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Abstract

Previously, statistical textbook wisdom has held that interpolation of noisy training
data will lead to poor generalization. However, recent work has shown that this
is not true and that good generalization can be obtained with function fits that
interpolate training data. This could explain why overparameterized deep nets with
zero or small training error do not necessarily overfit and could generalize well.
Data interpolation schemes have been exhibited that are provably Bayes optimal in
the large sample limit and achieve the theoretical lower bounds for excess risk (Sta-
tistically Consistent Interpolation) in any dimension. These interpolation schemes
are non-parametric Nadaraya-Watson style estimators with singular kernels, which
exhibit statistical consistency in any data dimension for large sample sizes. The
recently proposed weighted interpolating nearest neighbors scheme (wiNN) is in
this class, as is the previously studied Hilbert kernel interpolation scheme. In
the Hilbert scheme, the regression function estimator for a set of labelled data
pairs, (xi, yi) ∈ Rd × R, i = 0, ..., n, has the form f̂(x) =

∑
i yiwi(x), where

wi(x) = ‖x − xi‖−d/
∑
j ‖x − xj‖−d. This interpolating function estimator is

unique in being entirely free of parameters and does not require bandwidth se-
lection. While statistical consistency was previously proven for this scheme, the
precise convergence rates for the finite sample risk were not established. Here, we
carry out a comprehensive study of the asymptotic finite sample behavior of the
Hilbert kernel regression scheme and prove a number of relevant theorems. We
prove under broad conditions that the excess risk of the Hilbert regression estimator
is asymptotically equivalent pointwise to σ2(x)/ ln(n) where σ2(x) is the noise
variance. We also show that the excess risk of the plugin classifier is upper bounded
by 2|f(x) − 1/2|1−α (1 + ε)ασα(x)(ln(n))−

α
2 , for any 0 < α < 1, where f is

the regression function x 7→ E[y|x]. Our proofs proceed by deriving asymptotic
equivalents of the moments of the weight functions wi(x) for large n, for instance
for β > 1, E[wβi (x)] ∼n→∞ ((β− 1)n ln(n))−1. We further derive an asymptotic
equivalent for the Lagrange function and explicitly exhibit the nontrivial extrapola-
tion properties of this estimator. Notably, the convergence rates are independent of
data dimension and the excess risk is dominated by the noise variance. The bias
term, for which we also give precise asymptotic estimates, is always subleading
when the density of data at the considered point is strictly positive. If this local
density is zero, we show that the bias term does not vanish in the limit of a large
data set and we compute its limit explicitly. Finally, we present heuristic arguments

∗Center for Computational Brain Research, IIT Madras, Chennai, India

Preprint. Under review.

ar
X

iv
:2

10
6.

03
35

4v
1 

 [
cs

.L
G

] 
 7

 J
un

 2
02

1



for a universal w−2 power-law behavior of the probability density of the weights
in the large n limit.

1 Introduction

Data interpolation and statistical regression of noisy data are both classical subjects but their domain
of application have been disjoint until recently. Scattered data interpolation techniques [1] are
generally used for clean data. On the other hand, when supervised learning or statistical regression
techniques are applied to noisy data, in general smoothing or regularization methods are applied
to prevent training data interpolation, as the latter is believed to lead to poor generalization [2].
However, accumulating empirical evidence from overparameterized deep networks has shown that
data interpolation (equivalently, zero error on the training set) does not automatically imply poor
generalization [3, 4]. This has in turn given rise to a rapidly growing body of theoretical work to
understand how and why noisy data interpolation can still lead to good generalization [5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15].

A key observations in this regard is the phenomenon of Statistically Consistent Interpolation [16],
i.e., regression function estimation that interpolates training data but also generalizes as well as
possible by achieving the Bayes limit for expected generalization error (risk) when the sample size
becomes large. This hints at a rich set of theoretical questions at the interface between the disciplines
of scattered data interpolation and supervised learning, that have only begun to be addressed. In
particular, there has been comparatively little study of the generalization error or risk of interpolating
learners. Computation of generalization error bounds in machine learning often relies on the capacity
of the class of fitting functions [17], however such model complexity based bounds are not tight
enough to be useful for interpolating learners [4]. For nonparametric interpolation approaches such as
that considered here, it is also not clear what model complexity means. Thus, there is a need for other
approaches to understanding the generalization behavior of nonparametric interpolating learners,
including more direct treatments of the generalization error for specific interpolation schemes so as
to gain better theoretical understanding. The current paper addresses this need.

We present a detailed analysis of the finite-sample risk of an interpolating learner with intriguing
theoretical properties, the Hilbert kernel estimator (Devroye et. al. [18]). A unique property of
this Nadaraya-Watson (NW) style estimator [19, 20] is that it is fully parameter-free and does not
have any bandwidth or scale parameter. It is global and uses all data points for each estimate: the
associated kernel is a power law and thus scale-free. Although statistical consistency of this estimator
was proven [18] when it was proposed, there has been no systematic analysis of the associated
convergence rates and asymptotic finite sample behavior. We provide this analysis in the present
study.

Related work The only other interpolation scheme we are aware of, that is proven to be statistically
consistent in arbitrary dimensions under general conditions, is the recently proposed weighted
interpolating nearest neighbors method (wiNN) [7], which is also a NW estimator utilizing a singular
power law kernel of a very similar form but with two important differences: a finite number of
neighbors k is utilized (rather than all data points), and the power law exponent δ of the NW kernel
satisfies 0 < δ < d/2 rather than δ = d. To achieve consistency k has to scale appropriately with
sample size. Despite the superficial resemblance, the wiNN and Hilbert Kernel estimators have quite
different convergence rates, as we will see from the results of this paper. Also worth mentioning is the
Shepard interpolation scheme [21] originally proposed for interpolation of 2D geospatial data sets,
also a NW style interpolating estimator, though used in the context of scattered data interpolation.
In scattered data interpolation [1], the focus is generally on the approximation error (corresponding
to the “bias” term in our analysis below). The approximation error of the Shepard scheme has been
analyzed [22] but as we will see below the risk for Hilbert kernel interpolation is dominated by the
noise or “variance” term. In contrast with wiNN or Hilbert kernel interpolation, other interpolating
learning methods such as simplex interpolation [7] or ridgeless kernel regression [11] are generally
not statistically consistent in fixed finite dimension [8].

Summary of results of this paper Notation and assumptions pertaining to this summary are defined
in the problem setup section below. We prove under broad conditions that the excess risk of the
Hilbert regression estimator is asymptotically equivalent pointwise to σ2(x)/ ln(n) where σ2(x) is
the noise variance. We also show that the excess risk of the plugin classifier is upper bounded by
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2|f(x)− 1/2|1−α (1 + ε)ασα(x)(ln(n))−
α
2 , for any 0 < α < 1, where f is the regression function

x 7→ E[y|x]. Our proofs proceed by deriving asymptotic equivalents of the moments of the weight
functions wi(x) for large n, for instance for β > 1, E[wβi (x)] ∼n→∞ ((β − 1)n ln(n))−1. We
further derive an asymptotic equivalent for the Lagrange function and explicitly exhibit the nontrivial
extrapolation properties of this estimator. Notably, the convergence rates are independent of data
dimension and the excess risk is dominated by the noise variance. The bias term, for which we also
give precise asymptotic estimates, is always subleading when the density of data at the considered
point is strictly positive. If this local density is zero, we show that the bias term does not vanish in the
limit of a large data set and we compute its limit explicitly. Finally, we present heuristic arguments
for a universal w−2 power-law behavior of the probability density of the weights in the large n limit.

2 Problem setup

Notation, Definitions, Statistical Model We model the labelled training data set
(x0, y0), . . . , (xn, yn) as n + 1 i.i.d. observations of a random vector (X,Y ) with values in
Rd × R for regression, and with values in Rd × {0, 1} for binary classification. Due to the indepen-
dence property, the collection X0, . . . , Xn has the product density

∏n
i=0 ρ(xi). We will denote by E

an expectation over the collection of n+ 1 random vectors and by EX the expectation over the col-
lection X0, . . . , Xn. An expectation over the same collection while holding Xi = xi will be denoted
EX|xi . The regression function f : Rd → R is defined as the conditional mean of Y given X = x,
f(x) := E[Y | X = x] and the conditional variance function is σ2(x) := E[|Y − f(X)|2|X = x].
f minimizes the expected value of the mean squared prediction error (risk under squared loss),
f = arg minRsq(h) where Rsq(h) := E[(h(X)− Y )2]. Given any regression estimator f̂(x) the
corresponding risk can be decomposed as E[Rsq(f̂(X))] = Rsq(f) + E[(f̂(X) − f(X)2]. The
excess risk is given by Rsq(f̂) − Rsq(f) = E[(f̂(X) − f(X))2]. For a consistent estimator this
excess risk goes to zero as n→∞ and we are interested in characterizing the rate at which it goes to
zero with increasing n (note our sample size is n + 1 for notational simplicity but for large n this
does not change the rate).

In the case of binary classification, Y ∈ {0, 1} and f(x) = P[Y = 1 | X = x)]. Let F : Rd → {0, 1}
denote the Bayes optimal classifier, defined by F (x) := θ(f(x)− 1/2) where θ(·) is the Heaviside
theta function. This classifier minimizes the riskR0/1(h) := E[1{h(X)6=Y }] = P(h(X) 6= Y ) under
zero-one loss. Given the regression estimator f̂ , we consider the plugin classifier F̂ (x) = θ(f̂(x)− 1

2 ).
The classification risk for the plugin classifier F̂ is bounded as E[R0/1(F̂ (x))] − R0/1(F (x)) ≤

2E[|f̂(x)− f(x)|] ≤ 2

√
E[(f̂(x)− f(x))2].

Finally, we define two sequences an, bn > 0, n ∈ N, to be asymptotically equivalent for n→ +∞,
denoted an ∼n→+∞ bn, if the limit of their ratio exists and limn→∞ an/bn = 1.

In summary, our work will focus on the estimation of asymptotic equivalents for E[(f̂(x)− f(x))2]
and other relevant quantities as this determines the rate at which the excess risk goes to zero for
regression, and bounds the rate at which the excess risk goes to zero for classification.

Assumptions. We define the support Ω of the density ρ as Ω = {x ∈ Rd/ρ(x) > 0}, the closed
support Ω̄ as the closure of Ω, and Ω◦ as the interior of Ω. Our results will not assume any compactness
condition on Ω or Ω̄. The boundary of Ω is then defined as ∂Ω = Ω̄ \ Ω◦. We assume that ρ has a
finite variance σ2

ρ. In addition, we will most of the time assume that the density ρ is continuous at the
considered point x ∈ Ω◦, and in some cases, x ∈ ∂Ω ∩ Ω.

For the regression function f , we will obtain results assuming either of the following conditions

• CfCont: f is continuous at the considered x,

• CfHolder: for all x ∈ Ω◦, there exist αx > 0, Kx > 0, and δx > 0, such that
x′ ∈ Ω and ‖x− x′‖ ≤ δx =⇒ |f(x)− f(x′)| ≤ Kx ‖x− x′‖αx
(local Hölder smoothness condition),

where condition CfHolder is obviously stronger than CfCont. In addition, we will always assume a
growth condition for the regression function f :
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• CfGrowth:
∫
ρ(y) f2(y)

1+‖y‖2d d
dy <∞.

As for the variance function σ, we will obtain results assuming either that σ is bounded or satisfies a
growth condition similar to the one above

• CσBound: there exists σ2
0 ≥ 0, such that, for all x ∈ Ω, we have σ2(x) ≤ σ2

0 ,

• CσGrowth:
∫
ρ(y) σ2(y)

1+‖y‖2d d
dy <∞.

When we will assume condition CσGrowth (obviously satisfied when σ2 is bounded), we will also
assume a continuity condition CσCont for σ at the considered x.

Note that all our results can be readily extended in the case where x ∈ ∂Ω = Ω̄ \ Ω◦ but keeping
the condition ρ(x) > 0 (i.e., x ∈ ∂Ω ∩ Ω), and assuming the continuity at x of ρ as seen as a
function restricted to Ω, i.e., limy∈Ω→x ρ(y) = ρ(x). Useful examples are when the support Ω of
ρ is a d-dimensional sphere or hypercube and x is on the surface of Ω (but still with ρ(x) > 0). To
guarantee these results for x ∈ ∂Ω ∩ Ω, we need also to assume the continuity at x of f , and assume
that Ω is smooth enough near x, so that there exists a strictly positive local solid angle ωx defined by

ωx = lim
r→0

1

Vdρ(x)rd

∫
‖x−y‖≤r

ρ(y) ddy = lim
r→0

1

Vdrd

∫
y∈Ω/‖x−y‖≤r

ddy, (1)

where Vd = Sd/d = πd/2/Γ(d/2 + 1) is the volume of the unit ball in d dimensions, and the second
inequality results from the continuity of ρ at x. If x ∈ Ω◦, we have ωx = 1, while for x ∈ ∂Ω, we
have 0 ≤ ωx ≤ 1. For instance, if x is on the surface of a sphere or on the interior of a face of a
hypercube (and in general, when the boundary near x is locally an hyperplane), we have ωx = 1

2 . If x
is a corner of a hypercube, we have ωx = 1

2d
. From our methods of proof presented in the appendix,

it should be clear that all our results for x ∈ Ω◦ perfectly generalize to any x ∈ ∂Ω ∩ Ω for which
ωx > 0, by simply replacing Vd whenever it appears in our different results by ωxVd.

Hilbert kernel interpolating estimator and Bias-Variance decomposition. The Hilbert kernel
regression estimator f̂(x) is a Nadaraya-Watson style estimator employing a singular kernel:

wi(x) =
‖x− xi‖−d∑n
j=0 ‖x− xj‖−d

, (2)

f̂(x) =

n∑
i=0

wi(x)yi. (3)

The weights wi(x) are also called Lagrange functions in the interpolation literature and satisfy the
interpolation property wi(xj) = δij , where δij = 1, if i = j, and 0 otherwise. At any given point
x, they provide a partition of unity so that

∑n
i=0 wi(x) = 1. The mean squared error between the

Hilbert estimator and the true regression function has a bias-variance decomposition (using the i.i.d
condition and the earlier definitions)

f̂(x)− f(x) =

n∑
i=0

wi(x)[f(xi)− f(x)] +

n∑
i=0

wi(x)[yi − f(xi)], (4)

E[(f̂(x)− f(x))2] = B(x) + V(x), (5)

(Bias) B(x) = EX
[( n∑

i=0

wi(x)[f(xi)− f(x)]
)2]

, (6)

(V ariance) V(x) = E
[ n∑
i=0

w2
i (x)[yi − f(xi)]

2
]

= EX
[ n∑
i=0

w2
i (x)σ2(xi)

]
. (7)

The present work derives asymptotic behaviors and bounds for the regression and classification risk
of the Hilbert estimator for large sample size n. These results are derived by analyzing the large n
behaviors of the bias and variance terms, which in turn depend on the behavior of the moments of the
weights or the Lagrange functions wi(x). For all these quantities, asymptotically equivalent forms
are derived. The proofs exploit a simple integral form of the weight function and details are provided
in the appendix, while the body of the paper provides the results and associated discussions.
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3 Results

3.1 The weights, variance and bias terms

3.1.1 Moments of the weights: large n behavior

In this section, we consider the moments and the distribution of the weights wi(x) at a given point x.
The first moment is simple to compute. Since the weights sum to 1 and Xi are i.i.d, it follows that
EX|xi [wi(x)] are all equal and thus EX|xi [wi(x)] = (n+ 1)−1. The other moments are much less
trivial to compute and we prove the following theorem in the appendix A.2:
Theorem 3.1. For x ∈ Ω◦ (so that ρ(x) > 0), we assume ρ continuous at x. Then, the moments of
the weight w0(x) satisfy the following properties:

• For β > 1:

E
[
wβ0 (x)

]
∼

n→+∞

1

(β − 1)n ln(n)
. (8)

• For 0 < β < 1: defining κβ(x) :=
∫ ρ(x+y)
||y||βd d

dy <∞, we have

E
[
wβ0 (x)

]
∼

n→+∞

κβ(x)

(Vdρ(x)n ln(n))β
. (9)

• For β < 0: all moments for β ≤ −1 are infinite, and the moments of order −1 < β < 0
satisfy

E
[
wβ0 (x)

]
≤ 1 + nκ|β|(x)κβ(x), (10)

so that a sufficient condition for its existence is κβ(x) =
∫
ρ(x+ y)||y|||β|d ddy <∞.

Heuristically, the behavior of these moments are consistent with the random variable W = w0(x)

having a probability distribution satisfying a scaling relation P (W ) = 1
Wn

p
(
W
Wn

)
, with the scaling

function p having the universal tail (i.e., independent of x and ρ), p(w) ∼
w→+∞

w−2, and a scale Wn

expected to vanish with n, when n→ +∞. With this assumption, we can determine the scale Wn by
imposing the exact condition E[W ] = 1/(n+ 1) ∼ 1/n:

E[W ] =
1

Wn

∫ 1

0

p

(
W

Wn

)
W dW = Wn

∫ 1
Wn

0

p(w)w dw (11)

∼ Wn

∫ 1
Wn

1

dw

w
∼ −Wn ln(Wn) ∼ 1

n
, (12)

leading to Wn ∼ 1
n ln(n) . Then, the moment of order β > 1 is given by

E[W β ] =
1

Wn

∫ 1

0

p

(
W

Wn

)
W β dW ∼Wn

∫ 1

0

W β−2 dW ∼
n→+∞

1

(β − 1)n ln(n)
, (13)

which indeed coincides with the first result of Theorem 3.1. Our heuristic argument also suggests
that in the case 0 < β < 1, we have

E[W ] =
1

Wn

∫ 1

0

p

(
W

Wn

)
W β dW ∼

n→+∞

∫ +∞
0

p (w)wβ dw

(n ln(n))β
, (14)

where the last integral converges since p(w) ∼
w→+∞

w−2 and β < 1. This result is perfectly consistent

with Eq. (9) in Theorem 3.1, and suggests that
∫ +∞

0
p (w)wβ dw =

κβ(x)
(Vdρ(x))β

. Interestingly, for
0 < β < 1, and contrary to the case β > 1, we find that the large n equivalent of the moment is not
universal and depends explicitly on x and the density ρ. As for moments of order −1 < β < 0, we
conjecture that they are still given by Eq. (9) (and equivalently, by Eq. (14)) provided they exist, and
that the sufficient condition for their existence κβ(x) <∞ is hence also necessary, since κβ(x) also
appears in Eq. (9). The fact that moments for β ≤ −1 do not exist strongly suggests that p(0) > 0.
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In fact, Eq. (14)) also suggests that all moments for −1 < β < 0 exist if and only if 0 < p(0) <∞.
In the Fig. 2 of the appendix, we present numerical simulations confirming our scaling ansatz, the
fact that p(w) ∼

w→+∞
w−2, and the quantitative prediction for Wn.

It is shown in Devroye et al. [18] that the Hilbert kernel regression estimate does not converge
almost surely (a.s.) by giving a specific example. Insight can be gained into this lack of almost sure
convergence by considering the weight function w0(x), for a sequence of independent training sample
sets of increasing size n+ 1. Let the corresponding sequence of weights be denoted as ωn ∈ [0, 1].
From Theorem 3.1, it is clear that ωn converges to zero in probability, since the following Chebyshev
bound holds (analogous to the bound on the regression risk):

P(ωn > ε) ≤ 1 + δ

ε2n ln(n)
, (15)

for arbitrary ε > 0 and δ > 0, and for n larger than some constant Nx,δ. Alternatively, one can
exploit the fact that E[ωn] = 1

n+1 , leading to P(ωn > ε) ≤ 1
ε n , which is less stringent than Eq. (15)

as far as the n-dependence is concerned, but is more stringent for the ε-dependence of the bounds.

Let us show heuristically that ωn does not converge a.s. to zero. Consider the infinite sequence of
events En ≡ {ωn > ε}, n ∈ N, and the corresponding infinite sum

∑
n P(En) =

∑
n P(ωn > ε).

Exploiting our previous heuristic argument for the scaling form of the distribution of weights, we
obtain

P(ωn > ε) =

∫ 1

ε

1

Wn
p

(
W

Wn

)
dW ∼

∫ n lnn

εn lnn

dw

w2
∼ 1− ε
ε n ln(n)

. (16)

Since
∑N
n=2

1
n ln(n) ∼ ln(ln(N)) is a divergent series, a Borel-Cantelli argument suggests that an

infinite number of the events En (i.e., ωn > ε) must occur, which implies that ωn does not converge
a.s. to 0. Note that the weights are equal to 1 at the data points due to the interpolation condition, so
that large weights occasionally occur, causing the lack of a.s. convergence.

3.1.2 Lagrange function: scaling limit

The expected value of the Lagrange functions wi(x) have a simple form in the large n limit. Due
to the i.i.d. condition the indices i are exchangeable and we set i = 0 for the computation of the
expected Lagrange function L0(x) = EX|x0

[w0(x)]. Thus, one of the sample points (denoted x0) is
held fixed and the other ones are averaged over in computing the expected Lagrange function. For
x0 6= x kept fixed, we have limn→∞ L0(x) = 0. However, we show in the appendix A.3 that L0(x)
takes a very simple form when taking a specific scaling limit:
Theorem 3.2. For x ∈ Ω◦, we assume ρ continuous at x. Then, in the limit (denoted by limZ ), n→
+∞, ‖x−x0‖−d → +∞ (i.e., x0 → x), and such that zx(n, x0) = Vdρ(x)‖x−x0‖dn log(n)→ Z,
the Lagrange function L0(x) = EX|x0

[w0(x)] converges to a proper limit,

lim
Z
L0(x) =

1

1 + Z
. (17)

The proof of this theorem shows that the relative error between L0(x) and 1
1+Z for finite but large n

and large ‖x− x0‖−d, such that zx(n, x0) remains close to Z, is O(1/ ln(n)).

Exploiting Theorem 3.2, we can use a simple heuristic argument to estimate the tail of the distribution
of the random variable W = w0(x). Indeed, approximating L0(x) for finite but large n by its
asymptotic form 1

1+zx(n,x0) , with zx(n, x0) = Vdρ(x)n log(n)‖x− x0‖d, we obtain∫ 1

W

P (W ′) dW ′ ∼
∫
ρ(x0) θ

(
1

1 + Vdρ(x)n log(n)‖x− x0‖d
−W

)
ddx0, (18)

∼ Vdρ(x)

∫ +∞

0

θ

(
1

1 + Vdρ(x)n log(n)u
−W

)
du, (19)

∼ 1

n ln(n)W
=⇒ P (W ) ∼ 1

n ln(n)W 2
, (20)

where θ(.) is the Heaviside function. This heuristic result is again perfectly consistent with our guess
of the previous section that P (W ) = 1

Wn
p
(
W
Wn

)
, with the scaling function p having the universal
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tail, p(w) ∼
w→+∞

w−2, and a scale Wn ∼ 1
n ln(n) . Indeed, in this case and in the limit n→ +∞, we

obtain that P (W ) ∼ 1
Wn

(
Wn

W

)2

∼ Wn

W 2 ∼ 1
n ln(n)W 2 , which is identical to the result of Eq. (20).

3.1.3 The variance term

A simple application of the result of Theorem 3.1 for β = 2 (see appendix A.4) allows us to bound
the variance term V(x) = E

[∑n
i=0 w

2
i (x)[yi − f(xi)]

2
]

for a bounded variance function σ2:

Theorem 3.3. For x ∈ Ω◦, ρ continuous at x, σ2 ≤ σ2
0 , and for any ε > 0, there exists a constant

Nx,ε such that for n ≥ Nx,ε, we have

V(x) ≤ (1 + ε)
σ2

0

ln(n)
. (21)

Relaxing the boundedness condition for σ, but assuming the continuity of σ2 at x along with a growth
condition, allows us to obtain a precise asymptotic equivalent of V(x), when n→ +∞:

Theorem 3.4. For x ∈ Ω◦, σ(x) > 0, ρσ2 continuous at x, and assuming the condition CσGrowth,
i.e.,

∫
ρ(y) σ2(y)

1+‖y‖2d d
dy <∞, we have

V(x) ∼
n→+∞

σ2(x)

ln(n)
. (22)

Note that if the mean variance
∫
ρ(y)σ2(y) ddy < ∞, which is in particular the case when σ2 is

bounded over Ω, then the condition CσGrowth is in fact automatically satisfied.

3.1.4 The bias term

In appendix A.5, we prove the following three theorems for the bias term.

Theorem 3.5. For x ∈ Ω◦ (so that ρ(x) > 0), we assume that ρ is continuous at x, and the conditions

• CfGrowth:
∫
ρ(y) f2(y)

1+‖y‖2d d
dy <∞,

• CfHolder: there exist αx > 0, Kx > 0, and δx > 0, such that
x′ ∈ Ω and ‖x− x′‖ ≤ δx =⇒ |f(x)− f(x′)| ≤ Kx ‖x− x′‖αx
(local Hölder condition for f ).

Moreover, we define κ(x) =
∫
ρ(x+ y) f(x+y)−f(x)

||y||d ddy, where we have |κ(x)| <∞.

Then, for κ(x) 6= 0, the bias term B(x) = EX
[(∑n

i=0 wi(x)[f(xi)− f(x)]
)2]

satisfies

B(x) ∼
n→+∞

(
E
[
f̂(x)

]
− f(x)

)2

, with E
[
f̂(x)

]
− f(x) ∼

n→+∞

κ(x)

Vdρ(x) ln(n)
. (23)

In the non generic case κ(x) = 0, we have the weaker result

B(x) =


O
(
n−

2αx
d (ln(n))−1− 2αx

d

)
, for d > 2αx

O
(
n−1(ln(n))−1

)
, for d = 2αx

O
(
n−1(ln(n))−2

)
, for d < 2αx

(24)

Note that κ(x) = 0 is non generic but can still happen, even if f is not constant. For instance, if Ω is a
sphere centered at x or Ω = Rd, if ρ(x+y) = ρ̂(||y||) is isotropic around x, and if fx : y 7→ f(x+y)
is an odd function of y, then we indeed have κ(x) = 0 at this symmetric point x.
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Interestingly, for κ(x) 6= 0, Eq. (23) shows that the bias B(x) is asymptotically dominated by
the square of E

[
f̂(x)

]
− f(x), showing that the fluctuations of E

[
f̂(x)

]
−
∑n
i=0 wi(x)f(xi) are

negligible compared to E
[
f̂(x)

]
− f(x), in the limit n→ +∞ and for κ(x) 6= 0.

One can relax the local Hölder condition, but at the price of a weaker estimate for B(x) which will
however be enough to obtain strong results for the regression and classification risks (see below):

Theorem 3.6. For x ∈ Ω◦, we assume ρ and f continuous at x, and the growth condition CfGrowth:∫
ρ(y) f2(y)

1+‖y‖2d d
dy <∞. Then, the bias term satisfies

B(x) = o

(
1

ln(n)

)
, (25)

or equivalently, for any ε > 0, there exists Nx,ε, such that for n ≥ Nx,ε

B(x) ≤ ε

ln(n)
. (26)

Let us now consider a point x ∈ ∂Ω for which we have ρ(x) = 0 (note that x ∈ ∂Ω does not
necessarily imply ρ(x) = 0). In appendix A.5, we show the following theorem for the expectation
value of the estimator f̂(x) in the limit n→ +∞:

Theorem 3.7. For x ∈ ∂Ω such that ρ(x) = 0, we assume that f and ρ satisfy the conditions

• CfGrowth:
∫
ρ(y) |f(y)|

1+‖y‖d d
dy <∞,

• CρHolder: there exist αx > 0, Kx > 0, and δx > 0, such that
x′ ∈ Ω and ‖x− x′‖ ≤ δx =⇒ |ρ(x′)| ≤ Kx ‖x− x′‖αx
(local Hölder condition for ρ).

Moreover, we define κ(x) =
∫
ρ(x + y) f(x+y)−f(x)

||y||d ddy (|κ(x)| < ∞ under condition CfGrowth),

and λ(x) =
∫ ρ(x+y)
||y||d ddy (0 < λ(x) <∞ under condition CσHolder). Then,

lim
n→+∞

E[f̂(x)]− f(x) =
κ(x)

λ(x)
. (27)

Hence, in the generic case κ(x) 6= 0 (see Theorem 3.5 and the discussion below it) and under
condition CρHolder, we find that the bias does not vanish when ρ(x) = 0, and that the estimator f̂(x)
does not converge to f(x). When ρ(x) = 0, the scarcity of data near the point x indeed prevents the
estimator to converge to the actual value of f(x). In appendix A.5, we show an example of a density
ρ continuous at x and such that ρ(x) = 0, but not satisfying the condition CρHolder, and for which
limn→+∞ E[f̂(x)] = f(x), even if κ(x) 6= 0.

3.2 Asymptotic equivalent for the regression risk

In appendix A.6, we prove the following theorem establishing the asymptotic rate at which the excess
risk goes to zero with large sample size n for Hilbert kernel regression, under mild conditions that do
not require f or σ to be bounded, but only to satisfy some growth conditions:

Theorem 3.8. For x ∈ Ω◦, we assume σ(x) > 0, ρ, σ, and f continuous at x, and the growth
conditions CσGrowth:

∫
ρ(y) σ2(y)

1+‖y‖2d d
dy <∞ and CfGrowth:

∫
ρ(y) f2(y)

1+‖y‖2d d
dy <∞.

Then the following statements are true:

• The excess regression risk at the point x satisfies

E[(f̂(x)− f(x))2] ∼
n→+∞

σ2(x)

ln(n)
. (28)
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• The Hilbert kernel estimate converges pointwise to the regression function in probability.
More specifically, for any δ > 0, there exists a constant Nx,δ, such that for any ε > 0, we
have the following Chebyshev bound, valid for n ≥ Nx,δ

P[|f̂(x)− f(x)| ≥ ε] ≤ 1 + δ

ε2

σ2(x)

ln(n)
. (29)

This theorem is a consequence of the corresponding asymptotically equivalent forms of the variance
and bias terms presented above. Note that as long as ρ(x) > 0, the variance term dominates over the
bias term and the regression risk has the same form as the variance term.

3.3 Rates for the plugin classifier

In appendix A.7, we prove the following theorem establishing the asymptotic rate at which the
classification risk goes to zero with large sample size n for Hilbert kernel regression:
Theorem 3.9. For x ∈ Ω◦, we assume σ(x) > 0, ρ, σ, and f continuous at x. Then, the classification
risk E[R0/1(F̂ (x))]−R0/1(F (x)) vanishes for n→ +∞.

More precisely, for any ε > 0, there exists Nx,ε, such that for any n ≥ Nx,ε,

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2(1 + ε)
σ(x)√
ln(n)

, (30)

In addition, for any 0 < α < 1, the general inequality

E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|2

]α
2

, (31)

holds unconditionally and, for n ≥ Nx,ε, leads to

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α (1 + ε)α
σα(x)

(ln(n))
α
2
. (32)

For 0 < α < 1, Eq. (32) is weaker than Eq. (30) in terms of its dependence on n, but explicitly
shows that the classification risk vanishes for f(x) = 1/2. This theorem does not require any growth
condition for f or σ, since both functions takes values in [0, 1] in the classification context.

3.4 Extrapolation behavior outside the support of ρ

We now take the point x outside the closed support Ω̄ of the distribution ρ (which excludes the case
Ω = Rd). We are interested in the behavior of E

[
f̂(x)

]
as n→ +∞. In appendix A.8 we prove:

Theorem 3.10. For x /∈ Ω̄, we assume the growth condition
∫
ρ(y) |f(y)|

1+‖y‖d d
dy <∞. Then,

f̂∞(x) := lim
n→+∞

E
[
f̂(x)

]
=

∫
ρ(y)f(y)‖x− y‖−d ddy∫
ρ(y)‖x− y‖−d ddy

, (33)

and f̂∞ is continuous at all x /∈ Ω̄.

In addition, if
∫
ρ(y)|f(y)| ddy <∞, and defining d(x,Ω) > 0 as the distance between x and Ω, we

have
lim

d(x,Ω)→+∞
f̂∞(x) =

∫
ρ(y)f(y) ddy. (34)

Finally, we consider x0 ∈ ∂Ω such that ρ(x0) > 0 (i.e., x0 ∈ ∂Ω ∩ Ω), and assume
that f and ρ seen as functions restricted to Ω are continuous at x0, i.e. limy∈Ω→x0

ρ(y) =
ρ(x0) and limy∈Ω→x0

f(y) = f(x0). We also assume that the local solid angle ω0 =
limr→0

1
Vdρ(x0)rd

∫
‖x0−y‖≤r ρ(y) ddy exists and satisfies ω0 > 0. Then,

lim
x/∈Ω̄→x0

f̂∞(x) = f(x0). (35)

Eq. (34) shows that far away from Ω (which is possible to realize, for instance, when Ω is bounded),
f̂∞(x) goes smoothly to the ρ-mean of f . Moreover, Eq. (35) establishes a continuity property for
the extrapolation f̂∞ at x0 ∈ ∂Ω ∩ Ω under the stated conditions (remember that for x ∈ Ω◦, we
have limn→+∞ E

[
f̂(x)

]
= f(x); see Theorem 3.5, and in particular Eq. (23)).
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A Proofs

A.1 Preliminaries

In the following, x ∈ Ω◦ so that ρ(x) > 0, and we will assume for simplicity that the distribution ρ
is continuous at x.

For the proof of our results, we will often exploit the following integral relation, valid for β > 0,

1

Γ(β)

∫ +∞

0

tβ−1e−t z dt = z−β . (36)

In addition, we define

ψ(x, t) :=

∫
ρ(x+ y)e

− t

||y||d ddy, (37)

which will play a central role. We note that ψ(x, 0) = 1, and that t 7→ ψ(x, t) is a continuous and
strictly decreasing function of t. It is even infinitely differentiable at any t > 0, but not necessarily at
t = 0. In fact, for a fixed x, controlling the behavior of 1− ψ(x, t) when t→ 0 will be essential to
obtain our results.

We show in Fig. 1 an example of the Hilbert kernel regression estimator in one dimension. Both
the bias and the variance of the estimator can be visually seen, as well as the extrapolation behavior
outside the data domain. Note that in higher dimensions, the sharp peaks would have rounded tops.

A.2 Moments of the weights: large n behavior

In this section, we provide a complete proof of Theorem 3.1. Several other theorems will use the very
same method of proof and some basic steps will not be repeated in their proof.

Using Eq. (36) for β > 0, we can express powers of the weight function as

wβ0 (x) =
1

||x− x0||βd
1

Γ(β)

∫ +∞

0

tβ−1e−t ||x−x0||−d−t
∑n
i=1 ||x−xi||

−d
dt. (38)

By taking the expected value over the n+ 1 independent random variables Xi, we obtain

E
[
wβ0 (x)

]
=

1

Γ(β)

∫ +∞

0

tβ−1ψn(x, t)φβ(x, t) dt, (39)

with

φβ(x, t) :=

∫
ρ(x+ y)

e
− t

||y||d

||y||βd
ddy, (40)

which is also a strictly decreasing function of t, continuous at any t > 0 (in fact, infinitely differen-
tiable for t > 0).

Note that the exchange of the integral over t and over ~x = (x0, x1, ..., xn) used to obtain Eq. (39)
is justified by the Fubini theorem, by first noting that the function ~x 7→ wβ0 (x)

∏n
i=0 ρ(xi) is in

L1(Rd), since 0 ≤ wβ0 (x) ≤ 1, and since ρ is obviously in L1(Rd). Moreover, the function
t 7→ tβ−1ψn(x, t)φβ(x, t) > 0 is also in L1(R). Indeed, we will show below that it decays fast
enough when t→ +∞ (see Eqs. (42-50)), ensuring the convergence of its integral at +∞, and that it
is bounded (and continuous) near t = 0 (see Eqs. (63-68)), ensuring that this function is integrable at
t = 0.

For β = 1, φ1 = −∂tψ, and we obtain E
[
w0(x)

]
= 1

n+1 , as expected. In the following, we first
focus on the case β > 1, before addressing the cases 0 < β < 1 and β < 0 at the very end of this
section.
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Figure 1: An example is shown of the Hilbert kernel regression estimator in one dimension, both
within and outside the input data domain. A total of 50 samples xi were chosen uniformly distributed
in the interval [0.25 0.75] and yi = sin(2πxi) + ni with the noise ni chosen i.i.d. Gaussian
distributed ∼ N(0, 0.1). The sample points are circled, and the function sin(2πx) is shown with a
dashed line within the data domain. The solid line is the Hilbert kernel regression estimator. Note the
interpolation behavior within the data domain and the extrapolation behavior outside the data domain.

We now introduce t1 and t2 (to be further constrained later) such that 0 < t1 < t2. We then express
the integral of Eq. (39) as the sum of corresponding integrals I1 + I12 + I2. I1 is the integral between
0 and t1, I12 the integral between t1 and t2, and I2 the integral between t2 and +∞. Thus, we have

I1 ≤ E
[
wβ0 (x)

]
≤ I1 + I12 + I2, (41)

provided these integral exists, which we will show below, by providing upper bounds for I2 and I12,
and tight lower and upper bound for the leading term I1.

Bound for I2

11



For any R ≥ 1, we can write the integral defining ψ(x, t)

ψ(x, t) =

∫
||y||≤R

+

∫
||y||≥R

(42)

≤ e−
t

Rd +

∫
||y||≥R

ρ(x+ y)
||y||2

R2
ddy, (43)

≤ e−
t

Rd +
Cx
R2

, (44)

with Cx = σ2
ρ+ ||x−µρ||2 depending on the mean µρ and variance σ2

ρ of the distribution ρ. Similarly,
for φβ(x, t), we obtain the bound

φβ(x, t) ≤ 1

Rβd
e−

t

Rd +
Cx

R2+βd
, (45)

valid for t ≥ max(1, β) and R ≤ rt, where rt = (t/β)1/d ≥ 1 is the location of the maximum of

the function r 7→ e
− t
rd

rβd
.

We now set R = t
s
d , with 0 < s < 1, and take T ′2 ≥ max(1, β, β1/(1−s)) (so that 1 ≤ R ≤ rt) is

large enough such that the following conditions are satisfied for t ≥ t2 ≥ T ′2,

e−
t

Rd = e−t
1−s

≤ Cx

t
2s
d

, (46)

1

Rβd
e−

t

Rd =
1

tβs
e−t

1−s
≤ Cx

t
2s
d +2βs

. (47)

Hence, for t ≥ t2 ≥ T ′2, we obtain

ψ(x, t) ≤ 2Cx

t
2s
d

, (48)

φβ(x, t) ≤ 2Cx

t
2s
d +2βs

. (49)

In addition, we also impose t2 ≥ T ′′2 = (4Cx)d/(2s), so that 2Cx

t
2s
d
≤ 1

2 , for any t ≥ T2 =

max(T ′2, T
′′
2 ). Finally, exploiting the resulting bounds for ψ(x, t) and φβ(x, t) for s = 1/2, we

obtain the convergence of I2 (which, along with the bounds for I1 and I12 below, justifies our use of
Fubini theorem to obtain Eq. (39)) and the exact bound

I2 =
1

Γ(β)

∫ +∞

t2

tβ−1ψn(x, t)φβ(x, t) dt ≤ d

Γ(β)
× 1

2n+1(n+ 1)
, (50)

for any given t2 ≥ T2.

Bound for I12

Again, exploiting the fact that ψ(x, t) and φβ(x, t) are strictly decreasing functions of t, we obtain

I12 ≤
φβ(x, t1)tβ2

Γ(β)
× ψn(x, t1), (51)

where we note that ψ(x, t1) < 1, for any t1 > 0.

Bound for I1

We first want to obtain bounds for 1 − ψ(x, t), where 0 ≤ t ≤ t1, with t1 > 0 to be constrained
below. In addition, exploiting the continuity of ρ at x and the fact that ρ(x) > 0, we introduce
ε satisfying 0 < ε < 1/4, and define λ > 0 small enough so that the ball B(x, δ) ⊂ Ω◦, and
||y|| ≤ λ =⇒ |ρ(x+ y)− ρ(x)| ≤ ερ(x). Exploiting this definition, we obtain the following lower

12



and upper bounds

1− ψ(x, t) ≥ (1− ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy, (52)

1− ψ(x, t) ≤ (1 + ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy (53)

+

∫
||y||≥λ

ρ(x+ y)
(

1− e−
t

λd

)
ddy, (54)

≤ (1 + ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy +

t

λd
. (55)

The integral appearing in these bounds can be simplified by using radial coordinates:∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy, = Sd

∫ λ

0

(
1− e−

t

rd

)
rd−1 dr, (56)

= Vdt

∫ +∞

t

λd

1− e−u

u2
du, (57)

where Sd and Vd = Sd
d are respectively the surface and the volume of the d-dimensional unit sphere

and we have used the change of variable u = t
rd

.

We note that for 0 < z ≤ 1, we have∫ +∞

z

1− e−u

u2
du = − ln(z) +

∫ 1

z

1− u− e−u

u2
du+

∫ +∞

1

1− e−u

u2
du. (58)

Exploiting this result and now imposing t1 ≤ λd, we have, for any t ≤ t1

ln

(
C−
t

)
≤

∫ +∞

t

λd

1− e−u

u2
du ≤ ln

(
C+

t

)
, (59)

ln(C−) = d ln(λ) +

∫ +∞

1

1− e−u

u2
du, (60)

ln(C+) = ln(C−) +

∫ 1

0

1− u− e−u

u2
du. (61)

Combining these bounds with Eq. (52) and Eq. (55), we have shown the existence of two x-dependent
constants D± such that, for 0 ≤ t ≤ t1 ≤ λd, we have

(1− ε)Vdρ(x) t ln

(
D−
t

)
≤ 1− ψ(x, t) ≤ (1 + ε)Vdρ(x) t ln

(
D+

t

)
. (62)

In addition, we will also chose t1 < D±/3, such that the two functions t ln
(
D±
t

)
are positive and

strictly increasing for 0 ≤ t ≤ t1. t1 is also taken small enough such that the two bounds in Eq. (62)
are always less than 1/2, for 0 ≤ t ≤ t1 (both bounds vanish when t→ 0).

We now obtain efficient bounds for φβ(x, t), for 0 ≤ t ≤ t1. Proceeding in a similar manner as
above, we obtain

φβ(x, t) ≥ (1− ε)ρ(x)

∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy, (63)

φβ(x, t) ≤ (1 + ε)ρ(x)

∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy +

1

λβd
. (64)

Again, the integral appearing in these bounds can be rewritten as∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy = Sd

∫ λ

0

rd(1−β)−1e−
t

rd dr. (65)
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For 0 < β < 1, the integral of Eq. (65) is finite for t = 0, ensuring the existence of φβ(x, 0) and the
fact that t 7→ tβ−1ψ(x, t)φβ(x, t) belongs to L1(R) (hence, justifying our use of Fubini theorem for
0 < β < 1). For β > 1, we have∫

||y||≤λ

e
− t

||y||d

||y||βd
= Vd t

1−β
∫ +∞

t

λd

uβ−2e−u du. (66)

∼t→0 VdΓ(β − 1)t1−β . (67)

This integral diverges when t → 0 and the constant term λ−βd in Eq. (64) can be made as small
as necessary (by a factor less than ε) compared to this leading integral term, for a small enough t1.
Similarly, we can choose t1 small enough so that the integral Eq. (65) is approached by the asymptotic
result of Eq. (67) up to a factor ε. Thus, we find that for 0 ≤ t ≤ t1, one has

(1− 2ε)Vdρ(x)Γ(β − 1)t1−β ≤ φβ(x, t) ≤ (1 + 3ε)Vdρ(x)Γ(β − 1)t1−β . (68)

This shows that tβ−1φβ(x, t) has a smooth limit when t→ 0 so that, combined with the finite upper
bound for I2, t 7→ tβ−1ψ(x, t)φβ(x, t) belongs to L1(R), for β > 1, and hence for all β > 0. Hence,
the use of the Fubini theorem to derive Eq. (39) has been justified.

Now combining the bounds for ψ(x, t) and φβ(x, t), we obtain

I1 ≥ (1− 2ε)
1

β − 1
Vdρ(x)

∫ t1

0

(
1− (1 + ε)Vdρ(x) t ln

(
D+

t

))n
dt, (69)

I1 ≤ (1 + 3ε)
1

β − 1
Vdρ(x)

∫ t1

0

(
1− (1− ε)Vdρ(x) t ln

(
D−
t

))n
dt. (70)

Asymptotic behavior of I1 and E
[
wβ0 (x)

]
We will show below that∫ t1

0

(
1− E±t ln

(
D±
t

))n
dt ∼

n→+∞

1

E±n ln(n)
, (71)

where E± = (1∓ ε)Vdρ(x). For a given x, and for t1 and t2 satisfying the requirements mentioned
above, the upper bounds for I12 (see Eq. (51)) and I2 (see Eq. (50)) appearing in Eq. (41) both
decay exponentially with n and can hence be made arbitrarily small compared to I1 which decays as
1/(n ln(n)).

Finally, assuming for now the result of Eq. (71) (to be proven below), we have obtained the exact
asymptotic result

E
[
wβ0 (x)

]
∼

n→+∞

1

(β − 1)n ln(n)
. (72)

Proof of Eq. (71)

We are then left to prove the result of Eq. (71). First, we will use the fact that, for 0 ≤ z ≤ z1 < 1,
one has

e−µz ≤ 1− z ≤ e−z, (73)
where µ = − ln(1 − z1)/z1. We can apply this result to the integral of Eq. (71), using z±1 =
E±t1 ln(D±/t1) > 0. Note that 0 < t1 < D±/3 and hence z±1 > 0 can be made as close to 0 as
desired, and the corresponding µ± > 1 can be made as close to 1 as desired. Thus, in order to prove
Eq. (71), we need to prove the following equivalent

In =

∫ t1

0

e−nEt ln(Dt ) dt ∼
n→+∞

1

En ln(n)
, (74)

for an integral of the form appearing in Eq. (74). Let us mention again that t1 has been taken small
enough, so that the function t 7→ t ln

(
D
t

)
is positive and strictly increasing (with its maximum at

tmax = D/e < t1), for 0 ≤ t ≤ t1.
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We now take n large enough so that ln(n)
n < t1 and E ln(n) > 1. One can then write

In =
1

n

∫ ln(n)

0

e−Eu ln(Dnu ) du+

∫ t1

ln(n)
n

e−nEt ln(Dt ) dt = Jn +Kn, (75)

Jn ≤ 1

n

∫ 1/E

0

e−Eu ln(DEn) du+
1

n

∫ ln(n)

1/E

e
−Eu ln

(
Dn

ln(n)

)
du, (76)

≤ 1

E n ln (DEn)
+

ln(n)

DE n2 ln
(
Dn

ln(n)

) , (77)

Kn ≤
∫ +∞

ln(n)
n

e
−nEt ln

(
D
t1

)
dt ≤ 1

E n
1+E ln

(
D
t1

)
ln
(
D
t1

) . (78)

When n→ +∞, we hence find that the upper bound I+
n of In satisfies

I+
n ∼
n→+∞

1

E n ln (DEn)
∼

n→+∞

1

E n ln (n)
. (79)

Let us now prove a similar result for a lower bound of In by considering n large enough so that
nEt1 > 1, and by introducing δ satisfying 0 ≤ δ < 1/e:

In =
1

nE

∫ nEt1

0

e−u ln(DEn)+u ln(u) du, (80)

≥ 1

nE

∫ δ

0

e−u ln(DEn)+δ ln(δ) du, (81)

≥ eδ ln(δ)

nE ln (DEn)

(
1− (DEn)

−δ
)

= I−n (δ). (82)

Hence, for any 0 ≤ δ < 1/e which can be made arbitrarily small, and for n large enough, we find
that In ≥ I−n (δ), with

I−n (δ) ∼ eδ ln(δ)

E n ln (DEn)
∼ eδ ln(δ)

E n ln (n)
. (83)

Eq. (83) combined with the corresponding result of Eq. (79) for the upper bound I+
n finally proves

Eq. (74), and ultimately, Eq. (72) and Theorem 3.1 for the asymptotic behavior of the moment
E
[
wβ0 (x)

]
, for β > 1.

Moments of order 0 < β < 1

The integral representation Eq. (36) allows us to also explore moments of order 0 < β < 1. In that
case κβ(x) = φβ(x, 0) <∞ is finite, with

κβ(x) =

∫
ρ(x+ y)

||y||βd
ddy. (84)

By retracing the different steps of our proof in the case β > 1, it is straightforward to show that

E
[
wβ0 (x)

]
∼

n→+∞

κβ(x)

Γ(β)

∫ t1

0

tβ−1e
−nVdρ(x)t ln

(
D±
t

)
dt, (85)

∼
n→+∞

κβ(x)

(Vdρ(x)n ln(n))β
, (86)

where the equivalent for the integral can be obtained by exploiting the very same method used in our
proof of Eq. (71) above, hence proving the second part of Theorem 3.1.

We observe that contrary to the universal result of Eq. (72) for β, the asymptotic equivalent for the
moment of order 0 < β < 1 is non universal and explicitly depends on x and the distribution ρ.
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Moments of order β < 0

Finally, moments of order β < 0 are unfortunately inaccessible to our methods relying on the integral
relation Eq. (36), which imposes β > 0. We can however obtain a few rigorous results for these
moments (see also the heuristic discussion just after Theorem 3.1).

Indeed, for β = −1, we have

1

w0(x)
= 1 + ‖x− x0‖d

n∑
i=1

1

‖x− xi‖d
. (87)

But since we have assumed that ρ(x) > 0, E[‖x− xi‖−d] =
∫ ρ(x+y)
||y||d ddy is infinite and moments

of order β < −1 are definitely not defined.

As for the moment of order −1 < β < 0, it can be easily bounded,

E
[
wβ0 (x)

]
≤ 1 + n

∫
ρ(x+ y)||y|||β|d ddy

∫
ρ(x+ y)

||y|||β|d
ddy, (88)

and a sufficient condition for its existence is κβ(x) =
∫
ρ(x+ y)||y|||β|d ddy <∞ (the other integral,

equal to κ|β|(x), is always finite for |β| < 1), which proves the last part of Theorem 3.1.

Numerical distribution of the weights

In the main text below Theorem 3.1, we presented an heuristic argument showing that the results of
Theorem 3.1 and Theorem 3.2 (for the Lagrange function; that we prove below) were fully consistent
with the weight W = w0(x) having a long-tailed scaling distribution,

Pn(W ) =
1

Wn
p

(
W

Wn

)
. (89)

The scaling function p was shown to have a universal tail p(w) ∼ w−2 and the scale Wn was
shown to obey the equation −Wn ln(Wn) = n−1. To the leading order for large n, we have
Wn ∼ 1

n ln(n) , and we can solve this equation recursively to find the next order approximation,
Wn ∼ 1

n ln(n ln(n)) . In Fig .2, we present numerical simulations for the scaling distribution p of the
variable w = W/Wn, for n = 65536, using the estimate Wn ≈ 1

n ln(n ln(n)) . We observe that p(w)

is very well approximated by the function p̂(w) = 1
(1+w)2 , confirming our non rigorous results. The

data were generated by drawing random values of rdi = ||x − xi||d using (n + 1) i.i.d. random
variables ai uniformly distributed in [0, 1[, with the relation ri = [ai/(1− ai)]1/d, and by computing
the resulting weight W = r−di /

∑n
j=0 r

−d
j . This corresponds to a distribution of ||x− xi|| given by

ρ(x− xi) = 1/Vd/(1 + ||x− xi||d)2.

A.3 Lagrange function: scaling limit

In this section, we prove Theorem 3.2 for the scaling limit of the Lagrange function L0(x) =
EX|x0

[w0(x)]. Exploiting again Eq. (36), the expected Lagrange function can be written as

L0(x) = ‖x− x0‖−d
∫ +∞

0

ψn(x, t)e−t‖x−x0‖−d dt, (90)

where ψ(x, t) is again given by Eq. (37).

For a given t1 > 0, and remembering that ψ(x, t) is a strictly decreasing function of t, with
ψ(x, 0) = 1, we obtain

L1 ≤ L0(x) ≤ L1 + L2, (91)
with

L1 = ‖x− x0‖−d
∫ t1

0

ψn(x, t)e−t‖x−x0‖−d dt, (92)

L2 = e−t1‖x−x0‖−d . (93)
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Figure 2: We plot the results of numerical simulations for the distribution p of the scaling variable
w = W

Wn
, with Wn ≈ 1

n ln(n ln(n)) , and for n = 65536 (black line). This is compared to p̂(w) =
1

(1+w)2 (red line), which has the predicted universal tail p(w) ∼ w−2 for large w.

For ε > 0 and a sufficiently small t1 > 0 (see section A.2), we can use the bound for ψ(x, t) obtained
in section A.2, to obtain

L1 ≥ (1− 2ε)
1

‖x− x0‖d

∫ t1

0

(
1− (1 + ε)Vdρ(x) t ln

(
D+

t

))n
e
− t

‖x−x0‖d dt, (94)

L1 ≤ (1 + 3ε)
1

‖x− x0‖d

∫ t1

0

(
1− (1− ε)Vdρ(x) t ln

(
D−
t

))n
e
− t

‖x−x0‖d dt. (95)

Then, proceeding exactly as in section A.2, it is straightforward to show that L1 can be bounded (up
to factors 1 +O(ε)) by the two integrals L±1

L±1 =
1

‖x− x0‖d

∫ t1

0

e
−nVdρ(x) t ln

(
D±
t

)
− t

‖x−x0‖d dt. (96)

Like in section A.2, we impose t1 < D±/3, such that the two functions t ln
(
D±
t

)
are positive and

strictly increasing for 0 ≤ t ≤ t1.

We now introduce the scaling variable z(n, x0) = Vdρ(x)‖x− x0‖dn log(n), so that

L±1 =
1

‖x− x0‖d

∫ t1

0

e
− t

‖x−x0‖d

1+z
ln(D±/t)

ln(n)


dt =

∫ t1
‖x−x0‖d

0

e
−u

1+z
ln(D±‖x−x0‖−d/u)

ln(n)


du,

(97)
where we have used the shorthand notation z = z(n, x0).

For a given real Z ≥ 0, we now want to study the limit of L0(x) when n→∞, ‖x− x0‖−d → +∞
(i.e., x0 → x), and such that z(n, x0) → Z, which we will simply denote limZ L0(x). We note
that limZ L2 = 0 (see Eq. (91) and Eq. (93)), so that we are left to show that limZ L

±
1 = 1

1+Z =

limZ L0(x), which will prove Theorem 3.2.
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Exploiting the fact that u ln(u) > −1/e, for u > 0, we obtain

L±1 ≥ e−
z

e ln(n)

∫ t1
‖x−x0‖d

0

e
−u

1+z
ln(D±‖x−x0‖−d)

ln(n)


du, (98)

≥ 1

1 + z
e−

z
e ln(n)

(
1− e

− t1
‖x−x0‖d )

)
, (99)

which shows that L±1 is bounded from below by a term for which the limZ is 1
1+Z .

Anticipating that we will take the limZ and hence the limit x0 → x, we can freely assume that
‖x− x0‖ < 1 and K = t1

‖x−x0‖d/2
> 1, so that we also have K < t1

‖x−x0‖d . We then obtain

L±1 ≤
∫ K

0

e
−u

1+z
ln(D±‖x−x0‖−d/u)

ln(n)


du+

∫ +∞

K

e−u du, (100)

≤
∫ 1

0

e
−u

1+z
ln(D±‖x−x0‖−d)

ln(n)


du+

∫ K

1

e
−u

1+z
ln(D±‖x−x0‖−d/K)

ln(n)


du+ e−K ,(101)

≤ 1− e−1−z
ln(D±‖x−x0‖−d)

ln(n)

1 + z
ln(D±‖x−x0‖−d)

ln(n)

+
e−1−z

ln(D±‖x−x0‖−d/K)
ln(n)

1 + z
ln(D±‖x−x0‖−d/K)

ln(n)

+ e−K . (102)

For Z > 0, limZ
ln(‖x−x0‖−d)

ln(n) = limZ

ln
(
‖x−x0‖−d/2

)
ln(n) = 1, and the limZ of the upper bound in

Eq. (102) is also 1
1+Z . For Z = 0, we have limZ z

ln(‖x−x0‖−d)
ln(n) = limZ z

ln
(
‖x−x0‖−d/2

)
ln(n) = 0, so

that the limZ of the upper bound in Eq. (102) is 1. Finally, since limZ L2 = 0, we have shown
that for any real Z ≥ 0, limZ L

±
1 = limZ L0(x) = 1

1+Z , which proves Theorem 3.2. Note that the
two bounds obtained suggest that the relative error between L0(x) and 1

1+Z for finite large n and
large ‖x− x0‖−d with z(n, x0) remaining close to Z is of order 1/ ln(n), or equivalently, of order
1/ ln(‖x− x0‖).

Numerical simulations for the Lagrange function at finite n

A.4 The variance term

We define the variance term V(x) as

V(x) = E
[ n∑
i=0

w2
i (x)[yi−f(xi)]

2
]

= EX
[ n∑
i=0

w2
i (x)σ2(xi)

]
= (n+1)E

[
w2

0(x)σ2(x0)
]
. (103)

If we first assume that σ2(x) is bounded by σ2
0 , we can readily bound V(x) using Theorem 3.1 with

β = 2:
V(x) ≤ (n+ 1)σ2

0 E
[
w2

0(x)
]
. (104)

Hence, for any ε > 0, there exists a constant Nx,ε, such that for n ≥ Nx,ε, we obtain Theorem 3.3

V(x) ≤ (1 + ε)
σ2

0

ln(n)
. (105)

However, one can obtain an exact asymptotic equivalent for V(x) by assuming that σ2 is continuous
at x (with σ2(x) > 0), while relaxing the boundedness condition. Indeed, we now assume the growth
condition CσGrowth ∫

ρ(y)
σ2(y)

1 + ‖y‖2d
ddy <∞. (106)

Note that this condition can be satisfied even in the case where the mean variance
∫
ρ(y)σ2(y) ddy is

infinite.
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Figure 3: A numerical simulation is shown of the expected value of the Lagrange function of the
Hilbert kernel regression estimator in one dimension for a uniform distribution like in Fig. 1. A total
of n = 400 samples xi were chosen uniformly distributed in the interval [0, 1] for 100 repeats and
the Lagrange function evaluated at x0 = 0.5 was averaged across these 100 repeats (blue curve). The
black curve shows the asymptotic form (1 + Z)−1 with Z = 2|x− x0|/Wn. Since n = 400 is not
too large, we used the implicit form for the scale Wn given by Wn ln(1/Wn) = 1/n (see main text
below Theorem 3.1) leading to W−1

n = 3232.39 (compare with 400 ln(400) = 2396.59).

Proceeding along the very same line as the proof of Theorem 3.1 in section A.2, we can write

E
[
w2

0(x)σ2(x0)
]

=

∫ +∞

0

tψn(x, t)φ(x, t) dt, (107)

with

φ(x, t) :=

∫
ρ(x+ y)σ2(x+ y)

e
− t

||y||d

||y||2d
ddy, (108)

which as a similar form as Eq. (40), with β = 2. The condition of Eq. (106) ensures that the integral
defining φ(x, t) converges for all t > 0.
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The continuity of σ2 at x (and hence of ρσ2) and the fact the ρ(x)σ2(x) > 0 implies the existence
a small enough λ > 0 such that the ball B(x, λ) ⊂ Ω◦ and ||y|| ≤ λ =⇒ |ρ(x + y)σ2(x + y) −
ρ(x)σ2(x)| ≤ ερ(x)σ2(x), a property exploited for ρ in the proof of Theorem 3.1 (see Eq. (52) and
the paragraph above it), and which can now be used to efficiently bound φ(x, t). In addition, using
the method of proof of Theorem 3.1 (see Eq. (64)) also requires that

∫
||y||≥λ ρ(y) σ

2(y)
‖y‖2d d

dy < ∞,
which is ensured by the condition CσGrowth of Eq. (106). Apart from these details, one can proceed
strictly along the proof and Theorem 3.1, leading to the proof of Theorem 3.4:

V(x) ∼
n→+∞

σ2(x)

ln(n)
. (109)

Note that if σ2(x) = 0, one can straightforwardly show that for any ε > 0, and for n large enough,
one has

V(x) ≤ ε

ln(n)
, (110)

while a more optimal estimate can be easily obtained if one specifies how σ2 vanishes at x.

A.5 The bias term

This section aims at proving Theorem 3.5, 3.6, and 3.7.

Assumptions

We first impose the following growth condition CfGrowth for f(x) := E[Y | X = x]:∫
ρ(y)

f2(y)

(1 + ||y||d)2
ddy <∞, (111)

which is obviously satisfied if f is bounded. Since ρ is assumed to have a second moment, condition
CfGrowth is also satisfied for any function satisfying |f(x)| ≤ Af ||y||d+1 for all y, such that ||y|| ≥
Rf , for some Rf > 0. Using the Cauchy-Schwartz inequality, we find that the condition CfGrowth
also implies that ∫

ρ(y)
|f(y)|

1 + ||y||d
ddy <∞. (112)

In addition, for any x ∈ Ω◦ (so that ρ(x) > 0), we assume that there exists a neighborhood of x such
that f satisfies a local Hölder condition. In other words, there exist δx > 0, Kx > 0, and αx > 0,
such that the ball B(0, δx) ⊂ Ω, and

||y|| ≤ δx =⇒ |f(x+ y)− f(x)| ≤ Kx||y||αx , (113)

which defines condition CfHolder.

Definition of the bias term and preparatory results

We define the bias term B(x) as

B(x) = EX
[( n∑

i=0

wi(x)[f(xi)− f(x)]
)2]

= (n+ 1)B1(x) + n(n+ 1)B2(x), (114)

B1(x) =
1

n+ 1
EX
[ n∑
i=0

w2
i (x)[f(xi)− f(x)]2

]
, (115)

= EX
[
w2

0(x)[f(x0)− f(x)]2
]
, (116)

B2(x) =
1

n(n+ 1)
EX
[ ∑

0≤i<j≤n

wi(x)wj(x)[f(xi)− f(x)][f(xi)− f(x)]
]
, (117)

= EX
[
w0(x)w1(x)[f(x0)− f(x)][f(x1)− f(x)]

]
. (118)
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Exploiting again Eq. (36) for β = 2 like we did in section A.2, we obtain

B1(x) =

∫ +∞

0

t ψn(x, t)χ1(x, t) dt, (119)

where ψ(x, t) is again the function defined in Eq. (37), and where

χ1(x, t) :=

∫
ρ(x+ y)e

− t

||y||d
(f(x+ y)− f(x))2

||y||2d
ddy. (120)

For any t > 0, and under condition CfGrowth, the integral defining χ1(x, t) is well defined. Moreover,
χ1(x, t) is a strictly positive and strictly decreasing function of t > 0.

Now, defining ui = ||x− xi||−d, i = 0, ..., n and exploiting again Eq. (36) for β = 2, we can write

w0(x)w1(x) = u0u1

∫ ∞
0

t e−(u0+u1)t−(
∑n
i=2 ui)t dt (121)

Now taking the expectation value over the n+ 1 independent variables, we obtain

B2(x) =

∫ +∞

0

t ψn−1(x, t)χ2
2(x, t) dt, (122)

where

χ2(x, t) :=

∫
ρ(x+ y)e

− t

||y||d
f(x+ y)− f(x)

||y||d
ddy. (123)

Again, for any t > 0, and under condition CfGrowth, the integral defining χ2(x, t) is well de-
fined. Note that, the integral defining χ2(x, 0) is well behaved at y = 0 under condition CfHolder.
Indeed, for ||y|| ≤ δx, we have |f(x+y)−f(x)|

||y||d ≤ Kx||y||−d+αx , which is integrable at y = 0

in dimension d. Note that, if f(x + y) − f(x) were only decaying as const./ ln(||y||), then
|χ2(x, t)| ∼ const. ln(| ln(t)|) → +∞, when t → 0, and χ2(x, 0) would not exist (see the end of
this section where we relax the local Hölder condition).

From now, we denote

κ(x) := χ2(x, 0) =

∫
ρ(x+ y)

f(x+ y)− f(x)

||y||d
ddy. (124)

Also note that κ(x) = 0 is possible even if f is not constant. For instance, if Ω is a sphere centered
at x or Ω = Rd, if ρ(x + y) = ρ̂(||y||) is isotropic around x and, if fx : y 7→ f(x + y) is an odd
function of y, then we indeed have κ(x) = 0 at the symmetry point x.

Upper bound for B1(x)

For ε > 0, we define λ like in section A.2 and define η = min(λ, δx), so that

χ1(x, t) ≤ (1 + ε)Kxρ(x)

∫
||y||≤η

e
− t

||y||d ||y||2(αx−d) ddy + Λx, (125)

Λx =

∫
||y||≥η

ρ(x+ y)
(f(x+ y)− f(x))2

||y||2d
ddy, (126)

where the constant Λx <∞ under condition CfGrowth. The integral in Eq. (125), can be written as∫
||y||≤η

e
− t

||y||d ||y||2(αx−d) ddy = Sd

∫ η

0

e−
t

rd r2αx−d−1 dr, (127)

= Vdt
2αx
d −1

∫ +∞

t

ηd

u−
2αx
d e−u du, (128)

Hence, we find that χ1(x, t) is bounded for αx > d/2. For αx < d/2, and for t < t1 small enough,
there exists a constant M(2αx/d) so that χ1(x, t) ≤ M(2αx/d)t

2αx
d −1. Finally, in the marginal

case αx = d/2 and for t < t1, we have χ1(x, t) ≤M(1) ln(1/t), for some constant M(1).
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Now, exploiting again the upper bound of ψ(x, t) obtained in section A.2 and repeating the steps
to bound the integrals involving ψn(x, t), we find that, for αx 6= d/2, B1(x) is bounded up to a
multiplicative constant by∫ t1

0

tmin(1, 2αxd ) e
−nVdρ(x)t ln

(
D−
t

)
dt ∼

n→+∞
M ′(2αx/d)

(
Vdρ(x)n ln(n)

)−min(2, 2αxd +1)
, (129)

where M ′(2αx/d) is a constant depending only on 2αx/d. In the marginal case, αx = d/2, B1(x) is
bounded up to a multiplicative constant by n−2 ln(n).

In summary, we find that

(n+ 1)B1(x) =


O
(
n−

2αx
d (ln(n))−1− 2αx

d

)
, for d > 2αx

O
(
n−1(ln(n))−1

)
, for d = 2αx

O
(
n−1(ln(n))−2

)
, for d < 2αx

(130)

Asymptotic equivalent for B2(x)

Let us first assume that κ(x) = χ2(x, 0) 6= 0. Then again, as shown in detail in section A.2, the
integral defining B2(x) is dominated by the small t region, and will be asymptotically equivalent to

B2(x) =

∫ +∞

0

t ψn−1(x, t)χ2
2(x, t) dt, (131)

∼
n→+∞

κ2(x)

∫ t1

0

t e
−nVdρ(x)t ln

(
D±
t

)
dt, (132)

∼
n→+∞

(
κ(x)

Vdρ(x)n ln(n)

)2

. (133)

On the other hand, if κ(x) = 0, one can bound χ2(x, t) (up to a multiplicative constant) for t ≤ t1
by the integral∫

||y||≤η

(
1− e

− t

||y||d

)
||y||αx−d ddy = Sd

∫ η

0

(
1− e−

t

rd

)
rαx−d rd−1 dr, (134)

= Vdt
αx
d

∫ +∞

t

ηd

u−1−αxd
(
1− e−u

)
du. (135)

Hence, for κ(x) = 0, we find that

n(n+ 1)B2(x) = O
(
n−

2αx
d (ln(n))−2− 2αx

d

)
. (136)

Asymptotic equivalent for the bias term B(x)

In the generic case κ(x) 6= 0, we find that (n+ 1)B1(x) is always dominated by n(n+ 1)B2(x), and
we find the following asymptotic equivalent for B(x) = (n+ 1)B1(x) + n(n+ 1)B2(x):

B(x) ∼
n→+∞

(
κ(x)

Vdρ(x) ln(n)

)2

. (137)

In the non-generic case κ(x) = 0, the bound for (n+ 1)B1(x) in Eq. (130) is always more stringent
than the bound for n(n+ 1)B2(x) in Eq. (136), leading to

B(x) =


O
(
n−

2αx
d (ln(n))−1− 2αx

d

)
, for d > 2αx

O
(
n−1(ln(n))−1

)
, for d = 2αx

O
(
n−1(ln(n))−2

)
, for d < 2αx

, (138)
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which prove the statements made in Theorem 3.5.

Interpretation of the bias term B(x) for κ(x) 6= 0

Here, we assume the generic case κ(x) 6= 0 and define f̄(x) = E
[
f̂(x)

]
. We have

∆(x) := E

 n∑
i=0

wi(x)(f(xi)− f(x))

 = f̄(x)− f(x), (139)

f̄(x) = E

 n∑
i=0

wi(x)f(xi)

 = (n+ 1)E
[
w0(x)f(x0)

]
. (140)

By using another time Eq. (36), we find that

∆(x) = (n+ 1)

∫ +∞

0

ψn(x, t)χ2(x, t) dt, (141)

∼
n→+∞

nκ(x)

∫ t1

0

e
−nVdρ(x)t ln

(
D±
t

)
dt, (142)

∼
n→+∞

κ(x)

Vdρ(x) ln(n)
. (143)

Comparing this result to the one of Eq. (137), we find that the bias B(x) is asymptotically dominated
by the square of the difference ∆2(x) between f̄(x) = E

[
f̂(x)

]
and f(x):

B(x) ∼
n→+∞

(
E
[
f̂(x)

]
− f(x)

)2

, (144)

a statement made in Theorem 3.5.

Relaxing the local Hölder condition

We now only assume the condition CfCont. that f is continuous at x (but still assuming the growth
conditions). We can now define δx such that the ball B(x, δ) ⊂ Ω◦ and ||y|| ≤ δx =⇒ |f(x+ y)−
f(x)| ≤ ε. Then, the proof proceeds as above but by replacing Kx by ε, αx by 0, and by updating
the bounds for χ1(x, t) (for which this replacement is safe) and χ2(x, t) (for which it is not). We
now find that for 0 < t ≤ t1, with t1 small enough

0 ≤ χ1(x, t) ≤ ε(1 + 2ε)Vdρ(x)t−1, (145)

|χ2(x, t)| ≤ ε(1 + 2ε)Vdρ(x) ln

(
1

t

)
. (146)

As already mentioned below Eq. (123) where we provided an explicit counterexample, we see that
relaxing the local Hölder condition does not guarantee anymore that limt→0 |χ2(x, 0)| <∞. With
these new bounds, and carrying the rest of the calculation as in the previous sections, we ultimately
find the following weaker result compared to Eq. (137) and Eq. (138):

B(x) = o

(
1

ln(n)

)
, (147)

or equivalently, that for any ε > 0, there exists a constant Nx,ε such that, for n ≥ Nx,ε, we have

B(x) ≤ ε

ln(n)
. (148)

The bias term at a point where ρ(x) = 0

This section aims at proving Theorem 3.7 expressing the lack of convergence of the estimator f̂(x)
to f(x), when ρ(x) = 0, and under mild conditions. Let us now consider a point x ∈ ∂Ω for which
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ρ(x) = 0, let us assume that there exists constants ηx, γx > 0, and Gx > 0, such that ρ satisfies the
local Hölder condition at x

||y|| ≤ ηx =⇒ ρ(x+ y) ≤ Gx||y||γx . (149)

We will also assume that the growth condition of Eq. (112) is satisfied. With these two conditions,
κ(x) defined in Eq. (124) exists. The vanishing of ρ at x strongly affects the behavior of ψ(x, t) in
the limit t→ 0, which is not singular anymore:

1− ψ(x, t) ∼
t→0

t

∫
ρ(y)‖x− y‖−d ddy, (150)

where the convergence of the integral λ(x) :=
∫
ρ(y)‖x− y‖−d ddy is ensured by the local Hölder

condition of ρ at x.

Let us now evaluate f̄(x) = limn→+∞ E[f̂(x)], the expectation value of the estimator f̂(x) in the
limit n→ +∞, introduced in Eq. (140). First assuming, κ(x) = χ2(x, 0) 6= 0, we obtain

f̄(x)− f(x) = lim
n→+∞

(n+ 1)

∫ +∞

0

ψn(x, t)χ2(x, t) dt, (151)

= lim
n→+∞

nχ2(x, 0)

∫ t1

0

en t ∂tψ(x,0) dt, (152)

=
κ(x)

λ(x)
, (153)

which shows that the bias term does not vanish in the limit n → +∞. Eq. (153) can be straight-
forwardly shown to remain valid when κ(x) = 0. Indeed, for any ε > 0 chosen arbitrarily
small, we can choose t1 small enough such that |χ2(x, t)| ≤ ε for 0 ≤ t ≤ t1, which leads to
|f̄(x)− f(x)| ≤ ε/λ(x).

Note that relaxing the local Hölder condition for ρ at x and only assuming the continuity
of f at x and κ(x) 6= 0 is not enough to guarantee that f̄(x) 6= f(x). For instance, if
ρ(x + y) ∼y→0 ρ0/ ln(1/||y||), and there exists a local solid angle ωx > 0 at x, one can show
that 1− ψ(x, t) ∼t→0 ωxSdρ0 t ln(ln(1/t)), and the bias would still vanish in the limit n→ +∞,
with f̂(x)− f(x) ∼n→+∞ κ(x)/[ωxSdρ0 ln(ln(n))].

A.6 Asymptotic equivalent for the regression risk

This sections aim at proving Theorem 3.8. Under conditions CσGrowth, CfGrowth, and CfCont., the
results of Eq. (109) and Eq. (147) show that for ρ(x)σ2(x) > 0 and ρ and σ2 continuous at x, the
bias term B(x) is always dominated by the variance term V(x) in the limit n → +∞. Thus, the
excess regression risk satisfies

E[(f̂(x)− f(x))2] ∼
n→+∞

σ2(x)

ln(n)
. (154)

As a consequence, the Hilbert kernel estimate converges pointwise to the regression function in
probability. Indeed, for δ > 0, there exists a constant Nx,δ , such that

E[(f̂(x)− f(x))2] ≤ (1 + δ)
σ2(x)

ln(n)
, (155)

for n ≥ Nx,δ. Moreover, for any ε > 0, since E[(f̂(x) − f(x))2] ≥ ε2 P[|f̂(x) − f(x)| ≥ ε], we
deduce the following Chebyshev bound, valid for n ≥ Nx,δ

P[|f̂(x)− f(x)| ≥ ε] ≤ 1 + δ

ε2

σ2(x)

ln(n)
. (156)

A.7 Rates for the plugin classifier

In the case of binary classification Y ∈ {0, 1} and f(x) = P[Y = 1 | X = x]. Let F : Rd → {0, 1}
denote the Bayes optimal classifier, defined by F (x) := θ(f(x)− 1/2) where θ(·) is the Heaviside
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theta function. This classifier minimizes the riskR0/1(h) := E[1{h(X)6=Y }] = P[h(X) 6= Y ] under
zero-one loss. Given the regression estimator f̂ , we consider the plugin classifier F̂ (x) = θ(f̂(x)− 1

2 ),
and we will exploit the fact that

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2E[|f̂(x)− f(x)|] ≤ 2

√
E[(f̂(x)− f(x))2] (157)

Proof of Eq. (157)

For the sake of completeness, let us briefly prove the result of Eq. (157). The rightmost inequality is
simply obtained from the Cauchy-Schwartz inequality and we hence focus on proving the first inequal-
ity. Obviously, Eq. (157) is satisfied for f(x) = 1/2, for which E[R0/1(F̂ (x))] = R0/1(F (x)) =
1/2.

If f(x) > 1/2, we have F (x) = 1,R0/1(F (x)) = 1− f(x), and

E[R0/1(F̂ (x))] = f(x)P[f̂(x) ≤ 1/2] + (1− f(x))P[f̂(x) ≥ 1/2], (158)

= R0/1(F (x)) + (2f(x)− 1)P[f̂(x) ≤ 1/2], (159)

which implies E[R0/1(F̂ (x))] ≥ R0/1(F (x)). Since P[f̂(x) ≤ 1/2] = E[θ(1/2− f̂(x))], and using

θ(1/2− f̂(x)) ≤ |f̂(x)−f(x)|
f(x)−1/2 , valid for any 1/2 < f(x) ≤ 1, we readily obtain Eq. (157).

Similarly, in the case f(x) < 1/2, we have F (x) = 0,R0/1(F (x)) = f(x), and

E[R0/1(F̂ (x))] = R0/1(F (x)) + (1− 2f(x))P[f̂(x) ≥ 1/2]. (160)

Since P[f̂(x) ≥ 1/2] = E[θ(f̂(x) − 1/2)], and using θ(f̂(x) − 1/2) ≤ |f̂(x)−f(x)|
1/2−f(x) , valid for any

0 ≤ f(x) < 1/2, we again obtain Eq. (157) in this case.

In fact, for any α > 0, the inequalities θ(1/2 − f̂(x)) ≤
(
|f̂(x)−f(x)|
f(x)−1/2

)α
and θ(f̂(x) − 1/2) ≤(

|f̂(x)−f(x)|
1/2−f(x)

)α
hold, respectively for f(x) > 1/2 and f(x) < 1/2. Combining this remark with the

use of the Hölder inequality leads to

E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|α

]
, (161)

≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|

α
β

]β
, (162)

for any 0 < β ≤ 1. In particular, for 0 < α < 1 and β = α/2, we obtain

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|2

]α
2

. (163)

The interest of this last bound compared to the more classical bound of Eq. (157) is to show explicitly
the cancellation of the classification risk as f(x) → 1/2, while still involving the regression risk
E
[
|f̂(x)− f(x)|2

]
(to the power α/2 < 1/2).

Bound for the classification risk

Now exploiting the results of section A.6 for the regression risk, and the two inequalities Eq. (157)
and Eq. (163), we readily obtain Theorem 3.9.

A.8 Extrapolation behavior outside the support of ρ

This section aims at proving Theorem 3.10 characterizing the behavior of the regression estimator f̂
outside the closed support Ω̄ of ρ (extrapolation).

Extrapolation estimator in the limit n→∞
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We first assume the growth condition
∫
ρ(y) |f(y)|

1+‖y‖d d
dy <∞. For x ∈ Rd (i.e., not necessarily in

Ω), we have quite generally

E
[
f̂(x)

]
= (n+ 1)E

[
w0(x)f(x)

]
= (n+ 1)

∫ +∞

0

ψn(x, t)χ(x, t) dt, (164)

where ψ(x, t) is again given by Eq. (37) and

χ(x, t) :=

∫
ρ(x+ y)f(x+ y)

e
− t

||y||d

||y||d
ddy, (165)

which is finite for any t > 0, thanks to the above growth condition for f .

Let us now assume that the point x is not in the closed support Ω̄ of the distribution ρ (which excludes
the case Ω = Rd ). Since the integral in Eq. (164) is again dominated by its t→ 0 behavior, we have
to evaluate ψ(x, t) and χ(x, t) in this limit, like in the different proofs above. In fact, when x /∈ Ω̄,
the integral defining ψ(x, t) and χ(x, t) are not singular anymore, and we obtain

1− ψ(x, t) ∼
t→0

t

∫
ρ(y)‖x− y‖−d ddy, (166)

χ(x, 0) =

∫
ρ(y)f(y)‖x− y‖−d ddy. (167)

Note that ψ(x, t) has the very same linear behavior as in Eq. (150), when we assumed x ∈ ∂Ω with
ρ(x) = 0, and a local Hölder condition for ρ at x.

Finally, by using the same method as in the previous sections to evaluate the integral of Eq. (164) in
the limit n→ +∞, we obtain∫ +∞

0

ψn(x, t)χ(x, t) dt ∼
n→+∞

χ(x, 0)

∫ t1

0

en t ∂tψ(x,0) dt, (168)

∼
n→+∞

1

n

χ(x, 0)

|∂tψ(x, 0)|
, (169)

which leads to the first result of Theorem 3.10:

f̂∞(x) := lim
n→+∞

E
[
f̂(x)

]
=

∫
ρ(y)f(y)‖x− y‖−d ddy∫
ρ(y)‖x− y‖−d ddy

. (170)

Note that since the function (x, y) 7−→ ‖x − y‖−d is continuous at all points x /∈ Ω̄, y ∈ Ω, and
thanks to the absolute convergence of the integrals defining f̂∞(x), standard methods show that f̂∞
is continuous (in fact, infinitely differentiable) at all x /∈ Ω̄.

Extrapolation far from Ω

Let us now investigate the behavior of f̂∞(x) when the distance L := d(x,Ω) = inf{||x− y||, y ∈
Ω} > 0 between x and Ω goes to infinity, which can only happen for certain Ω, in particular, when Ω
is bounded. We now assume the stronger condition, 〈|f |〉 :=

∫
ρ(y)|f(y)| ddy <∞, such that the ρ-

mean of f , 〈f〉 :=
∫
ρ(y)f(y) ddy, is finite. We consider a point y0 ∈ Ω, so that ||x− y0|| ≥ L > 0,

and we will exploit the following inequality, valid for any y ∈ Ω satisfying ||y − y0|| ≤ R, with
R > 0:

0 ≤ 1− Ld

||x− y||d
≤ ||x− y||

d − Ld

Ld
≤ (L+R)d − Ld

Ld
≤ e

dR
L − 1. (171)

Now, for a given ε > 0, there exist R > 0 large enough such that
∫
‖y−y0‖≥R ρ(y) ddy ≤ ε/2 and∫

‖y−y0‖≥R ρ(y)|f(y)| ddy ≤ ε/2. Then, for such a R, we consider L large enough such that the

above bound satisfies e
dR
L − 1 ≤ εmin(1/〈|f |〉, 1)/2. We then obtain∣∣∣∣Ld ∫ ρ(y)f(y)‖x− y‖−d ddy − 〈f〉

∣∣∣∣ ≤ (
e
dR
L − 1

)∫
||y−y0||≤R

ρ(y)|f(y)| ddy (172)

+

∫
‖y−y0‖≥R

ρ(y)|f(y)| ddy, (173)

≤ ε

2〈|f |〉
× 〈|f |〉+

ε

2
≤ ε, (174)
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which shows that under the condition 〈|f |〉 <∞, we have

lim
d(x,Ω)→+∞

dd(x,Ω)

∫
ρ(y)f(y)‖x− y‖−d ddy = 〈f〉. (175)

Similarly, one can show that

lim
d(x,Ω)→+∞

dd(x,Ω)

∫
ρ(y)‖x− y‖−d ddy =

∫
ρ(y) ddy = 1. (176)

Finally, we obtain the second result of Theorem 3.10,

lim
d(x,Ω)→+∞

f̂∞(x) = 〈f〉. (177)

Continuity of the extrapolation

We now consider x /∈ Ω̄ and y0 ∈ ∂Ω, but such that ρ(y0) > 0 (i.e., y0 ∈ ∂Ω ∩ Ω), and we note
l := ||x − y0|| > 0. We assume the continuity at y0 of ρ and f as seen as functions restricted to
Ω, i.e., limy∈Ω→y0 ρ(y) = ρ(y0) and limy∈Ω→y0 f(y) = f(y0). Hence, for any 0 < ε < 1, there
exists δ > 0 small enough such that y ∈ Ω and ||y − y0|| ≤ δ =⇒ |ρ(y0) − ρ(y)| ≤ ε and
|ρ(y0)f(y0)− ρ(y)f(y)| ≤ ε. Since we intend to take l > 0 arbitrary small, we can impose l < δ/2.

We will also assume that ∂Ω is smooth enough near y0, such that there exists a strictly positive local
solid angle ω0 defined by

ω0 = lim
r→0

1

Vdρ(y0)rd

∫
‖y−y0‖≤r

ρ(y) ddy = lim
r→0

1

Vdrd

∫
y∈Ω/‖y−y0‖≤r

ddy, (178)

where the second inequality results from the continuity of ρ at y0 and the fact that ρ(y0) > 0. If y0 ∈
Ω◦, we have ω0 = 1, while for y0 ∈ ∂Ω, we have generally 0 ≤ ω0 ≤ 1. Although we will assume
ω0 > 0 for our proof below, we note that ω0 = 0 or ω0 = 1 can happen for y0 ∈ ∂Ω. For instance,
we can consider Ω0, Ω1 ⊂ R2 respectively defined by Ω0 = {(x1, x2) ∈ R2/x1 ≥ 0, |x2| ≤ x2

1}
and Ω1 = {(x1, x2) ∈ R2/x1 ≤ 0} ∪ {(x1, x2) ∈ R2/x1 ≥ 0, |x2| ≥ x2

1}. Then, it is clear that the
local solid angle at the origin O = (0, 0) is respectively ω0 = 0 and ω0 = 1. Also note that if x is on
the surface of a sphere or on the interior of a face of a hypercube (and in general, when the boundary
near x is locally an hyperplane; the generic case), we have ωx = 1

2 . If x is a corner of the hypercube,
we have ωx = 1

2d
.

Returning to our proof, and exploiting Eq. (178), we consider δ small enough such that for all
0 ≤ r ≤ δ, we have ∣∣∣∣∣

∫
y∈Ω/‖y−y0‖≤r

ddy − ω0Vd r
d

∣∣∣∣∣ ≤ ε ω0Vd r
d. (179)

We can now use these preliminaries to obtain

(ρ(y0)f(y0)− ε)J(x)− C ≤
∫
ρ(y)f(y)‖x− y‖−d ddy ≤ (ρ(y0)f(y0) + ε)J(x) + C, (180)

(ρ(y0)− ε)J(x)− C ′ ≤
∫
ρ(y)‖x− y‖−d ddy ≤ (ρ(y0) + ε)J(x) + C ′, (181)

with

J(x) :=

∫
y∈Ω / ||y−y0||≤δ

‖x− y‖−d ddy, (182)

C =

(
2

δ

)2 ∫
||y−y0||≥δ

ρ(y)|f(y)| ddy, (183)

C ′ =

(
2

δ

)2

. (184)

Let us now show that liml→0 J(x) = +∞. We define N := [δ/l] ≥ 2, where [ . ] is the integer part,
and we have N ≥ 2, since we have imposed l < δ/2. For n ∈ N ≥ 1, we define,

In :=

∫
y∈Ω/||y−y0||≤δ/n

ddy, (185)
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and note that we have

In − In+1 =

∫
y∈Ω/||y−y0||≤δ/n,
||y−y0||≥δ/(n+1)

ddy, (186)

∣∣∣∣∣In − ω0Vd

(
δ

n

)d∣∣∣∣∣ ≤ ε ω0Vd

(
δ

n

)d
. (187)

We can then write

J(x) ≥
N∑
n=1

1(
l + δ

n

)d (In − In+1), (188)

≥
N∑
n=1

 1(
l + δ

n+1

)d − 1(
l + δ

n

)d
 In+1 +

I1

(l + δ)
d
− IN+1(

l + δ
N+1

)d . (189)

We have

I1

(l + δ)
d
− IN+1(

l + δ
N+1

)d ≥ ω0Vd

(1− ε) 1(
1 + l

δ

)d − (1 + ε)
1(

1 + (N+1)l
δ

)d
 , (190)

≥ ω0Vd

(
(1− ε)2d

3d
− (1 + ε)

)
=: C ′′, (191)

which defines the constant C ′′. Now using Eq. (187), l < δ/2, N = [δ/l], and the fact that
(1 + u)d − 1 ≥ d u, for any u ≥ 0, we obtain

J(x) ≥ (1− ε)ω0Vd

N∑
n=1

1(
1 + (n+1)l

δ

)d
( l + δ

n

l + δ
n+1

)d
− 1

+ C ′′, (192)

≥ (1− ε)ω0Sd

N∑
n=1

1(
1 + (n+1)l

δ

)d+1

1

n
+ C ′′, (193)

≥ (1− ε)ω0 Sd(
1 + (N+1)l

δ

)d+1
ln(N − 1) + C ′′, (194)

≥ (1− ε)ω0

(
2

5

)d+1

Sd ln

(
δ

l
− 2

)
+ C ′′. (195)

We hence have shown that liml→0 J(x) = +∞. Note that we can obtain an upper bound for J(x)
similar to Eq. (193) in a similar way as above, and with a bit more work, it is straightforward to show
that we have in fact J(x) ∼l→0 ω0 Sd ln

(
δ
l

)
, a result that we will not need here.

Now, using Eq. (180) and Eq. (181) and the fact that liml→0 J(x) = +∞, we find that∫
ρ(y)f(y)‖x− y‖−d ddy ∼

l→0
ρ(y0)f(y0)J(x), (196)∫

ρ(y)‖x− y‖−d ddy ∼
l→0

ρ(y0)J(x), (197)

for f(y0) 6= 0 (remember that ρ(y0) > 0), while for f(y0) = 0, we obtain
∫
ρ(y)f(y)‖x −

y‖−d ddy = o(J(x)). Finally, we have shown that

lim
x/∈Ω̄,x→y0

f̂∞(x) = f(y0), (198)

establishing the continuity of the extrapolation and the last part of Theorem 3.10.
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