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ABSTRACT 

 

Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher 

basic mechanisms of gene regulation and to understand the impact of genetic variants on 

complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in 

one species, making comparisons difficult across species. In contrast, we conducted a cross-

species study defining epigenetic states and identifying cCREs in blood cell types to generate 

regulatory maps that are comparable across species. This study used integrative modeling of 

eight epigenetic features jointly in human and mouse in our Validated Systematic Integration 

(VISION) Project. The contribution of each epigenetic state in cCREs to gene regulation was 

estimated from a multivariate regression against gene expression across cell types. We used 

these values to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in 

each cell type, which are useful for visualizing and categorizing dynamic changes in cCREs. 

Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell 

types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor 

binding motifs that were similar across species. Genetic variants associated with blood cell 

phenotypes were highly and specifically enriched in the catalog of human VISION cCREs, 

supporting its utility for understanding impacts of noncoding genetic variants on blood cell-

related traits. A cross-species comparison of cCREs, based on the joint modeling, revealed both 

conserved and lineage-specific patterns of epigenetic evolution, even in the absence of genomic 

sequence alignment. We provide these resources through tools and browsers at 

http://usevision.org. 
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INTRODUCTION 

 

The morphology and function of different cell types are determined by the expression of 

distinctive sets of genes in each cell type. This differential gene expression is regulated by the 

interplay of transcription factors (TFs) binding to cis-regulatory elements (CREs) in the genomic 

DNA, such as promoters and enhancers, forging interactions among the CREs and components 

of transcriptional apparatus and ultimately leading to patterns of gene activation and repression 

characteristic of each cell type (Maston et al. 2006; Hamamoto and Fukaya 2022). Epigenetic 

features such as accessibility of DNA and modifications of histone tails in chromatin have 

pronounced impacts on the ability of TFs to bind to CREs, and furthermore, they serve as a 

molecular memory of transcription and repression (Strahl and Allis 2000; Ringrose and Paro 

2004). Frequently occurring sets of chromatin features define epigenetic states, which are 

associated with gene regulation and expression (Ernst and Kellis 2010; Hoffman et al. 2013; 

Zhang et al. 2016). Genome-wide assignment of DNA intervals to epigenetic states (annotation) 

provides a view of the regulatory landscape that can be compared across cell types, which in 

turn leads to insights into the processes regulating gene expression (Libbrecht et al. 2021).  

 

Comprehensive mapping of CREs within the context of the regulatory landscape in different cell 

types is needed to achieve a broad understanding of differential gene expression. Maps of 

candidate CREs (cCREs) provide guidance in understanding how changes in cCREs, including 

single nucleotide variants and indels, can lead to altered expression (Hardison 2012), and they 

can inform approaches for activation or repression of specific genes in potential strategies for 

therapies (Bauer et al. 2013). Indeed, most human genetic variants associated with common 

traits and diseases are localized in or near cCREs (Hindorff et al. 2009; Maurano et al. 2012; 

The_ENCODE_Project_Consortium 2012). Thus, knowledge of the activity and epigenetic state 

of cCREs in each cell type can facilitate understanding the impact of trait-associated genetic 
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variants on specific phenotypes. Furthermore, genome editing approaches in somatic cells have 

recently been demonstrated to have promise as therapeutic modalities (Frangoul et al. 2021), 

and a full set of cCREs annotated by activity and state can help advance similar applications.  

 

The different types of blood cells in humans and mice are particularly tractable systems for 

studying many aspects of gene regulation during differentiation. The striking differences among 

mature cell types result from progressive differentiation starting from a common hematopoietic 

stem cell (HSC) (Kondo et al. 2003). While single cell analyses reveal a pattern of ostensibly 

continuous expression change along each hematopoietic lineage (Laurenti and Göttgens 2018), 

intermediate populations of multi-lineage progenitor cells with decreasing differentiation 

potential have been defined, which provide an overall summary and nomenclature for major 

stages in differentiation. These stem, progenitor, and mature cell populations can be isolated 

using characteristic cell surface markers (Spangrude et al. 1988; Payne and Crooks 2002), 

albeit with dramatically fewer cells in progenitor populations. Many lineage-restricted 

transcription factors exert critical roles in gene regulation during hematopoiesis (Orkin 1995; 

Blobel and Weiss 2009). In addition to the primary blood cells, several immortalized cell lines 

provide amenable systems for intensive study of various aspects of gene regulation during 

differentiation and maturation of blood cells (Weiss et al. 1997).  

 

The VISION project aims to produce a Validated Systematic Integration of hematopoietic 

epigenomes, harvesting the extensive epigenetic and transcriptomic datasets from previous 

work from many investigators and large consortia into concise, systematically integrated 

summaries of regulatory landscapes and cCREs (Hardison et al. 2020). We previously 

published the results of these analyses for progenitor and mature blood cell types from mouse 

(Xiang et al. 2020b). In the current study, we generated additional epigenetic datasets and 

expanded the integrative analyses to include data across both human and mouse cell types to 
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facilitate cross-species analyses for insights into both evolution and function of the cCREs. Here 

we describe (a) our systematic integrative analyses of epigenetic features across progenitor and 

mature blood cell types jointly for human and mouse to produce genome-wide views of the 

epigenetic states (the regulatory landscapes) that are comparable across species, (b) catalogs 

of cCREs, annotated by accessibility and epigenetic state in each cell type and each species 

along with overlaps with orthogonal sets of genomic elements, (c) estimates of regulatory output 

from each cCRE in each cell type, based on the epigenetic state assignments, (d) discovery of 

distinctive and discriminatory motifs for many categories of cCREs, (e) a demonstration of the 

utility of the cCREs for gaining inferences into the way that noncoding genetic variants may be 

impacting complex blood cell-related traits, and (f) a study of the evolution of DNA sequences 

and inferred function of cCREs between human and mouse. Together, this work provides 

valuable community resources that enable researchers to leverage the extensive existing 

epigenomic data into further mechanistic regulatory studies of both individual loci and genome-

wide trends in human and mouse blood cells. 

 

RESULTS 

 

Data collation, preprocessing, normalization, and denoising  

The input for our joint integrative analysis of human and mouse regulatory landscapes across 

progenitor and mature blood cell types was a large number of data sets of epigenetic features 

related to gene regulation and expression (404 data sets, 216 in human and 188 in mouse) 

generated by both consortia and individual laboratories, including several that were generated 

for this work (Figure 1 and Supplementary Table S1). Most data were from primary cell 

populations, and data from commonly used cell lines were also included. Chromatin 

accessibility is a general feature of almost all regulatory elements, and it was measured by the 

Assay for Transposase Accessible Chromatin with high throughput sequencing (ATAC-seq, 
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Buenrostro et al. 2013; Corces et al. 2016) or by DNase-seq (Thurman et al. 2012) for almost all 

cell types in both species. Available ChIP-seq data for up to six histone modifications provided 

information related to different elements or processes in gene expression, specifically H3K4me3 

for promoters and H3K4me1 for enhancers (Birney et al. 2007; Heintzman et al. 2007), 

H3K27ac for activation (Roh et al. 2005; Smith and Shilatifard 2014), H3K36me3 for 

transcriptional elongation (Li et al. 2002), H3K27me3 for repression by the Polycomb repressor 

complex (Muller et al. 2002; Schwartz et al. 2006), and H3K9me3 for heterochromatin (Padeken 

et al. 2022). ChIP-seq data on occupancy by the structural protein CTCF associated with 

insulation (West et al. 2002) were available in many cell types. Bulk RNA-seq data were 

collected for all cell types.  

 

These epigenomic data from multiple sources differed in many properties, including sequencing 

depth, fraction of reads on target, and signal-to-noise ratio (Xiang et al. 2020a). To reduce the 

impact of these technical differences, we used an improved version of the S3norm method, 

called S3V2, to normalize and denoise all data sets. S3V2 (Xiang et al. 2021) was designed to 

match the ranges of both peak and background signal intensities and their variances across 

epigenetic datasets (see Methods). This adjustment produced a stronger and more consistent 

correlation by feature across cell types, indicating that the denoising and normalization were 

effective (Supplementary Figure S1). 

 

Extracting epigenetic states by modeling epigenomic information jointly in human and 

mouse 

A powerful class of methods for integrative analysis of epigenomes involves statistical modeling 

to discover frequently occurring combinations of epigenetic features, comprising epigenetic 

states, and then assigning DNA intervals (often of 200 bp) to those states to produce regulatory 

annotations across the genome. These segmentation and genome annotation (SAGA) methods 
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(Libbrecht et al. 2021) include ChromHMM (Ernst and Kellis 2012), SegWay (Hoffman et al. 

2012), and IDEAS (Zhang et al. 2016; Zhang and Hardison 2017). We employed IDEAS 

because its simultaneous two-dimensional modeling along chromosomes and across cell types 

provides a consistent and well-resolved annotation while leveraging epigenetic information from 

related cell types when assigning states in cell types with missing data (Zhang and Mahony 

2019). Moreover, its Bayesian statistical framework allows the incorporation of epigenetic 

models from different studies and even from different species.  

 

We conducted an iterative, joint training on the epigenomic data of both human and mouse 

blood cells to ensure that the same set of epigenetic states was learned and applied for both 

species. Previous studies showed that the epigenetic states uncovered by SAGA methods such 

as ChromHMM (Ernst and Kellis 2012) were similar in both mouse and human (Yue et al. 2014; 

Roadmap_Epigenomics_Consortium et al. 2015; Gorkin et al. 2020). Indeed, when the 

epigenomic data from mouse or human were used separately as input to IDEAS, most of the 

resulting states were shared between the species (Supplementary Figure S2). The states 

specific to human or mouse were often similar to the shared states but with small variations in 

one or more epigenetic features; no clear evidence for a state specific to either species was 

found. The joint modeling began with a search for epigenetic states that exhibit similar 

combinatorial patterns across different epigenetic features in both human and mouse (see 

Methods), which we defined as reproducible epigenetic states. This search led to the retention 

of 27 reproducible states (Figure 2A, steps 1 and 2). Then, to analyze the full epigenomic 

information in each species, we used these 27 states as prior information to sequentially run the 

IDEAS genome segmentation on the human and mouse data sets, updating the signal 

compositions of the epigenetic states after each run (Figure 2A: steps 3a and 3b). Two 

heterogenous states, identified by their coefficient of variance (Supplementary Figure S3), were 

removed, because such states previously had been observed to be composites of low 
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frequency states (Xiang et al. 2020b). This process produced a model with 25 epigenetic states 

(Figure 2B). As observed in previous IDEAS modeling studies (Xiang et al. 2020b), the states 

capture combinations of epigenetic features characteristic of regulatory elements such as 

promoters and enhancers, transcribed regions, repressed regions marked by either Polycomb 

(H3K27me3) or heterochromatin (H3K9me3), including states that differ quantitatively in the 

contribution of particular features to each state. For example, H3K4me1 is the predominant 

component of states E1 and E, but E1 has a lower contribution of that histone modification. The 

proportions of the genomes covered by each state were similar in human and mouse (Figure 

2B). The largest portions of the genomes were in the quiescent state 0, characterized by no 

significant detectable contribution from any feature. 

 

All genomic regions of each hematopoietic cell type in both human and mouse were then 

assigned to one of the 25 states from the IDEAS joint modeling. The resulting annotation of 

blood cell types provides a concise view of the epigenetic landscape and how it changes across 

cell types, using labels and color conventions consistently for human and mouse. The value of 

this concise view can be illustrated in the orthologous genomic intervals containing genes 

expressed preferentially in different cell lineages as well as genes that are uniformly expressed 

(Figure 2C, D). The gene SLC4A1/Slc4a1 encodes the anion transporter in the erythrocyte 

plasma membrane, and it is expressed in the later stages of erythroid maturation (Dore and 

Crispino 2011). This gene, its flanking regions, and a non-coding gene located upstream (to its 

right, Bloodlinc in mouse), were assigned to epigenetic states indicative of enhancers (yellow 

and orange), promoters (red), and transcribed regions (green) in erythroid cell types in both 

human and mouse, with indications of stronger activation in the more mature erythroblasts 

(region boxed and labeled E in Figure 2 C, D). Several of the elements assigned as enhancer-

like were also occupied by the transcription factor GATA1 (Xu et al. 2012; Pimkin et al. 2014) 

and co-activator EP300 (ENCODE datasets ENCSR000EGE and ENCSR982LJQ), which are 
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associated with erythroid enhancers. The GRN/Grn gene, encoding the granulin precursor 

protein, is more broadly expressed but with high levels in granulocytes and monocytes (Jian et 

al. 2013). This gene and upstream regions (to its left) were assigned to epigenetic states 

indicative of enhancers and promoters in those cell types, with a larger region in enhancer-like 

states in human cells (region boxed and labeled G). The ITGA2B/Itga2b gene, encoding the 

alpha 2b subunit of integrin, is highly expressed in mature megakaryocytes (van Pampus et al. 

1992; Pimkin et al. 2014). Again, this gene and upstream regions (to its right in Figure 2) were 

assigned to epigenetic states indicative of enhancers and promoters in mature megakaryocytes, 

along with a transcribed state in the gene body (region boxed and labeled MK). Genes 

expressed in all the blood cell types, such as UBTF/Ubtf, were assigned to active promoter 

states and transcribed states across the cell types. These concise summaries of the epigenetic 

landscapes across cell types showed patterns of activity in chromatin for both differentially and 

uniformly expressed genes in blood cells, along with indications of potential regulatory regions. 

Furthermore, the consistent state assignments from the joint modeling revealed similar 

epigenetic landscapes in human and mouse. 

 

While these resources are useful, some limitations should be kept in mind. For example, IDEAS 

uses data from similar cell types to improve state assignments in cell types with missing data, 

but the effectiveness of this approach may be impacted by the pattern of missing data. In 

particular, the epigenetic data on human stem and progenitor cell types was largely limited to 

ATAC-seq data, whereas histone modification data and CTCF occupancy was available for the 

analogous cell types in mouse (Figure 1). Thus, the state assignments for epigenomes in 

human stem and progenitor cells may not be as robust as those for similar cell types in mouse. 

Another limitation is the broad range of quality in the data sets that cannot be completely 

adjusted by normalization, which leads to over- or under-representation of some epigenetic 

signals in some cell types. For example, state 5 (light mauve) for low ATAC-seq signal was 
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prominent in human HUDEP cells, neutrophils, and K562 cells (Figure 2C). The abundance of 

this state assignment may result from stronger ATAC-seq signals overall in the data sets from 

those cell types, leading to some regions with low ATAC-seq signal outside the peak regions 

that were assigned to state 5. Despite the limitations in the input data, the annotation of blood 

cell epigenomes after normalization and joint modeling of epigenetic states produces a highly 

informative painting of the activity and regulatory landscapes across the genomes of human and 

mouse blood cells. 

 

Identification of candidate cis-regulatory elements in human and mouse 

We define a candidate cis-regulatory element, or cCRE, as a DNA interval with a high signal for 

chromatin accessibility in any cell type (Xiang et al. 2020b). When peaks of accessibility are 

called independently on different cell types and then combined across cell types, the genomic 

intervals inferred as peaks can enlarge excessively unless special procedures are employed to 

prevent expansion (Meuleman et al. 2020; The_ENCODE_Project_Consortium et al. 2020). We 

reasoned that this expansion could be avoided by using both a combination of all the chromatin 

accessibility signals and the original data for each cell type as input for modeling across all 

these datasets to call peaks. We utilized a version of the IDEAS methodology for this purpose, 

running it in the signal intensity state (IS) mode on ATAC-seq and DNase-seq signals only 

(Xiang et al. 2021), in contrast to the previously described epigenetic state mode used for 

integrating data on multiple epigenetic features. The chromatin accessibility signals for each 

replicate of each cell type plus a track of combined average signal were modeled to define 

discrete signal intensity states and assign them to all the epigenomes. Genomic intervals in the 

higher intensity states were called as peaks of chromatin accessibility, following a hierarchical 

process to ensure that the collection included both peaks present in many cell types as well as 

those in a single cell type (Figure 3A, also see Methods). The preference given to the peaks in 
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the average signal track helped prevent excessive lengthening of the peak calls after combining 

them. 

 

We employed the same peak-calling procedure for the blood cell epigenomes of human as well 

as mouse, resulting in 200,342 peaks of chromatin accessibility for human blood cell types and 

96,084 peaks for mouse blood cell types. For comparison, we also called peaks on the human 

ATAC-seq data using MACS3 (Zhang et al. 2008), which generated a larger number of peaks 

compared to IDEAS-IS (277,064 versus 200,342), but those additional peaks tended to have 

low signal, and they had less enrichment for overlap with other function-related genomic 

datasets (Supplementary Figure S4). Unlike the set of accessibility peaks used in earlier work 

(Xiang et al. 2020b), which were called using the HOMER program (Heinz et al. 2010), all of the 

IDEAS-IS peaks were in a non-quiescent state in at least one cell type. Thus, the sets of 

IDEAS-IS peaks comprised the sets of VISION cCREs. The larger number of cCREs called in 

human than in mouse results at least in part from the very high signal in chromatin accessibility 

data from some human cell lines (HUDEP1, HUDEP2, and K562) and cell types (e.g., 

monocytes). 

 

The  ENCODE Project has released regulatory element predictions in a broad spectrum of cell 

types in the Index of DHSs (Meuleman et al. 2020) and the SCREEN cCRE catalog 

(The_ENCODE_Project_Consortium et al. 2020), using data that were largely orthogonal to 

those utilized for the VISION analyses. Almost all the VISION cCRE calls in human blood cells 

were included in the regulatory element predictions from ENCODE (Supplementary Figure 

S5A), supporting the quality of the VISION cCRE calls. Furthermore, as expected from its focus 

on blood cell types, the VISION cCRE catalog shows stronger enrichment for CREs and other 

indicators of regulatory function in blood cells (Supplementary Figure S5B). 
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cCRE co-localization with orthogonal features related to structure or function 

Having generated catalogs of cCREs along with an assignment of their epigenetic states in 

each cell type, we sought to gain additional information by connecting the VISION cCREs to 

other, orthogonal (not included in VISION predictions) datasets of DNA elements implicated in 

gene regulation or in chromatin structure and architecture (termed structure-related) (Figure 3B, 

Supplementary Figure S6, Methods). About two-thirds (136,664 or 68%) of the VISION human 

cCREs overlapped with elements in the broad groups of CRE-related and structure-related 

elements (Figure 3B, C). Specifically, 97,361 cCREs overlapped with CRE-related elements and 

83,327 cCREs overlapped with structure-related elements, with 44,024 cCREs overlapping 

elements in both categories. In contrast, ten sets of randomly chosen DNA intervals, matched in 

length and GC-content with the human cCRE list, showed much less overlap (about 22%) with 

the orthogonal sets of elements (Figure 3C). Of the CRE-related superset, the enhancer-related 

group of datasets contributed the most overlap with VISION cCREs, followed by SuRE peaks, 

which measure promoter activity in a massively parallel reporter assay (van Arensbergen et al. 

2017), and CpG islands (Figure 3D). The extent of these overlaps was much higher (most 

ranged from 4- to 60-fold) than that observed for overlaps with the random matched intervals, 

with particularly high enrichments for cCREs overlapping with multiple features (Figure 3D). Of 

the structure-related superset, the set of CTCF occupied segments (OSs) contributed the most 

overlap, followed by chromatin loop anchors, again with high enrichment relative to overlaps 

with random matched sets (Figure 3E). Considering the VISION cCREs that intersect with both 

structure- and CRE-related elements, the largest group are those that overlap with enhancers 

and CTCF OSs, followed by enhancers and loop anchors, and then promoter-like elements and 

CTCF OSs (Supplementary Figure S7). Furthermore, the VISION cCREs capture known blood 
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cell CREs (Supplementary Table S3) and CREs demonstrated to impact a specific target gene 

in a high throughput analysis (Gasperini et al. 2019) (Figure 3F). 

 

The intersections with orthogonal, function- or structure-related elements lend strong support for 

the biological significance of the VISION cCRE calls and add to the annotation of potential 

functions for each cCRE. Those annotations for both human and mouse cCREs are recorded in 

our cCRE database with a web-based query interface, available at our website 

(http://usevision.org; cCRE_db). 

 

Actuation, epigenetic states, and regulatory impact of cCREs during differentiation 

Actuation and state assignments of cCREs during differentiation 

We examined the epigenetic states assigned to cCREs to determine the major trends in 

changes for all cCREs across cell types and to map the cCREs that show changes in activity 

during differentiation. For clarity, we emphasize that while a cCRE is defined by epigenetic 

features in specific cell types, it is a DNA element present in all cell types. Inferences about the 

activity of a cCRE in a given cell type are based on whether the cCRE was actuated and which 

epigenetic state was assigned to the actuated cCRE. The cCREs in peaks of chromatin 

accessibility were considered to be actuated, but they can be in states associated with 

activation (e.g., enhancer-like or promoter-like) or repression (associated with polycomb or 

heterochromatin). For both activation and repression studied here, the epigenetic states result 

from dynamic histone modification processes. Most, but not all, actuated cCREs were in states 

associated with activation. 

 

Changes in predicted activity of epigenetic states of individual cCREs during differentiation 

The epigenetic state assignments represent a systematic integration of all the available 

epigenetic features for a genomic element, and therefore, we reasoned that they should reflect 
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potential biological functions more comprehensively compared to individual epigenetic features. 

While previous work has used signals from single or multiple individual features such as 

chromatin accessibility or histone modifications in regression modeling to explain gene 

expression (e.g., Karlić et al. 2010; Dong et al. 2012), we used the more comprehensive 

integration of epigenetic features in state assignments in a multivariate regression model (see 

Methods) to estimate the impact of each state on the expression of local genes. That impact 

was captured as β coefficients showing the expected strong positive impact for promoter and 

enhancer associated states and a negative impact from heterochromatin and polycomb states 

(Figure 4A). The β coefficients provide a quantitative estimate of the regulatory impact of each 

state. In contrast to using the state assignments as categorical annotations, which is commonly 

done in SAGA methods, our regression modeling has mapped this set of categorical states into 

a continuous variable. The differences in the values for β coefficients between states provides 

an estimate of the change in regulatory impact as a cCRE shifts between states during 

differentiation (difference matrix to the left of the β coefficient values in Figure 4A). 

 

The β coefficient values were used to generate an epigenetic state Regulatory Potential (esRP) 

score for each cCRE in each cell type, calculated as the β coefficient values for the epigenetic 

states assigned to the cCRE weighted by the coverage of the cCRE by each state (Figure 4B). 

These esRP scores were the basis for visualizing the collection of cCREs and how their 

regulatory impact changed across differentiation. Starting with the large matrix of about 200,000 

human cCREs with esRP scores for each cell type and replicate, we employed the dimensional 

reduction visualization method UMAP to project all cCREs onto a plane that keeps together the 

cCREs with similar esRP scores across cell types (Figure 4C). The resulting image showed 

multiple clusters populated with cCREs (dots) that are colored to visualize their activity in 

individual cell types, with the color determined by the esRP score in that cell type.  The darker 

red dots indicate cCREs more strongly implicated in gene activation in that cell type, as 
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illustrated for erythroblasts (ERY) and monocytes (MON) in Figure 4C.  UMAPs annotated by 

esRP scores for all cell types in both human and mouse along with movies showing the 

changes in estimated impact of cCREs across human hematopoietic differentiation are provided 

in the Supplementary Materials and on our VISION website (http://usevision.org). These 

annotated UMAP projections revealed both cCREs active in all cell types, such as the long arc 

of red cCREs in the upper right of the graphs, as well as shifts in cCRE activation as cells 

differentiate.  

 

The esRP scores across cell types and replicates were also used to cluster the cCREs. In 

previous work, cCREs have been clustered based on levels of chromatin accessibility or histone 

modifications across cell types (e.g., Heintzman et al. 2009; Meuleman et al. 2020), whereas in 

our approach the clustering is based on estimated regulatory impact of the cCREs. Focusing on 

the esRP scores in 12 cell types shared between human and mouse along with the average 

across cell types, we identified clusters jointly in both species. We conducted a series of 

clustering steps to find reproducible K-means clusters for the combined human and mouse 

cCREs, identify the clusters shared by cCREs in both species, and then further group those 

shared K-means clusters hierarchically to define fifteen joint metaclusters (JmCs) (see Methods 

and Supplementary Figure S8). Each cCRE in both mouse and human was assigned to one of 

the fifteen JmCs, and each JmC was populated with cCREs from both mouse and human.  

 

These JmCs establish discrete categories for the cCREs based on the cell type distribution of 

their regulatory impact (Figure 4D). Shading the cCRE UMAPs by metacluster assignment 

revealed well-defined clusters of cCREs within the zones of active cCREs visualized from the 

esRP scores (Figure 4E). The clusters of cCREs with high esRP scores across cell types were 

highly enriched for promoter elements (Supplementary Figure S9A). The cell type-restricted 

clusters of cCREs showed enrichment both for selected enhancer catalogs and for functional 
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terms associated with those cell types (Supplementary Figures S9A and S9B, respectively). 

Furthermore, clustering of genes by the JmC assignments of cCREs in a 100kb interval 

centered on their TSS revealed a strong enrichment for JmCs with high activity in the cell 

type(s) in which the genes are expressed. Examples include IFNG showing enrichment for JmC 

12, which has high esRP scores in T and NK cells, CSF1R showing enrichment for JmC 15, 

which has high scores in monocytes, and GATA1 showing enrichment for JmC 10, which has 

high scores in erythroid cells and megakaryocytes (Figure 4F). 

 

In summary, we show that the β coefficients and esRP scores provide valuable estimates of 

regulatory impacts of states and cCREs, respectively. The UMAP visualization portrays the 

activation and repression of cCREs during differentiation accompanied by other cCREs with an 

invariant epigenetic state. The esRP-driven joint metaclusters provide refined subsets of cCREs 

that should be highly informative for investigating cell type-specific and general functions of 

cCREs. The cCRE annotations are organized into a database for further investigation at our 

website (http://usevision.org; cCRE_db). As a complementary approach to systematic 

integration of epigenetic features and RNA data across cell types, we also built self-organizing 

maps (Supplementary Figure S10, Jansen et al. 2019) and provided an interactive viewing tool 

for them on our website (http://usevision.org; SOM).  

 

Motif enrichment in human and mouse cCREs 

We examined the sets of cCREs in each JmC to ascertain enrichment for transcription factor 

binding site (TFBS) motifs because these enriched motifs suggest the families of transcription 

factors that play a major role in regulation by each category of cCREs. Furthermore, having sets 

of cCREs determined and clustered for comparable blood cell types in human and mouse 

provided the opportunity to discover which TFBS motifs were shared between species and 

whether any were predominant in only one species. Our examination of cCREs grouped by their 
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similar profiles of esRP scores across cell types differed from previous analyses in which all 

cCREs active in a specific cell type or those that are distinctive for a cell type were examined 

(e.g., Neph et al. 2012; Vierstra et al. 2020). The JmCs bring out not only sets of cCREs that are 

distinctive for a lineage, but also sets of cCREs with a broader distribution of activity.  

 

To find TFBS motifs associated with each JmC, we calculated enrichment for all non-redundant  

motifs in the Cis-BP database (Weirauch et al. 2014) using Maelstrom from GimmeMotifs 

(Bruse and van Heeringen 2018). The results confirmed previously established roles of specific 

TFs in cell lineages and showed little evidence for novel motifs (Figure 5). JmCs 2 and 10, 

which have high esRP scores in progenitor and mature cells in the erythroid and 

megakaryocytic lineages, were enriched in TFBS motifs for the GATA family of transcription 

factors, as expected for the known roles of GATA1 and GATA2 in this lineage (Blobel and 

Weiss 2009; Fujiwara et al. 2009). This pattern was also observed for JmC 7, which has high 

esRP scores in a broader range of cell types including erythroid and megakaryocytic cells. JmC 

14 was also enriched for the GATA motif, as expected for the role of GATA3 in natural killer 

(NK) and T cells (Rothenberg and Taghon 2005). The cCREs in JmCs 9 and 12, which also 

have high esRP scores in NK and T cells, were enriched in motifs for the known lymphoid 

transcription factors TBX21, TCF7L1, and LEF1 (Chi et al. 2009). The cCREs in JmCs 3 and 15 

were active in progenitor cells and monocytes, and they were enriched in the binding site motifs 

for myeloid-determining transcription factors CEBPA and CEBPB (Graf and Enver 2009) and 

the myeloid transcription factor PU.1 (Tenen et al. 1997).  Broadly active cCREs in JmCs 1 and 

4 were enriched in TFBS motifs for promoter-associated transcription factors such as E2F2 and 

SP1 (Dynan and Tjian 1983; Kaczynski et al. 2003). These patterns of motif enrichments in the 

JmCs fit well with the expectations from the previous studies of activities of transcription factors 

in the various lineages of blood cells, and thus, they lend further credence to the value of the 

cCRE calls and the JmC groupings for further studies of regulation in the blood cell types. 
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The genome-wide collection of cCREs across many blood cell types in human and mouse 

provided an opportunity for an unbiased and large-scale search for indications of transcription 

factors that may be active in one species for a shared cell type. Prior studies of transcription 

factors have shown homologous transcription factors used in analogous cell types across 

species (e.g., Carroll 2008; Noyes et al. 2008; Schmidt et al. 2010; Cheng et al. 2014; Villar et 

al. 2014), but it is not clear if there are significant exceptions. In our study, we found that for the 

most part, the motif enrichments were quite similar between the human and mouse cCREs in 

each JmC. Note that these similarities were not forced by requiring sequence matches between 

species; the cCREs were grouped into JmCs based on their pattern of activity, as reflected in 

the esRP scores, across cell types, not by requiring homologous sequences. This similarity 

between species indicates that the same transcription factors tend to be active in similar groups 

of cell types in both mouse and human. 

 

The enrichment of TFBS motifs for CTCF and ZBTB7A presented some potential exceptions to 

the sharing of motifs across species. The cCREs in JmC 8 showed the expected strong 

enrichment for these motifs in both human and mouse, with little enrichment for binding site 

motifs of other TFs (Figure 5). These cCREs had modest regulatory impact, as estimated by 

esRP scores, across most cell types, suggesting the hypothesis that cCREs in JmC 8 may 

consist of CTCF-bound sites that are not involved in gene activation, such as insulators. Indeed, 

examination of ChIP-seq results showed that the cCREs in JmC 8 were enriched for CTCF 

occupancy and overlap with loop anchors (Supplementary Table S4). In contrast, the cCREs in 

several JmCs were enriched for CTCF and ZBTB7A motifs only in mouse (JmCs 12, 9, and 10) 

or only in human (JmCs 13 and 14). In these cases, the cCREs were also enriched for binding 

sites for other TFs, with those other motifs enriched in the cCREs from both species. The 

frequency of occupancy by CTCF in the cCREs in these latter JmCs corresponded well with the 
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enrichments for the motifs (Supplementary Table S4). A parallel analysis of the cCREs in 

human and mouse JmCs by the multi-label discriminative motif-finder SeqUnwinder (Kakumanu 

et al. 2017) did uncover enrichment for some apparently species-specific motifs, but the 

magnitude of enrichment was limited (Supplementary Figure S11).  

 

In summary, after grouping the cCREs in both human and mouse by their inferred regulatory 

impact across blood cell in a manner agnostic to DNA sequence or occupancy by TFs, the 

enrichment for TFBS motifs within those groups recapitulated known activities of TFs both 

broadly and in specific cell lineages. The results also showed considerable sharing of inferred 

TF activity in both human and mouse, as expected. Indications of preferential usage of CTCF 

and/or ZBTB7A in human or mouse in a context with other TFs were observed, which could 

serve as the basis for more detailed studies in the future. 

 

Enrichment of genetic variants for blood cell related traits in the human cCRE collection 

Most genetic variants associated with complex phenotypes occur in noncoding regions of the 

genome (Hindorff et al. 2009), and candidate regulatory elements are strongly enriched for such 

variants (Maurano et al. 2012; The_ENCODE_Project_Consortium 2012). Thus, collections of 

high quality predictions of CREs could provide insights into the functional mechanisms by which 

noncoding variants mediate phenotypic variation (Hardison 2012). We reasoned that our 

collection of cCREs would be particularly informative for interpreting non-coding variants 

influencing blood cell traits and blood diseases, and therefore, we examined the overlap 

between the human VISION cCREs and several databases of phenotype-associated variants. 

Our initial examination of variants from the NHGRI-EBI GWAS Catalog (Buniello et al. 2019) 

associated with blood cell traits showed that they overlapped with the VISION cCREs much 

more frequently than with random genomic intervals, and more variants associated with traits of 
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specific cell types overlapped with the cCREs actuated in those cell types (Supplementary 

Figure S12).  

 

When measuring such enrichments from GWAS data, it is important to consider the haplotype 

structure of human genomes, whereby association signals measured at assayed genetic 

markers likely reflect an indirect effect driven by linkage disequilibrium (LD) with a causal variant 

(that may or may not have been genotyped). Stratified linkage disequilibrium score regression  

(sLDSC, Finucane et al. 2015) offers one principled approach to account for LD structure and 

estimate the proportion of heritability of each trait explained by a given genomic annotation. We 

applied sLDSC to quantify the enrichment of heritability in 587 traits from the UK Biobank 

(UKBB) GWAS (Ge et al. 2017 and http://www.nealelab.is/uk-biobank/) within the VISION 

cCREs relative to the rest of the genome.  GWAS were conducted separately in males and 

females and as such, the data include 292 unique traits with GWAS results from both males and 

females and 3 traits with results only from males. Importantly, the traits included in our analysis 

encompassed 114 blood-related traits and 473 non-blood-related traits, allowing us to assess 

the specific relevance of the cCREs to regulation of blood-related versus other phenotypes. Of 

the 114 blood-related traits, 54 were “blood count” traits that measure properties including size 

and counts of specific blood cell-types, and 60 were “blood biochemistry” traits that measure 

lipid, enzyme, and other molecular concentrations within whole blood samples. 

 

At a 5% FDR threshold, we discovered 53 traits for which cCREs were significantly enriched in 

heritability (Figure 6A). Strikingly, 52 (98%) of these traits were blood-related, and only a single 

trait was not related to blood (male pulse wave arterial stiffness index; 0.2% of non-blood 

related traits). Of the 52 significant blood-related traits, 50 were blood count traits, representing 

93% of all UKBB blood count traits included in our analysis. The remaining 2 significant traits 

were blood biochemistry traits, specifically, the male and female glycated hemoglobin 
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concentrations. The 58 non-enriched blood biochemistry traits were from screenings of 

metabolites, proteins, and enzymes that were not produced in blood cells, but rather by the liver 

(e.g., albumin, alkaline phosphatase, alanine aminotransferase, apolipoproteins, aspartate 

aminotransferase, bilirubin, urea, cholesterol), kidney (e.g., creatinine), or other organs. While 

these were labeled as blood-related traits by the UKBB, they are largely controlled by organs, 

tissues, and cell types that we did not assay when developing the VISION CRE annotation. 

These metrics and observations together lend support to the VISION CRE annotation being 

composed of informative genomic regions associated with regulation of genes involved in 

development of blood cell traits. 

 

We next sought to determine the enrichment of trait-associated SNPs in the subsets of VISION 

cCREs based on activity within groups of cell types, i.e., the joint metaclusters (JmCs). We re-

analyzed the blood trait-associated variants by running sLDSC with fifteen separate 

annotations, each annotation defined by a JmC, and found five JmCs with significant results at a 

5% FDR (Figure 6B). The cCREs more active in erythroid and megakaryocytic cells, i.e., those 

in JmCs 10 and 2, were significantly enriched for heritability of several blood traits, including 

many related to erythroid cells. Several of the enrichments were for cCREs in JmCs 1 and 4, 

which are active across all cell types examined (Figure 4E) and are themselves highly enriched 

for proximal regulatory regions such as promoters (Supplementary Figure S9A). While this 

result may suggest that many blood-trait associated variants were in proximal regulatory regions 

of genes with active epigenetic marks broadly present across blood cells, more study is needed 

to establish such a relationship. One caveat is that the large number of cCREs in JmCs 1 and 4 

makes it more likely for them to overlap with any feature, and thus the large overlap with 

proximal regulatory regions could be separable, at least in part, from the overlap with trait-

associated variants. Many of the JmCs showed no significant enrichment, perhaps reflecting a 

reduced power for JmCs comprising fewer cCREs. 
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We conclude that the VISION cCREs offer a valuable resource for further studies of genetic 

variants associated with complex phenotypes involving blood cells, especially those that may 

impact the phenotypes by altering gene regulation.   

 

Evolution of sequence and inferred function of cCREs 

The human and mouse cCREs from blood cells were assigned to three distinct lines of evolution 

(Figure 7A). About one-third of the cCREs were present only in the reference species (39% for 

human, 28% for mouse), as inferred by the failure to find a matching orthologous sequence in 

whole-genome alignments with the other species. We refer to these as nonconserved (N) 

cCREs. Of the two-thirds of cCREs with an orthologous sequence in the second species 

(124,000 in human and 69,000 in mouse), slightly over 30,000 were also identified as cCREs in 

the second species. The latter cCREs comprise the set of cCREs conserved in both sequence 

and inferred function, which we call SF conserved (SF) cCREs. A similar number of cCREs in 

both species fall into the SF category. The degree of chromatin accessibility in orthologous SF 

cCREs was positively correlated between the two species (Supplementary Figure S13). The 

remaining cCREs (91,000 in human and 36,000 in mouse) were conserved in sequence but not 

in the inferred function as a regulatory element, and we call them S conserved (S) cCREs. The 

latter group could result from turnover of regulatory motifs or acquisition of different functions in 

the second species.  

 

The levels of cCRE sequence conservation across mammalian genomes differed among the 

evolutionary categories. We used the maximum phyloP score (Pollard et al. 2010) in each cCRE 

interval as an estimate of the level of sequence similarity across genome sequence alignments 

of 100 species with human as the reference (phyloP100) and across genome sequence 

alignments of 60 species with mouse as the reference (phyloP60). For both human and mouse, 
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the distribution of phyloP scores for all cCREs was higher than those for ten sets of randomly 

chosen genomic intervals matched to the cCRE intervals in length and G+C content (Figure 7B; 

all ten random sets had distributions similar to the one shown; p-value < 2.2e-16, Welch two 

sample t-test). In both species, the distribution of phyloP scores for SF cCREs was significantly 

higher than the distribution for S cCREs (Figure 7B), which indicates that the preservation of 

inferred function was associated with more stringent evolutionary constraint on the SF cCREs. 

The N cCREs had a lower distribution of phyloP scores than other groups, as expected given 

the absence of orthologous DNA sequence in some clades of mammals. 

 

The distributions of epigenetic states assigned to the blood cell cCREs in each of the three 

evolutionary categories were similar between human and mouse, but those distributions differed 

dramatically between evolutionary categories, with significantly more SF cCREs assigned to 

promoter-like states than were S or N cCREs (Supplementary Figure S14). Indeed, the SF 

cCREs tended to be close to or encompass the TSSs of genes, showing a substantial 

enrichment in overlap with TSSs compared to the overlap observed for all cCREs (Figure 7C). 

Many of the S and N cCREs were assigned to enhancer-like states (Supplementary Figure 

S14D), giving a level of enrichment for overlap with enhancer datasets comparable to that 

observed for the full set of cCREs (Figure 7C). These results indicated that the stringency of 

conservation of cCREs was related to their inferred function, and specifically they suggest 

stronger selection has been exerted on promoter-associated genomic intervals to conserve 

DNA sequences and preserve biological function. 

 

Comparison of epigenetic states in homologous regions of human and mouse 

The consistent state assignments from the joint modeling facilitated comparisons between 

species. Such comparisons are particularly interesting for orthologous genes with similar 

expression patterns but some differences in their regulatory landscapes. For example, the 
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orthologous genes GATA1 in human and Gata1 in mouse each encode a transcription factor 

with a major role in regulating gene expression in erythroid cells, megakaryocytes, and 

eosinophils (Ferreira et al. 2005), and they showed a strong correlation in expression levels 

across blood cell types in both species (Supplementary Figure S15). The genomic DNA 

sequences aligned between the orthologous human GATA1 and mouse Gata1 genes, including 

their promoters and proximal enhancers; the alignments continued through the genes 

downstream of GATA1/Gata1 (Figure 8A). An additional, distal regulatory element is located 

upstream of the mouse Gata1 gene, corresponding to the binding by GATA1 and EP300. 

However, this element was found only in mouse (Valverde-Garduno et al. 2004), and the DNA 

sequences of this upstream interval harboring the mouse regulatory element did not align 

between mouse and human except in portions of the GLOD5/Glod5 genes (Figure 8A). Thus, 

the interspecies sequence alignments provide limited information about this distal regulatory 

element, which led us to explore whether comparisons of epigenetic information would be more 

informative. 

 

We compared the chromatin activity landscapes across species by utilizing the consistent 

assignment of epigenetic states in both human and mouse, without relying on DNA sequence 

alignment. In the large genomic regions (76kb and 101kb in the two species) encompassing the 

orthologous human GATA1 and mouse Gata1 genes and surrounding genes, we computed the 

correlation between the epigenetic state assignments of each bin across cell types in one 

species and that in the other species for all the bins (Supplementary Figure S16 and Methods). 

This all-versus-all comparison yielded a matrix of correlation values showing similarities and 

differences in profiles of epigenetic states in the two species (Figure 8B). The conserved 

promoter and proximal enhancers of the GATA1/Gata1 genes were highly correlated in 

epigenetic states across cell types between the two species, clustering largely along a diagonal 

through the center of the matrix that encompassed the aligning DNA sequences (labeled Px in 
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Figure 8B). In contrast, whereas the mouse-specific distal regulatory element gave no signal in 

the DNA sequence alignment, the epigenetic states annotating it presented high correlations 

with active epigenetic states in the human GATA1 locus (labeled D in Figure 8B).  

 

This comparison of epigenetic state profiles across cell types provided a means to categorize 

cCREs across species that did not require a match in the underlying genomic DNA sequence. 

We used that information to identify cCREs that may be playing a similar role in regulation in 

both species despite their lack of conservation in DNA sequence. Specifically, we hypothesized 

that most cCREs regulating expression of a gene would show a similar epigenetic profile across 

cell types in both species, regardless of whether the element was conserved in sequence. We 

leveraged the membership of each cCRE in the joint metaclusters (JmCs) determined in human 

and mouse because those JmCs reflect the inferred activity (deduced from epigenetic states) of 

the cCREs across cell types, reasoning that most cCREs regulating a given gene would be in 

one of the JmCs found frequently in the locus. Orthologous loci in mouse and human were 

defined as 100 kb genomic DNA intervals centered on the TSS of a gene with an identical name 

in the two species. Within these orthologous loci, we calculated the enrichment of each joint 

metacluster (JmC) in the collection of cCREs and assessed whether each individual cCRE was 

a member of the enriched JmC (Supplementary Figure S17). Thus, each cCRE was assessed 

both for its evolutionary history, which relied on DNA sequence alignments, and its regulatory 

potential deduced from epigenetic state profiles, which did not rely on DNA sequence 

alignments. The cCREs in these orthologous loci were assigned to a subdivision of the 

conservation categories; the cCREs in JmCs enriched for a specific orthologous locus were 

labeled SF+, S+, and N+, whereas those not in enriched JmCs were labeled SF, S, and N 

cCREs (Figure 8C and Supplementary Figure S17). Using this approach, one can deduce that 

even cCREs in non-aligning genomic regions, such as the one upstream of Gata1, have 

epigenetic state profiles suggestive of a role in regulation of the orthologous gene (Figure 8D). 
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Inclusion of the JmC enrichment along with the evolutionary categories increased the correlation 

between the esRP scores of cCREs and the expression of their inferred target genes (Figure 

8E). The increase in correlation was observed for cCREs in all three evolutionary categories, 

including the species-specific N category, consistent with our hypothesis of common epigenetic 

profiles across cell types for relevant regulatory elements regardless of evolutionary category. 

These JmC enrichments provided an opportunity to delve into assessment of potential functions 

across species even in regions of the genome that no longer align between species. 

 

In summary, the IDEAS joint modeling on the input data compiled here and consistent state 

assignments in both mouse and human confirmed and extended previous observations on 

known regulatory elements, and they revealed both shared and distinctive candidate regulatory 

elements and states across species. Correlations of state profiles across species provided a 

comparison of chromatin landscapes even in regions with DNA sequences that were not 

conserved between species. 

 

DISCUSSION 

 

In this paper, the VISION consortium introduces a set of resources describing the regulatory 

landscapes of both human and mouse blood cell epigenomes. One major resource is the 

annotation of the epigenetic states across the epigenomes of progenitor and mature blood cells. 

These state maps show the epigenetic landscape in a compact form, capturing information from 

the input data on multiple histone modifications, CTCF occupancy, and chromatin accessibility. 

The state assignments reveal the patterns of epigenetic activity associated with gene 

expression and regulation, and they enable comparisons across cell types and species.  
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A second major resource is a catalog of cCREs (candidate cis-regulatory elements) actuated in 

one or more of the blood cell types in each species. The cCREs are predictions of discrete DNA 

segments likely involved in gene regulation, based on the patterns of chromatin accessibility 

across cell types. The epigenetic state annotations in each cell type suggest the type of activity 

for each cCRE in that cell type, such as serving as a promoter or enhancer, participating in 

repression, or inactivity. A key, novel aspect of our work is that the systematic integrative 

modeling that generated these resources was conducted jointly across the data from both 

species, which enables robust comparisons between species. Thus, our novel approach 

enables comparison of epigenetic landscape between human and mouse blood cells without 

being limited by sequence alignments, allowing comparisons in non-conserved and lineage-

specific genomic regions.  

 

A third major resource is a quantitative estimate of the regulatory impact of human and mouse 

cCREs on gene expression in each cell type, i.e., an esRP score, derived from multivariate 

regression modeling of the epigenetic states in cCREs as predictors of gene expression. The 

esRP scores are a continuous variable capturing not only the integration of the input epigenetic 

data, but also the inferred impacts on gene expression. These scores build on the foundation of 

categorical assignment of epigenetic states in SAGA methods to provide a rich and flexible 

prediction of regulatory impact. Currently, the state annotations are used to assign labels about 

inferred function to genomic intervals, such as strong enhancer, promoter-like, or bivalent 

element. The esRP scores complement and extend those annotations by providing quantitative 

predictions of impact, without regard to the label on the cCRE. They are useful for many 

downstream analyses, which we illustrated with visualization across differentiation (using 

dimensional reduction methods) and determining informative groups of cCREs by clustering 

analysis. These resources along with browsers for visualization and tools for analysis are 

provided at our project website, http://usevision.org. Among these tools is cCRE_db, which 
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records the several dimensions of annotation of the cCREs and provides a query interface to 

support custom queries from users.  

 

Our human blood cell cCRE catalog should be valuable for mechanistic interpretations of trait-

related human genetic variants. The documented strong enrichment of trait-associated, non-

protein-coding variants in candidate regulatory elements active in relevant cell types (Maurano 

et al. 2012; The_ENCODE_Project_Consortium 2012) has served as a basis for many studies 

that strive to establish a mechanistic connection between a specific set of variants (the 

genotype) and a trait of interest (the phenotype) (e.g., Bauer et al. 2013; Claussnitzer et al. 

2015; Joslin et al. 2021). We showed that human genetic variants associated with traits intrinsic 

to blood cells were significantly enriched in the VISION cCRE catalog, whereas variants 

associated with a broad diversity of other traits were not enriched.  We expect that the extensive 

annotations in our cCRE catalog combined with information about TFBS motifs and TF 

occupancy should lead to specific, refined hypotheses for mechanisms by which a variant 

impacts expression, such as alterations in TF binding, which can be tested experimentally in 

further work. 

 

The jointly learned state maps and cCRE predictions allowed us to extend previous work on the 

evolution of regulatory elements between mouse and human. Several previous studies focused 

on transcription factor (TF) occupancy, e.g. examining key TFs in one tissue across multiple 

species (Schmidt et al. 2010; Ballester et al. 2014; Villar et al. 2014), or a diverse set of TFs in 

multiple cell types and in mouse and human (Cheng et al. 2014; Yue et al. 2014; Denas et al. 

2015). Other studies focused on discrete regions of high chromatin accessibility, i.e., DNase 

hypersensitive sites (DHSs), in multiple cell types and tissues between mouse and human 

(Stergachis et al. 2014; Vierstra et al. 2014). These previous studies revealed that the fraction of 

elements that were conserved both in genomic sequence and in inferred function (TF 
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occupancy or DHS) was small and varied considerably, especially for TF occupancy. A notable 

fraction of elements showed evidence of considerable change during mammalian diversification, 

including turnover of TF binding site motifs and repurposing of elements (Schmidt et al. 2010; 

Cheng et al. 2014; Stergachis et al. 2014; Denas et al. 2015). These prior studies were primarily 

limited to the regions of the genome with sequences that aligned between human and mouse. 

The non-aligning regions were used to infer that some elements were lineage-specific and that 

many were derived from transposable elements and endogenous retroviruses (Bourque 2009; 

Rebollo et al. 2012; Jacques et al. 2013; Sundaram et al. 2014).  

 

Our evolutionary analyses confirmed the previous observations, e.g., finding about one-third of 

cCREs are conserved in both sequence and inferred function between human and mouse, and 

further showing that this evolutionary category was highly enriched for proximal regulatory 

elements. Going beyond the prior studies, our jointly learned epigenetic state maps provided a 

representation of multiple epigenetic features, not just TF occupancy or DHSs, and they are 

continuous in bins across genomes of both species. Thus, they provide a basis for comparisons 

of the epigenetic profiles between species. We showed that these epigenetic comparisons were 

a strong complement to genomic sequence alignments, allowing us to find elements with similar 

epigenetic profiles even in genomic regions that do not align between species. In the current 

work, we used both a correlation between profiles of epigenetic states and joint clusterings of 

cCREs across species by esRP scores as initial explorations of these epigenetic comparisons. 

The results of these initial studies suggest that it would be productive to pursue additional work 

developing methods and exploring the utility of comparisons of epigenetic states between 

species.  

 

Other work compares epigenetic profiles across species, such as the phylo-HMGP method to 

find different evolutionary states in multi-species epigenomic data (Yang et al. 2018) and the 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.02.535219doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535219
http://creativecommons.org/licenses/by-nc/4.0/


 

31 

LECIF scores to find evidence of conservation from functional genomic data (Kwon and Ernst 

2021). These approaches are powerful but limited to the genomic regions with DNA sequences 

that align between the species. Importantly, the approach of correlating epigenetic states 

introduced here is agnostic to the underlying DNA sequence alignments (or absence of them), 

and thus it complements other approaches and expands the scope of the analysis, potentially to 

the whole genome. 

 

Several innovations were developed to produce the resources introduced here. A major 

innovation was to extend the IDEAS framework (Zhang et al. 2016) to jointly learn epigenetic 

states and assign them to annotate the epigenomes in human and mouse blood cells. The 

IDEAS method employs a Bayesian approach to the modeling to learn the states, which we 

utilized to bring in states learned from the data in one species as priors for learning states in the 

data from the second species. Iterative applications of this approach led to the final joint model. 

Another extension of the IDEAS framework was to learn states based on one feature, 

specifically ATAC-seq data, defining discrete signal intensity states. This approach was used for 

calling cCREs, implemented as the IDEAS-IS method (Xiang et al. 2021). The approach is 

relatively simple and benefits from joint modeling across the input datasets. Other methods for 

predicting cCREs based on chromatin accessibility across many cell types prevented excessive 

expansion of the summary calls for overlapping peaks by employing a centroid determination for 

the DNase hypersensitive sites (DHS) index (Meuleman et al. 2020) or by choosing the highest 

signal peak for the ENCODE cCRE catalog (The_ENCODE_Project_Consortium et al. 2020). 

The ENCODE cCRE catalog paired DHS peaks with individual chromatin modifications or CTCF 

occupancy, which led to complications when data on diagnostic features was missing from 

some cell types. The VISION cCRE sets were generated by state modeling jointly across cell 

types in the IDEAS framework both for calling peaks (in the IS mode) and for identifying peaks 
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in regions of dynamic chromatin modification (in epigenetic state mode), leveraging data in 

related cell types to ameliorate the impact of missing data.  

 

While the resources introduced here are valuable for many applications, it is prudent to 

acknowledge their limitations. First, the quality of the products of integrated analyses are limited 

by the quality and completeness of the input, raw data. We endeavored to reduce the impact of 

variances in the input data by normalization. The S3V2 procedure (Xiang et al. 2021) 

systematically normalized the input data to adjust for differences in signal-to-noise and variance 

in signal across the datasets. Some epigenetic features were not determined in some cell types, 

and we used the IDEAS method in part because it is able to assign an epigenetic state even in 

the context of missing data by learning patterns from local similarities in cell types for which the 

data are present (Zhang and Mahony 2019). However, these approaches cannot completely 

overcome all issues with variance in input data. Second, the resolution of both the epigenetic 

state assignments and the cCRE inference is limited to 200 bp, which is the window size we 

utilized in the IDEAS analyses. Other resources, such as DHS calls (Meuleman et al. 2020), 

DNase footprints (Vierstra et al. 2020), and motif instances (Weirauch et al. 2014), achieve a 

higher resolution. Indeed, one can use these higher resolution datasets to derive further 

information about cCREs, such as TFs that are likely to be binding to them. With regard to the 

esRP scores, a third limitation is that we do not make explicit assignments for target genes of 

cCREs. Predictions of a large number of target gene-cCRE pairs were made in our prior work 

(Xiang et al. 2020b); these assignments cover large genomic intervals around each gene and 

are most useful when used with further filtering, such as restricting cCREs and target genes to 

the same topologically associated domains. On-going work is examining other models and 

approaches for assigning likely target genes to cCREs. A fourth limitation is that our inference of 

repression-related cCREs apply only to those with stable histone modifications. Elements that 
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had been involved in initiation of repression but eventually were packaged into quiescent 

chromatin, e.g., via a hit-and-run mechanism (Shah et al. 2019), would not be detected. 

 

In conclusion, we present several important new resources to enable further and more detailed 

studies of gene regulation in human and mouse blood cells both during normal differentiation 

and in pathological contexts. The patterns of epigenetic states in cCREs across cell types show 

value in developing an understanding of how genetic variants impact blood cell traits and 

diseases. Furthermore, the joint modeling across species opens avenues for further exploration 

of comparisons of epigenetic landscapes in addition to sequence alignments for insights into 

evolution and function of regulatory elements across species.   

 

METHODS 

 

Collection and initial processing of epigenetic and transcriptomic data from human and 

mouse blood cells 

Sources for all 404 data sets used as input for the systematic integrative analysis are listed in 

Supplementary Table S1. Much of the epigenetic data for mature blood cell types in humans 

was collected as mapped reads (human genome build GRCh38) in bigWig format from the data 

portal for the BLUEPRINT Project (Martens and Stunnenberg 2013; Stunnenberg et al. 2016). 

Additional data, including ATAC-seq for human progenitor cells (Corces et al. 2016), and the full 

set of features in HUDEP1 (generated for this paper), HUDEP2 (Cheng et al. 2021; Qi et al. 

2021), and K562 (The_ENCODE_Project_Consortium et al. 2020) cell lines were collected as 

sequencing reads and processed through the mapping pipelines described in a previous 

VISION paper (Xiang et al. 2020b), mapping the reads to human genome build GRCh38. 

Replicate data were obtained for most but not all features across the cell types, especially for 

the human blood cell types (Supplementary Table S1), and integrative analysis was conducted 
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keeping the replicate sets separate for each cell type. The data for mouse hematopoietic cells 

were described previously, with reads mapped to mouse genome build mm10 (Xiang et al. 

2020b). 

 

Normalization 

The normalization method S3V2 was designed to match the ranges of both signal intensities 

and variances across epigenetic datasets (Xiang et al. 2021). In this procedure, we first 

generated a reference signal track for each epigenetic feature by computing the mean signal of 

all data sets for that feature at each genomic location (200 bp bins). Then, the peak means and 

the background non-zero means of the reference signal tracks for the different epigenetic 

features were equalized by the S3norm method (Xiang et al. 2020a). We then used these 

mean-adjusted references as the new reference signal tracks for each epigenetic feature. For all 

datasets of the same epigenetic feature, we normalized their signal against the reference signal 

track using the recently developed S3V2 method (Xiang et al. 2021). The S3V2 version of the 

method was designed to adjust both the non-zero means and the standard deviations of the 

background regions, so that it can better reduce background noise in some data sets with 

higher variance at the background regions. 

 

Joint systematic integration of human and mouse blood cell epigenomes by IDEAS 

The joint training in IDEAS to identify epigenetic states was done iteratively, as illustrated in 

Figure 2. Initially, 200 sets of epigenetic states were identified by IDEAS at 100 randomly 

selected, 50 MB regions from each species, using the S3V2-IDEAS pipeline (Xiang et al. 2021) 

on both species. The reproducible IDEAS states were selected by an internal combineState 

function in the IDEAS pipeline. We wanted to include as reproducible states not only those 

found at high frequency in all the runs on data from both species but also those that were either 

highly reproducible in one species and also found in the other species or those that were 
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moderately reproducible in both species. By requiring that a state appear in at least 52% of the 

200 runs, we ensured that the collected states included the latter two categories. The set of 27 

reproducible IDEAS states were used as the priors for the distribution parameters in the two 

rounds of IDEAS runs in both species. The two rounds of IDEAS runs for the two species were 

performed sequentially, alternating between human and mouse. After each round of IDEAS run, 

the frequency, mean and variance parameters for each epigenetic state were updated, so that 

the information of the species at the current round was then integrated into the next IDEAS 

runs. The heterogeneous states (Xiang et al. 2020b) were also removed after each round of 

IDEAS run (Supplementary Figure S3). After the two rounds of IDEAS runs for the two species, 

a set of IDEAS states were used as the final joint epigenetic states for both species. To assign 

these final joint epigenetic states to each genomic location in each cell type in both species, 

another two rounds of IDEAS runs for the two species were performed in parallel.  

 

Peak calling for ATAC-seq data across cell types 

We adopted an extension of the IDEAS methodology, specifically the S3V2-IDEAS pipeline 

(Xiang et al. 2021) in the signal intensity state (IS) mode, to call peaks of chromatin accessibility 

across the blood cell types. The input data were the ATAC-seq signals for each replicate of 

each cell type plus a track of combined average ATAC-seq signal. This combined average was 

computed by averaging the normalized ATAC-seq signal in 200 bp bins for each cell type, and 

then averaging these values per bin for all cell types (Fig. 3A). IDEAS in the IS mode learned 

four signal intensity states, with state 0 being no detectable signal and state 3 being the highest 

signal state, which were then used to annotate the genomes of all cell types plus the combined 

cell data. The peaks were called using a hierarchical process designed to find genomic DNA 

intervals in the high signal intensity states, compared to the local background, both in many cell 

types and in restricted sets of cell types (Fig. 3A). Specifically, in the first step (1), the DNA bins 

in the higher signal states, compared to the local background, in the average track were 
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collected as peaks. If a contiguous series of bins were in higher signal states, indicating an 

accessible region, only the bin(s) in the highest signal state were called as peaks (Fig. 3A). In 

the second step (2) bins in a high signal state in individual cell types were included in the set of 

peaks. The next two steps added bins in a lower signal state, but still above the local 

background, as peaks, with step (3) adding such bins from the average signal track and step (4) 

adding such bins from signal tracks from individual cells. Juxtaposed peak calls were combined 

into a single peak. If replicate determinations were available for chromatin accessibility in a 

given cell type, the peak call had to be replicated.  

 

Annotation of VISION cCREs utilizing orthogonal datasets of elements related to 

regulation and chromatin structure  

The VISION human blood cell cCREs were found to be a sub-set of two large collections of 

cCREs predicted from ENCODE data on a much larger number of cell types. These large 

collections were the 926,535 ENCODE cCREs provided in Supplementary Table 10 of 

reference (The_ENCODE_Project_Consortium et al. 2020) and the 3,591,898 elements in the 

Index of DNase hypersensitive sites from Meuleman et al. (2020).  

 

Additional datasets, orthogonal to those included in the prediction and epigenetic state 

annotation of VISION cCREs, that annotate potential roles of human genomic intervals in 

transcriptional regulation (CREs) or in chromatin structure (chromatin architecture) were curated 

from the literature and associated databases (Figure S6). The orthogonal sets of CREs included 

TSSs from the GENCODE basic gene set (Frankish et al. 2021), peaks from the Survey of 

Regulatory Elements (SuRE), which is a massively parallel reporter assay that reveals both 

promoter and enhancer activity, in K562 cells (van Arensbergen et al. 2017), unmasked CpG 

islands downloaded from UCSC genome browser (Nassar et al. 2023), and a group of 

enhancer-related elements. The latter group of enhancer-related elements were a combination 
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of three sets: (1) enhancers predicted from eRNAs in hundreds of human cell types (Andersson 

et al. 2014; https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/enhancer/), (2) 

a combined set of EP300 ChIP-seq peaks from K562 and GM12878 cell lines 

(The_ENCODE_Project_Consortium et al. 2020) and erythroblasts (Su et al. 2013), and (3) the 

erythroid Enhancer Repertoire deduced from histone modification data (Huang et al. 2016). The 

chromatin structure category included CTCF-occupied DNA segments (CTCF OSs), chromatin 

loop anchors, and TAD boundaries in primary blood cells and related cell lines. The set of CTCF 

OSs was generated by combining peaks from ChIP-seq experiments in human fetal and adult 

erythroblasts (Huang et al. 2017), and from K562, MM1S, Delta47, and GM12878 cell lines 

(Sánchez-Castillo et al. 2015; The_ENCODE_Project_Consortium et al. 2020). Loop anchors 

determined by HICCUPS from Hi-C data in K562 and GM12878 cell lines (Rao et al. 2014) were 

downloaded from GEO [accession GSE63525] and combined. TAD boundaries were called by 

OnTAD (An et al. 2019) using Hi-C data at 10kb resolution in K562 and GM12878 cell lines 

(Rao et al. 2014).  

 

The human VISION human cCREs were also compared to two sets of known CREs. One was a 

compilation of 109 demonstrated regulatory elements in blood cells from the literature 

(Supplementary Table S3). The other set was 664 enhancers with target genes, determined by 

a high throughput mutagenesis and eQTL analysis in K562 cells (Gasperini et al. 2019). 

 

Pairwise overlaps between these orthogonal sets of elements and the VISION cCREs were 

computed using the bedtool intersect tool (-u option) (Quinlan and Hall 2010). Intersections 

among multiple datasets were computed using the intervene tool, version 0.6.5 (Khan and 

Mathelier 2017), and displayed in UpSet plots using the UpSetR package (Conway et al. 2017) 

and 3-way Venn diagrams using the eulerr package (https://CRAN.R-

project.org/package=eulerr). 
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Ten different randomly chosen sets of human genomic DNA intervals, matched with the cCREs 

in length and G+C content, were generated by the script in the following link 

https://github.com/YenLab/Tn5InsertPrefer/blob/main/StandaloneScripts/Negetive_sequence_m

atched_length. Enrichments of overlaps between the VISION cCREs relative to those in the 

random set of intervals were determined by computing overlaps (using tools described above) 

between the sets of function- and structure-related elements and each of the ten sets of random 

intervals, dividing the number of overlapped cCREs by the number of overlapped random 

intervals (ten times), and using the average of the ten quotients as the enrichment. All ten 

results were shown in boxplots.  

 

Inferring epigenetic state effects on gene expression regulation  

Calculating β coefficients for epigenetic states and esRPs for cCREs across all cell types 

In order to use the categorical state assignments to estimate the impact of each cCRE in each 

cell type on gene expression, we applied a modified version of the iterative multivariable 

regression model developed previously (Xiang et al. 2020b) to quantify the biological functions 

of epigenetic state in terms of regulating gene expression. In this model, we introduced two 

measurements: β coefficients for each epigenetic state and an esRP (epigenetic state 

Regulatory Potential) score for each cCRE in each cell type or sample. The biological 

interpretation of the two measurements are as follows. The β coefficients measure the 

contribution of each epigenetic state to the expression of local genes; they are calculated in a 

multivariate regression evaluating how changes in the coverage of cCREs and promoters by 

each epigenetic state across cell types impact expression levels. The esRP score measures the 

contribution of individual cCREs on regulating its target gene’s expression level; it is calculated 

from the overall epigenetic state coverage of the cCRE in each cell type (Figure 4B). In contrast 

to our previous modeling (Xiang et al. 2020b), our current model does not aim to identify the 
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likely target gene(s) for each cCRE; that will be the subject of a subsequent report. In brief, for 

the current regression model, the epigenetic state coverage was computed on all cCREs and 

promoter regions within 50 kb on both sides of the TSS of each gene (an interval of 100kb). We 

first calculated the β coefficients of the promoter intervals and distal cCREs as separate terms in 

the regression model. For further analyses and visualization, including computation of the esRP 

scores, the β coefficients of each state were merged into a single value that was the average of 

the β coefficients for promoters and for distal cCREs.  A more detailed presentation on the 

calculations of the β coefficients and the esRPs is in the Supplemental Methods.  

 

Visualizing the esRP matrix by UMAP 

We used the UMAP method (McInnes et al. 2018) to visualize the esRP matrix of all cCREs 

across all available cell types. This method for visualizing high dimensional data in lower 

dimensional space has been widely used in single cell data analysis where each cell’s 

transcriptomic or epigenomic profile is projected onto a 2-dimensional UMAP space. Similarly, 

we projected each cCRE’s esRP scores onto a 2-dimensional UMAP space. Thus, each point 

on our UMAP represents a cCRE rather than a cell, and cCREs with similar vectors of esRP 

scores across cell types are placed in similar locations on the UMAP plane. We used the umap 

library’s umap function in R with default settings to transform the data and generate the UMAP 

images. 

 

Clustering of cCRE based on esRP scores 

To infer the potential biological functions of the cCREs, we clustered them based on their esRP 

scores across different cell types. The traditional methods for clustering cCREs are based on a 

pairwise distance matrix of signals measured in different epigenomic datasets across different 

cell-types. However, these approaches cannot capture the information of the potential biological 

effects of the epigenetic modifications on gene expression regulation. For example, transitions 
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from an initial state with only H3K4me3 to a second state with only H3K9me3 or to a second 

state with only H3K27ac are very different with regard to their biological associations 

(repression versus activation, respectively), but the pairwise distances determined from the 

vectors of epigenetic signals would be very similar. In contrast to the signals measured directly 

by epigenomic datasets, the esRP score has already integrated all available epigenetic features’ 

information as a quantitative score that can reflect the overall potential of each cCRE for 

regulating gene expression. Thus, we hypothesized that clustering the cCREs using a distance 

based on esRP score would produce groups that better capture the changes of biological 

effects of the cCRE across different cell types.  

 

In this study, we conducted a series of clustering steps to generate robust clusters representing 

the prevalent patterns of inferred regulatory potential (esRP scores) across cell types in both 

human and mouse species (Supplementary Figure S8). We first created a combined matrix of 

esRP scores for all human and mouse cCREs across all shared cell types in both species. This 

ensured that the identified clusters were based on esRP patterns across the same set of cell 

types in both species. To mitigate the potential issues of cross-cell-type collinearity and 

overfitting, we performed a principal component analysis and selected the top 10 principal 

components (PCs), which account for 99% of the variance. This generated a matrix containing 

10 PC values corresponding to each cCRE. Although we had data for neutrophils from both 

species, we excluded the esRP scores for cCREs in neutrophils due to the significant noise in 

the ATAC-seq, which affected the overall quality of our results.  

 

To identify robust clusters, we employed an iterative K-means clustering strategy, finding 

clusters with high consensus across repeated clustering rounds and then re-assigning all 

cCREs to these robust clusters. The initial clustering round (Step 1, Supplementary Figure S8) 

used K-means clustering (K=100) based on the pairwise Euclidean distance of PCs of esRP 
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scores across all cell types. This was performed 100 times, generating 10,000 clusters that 

could contain both human and mouse cCREs or cCREs from only one species. To identify 

consensus clusters across the 100 K-means runs, we combined the vectors of mean PC values 

for each of the 10,000 clusters from Step 1 into a matrix and clustered them again using K-

means (K=100, Step 2, Supplementary Figure S8). This step partitions the Step 1 clusters with 

similar characteristics into groups of clusters, where a large group size implies high consensus.  

 

We considered groups with more than 70 Step 1 clusters as high consensus clusters, 

determined by calculating the Z score for the group size and finding the group size 

corresponding to the upper tail probability of 0.05. We identified 61 such groups, which we 

called robust clusters. However, these 61 clusters did not contain all cCREs, so we reassigned 

all cCREs in both human and mouse to one of the 61 robust clusters based on the cosine 

distance between each cCRE's esRP score profile and each cluster’s average esRP score 

profile, which was computed by averaging the mean-esRP-signal-vectors of the Step 1 clusters 

within each robust cluster. 

 

Since our goal was to find clusters with cCREs in both species, we counted the number of 

cCREs from each species in each robust cluster and calculated the proportion of cCREs in each 

species for each robust cluster. We identified 44 clusters in which the proportion of cCREs did 

not significantly differ between the two species (i.e., the absolute log2 fold changes of cCRE 

proportion between the species were <= 2.18 (p-value = 0.05)), which we designated as robust 

clusters shared across species. Using the cosine distance, we reassigned each cCRE in each 

species to one of these 44 shared robust clusters. 

 

Lastly, we observed that the average esRP score profiles across cell types for some subsets of 

the 44 clusters were similar, indicating they were not distinct clusters. To better differentiate 
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groups of cCREs shared between species, we created joint metaclusters (JmCs) by clustering 

the clusters (Step 3, Supplementary Figure S8). We combined the 44 clusters to generate 15 

JmCs using hierarchical clustering (Hclust) and dynamic trimming with dynamicTreeCut 

(Murtagh and Legendre 2014). We ran Hclust followed by dynamicTreeCut 100 times, adding 

different noise (uniformly distributed within a range of -0.001 to 0.001) for each run and using 

the cosine distance matrix. We then created a count matrix to record the frequency of each 

cluster being found in the same JmC. We used Hclust to cluster the count matrix and applied 

dynamicTreeCut to cut the Hclust tree into 15 JmCs. As a result, each cCRE in mouse and 

human was assigned to one of the 15 JmCs. These JmCs provide discrete categories for 

cCREs based on the cell type distribution of their estimated regulatory impact. 

 

Here, we also calculated the enrichment of JmCs at gene loci (TSS +/-50kb) in both species. 

For each �����, the enrichment of ���� is defined as follows:  

���	
������,�


  
������_����_
�������� � 1� � ������_����_
���	
��� � 1�

�����
���_�����_����_
�������� � 1� � �����
���_�����_����_
���	
��� � 1�
 

where the �����_����_
��������/�
��� is the number cCRE assigned to ���� at the �����  

locus in human or mouse, the ����
���_�����_����_
��������/	
���is the expected number of 

cCRE assigned to ���� at the ����� locus in human or mouse by random chance. 

 

Enrichment for transcription factor binding site motifs in joint metaclusters of cCREs 

We used the Maelstrom tool in the GimmeMotifs suite (v0.17.1) to identify motifs that are 

differentially enriched across JmCs (Bruse and van Heeringen 2018). We first labeled all cCREs 

according to their JmC membership. We then ran separate Maelstrom analyses on human and 

mouse cCRE sets to find enrichment of motifs in GimmeMotif’s default 
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“gimme.vertebrate.v5.0.pfm” collection of non-redundant clustered vertebrate motifs derived 

from the Cis-BP database (Weirauch et al. 2014). Maelstrom’s --filter-cutoff parameter was set 

to the default value of 0.8, which has the effect of filtering redundant motif enrichment results 

based on scores across the input sets. We filtered out motifs that did not achieve a Maelstrom 

z-score of at least 4 in any JmC. We then combined results across human and mouse (which 

required running Maelstrom again for each species using the --no-filter option to fill in z-scores 

for motifs that were found in one species but not the other). Heatmaps were constructed using 

the Python seaborn package (Waksom 2021) and motif logos were plotted using WebLogo3 

(Crooks et al. 2004). Putative TF names were associated with each motif by examining the 

identities of Cis-BP motifs that were clustered into the relevant non-redundant motifs within the 

GimmeMotifs non-redundant set, and by matching enriched motifs against mouse and human 

motifs from Cis-BP (v.2.0) using STAMP (v.1.0) (Mahony and Benos 2007) with arguments “-cc 

PCC -align SWU”. 

 

Separately, we used the SeqUnwinder multi-label discriminative motif finder to discover de novo 

motifs associated with each JmC and to search for motifs that were potentially constitutively 

differentially enriched across species. We first gave every cCRE two labels: their JmC 

membership and their species of origin. We then filtered out sequences that were larger than 

1kbp and randomly selected 50,000 sequences from the remaining set. We then provided these 

doubly-labeled sequences to SeqUnwinder (v.0.1.5) (Kakumanu et al. 2017) and ran analysis 

using the following options: --threads 8 --win 200 --mink 4 --maxk 5 --r 10 --x 3 --a 200 --

hillsthresh 0.1 --memesearchwin 16 --minsubclass 150. Heatmaps were again constructed 

using the Python seaborn package (Waksom 2021) and motif logos were plotted using 

WebLogo3 (Crooks et al. 2004). Putative TF names were associated with each SeqUnwinder-

discovered motif by matching against mouse and human motifs from Cis-BP (v.2.0) using 

STAMP (v.1.0) (Mahony and Benos 2007) with arguments “-cc PCC -align SWU”. 
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Enrichment of genetic variants for blood cell related traits in the human cCRE collection 

To assess whether the cCREs were associated with regulation of genes involved in 

development of blood cell traits, we examined overlaps between phenotype-associated genetic 

variants and the human cCRE catalog. The initial analysis examined SNPs associated with 

blood cell traits that were obtained from the GWAS catalog (Buniello et al. 2019). The red blood 

cell traits included the following: red blood cell distribution width, erythrocyte measurement, 

hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, erythrocyte count, 

hemoglobin measurement, mean corpuscular hemoglobin concentration, and erythrocyte 

indices.  

 

We then proceeded to examine overlaps of VISION human cCREs with genetic variants 

associated with a large number of traits from the United Kingdom BioBank (UKBB) in a manner 

that takes into account linkage disequilibrium. The UKBB (Ge et al. 2017 and 

http://www.nealelab.is/uk-biobank/) is a database comprising genotypic data as well as data for 

several medical traits from over 400,000 individuals, and GWAS summary statistic results are 

publicly available for a number of these traits, stratified by sex. We used all 587 sex-stratified 

traits for which inverse rank-normalized data was available (representing 295 unique traits) in 

our analysis, including 54 traits labeled “blood count”-related traits by UKBB, 60 traits labeled 

“blood biochemistry”-related, and 473 traits that are not blood-related. Blood count-related traits 

reflect cell morphology and number while blood biochemistry-related traits reflect the 

concentrations of certain proteins and metabolic products. (Note: hemoglobin concentration is 

an exception and considered a blood count trait). 

 

For each of these 587 traits, we used sLDSC (Finucane et al. 2015) to quantify the extent to 

which our cCRE annotation is enriched in the heritability of the trait. Using SNPs within some 
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window of the annotation, this approach regresses the GWAS chi square summary statistic (for 

the focal trait) of these SNPs onto the LD scores of the SNPs with respect to the annotation. 

The LD score of a SNP reflects the extent to which that SNP is in linkage disequilibrium with the 

annotation. If the annotation is associated with the focal trait, we expect a linear relationship 

between the LD scores of the tested SNPs with the annotation and the chi square values of 

those SNPs. The slope of the regression line is an estimate of the SNP heritability of the trait 

with respect to the annotation. By dividing this estimate by the overall SNP heritability of the 

trait, we obtain an estimate of the proportion of heritability explained by the annotation. Finally, 

dividing this by the portion of SNPs falling within the annotation provides an estimate of the 

enrichment of that annotation in heritability of the focal trait. 

 

The sLDSC tool recommends using a set of SNPs from HapMap 3 for analysis, and because 

these SNPs are reported on GRCh37, we first lifted over (Hinrichs et al. 2006) our cCRE 

annotations from GRCh38 to GRCh37. A total of 826 cCREs (0.4% of all cCREs) failed to 

liftover and were excluded from analysis. 

 

Using LDSC v1.0.1, and with these lifted over annotations, we first computed LD scores for 

HapMap 3 SNPs within 1 cM of cCRE annotations. Then, for each of the 587 UKBB traits, we 

performed sLDSC, regressing the trait summary statistics onto the LD scores. From this, we 

obtain an estimate of the enrichment of the cCRE annotation in the heritability of each trait.  

 

We repeated this analysis, using the 15 Joint metaclusters as 15 separate annotations. Running 

these annotations through the same pipeline described above, we obtained estimates of the 

enrichment of each JmC in the heritability of each of 587 traits. 
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Apportioning cCREs to evolutionary categories based on DNA sequence alignments and 

cCRE calls across species 

The full list of human cCREs was mapped to mm10 using the liftOver tool at the UCSC Genome 

Browser (Hinrichs et al. 2006). Human cCREs that failed to map to mm10 were grouped as N 

cCREs. Then, those human cCREs that could be mapped by liftOver to genome build mm10 

were compared with mouse cCREs, using bedtools intersect. Human cCREs that overlapped 

with mouse cCREs were labeled as SF cCREs. Human cCREs that mapped to mm10 but did 

not have any matched mouse cCREs were labeled as S cCREs. A similar process was 

performed on the full list of mouse cCREs (using liftOver to map to genome build 

GRCh38/hg38) as well. By this procedure, we generated three evolutionary categories of 

cCREs for human and mouse. 

 

Comparing integrated epigenetic features between human and mouse blood cells 

Calculating gene expression correlation coefficients between human and mouse 

We identified 14 cell types matched between human and mouse with RNA-seq datasets in the 

VISION project. For each gene, the correlation coefficient was calculated between the two 

vectors of 14 values for log2(TPM+1), generating one correlation coefficient value per cell type 

per gene.  When calculating the correlation coefficients, we added random noise (mean=0, 

sd=1) to the raw values to avoid high correlation coefficients created between vectors with low 

signals. 

 

Calculating bin-to-bin pairwise correlation coefficients between human and mouse 

We introduced a bin-to-bin pairwise correlation coefficient to quantify the similarity of cross-cell-

type epigenetic landscape between two DNA regions in human and mouse. For each 200bp bin 

in one cell type in one species, the assigned epigenetic state was replaced by a vector of mean 

signals of 8 epigenetic features in the IDEAS state model. After replacing the states in all 15 
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matched cell types in the two species, the original two categorical state vectors with 15 

elements can be converted into two numeric vectors with 120 numbers (Supplementary Figure 

S16). The similarity of cross-cell-type epigenetic landscape between two bins in the two species 

was defined as the correlation coefficient between each pair of numeric vectors with 120 

numbers. When calculating the correlation coefficients, we added a random noise (mean=0, 

sd=0.2) to the raw values to avoid high correlation coefficients created between regions with 

states that have low signals. 

 

DATA ACCESS 

 

Most of the data used in the integrative analysis are already publicly available; accession 

numbers for each file are listed in Supplementary Table S1. Regarding the new experiments, all 

raw and processed sequencing data generated in this study have been submitted to the NCBI 

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE_______. 

 

Resources developed in the VISION project are available at the website https://usevision.org. 

The epigenetic state annotations can be visualized in the BX VISION browser 

(http://main.genome-browser.bx.psu.edu). The database cCRE_db 

(https://globin.bx.psu.edu/cgi-bin/hlab/ccre_query) supports flexible user queries on extensive 

annotation of the cCREs, including epigenetic states and esRP scores across cell types, 

chromatin accessibility scores across cell types, membership in JmCs, and evolutionary 

categories. Intersections with other cCRE collections and epigenetic features are supported. 

The website section “Human and mouse cCREs and visualization” 

(https://usevision.org/data/ccre/) contains downloadable files of the cCREs along with 

annotation such as ATAC-seq signals and esRP scores, the joint metaclusters, the matched 
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random regions, the UMAP visualizations of cCREs colored by esRP scores in each cell type, 

and movies of the changes in esRP scores across selected lineages of differentiation. The 

SOMs can be examined and analyzed at (https://usevision.org/som/DNA_V5/). The Downloads 

section contains data from both human and mouse for the input raw epigenetic data, gene 

expression levels from RNA-seq data, and epigenetic state assignments from IDEAS. 

 

Code used in this study are in the following repositories: 

Process URL 

Joint human-mouse IDEAS 

pipeline 

https://github.com/guanjue/Joint_Human_Mouse_IDEAS_State 

 

S3V2 pipeline https://github.com/guanjue/S3V2_IDEAS_ESMP 

Build self-organizing maps https://github.com/csjansen/SOMatic 

sLDSC analysis https://github.com/usevision/cre_heritability 
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FIGURE LEGENDS 

 

Figure 1. Cell types and datasets used for systematic integration of epigenetic features of 

blood cells. (A) The tree on the left shows the populations of stem, progenitor, and mature 

blood cells in human. The diagram on the right indicates the epigenetic features and 

transcriptomes for which genome-wide datasets were collected, with distinctive icons for the 

major sources of data, specifically the Blueprint project (Martens and Stunnenberg 2013; 

Stunnenberg et al. 2016), Corces et al. (2016), abbreviated CMB, and St. Jude Children’s 

Research Hospital (SJCRH, Cheng et al. 2021; Qi et al. 2021). (B) Cell types and epigenetic 

data sets in mouse, diagrammed as for panel A.  Sources were described in Xiang et al. 

(2020b) and Supplementary Table S1. Abbreviations for blood cells and lines are: HSC = 

hematopoietic stem cell, MPP = multipotent progenitor cell, LMPP = lymphoid-myeloid primed 

progenitor cell, CMP = common myeloid progenitor cell, MEP =  megakaryocyte-erythrocyte 

progenitor cell, K562 = a human cancer cell line with some features of early megakaryocytic and 

erythroid cells, HUDEP = immortalized human umbilical cord blood-derived erythroid progenitor 

cell lines expressing fetal globin genes (HUDEP1) or adult globin genes (HUDEP2), CD34_E = 

human erythroid cells generated by differentiation from CD34+ blood cells, ERY = erythroblast, 

RBC = mature red blood cell, MK = megakaryocyte, GMP = granulocyte monocyte progenitor 

cell, EOS = eosinophil, MON = monocyte, MONp = primary monocyte, MONc = classical 

monocyte, NEU = neutrophil, CLP = common lymphoid progenitor cell, B = B cell, NK = natural 

killer cell, TCD4 = CD4+ T cell, TCD8 = CD8+ T cell, LSK = Lin-Sca1+Kit+ cells from mouse 

bone marrow containing hematopoietic stem and progenitor cells, HPC7 = immortalized mouse 

cell line capable of differentiation in vitro into more mature myeloid cells, G1E = immortalized 

mouse cell line blocked in erythroid maturation by a knockout of the Gata1 gene and its subline 
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ER4 that will further differentiate after restoration of Gata1 function in an estrogen inducible 

manner (Weiss et al. 1997), MEL = murine erythroleukemia cell line that can undergo further 

maturation upon induction (designated iMEL), CFUE = colony forming unit erythroid, FL = 

designates ERY derived from fetal liver, BM = designates ERY derived from adult bone marrow, 

CFUMK = colony forming unit megakaryocyte, iMK = immature megakaryocyte, MK_fl = 

megakaryocyte derived from fetal liver. 

 

Figure 2. Genome segmentation and annotation jointly between human and mouse using 

IDEAS.  (A) Workflow for joint modeling. (1) Initial epigenetic states from 100 randomly selected 

regions separately in human and mouse hematopoietic cell types were identified in IDEAS runs. 

(2) States that were reproducible and shared in both species (see Methods) were retained. (3a 

and 3b) The profile of epigenetic feature contribution to each of the reproducible states was 

sequentially refined by applying IDEAS across the full genomes of human and of mouse, 

updating the state model after each IDEAS run. (4) Two heterogeneous states were removed to 

generate the final joint epigenetic states in the two species. (B) The 25 joint epigenetic states for 

human and mouse hematopoietic cell types. The average signal of the epigenetic features for 

each state are shown in the heatmap. The corresponding state colors, the state names based 

on the function, and the average proportions of the genome covered by each state across cell 

types are listed on the right-side of the heatmap.  (C) Annotation of epigenetic states in a large 

genomic interval containing SLC4A1 and surrounding genes across human blood cell types. 

The genomic interval is 210kb, GRCh38 chr17:44,192,001-44,402,000, with gene annotations 

from GENCODE V38. Binding patterns for selected transcription factors are from the VISION 

project ChIP-seq tracks (CTCF and GATA1 in adult erythroblasts, signal tracks from MACS, 

track heights 100 and 80, respectively) or from the ENCODE data portal (EP300 in K562 cells, 

experiment ENCSR000EGE, signal track is fold change over background, track height is 50). 

The epigenetic state assigned to each genomic bin in the different cell types is designated by 
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the color coding shown in panel (B). The replicates in each cell type examined in Blueprint are 

labeled by the id for the donor of biosamples. Genes and regulatory regions active specifically in 

erythroid (E), granulocytes (G), and megakaryocytes (MK) are marked by gray rectangles. (D) 

Annotation of epigenetic states in a large genomic interval containing Slc4a1 and surrounding 

genes across mouse blood cell types. The genomic interval is 198kb, mm10 chr11:102,290,001-

102,488,000, with gene annotations from GENCODE VM23. Binding patterns for selected 

transcription factors are from the VISION project ChIP-seq tracks (CTCF in adult erythroblasts, 

GATA1 and EP300 from the highly erythroid fetal liver, signal tracks from MACS, track heights 

200, 200, and 150, respectively; the EP300 track was made by re-mapping reads from 

ENCODE experiment ENCSR982LJQ). The tracks of epigenetic states and highlighted regions 

are indicated as in panel (C). 

 

Figure 3. Predicting cCREs in the VISION project and comparisons with other catalogs. 

(A) Method for calling cCREs using S3V2-IDEAS in the IS mode. The normalized ATAC-seq 

signals (expressed as the negative log10 p-value for fitting a negative binomial distribution, 

signal range 0-10, 200bp bins) are shown for a selected subset of the 39 human biosamples 

plus the average signal track in an 11kb genomic interval around the transcription start site 

(TSS) of the ITGB2B gene is shown (GRCh38 chr17:44,384,001-44,395,000). The signal 

intensity states learned by IDEAS in the IS mode are shown as shades of violet (state 0 is white, 

darker shades represent higher signal states). Genomic intervals in high signal states were 

called as peaks (yellow rectangles) in a four-step hierarchical process designed to limit the peak 

calls to local maxima while also finding cell type-specific peaks (see Methods). Peaks in this 

genomic region illustrate calls at steps 1, 2, and 4 of the hierarchical process. Panels B-F 

present intersections of human VISION cCREs with genome-wide datasets of structural and 

CRE-related elements. (B) The Venn diagram displays the result of intersecting VISION cCREs 

with a combined superset of elements associated with nuclear structure (CTCF OSs, loop 
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anchors, and boundaries) and with a combined superset of DNA intervals associated with cis-

regulatory elements (CREs). (C) The proportions of cCREs and randomly selected, matched 

sets of intervals in the overlap categories are compared in the bar graph (right). For the random 

sets, the bar shows the mean, and the dots show the values for each of ten random sets. (D) A 

higher resolution view (an UpSet plot) of the intersections of VISION cCREs with the four 

groups of CRE-related elements, specifically enhancer-related (Enh), transcription start sites 

(TSS), Survey of Regulatory Elements (SuRE), and CpG islands (CpG). The enrichment for the 

cCRE overlaps compared to those in randomly selected, matched sets of intervals are shown in 

the boxplots below each overlap subset, with dots for the enrichment relative to individual 

random sets. (E) Overlaps and enrichments of VISION cCREs for three sets of structure-related 

elements, specifically CTCF OSs (CT), loop anchors (LA), and TAD boundary elements. (F) 

Overlaps of VISION cCREs with two sets of experimentally determined blood cell cCREs. 

 

Figure 4. Beta coefficients of states, esRP scores of cCREs, and joint HM metaclusters of 

cCREs based on esRP scores. (A) Beta coefficients and the difference of beta coefficients of 

the 25 epigenetic states. The vertical columns on the right show the beta coefficients, the state 

ID, state color, and the state names based on the function of all 25 joint epigenetic states. The 

triangular heatmap shows the difference of the beta coefficients between two states in the right 

columns. Each value in the triangle heatmap shows the beta coefficient of state on top minus 

the beta coefficient of the state below based on the order of state in the right columns. (B) An 

example of calculating esRP score for a cCRE in a cell type based on the beta coefficients of 

states. For a cCRE covering more than one 200bp bin, the esRP equals the weighted sum of 

beta coefficients of states that covers the cCRE, where the weights are the region covered by 

different states. (C) UMAP of cCREs based on their esRP scores across all cell-types. The 

points are colored by the esRP scores in the designated cell type. (D) The average esRP score 

of all cCREs in JmC across all cell-types shared by both human and mouse. The right column 
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shows the number of human cCREs in each JmC. (E) UMAP of cCREs based on their esRP 

scores across all cell-types, with the points colored by the binary label indicating whether a 

cCRE belongs to the specified JmC. (F) The average enrichment of JmCs in 15 homologous 

gene clusters. The genes are clustered based on the JmCs’ enrichments by K-means. 

 

Figure 5. Motifs enriched in joint metaclusters. The top heatmap shows the enrichment of 

motifs in the cCREs in each JmC in human (H) and mouse (M) as a Z-score. The logo for each 

motif is given to the right of the heat map, labeled by the family of transcription factors that 

recognize that motif. The heatmap below is aligned with the motif enrichment heatmap, showing 

the mean esRP score for the cCREs in each JmC for all the common cell types examined 

between human and mouse. A summary description of the cell types in which the cCREs in 

each JmC are more active is given at the bottom. 

 

Figure 6. Enrichment of SNPs associated with blood cell traits from UK Biobank in 

VISION cCREs. (A) Human cCREs are enriched in the heritability of blood-related traits. 

Results of the initial sLDSC analysis of all cCREs considered as a single annotation. The plot 

shows enrichment of the cCRE annotation in heritability of each trait on the x-axis, and the 

significance of the enrichment on the y-axis. The vertical dotted line indicates an enrichment of 

1, and the horizontal dotted line delineates the 5% FDR significance threshold. Points and 

labels in red represent the traits for which there was significant enrichment of SNPs associated 

with the VISION cCREs. Traits with a negative enrichment were assigned an arbitrary 

enrichment of 0.1 for plotting and appear as the column of points at the bottom left of the plot. 

The shape of the point delineates the sex in which the GWAS analysis was performed for each 

trait. (B) Results of the JmC sLDSC analysis where each set of cCREs within a JmC was 

considered as a separate annotation. The plot lists a trait on the x-axis if any JmC had a 

significant enrichment for it. The labels for these traits are maroon for blood count traits, purple 
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for blood biochemistry traits, and black for non-blood related traits. The plot lists the JmC on the 

y-axis. For a given JmC and trait combination, a dot is plotted if and only if there was an 

observed significant enrichment for that combination. Size of the dot reflects the significance of 

the enrichment, and the color of the dot reflects the size of the enrichment itself. Negative 

enrichments are colored gray. Panels separate the sex in which the GWAS analysis was 

performed for each trait. 

 

Figure 7. Evolutionary and epigenetic comparisons of cCREs. (A) Workflow of generating 

three evolutionary categories for blood cell cCREs in human and mouse. N=nonconserved, 

S=conserved in sequence but not inferred function, SF=conserved in both sequence and 

inferred function as a cCRE, y=yes, n=no. (B) PhyloP scores for three evolutionary categories of 

cCREs in human and mouse. The maximum phyloP score for each genomic interval was used 

to represent the score for each cCRE. The distribution of phyloP scores for each group are 

displayed as a violin plot. The asterisk (*) over brackets indicates comparison for which the P 

values for Welch’s t-test is less than 2.2e-16. (C) Enrichment of SF-conserved human cCREs 

for TSSs. The number of elements in seven sets of function-related DNA intervals that overlap 

with the 32,422 SF human VISION cCREs was determined (bedtools), along with the number 

that overlap with three randomly selected subsets (32,422 each) from the full set of 200,342 

human cCREs. The ratio of the number of function-related elements overlapping SF-cCREs to 

the number overlapping a randomly chosen subset of all cCREs gave the estimate of 

enrichment plotted in the graph. The mean for the three determinations of enrichment is 

indicated by the horizontal line for each set. Results are also shown for a similar analysis for the 

S and N cCREs. 

 

Figure 8. Epigenetic comparisons of regulatory landscapes and cCREs. (A and B) DNA 

sequence alignments and correlations of epigenetic states in human GATA1 and mouse Gata1 
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genes and flanking genes. (A) Dot-plot view of chained blastZ alignments by PipMaker 

(Schwartz et al. 2000) between genomic intervals encompassing and surrounding the human 

GATA1 (GRCh38 chrX:48,760,001-48,836,000; 76kb) and mouse Gata1 (mm10 

chrX:7,919,401-8,020,800; 101.4kb, reverse complement of reference genome) genes. The 

axes are annotated with gene locations (GENCODE), predicted cis-regulatory elements 

(cCREs), and binding patterns for GATA1 and EP300 in erythroid cells. (B) Matrix of Pearson 

correlation values between epigenetic states (quantitative contributions of each epigenetic 

feature to the assigned state) across 15 cell types analogous for human and mouse. The 

correlation is shown for each 200bp bin in one species with all the bins in the other species, 

using a red-blue heat map to indicate the value of the correlation. Axes are annotated with 

genes and cCREs in each species. (C and D) JmC enrichment tracks of cCREs at the human 

GATA1 and mouse Gata1 gene loci. A “+” sign assigned to a cCRE indicates that the JmC to 

which it belongs was enriched at the GATA1/Gata1 gene locus. (E) The correlation between the 

cCRE’s esRP score and the target gene expression level. The results for each set of cCREs are 

shown as box plots summarizing the distribution of correlations observed for all loci with 

orthologous protein-coding genes. The cCREs in each evolutionary category were separated 

into those that are members of the JmCs enriched for a gene locus (indicated by a +) or those 

that are not (labeled SF, S and N). 
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