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SUMMARY
Processing of sensory information depends on the interactions between hierarchically connected neocortical
regions, but it remains unclear how the activity in one area causally influences the activity dynamics in
another and how rapidly such interactions changewith time. Here, we show that the communication between
the primary visual cortex (V1) and high-order visual area LM is context-dependent and surprisingly dynamic
over time. Bymomentarily silencing one area while recording activity in the other, we find that both areas reli-
ably affected changing subpopulations of target neurons within one hundred milliseconds while mice
observed a visual stimulus. The influence of LM feedback on V1 responses became even more dynamic
when the visual stimuli predicted a reward, causing fast changes in the geometry of V1 population activity
and affecting stimulus coding in a context-dependentmanner. Therefore, the functional interactions between
cortical areas are not static but unfold through rapidly shifting communication subspaces whose dynamics
depend on context when processing sensory information.
INTRODUCTION

Animal behavior arises fromdistributed patterns of neural activity

acrossmany brain regions. Neural activity in any one region does

not develop in isolation but is constantly shaped by, and in turn

shapes, the activity in others. Hence, brain-wide activity patterns

underlying behavior evolve on a moment-to-moment basis

through the continuous exchange of information between brain

areas. Understanding such complex networks of information

flow requires looking beyond the anatomical connections that

provide the substrate for communication and asking how distrib-

uted brain areas dynamically influence each other (Battaglia

et al., 2012; Friston, 2011; Park and Friston, 2013).

Statistical relations of activity across brain regions have been

traditionally used to infer causal interactions between them (Se-

medo et al., 2020; Kang and Druckmann, 2020; Keeley et al.,

2020; Aertsen et al., 1989; Siegel et al., 2012; Singer and Gray,

1995; Gerstein and Perkel, 1969; Womelsdorf et al., 2007; Fries,

2015). The majority of previous studies have relied on macro-

scopic measures of neural activity, such as the local field poten-

tial, EEG, or fMRI BOLD signals (Rogers et al., 2007; Srinivasan

et al., 2007; Hutchison et al., 2013; Gonzalez-Castillo and Ban-

dettini, 2018; Gregoriou et al., 2009; Bosman et al., 2012; Bastos

et al., 2015). Such one-dimensional summary signals reflect

combined activity from many neurons. However, several recent

studies have emphasized that specific patterns of population ac-

tivity, rather than the average level of activity in an area, are

crucial for how it relates to the activity of downstream targets
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(Kaufman et al., 2014; Kohn et al., 2020; Semedo et al., 2019).

For instance, in the motor cortex of macaques, only certain ac-

tivity patterns are predictive of musclemovement, whereas other

patterns fall into a ‘‘null space’’ and are not related to movement

(Kaufman et al., 2014). Likewise, in the macaque visual cortex,

only a small subset of population activity patterns is statistically

related to downstream activity (Semedo et al., 2019). Such find-

ings have highlighted the importance of single-cell resolution

measurements in characterizing inter-areal interactions and

have spurred the development of diverse multivariate statistical

analysis methods to quantify the interactions between popula-

tions of neurons recorded across different brain areas (Kang

and Druckmann, 2020; Keeley et al., 2020; Semedo et al., 2020).

However, despite the recent advances in multi-area popula-

tion recording and analysis methods, the main challenge in

quantifying inter-areal communication remains unresolved: the

correlated patterns of activity measured across two brain areas

could arise from the causal influences that these areas have on

each other or, alternatively, could be due to common or corre-

lated inputs to both areas and, therefore, not be reflective of

causal interactions. It has been shown that statistical ap-

proaches cannot distinguish these possibilities (Semedo et al.,

2020; Reid et al., 2019; Das and Fiete, 2020;Mehler and Kording,

2020). This problem is particularly pronounced in highly intercon-

nected networks with a large number of unobserved sources of

variability, such as other brain regions that were not recorded

(Das and Fiete, 2020). Therefore, although previous studies

have shown that the statistical relations of simultaneously
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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recorded neural activity in neocortical areas are modified de-

pending on behavioral demands (Park and Friston, 2013; Hutch-

ison et al., 2013; Gonzalez-Castillo and Bandettini, 2018; Gre-

goriou et al., 2009; Bosman et al., 2012; Ruff and Cohen, 2016;

Buschman and Miller, 2007), we do not yet know whether this

is reflective of changes in causal influences between areas.

Overcoming this long-acknowledged obstacle in the field re-

quires a causal approach to measuring inter-areal interactions,

based on manipulations of neural activity. Local cooling to inac-

tivate a specific brain area has been used to assess the influence

of cortical areas on each other (Hupé et al., 1998; Nassi et al.,

2013; Gómez-Laberge et al., 2016). However, although such ap-

proaches capture causal interactions, they do not have the fine

temporal resolution necessary for capturing instantaneous influ-

ences and their dynamics. More recently, optogenetic methods

have enabled temporally precise manipulation of neural activity

in order to examine the effect of silencing or activating different

brain areas on long-range targets (for instance, Kim et al., 2017;

Chabrol et al., 2019; Finkelstein et al., 2021; Goldbach et al.,

2021; Jin and Glickfeld, 2020; Sauerbrei et al., 2020). However,

studies using this approach have not focused on how communi-

cation between populations of neurons is dynamically organized

or how it causally shapes neural activity patterns at different time

points or in different behavioral contexts.

Accordingly, the principles of how distributed neuronal popu-

lations communicate are still unclear. Specifically, it remains un-

resolved how the patterns of influence from one area on its target

populations in other areas are structured, whether these causal

influences are static or change over time, and whether commu-

nication channels between areas can be dynamically regulated

depending on the behavioral state of the animal.

We addressed these questions, focusing on the interactions

between primary visual cortex (V1) and lateromedial area (LM)

in mice. Area LM is considered the homolog of secondary visual

cortex (V2) in primates (Wang and Burkhalter, 2007). It is the

largest higher visual area in the mouse cortex and most densely

innervated by V1 (Glickfeld and Olsen, 2017). LM neurons have,

on average, slightly larger receptive fields than V1 neurons;

otherwise, visual response properties in the V1 and LM are

broadly similar (Glickfeld and Olsen, 2017; Wang and Burkhalter,

2007), and both V1 and LM have been shown to be important for

visual discrimination (Poort et al., 2015; Resulaj et al., 2018;

Goldbach et al., 2021; Jin and Glickfeld, 2020). Investigating

causal interactions between V1 and LM, therefore, provides a

suitable model for studying feedforward and feedback commu-

nication between different levels of the visual hierarchy.

RESULTS

Measuring causal interactions between
neocortical areas
We developed a paradigm for measuring causal interactions be-

tween cortical areas bymanipulating neuronal activity and charac-

terizing inter-areal communicationon theneuronalpopulation level

with single-cell resolution. Using direct experimental manipula-

tions toestablishcausal interactionseliminated theneed for relying

on statistical associations of neural activity. We measured the

directional influence of one cortical area (source) on another
(target), focusing on feedforward and feedback influences be-

tween V1 and LM in mice (Figures 1A and 1B). We performed

simultaneouselectrophysiologicalmulti-channel recordingsat ret-

inotopically matched locations in the two areas (Figures S1A–

S1C).We thensilencedone of the two areas for brief timewindows

using optogenetic activation of inhibitory parvalbumin-expressing

interneuronsexpressingchannelrhodopsin-2 (ChR2) (Cardin et al.,

2009; Guo et al., 2014) and measured the instantaneous effect on

the recorded neurons in the target area, revealing the causal influ-

ence of the source area on the target neurons’ activity.

In order to assess how behavioral state modulates cortical

communication, we trainedmice to perform a go/no-go task. An-

imals learned to discriminate two stationary visual grating stimuli

of which only one was rewarded (Figures 1C, S1D, and S1E). Op-

togenetic silencing was performed in 150-ms time windows dur-

ing the presentation of the 500-ms-long grating stimuli. The

onset of silencing varied in each trial, tiling the duration of the vi-

sual stimulus in�65-ms steps (Figure 1D). The effect of silencing

on target area firing rates was only assessed during the timewin-

dow of optogenetic manipulation. This approach allowed us to

quantify how the influence of the source on the target area

may change over time during the cortical processing of behav-

iorally relevant stimuli with a resolution of tens of milliseconds

(Figure 1D).

Functional organization of inter-areal influences
We first characterized the average influence of V1 activity on LM

neurons (feedforward influence), irrespective of silencing time

window and task condition. We measured the trial-averaged

percentage of change in the firing rate of LM neurons during

each time window in which V1 was silenced. A large fraction of

LM neurons was suppressed by V1 silencing (Figure 1E; median

change in spiking rate =�33%,with 54.9%±7.6%,mean ± SEM

of neurons significantly affected in at least one time window),

confirming a predominantly excitatory feedforward influence of

V1 on this higher visual area. The extent to which LM neurons

were suppressed when V1 was silenced was partly related to

their average firing rate, the cortical depth at which they were

located, and their relative receptive field position, according to

a multivariate regression model (Figure S2; see STAR Methods).

Specifically, LM neurons were less affected by V1 activity when

they resided in deep cortical layers (Yang et al., 2013) or when

their spatial receptive field was far displaced from the retinotopic

location of the center of optogenetic manipulation in V1

(Figures S2D and S2E). We also examined how the influence of

V1 on LM cells depended on their responses during the discrim-

ination task. The influence of V1 silencingwas independent of the

visual stimulus preference (preferential response to the go or the

no-go stimulus) or behavioral choice preference (preferentially

active during lick response or absence of lick response) of LM

neurons (Figures S3A and S3D). However, we found that V1

silencing caused stronger suppression in more visually selective

LM neurons (neurons with a higher difference in response to the

go and no-go stimulus; see STARMethods), indicating that V1 is

driving selective responses to the task-relevant stimuli in LM

(Figures S3A and S3C). These results indicate that feedforward

input from V1 exerts a structured influence on LM, depending

on the neurons’ retinotopic position and visual response tuning.
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Figure 1. Experimental design for measuring causal influences between V1 and LM

(A) Paired recordings in retinotopically matched regions of V1 and LM with silicon probes in PV-Cre mice. In order to measure the influence of V1 on LM cells

(feedforward influence), V1 was silenced through light-mediated activation of parvalbumin-expressing inhibitory cells expressing ChR2 after injection of AAV-

flex-ChR2.

(B) As in (A) but with optogenetic silencing of LM in order to assess influence of LM on V1 (feedback influence).

(C) Recordings and optogenetic manipulation were performed during a go/no-go task. Head-fixed, stationary mice were presented with two differently oriented

stationary grating stimuli (45� or �45�), only one of which was rewarded. The identity of the rewarded stimulus was randomized across mice. Mice reported the

rewarded stimulus by licking a spout, which triggered the delivery of the reward.

(D) Example traces of spiking activity during V1 silencing. The traces denote stimulus-evoked activity in the source (V1) and target (LM) area in control (black

traces) and silencing trials (blue traces), binned at 20ms. Shading is the 95% bootstrapped confidence interval. The gray bar on top indicates the presence of the

visual grating stimulus (45� or �45� orientation, 40� diameter). Blue bars indicate the time of optogenetic silencing. Top, average activity of all non-PV neurons

(broad action potential waveform) in the source area (V1). Middle, average activity in control and silencing trials of three example neurons in the target area (LM).

Bottom, dynamic characterization of inter-areal influence by varying silencing onset times. For each trial, the silencing onset time is chosen in a randomized

manner from a pool of 8 values, tiling the stimulus duration with �65-ms resolution.

(E) Distribution of the effects of silencing V1 on the firing rate of LM neurons from all silencing timewindows and stimuli (feedforward influences, n = 278 neurons, 7

mice, 8 silencing time windows) calculated as a percentage change in firing rate when silencing V1. Negative source-silencing effects indicate decreases in firing

rate during silencing and, therefore, a net excitatory influence of V1 on the LM cell. Positive source-silencing effects indicate increases in firing rate and, therefore,

a net inhibitory influence of V1 on the LM cell. Significant effects are shown in bright colors (56.5% of all effects). The arrow denotes the median of the distribution.

The pie chart shows the fraction of significant increases (red) and decreases (blue) in LM neuron firing rates during V1 silencing.

(F) As in (E), but distribution of the effects of silencing LM on the firing rate of V1 neurons (feedback influences, n = 242 neurons, 7 mice, 8 silencing time windows,

32.0% of all effects significant).

See also Figures S1–S4.
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We then performed equivalent experiments while silencing

higher visual area LM to measure the effect of LM feedback on

the activity of V1 neurons. Silencing LM changed the firing of a

substantial number of V1 neurons (Figure 1F; 46.9% ± 6.9%,

mean ± SEM of neurons significantly affected in at least one
2472 Neuron 110, 2470–2483, August 3, 2022
time window) but did not have a clear net excitatory or inhibitory

influence (median change in spiking rate of 4%; Figure 1F).

Instead, LM activity had diverse effects on individual V1 neurons,

including decreased or increased activity upon LM silencing. A

previous study in awake primates found similarly diverse
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excitatory and inhibitory influences of higher visual area V2 on V1

(Nassi et al., 2013). In contrast to the feedforward effect of V1 on

LM, we could not identify any anatomical, physiological, or visual

response attributes of V1 neurons that could explain by how

much or in which direction they were affected by the feedback

from LM (Figures S2C, S2F, S2G, S3B, S3E, and S3F).

Effect of silencing on stimulus decoding and behavior
Next, we examined how feedforward and feedback interactions

between V1 and LM affect the cortical representations of the two

visual stimuli mice had to discriminate to perform the task.

Source-area silencing had, on average, a similar effect on the

response to the rewarded grating stimulus (during go trials)

and the non-rewarded stimulus (during no-go trials), both in

LM during the silencing of feedforward input from V1 and in V1

during the silencing of feedback from LM (Figure S4, go versus

no-go feedforward influence p = 0.87, feedback influence p =

0.78, two-sided Wilcoxon rank-sum test).

But how is neural decoding of the two stimuli affected in the

two cortical areas by silencing feedforward or feedback input?

And how does this impact the animals’ discrimination perfor-

mance? Consistent with previous studies (Goldbach et al.,

2021; Jin and Glickfeld, 2020; Resulaj et al., 2018), the silencing

of either V1 or LM early after stimulus onset (silencing

onset < 100 ms after stimulus onset, before behavioral re-

sponses to the go stimulus occurred) degraded animals’ perfor-

mance in the discrimination task (Figures 2A, 2B, 2D, 2E, and

S5). To quantify neural discrimination performance, we used a

linear decoder to classify whether a go or a no-go trial had

occurred from the population activity in either V1 or LM (see

STAR Methods). Silencing V1 significantly reduced stimulus de-

coding accuracy in LM throughout the visual stimulus presenta-

tion (Figure 2C; p values < 10�3), likely due to the strong suppres-

sion of average responses in LM during V1 silencing (Figure S5C;

p < 0.02, two-sided Wilcoxon signed-rank test). More surpris-

ingly, even though silencing LM did not change the average level

of activity in V1 (Figure S5F), it significantly reduced the accuracy

of decoding visual stimulus identity from V1 population activity.

However, silencing LM only degraded stimulus decoding accu-

racy during the early stimulus period, before behavioral re-

sponses were apparent (Figure 2F, early: p = 0.007; late: p =

0.11, Wilcoxon two-sided signed-rank test). Interestingly, this

is the stimulus period during which V1 activity is crucial for the

animals’ behavioral decision (Figures 2A and 2B; Resulaj

et al., 2018).

Inter-areal influences vary over time
Quantification of average source-silencing effects (Figures 1E and

1F) on the target area does not reveal how individual neurons are

influenced at differentmoments in time. Todetermine how the two

cortical areas influenced eachother over the course of visual stim-

ulus presentation, we compared how single-cell activity in the

target area was affected in eight different silencing time windows

(T1–T8) tiling the visual stimulus duration (Figures 1D and 3). In

some target area neurons, the change in firing rate induced by

source-area silencing was relatively similar during all time win-

dows (Figure 3A), revealing a constant influence of the source

area on these neurons over time. By contrast, many neurons
showed varying changes in their firing rates during different

silencing windows (Figures 3B–3E). For instance, the feedback

fromLMoften exerted a significant effect on a V1 neuron only dur-

ing a short time period (as short as <100 ms; Figures 3C–3E).

These silencing effects were consistent from trial to trial for the

same neuron, but not consistent between neurons, with individual

cells affected at different times during the stimulus presentation

(Figure 3F).

To quantify the diverse and temporally variable contributions of

a source area to the target neurons’ activity, we derived a popula-

tion-levelmeasureof inter-areal influencebetweenV1andLM. Ina

given time window, the population activity of n simultaneously re-

cordedneurons in the target area canbedescribed asapoint in an

n-dimensional space in which the coordinates specify the firing

rateofeachneuron. In this framework, oneset ofpoints represents

the population activity during a specific time window in all control

trials without optogenetic manipulation, and another set of points

constitutes the population activity in all silencing trials in which

source-area activity was absent during the same time window

(Figures 4A and 4B). To find the relation between these population

activity states, we identified the direction in the n-dimensional ac-

tivity space along which the population activity during source-

silencing trials couldbemaximallydiscriminated fromcontrol trials

using linear discriminant analysis (LDA) (Fisher, 1936) (see STAR

Methods; Figures S6A–S6F). This direction denotes a mode of

target area activity (pattern of activity in a specific neural

ensemble), which is causally dependent on the activity in the

source area and is, therefore, termed the causal communication

direction (Figure 4A).

We determined causal communication directions separately

for the eight time windows during the visual stimulus and quan-

tified their pairwise similarity by calculating the cosine similarity

between communication directions (the dot product of unit-

length vectors) for each pair of silencing time windows. Cosine

similarities were calculated in a cross-validated manner (see

STAR Methods) and, therefore, provided a robust estimate of

similarity with respect to trial-to-trial variabilities. We visualized

cross-validated cosine similarities between all possible pairs of

communication directions of all silencing time windows T1 to

T8 in cosine similarity matrices (Figures 4C and 4D) and quanti-

fied how fast communication directions changed by comparing

the similarity of directions over all time lags (Figures 4C–4F).

This analysis allowed us to address how stable the causal

communication direction was over time and thereby assess

the time-varying causal influence that neuronal populations in

the two cortical areas had on each other.

The similarity of both feedforward and feedback communica-

tion directions decayed relatively rapidly with time (Figures 4E

and 4F, exponential decay time constant (t) < 122 ms for all con-

ditions), indicating that both feedforward and feedback influ-

ences on population activity in V1 and LM are temporally dy-

namic. To test whether this time-varying influence can simply

be explained by temporally variable population activity in the

source or target area, we compared how the patterns of popu-

lation activity within V1 and LM changed over time. The trial-

averaged population activity at each time window was quanti-

fied using population activity directions, defined as the center

coordinate of the set of points in the population activity space
Neuron 110, 2470–2483, August 3, 2022 2473



Control
LM silenced

Control
V1 silenced

Early Late

* *

*

0

5

10

-60

-40

-20

0
Early Late

ns

*

ns

Early Late

C

F

St
im

ul
us

 d
ec

od
in

g 
pe

rfo
rm

an
ce

 (%
)

V1

0

5

10
* ns

-60

-40

-20

0

Early Late

ns

ns

50

70

90

St
im

ul
us

 d
ec

od
in

g 
pe

rfo
rm

an
ce

 (%
)

LM

Early Late

O
ns

et
-a

dj
us

te
d 

re
ac

tio
n 

tim
e 

ch
an

ge
 (%

)

O
ns

et
-a

dj
us

te
d 

pe
rfo

rm
an

ce
 c

ha
ng

e 
(%

)
O

ns
et

-a
dj

us
te

d 
pe

rfo
rm

an
ce

 c
ha

ng
e 

(%
)

O
ns

et
-a

dj
us

te
d 

re
ac

tio
n 

tim
e 

ch
an

ge
 (%

)

Early Late

*
ns

70

90

80

100

Control
LM silenced

Control
LM silenced

Control
V1 silenced

Control
V1 silenced

D

A B

E

Figure 2. The role of V1-LM interactions in visual discrimination
(A) Percentage of change in the onset-adjusted reaction time, compared with the average reaction time of each mouse (see STAR Methods), calculated

separately in control (gray) and V1 silencing (orange) trials with either early (<100 ms) or late (>100 ms) silencing onset. p = 0.049 for early silencing and p = 0.215

for late silencing, using two-sided Wilcoxon rank-sum test.

(B) Percentage of change in the onset-adjusted behavioral d-prime, compared to the average d-prime (see STARMethods), calculated separately in control (gray)

and V1 silencing (orange) trials with either early (<100 ms) or late (>100 ms) silencing onset. p = 0.035 for early silencing and p = 0.123 for late silencing, from

Wilcoxon two-sided signed-rank test.

(C) Decoding performance of a linear classifier distinguishing go from no-go trials (including only correct trials) using LM population activity (see STARMethods).

The classifier performance was measured on test control trials (gray) and V1 silencing trials (orange) and calculated separately for early silencing time windows

with silencing onsets before the beginning of the behavioral response window (<100 ms after stimulus onset, early) and later silencing time windows (>100 ms,

late). p < 10�3 for early silencing and p < 10�4 for late silencing, using Wilcoxon two-sided signed-rank test.

(D) As in (A), but with and without silencing LM. Difference in reaction time: p = 0.036 for early silencing and p = 0.108 for late silencing, using two-sidedWilcoxon

rank-sum test.

(E) As in (B), but with and without silencing LM. Difference in d-prime: p > 0.05 for both early and late silencing, using Wilcoxon two-sided signed-rank test.

(F) As in (C), but using the activity of V1 neurons, with and without LM silencing. p = 0.007 for early silencing and p = 0.11 for late silencing, using Wilcoxon two-

sided signed-rank test. Error bars depict the standard error of the mean (SEM) in all panels.

See also Figure S5.
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corresponding to activity in control trials at that time window

(Figure 4B). We calculated cross-validated cosine similarities be-

tween the activity directions of control trials of all eight time win-

dows (Figures 4G–4J). The modes of activity in both V1 and LM

were very similar across different time windows, and the similar-

ity of activity directions, therefore, decayed much more slowly

over time than the similarity of both the feedforward and feed-

back communication directions (Figure 4K, left and middle, all

p values < 2 3 10� 5, two-sided Wilcoxon signed-rank test;

see also Figure S8F for the same analysis with baseline-sub-

tracted visual responses). This was the case even if only the

20% of source-area neurons with the most time-varying

activity were included for calculating activity directions
2474 Neuron 110, 2470–2483, August 3, 2022
(Figures S6G–S6N; see STAR Methods). Therefore, the fast

changes in communication directions cannot be explained by

a subset of source-area neurons with particularly high temporal

variations in their firing rate providing input to the target area.

However, the above analyses rely on comparisons between

LDA vectors capturing manipulation effects and population ac-

tivity vectors, which are different measures with different magni-

tudes and different levels of robustness to trial-to-trial noise

(cross-validated similarity at time lag 0; see STAR Methods).

To corroborate that none of these differences can explain the

faster decay in the similarity of communication directions

compared with activity directions, and to enable a more direct

comparison between the changes in activity and communication
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Figure 3. Temporal profile of feedforward and feedback influences on example target neurons in V1 and LM

(A and B) Top, firing rates of two example LM neurons in control (black) and V1 silencing (blue) trials during go stimuli at 8 different silencing onset times (T1–T8).

The gray bar on top indicates the presence of the visual grating stimulus. Light blue shading marks the timing and duration of optogenetic silencing. PSTHs were

smoothed over 60 ms using a moving average filter. Shading indicates the 95% bootstrapped confidence intervals of the mean. Bottom, feedforward source-

silencing effects on the target neuron over time calculated as a percentage change in firing rate when silencing the source area. Zero is indicated by a dashed

line. Chance levels are indicated by gray shading and calculated as 95% confidence interval of percentage differences in the firing rate of bootstrapped control

trials. Error bars indicate 95% bootstrapped confidence interval of the mean.

(C and D) As in (A and B) but showing effects of silencing LM on two example V1 cells.

(E) Distribution of the number of time windows in which individual neurons were significantly affected (after Bonferroni correction for 8 comparisons) by V1

silencing (left, LM neurons, n = 278 neurons, 7 mice) and by LM silencing (right, V1 neurons, n = 242 neurons, 7 mice). Data was averaged across go and no-go

trials. Error bars depict 95% confidence interval (2 3 SEM) of the mean across animals.

(F) Percentage of neurons showing a significant change of firing rate during each silencing time window for LM neurons during V1 silencing (left, one-way ANOVA,

p = 0.9) and for V1 neurons during LM silencing (right, one-way ANOVA, p = 0.8). Error bars as in (E).

ll
OPEN ACCESSArticle

Neuron 110, 2470–2483, August 3, 2022 2475



A

C

E

K L

F

D G

I J

H

B

Figure 4. Population-level dynamics of inter-areal influences

(A) Schematic of the population analysis framework. Each point in the neural activity space specifies the population activity in the target area in a given time

window (150 ms) of one trial. Gray points denote control trials and blue points source-silencing trials. The communication direction (blue arrows) is calculated for

each time window as the direction that maximally separated the activity in control trials (gray cloud of points) from that in source-silencing trials (blue cloud of

points; see STAR Methods).

(legend continued on next page)
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directions over time, we generated an artificial dataset to simu-

late how similar communication directions of different time win-

dows would be if source-silencing effects on individual neurons

were invariant in time. For each target neuron, we used its exper-

imentally measured activity in control trials and simulated the ac-

tivity in source-silencing trials, such that the effect of silencing

was the same in each time window while maintaining the exper-

imentally observed distribution of silencing effects per cell (see

STAR Methods). This allowed us to directly compare changes

in communication directions with and without time-varying influ-

ences of silencing, while preserving measured neuronal activity

dynamics and the diversity of single-cell silencing effects, as

well as experimentally observed trial-to-trial variability of firing

rates. The communication directions of this simulated dataset

changed slower over time than those of the experimental data

(Figure 4K, right, p = 2.7 3 10�5, two-sided Wilcoxon signed-

rank test; Figures S7A and S7B), confirming that the fast decay

in the similarity of communication directions cannot be explained

by trial-to-trial noise or the temporal dynamics of neuronal activ-

ity patterns.

In addition to the communication directions, which describe

the patterns of influence on the target neurons, we also quanti-

fied the magnitude of the influence on the target area’s popula-

tion activity for both feedforward and feedback communication.

We measured the high-dimensional distance between target

area population activity in control and source-silencing trials

(see STAR Methods) and found that, interestingly, these dis-

tances do not change significantly over time (Figures S7C and

S7D, all p values > 0.4, one-way ANOVA).

Therefore, our data show that communication between

cortical areas is dynamic and reorganizes over time. Although

the magnitude of how strongly one area influences population

activity in another area stays constant, different patterns of influ-

ence are exerted by the source area at different time points dur-

ing the processing of a visual stimulus.
(B) Activity directions (black arrows) are calculated for each time window as the di

time window (center of the gray cloud of points).

(C) Matrices depicting cross-validated cosine similarity between the communicat

go (top) and no-go stimulus (bottom) for feedforward influences on LM (silencing

(D) As in (C), but for the feedback influences on V1 (silencing of LM) (n = 6 mice)

(E) Cosine similarity of pairs of feedforward communication directions in different

and no-go (red) stimuli. Error bars depict the 95% confidence interval of the mea

bounds of the fits. The decay time constants of the exponential fits (t) are shown

(F) As in (E) but for feedback communication directions.

(G) Matrices depicting cross-validated cosine similarity between activity direction

during the go (top) and no-go (bottom) stimuli.

(H) As in (G) but showing the cross-validated cosine similarity of activity direction

(I) Pairwise cosine similarity of V1 activity directions in different time windows as

stimuli. Error bars depict the 95% confidence interval of the mean (2 3 SEM). Li

(J) Same as (I), but for LM activity directions.

(K) Relationship between the initial slopes (slopes between lag 0 and lag 1) of the d

similarities in the target area (left) and source area (middle) and between initial d

simulated dataset assuming time-invariant inter-areal influences (right). p values f

from individual animals during V1 silencing (feedforward influences) and LM silen

(L) Initial slopes (slopes between lag 0 and lag 1) of the decay over time lags of fee

trials of trained animals and of feedback communication directions in untrained a

SEM). p values fromWilcoxon two-sided signed-rank test for comparisons betwe

for comparisons with untrained animals.

See also Figures S6–S8.
Temporal dynamics of feedback influences depend on
behavioral relevance
Previous studies have shown that the relationship between

neuronal activity in different cortical areas during processing of

a sensory stimulus is modulated by the relevance and behavioral

consequences of the stimulus (Bosman et al., 2012; Ferezou

et al., 2007; Gregoriou et al., 2009; Pinto et al., 2019; Ruff and

Cohen, 2016). These results raise the possibility that information

flow between areas can be flexibly adjusted by the behavioral

context of sensory signals. To determine whether the causal in-

fluence of areas V1 and LMon each other changes depending on

behavioral task demands, we compared how the time-varying

effects of feedforward and feedback input on population activity

differed in go and no-go trials during the visual discrimination

task. Only the go stimulus was associated with a reward and

was, therefore, behaviorally most relevant.

The temporal dynamics of feedforward communication direc-

tions, denoting howmuch the activity mode in LM that was caus-

ally dependent on activity in V1 changed over time, were similar

during the go and no-go stimulus (Figures 4E and 4L, exponential

decay time constant, go trials: 122 ms, 81–153 ms, 95% confi-

dence interval [CI]; no-go trials: 121 ms, 89–170 ms CI; p =

0.99, permutation test). In contrast, the dynamics of feedback in-

fluences weremuch faster during the go than the no-go stimulus,

with the cosine similarity of feedback communication directions

from LM to V1 decaying at a time constant of�15ms only during

the go stimulus (Figures 4F and 4L, exponential decay time con-

stant, go trials: 15 ms, 0–46 ms CI; no-go trials: 121 ms, 93–

163 ms CI; p = 1:3 3 10� 4, permutation test). These effects

could not be explained by differences in V1 or LM activity, since

the dynamics of population activity directions in both areas were

similar during go and no-go trials (Figures 4G–4J and S7E), as

was the level of trial-to-trial variability of communication direc-

tions (Figure 4F, time lag 0; see STAR Methods; go versus no-

go trials, p > 0.5, two-sided Wilcoxon signed-rank test).
rection specifying the center of the trial-averaged activity in control trials in that

ion directions, as shown in (A), of all pairs of silencing time windows during the

of V1). Matrices are averaged across animals (n = 7 mice).

.

time windows as a function of the time lag between them during the go (green)

n (2 3 SEM). Lines depict exponential fits, and shading shows 95% prediction

for go (green) and no-go (red) stimuli.

s (as shown in B) in V1 (n = 13 mice) of all pairs of time windows in control trials

s in LM (n = 13 mice).

a function of the time lag between them during the go (green) and no-go (red)

nes depict linear fits, and shading shows 95% prediction bounds of the fits.

ecay over time lags of communication direction similarities and activity direction

ecay slopes of communication direction similarities in the real dataset and the

rom two-sided Wilcoxon signed-rank tests. Orange and purple dots show data

cing (feedback influences) experiments, respectively.

dforward and feedback communication directions in go (green) and no-go (red)

nimals (gray). Error bars depict the 95% confidence interval of the mean (2 3

en go and no-go in trained animals and from two-sidedWilcoxon rank-sum test
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Moreover, feedback communication directions changed faster

during go trials, irrespective of the identity of the go stimulus (Fig-

ure S7H), showing that the observed differences were due to the

contingency of the stimuli.

To rule out that differences in feedback communication could

be due to differences in motor actions during go and no-go trials

such as licking, we compared the dynamics of feedback influ-

ences during an early epoch before mice responded to the visual

stimulus (50–200 ms post stimulus onset) and a late epoch in

which mice showed lick responses to the go stimulus (>250

ms post stimulus onset). In both epochs, changes in feedback

communication directions were faster during go stimulus trials

(Figure S7F).

These data indicate that feedback communication during sen-

sory processing is regulated by behavioral relevance. Accord-

ingly, we found that in untrainedmice that were passively viewing

the visual stimuli, feedback communication directions exhibited

temporal dynamics similar to those during no-go trials in trained

animals (Figures 4L and S7G). Hence, the ensembles of V1 neu-

rons influenced by LM activity changedmuchmore rapidly when

the visual stimulus processed by these cortical areas is predic-

tive of reward (see also Figure S8A). Although we did not find

similar effects of stimulus relevance on the temporal patterns

of feedforward communication, the influence of V1 onto down-

stream targets may be modulated by other behavioral variables

not captured by our task, such as spatial attention (Bosman

et al., 2012; Gregoriou et al., 2009; Ruff and Cohen, 2016).

Feedback restructures V1 covariance patterns
depending on behavioral relevance
Howdoes the dynamic influence of feedback impact activity pat-

terns in V1? Since trial-averaged V1 activity directions changed

at similar rates during the stimulus in go and no-go trials

(Figures 4I, 4J, and S7E), we looked beyond average activity pat-

terns and examined the geometry of trial-to-trial fluctuations.

Neurons in cortical areas form functional subnetworks within

which activity is correlated from trial to trial. The organization

of these co-fluctuations—the covariance structure of population

activity—has important implications for the coding capacity and

readout of information from an area (Moreno-Bote et al., 2014;

Rosenbaum et al., 2017; Shamir and Sompolinsky, 2004). These

co-fluctuations can be captured by principal component anal-

ysis, wherein the first few principal components (PCs) define

the most prominent modes of correlated activity in V1. We

computed the first three PCs of V1 population activity (explained

variance = 72%± 9.2%, mean ± SD) separately for the eight time

windows during visual stimulus presentation and used cross-

validated cosine similarity to compare their differences over

time, as described above (see STAR Methods).

Interestingly, covariance patterns of V1 activity were not stable

but appeared to re-organize over time, as the dominant

PCs changed their direction in succeeding time windows

(Figures 5A and 5B). Moreover, the PCs changed direction at a

faster rate in go compared with no-go trials, revealing that func-

tional V1 subnetworks re-organized faster during the presenta-

tion of the behaviorally relevant go stimulus. However, this was

only the case in control trials when LM feedback was intact

(Figures 5A and 5B). During silencing trials, when the feedback
2478 Neuron 110, 2470–2483, August 3, 2022
from LM was absent, this difference was significantly reduced

(p = 0.03, Wilcoxon signed-rank test, pooled across the first 3

PCs), and the temporal evolution of PCs was similar in go and

no-go trials (Figures 5C and 5D), indicating that the temporal

evolution of V1 covariance patterns depended on the feedback

from higher visual area LM. In contrast, howmuch of the variance

of V1 activity each PC could explain and their total variance was

not different in go and no-go trials and was not changed when

LM was silenced (Figures 5E and 5F; see STAR Methods), indi-

cating that feedback only rotated the covariance structure,

without affecting the overall amount of trial-to-trial variability in

V1 population activity.

Given that feedback regulates the correlation structure of V1

population activity, we asked how these influences were re-

flected in the temporal and pairwise dependencies of firing rates

at the single neuron level. Temporal dependencies in the firing

rate of individual V1 neurons over time, quantified by the autocor-

relation function over different time lags, were also different dur-

ing go and no-go stimuli, as autocorrelations were lower during

go stimuli (Figure S9A). This difference was absent when the

feedback from LMwas silenced (Figure S9A). Moreover, V1 neu-

ronswhose firing ratewasmore strongly affected by LMsilencing

showed faster decay of autocorrelations (Figure S9B), confirming

that the decreased dependency of neuronal firing rates with time

was related to the feedback from LM. Finally, pairwise noise cor-

relations between V1 neuronswere on averageweaker in go than

in no-go trials (Figure S9C), confirming previous findings of

decreased firing rate interdependencies in cortical areas during

the processing of behaviorally relevant visual stimuli (Cohen

and Maunsell, 2009). However, the feedback from LM did not

affect the average strength of pairwise noise correlations nor their

modulation by task demands (Figures S9C and S9D).

Therefore, the feedback from LM affects specific aspects of

V1 population activity patterns. Feedback renders correlation

patterns in neuronal firing rates more dynamic over time without

affecting the overall variability of population activity and, there-

fore, contributes to the continual restructuring of functional V1

subnetworks during stimulus coding.Moreover, the rate at which

V1 functional subnetworks re-organize is modulated by behav-

ioral demands through a change in the temporal dynamics of

the feedback influences from LM.

DISCUSSION

By using a causal approach to study inter-areal communication

in the neocortex, we quantified the dynamics of feedforward and

feedback interactions between cortical visual areas. We found

that the patterns of influence on the target population can

change rapidly, with different subsets of neurons affected at

different moments in time within tens of milliseconds. This was

in stark contrast to the stable activity patterns elicited by visual

stimulation within the areas themselves. Moreover, the dynamics

of inter-areal communication were modulated by the animal’s

behavioral state.

Functions of dynamic communication
We found that cortical areas exert influences on each other along

communication dimensions that continually change direction,
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Figure 5. Feedback modulates the covariance structure of V1 population activity

(A) Schematic of V1 population activity in different time windows in control trials. The cloud of points indicates the trial-to-trial variability in the patterns of V1

population activity. The shape of this cloud is described by the principal components. Principal component (PC) directions were calculated separately for each

time window, and their similarity was compared over time.

(B) Top, absolute value of pairwise cross-validated cosine similarity of the first (left), second (middle), and third (right) PCs of V1 activity in different time windows

as a function of the time lag between them in go (green) and no-go (red) trials. Error bars depict the 95% confidence interval of the mean (2 3 SEM). Lines depict

exponential fits, and shading shows 95% prediction bounds of the fits. Bottom, initial slope (slope between lag 0 and 1) of the decay of principal component

similarity over time lags for go and no-go trials. Error bars depict the 95% confidence interval of the mean (2 3 SEM). p values from two-sided Wilcoxon signed-

rank tests.

(C) As in (A), but during silencing of LM, depicting PCs of V1 population activity over time in the absence of LM feedback.

(D) As in (B), but during LM silencing trials (in the absence of LM feedback to V1). The difference between the decay slopes of PC similarity in go versus no-go trials

was significantly reduced compared with the control trials shown in (B) (p = 0.03, Wilcoxon signed-rank test, pooled across the first 3 PCs).

(E) Percentage of variance explained by each of the first three PCs in V1 during go (green, left) and no-go (red, right) stimuli in control and silencing trials (blue)

across all time windows. Error bars depict the 95% confidence interval of the mean (2 3 SEM). p values from two-sided Wilcoxon signed-rank tests.

(F) The sum of variance across the first three PCs in V1 for control and LM silencing trials, during the go (green) and no-go (red) stimuli, averaged across all time

windows. Error bars depict the 95% confidence interval of the mean (2 3 SEM). p values from two-sided Wilcoxon signed-rank tests.

See also Figure S9.
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although the magnitude of these influences is constant over time

(Figures 4, S7C, and S7D). Our results imply that these dynamics

in inter-areal communication serve an important function since

their speed rather than the average strength of influence is regu-

lated by behavioral demand (Figures 4D–4F and S4). What po-

tential function can these dynamics serve, and what advantages

do they offer for cortical computation?

Specific patterns of population activity have been shown to be

important for encoding various task-relevant variables (Kaufman

et al., 2014) such that the activity along these ‘‘coding dimen-

sions’’would lead tobehavioral effects,while other patternsof ac-

tivity along the ‘‘null dimensions’’wouldbe inconsequential for the
behavioral outcome. The linear decoder for classifying go andno-

go trials fromV1activity (Figure 2C) corresponds toa dimension in

the V1 activity space (a pattern of V1 activity) that encodes infor-

mation relevant for visual discrimination. We show that silencing

LM specifically affects the visual stimulus coding in V1 and ani-

mals’ behavioral performance only during the early stimulus

presentation period and not later on. Importantly, the absolute

magnitude of the LM feedback influence on V1 does not vary

significantly over time (Figures S7C and S7D). This indicates

that earlyduringvisualprocessing,LM influencesV1activity along

the dimension that is potent for visual discrimination, while, later

on, the feedback communication dimension rotates out of this
Neuron 110, 2470–2483, August 3, 2022 2479
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alignment, ceasing its influence on visual discrimination in V1.

Therefore, the rotations of communication directions could serve

tomomentarily align patterns of influencewith different coding di-

mensions in the target area, allowing transient time windows of

control over behaviorally relevant variables.

Moreover, cortical areas continually receive information from

not just onebutmultiple brain areas. The rotationsof communica-

tion directions of multiple converging pathways onto a cortical

area could lead to their momentary alignment, forming brief win-

dows of integration for several streams of long-range inputs.

Importantly, we found that while inter-areal communication di-

rections rotate at fast time scales, the activity directions within

an area change only slowly. This implies amechanism for flexible

and fast coordination ofmulti-area interactions,without imposing

constraints on activity dynamics.

We observed faster rotation of feedback communication di-

rections after animals had learned the visual discrimination

task and, specifically, during go trials in which the visual stimulus

is associated with a reward and is, therefore, behaviorally most

relevant (Figures 4D–4F). This increase in the dynamics of LM

feedback influences may stem from the extra requirements

imposed on cortical circuits during the performance of goal-ori-

ented motor movements. Faster rotation of feedback communi-

cation directions could provide more precise and briefer time

windows of alignment with different coding or communication di-

rections from other areas, which may be required for more com-

plex multi-area information routing during behavior.

Mechanisms for dynamic communication
Which mechanisms could underlie dynamic communication on

the fast time scalesobserved in this study?Ourmethodmeasures

effectiveconnectivity betweenareas (Park andFriston, 2013). The

described effects could, therefore, bemediated bymono-synap-

tic intracortical projections as well as poly-synaptic pathways, for

instance, through the thalamus (Blot et al., 2021; Guillory and

Sherman, 2002). Although our recordings did not provide selec-

tive access to target-projecting neurons in the source area,

the population activity patterns of even the most time-varying

source-area neurons could not account for the fast dynamics of

inter-areal influences (FiguresS6G–S6N). Inter-areal communica-

tion could be regulated by changes in the synchrony of action po-

tential timing within or between areas (Fries, 2015; Palmigiano

et al., 2017; Singer, 1999;Womelsdorf et al., 2007). Neural activity

oscillations have been proposed to enable such changes in syn-

chrony (Akam and Kullmann, 2010; Buzsáki and Draguhn, 2004;

Fries, 2015). However, it is unclear how the fast dynamics in feed-

back influences could be achieved by long time constants

required for resonance or entrainment of oscillations (Bastos

et al., 2015; Buzsáki and Draguhn, 2004). Alternatively, the sub-

populations of target area neurons could be rendered more or

less susceptible to inter-areal influences in specific moments

in time by local circuit mechanisms, non-linear amplification,

or additional long-range input, for instance, from higher-order

thalamic nuclei such as the pulvinar (Saalmann et al., 2012).

The role of cortical feedback
Cortical feedback projections have been suggested to influence

sensory processing in various ways (Bastos et al., 2012; Briggs,
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2020; Gilbert and Li, 2013; Hupé et al., 1998; Keller and Mrsic-

Flogel, 2018; Keller et al., 2020; Marques et al., 2018; Nassi

et al., 2013; Nurminen et al., 2018; Pafundo et al., 2016; Vange-

neugden et al., 2019), but their function is still unclear. We found

that the feedback from LM increases the discriminability of visual

stimuli in V1 population activity, thereby enhancing the saliency

of behaviorally relevant information in V1 circuits. This influence

of LM on V1 stimulus decoding is confined to the early period of

visual stimulus presentation, during which V1 activity is crucial

for the animals’ decision-making in the discrimination task. The

dynamic nature of feedback influences, therefore, allows a

temporally precise alignment of LM input with task-relevant cod-

ing dimension in V1 population activity.

More generally, we found that LM feedback can alter depen-

dencies in V1 single-cell and population activity patterns over

time. Interestingly, feedback selectively modulated the time

scales of autocorrelations in V1 without affecting the average

strength of pairwise noise correlations. Previous studies have re-

ported reduced noise correlations in attentive states, hypothe-

sized to increase the coding capacity during attention and

thought to bemediated by top-down input (Cohen andMaunsell,

2009; Ramalingam et al., 2013). We observed, on average, lower

noise correlations during the rewarded go stimulus, consistent

with its higher behavioral relevance. However, our findings do

not support a role of feedback from higher visual areas in this

state-dependent modulation of noise correlations in V1, since

LM feedback had no effect on noise correlation strength in either

the go or the no-go stimulus condition. LM feedbackmay instead

regulate computations in V1 by controlling the time scales of vi-

sual processing. Previous studies have shown a diversity of

spike rate autocorrelation time constants across different brain

areas (Cavanagh et al., 2016; Murray et al., 2014). This diversity

potentially reflects area-specific temporal specializations for

computations that require input integration on different time

scales (Cavanagh et al., 2016; Goldman et al., 2010; Murray

et al., 2014). For instance, short time scales could be beneficial

for rapid detection of stimuli, while longer time scales may sup-

port computations that depend on longer integration of signals.

Our findings show that these time constants can be dynamically

modulated by feedback to optimize V1 circuits according to the

task demands.

At the population level, we found that feedback modified the

geometry of the V1 covariance structure in a context-dependent

manner (Bondy et al., 2018) by rotating the PCs of V1 activity

without changing the variance along each PC. The covariance

structure of neural activity in a network describes the patterns

of correlated variability between all recorded neurons and is,

therefore, indicative of the functional subnetworks within an

area. The structure of these subnetworks plays an important

role in shaping the neural code and the readout of information

from an area (Moreno-Bote et al., 2014; Rosenbaum et al.,

2017; Shamir and Sompolinsky, 2004). Because the covariance

structure relates to the connectivity between neurons (Ko et al.,

2011; Rosenbaum et al., 2017), it is usually considered a static

property of networks. However, we found the structure of corre-

lated variability to be surprisingly dynamic: the most prominent

modes of variability in the network (the PCs) rotated over time,

leading to temporal restructuring of functional subnetworks in
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V1. This may enable V1 populations to conduct different compu-

tations at different moments in time during visual processing.

Importantly, the speed of these changes in the covariance struc-

turewasmodulated by cortical feedback in a context-dependent

manner. Together, our findings, therefore, indicate a novel role

for cortical feedback in temporally organizing the computations

in V1.

Feedback projections are thought to be important for percep-

tual inference (Friston, 2008; Lee andMumford, 2003;Olshausen,

2013). Several studies have suggested that populations of neu-

rons canperformefficientBayesian inferenceusingMarkov chain

Monte Carlo (MCMC) sampling algorithms, where the firing of

each neuron represents stochastic samples from the posterior

distribution (a probabilistic representation of the beliefs about

sensory information given the input) (Buesing et al., 2011; Eche-

veste et al., 2020). MCMC algorithms produce autocorrelated

samples, which allow sampling from high-dimensional distribu-

tions but could lead to slow inference. Consequently, the effi-

ciency of these samplers could be modulated by controlling the

time constant of their autocorrelation function (Echeveste et al.,

2020). LM feedback selectively modulates temporal interdepen-

dencies (autocorrelations) in V1 circuits and may thereby play a

role in optimizing probabilistic sampling processes according

to behavioral demands. Moreover, feedback from higher cortical

areas has been proposed to provide expectations and beliefs

about the world to earlier processing stages during perceptual

inference (Friston, 2008; Keller and Mrsic-Flogel, 2018; Lee and

Mumford, 2003;Olshausen, 2013). The rapid changes in the influ-

ence of feedback on V1 activity over time may be a hallmark of

evolving predictions in a dynamically changing environment.

In summary, we find that cortical areas interact through

dynamically rotating communication channels to process and

disambiguate sensory signals depending on the behavioral

context.
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AAV1.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (Hippenmeyer et al., 2005) Addgene # 20298

Chemicals, peptides, and recombinant proteins

DiI Thermo-Fisher Cat # D3911

Experimental models: Organisms/strains

Mouse: B6;129P2-Pvalbtm1(cre)Arbr/J The Jackson Laboratory JAX: 008069

Software and algorithms

MATLAB Mathworks https://uk.mathworks.com/products/matlab.html

LabVIEW National Instruments https://www.ni.com/en-gb/shop/labview.html

Psychtoolbox 3 (Kleiner et al., 2007) http://psychtoolbox.org/

Kilosort (Pachitariu et al., 2016) https://github.com/MouseLand/Kilosort2

Phy (Rossant et al., 2016) https://github.com/cortex-lab/phy

StimServer (Muir and Kampa, 2014) https://bitbucket.org/DylanMuir/stimserver

Custom code for experiments This manuscript https://doi.org/10.5281/zenodo.6512457

Custom code for data analysis This manuscript https://doi.org/10.5281/zenodo.6512262
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sonja B.

Hofer (s.hofer@ucl.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data reported in this paper will be shared by the lead contact upon request.

d Software used for the visual discrimination experiment (https://github.com/mitrajz/behavior_code) and analysis code (https://

github.com/mitrajz/long_range_com) have been deposited on Github and Zenodo and are publicly available as of the date of

publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the Lead Contact upon

request.

t-
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were conducted in accordance with institutional animal welfare guidelines and licensed by the UK Home Office and

the Swiss cantonal veterinary office. A total of 20 PV-Cre mice (Hippenmeyer et al., 2005) were used. Electrophysiological recordings

and optogenetic manipulations were performed in 4 untrainedmice and 16mice trained in the visual discrimination task (7 and 9mice

with silencing of V1 and LM, respectively, 2 out of 16 mice were excluded due to their task performance, see analysis of behavior).

Mice were of either sex and were between 6 and 14 weeks old at the start of the experiment.

METHOD DETAILS

Surgical procedures and virus injection
Prior to surgery, mice were injected with dexamethasone (2–3 mg kg�1) and analgesics (carprofen; 5 mg kg�1). A subgroup of an-

imals was also injected with atropine (0.05–0.1mg kg�1). General anaesthesia was induced either with amixture of fentanyl (0.05mg

kg�1), midazolam (5 mg kg�1) and medetomidine (0.5 mg.kg�1), or with isoflurane (1%–4%). A custom headplate was attached to
e1 Neuron 110, 2470–2483.e1–e7, August 3, 2022
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he skull using dental cement (C&B Super Bond) and the skull above the posterior cortex was carefully thinned and sealed with a thin

layer of light-cured dental composite (Tetric EvoFlow). Viral injections of AAV1.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (Addg-

ene 20298) (titre: 2:231012; diluted 1:4 in cortex buffer (described below), 70 nl) were made using glass pipettes and a pressure in-

jection system (Picospritzer III, Parker) in the right hemisphere in either V1 or LM. The injection site was identified using intrinsic im-

aging maps of visual cortical areas (see intrinsic signal imaging) several days prior to the surgery. Some animals were additionally

given antibiotic and analgesic drugs (enrofloxacin 5mg kg�1, buprenorphine 0.1mg kg�1) at the end of surgery and for 3 days during

recovery. Electrophysiological recordings were performed approximately 2-4 weeks after the viral injections.

Intrinsic signal imaging
To determine retinotopically matched locations in V1 and LM, mice underwent optical imaging of intrinsic signals (Schuett et al.,

2002). This procedure was done a minimum of 3 days after the implantation of a headplate and thinning of the skull (see surgical pro-

cedures). On the day of intrinsic imaging, mice were either initially sedated (chlorprothixene, 0.7 mg kg�1), and imaging was carried

out either under light isoflurane anaesthesia (0.5–1%) delivered via a nose cone, or imaging was performed in awake, head-fixed

mice, free to move on a 20-cm-diameter Styrofoam cylinder.

The visual cortex was illuminated with 700-nm light split from a LED source into two light guides. Imaging was performed with a

tandem lensmacroscope focused 500 mmbelow the cortical surface and a bandpass filter centered at 700 nmwith 10 nm bandwidth

(67905; Edmund Optics). Images were acquired with a rate of 6.25 Hz with a 12-bit CCD camera (1300QF; VDS Vossk€uhler), a frame

grabber (PCI-1422; National Instruments) and custom software written in Labview (National Instruments). The visual stimulus, pre-

sented on a display 21 cm away from the left eye, was generated using the open-source Psychophysics Toolbox (Kleiner et al.,

2007) based on Matlab (MathWorks) and consisted of a 20� (radius) large square-wave grating, (0.08 cycles/degrees) drifting at

4 Hz in 8 random directions, presented on a grey background for 2 seconds, with a 18 second interstimulus interval alternatively

at two positions, at 15� elevation and either 50� or 70� azimuth. Frames in the second following stimulus onset were averaged across

16 grating presentations to generate intrinsic response maps. Response maps to the grating patches at either position were used to

identify retinotopically matched locations across areas V1 and LM.

Visual discrimination task and visual stimuli
Mice were trained for 2 - 8 weeks to perform a go/no-go task, in which they had to discriminate two static gratings of 45� and

-45�orientation. Mice were food restricted throughout the training and electrophysiological recording, with maximum weight loss

of 20% of their initial body weight. The restriction started 3 days after the first surgery (headplate implantation) and was interrupted

for several days after viral injections, for mice to recover after surgery. The mice were trained for the duration of approximately 1 hour

every day. Initially, mice were trained to run head-fixed on a freely rotating Styrofoam cylinder in front of a display (Dell U2715H, 60Hz)

placed 24 cm away from their left eye. In later stages of training, when mice were comfortable and used to the paradigm, the cylinder

was fixed in place, preventing it frommoving. Mice learned within a few days to transition from running to sitting still while performing

the task.

Visual stimuli consisted of two 40� diameter large static square-wave gratings of 100% contrast, 0.06 cycles per degree spatial

frequency, and either 45� or -45� orientation, presented on a grey background in the center of the monitor. The center of the monitor

was placed at approximately 60� azimuth and 15� elevation, and was adjusted later according to the receptive fields of recorded

neurons (described below). The luminance of the monitor was 0 cd=m2, 16 cd=m2, and 32 cd=m2 at black, grey and white values,

respectively. Gratings were presented for 500ms. The interstimulus interval consisted of a fixed period of 500 ms, plus a random

delay with a truncated exponential distribution to avoid extremely long trials (mean: 4-6 seconds, truncation threshold: between

10 and 30 seconds).

6 mice were trained with the 45� grating as the go and the -45� stimulus as the no-go stimulus. For the remaining 10 animals, the

identity of go and no-go stimuli was switched. Go and no-go stimuli occurred with equal probability. We did not find any stimulus-

specific differences in V1 and LM activity or their interactions, therefore data was pooled across all animals. A reward delivery spout

was positioned under the snout of the mice from which a drop of soy milk, or Ensure Plus strawberry drink was delivered in go trials

triggered by licking of the spout during a response window of 100 to 550ms (n = 8 animals) or 100 to 650ms (n = 8 animals) after

stimulus onset. If mice licked the spout during this timewindow in response to the go stimulus, trials were classified as hit trials, other-

wise as miss trials. In the miss trials, mice received an automatic reward (smaller drop of reward) after the response window. The

same time window was used to classify no-go trials into false alarm or correct rejection trials. Licking to the no-go visual stimulus

(false alarm) was not punished. Licks were detected with a piezo disc sensor placed under the spout. The detection of licks, reward

delivery, and the presentation of visual stimuli were controlled by a MATLAB-based script, StimServer (Muir and Kampa, 2014) (an

open-source stimulus sequencing package based on the Psychophysics Toolbox), and using a data acquisition board (PCIe-6321;

National Instruments).

In vivo electrophysiology and optogenetic manipulations
Electrophysiological recordingswereperformed2 - 4weeks after the viral injection.Mostmicewere trained in the visual discrimination

task prior to the recording day. On the day of the recording, mice were anaesthetized with 1%–2% isoflurane, and two 1 mm crani-

otomies were made above the pre-selected retinotopically matched locations in V1 and LM (see intrinsic signal imaging).
Neuron 110, 2470–2483.e1–e7, August 3, 2022 e2
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Craniotomies were covered with 1.5-2% agarose in cortex buffer, containing (in mM) 125 NaCl, 5 KCl, 10 Glucose monohydrate, 10

HEPES, 2 MgSO4 heptahydrate, 2 CaCl2 adjusted to pH 7.4 with NaOH. A well was built around the two craniotomies, using light-

cured dental composite (Tetric EvoFlow), and finally, thewell was further sealedwith Kwik-Cast sealant (World Precision Instruments).

Mice recovered from surgery for 1-2 h before the recording, andwere then head-fixed on a styrofoam cylinder, free tomove prior to

the start of recording. The Kwik-Cast sealant was removed and a silver wire was placed in the bath for referencing. Two NeuroNexus

silicon probes (A2x32-5mm-25-200-177-A64), labelled with DiI, were lowered to 800-1000 mm below the cortical surface using mi-

cromanipulators (Sensapex). The electrode positions in V1 and LM were chosen based on the intrinsic map (see intrinsic signal im-

aging), to target retinotopically matched and therefore anatomically connected locations in the two areas (Marques et al., 2018;Wang

and Burkhalter, 2007) (Figure S1A). The electrode positioned in the injection site (in V1 for V1 silencing and in LM for LM silencing) had

a 200mm optical fibre (CFMLC52U; Thorlabs) attached with dental cement with its tip 1mm above the electrode tip, placing the fiber

tip on the cortical surface once the electrodes were positioned in the cortex.

The craniotomies were then covered with 1.5-2% agarose in cortex buffer. Voltages from 128 channels across two areas were ac-

quired through amplifier boards (RHD2132, Intan Technologies) at 30 kHz per channel, serially digitized and sent to an Open Ephys

acquisition board (Siegle et al., 2017) via a SPI interface cable. The wheel was fixed in place (no movement possible), and mice sat

quietly on thewheel due to the prior training. Before the start of the behavioral paradigm, retinotopicmapping of the neurons in V1 and

LM electrodes was performed, using flashing black and white squares of approximately 20� 3 20� on a grey background in 534 lo-

cations across the monitor. Responses to these stimuli were used to position the monitor, centered on the average receptive field

center of recorded neurons.

To silence neuronal activity in either V1 or LM, we optogenetically activated ChR2-expressing parvalbumin-positive neurons using

a 473 nm laser (OBIS 473nm LX 75mW; Coherent) or LED (M470F3; Thorlabs) coupled through a patch cable (M73L01; Thorlabs) to

the fibre above the area previously injected with the AAV. The light pulse lasted for 150ms. During the first 75 ms, the power was

constant at 4 mW, and during the second 75ms, the power was linearly ramped down to zero, in order to prevent rebound spiking.

The light pulse was generated using Pulse Pal (open source pulse generator). Optogenetic silencing effectively suppressed neural

activity (Median change in the firing rate of V1 neurons was -95.74%when silencing V1, and -93.02% for LM neurons when silencing

LM). Propagation of light to the eyewas blocked by the cement wall around the craniotomies, as well as black tape shielding the fibre-

mating sleeves. Since the fibre tip was far from the eye (> 5 mm) light did not propagate to the retina through the brain (Yizhar et al.,

2011). Light was delivered during 8 different time windows during the presentation of the visual stimulus. The onset of light delivery

with respect to visual stimulus onset (silencing onset) was randomized from trial to trial. The exact alignment of light onset and visual

stimulus was confirmed offline, using recordings of the input pulse to the laser, and the monitor frame update times captured by a

photodiode attached to the monitor. These onsets were at 0 ms, 56ms, 123ms, 189ms, 256 ms, 323ms, 390ms and 456 ms after

visual stimulus onset (mean across n = 14 animals). We ensured minimal trial-to-trial jitter in laser onset delays (standard deviation

of light onset time < 0.3 ms). Control trials without light were interspersed randomly. One session was recorded per mouse, and each

session consisted of on average 78 ± 8 (mean ± s.d.) silencing trials for each time window, and 97 ± 16 (mean ± s.d.) control trials

(before excluding trials based on the criteria described below).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of behavior
A behavioral d-prime was calculated for each animal (d’ = Z(hit rate) - Z(false alarm rate), where function Z is the inverse of the stan-

dard normal cumulative distribution function (Stanislaw and Todorov, 1999), and only animals with task performance above chance

level were included for further analysis (2 animals out of 16 excluded). Chance level was the 99 percentile of the trial-shuffled d-prime

distribution, obtained by shuffling the identity of go and no-go trials 5000 times. Average task performance for the animals included in

the analysis was d’ = 1.7 ± 0.16 (mean ± s.e.m). Only correct trials (hit and correct rejection trials) were used for subsequent analyses.

Moreover, periods of time in the session during which the mice were grooming (continuous prolonged movement detected from the

spout readout) were excluded.

Electrophysiology data pre-processing
Spikes were sorted with Kilosort (https://github.com/cortex-lab/Kilosort) using procedures previously described (Pachitariu et al.,

2016), single units were extracted, and manually curated using phy (https://github.com/cortex-lab/phy). A total of 806 single units

in the trained animals (n = 14 mice, 371 units in V1 and 435 units in LM) and 236 single units in untrained animals (n = 4 mice, 146

units in V1 and 90 units in LM) were detected. For all subsequent analysis, the firing rate in time windows with an average firing

rate below a threshold was set to nan. This was done in order to prevent dividing by values close to zero. The threshold was chosen

as the value at which the 95% confidence interval of the firing rate exceeded zero (2.5 Hz). Results were not significantly different

when neuronal activity was not thresholded.

Receptive field calculation
Receptive fields were calculated by fitting a two-dimensional Gaussian distribution to the responses of neurons to the flashing black

and white square stimuli. The center of the receptive field was calculated as the peak of the Gaussian fit. Since receptive fields were
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calculated from square stimuli on a flat screen, the receptive field locations in visual degrees are approximate. However, this does not

affect the relative comparisons between the regression models in V1 and LM (described below).

Quantifying the effect of silencing
The change caused by optogenetic manipulation to the firing rates of individual neurons was quantified as 1003ðRs � RcÞ=Rc for

each silencing time window, where Rs denotes the cell’s spike count during the 150ms silencing time window, and Rc denotes the

spike count in the corresponding timewindow in control trials. Significant effects were determined based on exceeding the 95%con-

fidence interval of percentage differences in the firing rate of bootstrapped control trials. To determine the number of significantly

affected time windows per cell, the significance levels were adjusted using Bonferroni correction for 8 comparisons.

Multivariate regression model
We used a generalized linear regression model in order to examine if silencing effects could be explained by physiological and

anatomical properties of target neurons such as cortical depth. We predicted the activity of LM neurons (target area) during optoge-

netic silencing of V1 (source), from their own activity in control trials (in the corresponding time bin) and the depth of LM neurons in the

cortex (Figure S2):

Rs � Nðm; sÞ

m =
�
d bd + d2 bd

2

�
+

�
Rc b

c + R2
c b

c
2

�
+ dRc b

i + b0

Where Rs denotes the spike count during the 150 ms source-silencing time window, modeled with a Gaussian distribution with the

mean and standard deviation of m and s. Rc denotes the spike count in the corresponding window in control trials, d the depth of the

target neuron soma, and b the model coefficients. Cortical depth was determined based on current source density analysis (CSD),

with zero denoting the center of the initial current sink (which roughly corresponds to thalamic input in layer 4 in V1). Themodel was fit

with the iteratively reweighted least squares algorithm, using the fitglm function from MATLAB. The performance of the model was

assessed using 20-fold cross validation. For each set of training and test sets, the model parameters were fit using the training set,

and the log likelihood of the test set was calculated (log2 l). We also used the same procedure to calculate the log likelihood of a null

model that only contained information about the LM cell’s control trial activity (mnull = Rc b
c + R2

c b
c
2 + b0 ). This gives a null likelihood

value (log2 l0).

We then measured model performance as the degree to which the full model outperforms the null model by calculating the trial-

averaged excess log likelihood of the full model compared to the null model. This would capture any dependence of the silencing

effect on the depth of LM neurons, that is not solely due to the relationship between activity levels and cortical depth.

Model performance [bits/trial] = ðlog2 l � log2 l0Þ=N
Where N is the number of observations in the test dataset. Model performance was calculated for each of the 20 test sets (obser-

vations) separately. Above-chance performance was determined by a one-sidedWilcoxon signed-rank test. We constructed similar,

separate models to quantify the influence of other cell properties, such as relative receptive field position and average firing rate over

the session. The relative receptive field positions were the distance of the cell’s spatial receptive field center to the retinotopic loca-

tion of silencing in the source area, which was calculated as the average receptive field location of the recorded neurons from an

electrode positioned in the center of AAV-flex-ChR2 virus expression in the source area. We repeated the same procedures for pre-

dicting the activity of V1 neurons during optogenetic silencing of LM.

The same regression model and procedures were used to quantify to what degree neurons’ response selectivity to the visual stim-

uli or to behavioral choice explained the effect that silencing the source area had on them (Figure S3). Selectivity index for behavioral

choice was calculated per neuron as ððRH � RMÞ=ðRH + RMÞ+ ðRF � RCÞ=ðRF + RCÞÞ=2, where RH; RM; RF ; RC denote the

average firing rate of the neuron during the visual stimulus presentation (500 ms) in hit (go stimulus presented, animal licks), miss

(go stimulus presented, animal does not lick), false alarm (no-go stimulus presented, animal licks), and correct rejection trials (no-

go stimulus presented animal does not lick) respectively. Selectivity index for the visual stimulus was calculated as

jðrH � rCÞ=ðrH + rCÞj where rH and rC denote the firing rate of the neuron during the first 150 ms (before the motor movement) of

hit and correct rejection trials respectively. The identity of the preferred stimulus, indicating which of the go or no-go stimulus the

neuron preferred, was calculated as signððrH � rCÞ=ðrH + rCÞÞ. As a control, selectivity index for the visual stimulus was also calcu-

lated using an alternative method, from the choice-matched trials, as jððRH � RFÞ=ðRH + RFÞ+ ðRM � RCÞ=ðRM + RCÞÞ=2j.

Effect of silencing on stimulus decoding and behavioral performance
To examine the effect of silencing one area on stimulus coding in the other area, we performed the following analyses. Silencing trials

with onset times earlier than 100ms after stimulus onset, were classified as early (before anymeasured behavioral response), and the

rest as late. We calculated the performance of a linear decoder on classifying correct go and correct no-go trials using either the

activity of neurons in V1 with and without LM silencing, or using the activity of LM neurons with and without V1 silencing. The activity

of each neuron was calculated as its average firing rate in the 80 ms time window following the silencing onset during silencing trials,

and the corresponding temporal window during control trials. Classification was performed using regularized linear discriminant
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analysis (LDA), where the regularization parameter was chosen separately for each animal as the valuemaximizing the decoding per-

formance on test trials. The classifier was trained separately for each silencing time window, on 80% of the control trials. The control

decoding performance was assessed on the remainder of the control trials, and the silencing decoding performance was calculated

from the silencing trials (using the same classifier trained on control trials). Dividing control trials into a training and test set was per-

formed 20 times and the decoding performance was calculated as the average across the 20 test sets. For these analyses, only an-

imals with at least 10 control trials (n = 7 of 7 and n = 6 of 7 mice for V1 and LM silencing, respectively) were included, and an equal

number of go and no-go trials were used to train the classifier. As a control, we also calculated the neuron- and trial-averaged (over

both go and no-go trials) spiking activity of neurons in the target area (Figures S5C and S5F). The average activity was calculated

using all control or all silencing trials (separately), using the same time windows used for stimulus decoding above.

To assess the effect of silencing V1 or LM on the animals’ behavioral performance, we calculated reaction times and behavioral

d-primes, and compared effects of silencing in early or late silencing windows as above (starting earlier or later than 100 ms after

visual stimulus onset). The same animals used for the decoding analysis above (n = 7 of 7 and n = 6 of 7 mice for V1 and LM silencing,

respectively) were included here. Reaction time was defined as the time to first lick after stimulus onset, using only correct go trials,

and the percentage of change compared to the average reaction time was reported for each animal: 100 3 ðrt �
meanðrtÞÞ=meanðrtÞ, where rt denotes the reaction time. In order to measure the effect of silencing only on behavioral responses

that occur after the silencing onset, we included for each silencing time window only trials in which licking started after the time win-

dow’s onset. This was done separately for both control and silencing trials at each time window and was called the onset-corrected

reaction time. Note that this correction results in different reaction times for different time windows, and reaction times of late time

windows are therefore not indicative of the true reaction time of the animals. However, this does not affect the comparison between

the silencing and control trials. We also reported the percentage of change in the raw reaction times, without onset correction

(Figures S5A and S5D).

Changes in behavioral d-primes were reported as the percentage of change compared to the average d-prime per animal 100 3

ðdp � meanðdpÞÞ=meanðdpÞ, where dp denotes d-prime. As with the reaction times, dp was calculated for silencing and control

trials, only for trials with licking onset after onset of the silencing time window or the corresponding time window in control trials.

Note that this onset correction results in different d-primes for late versus early silencing time windows, however comparisons

were only made between equivalent time windows in control and silencing trials. We also reproduced the same plots using the

raw d-prime without onset correction (Figures S5B and S5E).

Causal communication direction
We characterized the influence of the source area on target neurons on the population level. For a population of n simultaneously

recorded neurons in the target area, we found an n3 1 vector, in the n dimensional activity space that maximally separated the ac-

tivity vectors in the control and source-silencing trials. This was done separately for each silencing time window and stimulus type

(go/ no-go). The source-silencing activity vectors corresponded to the population firing rate of the n neurons in the 150 ms in which

the source area was optogenetically silenced, and the control activity vectors were the firing rate of the same population in the cor-

responding 150 ms time window in control trials. In order to find the direction maximally separating the control and source-silencing

trials, we used regularized linear discriminant analysis (LDA). Communication direction (CDÞ was defined as the unit-length normal

vector to the decision boundary hyperplane.

CD = cSg

�1ðmc � msÞ

cSg = ð1 � gÞ bS + g3diagðbSÞ
Where bS denotes the pooled covariance estimate, mc; ms correspond to the mean activity vectors, and g is the regularization param-

eter. In addition to g, we used another parameter for each classifier. Any coefficients inCDwith amagnitude smaller than a threshold,

d, was set to zero, eliminating the corresponding neuron from the discriminant direction.

The two parameters of discriminant classifiers (g,d) were fit separately for each animal by minimizing the test error in a ten-fold

cross validation. Excluding d did not change results significantly. The classifier performance for the LDA classifiers in trained animals

are shown in Figures S6A–S6F. All included animals had above chance classification performance.

For the above analysis, only animals with at least 10 control trials (n = 7 of 7 and n = 6 of 7 mice for V1 and LM silencing, respec-

tively), and only visually responsive cells were included. Neurons had to spike at least once (on average) during the 500 ms stimulus

duration in response to the go or no-go stimulus, and there needed to be a significant difference (p = 0.05, two-sided Wilcoxon

signed-rank test) between the spike count during the stimulus and a 500 ms window before stimulus onset for at least one of the

stimuli. An equal number of go and no-go trials were used for calculating the communication direction at each time window.

The similarity of twodirections (cosine angle)was capturedby their dot product cosðai;jÞ = ðCDi: CDjÞ=ðjCDij:
��CDj

��Þ , represented in

the ith row and jth column of the cosine similarity matrix. In order for this measure to reflect trial-to-trial stability of the communication

directions, we used a cross-validated similarity measure. We randomly split the control trials in half, one half was used to calculate

CDi and the other, CDj. This was then repeated in reverse, and the resulting dot products were averaged. The random partitioning

of trials was done 100 times, and the average dot products were reported in the cosine similarity matrices. This method accounts
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for trial-to-trial variability and summarizes robustness of cosine similarity to trial-to-trial noise. Deviation from 1 of the diagonal ele-

ments in the cosine similarity matrix (cosine similarity at lag 0) reflect the trial to trial variability of communication directions at each

time window.

Comparing differences in average activity vectors (not normalized to covariance), instead of regularized LDA vectors gave similar

results (Figures S8B–S8E). However, we used regularized LDA in order to find the mode of activity which would most reliably specify

the difference between control and silencing trials across trials.

In order to track the similarity of trial-averagedpopulation activity over time,wedefined activity directions at each timewindowas the

n3 1 unit length vector specifying the coordinates of trial-average population activity. To calculate the activity directions, we used

65ms timewindows (instead of the full 150ms time windows used elsewhere), in order to avoid temporal overlap between successive

time points. Using 150 ms windows for activity directions resulted in even slower changes over time (data not shown). The activity di-

rections were calculated from V1 and LM activity in control trials, pooled across all animals included in the LM silencing or V1 silencing

experiments. The similarity of activity directions was assessed using cross-validated cosine similarity as explained above. Similarity in

activity directions implies that different neurons undergo similar temporal fluctuations of activity, leading to a change only in themagni-

tude of population activity, and not its direction over time (Figure S1C). For comparing how fast similarity of activity and communication

directions decay over time, we used the initial slope (slopes between lag 0 and lag 1) of the decay over time lags of pairwise similarities,

(decay slope of similarity between adjacent time windows). This initial decay slope, as opposed to exponential decay time constant,

does not assume an underlying exponential decay, and can be used as a general measure. We chose this measure since the similarity

of activity directions decays linearly rather than exponentially (different to the similarity of communication directions) over time.

We used raw firing rates of neurons for calculating the activity or communication directions described above, reflecting the neu-

rons’ overall activity, and not only their response to the visual stimuli. However, we also repeated the analyses using baseline-sub-

tracted activity, calculated by subtracting neurons’ average firing rate in the 500 ms time window preceding the visual stimulus from

the responses during visual stimulus presentation (Figure S8F). Using baseline-subtracted visual responses or raw firing rates to

calculate activity and communication directions yielded similar results (Figure S8F).

Sub-selection of cells in the source area
To rule out the possibility that the fast changes in the similarity of communication directions over time arise from changes in the ac-

tivity direction of a select subnetwork of neurons in the source area (e.g., projection neurons) with particularly fast dynamics, we

examined the activity directions of the subgroup of source neurons with the most dynamic firing rate compared to the average pop-

ulation. In order to identify a subpopulation of neurons in the source areawith the fastest decay in their similarity of activity vectors, we

z-scored the activity of all simultaneously recorded source neurons at each time window separately. Then, we selected 20% of cells

with the highest standard deviation over time in their z-scored activity. This procedure leads to selecting subpopulations that have the

highest deviation from the average population activity over time, and would therefore have the fastest change in their activity vector

similarity over time. In order to compare the cosine similarity of activity directions derived from this subpopulation to those of the

communication directions, we re-calculated the communication directions from a randomly selected subpopulation of 20% of target

neurons (averaged over 100 repeats), This sub-selection of target neurons was done in order to make themaximum dimensionality of

communication directions comparable to those of the source area activity directions.

Simulation of time invariant inter-areal influences
In order to simulate time-invariant influence of areas on each other, we generated a dataset in which the activity of each target neuron

during source-silencing was simulated based on its control activity and assuming similar source-silencing effects during all time win-

dows. For this, for each target neuron, the source-silencing effect of one of the 8 silencing time windows (ET ) was selected randomly

and used for all time windows as the cell’s time-invariant silencing effect (E), with the randomization repeated 100 times. Next, for

each silencing time-window, the source-silencing spike count was simulated by first generating a Poisson sample with the mean

of control trial spike counts in the same timewindow ( cRT
c ), and then, subjecting the activity of each simulated trial to the time-invariant

silencing effect (E), to get the simulated source-silencing spike counts (cRT
s ):

ET = 1003
�
Rs

T � Rc
T
��

Rc
T

E = E Trand

cRT
s = ð1 + E =100Þ3 cRT

c

T ˛ f1; ::; 8g
Where Rs

Tand Rc
T are the spike count in source-silencing and control trials during the silencing time window T. By generating spike

counts using a Poisson distribution, the trial-to-trial variability of target neuron activity is preserved, while the underlying source-

silencing effect is assumed to be time-invariant. Since the time-invariant source-silencing effect on each target neuron is selected

randomly based on its own effects, over 100 repeats, the time-averaged source-silencing effects are similar to the experimental
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dataset, and the overall effect size of source-silencing was preserved in the simulated dataset. Importantly, since the simulations are

based on the control firing rate of target neurons in each time window which contain input from the source area, we account for the

compound trial-to-trial variability in target area activity and source area input.

Magnitude of population-level influences
To determine themagnitude of the feedforward influence of V1 on LMpopulation activity, we calculated the Bhattacharyya distance -

a measure of the distance between two distributions in high-dimensional space - between LM population activity in control and V1-

silencing trials, assuming multivariate normal distributions. The covariance was assumed to be similar in the two conditions and was

estimated by pooled covariance from both control and silencing trials (similar to the LDA, see above). The distances were calculated

separately for each V1-silencing time window. We calculated the noise level as the average Bhattacharyya distance between boot-

strapped samples of population activity in control trials. This noise level describes the distance expected in the absence of any

silencing effect, caused by trial-to-trial noise in control trials. Themagnitude of the feedback influence of LM on V1 population activity

was calculated similarly, using V1 population activity in control and LM-silencing trials.

Principal component analysis
The principal components (PCs) of V1 activity were calculated separately for the population activity during each 150 ms time window,

either in the control or LM silencing trials. PCs were calculated in each time window separately for go and no-go trials, and for control

and silencing conditions, with an equal number of trials used across the 4 conditions. In order to calculate the similarity of PCdirections

over time, we used the absolute value of cross-validated similarity as described above (see causal communication direction section),

where only half of the trials were used to calculate PCs at each timewindow. To calculate the total variance and eigenspectra, we used

all included trials at each time window to calculate the variance along each principal component. Similarly to the communication di-

rection analysis, only animals with at least 10 control trials, and only visually responsive cells were included in the analysis (for respon-

siveness criteria see causal communication direction section). To quantify the decay of PC similarity across time lags without explicitly

assuming an exponential decay, we used the decay slope described above (see causal communication direction section).

Exponential fits
For comparing time constants of exponentially decaying functions, the decay of cosine similarity over time lags was fit by an expo-

nential decay with an offset:

y = Aðexpð� t = tÞ + BÞ
Where t is the time lag between two silencing onset times. Data was fit using nonlinear least-squares fitting via the trust-region al-

gorithm (through MATLAB fit function). Confidence intervals of the fit parameters were obtained using a 100-times bootstrap. To

assess the significance of the differences between the decay time constants of communication during go and no-go stimuli, we

used a permutation test. To do this, we calculated the distribution of time constant differences under the null hypothesis. This null

distribution was generated from exponential fits on data with go and no-go trial labels exchanged randomly (1000 randomized

permutations).

Autocorrelations and pairwise noise correlations
To calculate the temporal autocorrelation of spike counts, we divided the stimulus duration into successive time bins of 65 ms dura-

tion. We then calculated across-trial Pearson’s correlation coefficient between the spike counts at any two time bins and plotted

against the time lag between the two time bins. This was done separately for each neuron. This method subtracts the across-trial

mean spike counts, therefore the spike-count autocorrelations don’t explicitly depend on mean firing rates at different time bins.

Noise-correlation strengthwas calculated for eachpair of neurons in V1 as the across-trial Pearson’s correlation coefficient between

the spike counts of the two neurons at a given time bin, using similar time bins as for the autocorrelation analysis. These correlation

coefficients were plotted as a function of the average spike count of the pair in the same time bin and values calculated from different

time bins were then pooled. For calculating autocorrelations and pairwise noise correlations, similarly to the communication direction

analysis, only animals with at least 10 control trials, and only visually responsive cells were included in the analysis (for responsiveness

criteria see causal communication direction section), and an equal number of trials was used across go and no-go trials.

Statistics
We used two-sided Wilcoxon rank-sum tests for independent group comparisons, and two-sided Wilcoxon signed-rank tests for

paired tests, unless otherwise stated. Raw p-values are reported throughout the manuscript, significance thresholds were adjusted

for multiple comparisons using Bonferroni correction, as indicated in the legends. Tests were performed using MATLAB. The mean

and the standard error of the mean, or 95% confidence intervals were used for displayed purposes, as stated in the figure legends.

No statistical methods were used to pre-determine experimental sample sizes in experiments; sample sizes were based on what is

conventional for the field and previous literature. Mice were randomly assigned to groups for being trained on 45� or -45� oriented
grating as the go stimulus. Blinding to experimental condition was not applicable for this study.
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