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Abstract

Many modern machine learning models are trained to achieve zero or near-zero training
error in order to obtain near-optimal (but non-zero) test error. This phenomenon of strong
generalization performance for “overfitted” / interpolated classifiers appears to be ubiquitous
in high-dimensional data, having been observed in deep networks, kernel machines, boosting
and random forests. Their performance is consistently robust even when the data contain large
amounts of label noise.

Very little theory is available to explain these observations. The vast majority of theoretical
analyses of generalization allows for interpolation only when there is little or no label noise. This
paper takes a step toward a theoretical foundation for interpolated classifiers by analyzing local
interpolating schemes, including geometric simplicial interpolation algorithm and singularly
weighted k-nearest neighbor schemes. Consistency or near-consistency is proved for these
schemes in classification and regression problems. Moreover, the nearest neighbor schemes
exhibit optimal rates under some standard statistical assumptions.

Finally, this paper suggests a way to explain the phenomenon of adversarial examples, which
are seemingly ubiquitous in modern machine learning, and also discusses some connections to
kernel machines and random forests in the interpolated regime.

1 Introduction

The central problem of supervised inference is to predict labels of unseen data points from a set
of labeled training data. The literature on this subject is vast, ranging from classical parametric
and non-parametric statistics [47, 48] to more recent machine learning methods, such as kernel
machines [38], boosting [35], random forests [14], and deep neural networks [24]. There is a
wealth of theoretical analyses for these methods based on a spectrum of techniques including non-
parametric estimation [45], capacity control such as VC-dimension or Rademacher complexity [39],
and regularization theory [41]. In nearly all of these results, theoretical analysis of generalization
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requires “what you see is what you get” setup, where prediction performance on unseen test data
is close to the performance on the training data, achieved by carefully managing the bias-variance
trade-off. Furthermore, it is widely accepted in the literature that interpolation has poor statistical
properties and should be dismissed out-of-hand. For example, in their book on non-parametric
statistics, Györfi et al. [25, page 21] say that a certain procedure “may lead to a function which
interpolates the data and hence is not a reasonable estimate”.

Yet, this is not how many modern machine learning methods are used in practice. For instance,
the best practice for training deep neural networks is to first perfectly fit the training data [34]. The
resulting (zero training loss) neural networks after this first step can already have good performance
on test data [52]. Similar observations about models that perfectly fit training data have been
made for other machine learning methods, including boosting [36], random forests [18], and kernel
machines [11]. These methods return good classifiers even when the training data have high levels
of label noise [50, 52, 11].

An important effort to show that fitting the training data exactly can under certain conditions be
theoretically justified is the margins theory for boosting [36] and other margin-based methods [27,
6, 23, 33, 28]. However, this theory lacks explanatory power for the performance of classifiers that
perfectly fit noisy labels, when it is known that no margin is present in the data [50, 11]. Moreover,
margins theory does not apply to regression and to functions (for regression or classification) that
interpolate the data in the classical sense [11].

In this paper, we identify the challenge of providing a rigorous understanding of generalization
in machine learning models that interpolate training data. We take first steps towards such a theory
by proposing and analyzing interpolating methods for classification and regression with non-trivial
risk and consistency guarantees.

Related work. Many existing forms of generalization analyses face significant analytical and
conceptual barriers to being able to explain the success of interpolating methods.

Capacity control. Existing capacity-based bounds (e.g., VC dimension, fat-shattering dimension,
Rademacher complexity) for empirical risk minimization [3, 7, 4, 36, 27] do not give useful risk
bounds for functions with zero empirical risk whenever there is non-negligible label noise.
This is because function classes rich enough to perfectly fit noisy training labels generally
have capacity measures that grow quickly with the number of training data, at least with the
existing notions of capacity [11]. Note that since the training risk is zero for the functions of
interest, the generalization bound must bound their true risk, as it equals the generalization gap
(difference between the true and empirical risk). Whether such capacity-based generalization
bounds exist is open for debate.

Stability. Generalization analyses based on algorithmic stability [13, 8] control the difference
between the true risk and the training risk, assuming bounded sensitivity of an algorithm’s
output to small changes in training data. Like standard uses of capacity-based bounds, these
approaches are not well-suited to settings when training risk is identically zero but true risk
is non-zero.

Regularization. Many analyses are available for regularization approaches to statistical inverse
problems, ranging from Tikhonov regularization to early stopping [15, 41, 51, 9]. To obtain
a risk bound, these analyses require the regularization parameter λ (or some analogous
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quantity) to approach zero as the number of data n tends to infinity. However, to get (the
minimum norm) interpolation, we need λ→ 0 while n is fixed, causing the bounds to diverge.

Smoothing. There is an extensive literature on local prediction rules in non-parametric statistics [48,
45]. Nearly all of these analyses require local smoothing (to explicitly balance bias and
variance) and thus do not apply to interpolation. (Two exceptions are discussed below.)

Recently, Wyner et al. [50] proposed a thought-provoking explanation for the performance of
AdaBoost and random forests in the interpolation regime, based on ideas related to “self-averaging”
and localization. However, a theoretical basis for these ideas is not developed in their work.

There are two important exceptions to the aforementioned discussion of non-parametricmethods.
First, the nearest neighbor rule (also called 1-nearest neighbor, in the context of the general family
of k-nearest neighbor rules) is a well-known interpolating classification method, though it is not
generally consistent for classification (and is not useful for regression when there is significant
amount of label noise). Nevertheless, its asymptotic risk can be shown to be bounded above by
twice the Bayes risk [17].1 A second important (though perhaps less well-known) exception is the
non-parametric smoothing method of Devroye et al. [20] based on a singular kernel called the
Hilbert kernel (which is related to Shepard’s method [40]). The resulting estimate of the regression
function interpolates the training data, yet is proved to be consistent for classification and regression.

The analyses of the nearest neighbor rule andHilbert kernel regression estimate are not based on
bounding generalization gap, the difference between the true risk and the empirical risk. Rather, the
true risk is analyzed directly by exploiting locality properties of the prediction rules. In particular,
the prediction at a point depends primarily or entirely on the values of the function at nearby points.
This inductive bias favors functions where local information in a neighborhood can be aggregated
to give an accurate representation of the underlying regression function.

What we do. Our approach to understanding the generalization properties of interpolation
methods is to understand and isolate the key properties of local classification, particularly the
nearest neighbor rule. First, we construct andanalyze an interpolating functionbasedonmultivariate
triangulation and linear interpolation on each simplex (Section 3), which results in a geometrically
intuitive and theoretically tractable prediction rule. Like nearest neighbor, this method is not
statistically consistent, but, unlike nearest neighbor, its asymptotic risk approaches the Bayes risk
as the dimension becomes large, even when the Bayes risk is far from zero—a kind of “blessing
of dimensionality”2. Moreover, under an additional margin condition the difference between the
Bayes risk and our classifier is exponentially small in the dimension.

A similar finding holds for regression, as the method is nearly consistent when the dimension is
high.

Next, we propose a weighted & interpolated nearest neighbor (wiNN) scheme based on singular
weight functions (Section 4). The resulting function is somewhat less natural than that obtained
by simplicial interpolation, but like the Hilbert kernel regression estimate, the prediction rule
is statistically consistent in any dimension. Interestingly, conditions on the weights to ensure
consistency become less restrictive in higher dimension—another “blessing of dimensionality”.

1More precisely, the expected risk of the nearest neighbor rule converges to E[2η(X)(1 − η(X))], where η is the
regression function; this quantity can be bounded above by 2R∗(1 − R∗), where R∗ is the Bayes risk.

2This does not remove the usual curse of dimensionality, which is similar to the standard analyses of k-NN and other
non-parametric methods.
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Our analysis provides the first known non-asymptotic rates of convergence to the Bayes risk for an
interpolated predictor, as well as tighter bounds under margin conditions for classification. In fact,
the rate achieved by wiNN regression is statistically optimal under a standard minimax setting3.

Our results also suggest an explanation for the phenomenon of adversarial examples [43], which
are seemingly ubiquitous in modern machine learning. In Section 5, we argue that interpolation
inevitably results in adversarial examples in the presence of any amount of label noise. When these
schemes are consistent or nearly consistent, the set of adversarial examples (where the interpolating
classifier disagrees with the Bayes optimal) has small measure but is asymptotically dense. Our
analysis is consistent with the empirical observations that such examples are difficult to find by
random sampling [21], but are easily discovered using targeted optimization procedures, such as
Projected Gradient Descent [29].

Finally, we discuss the difference between direct and inverse interpolation schemes; and make
some connections to kernel machines, and random forests in (Section 6).

All proofs are given in Appendix A. We informally discuss some connections to graph-based
semi-supervised learning in Appendix B.

2 Preliminaries

The goal of regression and classification is to construct a predictor f̂ given labeled training data
(x1 , y1), . . . , (xn , yn) ∈ Rd × R, that performs well on unseen test data, which are typically assumed
to be sampled from the same distribution as the training data. In this work, we focus on interpolating
methods that construct predictors f̂ satisfying f̂ (xi) � yi for all i � 1, . . . , n.

Algorithms that perfectly fit training data are not common in statistical and machine learning
literature. The prominent exception is the nearest neighbor rule, which is among of the oldest and
best-understood classificationmethods. Given a training set of labeled example, the nearest neighbor
rule predicts the label of a new point x to be the same as that of the nearest point to x within the
training set. Mathematically, the predicted label of x ∈ Rd is yi , where i ∈ arg mini′�1,...,n ‖x − xi′‖.
(Here, ‖ · ‖ always denotes the Euclidean norm.) As discussed above, the classification risk of the
nearest neighbor rule is asymptotically bounded by twice the Bayes (optimal) risk [17]. The nearest
neighbor rule provides an important intuition that such classifiers can (and perhaps should) be
constructed using local information in the feature space.

In this paper, we analyze two interpolating schemes, one based on triangulating and constructing
the simplicial interpolant for the data, and another, based on weighted nearest neighbors with
singular weight function.

2.1 Statistical model and notations

We assume (X1 ,Y1), . . . , (Xn ,Yn), (X,Y) are iid labeled examples from Rd ×[0, 1]. Here, ((Xi ,Yi))ni�1
are the iid training data, and (X,Y) is an independent test example from the same distribution.
Let µ denote the marginal distribution of X, with support denoted by supp(µ); and let η : Rd → R
denote the conditional mean of Y given X, i.e., the function given by η(x) :� E(Y | X � x). For
(binary) classification, we assume the range of Y is {0, 1} (so η(x) � P(Y � 1 | X � x)), and we let

3An earlier version of this article paper contained a bound with a worse rate of convergence based on a loose analysis.
The subsequent work [12] found that a different Nadaraya-Watson kernel regression estimate (with a singular kernel)
could achieve the optimal convergence rate; this inspired us to seek a tighter analysis of our wiNN scheme.
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f ∗ : Rd → {0, 1} denote the Bayes optimal classifier, which is defined by f ∗(x) :� 1{η(x)>1/2}. This
classifier minimizes the risk R0/1( f ) :� E[1{ f (X),Y}] � P( f (X) , Y) under zero-one loss, while the
conditional mean function η minimizes the risk Rsq(1) :� E[(1(X) − Y)2] under squared loss.

The goal of our analyses will be to establish excess risk bounds for empirical predictors ( f̂ and η̂,
based on training data) in terms of their agreementwith f ∗ for classification andwith η for regression.
For classification, the expected risk canbe boundedasE[R0/1( f̂ )] ≤ R0/1( f ∗)+P( f̂ (X) , f ∗(X)), while
for regression, the expectedmean squared error is preciselyE[Rsq(η̂(X))] � Rsq(η)+E[(η̂(X)−η(X)2].
Our analyses thus mostly focus on P( f̂ (X) , f ∗(X)) and E[(η̂(X) − η(X))2] (where the probability
and expectations are with respect to both the training data and the test example).

2.2 Smoothness, margin, and regularity conditions

Below we list some standard conditions needed for further development.

(A, α)-smoothness (Hölder). For all x , x′ in the support of µ,

|η(x) − η(x′)| ≤ A · ‖x − x′‖α .

(B, β)-margin condition [30, 44]. For all t ≥ 0,

µ({x ∈ Rd : |η(x) − 1/2| ≤ t}) ≤ B · tβ .

h-hard margin condition [31]. For all x in the support of µ,

|η(x) − 1/2| ≥ h > 0.

(c0 , r0)-regularity [5]. There exist c0 > 0 and r0 > 0 such that

λ(supp(µ) ∩ B(x , r)) ≥ c0λ(B(x , r)), 0 < r ≤ r0 , x ∈ supp(µ),

where λ is the Lebesgue measure on Rd , and B(c , r) :� {x ∈ Rd : ‖x − c‖ ≤ r} denotes the ball
of radius r around c.

The regularity condition from Audibert and Tsybakov [5] is not very restrictive. For example, if
supp(µ) � B(0, 1), then c0 ≈ 1/2 and r0 ≥ 1.

Uniform distribution condition. In what follows, we mostly assume uniform marginal distribu-
tion µ over a certain domain. This is done for the sake of simplicity and is not an essential condition.
For example, in every statement the uniform measure can be substituted (with a potential change of
constants) by an arbitrary measure with density bounded from below.

3 Interpolating scheme based on multivariate triangulation

In this section, we describe and analyze an interpolating scheme based onmultivariate triangulation.
Our main interest in this scheme is in its natural geometric properties and the risk bounds for
regression and classification which compare favorably to those of the original nearest neighbor rule
(despite the fact that neither is statistically consistent in general).
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Figure 1: Comparison of nearest neighbor and simplicial interpolation. Consider three labeled
examples from R2 × {0, 1}: (x1 , 0), (x2 , 0), (x3 , 1). Depicted in gray are the regions (within
conv(x1 , x2 , x3)) on which the nearest neighbor classifier and simplicial interpolation classifier
predict 1.

3.1 Definition and basic properties

We define an interpolating function η̂ : Rd → R based on training data ((xi , yi))ni�1 from Rd × R and
a (multivariate) triangulation scheme T. This function is simplicial interpolation [26, 19]. We assume
without loss of generality that the (unlabeled) examples x1 , . . . , xn span Rd . The triangulation
scheme T partitions the convex hull Ĉ :� conv(x1 , . . . , xn) of the unlabeled examples into non-
degenerate simplices4 with vertices at the unlabeled examples; these simplices intersect only at
<d-dimensional faces. Each x ∈ Ĉ is contained in at least one of these simplices; let UT(x) denote
the set of unlabeled examples (x(1) , . . . , x(d+1)) that are vertices for a simplex containing x. Let LT(x)
be the corresponding set of labeled examples ((x(1) , y(1)), . . . , (x(d+1) , y(d+1))).5 For any point x ∈ Ĉ,
we define η̂(x) to be the unique linear interpolation of LT(x) at x (defined below). For points x < Ĉ,
we arbitrarily assert UT(x) � LT(x) � ⊥, and define η̂(x) :� 1/2.

Recall that a linear (affine) interpolation of (v1 , y1), . . . , (vd+1 , yd+1) ∈ Rd ×R at a new point x ∈ Rd

is given by the system of equations β̂0 + xT β̂, where (β̂0 , β̂) are (unique) solutions to the system of
equations

β̂0 + vT
i β̂ � yi , i � 1, . . . , d + 1.

The predictions of the plug-in classifier based on simplicial interpolation are qualitatively very
different from those of the nearest neighbor rule. This is true even when restricting attention to a
single simplex. Suppose, for example, that η(x) < 1/2 for all x ∈ conv(x1 , . . . , xd+1), so the Bayes
classifier predicts 0 for all x in the simplex. On the other hand, due to label noise, we may have some
yi � 1. Suppose in fact that only yd+1 � 1, while yi � 0 for all i � 1, . . . , d. In this scenario (depicted
in Figure 1 for d � 2), the nearest neighbor rule (erroneously) predicts 1 on a larger fraction of the
simplex than the plug-in classifier based on η̂. The difference can be striking in high dimensions:
1/d for nearest neighbor versus 1/2d for simplicial interpolation in d-dimensional version of Figure 1.
This provides an intuition why, in contrast to the nearest neighbor rule, simplicial interpolation can
yield to classifiers that are nearly optimal in high dimensions.

Proposition 3.1. Suppose v1 , . . . , vd+1 are vertices of a non-degenerate simplex in Rd , and x is in their
convex hull with barycentric coordinates (w1 , . . . ,wd+1)—i.e., wi ≥ 0,

∑d+1
i�1 wi � 1, and x �

∑d
i�1 wi vi .

4We say a simplex in Rd is non-degenerate if it has non-zero d-dimensional Lebesgue measure.
5Of course, some points x have more than one containing simplex; we will see that the ambiguity in defining UT (x)

and LT (x) for such points is not important.
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The linear interpolation of (v1 , y1), . . . , (vd+1 , yd+1) ∈ Rd × R at x is given by
∑d+1

i�1 wi yi .

One consequence of Proposition 3.1 for η̂ is that if x is contained in two adjacent simplices (that
share a <d-dimensional face), then it does not matter which simplex is used to define UT(x); the
value of η̂(x) is the same in any case. Geometrically, we see that the restriction of the interpolating
linear function to a face of the simplex coincides with the interpolating linear function constructed
on a sub-simplex formed by that face. Therefore, we deduce that η̂ is a piecewise linear and
continuous interpolation of the data (x1 , y1), . . . , (xn , yn) on conv(x1 , . . . , xn).

We note that our prediction rule requires only locating the vertices of the simplex containing a
given point, rather than the considerably harder problem of constructing a full triangulation. In
fact, locating the containing simplex in a Delaunay triangulation reduces to solving polynomial-
size linear programs [22]; in contrast, computing the full Delaunay triangulation has complexity
exponential in the (intrinsic) dimension [2].

3.2 Mean squared error

We first illustrate the behavior of simplicial interpolation in a simple regression setting. Here,
(X1 ,Y1), . . . , (Xn ,Yn), (X,Y) are iid labeled examples from Rd × [0, 1]. For simplicity, we assume
that µ is the uniform distribution on a full-dimensional compact and convex subset of Rd .

In general, each Yi may deviate from its conditional mean η(Xi) by a non-negligible amount,
and hence any function that interpolates the training data is “fitting noise”. Nevertheless, in high
dimension, the mean squared error of such a function will be quite close to that of the (optimal)
conditional mean function.

Theorem 3.2. Assume µ is the uniform distribution on a full-dimensional compact and convex subset of
Rd ; η satisfies the (A, α)-smoothness condition; and the conditional variance function x 7→ var(Y | X � x)
satisfies the (A′, α′)-smoothness condition. Let δ̂T :� supx∈Ĉ diam(conv(UT(x))) denote the maximum
diameter of any simplex in the triangulation T derived from X1 , . . . ,Xn . Then

E[(η̂(X) − η(X))2] ≤ 1
4
E[µ(Rd \ Ĉ)] + A2E[δ̂2α

T ] +
2

d + 2
A′E[δ̂α′T ] +

2
d + 2

E[(Y − η(X))2].

Corollary 3.3. In addition to the assumptions in Theorem 3.2, assume supp(µ) is a simple polytope in Rd

and T is constructed using Delaunay triangulation. Then

lim sup
n→∞

E[(η̂(X) − η(X))2] ≤ 2
d + 2

E[(Y − η(X))2].

3.3 Classification risk

We now analyze the statistical risk of the plug-in classifier based on η̂, given by

f̂ (x) :� 1{η̂(x)>1/2} .

As in Section 3.2, we assume that µ is the uniform distribution on a full-dimensional compact and
convex subset of Rd .

We first state an easy consequence of Corollary 3.3 using known properties of plug-in classifiers.
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Corollary 3.4. Under the same conditions as Corollary 3.3,

lim sup
n→∞

E[R0/1( f̂ ) − R0/1( f ∗)] ≤
√

8
d + 2

E[(Y − η(X))2].

When the conditional mean function satisfies a margin condition, the 1/
√

d in Corollary 3.4 can
be replaced with a quantity that is exponentially small in d, as we show next.

Theorem 3.5. Suppose η satisfies the h-hard margin condition. As above, assume µ is the uniform
distribution on a simple polytope in Rd , and T is constructed using Delaunay triangulation. Furthermore,
assume η is Lipschitz away from the class boundary (i.e., on {x ∈ supp(µ) : |η(x) − 1/2| > 0}) and that the
class boundary ∂ has finite d − 1-dimensional volume6. Then, for some absolute constants c1 , c2 > 0 (which
may depend on h),

lim sup
n→∞

E[R0/1( f̂ )] ≤ R0/1( f ∗) · (1 + c1e−c2d).

Remark 3.6. Both Corollary 3.4 and Theorem 3.5 show that the risk of f̂ can be very close to the
Bayes risk in high dimensions, thus exhibiting a certain “blessing of dimensionality". This stands in
contrast to the nearest neighbor rule, whose asymptotic risk does not diminish with the dimension
and is bounded by twice the Bayes risk, 2R0/1( f ∗).

4 Interpolating nearest neighbor schemes

In this section, we describe a weighted nearest neighbor scheme that, like the 1-nearest neighbor
rule, interpolates the training data, but is similar to the classical (unweighted) k-nearest neighbor
rule in terms of other properties, including convergence and consistency. (The classical k-nearest
neighbor rule is not generally an interpolating method except when k � 1.)

4.1 Weighted & interpolated nearest neighbors

For a given x ∈ Rd , let x(i) be the i-th nearest neighbor of x among the training data ((xi , yi))ni�1
from Rd × R, and let y(i) be the corresponding label. Let w(x , z) be a function Rd × Rd → R. A
weighted nearest neighbor scheme is simply a function of the form

η̂(x) :�
∑k

i�1 w(x , x(i))y(i)∑k
i�1 w(x , x(i))

.

In what follows, we investigate the properties of interpolating schemes of this type.
We will need two key observations for the analyses of these algorithms.

Conditional independence. Thefirst key observation is that, under the usual iid sampling assumptions
on the data, the first k nearest neighbors of x are conditionally independent given X(k+1). That
implies that

∑k
i�1 w(x ,X(i))Y(i) is a sum of conditionally iid random variables7. Hence, under

6Specifically, limε→0 µ(∂ + B(0, ε)) � 0, where “+” denotes the Minkowski sum, i.e., the ε-neighborhood of ∂.
7Note that these variables are not independent in the ordering given by the distance to x, but a random permutation

makes them independent.
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a mild condition on w(x ,X(i)), we expect them to concentrate around their expected value.
Assuming some smoothness of η, that value is closely related to η(x) � E(Y | X � x), thus
allowing us to establish bounds and rates.

Interpolation and singular weight functions. The second key point is that η̂(x) is an interpolating
scheme, provided that w(x , z) has a singularity when z � x. Indeed, it is easily seen that
if limz→x w(x , z) � ∞, then limx→xi η̂(x) � yi . Extending η̂ continuously to the data points
yields a weighted & interpolated nearest neighbor (wiNN) scheme.

We restrict attention to singular weight functions of the following radial type. Fix a positive
integer k and a decreasing function φ : R+ → R+ with a singularity at zero, φ(0) � +∞. We take

w(x , z) :� φ

(
‖x − z‖
‖x − x(k+1)‖

)
.

Concretely, we will consider φ that diverge near t � 0 as t 7→ − log(t) or t 7→ t−δ, δ > 0.
Remark 4.1. The denominator ‖x − x(k+1)‖ in the argument of φ is not strictly necessary, but it allows
for convenient normalization in view of the conditional independence of k-nearest neighbors given
x(k+1). Note that the weights depend on the sample and are thus data-adaptive.
Remark 4.2. Although w(x , x(i)) are unbounded for singular weight functions, concentration only
requires certain bounded moments. Geometrically, the volume of the region around the singularity
needs to be small enough. For radial weight functions that we consider, this condition is more easily
satisfied in high dimension. Indeed, the volume around the singularity becomes exponentially
small in high dimension.

Our wiNN schemes are related to Nadaraya-Watson kernel regression [32, 49]. The use of
singular kernels in the context of interpolation was originally proposed by Shepard [40]; they do
not appear to be commonly used in machine learning and statistics, perhaps due to a view that
interpolating schemes are unlikely to generalize or even be consistent; the non-adaptive Hilbert
kernel regression estimate [20] (essentially, k � n and δ � d) is the only exception we know of.

4.2 Mean squared error

Wefirst state a riskbound forwiNNschemes in a regression setting. Here, (X1 ,Y1), . . . , (Xn ,Yn), (X,Y)
are iid labeled examples from Rd × R.
Theorem 4.3. Let η̂ be a wiNN scheme with singular weight function φ. Assume the following conditions:

1. µ is the uniform distribution on a compact subset of Rd and satisfies the (c0 , r0) regularity condition
for some c0 > 0 and r0 > 0.

2. η satisfies the (A, α)-smoothness for some A>0 and α>0.

3. φ(t) � t−δ for some 0 < δ < d/2.
Let Z0 :� λ(supp(µ))/λ(B(0, 1)), and assume n > 2Z0k/(c0rd

0 ). For any x0 ∈ supp(µ), let rk+1,n(x0) be
the distance from x0 to its (k + 1)st nearest neighbor among X1 , . . . ,Xn . Then

E
[
(η̂(X) − η(X))2

]
≤ A2E[rk+1,n(X)2α] + σ̄2

(
ke−k/4

+
d

c0(d − 2δ)k

)
,

where σ̄2 :� supx∈supp(µ) E[(Y − η(x))2 | X � x].
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The bound in Theorem 4.3 is stated in terms of the expected distance to the (k + 1)st nearest
neighbor raised to the 2α power; this is typically bounded by O((k/n)2α/d). Choosing k � n2α/(2α+d)

leads to a convergence rate of n−2α/(2α+d), which is minimax optimal.

4.3 Classification risk

We now analyze the statistical risk of the plug-in classifier f̂ (x) � 1{η̂(x)>1/2} based on η̂.
As in Section 3.3, we obtain the following easy consequence of Theorem 4.3 using known

properties of plug-in classifiers.

Corollary 4.4. Under the same conditions as Theorem 4.3,

E[R0/1( f̂ ) − R0/1( f ∗)] ≤

√
2A2E[rk+1,n(X)2α] + wσ̄2

(
ke−k/4 +

d
c0(d − 2δ)k

)
.

Choosing k � n2α/(2α+d) leads to a convergence rate of n−α/(2α+d).
We now give a more direct analysis, largely based on that of Chaudhuri and Dasgupta [16] for

the standard k-nearest neighbor rule, that leads to improved rates under favorable conditions.
Define

rp(x0) :� inf{r : µ(B(x0 , r)) ≥ p}, x0 ∈ Rd ;

wx0 ,r(x) :� φ
(
‖x0 − x‖

r

)
, x0 ∈ Rd , r ≥ 0, x ∈ B(x0 , r);

η̄x0 ,r :�

∫
B(x0 ,r) wx0 ,rη dµ∫
B(x0 ,r) wx0 ,r dµ

, x0 ∈ Rd , r ≥ 0.

For 0 < γ < 1/2, define the effective interiors of the two classes by

X−p ,γ :� {x0 ∈ supp(µ) : η̄x0 ,r ≤
1
2
− γ for all r ≤ rp(x0)},

X+
p ,γ :� {x0 ∈ supp(µ) : η̄x0 ,r ≥

1
2
+ γ for all r ≤ rp(x0)},

and define the effective boundary by

∂p ,γ :� Rd \ (X−p ,γ ∪ X+
p ,γ).

Points away from the boundary, i.e., inX−p ,γ orX+
p ,γ for p ≈ k/n, are likely to have k nearest neighbors

in X−p ,γ or X+
p ,γ, respectively, so that interpolating their labels yields accurate predictions.

Theorem 4.5. Let η̂ be a wiNN scheme with singular weight function φ, and let f̂ be the corresponding
plug-in classifier. Fix any 0 < γ < 1/2 and p > k/n. Then

P( f̂ (X) , f ∗(X)) ≤ µ(∂p ,γ) + exp

(
−

np
2

(
1 − k

np

)2
)
+

κp

4kγ2 ,
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where

κp :� sup
x0∈supp(µ),
0≤r≤rp(x0)

EX∼µ

[
φ

(
‖x0−X‖

r

)2 ��� X ∈ B(x0 , r)
]

EX∼µ

[
φ

(
‖x0−X‖

r

) ��� X ∈ B(x0 , r)
]2 .

While Theorem 4.5 is quite general, the values of quantities involved can be non-trivial to express
in terms of n. The following corollary leads to explicit rates under certain conditions.

Corollary 4.6. Assume the following conditions:

1. µ is the uniform distribution on a compact subset of Rd and satisfies the (c0 , r0) regularity condition
for some c0 > 0 and r0 > 0.

2. η satisfies the (A, α)-smoothness and (B, β)-margin conditions for some A>0, α>0, B>0, β≥ 0.

3. φ(t) � t−δ for some 0 < δ < d/2.

Let Z0 :� λ(supp(µ))/λ(B(0, 1)), and assume

k
n
< p ≤

c0rd
0

Z0
.

Then for any 0 < γ < 1/2,

P( f̂ (X) , f ∗(X)) ≤ B

(
γ + A

(
Z0p
c0

)α/d)β
+ exp

(
−

np
2

(
1 − k

np

)2
)
+

d
4kγ2c0(d − 2δ) .

Remark 4.7. For consistency, we set k :� n(2+β)α/((2+β)α+d), and in the bound, we plug-in p :� 2k/n
and γ :� A(Z0p/c0)α/d . This leads to a convergence rate of n−αβ/(α(2+β)+d).
Remark 4.8. The factor 1/k in the final term in Corollary 4.6 results from an application of Chebyshev
inequality. Under additional moment conditions, which are satisfied for certain functions φ (e.g.,
φ(t) � − log(t)) with better-behaved singularity at zero than t−δ, it can be replaced by e−Ω(γ

2k).
Additionally, while the condition φ(t) � t−δ is convenient for analysis, it is sufficient to assume that
φ approaches infinity no faster than t−δ.

5 Ubiquity of adversarial examples in interpolated learning

The recently observed phenomenon of adversarial examples [43] in modern machine learning has
drawn a significant degree of interest. It turns out that by introducing a small perturbation to the
features of a correctly classified example (e.g., by changing an image in a visually imperceptible
way or even by modifying a single pixel [42]) it is nearly always possible to induce neural networks
to mis-classify a given input in a seemingly arbitrary and often bewildering way.

We will now discuss how our analyses, showing that Bayes optimality is compatible with
interpolating the data, provide a possible mechanism for these adversarial examples to arise.
Indeed, such examples are seemingly unavoidable in interpolated learning and, thus, in much of the
modern practice. As we show below, any interpolating inferential procedure must have abundant
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adversarial examples in the presence of any amount of label noise. In particular, in consistent on
nearly consistent schemes, like those considered in this paper, while the predictor agrees with
the Bayes classifier on the bulk of the probability distribution, every “incorrectly labeled” training
example (i.e., an example whose label is different from the output of the Bayes optimal classifier)
has a small “basin of attraction” with every point in the basin misclassified by the predictor. The
total probability mass of these “adversarial” basins is negligible given enough training data, so that
a probability of misclassifying a randomly chosen point is low. However, assuming non-zero label
noise, the union of these adversarial basins asymptotically is a dense subset of the support for the
underlying probability measure and hence there are misclassified examples in every open set. This
is indeed consistent with the extensive empirical evidence for neural networks. While their output
is observed to be robust to random feature noise [21], adversarial examples turn out to be quite
difficult to avoid and can be easily found by targeted optimization methods such as PCG [29]. We
conjecture that it may be a general property or perhaps a weakness of interpolating methods, as
some non-interpolating local classification rules can be robust against certain forms of adversarial
examples [46].

To substantiate this discussion, we now provide a formal mathematical statement. For simplicity,
let us consider a binary classification setting. Let µ be a probability distribution with non-zero
density defined on a compact domain Ω ⊂ Rd and assume non-zero label noise everywhere, i.e.,
for all x ∈ Ω, 0 < η(x) < 1, or equivalently, P( f ∗(x) , Y | X � x) > 0. Let f̂n be a consistent
interpolating classifier constructed from n iid sampled data points (e.g., the classifier constructed
in Section 4.3).

Let An � {x ∈ Ω : f̂n(x) , f ∗(x)} be the set of points at which f̂n disagrees with the Bayes
optimal classifier f ∗; in other words,An is the set of “adversarial examples” for f̂n . Consistency of
f̂ implies that, with probability one, limn→∞ µ(An) � 0 or, equivalently, limn→∞ ‖ f̂n − f ∗‖L2

µ
� 0.

On the other hand, the following result shows that the setsAn are asymptotically dense in Ω, so
that there is an adversarial example arbitrarily close to any x.

Theorem 5.1. For any ε > 0 and δ ∈ (0, 1), there exists N ∈ N, such that for all n ≥ N, with probability
≥ δ, every point in Ω is within distance 2ε of the setAn .

Proof sketch. Let (X1 ,Y1), . . . , (Xn ,Yn) be the training data used to construct f̂n . Fix a finite ε-cover
ofΩwith respect to the Euclidean distance. Since f̂n is interpolating and η is never zero nor one, for
every i, there is a non-zero probability (over the outcome of the label Yi) that f̂n(Xi) � Yi , f ∗(Xi);
in this case, the training point Xi is an adversarial example for f̂n . By choosing n � n(µ, ε, δ) large
enough, we can ensure that with probability at least δ over the random draw of the training data,
every element of the cover is within distance ε of at least one adversarial example, upon which
every point in Ω is within distance 2ε (by triangle inequality) of the same. �

A similar argument for regression shows that while an interpolating η̂may converge to η in L2
µ, it

is generally impossible for it to converge in L∞ unless there is no label noise. An even more striking
result is that for the Hilbert scheme of Devroye et al., the regression estimator almost surely does
not converge at any fixed point, even for the simple case of a constant function corrupted by label
noise [20]. This means that with increasing sample size n, at any given point x misclassification
will occur an infinite number of times with probability one. We expect similar behavior to hold for
the interpolation schemes presented in this paper.
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6 Discussion and connections

In this paper, we considered two types of algorithms, one based on simplicial interpolation and
another based on interpolation by weighted nearest neighbor schemes. It may be useful to think
of nearest neighbor schemes as direct methods, not requiring optimization, while our simplicial
scheme is a simple example of an inversemethod, using (local) matrix inversion to fit the data. Most
popular machine learning methods, such as kernel machines, neural networks, and boosting, are
inverse schemes. While nearest neighbor and Nadaraya-Watson methods often show adequate
performance, they are rarely best-performing algorithms in practice. We conjecture that the
simplicial interpolation scheme may provide insights into the properties of interpolating kernel
machines and neural networks.

To provide some evidence for this line of thought, we show that in one dimension simplicial
interpolation is indeed a special case of interpolating kernel machine. We will briefly sketch
the argument without going into the details. Consider the space H of real-valued functions f
with the norm ‖ f ‖2H �

∫
(d f /dx)2 + κ2 f 2 dx. This space is a reproducing kernel Hilbert Space

corresponding to the Laplace kernel e−κ |x−z |. It can be seen that as κ → 0 the minimum norm
interpolant f ∗ � arg min f ∈H ,∀i f (xi)�yi

‖ f ‖H is simply linear interpolation between adjacent points
on the line. Note that this is the same as our simplicial interpolating method.

Interestingly, a version of random forests similar to PERT [18] also produces linear interpolation
in one dimension (in the limit, when infinitely many trees are sampled). For simplicity assume
that we have only two data points x1 < x2 with labels 0 and 1 respectively. A tree that correctly
classifies those points is simply a function of the form 1{x>t}, where t ∈ [x1 , x2). Choosing a random
t uniformly from [x1 , x2), we observe that Et∈[x1 ,x2] 1{x>t} is simply the linear function interpolating
between the two data points. The extension of this argument to more than two data points in
dimension one is straightforward. It would be interesting to investigate the properties of such
methods in higher dimension. We note that it is unclear whether a random forest method of this
type should be considered a direct or inverse method. While there is no explicit optimization
involved, sampling is often used instead of optimization in methods like simulated annealing.

Finally, we note that while kernel machines (which can be viewed as two-layer neural networks)
are much more theoretically tractable than general neural networks, none of the current theory
applies in the interpolated regime in the presence of label noise [11]. We hope that simplicial
interpolation can shed light on their properties and lead to better understanding of modern
inferential methods.
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A Proofs

A.1 Proof of Proposition 3.1

We can lift the simplex conv(v1 , . . . , vd) into Rd+1 with the mapping vi 7→ ṽi :� (1, vi). Since
conv(v1 , . . . , vd+1)hasnon-zero d-dimensional volumeV > 0, it follows that the cone conv(0, ṽ1 , . . . , ṽd+1)
has (d + 1)-dimensional volume V/(d + 1) > 0. This implies that ṽ1 , . . . , ṽd+1 are linearly inde-
pendent. So, letting A :� [ṽ1 | · · · |ṽd+1]T and b :� (y1 , . . . , yd+1), we can write β̃ :� (β̂0 , β̂) �
arg min(β0 ,β)∈R×Rd

∑d+1
i�1 (yi − β0 − vT

i β)2 as

β̃ � (ATA)−1ATb � A−1A−TATb � A−1b ,

where we have used the linear independence of ṽ1 , . . . , ṽd+1 to ensure the invertibility of A.
Therefore, since x̃ :� (1, x) � ATw for w :� (w1 , . . . ,wd+1), we have

β̂0 + xT β̂ � x̃T β̃ � (wTA)(A−1b) � wTb.

�

A.2 Proof of Theorem 3.2

Proof of Theorem 3.2. Throughout we condition on X1 , . . . ,Xn , and write

E
[
(η̂(X) − η(X))2

]
� E

[
(η̂(X) − η(X))2 | X < Ĉ

]
P(X < Ĉ)

+ E
[
(η̂(X) − η(X))2 | X ∈ Ĉ

]
P(X ∈ Ĉ).

For the first term, observe that if X < Ĉ, then η̂(X) � 1/2 and hence (η̂(X) − η(X))2 ≤ 1/4.
We now consider the second term, conditional on Z :� (X1 , . . . ,Xn) and X ∈ Ĉ. Let

LT(X) �: {(X(1) ,Y(1)), . . . , (X(d+1) ,Y(d+1))}. Since X ∈ conv(UT(X)), its barycentric coordinates
W :� (W1 , . . . ,Wd+1) in conv(UT(X)) are distributed as Dirichlet(1, . . . , 1). Let ε(i) :� Y(i) − η(X(i))
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and b(i) :� η(X(i)) − η(X) for i � 1, . . . , d + 1. Also, let v(x) :� var(Y | X � x) be the conditional
variance function. By the smoothness assumptions, we have

|b(i) | � |η(X(i)) − η(X)| ≤ A‖X(i) − X‖α ≤ Aδ̂αT

and
|v(X(i)) − v(X)| ≤ A′‖X(i) − X‖α′ ≤ A′δ̂α

′
T .

By Proposition 3.1, we have

η̂(X) − η(X) �
d+1∑
i�1

WiY(i) − η(X) �
d+1∑
i�1

Wi b(i) +
d+1∑
i�1

Wiε(i) ,

and

E
[
(η̂(X) − η(X))2 | Z; X ∈ Ĉ

]
� E


©­«

d+1∑
i�1

Wi b(i)
ª®¬

2

| Z; X ∈ Ĉ

 + E

©­«

d+1∑
i�1

Wiε(i)
ª®¬

2

| Z; X ∈ Ĉ

 .
For the first term,

E


©­«

d+1∑
i�1

Wi b(i)
ª®¬

2

| Z; X ∈ Ĉ

 ≤ E


d+1∑
i�1

Wi b2
(i) | Z; X ∈ Ĉ

 ≤ E


d+1∑
i�1

WiA2 δ̂2α
T | Z; X ∈ Ĉ

 � A2 δ̂2α
T

by Jensen’s inequality and the bound on |b(i) |. For the second term, we have

E


©­«

d+1∑
i�1

Wiε(i)
ª®¬

2

| Z; X ∈ Ĉ

 � E


d+1∑
i�1

W2
i ε

2
(i) | Z; X ∈ Ĉ


�

2
d + 2

· 1
d + 1

d+1∑
i�1

v(X(i))

≤ 2
d + 2

· 1
d + 1

d+1∑
i�1

v(X) + |v(X(i)) − v(X)|

≤ 2
d + 2

(
v(X) + A′δ̂α

′
T

)
by the bound on |v(X(i)) − v(X)|. Therefore

E
[
(η̂(X) − η(X))2 | Z; X ∈ Ĉ

]
≤ A2 δ̂2α

T +
2

d + 2

(
E[v(X) | Z; X ∈ Ĉ] + A′δ̂α

′
T

)
.

The conclusion follows by taking expectation with respect to Z and X. �

18



A.3 Proof of Corollary 3.3

Recall that µ is supported uniformly on a convex polytope, and that Ĉ is the convex hull of
X1 , . . . ,Xn . Consider the probability mass outside of Ĉ. This quantity has been intensely studied
in the context of stochastic geometry [see 37, for a review]. The following exemplifies the kind of
result one may expect.

Theorem A.1 ([1]). If µ is the uniform measure on a simple polytope with r vertices in Rd , then

E[µ(Rd \ Ĉ)] � r · d
(d + 1)d−1 ·

logd−1(n)
n

+ O

(
logd−2(n)

n

)
.

What is important for us is that lim supn→∞ E[µ(Rd \ Ĉ)] � 0.
Next we consider δ̂T , the maximum diameter of any simplex in the triangulation T (defined

in Theorem 3.2). For many natural triangulation schemes, we expect δ̂T → 0 as n → ∞. This is
indeed the case with Delaunay triangulation, in which the edges of each simplex in T are obtained
by connecting the centroids of neighboring cells in the Voronoi tessellation for the given point set
x1 , . . . , xn .

Lemma A.2. Suppose, for some ε > 0, x1 , . . . , xn form an ε-dense sampling of a set C ⊆ Rd , i.e., for
any x ∈ C there is an xi with distance ‖x − xi ‖ ≤ ε. Then the diameter of every simplex in Delaunay
triangulation corresponding to x1 , . . . , xn is bounded by 2ε.

Proof. Consider the Voronoi tessellation corresponding to the set x1 , . . . , xn . The Voronoi cell
corresponding to xi is defined simply as {x ∈ C : ∀ j , i � ‖x − xi ‖ ≤ ‖x − x j ‖}, the set of points
closest to xi than any other x j . It is easy to see that each Voronoi cell is a convex set. Moreover, the
distance from xi to any x in its corresponding cell cannot exceed ε, as the set x1 , . . . , xn is ε-dense for
C. The edges of Delaunay triangulation connect the centroids of neighboring elements of Voronoi
tessellation and thus are bounded by 2ε by the triangle inequality. The diameter of the simplex is
the length of the longest edge, so the claim is proved. �

We are now ready to prove Corollary 3.3.

Proof of Corollary 3.3. We need to argue that
1
4
E[µ(Rd \ Ĉ)] + A2E[δ̂2α

T ] +
2

d + 2
A′E[δ̂α′T ]

vanish as n →∞. This follows by applying Theorem A.1 and Lemma A.2. �

A.4 Proof of Theorem 3.5

The proof of Theorem 3.5 relies on the following tail bound.

Lemma A.3. Suppose Y1 , . . . ,Yk are independent {0, 1}-valued random variables, with p̄ :� maxi E[Yi] ≤
(1 − δ)/2 for some δ > 0. Moreover, suppose W :� (W1 , . . . ,Wk) ∼ Dirichlet(1, . . . , 1) and is independent
of Y :� (Y1 , . . . ,Yk). For any non-degenerate simplex with vertices v1 , . . . , vk ∈ Rk−1, the value `(X) of the
linear interpolation (v1 ,Y1), . . . , (vk ,Yk) ∈ Rk−1 × R at X �

∑k
i�1 Wi vi satisfies

P
(
`(X) > 1/2

)
≤ c1 p̄ · e−c2k

for some absolute constants c1 , c2 > 0 (which may depend on δ but not p̄ nor k).
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Proof. Recall that W has the same distribution as (G1 , . . . ,Gk)/
∑k

i�1 Gi , where G1 , . . . ,Gk are
independent Gamma random variables, each with unit shape and scale parameters. Let S :�∑k

i�1 Gi(Yi − 1/2). Then, by Proposition 3.1,

P(`(X) > 1/2) � P ©­«
k∑

i�1
WiYi > 1/2ª®¬ � P(S > 0).

We first prove a right tail bound for S that yields the desired bound when p̄ is bounded away
from zero by a constant, say, p̄ ≥ 1/8. Let δi :� 1 − 2E(Yi) for each i. Since δi ≥ δ > 0 for all i, it
follows that the moment generating function for S is

E[exp(λS)] �
k∏

i�1
E

[
exp

(
λGi(Yi − 1/2)

) ]
�

k∏
i�1
E

[
1

1 − λ(Yi − 1/2)

]
�

k∏
i�1

(
1 − δi

2 − λ +
1 + δi

2 + λ

)
�

k∏
i�1

(
1 − 2δiλ − λ2

4 − λ2

)
≤

(
1 − 2δλ − λ2

4 − λ2

) k

, 0 ≤ λ < 2.

Set λ∗ :� δ, so we obtain

P(S > 0) ≤ E[exp(λ∗S)] �
(
1 − δ2

4 − δ2

) k

≤ e−
δ2

4−δ2 k .

Since p̄ ≥ 1/8, it follows that

P(S > 0) ≤ 8p̄ · e−
δ2

4−δ2 k ,

which is of the form c1 p̄ · e−c2k for c1 � 8 and c2 � δ2/(4 − δ2).
Now, we prove the right tail bound for S under the assumption that p̄ ≤ 1/8. Fix any y ∈ {0, 1}k ,

and let t :�
∑k

i�1 yi denote be the number of 1’s in y. If t � 0, then we have

P(S > 0 | Y � y) � 0. (1)

If 0 < t < k/2, then by the summation property of the Gamma distribution, the conditional
distribution of S given Y � y is the same as that of (Ht − Hk−t)/2, where Ht and Hk−t are
independent Gamma random variables with unit scale, Ht has shape parameter t, and Hk−t has
shape parameter k − t. The moment generating function for Ht − Hk−t is

E[exp(λ(Ht − Hk−t))] �
1

(1 − λ)t ·
1

(1 + λ)k−t
, 0 ≤ λ < 1.
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Since 0 < t < k/2, the minimizer of the moment generating function is achieved at λ∗ :� 1− 2t/k. So

P(S > 0 | Y � y) � P(Ht − Hk−t > 0)
≤ E[exp(λ∗(Ht − Hk−t))]

�
1

(2t/k)t ·
1

(2 − 2t/k)k−t

� e−k·RE(t/k ,1/2) , (2)

where RE(p , q) :� p ln p
q + (1 − p) ln 1−p

1−q is the binary relative entropy. Therefore, using Equation (1)
and Equation (2),

P(S > 0) ≤
k/4∑
t�1
P(|Y | � t) · e−k·RE(t/k ,1/2)

+ P(|Y | > k/4)

≤ P(0 < |Y | ≤ k/4) · e−k·RE(1/4,1/2)
+ P(|Y | > k/4) (3)

where |Y | :� Y1 + · · · + Yk .
To put Equation (3) into the desired form, first observe that

P(0 < |Y | ≤ k/4) ≤ P(|Y | > 0)

� 1 −
k∏

i�1
(1 − P(Yi � 1))

≤ 1 − (1 − p̄)k

≤ p̄k. (4)

Moreover, by a standard coupling argument, if B is a binomial random variable with k trials and
success probability p̄, then

P(|Y | > k/4) ≤ P(B > k/4)

�

k∑
t�k/4+1

(
k
t

)
p̄t(1 − p̄)k−t

�
p̄

1 − p̄

k∑
t�k/4+1

k − (t − 1)
t

·
(

k
t − 1

)
p̄t−1(1 − p̄)k−(t−1)

≤
p̄

1 − p̄
·
(

k + 1
k/4 + 1

− 1
)
· P(B ≥ k/4)

≤ 5p̄ · P(B ≥ k/4)
≤ 5p̄ · e−k·RE(1/4,p̄) , (5)

where the second-to-last inequality uses the assumption p̄ ≤ 1/8, and the last inequality uses
a standard Chernoff bound for binomial random variables. Therefore, combining Equation (3),
Equation (4), and Equation (5),

P(S > 0) ≤ kp̄ · e−k·RE(1/4,1/2)
+ 5p̄ · e−k·RE(1/4,p̄) ≤ c1 p̄ · e−c2k

for some c1 , c2 > 0 as desired. �
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Now we can prove Theorem 3.5.

Proof of Theorem 3.5. By Lemma A.2, the maximum diameter δ̂T of simplices in the Delaunay
triangulation T tends to zero as n → ∞ almost surely. Consider now those simplices in the
triangulation which are not fully contained in the interior of one class, i.e., in either {x ∈ supp(µ) :
η(x) ≥ 1/2 + h} or {x ∈ supp(µ) : η(x) ≤ 1/2 − h}. Each of those simplices is contained in the δ̂T-
neighborhood of the class boundary ∂. As n →∞, the total measure of those simplices approaches
since limε→0 µ(∂ + B(0, ε)) � 0. Therefore, the output of f̂ on points in these simplices can be
arbitrary without affecting lim supn→∞ P( f̂ (X) , f ∗(X)). Similarly, by Theorem A.1, the output of f̂
on points outside of the convex hull Ĉ of X1 , . . . ,Xn also does not affect lim supn→∞ P( f̂ (X) , f ∗(X)).

Therefore, it is sufficient to prove our bound for the union of the simplices contained entirely
within in the interior of one class. Moreover, since our bound is preserved under taking unions of
sets, it is sufficient to prove the bound for the interior of a single simplex.

Let LT(X) �: {(X(1) ,Y(1)), . . . , (X(d+1) ,Y(d+1))} be the training examples defining one such simplex
∆ :� conv(X(1) , . . . ,X(d+1)). Without loss of generality we can assume that η(X(i)) ≤ 1/2 − h for all i
(the analysis for η(X(i)) ≥ 1/2 + h is the same). Conditional on X1 , . . . ,Xn , the random vector X
is uniformly distributed in ∆. Therefore, the barycentric coordinates (W1 , . . . ,Wd+1) of X within
∆ are distributed as Dirichlet(1, . . . , 1). Since X is independent of (X1 ,Y1), . . . , (Xn ,Yn), it follows
that (W1 , . . . ,Wd+1) is independent of Y(1) , . . . ,Y(d+1). Therefore, by Lemma A.3, we have

P(η̂(X) > 1/2 | X ∈ ∆) ≤ c1 max
i
η(X(i)) · e−c2(d+1)

for some absolute constants c1 , c2 > 0 (depending only on h). Since η is Lipschitz on the class
interior, we have for any x ∈ ∆,

|η(X(i)) − η(x)| ≤ Lδ̂T for all i � 1, . . . , d + 1

where L is the Lipschitz constant of η. Since δ̂T → 0 as n → ∞, it follows that maxi η(X(i)) →
P( f ∗(X) , Y | X ∈ ∆).

Since the above argument holds for any simplex ∆ contained entirely within a class interior, we
conclude

lim sup
n→∞

P( f̂ (X) , f ∗(X)) ≤ c1P( f ∗(X) , Y) · e−c2(d+1).

This completes the argument. �

A.5 Proof of Theorem 4.5

Proof of Theorem 4.5. Following Chaudhuri and Dasgupta [16] (and in particular, the proof of their
Theorem 5), we bound the probability of the event f̂ (X) , f ∗(X) by the sum of probabilities of three
events:

E1: X ∈ ∂p ,γ;

E2: the (k + 1)st nearest neighbor of X is more than distance rp(X) from X;

E3: ¬(E1 ∪ E2) and yet f̂ (X) , f ∗(X).
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We first consider E2. Fix any x0 ∈ Rd . The probability that Xi ∈ B(x0 , rp(x0)) is at least p. Since
X1 , . . . ,Xn are independent, we have (assuming k < np)

P(E2) � P
(
‖x0 − X(k+1)‖ > rp(x0)

)
≤ exp

(
−

np
2

(
1 − k

np

)2
)

by a multiplicative Chernoff bound; here X(k+1) denotes the (k + 1)st nearest neighbor of x0.
Now assume x0 < ∂p ,γ. To bound the probability of E3, we consider the following sampling

process for (X1 ,Y1), . . . , (Xn ,Yn) relative to x0:

1. Pick Xk+1 from the marginal distribution of the (k + 1)st nearest neighbor of x0.

2. Pick k points X1 , . . . ,Xk independently from µ restricted to B(x0 , ‖x0 − Xk+1‖).

3. Pick n − k − 1 points Xk+2 , . . . ,Xn independently from µ restricted to Rd \ B(x0 , ‖x0 − Xk+1‖).

4. For each Xi , independently pick the label Yi from the corresponding conditional distribution
with mean η(Xi).

The distance from x0 to its (k + 1)st nearest neighbor is determined in the first step of this process,
from the choice of Xk+1. The k nearest neighbors of x0 are the points X1 , . . . ,Xk picked in the
second step; their corresponding labels are Y1 , . . . ,Yk .

Suppose without loss of generality that x0 ∈ X−p ,γ. It suffices to prove that, conditional on the
event r :� ‖x0 − Xk+1‖ ≤ rp(x0),

P
©­«

k∑
i�1

φ

(
‖x0 − Xi ‖

r

)
· (Yi − 1/2) > 0ª®¬ ≤

κp

4kγ2 .

Observe that by definition of η̄x0 ,r and the assumption x0 ∈ X−p ,γ,

E

[
φ

(
‖x0 − Xi ‖

r

)
· (Yi − 1/2)

]
� E

[
φ

(
‖x0 − Xi ‖

r

)
· (η(Xi) − 1/2)

]
≤ − γ · E

[
φ

(
‖x0 − Xi ‖

r

)]
︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸

�:T

for each i � 1, . . . , k. Define Zi :� φ(‖x0 − Xi ‖/r)(Yi − 1/2) for i � 1, . . . , k. Since Z1 , . . . , Zk are iid,
the following bound holds by Chebyshev’s inequality:

P
©­«

k∑
i�1

Zi − E(Zi) > kTª®¬ ≤ var(Z1)
kT2 ≤

E

[
φ

(
‖x0−X1‖

r

)2
(Yi − 1/2)2

]
kγ2E

[
φ

(
‖x0−X‖

r

)]2 �

E

[
φ

(
‖x0−X1‖

r

)2
]

4kγ2E

[
φ

(
‖x0−X‖

r

)]2 .

The conclusion follows now from the definition of κp . �
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A.6 Proof of Corollary 4.6

Lemma A.4. Under the assumptions of Corollary 4.6:

1.

sup
x∈supp(µ)

rp(x) ≤
(

Z0p
c0

)1/d
.

2.

µ(∂p ,γ) ≤ B

(
γ + A

(
Z0p
c0

)α/d)β
.

3.

κp ≤ sup
x0∈supp(µ),
0≤r≤rp(x0)

EX∼µ

[
φ

(
‖x0 − X‖

r

)2 ��� X ∈ B(x0 , r)
]
≤ d

c0(d − 2δ) .

Proof. First, we bound supx∈supp(µ) rp(x). Let Rp :� (Z0p/c0)1/d , and fix any x ∈ supp(µ). By
assumption, Rp ≤ r0, so λ(B(x , Rp) ∩ supp(µ)) ≥ c0λ(B(x , Rp)). Consequently,

µ(B(x , Rp)) ≥
c0λ(B(x , Rp))
λ(supp(µ)) �

c0Rd
pλ(B(0, 1))

λ(supp(µ)) �
c0Rd

p

Z0
� p.

Next, we bound µ(∂p ,γ). Pick any x0 ∈ supp(µ). If η(x0) ≥ 1/2+γ+ARα
p , then by the smoothness

condition,
η(x) ≥ η(x0) − ARα

p ≥
1
2
+ γ, x ∈ B(x0 , Rp).

Hence η̄x0 ,r ≥ 1/2 + γ for all r ≤ Rp . Similarly, if η(x0) ≤ 1/2 − γ − ARα
p , then

η(x) ≤ η(x0) + ARα
p ≤

1
2
− γ, x ∈ B(x0 , r),

which implies η̄x0 ,r ≤ 1/2 − γ for all r ≤ Rp . Since rp(x0) ≤ Rp for all x0 ∈ supp(µ), we conclude
that

∂p ,γ ⊆ {x0 ∈ supp(µ) : |η(x0) − 1/2| ≤ γ + ARα
p }.

The claim now follows by using the (B, β)-margin condition.
Finally, we bound κp . Fix any x0 ∈ supp(µ) and 0 ≤ r ≤ rp(x0) (so r ≤ Rp ≤ r0). Then

µ(B(x0 , r)) �
λ(B(x0 , r) ∩ supp(µ))

λ(supp(µ)) ≥ c0λ(B(x0 , r))
λ(supp(µ)) �

c0rdλ(B(0, 1))
λ(supp(µ)) �

c0rd

Z0
,
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and

EX∼µ

[(
‖x0 − X‖

r

)−2δ

1{X∈B(x0 ,r)}

]
�

∫
B(x0 ,r)

(
‖x0 − x‖

r

)−2δ

µ(dx)

≤ 1
λ(supp(µ))

∫
B(x0 ,r)

(
‖x0 − x‖

r

)−2δ

λ(dx)

�
dλ(B(0, 1))
λ(supp(µ))

∫ r

0

(
ρ

r

)−2δ

ρd−1 dρ

�
d

Z0
· rd

d − 2δ
.

This implies

EX∼µ

[
φ

(
‖x0 − X‖

r

)2 ��� X ∈ B(x0 , r)
]
≤

d
Z0
· rd

d−2δ
c0rd

Z0

�
d

c0(d − 2δ) .

Moreover,

EX∼µ

[(
‖x0 − X‖

r

)−δ
1{X∈B(x0 ,r)}

]
≥ µ(B(x0 , r)),

so we conclude

κp ≤ sup
x0∈supp(µ),
0≤r≤rp(x0)

EX∼µ

[
φ

(
‖x0 − X‖

r

)2 ��� X ∈ B(x0 , r)
]
≤ d

c0(d − 2δ) . �

The proof of Corollary 4.6 follows by combining the bounds on µ(∂p ,γ) and κp from Lemma A.4
with Theorem 4.5.

A.7 Proof of Theorem 4.3

Proof of Theorem 4.3. Fix x0 ∈ supp(µ). As in theproof ofTheorem4.5,we sample (X1 ,Y1), . . . , (Xn ,Yn)
as follows:

1. Pick Xk+1 from the marginal distribution of the (k + 1)st nearest neighbor of x0.

2. Pick k points X1 , . . . ,Xk independently from µ restricted to B(x0 , ‖x0 − Xk+1‖).

3. Pick n − k − 1 points Xk+2 , . . . ,Xn independently from µ restricted to Rd \ B(x0 , ‖x0 − Xk+1‖).

4. For each Xi , independently pick the label Yi from the corresponding conditional distribution
with mean η(Xi).

The distance from x0 to its (k + 1)st nearest neighbor is determined in the first step of this process,
from the choice of Xk+1. The k nearest neighbors of x0 are the points X1 , . . . ,Xk picked in the second
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step; their corresponding labels are Y1 , . . . ,Yk , so the regression estimate at x0 is η̂(x0) �
∑k

i�1 WiYi ,
where

Wi :�
φ

(
‖x0−Xi ‖
‖x0−Xk+1‖

)
∑k

j�1 φ
( ‖x0−X j ‖
‖x0−Xk+1‖

) , i � 1, . . . , k.

Define εi :� Yi − η(Xi) and bi :� η(Xi) − η(x0) for i � 1, . . . , k. Then

η̂(x0) − η(x0) �
k∑

i�1
Wi bi +

k∑
i�1

Wiεi ,

and

E
[
(η̂(x0) − η(x0))2 | X � x0

]
� E


©­«

k∑
i�1

Wi bi
ª®¬

2

| X � x0

 + E

©­«

k∑
i�1

Wiεi
ª®¬

2

| X � x0

 .
By the smoothness assumption, we have

|bi | � |η(Xi) − η(x0)| ≤ A‖Xi − x0‖α ≤ A‖Xk+1 − x0‖α

so

E


©­«

k∑
i�1

Wi bi
ª®¬

2

| X � x0

 ≤ A2E[rk+1,n(x0)2α]. (6)

Furthermore,

E


©­«

k∑
i�1

Wiεi
ª®¬

2

| X � x0

 � E


k∑

i�1
W2

i ε
2
i +

∑
i, j

WiW jεiε j | X � x0


≤ k σ̄2E[W2

1 | X � x0]

≤ σ̄2
(
ke−k/4

+
d

c0(d − 2δ)k

)
, (7)

where the last inequality follows from Claim A.5 (below). Combining (6) and (7) concludes the
proof. �

Claim A.5. Fix X � x0 ∈ supp(µ), and consider the sampling process for X1 , . . . ,Xk+1 in the proof of
Theorem 4.3 to define

W1 :�

(
‖x0−X1‖
‖x0−Xk+1‖

)−δ
∑k

j�1

( ‖x0−X j ‖
‖x0−Xk+1‖

)−δ .
Under the assumptions of Theorem 4.3,

E[W2
1 ] ≤ e−k/4

+
d

c0(d − 2δ)k2 .
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Proof. Let p :� 2k/n and Rp :� (Z0p/c0)1/d . Let E1 be the event that rk+1,n(x0) ≤ Rp . The assumption
n > 2Z0k/(c0rd

0 ) implies that Rp ≤ r0. Furthermore, the arguments in the proof of Corollary 4.6
imply that µ(B(x0 , Rp)) ≥ p. Therefore, as in the proof of Theorem4.5, it follows fromamultiplicative
Chernoff bound that P(E1) ≥ 1 − e−k/4.

Now observe that

W2
1 �

(
‖x0−X1‖
‖x0−Xk+1‖

)−2δ(∑k
j�1

( ‖x0−X j ‖
‖x0−Xk+1‖

)−δ)2 ≤
1
k2

(
‖x0 − X1‖
‖x0 − Xk+1‖

)−2δ

.

Therefore, by Lemma A.4 (part 3),

E[W2
1 | E1] ≤

1
k2 · E

[(
‖x0 − X1‖
‖x0 − Xk+1‖

)−2δ

| E1

]
≤ 1

k2 ·
d

c0(d − 2δ) .

The claim follows because E[W2
1 ] ≤ P(¬E1) + E[W2

1 | E1]. �

B Interpolating kernel regression and semi-supervised learning

B.1 Interpolation in RKHS

In this section we make some informal observations and notes on kernel regression in Reproducing
Kernel Hilbert Space and semi-supervised learning. Full and rigorous exploration of these
theoretically rich and practically significant topics is well beyond the scope of this paper and, likely,
requires new theoretical insights. Still, we feel that some comments and observations may be of
interest and could help connect our treatment of interpolation to other related ideas.

We start by discussing a simple setting already mentioned in Section 6. Consider the spaceH
of real-valued functions f with the norm defined as

‖ f ‖2H �
1
2

∫
(d f /dx)2 + κ2 f 2 dx. (8)

This space is a reproducing kernel Hilbert Space corresponding to the Laplace kernel e−κ |x−z | . We
can now define the minimum norm interpolant as

η̂ � arg min
f ∈H ,∀i f (xi)�yi

‖ f ‖H .

It is well-known that the η̂ can be written as a linear combination of kernel functions:

η̂(x) �
∑

i

αi e−κ |xi−x | .

The coefficient αi can be obtained by solving a system of linear equations given by η̂(xi) � yi .
It is however not necessary to solve this system to find the interpolating solution. Minimizing

the norm directly, from the calculus of variations it follows that η̂ satisfies the following differential
equation:

d2η̂

dx2 � κ2η̂. (9)
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This equation should be solved in each interval (xi , xi+1) separately (here, assuming x1 < · · · < xn).
The boundary conditions 1(xi) � yi and 1(xi+1) � yi+1 uniquely determine the solution of this
second order ODE inside the interval.

Importantly, note that as κ→ 0, the solution tends to a linear interpolation between the sample
points, since the differential equation becomes d2 η̂

dx2 � 0, i.e., η̂(x) � a + bx in each interval with
the line passing through the samples at the ends of the interval. This observation connects RKHS
interpolation in one dimension to simplicial interpolation analyzed in some detail in this paper.
Higher dimensional RKHS kernel interpolation is significantly harder to analyze but some insight
may be gained by considering a special case below.

B.2 Connections to semi-supervised learning

We will now discuss a discrete version of (9) on a graph and its connection to semi-supervised
learning. We do not attempt any theoretical analyses of these methods here. Let G � (V, E) be a
(potentially weighted) graph with vertices xi , i � 1, . . . , n. Let W be its adjacency matrix and L the
corresponding graph Laplacian. We can now consider the (finite-dimensional) space of functions f
defined on the vertices of the graph G. The following definition of the norm is the discrete analogue
of (8):

‖ f ‖2H �
1
2


∑
i , j

wi j( f (xi) − f (x j))2 + κ2
∑

i

f (xi)2
 .

This norm defines a finite dimensional RKHS on the vertices of the graph G. In the semi-supervised
setting, where some of the vertices, x1 , . . . , xk have labels y1 , . . . , yk , the interpolation problem
becomes almost the same as before

η̂ � arg min
f ∈H ,∀i∈{1,...,k} f (xi)�yi

‖ f ‖H .

Considering η̂ as a vector, we see that the analogue of the differential equation in (9) is the
system of linear equations

(L η̂)(xi) � κ2η̂(xi), i � k + 1, . . . , n ,
η̂(xi) � yi , i � 1, . . . , k.

The set of linear equations determining the minimum norm interpolating solution on the unlabelled
points i can be recast into a somewhat more intuitive form:∑

i∈Ni

wi j(η̂i − η̂ j) + κ2η̂i � 0,

or, equivalently

η̂i �
zi

κ2 + zi
η̄i ,

η̄i �
1
zi

∑
i∈Ni

wi j η̂ j .
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HereNi is the set of neighbors of i (i.e., nodes connected to i by edges of the graph) and zi �
∑

i∈Ni
wi j

is the weighted degree of the ith vertex.
The classifier for semi-supervised classification can be obtained by thresholding η̂(xi). This

provides a graph-based interpolated semi-supervised learning algorithm similar to label propaga-
tion [53] or interpolated graph regularization [10]. Indeed, when κ→ 0, this scheme becomes label
propagation. Interestingly, and consistently with the main story of this paper, it has been observed
empirically in various works including the references above that interpolated semi-supervised
learning typically provides optimal or near-optimal results compared to regularization.

If the graph corresponded to a (unweighted) hypercubic lattice in d-dimensions, then the
degree of each vertex is zi � 2d. Thus, the interpolating solution has the property that at each
unlabeled vertex, the inferred label value is proportional to the average of the assigned labels in the
neighboring vertices. This is reminiscent of the interpolated nearest neighbor algorithms discussed
in this paper.

While the solution of these equations generally depends on the structure of the neighborhood
graph, there is a particularly simple case for which a closed form solution is easily obtained. This
corresponds to the fully connected (unweighted) graph. The fully connected graph can be viewed
as a local model for high-dimensional data. Similarly, it is used in the physics literature to mimic an
infinite dimensional lattice.

Consider the classification setting with yi ∈ {±1} with the number of labeled points k � n+ + n−,
where n+ and n− are the numbers of positive and negative labels in the set. Each point has n − 1
neighbors, i.e., zi � n − 1. We also assume P(yi � 1) � p and P(yi � −1) � 1 − p, i.e., the probability
distribution of the label is the same at each vertex. If p > 1

2 , then the Bayes classifier always picks
the positive class, and the Bayes error is 1 − p.

It is easy to see with the above assumptions that the semi-supervised learning algorithm
described above recovers the Bayes classifier when k → ∞. Since each unlabeled vertex is
equivalent, the solution ηU

i � ηU does not depend on i. Thus, the minimum norm interpolating
solution is constant on all the unlabeled points and is given by

η̂U
�
(n − 1 − k)η̂U + n+ − n−

n − 1 + κ2 ,

η̂U
�

n+ − n−
k + κ2 .

The value of the interpolating regression function in this example is a constant and is independent of
the number of unlabeled points. The plug-in classifier output is given at every site by f̂ � sign(η̂U) �
sign(n+ − n−). Notice, as in d � 1, the classifier output does not depend on κ.

If p > 1
2 and k is large, then f̂ is therefore +1 with high probability, and for k →∞ one recovers

the Bayes classifier. Using Hoeffding’s inequality for the Binomially distributed n+, the excess risk
is exponentially small:

P( f̂ (X) , f ∗(X)) � P(n+ − n− < 0) ≤ e−2(p− 1
2 )2k .
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