
ar
X

iv
:1

80
3.

02
92

2v
3

 [
st

at
.M

L
]

 2
9

M
ay

 2
01

8

Fast Convergence for Stochastic and Distributed

Gradient Descent in the Interpolation Limit

Partha P Mitra

Cold Spring Harbor Laboratory

Cold Spring Harbor, NY11724, USA

Abstract—Modern supervised learning techniques, particularly
those using deep nets, involve fitting high dimensional labelled
data sets with functions containing very large numbers of
parameters. Much of this work is empirical. Interesting phe-
nomena have been observed that require theoretical explanations;
however the non-convexity of the loss functions complicates the
analysis. Recently it has been proposed that the success of these
techniques rests partly in the effectiveness of the simple stochastic
gradient descent algorithm in the so called interpolation limit in
which all labels are fit perfectly. This analysis is made possible
since the SGD algorithm reduces to a stochastic linear system
near the interpolating minimum of the loss function. Here we
exploit this insight by presenting and analyzing a new distributed
algorithm for gradient descent, also in the interpolating limit.

The distributed SGD algorithm presented in the paper
corresponds to gradient descent applied to a simple penal-
ized distributed loss function, L(w1, ...,wn) = Σili(wi) +
µ
∑

<i,j>
|wi − wj |

2. Here each node holds only one sample,
and its own parameter vector. The notation < i, j > denotes
edges of a connected graph defining the communication links
between nodes. It is shown that this distributed algorithm con-
verges linearly (ie the error reduces exponentially with iteration
number), with a rate 1 − η

n
λmin(H) < R < 1 where λmin(H)

is the smallest nonzero eigenvalue of the sample covariance or
the Hessian H. In contrast with previous usage of similar penalty
functions to enforce consensus between nodes, in the interpolating
limit it is not required to take the penalty parameter to infinity
for consensus to occur. The analysis further reinforces the utility
of the interpolation limit in the theoretical treatment of modern
machine learning algorithms.

Index Terms—Interpolating limit; Overfitting; Stochastic Gra-
dient Descent; Distributed Gradient Descent.

I. INTRODUCTION

Empirical performance advances in using so-called deep

networks for machine learning [1] have given rise to a growing

body of theoretical work that tries to explain the success

of these methods. While this theoretical area is not yet in

a mature state, several interesting observations have been

made and ideas put forth. One observation is that overfitting

surprisingly does not seem to degrade the generalization per-

formance of deep nets in supervised learning [2], [3]. A related

phenomenon is that relatively simple randomized optimization

algorithms, particularly stochastic gradient descent (SGD),

are quite effective [4], despite the complicated non-convex

landscapes of the associated loss functions.

Recently, these phenomena have been connected and it

has been shown that in the overfitting or interpolating limit,

stochastic gradient descent converges rapidly to an interpo-

lating minimum of the loss function [5]. In addition, under

suitable assumptions, the performance of the SGD algorithm

saturates at relatively small mini-batch sizes, raising questions

about the role of data parallelism.

Role of parallelism: Data and model parallelism plays an

important role in the area of deep nets since both data and

model sizes can be very large, and resource constraints enforce

the need for such parallelism [6]. Many algorithmic variants

of parallelized SGD have been proposed and studied. Most of

these variants employ centralized communications, although

some fully distributed algorithms have also been studied [7].

Much of this work is empirical. While there exist theoretical

results concerning convergence, these can be involved and lack

intuitive simplicity.

Analysis in the Interpolating Limit: A particular benefit of

the interpolating limit is that the analysis can be effectively

carried out within the analytically tractable reaches of linear

systems theory, with the caveat that it is necessary to under-

stand the behavior in the limit of large system sizes as well as

the presence of randomness. We exploit this simplicity to gain

insight into the role of data correlations in determining the

impact of parallelism on SGD, and to study a fully distributed

consensus-based algorithm for gradient descent, with one data

sample per computational node.

Algorithm presented in this paper for Distributed GD:

The algorithm corresponds to gradient descent applied to a

penalized distributed loss function,

L(w1, ...,wn) = Σili(wi) + µ
∑

<i,j>

|wi −wj |
2 (1)

Here each node holds only one sample (the logical extreme

of data parallelism), and is allowed its own parameter vector.

The notation < i, j > denotes edges of a connected graph

defining the communication links between nodes. There is

no central parameter server: the DGD algorithm following

from the above setup only involves communication of the

parameter vector estimates between neighboring nodes. At the

minimum of the distributed loss function, each node recovers

the same weight corresponding to an interpolating minimum

of the centralized loss, wi = w
∗ = argminL(w). It is shown

that this algorithm converges linearly (ie the approximation

error decreases exponentially with iteration). The proposed

distributed algorithm points to a number of avenues for future

work. Note that variants of this algorithms could assign more

http://arxiv.org/abs/1803.02922v3

than one sample to each compute node, in a deterministic or

stochastic manner.

II. RELATION TO PREVIOUS WORK

There is a large relevant literature on stochastic optimiza-

tion, including considerations of parallelism and distributed

computation and spanning multiple disciplines. It is not prac-

tical to review this literature here, but we provide a few

salient references and pointers. Closely related to the current

work is the analysis of the exponential convergence of the

randomized Kacmarz algorithm [8], which is analogous to

SGD with a minibatch size of 1, and its distributed version [9],

as well as recent work on consensus-based distributed SGD

for learning deep nets [7]. However the distributed algorithm

obtained by performing gradient descent on the loss function in

Eq.(1), does not appear to have been analyzed in the previous

literature, particularly in the interpolating limit which greatly

simplifies the analysis.

Relation to ADMM and penalty based approaches: There

is also a relevant body of literature on penalty-based methods

for distributed optimization, as well as ADMM related ap-

proaches [10] where the consensus constraint is enforced using

Lagrange multipliers. While the current approach is in effect

penalty-based, the important point is that in the interpolating

limit the penalty term does not have to be made large to

achieve consensus. The exact optimum is obtained for any

value of the penalty term. Thus the penalty parameter could be

optimized to speed up convergence. In contrast with ADMM

the algorithm does not require the introduction of dual vari-

ables. Nevertheless, one future direction from the current work

would be to re-examine these other methods of performing

distributed optimization specifically in the interpolating limit,

which may lead to analytical simplicities.

The energy function represented in Eq.(1) has a standard

form familiar in statistical physics. It represents a sum of

on-site energies and quadratic or elastic couplings between

neighboring sites (on a suitable graph). In the statistical

physics case, the vectors w are typically low dimensional,

whereas we are interested in very high dimensional parameter

vectors. Modern machine learning applications often deal with

parameter vectors with a dimensionality in the 106−109 range.

Note that although not relevant for real physical systems,

interaction energies with such high dimensional vectors are

still of theoretical interest to physicists since mean field

analysis can become exact in this limit.

More general loss functions: Convergence proofs in the

relevant literature are often presented for more general loss

functions than considered in this manuscript. In the interpo-

lating limit, the loss function reduces to a quadratic form

near the interpolating minimum and the convergence analysis

can be performed by bounding the largest singular value of

the linear operator governing the parameter iteration. More

general loss functions treated in the literature are coupled

with smoothness and strong convexity constraints. However,

these constraints in turn imply that the loss functions are

bounded above and below by a quadratic form, at least near

the optimum. It should therefore be possible to reformulate the

results presented here into a more general context coupled with

smoothness and strong convexity constraints. It is not clear that

fundamental insights will be gained by such a reformulation,

which would introduce more notational complexity. So we

constrain ourselves to the quadratic loss.

A. Fast convergence of SGD in the interpolating limit

The starting point for this work is the recent work by

Belkin et al [5] presenting an analysis of the fast convergence

of the SGD algorithm in the interpolating limit. We briefly

recount some of the results of this paper and also present a

modified SGD algorithm that allows for the derivation of exact

formulae for the convergence rate. This helps us understand

the efficiency of distributed computation for the problem at

hand.

Consider the standard supervised learning setup with a data

set consisting of labelled pairs (yi,xi), i = 1..n. The task

is to learn a parametrized function f(x,w) chosen from a

suitable function class, by minimizing the empirical risk w
∗ =

argminL(w), corresponding to a loss function

L(w) =
1

n
Σili(w) (2)

li(w) = l(yi, f(xi,w)) (3)

Quadratic loss in the interpolating limit: The interpolating

limit is defined by the conditions li(w
∗) = 0, ie the loss is

zero at each sample point (ie the interpolating function passes

through each data point). In this limit l(yi, f(xi,w)) is close

to zero if |w∗ −w| is small. We will assume it corresponds

to a quadratic loss in the neighborhood of w
∗, and that the

function f is differentiable at w∗.

Under these conditions li(w) ≈ (Xi ·(w
∗−w))2 where Xi

is ∇xf(xi,w
∗). Suitably redefining variables as Xi ·w

∗ = ỹi
and Xi = x̃i, we see that we are left with a loss function

corresponding to a linear model, li(w) = (ỹi − x̃i · w)2 =
(x̃i · δw)2, where δw = w − w

∗. In the following we will

drop the tildes for notational simplicity. We are now effectively

analyzing linear regression, and we denote the dimensionality

of x and w by d.

Overfitting: To be in the interpolation regime one generally

needs to overfit, ie d ≥ n. Note that in this case the Hessian has

a number of zero singular values, corresponding to a null space

about which the data is not informative. The ERM procedure

will not reduce error in this null space, so our attention will

be confined to the range of H corresponding to its nonzero

singular values. In the linear regime the null space is left

invariant. For notational simplicity the vectors wi denote only

the projections orthogonal to the null space. The projection

parallel to the null space is simply left invariant by the iterative

procedures below.

With the above setup it is easy to verify that the correspond-

ing GD algorithm is given by (η is the learning rate):

δwt+1 = (1− ηH)δwt (4)

H =
1

n
Σn

i=1x
2
iPi (5)

xi = |xi|2 Pi = x̂ix̂
T
i (6)

Notational Choices: We have made some notational choices

to simplify the following considerations and written the Hes-

sian H (equivalently the sample covariance of the vectors x)

in terms of a sum of projection operators Pi corresponding to

the individual data points. Note that P 2
i = Pi. If the vectors xi

are orthogonal then PiPj = 0 when the indices are unequal.

In the general non-orthogonal case the Pi do not commute.

Stochastic formulation: We now introduce iteration-

dependent stochastic binary variables σi(t) ∈ {0, 1} where

the variables will be chosen i.i.d from a Bernoulli distribution,

with E(σi) =
m
n

. The idea is that σi(t) = 1 iff the sample i
is picked in the minibatch used in the tth time step. Note also

that the GD case is recovered for m = n since each sample

is picked with probability 1.

Difference from standard procedure - stochastic minibatch

size: This stochastic formulation is slightly different from

the usual setting, where mini batches are picked with fixed

size m. In the formulation presented here, the batch sizes

fluctuate from one iteration to another, with an average size

of E[Σiσi(t)] = m. It is easy to treat the fixed batch size

case using the same formulation, as long as one keeps track

of the correlations introduced between different σi at a given

iteration due to the constraint of the fixed batch size, but we

will not present the corresponding formulae here.

Samples drawn without replacement: Note that the mini-

batch sampling procedure used by Belkin et al [5] is with

replacement, which is slightly different from the setting here

or in standard SGD. The reason we introduce this variant of the

SGD algorithm is that the randomness has been made explicit

as an uncorrelated binary process associated with each sample,

which makes the analysis simpler.

Specific SGD algorithm analyzed in this paper: With the

above notation we define an SGD algorithm (note the stochas-

tically variable batch size) by the iteration

δwt+1 = M(t)δwt (7)

M(t) = 1−
η

m
Σn

i=1x
2
i σi(t)Pi (8)

Note that σi(t) is uncorrelated with δwt. Therefore

E|δwt+1|
2 can be computed as E[δw†

tE[M †(t)M(t)]δwt],
where the expectation is over the stochastic processes σi(t). To

analyze convergence one needs to bound the largest singular

value of the matrix E[M †(t)M(t)] and optimize it with respect

to the learning rate η.

Orthogonal sample vectors: Let us first consider the case

where the sample vectors are orthogonal (equivalently PiPj =
0 for i 6= j). Then, noting that E[σi(t)] = E[σ2

i (t)] = m/n,

we have

E[M †(t)M(t)] = 1− 2ηH +
n

m
η2H2 (9)

Thus in the orthogonal case the eigenvalues of

E[M †(t)M(t)] are given by 1 − 2 η

n
x2
i + η2

mn
x4
i . To obtain

the best bound for the decay rate one has to maximize this

expression over i, then minimize that result over η. Consider

the case xi = 1, ie orthonormal sample vectors. Then the

eigenvalues are all equal and are given by 1 − 2 η

n
+ η2

mn
.

The minimum value is obtained for η = m, and is given by

g(m) = (1 − m
n
). If the xi are not all equal to 1, we get

g(m) = (1− cm
n
) where c = (GM)2/(AM)2, with GM and

AM being the geometric and arithmetic means of x2
min and

x2
max. Thus g(m) is less than 1 for any m and this shows

exponential convergence to zero error with iteration number.

Gain from paralellization: The number of iterations re-

quired to achieve (on average) a relative error of ǫ is given

by g(m)t = ǫ ie tǫ = log(1/ǫ)/ log(1/g(m)), whereas

during that same time a computational cost of mdtǫ =
md log(1/ǫ)/ log(1/g(m)) is incurred. The total computation

cost to achieve a fixed total error depends on the batch size as

m/ log(n/(n − cm)). This cost decreases as m increases, so

that bigger batch sizes will produce the same error at a lower

computational cost, indicating that the problem will continue

to benefit from data parallelism as m increases.

However, the situation is different if the data vectors have

strong correlations, and in particular the Hessian matrix has

a few large eigenvalues that dominates its trace. In this case,

Belkin et al [5] show that the gain from parallelism is limited,

and that the parallelism gains saturate when m reaches a value

m∗ given by Tr(H)/λmax(H).
Non-orthogonal sample vectors: Next we consider the more

general case where xi are not orthogonal but are normalized

(x2
i = 1). Noting that E[σiσj] = (m

n
)2+(1−δij)(1−

m
n
) it is

easy to show that E[M †(t)M(t)] = (1−ηH)2+ η2

m
(1−m

n
)H .

As expected setting m = n we recover the GD matrix. the

eigenvalues of E[M †(t)M(t)] are then given by

g(m, η, λi) = (1− ηλi)
2 +

η2λi

m
(1−

m

n
) (10)

where λi are the eigenvalues of the sample covariance

or Hessian H . The bound on the decay rate is given by

minη maxi g(m, η, λi). Since g is quadratic in λ the maximum

over λi is achieved at either λ1 = λmax(H) or λn =
λmin(H). For fixed λ the dependence on η is also quadratic. If

one plots g(m, η, λ) vs η for λ = λn and λ = λ1 one obtains

two intersecting parabolas. The minimum tracks one parabola

and then the other, with the overall minimum occurring when

g(m, η, λ1) = g(m, η, λn). Solving this equation one obtains

(assuming λ1 > λn)

η∗(m) =
2

λ1 + λn + 1

m
− 1

n

(11)

g∗(m) = 1−
4λ1λn

(λ1 + λn + 1

m
− 1

n
)2

(12)

For m = n one obtains the GD result

g∗(n) = (
λ1 − λn

λ1 + λn

)2 = (1−
2

C + 1
)2 (13)

where C = λ1

λn

is the condition number of H . If

λmax ∼ 1, as would be the case when there are strong

correlations, then g∗(m) approaches g∗(n) fairly quickly. For

some parameter choices the total computation cost mdtǫ =
md log(1/ǫ)/ log(1/g(m)) shows a minimum for a value of

m > 1 but close to 1. However if λ1 ∼ 1

n
(this is the

case for the orthogonal matrix) then g∗(m) approaches g∗(n)
more slowly. Thus the optimal choice of m is dependent on

the degree of correlations between then normalized sample

vectors.

Remark: Note that in contrast with the original analysis

presented in Belkin et al [5] we are able to derive exact

formulae for the optimal learning rate η∗(m) and convergence

rate g∗(m) rather than bounds. Derivation of these exact

formulae rely on the variant of the SGD introduced in this

paper, in which each sample is chosen with a fixed probability

at each time step and the minibatch sizes vary stochastically.

III. DISTRIBUTED GD WITH ELASTIC PENALTY ON A

GRAPH IN THE INTERPOLATING LIMIT

These considerations demonstrate that (i) SGD shows rapid

convergence in the interpolation regime and that (ii) data

parallelism should be computationally beneficial if the sample

vectors are not strongly correlated. Note that data parallelism is

not dictated by computational cost alone - it may be practically

impossible to store data locally at a central compute node,

and one has to also consider the communication costs of

centralized parallel computation using a parameter server.

Necessity of Distributed SGD - Communication cost of a

central parameter server: Even for data-parallel implemen-

tations of SGD, centralized communication to a parameter

server may cause a problem. In the extreme case, where

each compute node has one data vector, communicating all

n parameter vectors to a central server after gradient updates,

requires a communication link with bandwidth n∗d. With n, d
both ∼ 106 − 109, this may be impossible to provide. With

these motivations we proceed to study the fully distributed

case (without a parameter server), where an individual com-

pute node only communicates locally with the set of nodes

connected to it. For simplicity we consider the case of a fixed,

connected graph, although similar results should continue to

hold on a fluctuating graph topology as long as the fluctuations

still permit diffusion of signals.

Problem setup: We assume there are n compute nodes,

each with a single data vector, and a node-specific parameter

vector. Define the penalized loss function as in Eq.(1), ie

L(w1, ...,wn) = Σili(wi)+µ
∑

<i,j> |wi−wj|
2. The set of

edges < i, j > specify the communication graph between the

nodes. We do not constrain this graph beyond the requirement

that it should be connected.

Simplification in the interpolation limit: Generally, the

penalty term will not be minimized by a set of wi that

also minimize an un-penalized loss function with this form.

However, the interpolating limit is special since there exists

a vector w
∗ that minimizes each li(w), that minimum value

being zero ie li(w
∗) = 0 for all i. Clearly, the penalty term

also equals zero if wi = w
∗. Since all terms in the sum are

non-negative, it can be seen that an interpolating minimum of

the loss is simultaneously a minimum of the penalized loss.

This considerably simplifies things. Note again that we will

ignore the presence of zero modes as the GD dynamics will

leave a null subspace unchanged.

Algorithm: The distributed GD algorithm is given by

δwt+1

i = (I − ηx2
iPi)δw

t
i + µ

∑

j

Lijδw
t
j (14)

Notation: Here L is the Graph Laplacian defined by the

quadratic form W
†LW = −Σ<i,j>|wi − wj |

2. We have

defined a concatenated vector W = [w1;w2; ..;wn].
Proof outline: To prove exponential convergence of this

distributed GD algorithm, one only needs to show that the

self-adjoint linear operator I−ηH+L governing the dynamics

has its largest eigenvalue less than 1.

Equivalently, we need to show that the smallest eigenvalue

σmin of the nd×nd matrix ηH−L is greater than zero, where

ηH has diagonal blocks given by x2
iPi. Note that the largest

eigenvalue of the evolution operator is 1− σmin.

It is convenient to start with the expression σmin =
min[Ŵ†(ηH − L)Ŵ], with the minimum being taken over

unit vectors |Ŵ| = 1. The proof follows by expanding out the

quadratic form:

σmin = min|Ŵ|=1

[

ηΣn
i=1(x

†
i ŵi)

2 + µ
∑

<i,j>

|ŵi − ŵj |
2
]

(15)

We have to demonstrate that σmin > 0. Note that the argu-

ment being minimized is a sum over squares, so for the sum

to be zero, each individual term must be simultaneously zero.

However it is easy to show that this is impossible. Writing

σmin = min[Term1 + Term2] with Term2 consisting of

the Laplacian penalty, we will show that Term2 = 0 =⇒
Term1 > 0.

Since the communication graph is connected, the Lapla-

cian penalty Term2 will only vanish if ŵi are all equal,

ŵi =
1√
n
ŵ for all i. The vectors ŵ are normalized in the d-

dimensional sample space, and the extra normalization factor

ensures that |Ŵ| = 1).

Plugging this choice of Ŵ into Term1 we get Term1 =
η

n
ŵ

†Hŵ. Recall that we are only considering the subspace

corresponding to the non-zero eigenvalues of H (the dynamics

leaves the null space of H invariant). This implies that

Term1 = η
n
ŵ

†Hŵ ≥ η
n
λmin(H) > 0 where λmin(H) is the

smallest nonzero eigenvalue of H . Thus, Term2 = 0 =⇒
Term1 > 0.

Thus, there is no choice of Ŵ for which both Term1 = 0
and Term2 = 0. It follow that σmin > 0. This argument does

not provide an explicit estimate of σmin, but the argument

above shows that that σmin < η

n
λmin(H). Thus the largest

eigenvalue of the evolution operator in Eq.(14) is (strictly)

between 1 and 1− η

n
λmin(H).

Convergence rate estimate: This concludes the proof that the

error in the distributed GD algorithm shrinks exponentially to

zero in the interpolating limit, with a rate

1−
η

n
λmin(H) < R < 1 (16)

If the penalty term is large (µ → ∞) then we can expect

that the first term in the quadratic form will dominate and

R → 1− η
n
λmin(H).

IV. CONCLUSION AND DISCUSSION

In this manuscript we have exploited the simplicities arising

in the interpolating limit for function learning, to analyze

the convergence of stochastic as well as distributed gradient

descent close to an interpolating minimum of the loss function.

While the analysis is simple and is based on linear regression

using a least squared loss, we expect the conclusions to hold

in qualitative terms for more general loss functions, with

suitable smoothness and strong convexity constraints near the

interpolating minimum.

• We have introduced a variant of SGD in which data

samples are picked using i.i.d Bernoulli processes. In

contrast with the standard SGD algorithm, for this variant

the minibatch sizes fluctuate stochastically from one

iteration to the next with a Binomial distribution. This

simplifies theoretical analysis and allows us to explicitly

compute the optimal learning rate η∗(m) and correspond-

ing convergence rate g∗(m). This approach may have

more general theoretical utility than shown here. The

analysis also shows the importance of the correlation

structure of the input vectors in determining the efficiency

of SGD.

• The empirical efficiency of the SGD algorithm for small

minibatch sizes points to the presence of strong cor-

relations in real life data sets - even though the input

dimensions are nominally very large, it is possible that

the effective dimensionality is still modest.

• We have presented and analyzed a distributed Gradient

Descent algorithm also in the interpolating limit, with

each compute node holding only one data sample. We

have shown that a Graph Laplacian-penalized distributed

loss function adequately couples the nodes to drive the

system to an interpolating minimum, with error exponen-

tially decreasing with iterations (for finite sized connected

graphs).

We have not specified the communication graph beyond

the requirement that it is connected. In order to minimize

communication costs, this graph should be adequately sparse.

Design of an optimal graph for the distributed GD algorithm

for a fixed communication cost is an interesting problem which

we have not pursued here, but it is a direction for future

research.

Stochastic and asynchronous variants of the algorithm pre-

sented should be interesting to analyze (eg where the gradient

update step is decoupled from the diffusion step).

One possibility not developed here, is to run the distributed

GD algorithm in Eq.(14) in the under-parametrized regime,

with the connectivity graph between data nodes determined

by similarities in the sample vectors. In this case, one will

generally not be in the interpolating limit and the individual

losses will not all be reduced to zero. However the Laplacian

penalty term would enforce local smoothness of the parameter

vector on the connectivity graph. This would amount to a form

of local linear regression.

ACKNOWLEDGMENT

PPM Thanks Misha Belkin and Saikat Chatterjee for exten-

sive discussions. Support from the Crick-Clay Professorship at

Cold Spring Harbor Laboratory and the H N Mahabala Chair

Professorship at IIT Madras is gratefully acknowledged.

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning,
vol. 1. MIT press Cambridge, 2016.

[2] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” ArXiv e-prints,
Nov. 2016.

[3] M. Belkin, S. Ma, and S. Mandal, “To understand deep learning we
need to understand kernel learning,” ArXiv e-prints, Feb. 2018.

[4] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[5] S. Ma, R. Bassily, and M. Belkin, “The power of interpolation: Under-
standing the effectiveness of sgd in modern over-parametrized learning,”
arXiv preprint arXiv:1712.06559, 2017.

[6] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et al., “Large scale distributed deep net-
works,” in Advances in neural information processing systems, pp. 1223–
1231, 2012.

[7] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep
learning in fixed topology networks,” in Advances in Neural Information

Processing Systems, pp. 5906–5916, 2017.
[8] T. Strohmer and R. Vershynin, “A randomized kaczmarz algorithm with

exponential convergence,” Journal of Fourier Analysis and Applications,
vol. 15, no. 2, p. 262, 2009.

[9] G. Kamath, P. Ramanan, and W.-Z. Song, “Distributed randomized
kaczmarz and applications to seismic imaging in sensor network,” in
Distributed Computing in Sensor Systems (DCOSS), 2015 International

Conference on, pp. 169–178, IEEE, 2015.
[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed

optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

	I Introduction
	II Relation to previous work
	II-A Fast convergence of SGD in the interpolating limit

	III Distributed GD with Elastic Penalty on a Graph in the Interpolating Limit
	IV Conclusion and Discussion
	References

