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Abstract

Textbook wisdom advocates for smooth function fits and implies that interpolation of
noisy data should lead to poor generalization. A related heuristic is that fitting parameters
should be fewer than measurements (Occam’s Razor). Surprisingly, contemporary machine
learning (ML) approaches, cf. deep nets (DNNs), generalize well despite interpolating noisy
data. This may be understood via Statistically Consistent Interpolation (SCI), i.e. data
interpolation techniques that generalize optimally for big data. In this article we elucidate
SCI using the weighted interpolating nearest neighbors (wiNN) algorithm, which adds singular
weight functions to kNN (k-nearest neighbors). This shows that data interpolation can be
a valid ML strategy for big data. SCI clarifies the relation between two ways of modeling
natural phenomena: the rationalist approach (strong priors) of theoretical physics with few
parameters and the empiricist (weak priors) approach of modern ML with more parameters
than data. SCI shows that the purely empirical approach can successfully predict. However
data interpolation does not provide theoretical insights, and the training data requirements may
be prohibitive. Complex animal brains are between these extremes, with many parameters, but
modest training data, and with prior structure encoded in species-specific mesoscale circuitry.
Thus, modern ML provides a distinct epistemological approach different both from physical
theories and animal brains.

Introduction: We can easily imagine the perfect equality of two sticks, even though we have
never seen two real sticks being exactly equal. Thus, argues Socrates in Phaedo, we must have
been born with the idea of perfect equality, and it was not derived from our sensory experience.
The existence and extent of a priori knowledge has long been a subject of philosophical debate
between the rationalist and empiricist schools of thought, the latter emphasizing the derivation of
all knowledge from sense data. This debate has re-emerged in the enterprise of modern machine
learning (ML), with the failures of a previous generation of AI attributed to strong and possibly
inappropriate priors in the form of hand-crafted rules. In contrast, the idea is that the modern
approach succeeds by focusing on empirical learning from exhaustively large data sets without
incorporating strong priors.

Two striking and inter-related features of current practice in ML are over-parameterization (more
model parameters than data values) and data interpolation (exactly fitting the training data labels).
Traditionally, in statistics, the practice has been to minimize the number of model parameters and
not to interpolate the training data, as this is thought to lead to fitting "noise" rather than "signal"
and consequently to poor generalization on a test data set[1, 2]. Over-parameterization also runs
counter to scientific theoretical norms of model parsimony for understanding natural phenomena,
as exemplified by theoretical physics. Another important context comes from neurobiology and the
nature-nurture tradeoff. Although shaped by experience and learning, brain architecture is encoded
in the species genome and unfolded through a developmental program, a modern day version of
Socrates’ prior knowledge. Thus the emerging practice of interpolating noisy data distinguishes
modern ML from textbook statistics, theorizing in the physical sciences as well as biological learning
with its species-specific priors.

Given this departure from standard practice in multiple disciplines as well as from biological
learning, it is particularly striking to note that commercially successful modern ML approaches
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generalize well even with training data interpolation[3]. The circumstances under which this can
happen is the subject of a growing body of research[3, 4, 5, 6, 7]. The current article attempts to
clarify one of the key underlying issues, namely the statistical consistency of data interpolation, i.e.
the circumstances under which the data interpolation function is optimal in the sense of having the
least possible generalization error in the limit of large data sizes.

This phenomenon, Statistically Consistent Interpolation or SCI, may be readily understood in
terms of a newly introduced class of non-parametric interpolating function estimators discussed in
the article, and sheds light on the differing approaches to modeling natural phenomena provided by
traditional physical theory, modern ML, and biological brains. Beyond the theoretical interest, SCI
has practical implications. It opens up a new area of research by bringing function interpolation
techniques, an established discipline but applied previously largely to noise free data (such as in
computer graphics), to bear on ML problems. It also clarifies the circumstances under which data
interpolation using modern ML approaches might be legitimate in scientific data analysis despite
the presence of measurement noise.

Disciplinary context: physical sciences, classical statistics and computer science
Theoretical physics has long sought to minimize the number of free parameters, as exemplified by
Von Neumann’s quip[8] about being able to "fit an elephant" given four parameters, and making
its tail wiggle if given a fifth. An important triumph of theoretical physics has been to encapsulate
natural phenomena in a small number of laws with a very small number of fundamental parameters.
Some of the most important aspects of physical law (e.g., the conservation of mass-energy) do not
involve any parameters whatsoever, and do not relate in any obvious way to parametric model
fitting, let alone data interpolation.

Classical statistics also aims to minimize fitting parameters and in addition cautions against
data interpolation (e.g., see P.21 [2]). In modern statistics, algorithms such as l1 penalized
sparse regression[9] have explored the high-dimensional regime[10] where the number of fitting
parameters and data points are comparable. However, standard statistical practice is to use non-zero
regularization to maintain non-zero error on the training set and not to interpolate data. Indeed,
it has been suggested that a reason why data interpolation has taken hold in modern machine
learning is that computer scientists are not used to making strong distinctions between signal and
noise[4] and are therefore more comfortable "fitting noise".

In light of these divergent views and practices across disciplines, the pragmatic success of
noisy data interpolation using overparameterized learners [5] for real applications, calls for better
theoretical understanding. The success of interpolating learners also has important practical
implications - it brings a rich set of theoretical and computational tools for data interpolation,
previously used in noise-free settings, into the arena of machine learning, and has the potential of
changing how data analysis is taught and practiced.

How can noisy data interpolation coexist with good generalization?
The literature on overparameterized and interpolating learners is growing rapidly and is beyond

the scope of this perspective to review[3, 4, 11, 12, 13, 14, 15, 16, 17, 18]. However, it is useful to
briefly discuss some of the relevant ideas.

Much of the current theoretical analysis in machine learning is centered around the computation
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Figure 1: The Weighted Interpolating Nearest Neighbor (wiNN) algorithm and its application to a
simple linear regression problem. In the regression example, the sample data points (open circles)
are given by yi = xi + νi (i = 1..50) where xi are uniformly distributed over the interval [0 1]
and the noise is normally distributed νi ∼ N(0, 1). y = x is given as a solid blue line. The wiNN
interpolator using logarithmic weights and k = 20 is shown as a red curve (note that the curve is
close to the blue line, except near the data points where it spikes to interpolate). Outside the range
of xi, the interpolating function goes to a constant value consistent with its value at the edge of
the range: wiNN is an interpolation algorithm, and cannot extrapolate.

of bounds on the generalization error based on the capacity of the class of fitting functions([19],
also see Rademacher complexity analysis of overparameterized networks[20, 21]). However, model
complexity based bounds lack explanatory power for interpolating learners even for the theoretically
well controlled case of Kernel Machines[5]. One set of theoretical ideas to explain good generalization
under zero training error conditions can be found in Boosting, where weak learners are progressively
added while re-weighting training examples to prioritize difficult cases. Continuing to boost can
drive the training error for classification to zero, without increasing the test error (see Fig.1 in [22]),
a phenomenon that has been explained by invoking the concept of classifier margin on the training
set. However, the margin theory of boosting does not directly apply to regression functions that
interpolate data labels since the margin on the training set is zero.

Deep nets are non-linearly parameterized functions, and are challenging to analyze theoretically
except in limiting cases. In addition, an interpolating deep net fit does not guarantee good
generalization [23]. The phenomenon of SCI, although observed empirically while training deep nets,
is better understood directly within the context of a simple non-parametric estimation algorithm
presented below. We will comment briefly on parametric models such as deep nets in a later section.

Statistically consistent interpolation: the wiNN estimator
A recently proposed non-parametric data interpolation algorithm for classification and regression,

the (singularly) weighted Interpolating Nearest Neighbors algorithm (wiNN)[6] (Figs.1-2) helps
understand why zero training error can coexist with good generalization[6] for broad function
classes. The wiNN algorithm belongs to the class of Nadaraya-Watson kernel estimators[24, 25]
but utilizes a singular kernel. Here we briefly review this algorithm together with proof sketches
(provided in supplementary section 1), illustrative examples and a contextual discussion.

Consider n labelled data points xi, yi drawn from a suitable joint distribution P (x, y), where
(xi, yi) ∈ Rd × R for regression and (xi, yi) ∈ Rd × {0, 1} for classification. The wiNN estimator
(with parameters k, δ) for the regression function (i.e. conditional mean) at a test point x is given
by a singularly weighted average of the k nearest neighboring sample points x(i), i = 1..k, where
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Figure 2: Classification using wiNN is illustrated in (a) in 2D; P (y = 1|x) ∼ N((2, 0), 1) and
P (y = 0|x) ∼ N((0, 0), 1). N((2, 0), 1) and N((0, 0), 1) denote isotropic 2D Gaussian distributions
centered at (2, 0) and 0, 0, each with unit variance. The sample points in the training set are
marked with red and green symbols. The red vertical line is the Bayes classification boundary, and
the wiNN plug-in estimators using log weights (n = 50, k = 20) for the two classes are shown in
purple and yellow. (b) Zoom-in portion of the image on the right shows islands of mis-classification
around the mis-labelled green stars (cf: adversarial examples)

x(i) is the ith closest neighbor of x (Fig.1):

η̂(x) =

∑k
i=1 y(i)w(x, x(i))∑k
i=1 w(x, x(i))

(1)

where the weights w(x, x(i)) := (r(k+1)/r(i))
δ − 1 with 0 ≤ δ < d/2. The δ = 0 case corresponds

to logarithmic weights w(x, x(i)) := log(r(k+1)/r(i)). Here r(i) = |x − x(i)|. The weights can be
generalized as long as the singularity at the origin (which enforces training data interpolation) is
maintained. Note that if 1 is not subtracted in the definition, then the δ = 0 case corresponds to
the classical k-Nearest Neighbor (kNN) estimator. The original proposal in [6] does not include the
−1 in the definition but we find it convenient to include so as to connect to the logarithmic weights.
For classification, the plug-in estimator for the label at a test point is obtained by thresholding
η̂(x).

The behavior of this estimator is illustrated in Fig.1 for regression and Fig.2 for classification.
Note that the estimator is local and data adaptive (through the choice of the neighborhood parameter
k). Both are crucial properties of the estimator, and are shared with classical kNN style estimators
- the novelty is that the wiNN estimator interpolates.

Precursors:
The well-known "one nearest neighbor" (1NN) rule is in fact an interpolating classifier. It is

worth emphasizing that in the large data limit, this well-known rule has a classification risk that is
within a factor of two of the Bayes risk[26], limn→∞R1NN ≤ 2RB . The 1NN rule is not statistically
consistent (i.e. the asymptotic large-sample limit is not equal to the Bayes risk). However, if label
noise is small, this is already quite good. If the classes do not overlap and there is no label noise,
then the 1NN rule predicts perfectly in the large sample size limit. For example, if the label noise
is low such that only 5% of the samples are mislabelled, then the generalization error for the 1NN
rule will be less than 10% in the big data limit. Statistical consistency can be achieved by using
the kNN rule, where the labels of k nearest neighbors are averaged over, but the kNN estimator
smooths and does not interpolate the training data.

Two previous examples of using singular weights for interpolation exist: Shepard’s method[27]
for spatial interpolation of geophysical data in 2D and 3D, and the non-adaptive Hilbert-kernel
estimator due to Devroye et al[28], with k = n and δ = d, however, in general, interpolating learners
for noisy data are missing from classical statistics.

An interesting side note: the well-known Lagrange polynomial interpolation[29] in 1D can
be recovered from Eq.1 with the singular "weight" w(x, xi) = wi/(x − xi) with wi =

∏
j(xj −
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xi)
−1, but note that this "weight" function can be negative and Lagrange interpolation is not a

very good interpolation scheme for general positions of the interpolation points (due to Runge’s
phenomenon[30]).

Statistical consistency of wiNN:
Importantly, it can be shown [6](an intuitive proof-sketch is provided in the supplementary

section 1), that the wiNN estimator is statistically consistent for functions (or class-conditional
PDFs, respectively, for regression and binary classification problems) chosen from Hölder classes, a
broad function class. This means that in the case of classification, the expected risk or generalization
error tends to that of the Bayes classifier in the large sample limit n → ∞. For regression, the
expected risk or generalization error is measured using the expected mean squared error between the
sample-based estimate of the regression function and the true regression function. These expected
risks can be shown to approach the theoretical lower bounds as the number of samples grow.

More precisely, for regression the excess risk goes to zero as (see the supplementary section for
notation and a proof sketch):

Rsq(η̂)−Rsq(η) = E[(η̂(x)− η(x))2] ∼ n−
2α

2α+d (2)

For classification,

E[R0/1(f̂)]−R0/1(fB) ≤
√
E[(η̂(x)− η(x))2] ∼ n−

α
2α+d (3)

Here Rsq is the expected value of the squared loss or risk, η̂ is the wiNN estimator, η is the
regression function, R0/1 is the zero-one loss for classification, and fB the Bayes classifier. The
basic idea is to use a bias-variance decomposition of the excess risk term. The variance term reduces
with increasing k as ∼ 1

k , as would be expected from averaging k samples. The bias term increases
with k since further neighbors are used in the estimator, however if the sample size n increases for
fixed k, then the distance to the kth neighbor also decreases, so that bias decreases with increasing
n. Under the assumptions of α−Holder continuity of the regression function in dimension d, the
bias term behaves as ( kn )

2α
d . Trading off the bias and variance terms, one finds that the optimal

sample-size dependent choice for k is ∼ n
2α

2α+d . For this choice of k, the excess risk for regression
goes to zero as n−

2α
2α+d .

Not only is the wiNN estimator consistent under general conditions, surprisingly it can outperform
the smoother non-interpolating kNN estimator for suitable choices of parameters[18, 31]. This goes
against the grain of the intuition that smoother non-interpolating regression functions are better
than interpolating regression functions that appear less smooth.

Note that wiNN exhibits the "curse of dimensionality" as one would expect given its general
setting. The number of samples needed to reach an excess risk ∼ ε scales exponentially with
dimension as n(ε) ∼ (1/ε)1+

d
2α .

How do deep net based function fits relate to SCI?
A detailed theoretical treatment of the generalization properties of overparameterized deep

networks that interpolate data is beyond the scope of this article, but we present some relevant
ideas here. The possible connections between these different interpolation schemes in the context of
statistical consistency is schematically illustrated in Fig.3.

The wiNN algorithm is a local, non-parametric function estimator and exhibits SCI in any data
dimension for a broad class of functions. A fixed size DNN is a parametric function estimator
and cannot in general be statistically consistent for a similarly broad class of functions. It will
generally stop having the capacity to interpolate as the training data set size grows indefinitely.
Furthermore, a DNN with a fixed number of parameters cannot be expected to exhibit the same
locality properties. However, if the number of parameters in a DNN are allowed to increase with
the sample size in a sufficiently flexible way to permit training data interpolation, together with an
appropriate optimization procedure for selecting an interpolating DNN for a given sample size, one
would effectively obtain a non-parametric function fitting procedure. It is reasonable to ask whether
statistical consistency can be obtained in a suitable limit (such as infinitely wide deep nets).

Whether such a limiting procedure can lead to statistical consistency in any input dimension
for some appropriate class of DNNs, is not currently known. However, it is conceivable that such a
limiting procedure could produce DNN based function interpolators that are statistically consistent
in the asymptotic limit of large input dimensionality. To see why this may be the case, first note
the example of Simplex interpolation, an algorithm also presented in [6], which is not statistically
consistent in finite dimensions, but where the generalization gap goes to zero exponentially with
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the input dimension. The algorithm is conceptually straightforward and is based on constructing
a simplicial complex with the input data vectors, and applying linear interpolation inside each
simplex. This indicates the existence of a class of interpolators that are asymptotically consistent
with increasing input dimensionality.

Secondly, it has been shown that Kernel Machine based interpolation can exhibit asymptotic
consistency in high dimensions [11]. Note that Kernel Machine Regression has locality properties
(c.f. locality of Spline interpolation). Finally, Kernel Machine regression can be linked to DNNs
in the limit of infinitely wide nets (c.f. the Neural Tangent Kernel[32]). Thus, it is possible that
suitable classes of DNNs could exhibit statistical consistency after taking the appropriate limits.
This is an interesting challenge for future research.

To invoke wiNN-like interpolating algorithms to explain the empirically observed success of
overparameterized deep nets, one needs the additional element that the effective dimensionality of
the input space deff is small enough that training data set sizes match contemporary big data. If
deff ∼ 10 and α = 1, then to achieve 90% accuracy one needs ∼ 101+10/2 = 106 data samples - and
millions of labelled samples are now routine in many domains. Note that it is not necessary for an
interpolation scheme like wiNN to learn a low dimensional representation. Representation learning
has been suggested as one of the reasons for the success of DNNs [33], and may well play a practical
role, but the existence of nonparametric interpolation schemes seem to indicate that (parametric)
representation learning is not necessary for achieving statistical consistency in the big data limit.

In essence, what is being said here is that modern overparameterized learning machines (c.f.,
deep nets) resemble classical non-parametric estimators, operating in an interpolating regime and
with asymptotically large training data sets. Labelled data sets have gotten so large that even
with the curse of dimensionality, local non-parametric estimation can now work for complex input
spaces such as natural images. Although the nominal dimensionality of such input spaces would still
appear to be too big, natural structure in the real world (e.g., the data lies on a low dimensional
manifold) would then permit the success of this kind of effectively local, non-parametric estimation.

A somewhat different approach to the generalization properties of overparameterized ANNs,
compared with the "local averaging" picture presented above, is from the perspective of norm-
controlled function approximation. It has been argued that good generalization in deep nets is
achieved by controlling the norm of the weights rather than the number of parameters (note that
such norm control is essential for infinitely large networks)[12, 34, 35]. Fitting a single hidden
layer ReLU network with a constraint on the Euclidean norm of the weights has been shown to be
equivalent to choosing a function while minimizing a specific norm[12]. Notably, this norm is not
an RKHS norm and therefore does not fit simply into the above discussion relating large ANNs to
GPs. Clearly, there are a number of open theoretical directions to pursue.

Costs and benefits of interpolating learners
There are two "costs" of learning via interpolation that also correspond to phenomena that

have been observed with deep nets: non-extrapolation, and adversarial examples.
First, interpolating learners will not in general extrapolate (unless, of course, supplemented

by prior knowledge about the function outside the data range, which is not a possibility we will
consider here). As seen in Fig.1, at the edge of the training data set, the regression function becomes
a constant given by its value at the edge. This is consistent with the difficulties encountered by
deep nets when going outside the domain where significant amounts of training data are present.
This issue raises its head in different guises, such as "continual learning" for non-stationary data,
or "transfer learning" across domains, neither of which have fully satisfactory solutions. A recent
real life example of the lack of extrapolation, is provided the numerous and widespread glitches
that appeared in contemporary AI engines due to a sudden domain shift caused by the Covid
pandemic[36].

Second, the wiNN algorithm provides a ubiquitous mechanism for adversarial examples[37], that
are well known for deep nets. For example, adversarial examples in image classification correspond
to the surprising mis-classification of images due to visually imperceptible addition of small but
intentionally adversarial noise[37], or even rotation/translation of the images after padding[38]. As
can be seen in Fig.2, the singular weights forces mis-classification in the immediate vicinity of a
mislabeled sample. In regions of the input space where there is some finite density of mislabeled
points, adversarial examples are therefore dense [6] in the large sample limit (but occupy a set
of measure zero since the training set is countable, and therefore adversarial examples must be
searched for and cannot be found "at random").

There is however an important benefit of overparameterized, interpolating learners, in terms of
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Figure 3: Tentative landscape outlining the relation between statistically consistent regression
estimators, data interpolation, and parametric vs non-parametric estimation. Interpolating estima-
tors may be either non-parametric or parametric. Note that in discussing statistical consistency
we have in mind sufficiently general function classes, cf. Hölder spaces - the discussion here is
meant to be suggestive rather than formal. Estimators may be statistically consistent in any input
data dimension, or may be asymptotically consistent as the input dimension grows indefinitely.
Statistically consistent estimators do not have to interpolate training data (and previous studies
have focussed on regularized estimators that do not interpolate), but parametric estimators are not
generally expected to be statistically consistent for broad function classes unless suitable limits
are taken where they effectively behave like non-parametric estimators. Only two interpolating
estimators are currently proven to be consistent for broad function classes in any dimension (wiNN
and the Hilbert interpolator). The Simplex interpolation method was proven to be statistically
consistent in the limit of large data dimensions. It is not currently known if arbitrary Kernel
Machine interpolators are asymptotically consistent, but some theoretical progress has been made in
this regard. Infinitely wide nets may resemble Kernel Machine interpolators, but it is not currently
known if interpolating deep nets can exhibit statistical consistency for broad function classes in
arbitrary dimensions.
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the learning dynamics. With significant overparameterization, data-interpolating global minima
with zero training error proliferate and can be relatively easily found using stochastic gradient
descent, in contrast with the under-parameterized case where the optimization dynamics can get
frequently stuck in local minima due to the non-convexity of the landscape. If the loss function
possesses second derivatives around these global minima, then the asymptotic convergence rates
may be analyzed transparently using an effective linear regression model that permits closed form
theoretical analyses[39, 40, 32]. In general, the interpolating limit appears to provide tractable
routes to theoretical understanding.

The ghost of Occam’s razor: overfitting peaks and double descent
The discussion so far may provide the temptation to entirely abandon textbook wisdom and

freely overparameterize and interpolate data. However, data interpolation by itself provides no
guarantee of good generalization. One can trivially produce bad data interpolating functions (e.g.
one that gives the training values on the training set, but is zero elsewhere). More interestingly, as
one increases the numbers of fitting parameters during a parametric fit, the generalization error can
diverge precisely when data interpolation is achieved, followed by a region of lower generalization
error where regularized interpolation is performed using more parameters than data points.

This phenomenon was first reported over 30 years ago ([41], also see Figs 4.3 and 5.3 in [42]) but
was an obscure topic until recently. It has recently been highlighted and dubbed "double descent"
[13] and is an active research topic[43, 16, 44, 45]. The diverging generalization error at the data
interpolation point can be simply understood by examining multivariate linear regression with
random design matrices. Consider the linear regression problem given by the data fitting model
Y = Xβ, where Y is an m−dimensional vector of observations, fitted by a p dimensional parameter
vector β, given the m× p matrix of regressors X. Precisely at the data interpolation point m = p,
X is square and will generically have singular values that tend to zero as the matrix becomes large.
Since the least square parameter estimator is β̂ = (X†X)−1XY , ill-posedness of (X†X) causes β̂
and therefore the generalization error to diverge

With over-parameterization (p > m), the design matrix is rectangular and no longer has close to
zero singular values as long as the null space is suppressed through appropriate regularization (e.g.
by employing a minimum norm condition). The interesting point is that under suitable conditions,
the generalization error in the over-parameterized region p > m can in fact be lower than the GE in
the under-parameterized region p < m. An intuitive scenario for this phenomenon, is the case where
the number parameters n in the data generating model is larger than m, and good generalization
requires p ≥ n > m [44, 43]. In this case, having fewer parameters than data points p < m causes
model mis-specification, and this can cause the GE to suffer in the under-parameterized regime.
Note however that these interpolating solutions are generally not statistically consistent and have
generalization error above the theoretical lower limits. Another point to be noted, is that training
data interpolation, in the sense of zero training error, can be achieved for classification, without
passing through a peak in the GE curve. This is the case for boosting [22].

The non-monotonic behavior of the GE curves with increasing model complexity (the double
descent scenario) is of interest in reconciling the textbook wisdom about the dangers of "overfitting"
training data with the observations of good generalization under overparameterized conditions.
However,the study of generalization error as a function of model complexity is not the focus of this
perspective piece. Generally speaking, data interpolation is neither necessary nor sufficient for good
generalization. The interpolating models in the overparameterized region of the double descent
curves are not in general statistically consistent - the generalization error is above the theoretical
lower bounds. While one can imagine that under certain circumstances data interpolation may
produce reasonable generalization, what is surprising is the existence of interpolating learners that
are optimal in the sense of Statistical Consistency. The provable examples available so far of such
SCI learners (wiNN, Hilbert interpolation) are not parametric.

SCI shows why ANNs in ML are distinct from biological brains
Artificial neural network models, particularly deep nets, have produced good results in practical

applications. It is tempting to conclude (and this conclusion has been widely drawn) that the
source of this success is that the ANNS/DNs mimic some important aspect of biological brains.
What if this is not true? We argue in this article is that the success of ANNs/DNs in modern
machine learning applications is the phenomenon of SCI, not necesssarily resemblance to biological
brains. This has important implications.

First, although successful ANN/DN models for ML/RL were motivated loosely by real brain
circuits, if they are indeed overparameterized data interpolation schemes owing their success to
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SCI, they are unlikely to provide a route to the scientific understanding of brains. Second, this
holds open the possibility of a new generation of ML approaches that do indeed resemble real brain
circuitry.

We first address the relation between real brains and ANNs. To the extent that ANNs are over-
parameterized data interpolation devices whose generalization success is contingent on large training
data sets - as this article would argue, and empirical evidence indicates - one is forced to conclude
that they are quite different from biological brains. In contrast with the data-hungry interpolation
algorithms, biological brains often need much smaller training data sets. For example, humans
need to play many fewer games than the deep reinforcement learning algorithms to gain similar
performance in video games[46]. Striking examples of pre-programmed behaviors or "instincts"
abound in the animal kingdom, where there is little or no requirement of training data. Even
learned song culture in songbirds can be traced back to innate sources and can emerge spontaneously
over multiple generations[47]. An obvious hypothesis is that biological brains are more efficient
learners than modern ML algorithms due to extra "prior structure" (this is essentially the well
known poverty of stimulus argument[48]).

Note that deep nets do have their own prior (handcrafted) network architecture (e.g. the
encoder-decoder architecture and the translational invariance of convolutional layers in U-Net[49]
like architectures for machine vision). Indeed such prior structure is essential for good performance
even if deep nets are interpolating learners, and the "art" of designing deep nets consists in
designing this structure in some manner. Nevertheless, the networks still require very large training
data sets for good performance, and the training error is essentially driven to zero, indicating
data interpolation. This is costly both from an engineering and financial perspective. Data
interpolation implies sensitive dependence on the training data set and non-extrapolation, forcing
the user to constantly gather new volumes of data as the application domain shifts. Adversarial
examples are an obligatory property of interpolating learners, another engineering weakness. Also,
overparameterization gives rise to very large models that are costly from an implementation
perspective.

Thus, it would be beneficial for modern ML techniques to lessen the dependence on large
volumes of training data by building in better priors. Since biological brains require smaller training
data sets, it is natural to look at brains for inspiration for the necessary priors. How should this be
done?

Mesoscale brain circuit architecture as a route to incorporating biological priors
into modern ML

While ANNs bear a loose resemblance to biological neural networks, it is interesting to note that
most of the biomimetic efforts so far have focussed on a behavioral/psychological level, drawing on
reinforcement learning behaviors[50], seeking to incorporate psychological/cognitive phenomena
such as short term memory[51] or selective attention[52]. Also notable in this regard, is that
Turing’s inspiration for his model of computation came from the human cognitive behavioral process
involved in solving mathematical problems, and the development of the formal theory of computer
languages and automata relied on the analysis of linguistic phenomena. In all cases, brain-related
considerations have largely occurred at the psycho-behavioral level rather than at the level of the
underlying brain circuitry. However, despite these sources of inspiration for brain mimicry, modern
ML appears to be still producing data-hungry interpolation schemes.

Is there a different approach to incorporating prior knowledge that will move us away from
data interpolation schemes? We wish to argue that there is a currently under-exploited avenue
that would be fruitful to explore in this context, i.e. "network mimesis", where the biomimetic
effort is directed to the actual network architecture of real brains rather than surface behaviors or
cognitive psychological constructs. Arguably, mimicry at the neural circuit level is the origin of
ANNs, reflected in the work of McCullogh and Pitts[53]. Turing also proposed an ANN model of
computation inspired by neural circuitry[54].

Deep nets for machine vision are loosely inspired by the hierarchical organization of the primate
visual system[55]. However, networks used in contemporary ML algorithms bear little resemblance
to real neural circuit architecture - in the case of machine vision, it is routine to use dozens if not
hundreds of feed forward layers, whereas the visual system employs perhaps five or six hierarchical
levels, with strong feedback connections between levels[56]. As another example, the convolutional
structure (equivalently, translationally invariant filters) used in CNNs for machine vision are in
fact different from the real visual systems, which have ’receptive fields’, ie different sets of neurons
perform the spatial filtering operations at different points on the image, rather than a shared set of
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filters performing the operation across the entire network ("weight sharing").
Human engineers devising machine learning networks design their "network anatomy", so circuit

architectures can be adopted in a straightforward manner. At what level should one try to adopt
the circuit connectivity patterns from brains? We would like to suggest that a fruitful future avenue
for neuromimesis lies in the mesoscale circuit architecture[57, 58, 59] of entire vertebrate brains.
Network architecture at the mesoscopic scale is concerned with the connectivity rules or patterns
between cytoarchitectonically distinct brain compartments or groups of similar neurons. This
mesoscale circuit architecture is species-specific and genetically encoded. In contrast, individual
synaptic connections (as measured using Electron Microscopy, e.g. the recently published synaptic
connectivity matrix of a major portion of the fruitfly brain[60]) are individual-specific and subject
to plasticity and learning. Indeed, one might argue that human engineers designing deep nets are
precisely engaged in the engineering of mesoscale circuitry of ANNs, leaving the specification of
individual "synaptic weights" to the process of fitting training data sets.

As an example of how this might work, consider the recent neuroanatomical finding of uni-
directional monosynaptic connections between the primary auditory cortex and the periphery of
the primary visual cortex in the marmoset[61]. This early fusion of the sensory streams stands in
distinction to how video is processed today, where the image and sound streams are first converted
into high level symbols before fusion; the mesoscale projection from primary auditory to primary
visual cortex might argue for the utility of early fusion of the data streams.

Beyond this specific example, there are many prominent differences between deep net archi-
tectures and mesoscale brain architectures. The mesoscale network architecture in real brains
is "shallow-recurrent"[56] rather than "deep-feedforward". In the visual pathway, often used to
motivate deep networks, there are only five or six levels before object recognition is achieved, and
strong feedback connections exist from early on (cf. the strong projection from the primary Visual
cortex to the sensory relay neurons in the Lateral Geniculate Nucleus of the Thalamus). One field
where such input from mesoscale circuitry may prove particularly useful is robotics - this is an area
where deep nets have had limited impact[62]. The circuit architectures of entire vertebrate brains,
particularly the integration between sensory and motor systems and the hierarchical organization
of motor systems may prove of utility (c.f. recent work elaborating the input-output projections of
the mouse motor cortex[63]).

Behavioral/psychological priors tell us more about the problem being solved than about the
algorithm being employed to solve the problems. Neuroanatomical circuitry are in some sense the
distributed algorithms that are involved in the problem solution and closer examination of these
circuits may help close the training data gap between data-interpolating deep nets and biological
brains.

Understanding Nature: Scientific Theories vs Data Interpolation
A second set of questions raised by data interpolation in modern ML relates to scientific models

and theories. As the quote from Von Neumann shows, models or theories with too many parameters
are generally regarded as problematic in scientific work, and interpolating noisy data is antithetical
to basic practice in science. However, to the extent that scientific theories are meant to be predictive,
statistically consistent interpolation methods also offer predictions that are optimal in the limit of
many observations. Can they therefore replace scientific models and theories? Such a replacement
would have big implications for the training of scientists and for scientific methodology: learning and
developing theories in the classical manner would simply be replaced by large scale data gathering
exercises[64]. While such an enterprise would be centuries too late in terms of discovering physical
laws, it raises provocative questions about future scientific analysis of complex phenomena.

SCI learners perfectly "explain" (fit) the observations while generalizing well - superficially this
is also what one expects of scientific theories. An obvious weakness is the sensitive dependence of
interpolating learners on the distribution from which the training set is chosen. Non-stationarity
of the training distribution and the appearance of previously unobserved regimes in the test will
prevent interpolating approaches from predicting accurately outside the training data domain.
However, one might consider a brute force approach that continuously gathers more training data
as distributional non-stationarities are encountered, in real life engineering applications. This may
well succeed in narrow domains of application.

There is however a basic difficulty in trying to automate scientific knowledge generation by
interpolating data. Indeed, the success of modern physics, a paradigmatic science, is not based
on trying to explain the full complexity of observations, a strategy that Noam Chomsky has
characterized as predicting "what’s gonna happen outside the window next"[65]. Interpolating
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Epistemologies/
Models of the world

a) Physical Law b) Animal Brains  (with high 
neuron number)

c) “Deep nets”

#parameters ≈ 0

Constrains the architecture
of both biological and artificial 
brains

Unlikely that ML can “discover” 
physical law

Sets fundamental performance 
limits to machine intelligence, eg
energetic costs of computation.

#parameters → ∞
#measurements << #parameters

Strong priors (species specific 
mesoscale circuitry; shallow 
depth but recursive networks; 
innate behaviors)

Energy efficient computation but 
not at the physical limits.

#parameters → ∞
#measurements ≈ #parameters

Interpolates training data

Weak priors (ad-hoc network
architectures; non-biologically
deep feedforward networks)

Energy-inefficient computation. 

Increasing Rationalism Increasing Empiricism

Figure 4: The figure summarizes the perspective presented in this article relating the three
epistemologies or theories of the world as viewed by the laws of physics (a), by animal brains with
large neuron numbers (b) and by deep nets (c). Physical law is strongly rationalist in spirit, adopting
a priori theories with few if any adjustable parameters that are revised when contradicting empirical
evidence. Complex animal brains with large neuron numbers have exponentially many parameters
(potential synaptic connectivity), but have innate structure and efficient learning mechanisms
that require a modest set of empirical measurements. These innate predispositions of complex
animal brains are captured by the mesoscale circuit architectures specified by the species genomes.
Modern ML as exemplified by deep net architectures is strongly empiricist, with a large number of
parameters that are fitted to an equally large number of measurements, often in an interpolating
manner, with relatively weak priors which are imposed by relatively ad-hoc, engineered network
architectures. Deriving physical law by fitting data in the spirit of modern ML is inconsistent with
previously successful approaches. Physical law sets fundamental energetic limits to both biological
brains and current implementations of ML algorithms, and the current hardware implementations
of ML appear to be highly energetically inefficient, operating far from the fundamental physical
limits.
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learners may indeed be better tools for explaining the intricacies of the world outside the window
(if equipped with suitably large training corpora), but the successful development of theoretical
physics depended on ignoring the world outside the window, so to speak, and looking into the night
sky to study planetary orbits. Interestingly, the first models of planetary orbits in fact resemble the
modern Machine Learning approach using function fits: the method of epicycles used in Ptolemy’s
astronomy to predict planetary orbits, are in fact equivalent to a Fourier series expansion[66].

Thus a key to theoretical advancements in physics has been to ignore the observed complexities
of the natural world and to selectively focus on well-chosen details that provide the right hooks to
unravel the seeming complexity. This strategy has clearly been very successful. Overparametrized
and interpolating learners by design do not provide a methodology for selecting a few "important"
details. Therefore, despite pragmatic success in solving real problems they seem unsuitable for
scientific theorizing.

The perspective presented in this article may be summarized as follows. The success of data-
intensive modern machine learning approaches depend in an important way on the phenomenon of
Statistically Consistent Interpolation. SCI learners generalize well while interpolating training data
in the limit of large data sets, a property that seemingly contradicts previous statistical practice, but
that can be proven rigorously for some data interpolation algorithms. To the extent that modern
ML methods are interpolation schemes, implemented using overparametrized models dependent
on very large data sets for good generalization, they present a third way of modeling or predicting
natural phenomena, in contrast with theoretical physics, which has very few parameters, but also
in contrast with biological brains, which effectively have many parameters but do not require such
large training data sets. This points to the possibility of a new generation of intelligent machinery
based on distributed circuit architectures which incorporate stronger priors, possibly drawing upon
the mesoscale circuit architecture of vertebrate brains.

One important theme that is beyond the scope of this perspective piece, but which bears
mention, is the matter of energetic costs. Implementations of modern machine learning on existing
hardware approaches are energy inefficient compared to biological brains. In addition to the "data
gap" discussed in this article, this "energy gap" is an important area of future study. Physical
law may set fundamental limits to the energetic efficiency of intelligent machines[67], and it is also
possible that non-biological hardware and computational paradigms may permit yet other varieties
of machine intelligence we have not yet conceived[68].

Given the fundamental weakness of data interpolation as a repository of observations, it is
unlikely that theoretical physicists will switch to fitting elephants. Neither will overparametrized,
data-fitting ANNs help us understand the mystery of how and why our biological brains can imagine
perfectly equal Platonic sticks without any experiential basis. Nevertheless, we now have a better
theoretical understanding of how one can interpolate noisy data and generalize well at the same
time, an observation that is likely to have lasting theoretical as well as practical impact across
multiple disciplines.
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