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Abstract
Social hierarchy in animal groups carries a cru-
cial adaptive function by reducing conflict and
injury while protecting valuable group resources.
Social hierarchy is dynamic and can be altered
by social conflict, agonistic interactions, and ag-
gression. Understanding social conflict and ag-
gressive behavior is of profound importance to
our society and welfare. In this study, we de-
veloped a quantitative theory of social conflict.
We modeled individual agonistic interactions as
a normal-form game between two agents. We as-
sumed that the agents use Bayesian inference to
update their beliefs about their strength or their
opponent’s strength and to derive optimal actions.
We compared the results of our model to behav-
ioral and whole-brain neural activity data obtained
for a large population of mice engaged in agonis-
tic interactions. We find that both types of data
are consistent with the first-level Theory of Mind
model (1-ToM) in which mice form both “pri-
mary” beliefs about their and their opponent’s
strengths as well as the “secondary” beliefs about
the beliefs of their opponents. Our model helps
identify brain regions that carry information about
these levels of beliefs. Overall, we both propose a
model to describe agonistic interactions and sup-
port our quantitative results with behavioral and
neural activity data.

1. Introduction
Social hierarchy has an important adaptive role in animals
ranging from insects to primates. The formation of a social
hierarchy helps to mold the group’s structure, ensuring a
degree of flexibility in changing circumstances. In primates
and rodents, social conflict and, in particular, inter-male
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aggression, play a critical role in both retaining and alter-
ing the social structure of the group. Although the overall
role of social conflicts is crucial, e.g., enabling the alloca-
tion of limited resources via a few-shot formation of social
hierarchies (Scott, 1971; Rosell & Siever, 2015; Chester
& DeWall, 2016), unjustified social conflicts in resource-
rich environments may be maladaptive and lead to drastic
negative consequences (Neumann et al., 2010; Chester &
DeWall, 2016; Golden et al., 2019). Excessive or pathologi-
cal male aggression is one of the most destructive forces in
human society. Despite the continued experimental studies
of social conflict and the underlying neural circuitry, its the-
oretical framework and quantitative principles remain to be
understood. Here, we develop a theoretical model for social
agonistic interactions and use experimental data obtained in
male mice in a comprehensive paradigm of chronic conflict
to validate our model.

2. Related work
2.1. Behavioral biology of aggression

Aggressive behaviors and social hierarchy have been ex-
tensively studied in humans, other primates, and rodents.
Studies in mice – a model organism whose social status
can be effectively manipulated by experimental and genetic
means, have provided a wealth of knowledge about the for-
mation, maintenance, and plasticity of the social hierarchy,
aggression and defeat, and dominant and subordinate status
(Wong et al., 2016; Hashikawa et al., 2017). These studies
often use variations of the chronic social conflict paradigm,
where mice are allowed to engage in agonistic interactions
for a limited time on a daily basis (Kudryavtseva, 2000;
Miczek et al., 2001; Golden et al., 2019). The chronic social
conflict paradigm has uncovered key features of aggres-
sive behavior including the potentiating effect of repeated
victory, the aversive effects of repeated defeat, and the simi-
larities between pathological aggression and drug addiction
(Miczek et al., 2001; Aleyasin et al., 2018; Golden et al.,
2019). Here, we use a comprehensive paradigm of chronic
social conflict to generate distinct social statuses in mice
and propose a normative theory to explain related aggressive
behavior. Because the studies of aggression convincingly
demonstrate the evolutionary preservation of its basic mech-
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anisms (Wang & Anderson, 2010; Watanabe et al., 2017),
our results may be relevant to human behavior.

2.2. Game theory

Optimal behaviors of interacting agents are conventionally
described in terms of game theory. The game theory con-
siders rational agents developing their strategies in order to
maximize rewards. The rewards received by the agents de-
pend on their actions and the actions of their opponents. The
acquisition of optimal strategies in games can be described
by probabilities of available actions (Smith, 1982; Cressman
et al., 2003). Such strategies of agents co-evolve to rein-
force higher-reward actions until the rewards can’t grow any
longer (Nash equilibrium). Game-theoretical approaches
have been used in models of human and animal behaviors in
multi-agent settings including agonistic interactions (Smith,
1974; Hofbauer et al., 1998; Wilson, 2000; Lorenz, 2005).
Here, we use game theory to model agonistic interactions in
the condition of chronic social conflict in mice.

2.3. Beliefs and Theories of Mind

To accumulate evidence in partially observed environments
humans and animals may maintain their probabilistic inter-
nal models of the environment – the “beliefs” – based on
which their actions can be viewed as rational, maximizing
a reward function (Fahlman et al., 1983; Alefantis et al.,
2021). The agents’ rewards and beliefs can be inferred
from their behavior using inverse control techniques, which
maximize the likelihood of the observed behavior based on
a particular hidden dynamics model (Russell, 1998; Choi
& Kim, 2011; Dvijotham & Todorov, 2010; Kwon et al.,
2020). In biologically relevant multi-agent settings, be-
liefs are studied in the Theories of Mind (ToM) framework
which proposes that human and animal agents may maintain
beliefs about the beliefs of their adversaries (Baker et al.,
2011) or aides (Khalvati et al., 2019). As previous studies
were successful in inferring beliefs (Schmitt et al., 2017;
Alefantis et al., 2021) and regressing them to neural activity
in simulations (Wu et al., 2020) and low-resolution fMRI
imaging (Koster-Hale & Saxe, 2013), here we propose a
way to infer task-related beliefs in mice and compare them
to high-resolution data of the whole-brain neural activity.

2.4. C-Fos as a whole-brain marker of neural activity

The search for brain regions accumulating evidence about
the environment requires large-scale neural activity data.
Such data can be obtained by monitoring the levels of c-Fos,
an immediate early gene whose activation reflects neuronal
activity (Sagar et al., 1988; Herrera & Robertson, 1996).
The c-Fos data lacks temporal resolution, yet it allows ob-
serving whole-brain activity at high spatial resolution with-
out using equipment that may affect animals’ choices. Local

expression of c-Fos has implicated certain brain regions in
agonistic interactions (Hashikawa et al., 2017; Aleyasin
et al., 2018; Diaz & Lin, 2020; Wei et al., 2021). Here,
we use 3D light-sheet microscopy of c-Fos in whole-brain
samples (Renier et al., 2016) to identify brain-wide neural
activity in animals with varying exposure to social conflict.
We compare the c-Fos data to beliefs identified based on be-
havior in individual mice and report the regions which may
be involved in the computation of conflict-related variables
in the brain.

3. Results: normative model of social conflict
The goal of this work is to build a quantitative theory for the
formation of social conflict-related behavioral states in mice.
In Section 3.1 we describe a mouse behavioral paradigm
where we recorded the actions leading to different behav-
ioral states and the brain activities corresponding to these
states. In Sections 3.2 to 3.4 we define the model of social
conflict in which game-theory optimal actions of agents rely
on beliefs about their strength. In Section 4 we examine
hypotheses about the reward schedule, information avail-
ability, and evidence accumulation related to social conflict.
We compare our results to behavioral data in Section 4.1
and to neural data in Section 4.2. We discuss our findings in
Section 5.
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Figure 1. The chronic social conflict paradigm. (A-B) Stages of a
single sensory contact event. (C) Stages of a multi-day experiment.
(D-F) Recorded actions of mice in the experiment.
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3.1. Chronic social conflict paradigm

To observe animals with varied behavioral states we imple-
mented the chronic social conflict paradigm (Kudryavtseva,
2020) (Appendix A.1) as follows. Pairs of weight-matched
(as a proxy for being strength-matched) mice were placed
in cages separated by a perforated partition (Figure 1A).
Once daily, the partition was removed for 10 minutes to
enable agonistic interactions between mice (Figure 1B).
Although the majority of the mice displayed aggressive be-
havior upon first interactions, the dominance relationships
have formed in most of the pairs after 2-3 aggressive en-
counters (2-3 days; Figure 1C,D). Afterward, each winning
mouse remained in its cage, while each losing mouse was
daily relocated to an unfamiliar cage with an unfamiliar
winning mouse (Figure 1C). Regardless of no longer being
weight-matched, mice have remained in their dominant or
submissive behavioral states, transitioning to the maladap-
tive regime of social conflict-related decision-making (Fig-
ure 1E). After 20 days of interactions, mice were exposed to
opponents of equal behavioral state (Figure 1C). The newly
formed pairs underwent two more days of agonistic interac-
tions throughout which new dominance relationships were
established (Figure 1F).

In the experiments, we tested multiple groups of mice sub-
jected to different numbers of agonistic interactions before
performing the whole-brain imaging of c-Fos expression
as a proxy for neuronal activation. 17 mice participated in
the experiment for 3 days forming the groups of “winners”
W3 and “losers” L3. Another batch of 16 mice participated
for 10 days and 49 mice participated for 20 days, simi-
larly forming the groups W10, L10, W20, and L20. 52 mice
participated for 22 days forming the groups of “winners-
remain-winners” (WW ), “winners-become-losers” (WL),
“losers-become-winners” (LW ), and “losers-remain-losers”
(LL). Thus, a total of 134 mice participated in the exper-
iment, leading to the behavioral data on their opponents,
actions, and agonistic interaction outcomes; the c-Fos ex-
pression was analyzed in a total of 54 mice from all the
experimental conditions and 18 control animals.

3.2. Game-theoretical model of social conflict

Below, we build a model based on the chronic social conflict
paradigm. In this section, we start from an approximation
in which each agent has all information about itself and its
opponents. For that case, we define the optimal actions for
each agent using the game theory.

We formalize our behavioral paradigm as a normal form
game (Appendix A.2), i.e. a process in which, in each
iteration, two agents have to decide simultaneously what
action a to take. We defined the possible actions a as “attack”
or “defend”. Depending on the actions a1 and a2 selected
by the two agents respectively, they received rewards r

defined as follows. If both agents chose to “defend”, no fight
happened, leading to a zero reward r1 = r2 = 0 assigned
to each agent. If both agents “attacked”, the outcome of
the game was defined by their strengths s, an additional
parameter assigned to each agent in the model. The outcome
probability pwin was defined by the softmax rule over the
strengths parameterized with the “outcome confidence” βo:

pwini = Z−1 exp(βosi). (1)

Here and below Z denotes the normalization coefficient.
Once the outcome was determined, the winning agent re-
ceived a reward of r = +1, and the losing agent expended
a cost of r = −A. The reward expectation was equal to:

κi = 1 ·pwini +(−A) ·(1−pwini ) = (1+A)pwini −A. (2)

The cost of loss was reduced if one of the agents chose to
“defend” while the other agent “attacked”. In that case, the
“attacking” agent always won and received the reward of
r = +1 while the losing agent expended the cost of r = −α
with α < A. The reward expectations were described in the
payoff matrix R̂i whose rows correspond to the actions of
the agent (“attack” and “defend”) and columns correspond
to the actions of its opponent:

R̂i =

(
κi 1
−α 0

)
. (3)

To determine optimal strategies in this game, we used evo-
lutionary game theory. In this approach, the goal of every
participant was to maximize its expected reward E[ri]:

E[r1] = PT1 R̂1P2. (4)

Here the vectors Pi define the probabilities to “attack”, pi,
and to “defend”, 1− pi, for the agent number i:

Pi ≡
(

pi
1− pi

)
. (5)

A similar expression can be written for the expected reward
of the second agent E[r2]. To maximize the rewards E[ri],
we computed their gradients with respect to probabilities to
“attack” pi (an agent could only update its own policy, but
not that of the opponent). We used these gradients to update
the policies leading to joint maximization of the expected
rewards (Figure 2A, Appendix B.1.1):{

ṗ1 ∝ (κ1 + α− 1)p2 + 1;

ṗ2 ∝ (κ2 + α− 1)p1 + 1.
(6)

The probabilities of actions can be only defined in the range
0 ≤ {p1, p2} ≤ 1. Their evolution, governed by the equa-
tions above (red arrows in Figure 2A), may converge to a
fixed point within this range, forming a “mixed” strategy.
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Alternatively, the probabilities of actions may converge to
zeros or ones (blue arrows in Figure 2A) forming “pure”
strategies. To determine optimal “pure” strategies, we chose
the strategies whose reward gradients (red arrows in Fig-
ure 2B) pointed outwards the [0−1] interval for both agents.

We represented the optimal policies via the tensorA of prob-
abilities for each possible action a depending on the agent’s
strength s1 and their opponent’s strength s2, averaging over
all optimal “pure” and “mixed” strategies (Figure 2C):

Aaij = Pr(a1 = a|s1 = i, s2 = j). (7)
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Figure 2. Game-theoretical model of the chronic social conflict
paradigm. (A) Policy gradients. (B) Gradient orientations yield
a pure strategy as a Nash equilibrium. (C) Optimal policy and
its dependence on relative strength. (D) Dependence of optimal
policy on the model parameters.

The resulting optimal policies in the model depended on the
relative strengths of the agents (Figure 2C). We parameter-
ized the optimal policies with the maximum relative strength
of the agents δ = s2 − s1 at which it was still optimal to
“attack”. We then explored how δ depends on the task pa-
rameters α and βo and found that most of these parameters’
values correspond to the optimal strategy with δ = 0 (“x” in
Figure 2D), i.e. to “attacking” any opponent who is weaker
or equal. Overall, the acquisition of the optimal policies for
the agents in our game is summarized in Algorithm 1.

3.3. Partial observability: beliefs about strength

The game theory predicts a static policy, unchanging
over time. Conversely, weight-matched mice in the ex-
periment initially attacked each other but later split into
always-attacking “winners” and ever-defending “losers”
(Figure 1E). To account for this dynamic, we expand our
model to a scenario where agents do not possess perfect
information about their strengths but accumulate this infor-
mation over the task. In this section, we model the agents’
information about strengths via beliefs – the probability
distributions for an agent to belong to a certain strength cat-
egory. We use the Bayes rule to initialize the beliefs about
the animals’ strengths using information about their body
weight (Appendix A.3) as follows.

We used body weights w of the animals as a proxy of their
strengths s (Andersson & Iwasa, 1996; Cooper et al., 2020):

wi ∝ si. (8)

We modeled the animals’ initial estimates of their body
weights w̃ as normally distributed around true values w.
Under this assumption, we reconstructed the probability
distributions for animals’ strengths (their initial beliefs)
Bi ≡ Pr(s = i|w̃) using their body weights w̃ in the
Bayes rule:

Bi ≡ Pr(s = i|w̃) =
PN (i,σ)(w̃)Pr(s = i)

Pr(w̃)
, (9)

where PN (i,σ)(w̃) is a normal distribution probability den-
sity function representing the noise in the estimate of the an-
imal’s weight; Pr(w̃) is the distribution of the animals’ es-
timated weights {w̃i}, and Pr(s) is the distribution of their
strengths {si}. To denoise the strength distribution Pr(s),
we approximated the experimentally observed weight distri-
bution Pr(w) ∝ Pr(s) with a normal distribution.

We consider up to four types of beliefs. The two “primary”
beliefs describe the animals’ estimates of their own strength
and of the strength of the opponent. The two “secondary”
beliefs estimate the “primary” beliefs of the opponent. The
animals were expected to better estimate their own strength
compared to that of their opponents. To this end, we used
separate uncertainty parameters for estimating one’s own
strength (σ = σ1) and that of an opponent (σ = σ2). For
the “secondary” beliefs, the uncertainties were combined
(σ = σ1 + σ2). Overall, initializing the beliefs about the
animals’ strengths is summarized in Algorithm 2.

3.4. Evidence accumulation: Bayesian update of beliefs

In this section, we expand our model with an update mecha-
nism for the agents’ beliefs (Appendix A.4). We update the
beliefs B using the Bayes rule and the information about ac-
tions a and outcomes o of agonistic interactions (Figure 3A).
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We define the outcome tensor Ooabij with the probabilities of
the outcome o1 = o for an agent of the strength s1 = i after
choosing an action a1 = a provided that the opponent has
the strength s2 = j and chose the action a2 = b:

Ooabij = Pr(o1 = o|a1 = a, a2 = b, s1 = i, s2 = j).
(10)

The reward tensor Rabij describes the expected reward E[r1]
for an agent of the strength s1 = i after choosing an action
a1 = a provided that the opponent has the strength s2 = j
and chose the action a2 = b. The reward expectation was
based on probabilities of possible outcomes:

Rabij =
∑
o

r(o, a, b)Ooabij . (11)
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Figure 3. Bayesian update of beliefs in the model. (A) Belief
update diagram for two mice. (B,C) Reconstructed belief dynamics
for a representative loser and winner mice.

The outcome-action and reward-action tensors predicted
the probability of outcome o1 and expectation of reward r1
assuming that the opponent’s actions a2 are optimal:

[RA]aijkl ≡
∑
b

Rabij convkl(A,PN (0,σ1+σ2))
b
kl; (12)

[OA]oabijkl ≡ Ooabij convkl(A,PN (0,σ1+σ2))
b
kl. (13)

Here the opponent’s action is estimated based on the “sec-
ondary” beliefs and the estimated outcome is based on the
“primary” beliefs. The convolution reflects that the oppo-
nent’s action is based on the distributional belief rather than
on a point estimate of the strengths. The standard deviation
σ1 + σ2 applies both to the agent’s estimate of the oppo-
nent’s strength and to the estimated opponent’s estimate of
the agent’s strength.

To decide on an action a1, an agent maximized its reward r1.
We computed this reward by summing the reward-action ten-
sor [RA]aijkl multiplied by the belief tensors Bi11, Bj12, B

k
21,

Bl22 reflecting probability distributions for strengths:

a1 = softmax
a

∑
ijkl

[RA]aijklB
i
11B

j
12B

k
21B

l
22. (14)

Here the belief tensors B11 and B12 describe the “primary”
beliefs of an agent about its own strength and the strength of
its opponent respectively. Likewise, the belief tensors B21

and B22 describe the “secondary” beliefs, i.e. the agent’s
estimate of its opponent’s “primary” beliefs. The indices
i, j, k, l iterate over particular strengths, e.g. B5

11 = 0.2
would mean that, according to the agent’s belief, the proba-
bility of its own strength to be equal to 5 constitutes 20%.
To update the agents’ beliefs using the observed actions and
outcomes {o1, a2}, we used the Bayes rule individually for
every element of each belief tensor Bi∗∗:

Pr(s1 = i|{o1, a2}) =

=
Pr({o1, a2}|s1 = i)Pr(s1 = i)

Pr({o1, a2})
.

(15)

The probability of an outcome o1 and an action a2 for the
agent of the strength s1 = i was derived from the outcome-
action tensor [OA]o1a1a2ijkl :

Pr({o1, a2}|s1 = i) =
∑
jkl

[OA]o1a1a2ijkl . (16)

The probability for the agent to be of strength s1 = i was
taken from the belief tensor Bi11:

Pr(s1 = i) = Bi11. (17)

The marginal probability of the observation {o1, a2} was
defined by the outcome-action tensor [OA]o1a1a2ijkl scaled by
the beliefs about strength Bi11, Bj12, etc. to weigh optimal
actions with probabilities of their underlying strengths:

Pr({o1, a2}) = Pr(o1|a2)Pr(a2) =

=
∑
ijkl

[OA]o1a1a2ijkl Bi11B
j
12B

k
21B

l
22.

(18)

Together, the four equations above formed the update rule
for agent beliefs based on their observations:

Pr(s1 = i|{o1, a2}) =

∑
jkl[OA]o1a1a2ijkl Bi11B

j
12B

k
21B

l
22∑

ijkl[OA]o1a1a2ijkl Bi11B
j
12B

k
21B

l
22

.

(19)
The update could proceed at an arbitrary learning rate ε:

Bi11 ← εPr(s1 = i|{o1, a2}) + (1− ε)Bi11 (20)

Overall, the update procedure for the beliefs about the ani-
mals’ strengths is summarized in Algorithm 3.
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4. Results: mechanisms of animal behavior
4.1. Model fit and comparison

We used the framework defined above to test several hy-
potheses about mouse social conflict-related choices. To
test the hypotheses against alternatives, we optimized pairs
of models on the training data (52 mice participating for 22
days). To this end, we specified the negative log-likelihood
(NLL) function L comparing the action probabilities pre-
dicted in our model to mouse actions logged in the experi-
ment:

L = −
∑
mt

(logPr(atm) + logPr(otm)). (21)

To fit the model parameters, we minimized the NLL regular-
ized with the l2 norm of its arguments (Appendix A.5). We
chose the regularization coefficient using fits on a simulated
experiment (Appendix B.2, Figure 7C-H). For the real mice
in the experiment, we used the data spanning all 22 days
to propagate the beliefs but the NLL was only computed
for the data from days 1-3 and 21-22 to avoid the impact of
repeated actions on days 4-20 (Algorithm 4, Appendix B.2,
Figure 7A-B). To compare the models, we computed the
changes in the NLLs based on the predictions of the models
for the testing data (82 mice participating for 3/10/20 days;
Appendix A.6). We performed the t-test on the changes in
NLLs for individual mice followed by the false discovery
rate (FDR) correction. Our comparisons were iterative: they
lasted until a model under consideration outperformed all
the other models. Below, we report the results for the final
round of these comparisons. The implementation details are
described in Appendix A.6. Training set results are reported
in Appendix B.3 and Figure 8

4.1.1. BASELINE MODELS

Here we use the conventional approach and compare our
model with the usual baseline models (Devaine et al., 2014;
Khalvati et al., 2019). The comparison results are displayed
in Figure 4; below we report the mean values for the differ-
ences in NLLs and the corresponding standard errors of the
means. We used the FDR threshold q = 0.05 to evaluate the
significance of tested hypotheses; the significant differences
are marked with the ∗ sign; the insignificant ones are marked
with the ns sign both in the text and in the figure.

To determine the class of algorithms used by the animals
in our task, we compared the Bayesian belief-based model
with the Rescorla-Wagner reinforcement learning model
where each action (“attack”, “defend”) is associated with
a value updated based on the rewards (Figure 4A). Our
tests suggest that the mouse actions in the experiment
were more consistent with the Bayesian update of beliefs
(∆NLLtrain = 0.30± 0.15∗; ∆NLLtest = 0.27± 0.09∗).

To analyze the depth of reasoning consistent with the an-

imals’ actions, we compared the Bayesian belief-based
model where the decisions were based on the “primary” be-
liefs and the game theory optimum (a zeroth-order Theory
of Mind, 0-ToM) with a model including the “secondary”
beliefs to predict the opponents’ actions and choose the
best response to these (1-ToM) (Figure 4B). We found
that the animals’ actions in our experiment are better de-
scribed with the 1-ToM model computing both “primary”
and “secondary” beliefs (∆NLLtrain = 0.33 ± 0.09∗;
∆NLLtest = 0.35± 0.06∗).

To assess the flexibility of policy during a single agonistic
interaction, we compared a model where animals decide on
their actions before the interaction (“fixed policy”) with the
model where animals adapt their actions to the opponent’s
actions, thus converging to a joint equilibrium (“flexible
policy”) (Figure 4C, Appendix B.1.3). This equilibrium
may differ from the Nash equilibrium in the “fixed policy”
as the animals’ beliefs may not be symmetric. We found that
the animals’ actions were better described with the “fixed
policy”, unchanging within a single agonistic interaction but
evolving between interactions during chronic social conflict
(∆NLLtrain = 0.50± 0.12∗; ∆NLLtest = 0.20± 0.08∗).
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Figure 4. Model comparison on testing data. Here (*) indicates a
significant difference between the models (t-test p ≤ 0.05), (ns)
indicates a non-significant difference (t-test p > 0.05), and the
whiskers show the mean ± the standard error of the mean.

4.1.2. ABLATION STUDIES

To infer the dynamics of beliefs that best describe the
animals’ actions, we compared the Bayesian belief-based
model (“dynamic beliefs”) with the models with fixed be-
liefs (“static beliefs”; equivalent to a zero learning rate)
(Baker et al., 2011). We considered two types of “static
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beliefs”: “prior beliefs”, identical to those used to initialize
the “dynamic beliefs” model (Figure 4D), and “posterior
beliefs”, identical to the output of the “dynamic beliefs”
model reflecting the most complete knowledge about the
animals’ strengths (Figure 4E). We found that the “dynamic
beliefs” model has better explained the animal data (“prior
beliefs”: ∆NLLtrain = 0.95±0.17∗; ∆NLLtest = 1.02±
0.12∗; “posterior beliefs”: ∆NLLtrain = 0.50 ± 0.12∗;
∆NLLtest = 0.51 ± 0.15∗). We did not perform an ad-
ditional ablation study for the learning rate coefficient in
the “dynamic beliefs” model as, according to the fits, it was
equal to one.

To test the role of body weight in the initial beliefs about
animals’ strengths, we compared the model where the be-
liefs were initialized using the animals’ body weights with
the model where the body weights were shuffled (Figure 4F)
and with the model where the correct weights were used but
their prior distribution was wider than the true distribution
(Figure 4G). Our comparison shows that using the true ani-
mals’ body weights and their distribution to initialize beliefs
has positively affected the predictions (“shuffled weights”:
∆NLLtrain = 0.10 ± 0.07ns; ∆NLLtest = 0.30 ± 0.13∗;
“wider prior”: ∆NLLtrain = 0.08 ± 0.04∗; ∆NLLtest =
0.22± 0.06∗).

To evaluate the cost of defeat for cases where both mice
attacked, we compared two models. In the first model, the
cost of defeat was not fixed and remained an optimization
parameter. In the second model, the cost of defeat has the
same absolute value as the reward for a victory (Figure 4H).
Our results indicate that the cost of defeat has an absolute
value significantly larger than that of the reward for a victory
(∆NLLtrain = 0.61± 0.14∗; ∆NLLtest = 0.85± 0.11∗).

Finally, to evaluate the cost of defense for cases where only
one mouse attacked, we considered an alternative model
where this cost was equal to zero (Figure 4I). We determined
that, although the punishment for losing in a fight while
“defending” was negligible compared to the punishment
for losing in a fight while “attacking”, it still has a non-
zero value (∆NLLtrain = 0.003 ± 0.003ns; ∆NLLtest =
0.019± 0.006∗). We did not perform an additional ablation
study for the large costs of defense, as, in that case, the
predicted actions are always to “attack”, unlike in the data
(Appendix B.1.2).

4.1.3. OPTIMAL PARAMETERS

To obtain further insights into the aggressive behavior of
mice in our experiment, we evaluated the optimal param-
eters for the first-order Bayesian belief-based model. We
observed a local minimum of the NLL at the parameter val-
ues σ1 = 3 ± 1g, σ2 = 6 ± 2g, βo = 5 ± 1, βa = 9 ± 1,
α = 0.3±0.2,A = 3±1, and ε = 1.0±0.1. The identified
parameters βo and α correspond to the policy with δ = 0

where mice attack any opponents of equal or lower strength,
provided that their action is also to “attack”. The uncertainty
σ1 in initial estimates of own strength has a relatively low
value suggesting that mouse body weight is an informative
proxy for its strength. The uncertainty σ2 in initial estimates
of the opponent’s strength is relatively high suggesting that
the opponent’s body weight carries no significant informa-
tion about its estimated strength and that such strength is
rather estimated based on their actions.
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Figure 5. Reconstructed beliefs for individual mice: (A) about
oneself; (B) about last opponent; (C) about last opponent’s belief
about oneself; (D) about last opponent’s belief about themselves.
(E) Belief regression to c-Fos activity in whole-brain samples.

4.2. Model correlates in the brain

To analyze neural correlates of the model variables, based
on the behavioral data, we estimated the beliefs for each
mouse (Figure 5A-D). We then computed their correlations,
voxel by voxel, with the c-Fos activity in the entire brain
(Figure 5E, Appendix A.7). We evaluated the beliefs at the
end of the experiments because c-Fos only allows collecting
one brain activity snapshot per animal. To study brain activ-
ity at different stages of social conflict, we used mice with
varied participation in the experiment (3/10/20/22 days).

In correlation analysis, we use the “primary” and “sec-
ondary” beliefs reconstructed with 0-ToM and 1-ToM mod-
els. We found significant (cumulative FDR q ≤ 0.1) neural
correlates for both types of these variables (Figure 6A-F).
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Figure 6. Correlates of the reconstructed beliefs in the c-Fos ac-
tivity in the brain. (A-B) 0-ToM; (C-F) 1-ToM. Red: positive
correlation; blue: negative correlation. (G) Venn diagram for the
voxels correlated with the 0-ToM and 1-ToM models.

To analyze the representations of 0-ToM and 1-ToM beliefs,
we examined the set of voxels whose activity was correlated
with either 0-ToM or 1-ToM beliefs (Figure 6G), i.e. the
union of the voxels correlated with the two models. We
found that 79% of these voxels were correlated with the
1-ToM beliefs only, while 8% of the voxels were uniquely
correlated with the 0-ToM beliefs. The remaining 13% of
voxels were correlated with both 0-ToM and 1-ToM beliefs.
Thus, brain activity appears to contain signatures of both
1-ToM and 0-ToM beliefs, suggesting that both models may
be relevant to the animals’ behavior.

We then evaluated the brain regions hosting the significant
neural correlates of the 1-ToM beliefs. We found that the
“primary” beliefs about oneself and the opponents were
correlated with clusters of neural activity in the median
preoptic nucleus (MEPO) and the periventricular hypothala-
mic nucleus (PV). The “secondary” beliefs were correlated
with neural activity in the brain regions including, most
prominently, the medial septal nucleus (MS), the medial and

lateral preoptic areas (MPO, LPO), the lateral septal nucleus
(LS), the superior and inferior colliculi (SC, IC), the dentate
gyrus (DG), the parabrachial nucleus (PB), the anterodorsal
and median preoptic nuclei (ADP, MEPO), the periventric-
ular hypothalamic nucleus and the dorsomedial nucleus of
the hypothalamus (PV, DMH), the pallidum (PAL), the zona
incerta (ZI), the tuberomammillary and tuberal nuclei (TM,
TU), the pontine reticular nucleus (PRN), and the lateral
hypothalamic area (LHA). Some of these regions are known
for their involvement in conflict behaviors (Aleyasin et al.,
2018; Diaz & Lin, 2020). Our results show that the belief-
based model is consistent with neural activity in the brain.
We describe additional tests in Appendix B.4 and Figure 9.

5. Discussion
5.1. Normative theory of social conflict

In this work, we formulated a theory of chronic social con-
flict based on game theory and Bayesian inference of agents’
beliefs. We refined our model using mouse behavioral data
and further validated it using neuronal data.

Our results suggest that animals’ behavior during conflict is
consistent with maintaining and updating beliefs about their
strength and the strengths of their opponents. This observa-
tion is similar to prior work on Bayesian Theories of Mind
proposing that in a variety of tasks humans and animals
make decisions based on estimates of environmental vari-
ables updated with the Bayes rule (Baker et al., 2011). This
finding also supports prior work showing the lack of naive
(without evolving beliefs) game-theory-optimal behaviors
in humans (Stahl & Wilson, 1995).

Our data suggest that, along with the “primary” beliefs
about their own and opponent’s strengths, animals maintain
the “secondary” beliefs estimating the “primary” beliefs of
opponents. This result is consistent with previous work in
humans reporting that choices in the volunteer’s dilemma
are better explained with the 1-ToM model compared to
0-ToM and 2-ToM models (Khalvati et al., 2019). Our
results are also consistent with behavioral observations in
mice suggesting that animals facing a dominant/submissive
opponent anticipate their actions (Kudryavtseva et al., 2014).

We show that initial estimates of animals’ own strength were
correlated with their body weight. This finding is consistent
with the proposals that body weight is a strong predictor for
fighting performance in mice (Andersson & Iwasa, 1996;
Cooper et al., 2020) and social status in rats (Nagy et al.,
2023). At the same time, our data suggest that animals may
not use correlates of opponents’ body weights as surrogates
for strength, rather relying on opponents’ actions.

Our fits to behavioral data suggest that the decisions about
animals’ actions in the chronic conflict task were made be-
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fore agonistic interactions with other mice and were not
optimized within a single interaction. These fits are consis-
tent with our observations of animal behavior in individual
interactions. This result also aligns well with prior work in
humans reporting bounded rationality in a series of normal-
form games (Stahl & Wilson, 1995). Further experiments
may be designed to validate this result.

Using behavioral data, we arrived at a payoff matrix describ-
ing the animals’ decisions in social conflict. We found that
the cost of defense (via escaping confrontation) is small com-
pared to the cost of defeat (via attack), in agreement with
minimizing the physical damage reported by (Crowcroft,
1966). At the same time, the cost of defeat after an attack
exceeds the reward for victory. This may be due to the im-
mediate effect of the cost of defeat (e.g. physical damage)
compared to a discounted delayed reward (e.g. mating, ac-
cess to food, etc.) associated with winning a conflict (Kable
& Glimcher, 2007; Kobayashi & Schultz, 2008).

Finally, we identified the neural correlates of the beliefs
computed in our model. Previous studies have characterized
multiple brain regions whose activity modulates aggression.
Our approach offers an interpretation of the computations
performed in several brain regions. We find correlates of be-
liefs in hypothalamic regions, consistent with the previously
reported role of the hypothalamus in aggression (Aleyasin
et al., 2018; Diaz & Lin, 2020). Within the hypothalamus,
a recent study describes the short-term aggression ramping
encoded in the ventromedial hypothalamus (VMHvl) but not
in the medial preoptic area (MPO) (Nair et al., 2023). Here,
we observe the correlates of animals’ beliefs in preoptic
areas (MPO, LPO, MEPO) but not in VMHvl in the condi-
tions of chronic social conflict. This finding may indicate
differences in the coding schemes for short-term and chronic
conflict. We find that the neural activity in MPO is corre-
lated with “secondary” beliefs about opponents’ strengths,
in agreement with a recent study on the role of cMPO neu-
rons (Wei et al., 2023). It is likely that other brain regions,
such as VMHvl encode variables different from beliefs. This
possibility may explain why we did not find significant cor-
relates of beliefs in other brain regions related to aggression
including some limbic areas, the brain stem, and the reward
system (Aleyasin et al., 2018).

5.2. Limitations and strengths of our approach

In our setting, animals made their decisions in the condi-
tions of incomplete information and refined their policies
based on observed outcomes of their encounters. Agents
in such a setting face the problem of a partially observable
Markov decision process (POMDP). Here, we use biolog-
ical decision-making propose an approach to solving the
POMDP problem in multi-agent settings. Our work extends
machine-learning methods for analyzing behavioral and

neural data in these conditions. Combining inverse rational
control (Dvijotham & Todorov, 2010; Kwon et al., 2020)
with game theory (Cressman et al., 2003) offers an interpre-
tation of model parameters. Specifically, the variables in our
models either represent the rewards for various outcomes
or describe the confidence in taking various actions. A
low number of fitting parameters makes our approach data-
efficient. This property may be useful in neuroscience where
data are typically small (Stahl & Wilson, 1995). Game
theory makes the transitions between beliefs deterministic,
reducing the computations compared to probabilistic Baum-
Welch algorithms (Baum et al., 1970), conventionally used
in POMDPs (Wu et al., 2018). The benefits of our approach
can be quantified in follow-up studies.

A limitation of our game-theory approach is that it involves
model comparisons between ad hoc models (Stahl & Wilson,
1995). To mitigate this limitation, we based our models on
the results of previous studies, using standard ToM/ML
baselines (Stahl & Wilson, 1995; Khalvati et al., 2019). In
future studies, we may consider additional models including
mixtures of ToMs (Khalvati et al., 2019), naive Nash, and
rational expectation strategies (Stahl & Wilson, 1995).

Our behavior-based model reconstructs relevant variables
for individual animals, allowing us to search for their cor-
relates in neural activity. As a proxy of neural activity, we
used the c-Fos expression, captured with whole-brain 3D
microscopy (Renier et al., 2016). Using c-Fos comes with
several limitations: i) c-Fos lacks temporal resolution, allow-
ing one snapshot of brain activity per mouse; ii) the c-Fos
signal is nonspecific, potentially encoding factors other than
neuronal activities (Herrera & Robertson, 1996). Among
the benefits, c-Fos does not perturb animals’ social behav-
ior, making it the standard choice for studies of aggression
(Aleyasin et al., 2018; Diaz & Lin, 2020; Wei et al., 2021).
Ex-vivo 3D imaging allowed us to reconstruct the whole-
brain neural activity. While previous studies focused on
tissue sections of preselected brain regions (Haller et al.,
2006; Konoshenko et al., 2013), our whole-brain data has
enabled an unbiased study of conflict circuitry.

The neural activation analysis in this work is performed
with the correlation analysis followed by the FDR correc-
tion (Benjamini & Hochberg, 1995). This is a conservative
analysis establishing whether the model variables are di-
rectly represented in neural activity. Alternative approaches
could include GLMs for detecting linear combinations of
model parameters (Lindquist, 2008), Gaussian random fields
for modeling spatial correlations of the signal (Rue & Held,
2005), and MANOVA for distinguishing representations
of correlated model variables (Allefeld & Haynes, 2014).
Using these and other fMRI approaches (Skup, 2010; Ash-
burner et al., 2014) may allow identifying the correlates of
individual model variables.
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Our results are based on data comprising “attack”/“defend”
and “win”/“lose” readouts but our analyses can be extended
to different metrics and social behaviors. Long-term track-
ing of social structure in rats (Nagy et al., 2023) may allow
for testing our conclusions in a different species in a com-
plex social environment. The data on carrier/non-carrier
phenotypes (Schroeder & Desor, 2005) would allow us to
see if our results generalize to a cooperative setting. The
model may also be applied to other domains, such as au-
tomated negotiation (Baarslag et al., 2016). Overall, our
framework may be used for studying competitive or cooper-
ative behaviors in real-world settings using limited data.

5.3. Broader impact

In our model, we applied evidence accumulation approaches
to the domain of game theory which studies optimal inter-
actions between agents. This allowed us to build a theory
of chronic social conflict which can be used in future works
for building quantitative models of social interactions. We
then used Inverse Rational Control (IRC) to model the be-
liefs of animals based on their behavior. Combining the
IRC with evidence accumulation models limits its degrees
of freedom, increases robustness, and offers an interpreta-
tion for its predictions. Finally, we used the whole-brain
c-Fos data (a proxy of neuronal activity) in combination
with the IRC for an unbiased search for neural correlates of
reconstructed beliefs. Overall, we combine the game theory,
evidence accumulation models, inverse rational control, and
whole-brain imaging to propose a principled framework for
building normative models of social behaviors and ground-
ing them to neural circuitry in the brain.
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A. Methods
A.1. Mouse chronic social conflict paradigm

To induce varied behavioral states in mice, we applied the
chronic social conflict paradigm (all animal procedures were
approved by the Stony Brook University Institutional Ani-
mal Care and Use Committee in accordance with the NIH
regulations). Pairs of weight-matched mice were separated
by a perforated partition in cages. Once daily, the partition
was removed for 10 minutes to enable agonistic interac-
tions between mice. To study the adaptive properties of the
aggressive/defeated states in mice, we kept the opponents
unchanged for 3 days. Then, to reveal the maladaptive prop-
erties of behavioral states, each winning mouse was kept
in its cage, while each losing mouse was daily relocated to
an unfamiliar cage with an unfamiliar winner. Non-fighting
mice were matched with known winning opponents. After
a total of 20 days of agonistic interactions, to reveal the
flexibility of behavioral states, mice were reorganized to
face opponents of the same state. The newly formed pairs
underwent 2 more days of interactions. During all interac-
tions, we logged the mouse actions (“attack”, “defend”) and
the outcomes of interactions (“win”, “lose”, “draw”). We
varied the participation of mice in the experiment:

Table 1. Datasets
DATASET I II III TOTAL

DAYS 3 / 10 20 22

MOUSE
BEHAVIOR

EXP: 33
CTRL: 6

EXP: 49
CTRL: 6

EXP: 52
CTRL: 6

EXP: 134
CTRL: 18

BRAIN
3D DATA

EXP: 24
CTRL: 6

EXP: 11
CTRL: 6

EXP: 19
CTRL: 6

EXP: 54
CTRL: 18

A.2. Game theory optimal actions

We then defined a class of models to test against the logged
data. We described the mouse task as a normal-form game.
Here, the agents simultaneously chose their actions; the
available actions were to “attack” and to “defend”. The out-
come of the game depended on the actions and strengths of
participating agents. The strengths si were defined as con-
stants between 1 – 20, specific to an agent and unchanging.

Table 2. Game outcomes
ACTION #2 ”ATTACKS” #2 ”DEFENDS”

#1 ”ATTACKS” p1win ∼ Gibbs(s1, s2) #1 WINS
#1 ”DEFENDS” #2 WINS DRAW

If both agents in the game chose to “attack”, the probability
of “winning” the game was defined by the softmax rule over
their strengths parameterized with the “outcome confidence”

βo. The reward assigned to each agent depended on the
outcome of the game and on their action as follows:

Table 3. Rewards
ACTION ”WIN” ”LOSE” ”DRAW”

”ATTACK” 1 −A N/A
”DEFEND” N/A −α 0

To derive the optimal actions for agents in a fully observable
setting, we parametrized the agents’ actions by the proba-
bility to “attack” and derived the gradients of the expected
reward w.r.t. these probabilities. We found Nash equilibria
corresponding to mixed strategies by deriving the points
of zero gradients within the support of action probabilities.
To find Nash equilibria corresponding to pure strategies,
we chose the pure strategies whose gradients were directed
outside the support of action probabilities. We averaged the
action probabilities over Nash equilibria. Overall, finding
the optimal policies in the game is described in Algorithm 1:

Algorithm 1 Game theory optimal actions
Input: strength range smax, costs α, A, confidence βo
Initialize actions A = zeros(2, smax, smax).

for strengths s1, s2 = 1 to smax do
expectation κ1 = (1 +A) softmaxs(βos1, βos2)−A
gradient ṗ1 = (κ1 + α− 1)p2 + 1; similarly find ṗ2

Find mixed strategy: ṗ1(2) = 0; 0 < p1(2) < 1;
for policies p1, p2 = 0 or 1 do

Find pure strategy: ṗ1(2)(p1(2) − 0.5) > 0
end for
Average the strategies: A(1, s1, s2) = mean({p1})
A(2, s1, s2) = 1−A(1, s1, s2)

end for

A.3. Bayesian belief initialization

To account for the partial observability of information in
the task, we defined the probability distributions (beliefs)
describing the strengths of the agents. We initialized the
beliefs with the normal distributions whose mean values
corresponded to the body weight of the animals (shifted by
-15g to fit the range). To account for the prior information
about the body weight distribution, we applied the Bayes
rule to the initial beliefs. To reflect possible depths of rea-
soning, we considered four types of beliefs parameterized
by different standard deviations of the normal distribution:

Table 4. Initial belief standard deviations
BELIEF ”MINE” ”OPPONENT’S”

”ABOUT MYSELF” σ1 σ1 + σ2

”ABOUT OPPONENT” σ2 σ2 + σ1



A normative theory of social conflict

The “opponent’s” beliefs here reflect the agent’s beliefs
about the opponent’s beliefs that may differ from the op-
ponent’s beliefs in the model. Overall, the acquisition of
initial beliefs about the animals’ strengths is summarized
in Algorithm 2 below. Here Bim1m2

describes the beliefs of
mouse m1 about mouse m2.

Algorithm 2 Bayesian belief initialization
Input: body weights wi, uncertainties σ1, σ2
Initialize beliefs B = zeros(smax,max(m),max(m)).
strengths Pr(s) = PN (E[w],D[w])

for mice m1,m2 = 1 to max({m}) do
Set σ using Table 4
for strength i = 1 to max({s}) do

belief Bim1m2
= Z−1PN (i,σ)(wm2

)Pr(s)(i)
end for

end for

A.4. Bayesian belief update

To enable evidence accumulation in our model, we used
the Bayes rule to update the beliefs based on the obser-
vations. The agonistic interaction outcomes were used to
update the primary beliefs about the agent’s own and the
opponent’s strengths. The opponents’ actions were used to
update the beliefs about the opponent’s beliefs. To speed up
computations, we precomputed the conditional probability
matrices. Overall, the update procedure for the beliefs about
the animals’ strengths is summarized in Algorithm 3 below.

Algorithm 3 Bayesian belief update
Input: pairs ptm, actions atm, outcomes otm
Compute actions A using Algorithm 1; precompute
[RA]aijkl ≡

∑
bR

ab
ij convkl(A,PN (0,σ1+σ2))

b
kl

[OA]oabijkl ≡ Ooabij convkl(A,PN (0,σ1+σ2))
b
kl

Initialize beliefs B using Algorithm 2

for time t = 1 to max({t}) do
for mouse m1 = 1 to max({m}) do

opponent m2 = ptm1

for mouse in m1,m2 do
ãtk = softmaxa

∑
ijkl[RA]aijklB

i
11B

j
12B

k
21B

l
22

end for
for strength i = 1 to max({s}) do

for mice in m1,m2 do
∆Bi12 = Z−1

∑
jkl[OA]o1a1a2ijkl Bi11B

j
12B

k
21B

l
22

update Bi12 ← ε∆Bi12 + (1− ε)Bi12
Repeat for other belief types B∗∗

end for
end for

end for
end for

A.5. Model fit

Besides the belief update, the above algorithm allows for
predicting the animals’ actions based on their beliefs. We
consider the opponent’s predicted action to be game-theory-
optimal based on the opponent’s estimated beliefs. To pre-
dict the agent’s action, we maximize its reward expecta-
tions based on its own “primary” beliefs and the opponent’s
predicted action. To optimize the model predictions, we
update the model’s parameters to minimize the negative log-
likelihood (NLL) for the actions in our behavior data to be
sampled from the model predictions. While we use the en-
tire data to propagate the beliefs, we only use days 1-3 and
21-22 for the NLL evaluation to avoid the impact of repeated
actions on days 4-20. We use bootstrap to compute the error
bounds for the identified parameters. Overall, the inference
of model parameters is summarized in Algorithm 4 below.

Algorithm 4 Model parameter inference
Input: pairs ptm, actions atm, outcomes otm
Initialize parameters x ≡ [σ1, σ2, βa, βo, α,A, ε]
Initialize xopt = zeros(100, 7)

for repeat i = 1 to 100 do
Define subset τ ∈ [1, T ] with repetitions
Define actions Pr(aτm) using Algorithm 3
Define likelihood L = −

∑
mt logPr(aτm)

Regularize L ← L+ λ ‖x/xmax‖2
Optimize xopt(i) = fminsearch(L)

end for
Compute E[xopt],D[xopt]

To optimize the parameter inference procedure, we applied
it to simulated data with known parameters. We added noise
to Algorithm 2 to generate the initial beliefs about strengths
in the model and used Algorithm 3 to generate the simulated
actions. Once the model parameters were reconstructed with
Algorithm 4 (no bootstrap), we used Gaussian processes to
estimate the means and the error bounds for the predictions.
We varied the regularization parameter λ ∈ {0.1; 1; 10} and
chose the one with the best parameter reconstruction.

A.6. Model comparison

To test hypotheses about mouse decision-making, we per-
formed the model comparison. To this end, we optimized
pairs of models on the training data (52 mice participating
for 22 days) and computed the changes in the NLL based on
the predictions for the testing data (82 mice participating for
3/10/20 days). We performed the t-tests on the changes in
the NLLs for individual mice followed by the FDR correc-
tions. For pairwise comparisons, we picked an initial model
and considered all one-step deviations from it (e.g. for the
0-ToM model, we separately considered “frozen” prior be-
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liefs and, alternatively, a zero cost of defeat, but not their
combination). We fitted each model in the same way, using
a numerical optimizer until convergence. We considered
new models until one of the models outperformed the initial
one; we then used this new model as an initial model for the
next round of comparisons, using one-step deviations from
this new model. We stopped after arriving at a model that
outperformed all other models. Here we list the considered
models and specify their differences in comparison with the
“default” (1-ToM) model described above:

Table 5. Baseline models
TEST BASELINE MODEL

CLASS OF ALGORITHMS RESCORLA-WAGNER
DEPTH OF REASONING 0-THEORY OF MIND
FLEXIBILITY OF POLICY IN-FIGHT NASH EQUILIBRIA

In Rescorla-Wagner model, each action (“attack”, “de-
fend”) was associated with a value representing the expected
future reward. This value was independent of the mouse’s
strength or the identity of an opponent. The values were
initialized with zeros for the “attack” and “defend” actions,
then updated at a learning rate ε (an additional optimiza-
tion parameter) using the reward as a teaching signal. In
the 0-Theory of Mind model, we only considered the “pri-
mary” beliefs of an agent (about its own and the opponent’s
strength) assuming that the opponent acts in accordance
with the same beliefs (even though the actual beliefs of the
two agents were independent and may have differed). The
actions were selected based on the precomputed Nash equi-
libria; the opponents’ actions and the interaction outcomes
were used to update both beliefs. In the in-fight Nash equi-
libria model, the policy gradients used in determining the
Nash equilibria were computed for the expected rewards
integrated with the “primary” beliefs of each mouse reflect-
ing the in-fight adaptation to the opponent’s actions. As
the opponent’s actions were observable in this setting, the
model did not include the “secondary” beliefs.

Table 6. Ablation studies
TEST ABLATION

DYNAMICS OF BELIEFS FIXED PRIOR BELIEFS
FIXED POSTERIOR BELIEFS

UNIT LEARNING RATE
ROLE OF BODY WEIGHT SHUFFLED BODY WEIGHTS

WIDE BODY WEIGHT PRIOR
COST OF DEFEAT UNIT COST OF DEFEAT
COST OF DEFENSE ZERO COST OF DEFENSE

In the fixed prior beliefs model we used the zero learning
rate for the Bayesian belief update, retaining the beliefs un-
changed from their body weight-based initial values. In the
fixed posterior beliefs model, we used the zero learning
rate but the initial beliefs were substituted with the final be-
liefs produced with our default model. In the unit learning

rate model we set the learning rate equal to 1. In the shuf-
fled body weights model, we shuffled the animals’ body
weights before using them to initialize the beliefs. In the
wide body weight prior model we used the double vari-
ance for the prior distribution of the animals’ body weights
at the belief initialization. In the unit cost of defeat model
we set the cost of “losing” after an “attack” to -1, matching
the absolute value of the reward for a victory. In the zero
cost of defense model we set the cost of “losing” after a
“defense” to 0.

A.7. Neural correlates of model variables

To find neural correlates of the model variables, we nor-
malized the registered c-Fos activity in each brain sample
by dividing it by the average c-Fos activity of all control
samples from the same dataset. We converted the relative
c-Fos activities to the logscale to obtain a roughly normal
distribution of relative activities. We normalized the model
variables by their average estimated values for the control
samples. Then, we computed the voxel-wise correlations
between the processed c-Fos activity and model variables.
To select the voxels significantly correlated with model vari-
ables, we performed the FDR correction. Finding the belief
correlates in the brain is described in Algorithm 5 below.

Algorithm 5 Belief correlates in the brain
Input: 3D brain images I aligned to atlas A; beliefs B

for sample s in experimental samples do
Normalize Is = log Is − log (mean(Ictrl))
Normalize bs = mean(bs)−mean(bctrl)

end for

for belief b in {B11, B12, etc.} do
for voxel i in 3D brain atlas volume do

Compute pi ← corr({I}i, b)
end for
Compute {qi} = FDR(∪i{pi})
Find corrb = {j ≤ i} : {

∑i
k=0 sort(qk) < 0.1}

Find brain regions r in atlas A: corrb ∈ r
end for

The variables under consideration included: “primary” and
“secondary” beliefs about mouse’s own and the opponent’s
strength for 0-ToM and 1-ToM models; the estimated advan-
tages (i.e. the differences between the same-order beliefs
within each model); the estimated outcomes (i.e. the bi-
narized estimated advantages); the predicted actions for
oneself and the opponent under each model; the Rescorla-
Wagner values of the two actions and their difference. The
control variables included: the body weights of mice, the
observed actions, the outcomes of the agonistic interactions,
and the shuffled beliefs of each type.
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B. Supplementary results
B.1. Game theory optimal actions

B.1.1. GENERAL CASE

In this section, we provide a simple derivation of the game
theory optimal actions in our model. The expected reward
E[r1] for the first agent can be computed as its payoff ma-
trix R̂1 multiplied by the action probability vectors P1,2

describing the policies of the first and the second agents:

E[r1] = PT1 R̂1P2 =

=
(
p1 1− p1

)( κ1 1
−α 0

)(
p2

1− p2

)
=

= p1p2(κ1 + α− 1) + p1 − αp2.

(22)

Here p1,2 are the probabilities to “attack” for the first and
the second agents, κ1 is the expected reward for the first
agent in the case when both agents “attack”, and −α is the
cost for the first agent in the case when only the second
agent “attacks”. The first agent may increase its expected
reward by changing its policy P1 that depends on a single
parameter p1 (the first agent can’t change the parameter
p2 as it is controlled by the opponent). To optimize the
expected reward E[r1], we compute its gradient w.r.t. p1:

∂E[r1]

∂p1
= p2(κ1 + α− 1) + 1. (23)

We then set this gradient to zero. The resulting condition
for optimizing the first agent’s expected reward E[r1] is
determined by the second agent’s probability to “attack”:

p2 = −(κ1 + α− 1)−1. (24)

Even though this result may seem counterintuitive (the first
agent can only optimize p1 but not p2), there is no contro-
versy. That is, both agents are expected to optimize their
policies simultaneously. Similarly to the first agent’s reward
dependence on p2, the second agent’s reward depends on
p1. As a result, both their rewards are optimized when:{

pmixed1 = −(κ2 + α− 1)−1;

pmixed2 = −(κ1 + α− 1)−1.
(25)

Regardless of such optimum being a minimum or a max-
imum of either expected reward E[r1,2], it corresponds
to a Nash equilibrium as none of the agents can gain
an advantage by only changing its strategy. A solution
of this kind (“mixed strategy”), however, only exists if
0 ≤ −(κ1,2 +α− 1)−1 ≤ 1, as the probabilities to “attack”
p1,2 cannot be negative and cannot exceed one. Alterna-
tively, the agents may follow a “pure strategy” with binary
probabilities p1,2 to “attack”. Such strategies correspond to
Nash equilibria if the reward gradients point outwards the

[0− 1] interval for both agents so that the policy won’t have
room to evolve. This requirement can be formalized as:{

∂E[r1]
∂p1

(p1 − 1
2 ) > 0;

∂E[r2]
∂p2

(p2 − 1
2 ) > 0.

(26)

Using the values of the derivatives from Equation 23, we
arrive at the criterion for the pure-strategy Nash equilibrium:

{
(ppure2 (κ1 + α− 1) + 1)(ppure1 − 1

2 ) > 0;

(ppure1 (κ2 + α− 1) + 1)(ppure2 − 1
2 ) > 0.

(27)

Each task setting (defined by the parameters κ and α) may
correspond to multiple Nash equilibria. As it is not known
what equilibrium the agents may end up in under an arbitrary
set of parameters, we approximate the expected policy by
averaging the action probabilities p1,2 over the identified
equilibria. A more precise way to account for multiple Nash
equilibria is to integrate the action probabilities over the
basins of attraction corresponding to each equilibrium; this
analysis can be added in future studies.

B.1.2. LIMIT CASE: REWARDLESS VICTORY

In the previous subsection, we set the reward for a victory
equal to one, so that we could scale all other rewards in
the payoff matrix R̂ relative to its value. Such a definition
necessitates explicitly considering a limit case where there’s
no reward for a victory. In this case, the expected reward
E[r1] for the first agent can be computed as:

E[r1] = PT1 R̂1P2 =

=
(
p1 1− p1

)( κ1 0
−α 0

)(
p2

1− p2

)
=

= p1p2(κ1 + α)− αp2.

(28)

The derivatives of the expected rewards w.r.t. the agents’
policies are then defined by:{

∂E[r1]
∂p1

= p2(κ1 + α);
∂E[r2]
∂p2

= p1(κ2 + α).
(29)

Generally, this system only has a trivial solution (p1 = p2 =
0), ruling out “mixed” strategies in this case. The condition
for “pure” strategies (Equation 26) can be written as:{

ppure2 (κ1 + α)(ppure1 − 1
2 ) > 0;

ppure1 (κ2 + α)(ppure2 − 1
2 ) > 0.

(30)

As there is no reward for victory and the parameter α is
negligible, the term (κ1,2 + α) is generally negative. To
satisfy the inequality above, the terms (ppure1,2 − 1/2) should
also be negative, which is only possible with p1 = p2 = 0
(as we only consider binary values here). That is, the only
Nash equilibrium for this limit case is provided by the “pure”
strategy where none of the agents ever “attack”, which is
inconsistent with the experimental data.
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B.1.3. IN-FIGHT NASH EQUILIBRIUM

In the case where agents do not have perfect information
about each other’s strengths, their estimates of the Nash
equilibria may be based on their beliefs about the strengths
of the agents in the game. As these beliefs, generally speak-
ing, are different between the contestants, their estimates
of the Nash equilibria may also be mismatched. As such,
these estimates cannot be considered as true Nash equilibria,
requiring further evolution of the contestants’ policies.

One way to account for this discrepancy is to update the
policies during the fight. Although our tests suggest that
such a mechanism is inconsistent with animals’ behavior in
the experiment and, as such, is not used in our final model,
we provide its description for completeness.

Updating the policies during the fight is supposed to lead to
a joint Nash equilibrium. This involves two simple additions
to our previously described model: i) the reward expecta-
tions in the payoff matrices R̂1,2 are integrated over the
“primary” beliefs about the participants’ strengths, and ii)
the optimization is performed jointly for both participating
agents as their policies are observable to each other under
the assumptions about this case.

Amending the payoff matrix R̂1 can be reduced to redefining
its entry κ2, the only one depending on the agents’ strengths.
Note that an in-fight Nash equilibrium is only defined under
the 0-ToM model: the “primary” beliefs are used to predict
the odds of winning while the “secondary” beliefs, normally
used for predicting the opponent’s actions, are unnecessary
because these actions are directly observed:

κ22 =
∑
ij

κ2(s2 = i, s1 = j)Bi22B
j
21. (31)

That is, the equilibrium policy p1 for the first agent depends
on the second agent’s estimate of its expected reward κ22 for
the case when both agents “attack”. The expressions for the
optimal “mixed” and “pure” strategies are then rewritten
based on Equations 25 and 27 as follows:{

pmixed∗1 = −(κ22 + α− 1)−1;

pmixed∗2 = −(κ11 + α− 1)−1;
(32)

{
(ppure∗2 (κ11 + α− 1) + 1)(ppure∗1 − 1

2 ) > 0;

(ppure∗1 (κ22 + α− 1) + 1)(ppure∗2 − 1
2 ) > 0.

(33)

The equations above describe the in-fight Nash equilibrium
which is not a part of our model. This analysis, however,
may be useful in future studies of different social behaviors.

B.2. Model fit

In data fits, we used the entire data to propagate the beliefs,
however, we only considered days 1-3 and 21-22 for the

NLL evaluation. This is because, on days 4-20, winning
mice were always matched with losing mice, so the results
of the interactions were fully predictable, reducing the sen-
sitivity of the NLL to the model parameters. As a result, the
model using days 1-3 and 21-22 had a clear local minimum
(Figure 7B) at the identified parameters, whereas the model
using days 1-22 had a plateau instead (Figure 7A).
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Figure 7. Parameter inference. (A-B) NLL for reconstructing the
animal data; (C-H) reconstructed parameters in simulation.

To assess the reliability of our data fits we performed ad-
ditional fits on simulated data. To this end, we replicated
the mouse experiment in a simulated environment and gen-
erated 300 choice patterns using various predefined param-
eters. We sampled parameters uniformly from the ranges
previously used for parameter fits in mouse data. We used
Gaussian process regression with the squared exponential
kernel to estimate the ranges where the reconstruction was
accurate (Figure 7C-H). Due to unconstrained degrees of
freedom in parameters βo and α we instead computed the
parameter δ determined by βo and α (Figure 2D). The pa-
rameter δ was reconstructed precisely in all cases. The
estimates for the parameter A were consistent with the data
for 0 < A < 10. For σ1 and σ2 the estimates were reliable
in the ranges 0 < σ1 < 4 and 0 < σ2 < 7, and for βa
in the range 0 < βa < 5. The estimates for ε were less



A normative theory of social conflict

reliable, although the right trend was observed throughout
the range of parameters. The parameters δ, A, and σ1,2,
obtained from the mouse data, belong to the above ranges,
which renders them accurate. The parameter βa lies outside
this range suggesting high confidence in the action.

B.3. Model comparison

In Results, we provided Figure 4 displaying the model com-
parison for the testing data. Here, we provide an additional
Figure 8 with a similar display for the training data. In the
majority of tests, our model is again more consistent with
the data compared to the null models. Even though this data
was used to fit the models, the result is still valuable because
it covers additional behavioral states: while our testing data
covers normal (3 days) and pathological (up to 20 days)
conflict, the training data also includes the reversal of the
aggressive/submissive status (22 days).
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Figure 8. Model comparison on training data. Here (*) indicates a
significant difference between the models (t-test p ≤ 0.05), (ns)
indicates a non-significant difference (t-test p > 0.05), and the
whiskers show the mean ± the standard error of the mean.

We do not expect overfitting on the training data, as the
low number of parameters is low in our approach. Our
ToM models contain 7 parameters: (1-2) uncertainties in
own and opponent’s strength σ1 and σ2; (3-4) confidence in
outcome and action βo and βa; (5-6) punishment for losing
while attacking or defending A and α; (7) learning rate ε.
Ablations exclude one parameter at a time. The Rescorla-
Wagner model does not have belief-related parameters (1-3).

B.4. Model correlates in the brain

To analyze the neural representations corresponding to
the considered models, we compared the c-Fos signal to
alternative ways of encoding the belief-related variables. For
both 0-ToM and 1-ToM models, we analyzed the correlates
of the estimated advantages (i.e. the differences between the
same-order beliefs within a model), the estimated outcomes
(i.e. the binarized estimated advantages), and the predicted
actions for oneself and the opponent. We found that the
neural correlates of the beliefs we report in the Results are
not explained by these other representations.

To control for alternative explanations of the observed
neural activity, we repeated the analysis for model-unrelated
variables. These variables included the body weights of the
animals (used to initialize the beliefs), the outcomes of the
agonistic interactions, and the binary winner/loser variable.
As a control, we also considered the shuffled beliefs of each
type, such that we shuffled the animal identities within all
groups of “winners” or “losers”. Among these, we only
found substantial correlates of the winner/loser variable
(Figure 9A) whose presence in the brain is unsurprising.
The correlates of this variable only partially overlap with
the correlates of the beliefs (Figure 9C).

To verify the class of algorithms involved in the animals’
aggressive decisions, we additionally examined the neu-
ral correlates of variables reconstructed with the Rescorla-
Wagner model (Figure 9B). We found that such correlates
are mostly explained by the winner/loser variable, whereas
a larger portion of the 1-ToM correlates does not have an
alternative explanation (Figure 9C). This result corroborates
that the animal choices are consistent with the belief-based
model at the level of neuronal activity.

A Correlates of isWinner

B Correlates of RW

C Corr. of model variables

1-ToM

0-ToM

isWinner

RW

Figure 9. Correlates of the reconstructed beliefs in the c-Fos ac-
tivity in the brain. (A) winner/loser; (B) Rescorla-Wagner. Red:
positive correlation; blue: negative correlation. (C) Venn diagram
for the voxels correlated with model variables.


