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The exponential growth in the rate at which information can be communicated
through an optical fiber is a key element in the so called information revolution.
However, like all exponential growth laws, there are physical limits to be consid-
ered. The nonlinear nature of the propagation of light in optical fiber has made
these limits difficult to elucidate. Here we obtain basic insights into the limits
to the information capacity of an optical fiber arising from these nonlinearities.
The key simplification lies in relating the nonlinear channel to a linear channel
with multiplicative noise, for which we are able to obtain analytical results. In
fundamental distinction to the linear additive noise case, the capacity does not
grow indefinitely with increasing signal power, but has a maximal value. The ideas
presented here have broader implications for other nonlinear information channels,
such as those involved in sensory transduction in neurobiology. These have been
often examined using additive noise linear channel models, and as we show here,
nonlinearities can change the picture qualitatively.

The classical theory of communications à la Shannon [1] was developed mostly in the con-
text of linear channels with additive noise, which was adequate for electromagnetic propagation
through wires and cables that have until recently been the main conduits for information flow.
Fading channels or channels with multiplicative noise have been considered, for example in
the context of wireless communications [2], although such channels remain theoretically less
tractable than the additive noise channels. However, with the advent of optical fiber commu-
nications we are faced with a nonlinear propagation channel that poses major challenges to
our understanding. The difficulty resides in the fact that the input output relationship of an
optical fiber channel is obtained by integrating a nonlinear partial differential equation and
may not be represented by an instantaneous nonlinearity. Channels where the nonlinearities in
the input output relationship are not instantaneous are in general ill understood, the optical
fiber simply being a case of current relevance. The understanding of such nonlinear channels
with memory are of fundamental interest, both because communication rates through optical
fiber are increasing exponentially and we need to know where the limits are, and also because
understanding such channels may give us insight elsewhere, such as into the design principles
of neurobiological information channels at the sensory periphery.

The capacity of a communication channel is the maximal rate at which information may be
transferred through the channel without error. The capacity can be written as a product of two
conceptually distinct quantities, the spectral bandwidth W and the maximal spectral efficiency

1

http://arxiv.org/abs/physics/0011016v1


which we will denote C. In the classic capacity formula for the additive white Gaussian noise
channel with an average power constraint, C = W log(1+S/N) [1], the spectral bandwidth W ,
which has dimensions of inverse time, multiplies the dimensionless maximal spectral efficiency
C = log(1+S/N). Here S and N are the signal and noise powers respectively. It is instructive to
examine this formula in the context of an optical fiber. Since the maximal spectral efficiency is
logarithmic in the signal to noise ratio (SNR), it can never be too large in a realistic situation, so
that the capacity is principally determined by the bandwidth W . In the case of an optical fiber,
the intrinsic loss mechanisms of light propagating through silica fundamentally limits W to a
maximum of about 50THz [3] corresponding to a wavelength range of about 400nm (1.2−1.6µ).
This is to be compared with current systems where the total bandwidth is limited to about
15 THz. If the channel was linear, the maximal spectral efficiency would be C = log(1+S/N),
S being input light intensity and N the intensity of amplified spontaneous emission noise in the
system. An output SNR of say 100 (i.e. 20dB), would then yield a spectral efficiency of 6.6,
which for a 50THz channel would correspond to a capacity of 330 Tbit/sec. The channel, of
course, is not linear; how do the nonlinearities impact the spectral efficiency of the fiber? The
basic conclusion of the present work is that the impact is severe and qualitative. As shown in
Fig.1, the effect is a saturation and eventual decline of spectral efficiency as a function of input
signal power, in complete contrast with the linear channel case. We now proceed to motivate
and discuss this result.

It is widely recognised that nonlinearities impair the channel capacity. However, estimation
of the impact of the nonlinearities on channel capacity has remained ad hoc from an information
theory perspective. Here we obtain what appears to be the first systematic estimates (Fig.1)
for the maximal spectral efficiency of an optical fiber channel as a function of the relevant
parameters. In basic distinction to the linear channel, our considerations indicate that the
maximal spectral efficiency does not grow indefinitely with signal power, but reaches a maximum
of several bits and eventually declines, as illustrated in Figure 1. It is to be noted that current
systems use a binary signalling scheme which limits the achievable spectral efficiency a priori to
1 bit, and to reach the higher spectral efficiencies predicted by the theory, multi-bit signalling
schemes would have to be used. Since the spectral efficiencies of current systems are already
approaching 1 bit, it is clear that the limits discussed here will be of practical relevance in the
future.

Although a number of nonlinearities are present in light propagation in a fiber, we concen-
trate on the most important one for fiber communications, namely the dependence of the refrac-
tive index (and therefore the propagation velocity of light) on the light intensity, n = n0+n2I.
This nonlinearity is weak, but its effects accumulate due to the long propagation distances
involved in fibre communications, and is responsible for the effects considered here. Three
principle physical parameters characterising the propagation are of interest: the group veloc-
ity dispersion β ∼ 10ps2/km, the propagation loss α ∼ 0.2 dB/km and the strength of the
nonlinear refractive index, usually expressed in terms of the parameter γ ∼ 1/W/km. The
propagation loss is compensated by interposing optical amplifiers into the system. Each am-
plifier also injects spontaneous emission noise into the system with strength I1 = aGhν∆ν [5],
with G being the amplifier gain, h the Planck’s constant, ν and ∆ν being the centre frequency
and frequency bandwidth of light respectively. Here ‘a’ is a numerical constant (which we as-
sume to be 2). For ns spans of fiber interspersed with amplifiers that make the total channel
gain unity, the effects of absorption may be accounted for simply by redefining the system
length in terms of an effective length, Leff ∼ ns/α. If the nonlinearity were absent (γ = 0), we
would have obtained, for the maximal spectral efficiency, C0 = log(1+ I/In), I being the input
power and In = nsI1 being the total additive noise power. Note that C0 declines logarithmically
with system length, and would eventually vanish for infinitely long systems. Note also that
although spectral efficiency is dimensionless, it is often written for convenience with the “units”
bits/sec/Hz.

For a variety of reasons, the principal one being limitations in the electronic bandwidth, it
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is impractical to modulate the full optical bandwidth at once. Instead, current attempts towards
achieving maximal information throughput involve so called Wavelength Division Multiplexing
(WDM) [3], where the whole optical bandwidth is broken up into disjoint frequency bands
(“channels”) each of which is modulated separately. We confine our attention to such systems
(which from an information theory perspective corresponds to the “multi-user” case) [6], though
we also comment on the ideal case of utilising the full optical bandwidth for a single data stream
(the “single user” case). Quantitatively, the single user case is expected to have larger maximal
spectral efficiencies, though we will argue that it shows the same qualitative behaviour as the
multi-user case. The difference between the two reside in the fact that in the multi-user case,
each channel is an independent information stream, and appears as an additional source of
noise to every other channel due to nonlinear mixing.

The nonlinear propagation effects in the evolution of the electric field amplitude involve
a cubic term in the electric field. In a WDM system, the nonlinearities are classified by the
field amplitudes participating in this cubic term for the evolution of the field amplitude of
a given channel: self phase modulation denotes the case where all three fields belong to the
same channel, cross phase modulation where two fields belong to a different channel and one
to the same channel, and four wave mixing denotes the case where all three amplitudes belong
to different channels. Out of these terms, four wave mixing gives rise to additive noise to
the channel of interest and will not be considered further in this paper. One reason for this
is that four wave mixing is strongly suppressed by dispersion when the channel spacings are
substantial. Its effects can be accounted for by augmenting the additive noise term in the
subsequent considerations. We also neglect self phase modulation effects, since these effects
are deterministic for the given channel and in principle could be reduced by using nonlinear
precompensation. Finally, we are left with cross phase modulation, which appears to be the
principle source of nonlinear capacity impairment in the multiuser case for realistic parameter
ranges. A further reason for our focus on cross phase modulation is that it gives rise to
multiplicative noise, which gives rise to qualitatively new effects in the channel capacity.

We model the propagation channel in the presence of cross phase modulation by means
of a linear Schroedinger equation with a random potential fluctuating both in space and time.
This is easily justified starting from the nonlinear Schroedinger equation description commonly
used to describe light propagation in single mode optical fibres [4]. Cross phase modulation
arises from terms in the equation where the field intensity in the nonlinear refractive index is
approximated by the sum of the field intensities in the channels other than the one for which the
propagation is being studied. Therefore, if only cross phase modulation effects were retained,
the propagation equation for the field amplitude in channel i then becomes

i∂zEi =
β2

2
∂2
tEi + V (z, t)Ei, (1)

where V (z, t) = −2γ
∑

j 6=i |Ej(z, t)|
2, the sum being taken over the other channels. Since

independent streams of information are transmitted in the other channels, V (z, t) appears as
a random noise term. Notice that the nonlinear propagation equation has now been reduced
to a linear Schroedinger equation with a stochastic potential, so that the nonlinear channel
has become a channel with multiplicative noise. We now need an adequate model for the
stochastic properties of V (z, t). If the dispersion is substantial, we propose that V (z, t) may
be approximated by a Gaussian stochastic process short range correlated in both space and
time. Since V is obtained by adding a large number of different channels, each of which is
short range correlated in time (τ ∼ 1/B, where B is the channel bandwidth), we can expect V
to have a correlation time of approximately 1/B. Dispersion causes the channels to travel at
different speeds, thus causing V to be short range correlated in space as well, with a correlation
length related to the dispersion length. Since V is a sum of intensities, it has nonzero mean,
so we define δV (z, t) = V (z, t) − 〈V 〉, where 〈V 〉 denotes the average value of V. Removing a
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constant from the potential causes an overall phase shift independent of space and time, which
is irrelevant to the present considerations.

The parameter of interest in the following is the integrated strength of the fluctuating
field, η =

∫

dz〈δV (z, 0)δV (0, 0)〉. In order to estimate η, we consider a simplified propagation
model for the channels other than the one of interest, in which nonlinearities are neglected,
and stochastic bit streams at the inputs to the channels are propagated forward with constant
group velocities. The group velocity difference between two channels separated by a spacing
∆λ is D∆λ. In this model with nc other channels evenly spaced by ∆λ around the channel of
interest, each with intensity I and bandwidth B, we obtain η = 2 ln(nc/2)(γI)

2/(BD∆λ). Here
D is the dispersion parameter D = −2πcβ/λ2. Although this is a simplified model for the other
channels, numerical simulations of propagation including the nonlinearities and dispersion for
the side channels show that the estimate of η is accurate.

Note that the denominator in the expression of η is the inverse of the dispersion length
LD for the given channel spacing. This form for η follows from assuming that Leff >> LD,
since in this limit the integral defining η is cut off by LD. If on the other hand, Leff ≤ LD, the
integral would be cut off by Leff , so that one would have to replace LD by Leff in the equation
for η. The fluctuation strength scales with the logarithm of the number of channels rather than
the total number since channels at larger spacings are suppressed proportionately to channel
spacing. This suppression due to dispersion leads to the logarithmic factor via a sum of the
form

∑

j 1/(∆λj) ∝
∑

j 1/j.
Within the model under consideration, the propagation down the fiber is given in terms

of a propagator U(t, t′;L) obtained by integrating the stochastic Schroedinger equation. For
simplicity, we model the amplifier noise as an additive term with strength In as defined earlier.
The channel is specified in terms of a relation between the input and output electric field
amplitudes, Eout(t) =

∫

dt′U(t, t′;L)Ein(t
′) + n(t). Since U is stochastic, due to the underlying

stochasticity of V (z, t), the model corresponds to a channel with multiplicative noise. It is
still intractable in terms of an exact capacity computation, but an analytic lower bound may
now be obtained. This bound is based on the following information theoretic result (E.Telatar,
private communications): the capacity C of a channel with input X and output Y related
by a conditional distribution p(Y |X) and an input power constraint E(||X||2) = P satisfies
the inequalities C = maxp(X)I(X, Y ) ≥ I(XG, Y ) ≥ I(XG, YG) Here I(XG, Y ) is the mutual
information when p(X) is chosen to be pG(X), a Gaussian satisfying the power constraint;
I(XG, YG) is the mutual information of a pair (XG, YG) with the same second moments as the
pair (X, Y ). The first inequality is trivial since pG(X) is not necessarily the optimal input
distribution. A proof of the second inequality is outlined in the methods section.

The quantity I(XG, YG) for the channel defined above may be computed from knowledge of
the correlators 〈Ein(t)E

∗
in(t

′)〉, 〈Eout(t)E
∗
out(t

′)〉 and 〈Eout(t)E
∗
in(t

′)〉. The first is defined a priori
through the assumption of bandlimited Gaussian white noise input with a power constraint. The
second follows from the first using the unitarity of U . The third correlator requires computation
of the average propagator 〈U〉, where the average is over realisations of V (z, t). For a Gaussian,
delta-correlated V , we obtain 〈U(t, t′;L)〉 = exp(−ηL/2)U0(t − t′;L) (see methods), where U0

is the propagator for V = 0. Assembling these results, we finally obtain an analytic expression
for a lower bound CLB to the channel capacity of the stochastic Schroedinger equation model:

CLB = ncB ln(1 +
e
−( I

I0
)2
I

In + (1− e
−( I

I0
)2
)I
) (2)

where I0 is given by

I0 =

√

√

√

√

BD∆λ

2γ2 ln(nc/2)Leff

. (3)
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The fundamental departure from a linear channel in the above capacity expression is the
appearance of an intensity scale I0, which governs the onset of nonlinear effects. To obtain an
idea about the value of I0, consider the parameter values B = 40GHz,D = 20ps/nm/km, ∆λ =
1nm, γ = 1/W/km, nc = 100, Leff ≈ ns/α = 100km. Then I0 = 32mW . Examination of Eq.3
shows that the intensity scale I0 at which nonlinearities set in shows reasonable dependence
on all relevant parameters, namely it increases with increases in the dispersion, the bandwidth
and the channel spacing, but decreases with increasing system length and number of channels.

The most striking feature of Eq.2 is that instead of increasing logarithmically with signal
intensity like in the linear case, the capacity estimate actually peaks and then declines beyond
a certain input intensity. From Eq.2, it is easily derived that the maximum value is given
approximately by Cmax ≈ 2

3
ncB ln(2I0/In), the maximum being achieved for an intensity Imax ≈

(I20In/2)
1/3. The reason for this behaviour is that if we consider any particular channel, the

signal in the other channels appear as noise in the channel of interest, due to the nonlinearities.
This ‘noise’ power increases with the ‘signal’ strength, thus causing degradation of the capacity
at large ‘signal’ strength. The behaviour of Eq.2 is graphically illustrated in Fig.1, where the
spectral efficiency (bits transmitted per second per unit bandwidth) is shown as a function of
input power.

It is of interest to note that if the input intensity is kept fixed, the capacity bound declines
exponentially with the system length. This is only to be expected, since the correlations of
the electric field should decay exponentially due to the fluctuating potential in the propagation
equation. On the other hand, the maximal spectral efficiency given by Cmax declines only
logarithmically in system length, in parallel with the behaviour for linear channels. It can
therefore be inferred that if the input power was adjusted with system length instead of being
kept fixed, the decline of spectral efficiency with system length will be logarithmic.

Finally, we present qualitative arguments as to why the single user case is expected to
show the same non-monotonicity of spectral efficiency with the input signal intensities. In the
multi-user case, the noise power as effectively generated by cross phase modulation grows as
I3 since it involves three signal photons. In the single user case, the cubic nonlinearity is a
deterministic process that does not necessarily degrade channel capacity. However, subleading
processes which involve two signal and one spontaneous noise photon still scale superlinearly in
signal intensity, as I2In. Therefore, one should still observe the same behaviour of the effective
noise power overwhelming the signal at large signal intensities. Thus, we would still expect the
spectral efficiency to decline at large input intensity, though not as rapidly in the multi-user
(WDM) case.

Methods

Gaussian bound to the channel capacity

Proof of the inequality I(XG, Y ) ≥ I(XG, YG): define p(X, Y ) as the product pG(X)p(Y |X),
and pG(X, Y ) to be the joint Gaussian distribution having the same second moments as p(X, Y ).
Also define pG(Y ) to be the corresponding marginal of pG(X, Y ).

I(XG, Y ) =
∫

dXdY p(X, Y ) log(
p(X, Y )

pG(X)p(Y )
) (4)

=
∫

dXdY p(X, Y )[log(
pG(X, Y )

pG(X)pG(Y )
)− log(

pG(X, Y )

p(X, Y )

p(Y )

pG(Y )
)] (5)

(6)
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Since p(X, Y ) and pG(X, Y ) share second moments, the first term on the RHS is I(XG, YG).
The second term may be simplified using the convexity of the logarithm, 〈log(f)〉 ≤ log(〈f〉)
to obtain

I(XG, Y ) ≥ I(XG, YG)− log[
∫

dXdY pG(X, Y )
p(Y )

pG(Y )
] (7)

≥ I(XG, YG) (8)

The second inequality follows by first performing the integral over X , and noting that
log(

∫

dY p(Y )) = log(1) = 0.

Derivation of the average propagator 〈U〉:

This can be done by resumming the perturbation series exactly for 〈U〉, for delta correlated
V (z, t). Alternatively, in the path integral formalism [7],

〈U(t, t′;L)〉 = U0(t− t′;L)〈〈exp(i
∫ L

0
dzV (z, t(z))〉〉, (9)

where the average is taken over V as well as over paths t(z) satisfying t(0) = t, t(L) =
t′. The result in the paper follows by performing the Gaussian average over V . Since φ =
∫ L
0 dzV (z, t(z)) is a linear combination of Gaussian variables, it is also Gaussian distributed
and satisfies 〈exp(iφ)〉 = exp(−〈φ2〉/2). The result follows by noting that for delta correlated
V , 〈φ2〉 is a constant given by ηL. The delta correlations need to be treated carefully, this can
be done by smearing the delta functions slightly and leads to the definition of η given earlier
in the paper.
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Figure Captions

Figure 1. The curves in Fig.1 represent lower bounds to the spectral efficiency for a homoge-
neous length of fiber for a multi-user WDM system, given analytically by Eq.2. Although
the curves represent lower bounds, we argue in the text that the true capacity shows
the same qualitative non-monotonic behaviour with respect to input signal powers. The
spectral efficiencies displayed in the figure correspond to the capacity per unit bandwidth,
C = C/(nδν). Here δν includes both the channel bandwidths and the inter-channel spac-
ing. The parameters used for the figure are nc = 100, Leff = 100km, D = 20ps/nm/km,
δν = 1.5B where B = 10GHz is the individual channel width. The two continuous
curves correspond to γ = 1/W/km and γ = 0.1/W/km, the lower curve corresponding to
γ = 1. The spontaneous noise strength In is computed from the formula In = aGhνB as
explained in the text, with a = 2, G = 1000, ν = 200THz. The dotted curve represents
the spectral efficiencies of the corresponding linear channels given by γ = 0.
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