colored by their main regions, for schizophrenia. Squares and triangles denote 
excitatory and inhibitory clusters, respectively; glia are shown in gray on the far right of each plot. c, 
Ridge plots showing the layer distribution of each excitatory cortical cell type found to be enriched for 
schizophrenia heritability.  d, Dot plot of expression of markers of striatal SPN subtype identity, grouped 
by category (overall cell class identity, pathway identity, matrix versus striosome, and eSPN identity).  
Five additional genes that are enriched in the schizophrenia-enriched SPN types are also shown.  e, 
Representative sections showing the spatial localizations of three SPN cell types significantly enriched for 
schizophrenia heritability.
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Extended Data Figure 1.  Quality control and summary statistics of the snRNA-seq analysis.  a, Stacked 
barplots showing the number of nuclei sampled in each region, for each animal replicate.  Female donor 
IDs contain an “F” in their name, while male donors contain an “M.” Dissectates are colored on the top by 
their corresponding major brain region. b, Bar plots showing the average number of UMIs per nucleus in 
each dissectate, colored by main brain region. Error bars indicate standard error of each dissectate’s 
average number of UMIs. c, Violin plots showing the log10 distribution of the number of UMIs per nucleus 
in each major cell class. d, Stacked barplots of the number of nuclei sampled in each major mouse brain 
region, subsetted by individual dissectate.  e, Histogram of the maximal proportional representation of 
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individual dissectates in each snRNA-seq cluster.  f, Heatmap representing a confusion matrix between 
clustering of the snRNA-seq data in the current study (x-axis), and published studies (y-axis), for the 
mouse motor cortex4 (left) and cerebellum7 (right).  g, Histogram of the log10 number of clusters 
recovered from each major cell class.  h, Plot indicating the probability of sampling 19 very rare 
populations (prevalence 0.0024%) as a function of the total number of cells profiled in experiment 
(probability estimated as in methods).  Number of high-quality nuclei profiled here (4,388,420) and 
corresponding probability are indicated.
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Extended Data Figure 2.  Quality control and summary statistics of CCF integration and cell type 
mapping.  a, Example images of adjacent Nissl sections aligned to CCF with 2D rigid transformation 
(wireframe outline) before (left) and after (right) correcting alignment with a 2D diffeomorphism.  Red 
arrows point to example regions with incorrect alignment, and improvement after application of the 
correction. b, Expression of three highly specific marker genes that label the ventricular lining 
(Tmem212), dentate gyrus granule layer (Dsp), and layer 6b of isocortex (Ccn2) in Slide-seq (top row).  
Bottom row shows the positions of individual beads with expression with respect to the boundaries of the 
expected CCF region (purple).  c, Density plot of the distance of each bead expressing each of the three 
marker genes (or all combined) shown in b across the corresponding Slide-seq sections.  The full width 
half maximum of the density profile is shown. d, Heat map representing the frequency of bead mappings 
for each glial cell type, across DeepCCF regions.   
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Extended Data Figure 3.  Extended analyses quantifying neuronal cell type diversity across brain areas.  
a, Heatmap representing the weighted Jaccard similarity in cell type composition between each of the 12 
main brain areas (Methods).  b, Cumulative distribution plots of the number of genes needed to label 
each cell type, within each of the 12 major brain areas.  Within each region, each of the sets of 
individually colored plots denotes an algorithmic run with a different number of nearest neighbors that are 
tolerated as having the same gene markers (absolute number in parentheses at right).  The colored 
percentages denote the proportion of cell types for which the algorithm was able to find a solution. c,  
Treemap visualization of the GO hierarchy enriched in the  minimum-sized collated gene list after 
hierarchical reduction (Methods). 
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Extended Data Figure 4.  Extended analyses of neurotransmitter and neuropeptide usage across the 
brain. a, Stacked barplots of the number of cell types with confident mappings in each deep CCF region, 
subsetted by neurotransmitter group. Deep CCF regions are colored on the left by their corresponding 
major brain region. b, Representative sections showing the spatial localizations of all cell types within 
three neurotransmitter groups.  C, Violin plots of the number of neuropeptides expressed in each cluster, 
stratified by main brain region.  d, Dot plot showing scaled Slide-seq counts per 10,000 of ligand-receptor 
pairs across main brain regions.  
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Extended Data Figure 5.  Additional analyses related to activity-related genes.  a, Comparison of 
correlations (right) and quantile of correlation (left) between each gene and both Fos (x-axis) and Junb.  
Red dots indicate the genes that were selected as candidate ARGs.  b, Barplots showing the average 
counts per 10,000 of the core IEG metagenes (Methods) listed in c. Error bars indicate standard error of 
average counts per deep CCF region and dashed black lines indicate average counts per main brain 
region. c, Scaled mean expression of the core IEG metagenes, within each main region, separated by 
neurotransmitter group.  d, Extended heat map showing the correlation with Fos of all candidate ARGs 
within the seven clustered groups.  e, Enrichment analysis (Methods) of each candidate ARG cluster with 
three established ARG gene sets40.  Dotted red line indicates an adjusted p-value threshold of 0.05.  
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Extended Data Figure 6.  Extended analyses of heritability enrichment in murine brain cell types.  a, 
Correlation plot of p-value enrichment scores (FDR-corrected) for each cell type across different scDRS 
settings: A) default parameters (Methods) B) MAGMA gene z-score > 2.5, C) control gene set size of 
2,000, D) control gene set size of 500, E) input expression dataset at the single-cell level (versus 
pseudocells), F) adjust for cell type proportions.  b, Adjusted -log10 p-value enrichment scores for each 
cell type, grouped and colored by main region, for an extended set of GWAS-measured traits.  c,  Dot plot 
of the expression of key cortical pyramidal cell type markers within the eight isocortical clusters that were 
significantly enriched for schizophrenia heritability. 
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Supplemental Tables 
 
Supplemental Table 1.  List of snRNA-seq dissectates and their CCF regional compositions. 
 
Supplemental Table 2.  List of “DeepCCF” regions used in this study. 
 
Supplemental Table 3.  Minimum gene lists computed to define each cell type, across a range 
of parameterizations. 
 
Supplemental Table 4.  List of neuropeptides used in Figure 3, along with their cognate 
receptors. 
 
Supplemental Table 5.  List of GWAS traits analyzed in Figure 5.   
 
Supplemental Table 6.  Cell-type-level enrichment scores (adjusted p-values) computed by 
scDRS for each GWAS trait. 
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