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SUMMARY
Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients
exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links
GCs with CyC’s systemic regulation by utilizing genome-wide association and structural equation modeling
to determine CyC production genetics in the UK Biobank. Both CyC production and a polygenic score
(PGS) capturing predisposition to CyC production were associated with increased all-cause and cancer-
specific mortality. We found that the GC receptor directly targets CyC, leading to GC-responsive CyC
secretion in macrophages and cancer cells. CyC-knockout tumors displayed significantly reduced growth
and diminished recruitment of TREM2+ macrophages, which have been connected to cancer immuno-
therapy failure. Furthermore, the CyC-production PGS predicted checkpoint immunotherapy failure in
685 patients with metastatic cancer from combined clinical trial cohorts. In conclusion, CyC may act as
a GC effector pathway via TREM2+ macrophage recruitment and may be a potential target for combination
cancer immunotherapy.
INTRODUCTION

Multilevel phenotyping paired with quantitative models can

direct discovery of the molecular determinants of complex bio-

medically relevant phenotypes such as organ function. Previ-
This is an open access article under the CC BY-N
ously, we developed a metabolite-based model for the accurate

estimation of kidney filtration function, defined as the estimated

glomerular filtration rate (eGFR), in patients with cancer.1,2 Like

others before, we used creatinine,3 a breakdown and metabolic

end product of muscle creatine metabolism that is renally
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Figure 1. Genomic architecture of cystatin C production

(A) Schematic of study plan. The analysis of CyC-production latent trait in UKBiobank (UKB) is leveraged to determine the biological and clinical relevance of CyC.

(B) Consort diagram and summary of UKB genome-wide association analysis strategy in the European ancestry population. The software packages utilized for

each step are displayed in red.

(C) Structural equation model to estimate latent traits of CyC production and renal function. The model schematic, heritability (h2) of eGFR-creatinine and eGFR-

CyC, and their genetic correlations derived from LD score regression are shown. Circular arrows refer to variance of each component, and dashed lines refer to

covariance between components. RF, renal function.

(D) Latent trait effect sizes (CyC production and renal function) for single-nucleotide polymorphisms (SNPs) corresponding to each clumped locus in eGFR-CyC

summary. Gene names are annotated per OpenTargets V2G pipeline.

(legend continued on next page)
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excreted,4 as a predictor variable. In non-cancer patients, creat-

inine use has been compared with use of cystatin C (CyC; gene

name CST3),5 a secreted, paracrine cysteine protease inhibi-

tor.1,6 Serum levels of both molecules depend on latent (unmea-

sured) components, including their production (synthesis and

secretion) and the GFR. While creatinine production is well char-

acterized and relates to muscle mass and diet,7 CyC production

is poorly defined.8

There are multiple indications that CyC production is likely

systemically regulated. Patients who have had an organ trans-

plant tend to have higher serum CyC levels for a given measured

GFR.9 These patients are routinely prescribed exogenous gluco-

corticoids (GCs), such as prednisolone or dexamethasone, as

part of their immunosuppressive regimen.10 Paired analyses

demonstrated that exogenous GCs increase CyC production,11

an effect also observed in patients with excess endogenous

GC production (Cushing’s syndrome).12 Moreover, CyC produc-

tion is increased in diseases that induce GC elevations, including

viral infection,6 inflammatory disease,8 and cancer.13–17 This

positive association between GC exposure and CyC production

has been recapitulated experimentally in vitro,18 in vivo,19 and in

patients.11,20,21

Cortisol, the endogenous GC in humans, is produced by the

adrenal gland22 in a circadian rhythm peaking in the early

morning.23 Through action on the cytosolic GC receptor

(GR), GCs profoundly modulate the cellular transcriptional

landscape,24 affecting up to 20% of all genes25 and driving

systemic reprogramming of metabolism and immunity.26

GCs are therapeutically employed as immunosuppressors

across a wide range of autoimmune and inflammatory dis-

eases27 and to mitigate immune-mediated damage to normal

organ systems, a common and potentially severe side effect

of T cell activation by checkpoint immunotherapy (CPI) in can-

cer.28 However, in vivo models of cancer also suggests that

even low doses of GCs can impair the efficacy of CPI29,30

and suppress anti-tumor immunity,30 leading to enhanced

metastasis and reduced survival.31 This has remained difficult

to investigate in patients with cancer due to confounding by

performance status and comorbidities,32 inconsistent CPI trial

inclusion criteria,29 and the difficulties in performing well-

controlled trials in this context.

We hypothesized that, rather than being a passive marker of

renal function, CyC is directly associated with disease states

and that this association might be mediated by GC signaling.

Here, to empirically investigate this question, we leverage the

UK Biobank (UKB), a prospective population-based cohort

comprising approximately 480,000 subjects who provided

germline genetics, serumCyC, and serum creatinine. Using con-

ventional genome-wide association studies (GWASs) for eGFR-

CyC/eGFR-creatinine followed by structural equation modeling

(SEM), we estimate single-nucleotide polymorphism (SNP)-level

associations with the latent trait of CyC production. We charac-
(E) Linear model of eGFR-CyC as a function of eGFR-creatinine across all paired b

CyC from the linear fit as indicated by the red arrow is defined as the CyC residu

(F) Correlation of CyC residual with CyC-production polygenic score (PGS). The c

Only data from the independent validation set (see B) were used. Boxplots showm

1.53 IQR). p value refers to Pearson correlation test.
terize patient-level predisposition to CyC production via con-

struction of a polygenic score (PGS), which is validated in a

held-out cohort. Through multimodal genomics, in vitro, in vivo,

and experimental medicine approaches, we link CyC to GC

signaling, recruitment of Trem2+ macrophages, and failure of

cancer immunotherapy.

RESULTS

Genomic architecture of CyC production
To investigate the genomic architecture of CyC production (Fig-

ure 1A), we first performed a discovery GWAS for eGFR-CyC and

eGFR-creatinine (eGFR-Cr) in 381,764 European subjects in the

UKB, using linear mixed models to account for population strat-

ification and cryptic relatedness. We randomly selected 50,000

unrelated subjects from the overall UKB European population

and excluded their data from the GWAS to enable later validation

analyses (Figure 1B). Using linkage disequilibrium (LD) score

regression, we identified a strong genetic correlation (r2 = 0.61)

between eGFR-CyC and eGFR-Cr, consistent with both traits

sharing a common factor that reflects renal filtration function.

We reasoned that the genetic variance in eGFR-CyC that was

not explained by this common factor represented the latent trait

of CyC-production given that the CyC plasma level is a function

of both CyC excretion in the kidney and its cellular production.

Thus, we estimated the SNP-level effects on CyC production

and renal function by constructing a SEM (Figures 1C, S1A,

and S1B) implemented in Genomic-SEM,33 assuming no covari-

ance between CyC production and renal function. Concorad-

antly, loci known to directly regulate renal function such as

SHROOM334 and UMOD35 were predominantly associated

with the renal function latent trait, while the locus coding for

CyC (CST3) was predominantly associated with the CyC-pro-

duction latent trait (Figure 1D). Other loci associated with CyC

production, such as SH2B336 and FLT3,37 identify components

of immune cell signaling cascades and are strongly associated

with autoimmune disease. The index SNP at the SH2B3 locus

is a missense variant (R262W) and exhibits a markedly larger ef-

fect size than would be expected for its allele frequency (minor

allele fraction = 0.48; Figure S1C), consistent with evidence

that this variant is under active positive selection.38 TheCPS1 lo-

cus, coding for carbamoyl-phosphate synthase 1, notably had

divergent effects on renal function and CyC-production, prob-

ably reflecting its independent roles in creatine metabolism39

and immune signaling.40 We next performed tissue-specific par-

titioned heritability analysis using gene expression and chro-

matin accessibility datasets (including Genotype-Tissue Expres-

sion [GTEx]41 and Roadmap Epigenomics Project42). This

confirmed enrichment of heritability of the renal function rather

than the CyC-production component of CyC levels in kidney tis-

sues (Figures S1D andS1E). This analysis also demonstrated en-

riched heritability for the renal function trait in liver tissues, in
lood samples in UKB, including sex as a covariate. The deviation of the eGFR-

al, a surrogate for CyC production. p value refers to Pearson correlation test.

ontinuous PGS has been converted into deciles (1 = lowest, 10 = highest PGS).

edian (central line) with interquartile range (IQR; box) and extrema (whiskers at
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keeping with coupled hepatic and kidney function, observed

clinically as hepatorenal syndrome.43

Using the discovery dataset, we captured the polygenic archi-

tecture of CyC production by deriving a PGS, implemented in

LDpred244 using HapMap3 variants, that could be reliably

imputed in all UKB, The Cancer Genome Atlas (TCGA), and

GTEx cohorts (Figure S1F; supplemental information). To maxi-

mize portability to clinical sequencing cohorts where only exome

sequencing is available, we derived a second PGS from

HapMap3 variants that could be reliably imputed from exome

sequencing data (Figure S1G). To validate both PGSs with the

data from the 50,000 unrelated European patients (Figure 1B),

it was necessary to define an independent, measurable pa-

tient-level estimate for CyC production. This is possible because

the discordance between eGFR-CyC and eGFR-Cr approxi-

mates CyC production. Therefore, we modeled eGFR-CyC as

a function of eGFR-Cr and sex and computed the residual

(termed CyC residual; Figure 1E), a proxy of CyC production.

As CyC residual is estimated from blood-protein levels, it is

more likely to be confounded (for example by exogenous steroid

treatment) than the germline-derived CyC production PGS.

However, it can be conveniently scored using routinely available

blood tests in the absence of germline genotypes. Using CyC re-

sidual, we confirmed that the genome-wide CyC-production

PGS had predictive power in the validation cohort (r2 = 0.08,

p < 1e�300, Pearson correlation test; Figure 1F). As expected,

predictive performance was reduced for the exome-wide PGS

in the validation cohort (r2 = 0.04, p < 1e�300, Pearson correla-

tion test).

To investigate the trans-ancestral portability of the genome-

wide CyC-production PGS, we measured performance versus

CyC residual in African (AFR; n = 8,152) and Central and South

Asian (CSA, n = 9,845) genetic ancestry groups in the UKB. We

observed poor trans-ancestral portability of this PGS in these

ancestry groups (Figures S2A and S2B). In order to derive a

PGS in each non-European (EUR) population, we performed

GWAS and SEM as described above (Figure 1B) in these two

ancestry groups, but these analyses were underpowered

(Figures S2C and S2D). While the genetic correlation between

eGFR-CyC and eGFR-Cr in CSA subjects (r2 = 0.65) was compa-

rable to EUR subjects (r2 = 0.61), genetic correlation was sub-

stantially diminished in AFR subjects (r2 = 0.18). This indicates

that eGFR-Cr and/or eGFR-Cy correlate weakly with true GFR

in the AFR population, thus providing empirical genetic evidence

to the observation that eGFRmodels have reduced performance

in individuals self-identifying as Black or African American.45

CyC production is associated with accelerated onset of
disease
We hypothesized that these quantitative measures of CyC pro-

duction (CyC-residual and CyC-production PGSs) could be

used to investigate its prognostic potential. Therefore, we used

multivariate Cox regression to estimate the effect of the blood

test-derived CyC residual on all-cause mortality, adjusted for

relevant patient covariates known to predict mortality.46–48 We

found that CyC residual was associated with significantly

increased all-cause mortality (hazard ratio [HR] = 1.56,

p < 1e�16; Figure 2A). We considered that CyC residual has
4 Cell Genomics 3, 100347, August 9, 2023
the potential to be confounded by a multitude of environmental

factors, including but not limited to inflammation and exogenous

GC treatment. To mitigate this, we investigated whether the

germline predisposition to CyC production, estimated as the

CyC-production PGS, could predict lifespan in our UKB EUR

validation set (Figure 1B). Using multi-variate Cox regression

adjusted for sex, year of birth, and principal components

capturing genetic ancestry, we found that the CyC-production

PGS was associated with significantly reduced lifespan of UKB

subjects (p = 0.00013), as well as their two parents (p < 1e�16;

Figure 2B).

We considered that increased all-cause mortality might be ex-

plained by either earlier onset of specific disease states or

reduced prognosis following disease diagnosis. To investigate

the former, we performed a phenome-wide association analysis

(PheWAS) in the UKB validation set to identify time-to-event phe-

notypes (n = 694) that were significantly associated with CyC

production using multivariate Cox regression (Figure 2C). We

identified positive associations meeting phenome-wide signifi-

cance (p < 1e�5) between the CyC-production PGS andmultiple

diseases linked to metabolic syndrome, including type 2 dia-

betes, obesity, hypertension, and ischemic heart disease. To

investigate how CyC production could modulate disease prog-

nosis, and as elevated plasma CyC is associated with cancer,13

we examined whether the blood test-derived CyC-residual and

CyC-production PGSs were independent predictors of adverse

outcomes in patients with cancer. Using UKB patients diag-

nosed with cancer since 2000 and with cancer-specific mortal-

ity, we found that CyC residual is an independent predictor of

increased cancer-specific mortality in UKB (HR = 1.22,

p < 1e�16, Cox regression; Figure 2A), consistent with the find-

ings of others.17 For orthogonal validation, we performed multi-

variate Cox regression of cancer-specific mortality against

CyC-production PGSs across 13 tumor groups in 2 independent

cohorts (UKB validation set, TCGA EUR subjects). Both fixed

and random effect meta-analyses in each independent cohort

confirmed a significant positive association between CyC-pro-

duction PGSs and cancer-specific mortality (Figures 2D and

2E). We noted that while there was variation in a single-cancer

level, the overall effect size was concordant between the UKB

and TCGA. Consistent with this, we have found that the CyC-

production PGS is associated with increased odds of COVID-

19 critical illness in four cohorts spanning EUR and AFR ancestry

populations.49 In summary, the association between CyC-pro-

duction PGSs and reduced lifespan likely reflects a combination

of earlier disease onset and reduced disease-specific survival

and is consistent with evidence for elevated plasma CyC in pa-

tients with cancer.14

CyC is a GC response gene in vitro

To better understand the mechanism by which CyC production

could regulate disease incidence and prognosis, we reviewed

the genetic loci most associated with CyC production in our

GWAS summary statistics. The SERPINA1/6 locus on chromo-

some 14 had one of the largest effect sizes for CyC production

(Figures 1D and 3A) and is known to be associated with plasma

cortisol,50 implying the possibility of a link between cortisol and

CyC. In a recent cortisol genome-wide meta-analysis, this signal
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Figure 2. CyC production is associated with multiple disease states and is prognostic in patients with cancer

(A) Multivariate Cox regression to measure effect size for CyC residual on overall survival in UKB. Covariates included age, sex, body mass index (BMI), he-

moglobin, C-reactive protein, eGFR-creatinine, and operation status (for cancer-specific subanalysis). Error bars indicate 95% confidence interval.

(B) Multivariate Cox regression to measure effect size for CyC-production PGS on subject and parental lifespan in UKB validation cohort. Covariates included

PC1-4, recruitment center, genotyping array, year of birth of subject, and sex of subject (if applicable).

(C) Phenome-wide association (Cox regression) between CyC-production PGS and 694 time-to-event phenotypes in UKB validation cohort. Covariates included

principal components 1–4 (PC1–4), year of birth, and sex.

(D and E)Multivariate Cox regression tomeasure effect size for CyC-production PGS on disease-specific survival for specific cancers in (D) UKB validation cohort

(cancers diagnosed since 2000, n = 3,954) and (E) TCGA cohort (n = 4,368). Covariates included PC1–4, age, sex, and a term reflecting whether the patient had

curative surgery. Error bars indicate 95% confidence interval; gray squares indicate sample size.
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was thought to be mediated by altered hepatic expression of

SERPINA6,50 which encodes cortisol-binding globulin (CBG).

To determine if there was a shared common variant, we per-

formed co-localization analysis.51 We did not detect a shared

causal variant (posterior probability = 1.45e�15), but trans-

expression quantitative trait locus (trans-eQTL) analysis in the

Stockholm Tartu Atherosclerosis Reverse Networks Engineering

Task (STARNET)52 cohort identified a single SNP (rs2749527) at
the SERPINA1/6 locus that was associated with significantly

reduced plasma cortisol (p = 1.75e�13, fixed effect meta-anal-

ysis) and significantly reduced CST3 gene expression in visceral

adipose fat (p = 0.0024 in additive model, p = 9.21e�6 in reces-

sivemodel, Bonferroni-adjusted alpha level of 0.0025; Figure 3B).

Visceral adipose fat is known to predominantly comprise adipo-

cytes, endothelial cells, and macrophages.53 We investigated

the potential cellular mediators of this association in detail and
Cell Genomics 3, 100347, August 9, 2023 5
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Figure 3. CyC is a glucocorticoid response gene in vitro

(A) Co-localization of summary statistics for CyC-production fromUKB and plasma cortisol fromCORNETConsortium at SERPINA1/6 locus. rs2749527 variant is

highlighted in red.

(B) Trans-eQTL analysis examining association between genetic instrument rs2749527 and CST3 gene expression in visceral adipose fat (VAF) in STARNET

cohort.

(C) Cis-eQTL association between rs2749527 and SERPINA6 (encodes cortisol-binding globulin) in liver in STARNET cohort. p values for additive and recessive

models are shown. See Figure S3 for replication analysis in GTEx.

(D) Gene set enrichment analysis (MAGMA) across CyC-production summary statistics (UKB) for steroid signaling-related gene sets.

(legend continued on next page)
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discuss the results below. In addition to acting as a trans-eQTL in

adipose tissue, rs2749527 is independently associated with

significantly reduced liver SERPINA6 expression in STARNET

(p = 4.73e�9, additive model; Figure 3C) and GTEx (p = 0.004,

additive model; Figures S3A–S3C) cohorts. As such, a single ge-

netic instrument connects CBG, plasma cortisol, and CyC, thus

providing genetic evidence for a direct link between GCs

and CyC.

To further examine the link between GCs and CyC, we map-

ped each SNP meeting genome-wide significance to overlap-

ping genes (defined by transcriptional start and end sites) and

performed gene set enrichment analysis for gene sets relating

to GC signaling. This analysis identified significant enrichment

of 7/15 GC signaling gene sets from the Gene Ontology

Resource (Figure 3D); thus, we hypothesized that CST3 might

be a direct transcriptional target of GR (gene name NR3C1). Us-

ing functional genomics data derived from the ENCODE project,

including chromatin immunoprecipitation sequencing (ChIP-

seq) for GR and assay for transposase-accessible chromatin us-

ing sequencing (ATAC-seq) data in the A549 cell line treated with

dexamethasone, we identified dexamethasone-induced recruit-

ment of GR to an accessible downstream enhancer element at

the CST3 locus (Figures 3E and 3F). In the same experiment,

dexamethasone significantly increased CST3 gene expression

over time (p < 0.0001, linear model; Figure 3G). We next investi-

gated whether, and on what timescale, the transcriptional induc-

tion of CST3 by dexamethasone results in increased cellular

secretion of CyC, which would cause increased tissue and circu-

lating CyC levels. We first repeated the ENCODE experimental

protocol using A549 cells and found that extracellular CyC con-

centration was significantly increased after 18 h of dexametha-

sone treatment compared with 0 h (Figure S3D). We also de-

tected increased extracellular CyC concentration 18 h after

treatment with dexamethasone compared with vehicle control

in A549 cells (Figure 3H) and HeLa cells (Figure 3I).

CyC is secreted in healthy individuals by monocytes in a
GC-independent manner
CyC has been validated as a marker of renal function in multiple

large clinical cohorts54 comprising patients without acute dis-

ease. Considering that it is dynamically regulated in disease

states such as cancer,13 we hypothesized that GC-inducible

expression of CyC would operate in a context-dependent

manner. To investigate this hypothesis, it was first necessary

to characterize the dominant source of secreted CyC in health.

At first glance, CST3 gene expression was relatively consistent

across all tissues examined as part of the GTEx project (GTEx

Portal), but we reasoned that tissues that predominantly secrete
(E) Functional genomics in A549 cell line (ENCODE project) treated with 100 nM d

and ATAC-seq (at 0 h) at CST3 locus identifies a glucocorticoid-responsive and

(F and G) Time course of (F) GR recruitment (at distal enhancer) and (G)CST3 gene

(ENCODE project). Trendline and shaded 95% confidence interval correspond to

(H and I) Extracellular CyC concentration in (H) A549 cells and (I) HeLa cells norma

(VEH) control. Each condition comprises at least 5 biological replicates; horizontal

See Figure S3 for timecourse.

(B and C) Boxplots show median (central line) with IQR (box) and extrema (whis

hormone; SP, signaling pathway; VEH, vehicle; DEX, dexamethasone.
CyC would exhibit a significant positive correlation between

CyC-production PGSs and CST3 gene expression. Using

expression quantitative trait score (eQTS) analysis, we detected

a significant positive correlation in spleen tissues (n = 171; Fig-

ure 4A). In support of this, we identified circadian rhythmicity

from cosinor regression of spleenCST3 gene expression against

time of death, which was attenuated compared with the canon-

ical, circadian-rhythm-dependent GC target FKBP5 (ampli-

tude = 0.060 versus 0.24; Figure S4A). To understand which

cell typesmight be driving this signal, we examined available sin-

gle-cell RNA sequencing (scRNA-seq) data from human

spleen.55 This showed that onlymyeloid-derived cell populations

(dendritic cells, macrophages, and monocytes) expressed CST3

(Figure 4B). We confirmed myeloid-specific CST3 expression in

peripheral blood mononuclear cells (PBMCs) with scRNA-seq56

(Figure 4C) and acrossmultiple scRNA-seq datasets harmonized

as part of the Human Protein Atlas57 (Figure 4D). As additional

validation supporting the role of myeloid-derived cells, and spe-

cifically monocytes, as a dominant contributor to plasma CyC

levels, we found a significant positive correlation between blood

monocyte counts and CyC residual in the UKB cohort (Fig-

ure S4B; multivariate regression), and two-sample Mendelian

randomization using blood-derived CST3 eQTLs (eQTLGen58)

as exposure identified a highly significant positive association

with CyC production (p = 6.13e�77; Figure 4E). With the limited

circadian variability in CST3 gene expression in the spleen (Fig-

ure S4A), we hypothesized that monocytes would constitutively

express CyC without GC inducibility. We confirmed this hypoth-

esis in monocyte-like THP-1 cells by RNA (Figure 4F) and protein

level (Figure 4G). As orthogonal verification, we detected consti-

tutive expression of CyC unaffected by GC agonism in primary

human monocytes (p = 0.39, two-sided t test; Figure S4C).

Consistent with these findings, high-dose dexamethasone treat-

ment did not elevate plasma CyC levels in healthy BALB/c (Fig-

ure 4H) and C57BL/6J (Figure 4I) mice, nor did near-physiolog-

ical hydrocortisone treatment affect Cr-normalized CyC levels

(ratio of eGFR-Cr to eGFR-CyC, termed C2 ratio) in patients

with primary adrenal insufficiency59 (Figure 4J). Altogether, these

findings indicate that CyC production is relatively constant in

health and, in this context, does not significantly increase in

response to GC agonism, helping to explain the validated utility

of CyC as a marker of renal function in patients without acute

illness.54

CyC secretion is dynamically and GC-dependently
regulated in disease states
Inflammation is characterized by the recruitment ofmonocytes to

diseased tissues, where they differentiate into macrophages.61
examethasone for 0 min to 12 h. ChIP-seq (for glucocorticoid receptor/NR3C1)

accessible distal enhancer element.

expression (log-CPM) following dexamethasone (DEX) treatment in A549 cells

regression of gene expression as a function of log-time.

lized to cellular protein content after 18-h treatment with 100 nMDEX or vehicle

bars indicatemean extracellular CyC. p values correspond to two-sided t tests.

kers at 1.53 IQR). Outliers beyond 1.53 IQR are shown as dots. SH, steroid
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Figure 4. CyC is predominantly produced by myeloid cells in health

(A) Tissue-specific expression quantitative trait score (eQTS) analysis to identify tissues with significant correlation (Spearman coefficient) between CyC-pro-

duction PGS and tissue-specific CST3 gene expression in GTEx cohort. p values are uncorrected, as each correlation test is performed in a non-overlapping set

of tissue-specific samples.

(B and C) Distribution of normalized single-cellCST3 expression (log-transcripts per million [TPM]) in cell clusters isolated from (B) spleen and (C) peripheral blood

mononuclear cells (PBMCs). Clusters defined by correlation to reference PBMC data.60

(D) Mean CST3 gene expression (log-TPM) in each cell cluster from multiple tissue-specific single-cell RNA sequencing projects, harmonized by Human Protein

Atlas. The top cell cluster and tissue-specific macrophage cell type (if not top cluster) by tissue is annotated.

(E) Two-sample Mendelian randomization using blood-specific cis-eQTLs for CST3 (eQTLGen) as exposure and CyC-production latent trait GWAS as outcome.

Error bars correspond to standard errors, and point color refers to linkage with top cis-eQTL.

(F and G) Non-significant (p > 0.05) changes in (F) CST3 gene expression (reverse transcription PCR) during 0- to 18-h DEX (100 nM) treatment and (G) extracellular

CyC concentration in human THP-1 cells (monocyte-like) normalized to cellular protein content after 18-h treatment with DEX (100 nM) or VEH control.

(H and I) Each condition comprises 10 biological replicates. Plasma CyC concentration in healthy (H) BALB/cJ and (I) C57BL/6J mice treated with VEH or

20 mg/kg DEX.

(J) Creatinine-normalized plasma CyC (C2 ratio) in patients with primary adrenal insufficiency treated with placebo (VEH) or hydrocortisone (CORT) in a crossover

experimental medicine study. The administered intranveous (i.v.) CORT dose was 0.03 mg/kg/h between 12 and 7 a.m. (the time point of sampling), achieving

near-physiological GC exposure.

(G–J) p values refer to two-sided t tests. VEH, vehicle; DEX, dexamethasone.
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Figure 5. CyC production is dynamically regulated in disease states

(A and B) Significant (p < 0.05) changes in paired (A) CST3 gene expression (reverse transcription PCR) and (B) extracellular CyC concentration in PMA-treated

human THP-1 cells (macrophage-like) normalized to cellular protein content during 0- to 18-h DEX (100 nM) treatment. There are 6 biological replicates per group.

(C) Change in normalized extracellular CyC concentration in macrophage-like THP-1 cells after 18-h treatment with DEX (100 nM) or VEH control.

(legend continued on next page)
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As GR is expressed in macrophages but not in monocytes,62 we

hypothesized that while monocytes have constitutive basal CyC

production (Figures 4F and 4G), macrophages would secrete

CyC in response to GC agonism. To investigate this question,

we treated monocytic human THP-1 cells with the protein kinase

C activator PMA (phorbol 12-myristate 13-acetate) to induce

macrophage-like differentiation and measured CST3 gene

expression, total protein content, and extracellular CyC in each

sample. Dexamethasone treatment of PMA-activated THP-1

cells significantly increased CST3 gene expression at 6 h (Fig-

ure 5A), while extracellular CyC protein concentration did not in-

crease until 18 h (Figure 5B), mirroring the results found in A549

and HeLa cells (Figures 3H and 3I). In addition, we detected

that 18-hdexamethasoneexposure inducedextracellularCyCel-

evations in an independent experiment using macrophage-like

cells (Figure 5C). We also verified GC-inducible secretion of

CyC in primary human macrophages. Here, we experimentally

differentiated monocytes into M1 and M2 macrophages and

then treated cells with dexamethasone for 18 h. We measured

significantly increased extracellular CyC protein in M2 macro-

phages (p = 0.05, two-sided t test) and increasedCyC inM1mac-

rophages (p = 0.07, two-sided t test; Figures S4D and S4E). In

contrast, GC treatment did not induce CyC in monocyte-derived

immature and mature dendritic cells (p > 0.39, two-sided t test;

Figures S4F–S4G). To investigate the GC-CyC connection in

thesecell typesona regulatory level, weanalyzedestablished es-

timates of enhancer-gene pair activity63 and found increased

activation of the downstream enhancer element at the CST3 lo-

cus (Figure S4H) in macrophage-like versus monocyte-like

THP-1 cells (Figure S4I).

Severe COVID-19 infection is characterized by persistent lung

inflammation associated with concomitant recruitment of mono-

cyte-derived macrophages.65 Until the release of the

RECOVERY trial,66 patients with severe COVID-19 were not

routinely treated with GC agonists such as dexamethasone. As

such, COVID-19 presents a unique opportunity to investigate

the effect of dexamethasone on Cr-normalized CyC levels (C2

ratio). We collated plasma Cr and CyC measurements in two in-

dependent cohorts of patients (from Calgary, Canada,67 and

Berlin, Germany68). In each cohort, a subset of patients received

standard of care (pre-RECOVERY trial) and a subset received

standard of care plus dexamethasone from admission (post-RE-

COVERY trial). We identified significantly increased C2 ratios in

dexamethasone-treated patients at early time points (day 1 or

3; Figures 5D and 5E) that normalized by day 7 after admission.

The findings that CyC is constitutively expressed by myeloid

cells and that GC-responsive CyC secretion occurs in macro-
(D and E) Creatinine-normalized plasma CyC (C2 ratio) at specific time points with

of care (control [CTRL]) as part of cohorts based in (D) Calgary, Canada, and (E) C

window of 72 h after admission to the ICU. Error bars indicate standard error of

(F) Single-cell CST3 gene expression in each cell cluster in melanoma tumors (n =

data,60 with unclassified cells that exhibit detectable clonal copy-number variatio

(G) Plasma CyC concentration in BALBcmice after inoculation with colon-26 (C26

refers to 14 days after tumor inoculation; tumor bearing refers to day 7 after tum

(H) Significant positive correlation between plasma corticosterone and plasma C

(I) Extracellular CyC concentrations in C26 cells normalized to cellular protein con

comprises at least 4 biological replicates. p values refer to two-sided t tests. VE
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phages, but not monocytes, have the potential to explain our

finding that rs2749527 is a trans-eQTL for CST3 measured in

visceral adipose fat (VAF) in STARNET but not GTEx (p = 0.77,

additive model; Figure S3B). The STARNET study recruited pa-

tients with established coronary artery disease,52 while the

GTEx study is a relatively unselected cohort of deceased do-

nors.41 As metabolic syndrome is associated with significant

macrophage accumulation in adipose tissue,69 we hypothesized

that STARNET patients would have significantly increased

macrophage gene signatures in VAF compared with GTEx do-

nors. Using CIBERSORTx70 (absolute mode) analysis of RNA-

seq data in each cohort, we identified highly significant enrich-

ment of M2-like macrophages (demarcated by high expression

of CCL18, TREM2, and CLEC4A) in STARNET versus GTEx

(p = 3.03e�289, two-sided t test; Figure S5A). M2-like macro-

phages were by far the most abundant myeloid component in

the STARNET VAF samples, suggesting that they are the cell

type underlying the trans-eQTL signal. This finding both provides

orthogonal validation for the role of macrophages in GC-respon-

sive CyC secretion and illustrates the limitations of eQTL analysis

using bulk RNA-seq data, as has been described previously.71

While we did not identify significant CST3 gene expression in

epithelial tissues in the GTEx and Human Protein Atlas datasets,

we detected high and GC-inducible CyC expression in cancer

cell lines (Figures 3H and 3I). This raises the possibility that can-

cer cells co-opt a phenotype normally exhibited by macro-

phages and ectopically express CST3. We reanalyzed mela-

noma scRNA-seq data from 12 patients and confirmed high

CST3 expression in the myeloid compartment and identified

comparable ectopicCST3 expression in the tumor compartment

(Figure 5F). Consistent with elevated intratumoral GC levels,72

expression of the canonical GC target FKBP5 could be identified

in all cell populations profiled in the tumor (Figure S5B), demon-

strating that GC signaling is necessary but not sufficient forCST3

expression. Themurine colon-26 (C26) model of cancer progres-

sion is characterized by marked elevations in endogenous GC

production during disease progression.30 As has been demon-

strated in human patients with cancer,14 we hypothesized and

subsequently confirmed that CyC levels would significantly in-

crease during disease progression (Figure 5G) and that these in-

creases would positively correlate with levels of the endogenous

murine GC corticosterone (Figure 5H). Dexamethasone treat-

ment of C26 cells in vitro was associated with significantly

increased CyC secretion at 24 h (Figure 5I), suggesting that ele-

vations in CyC during C26 cancer progression are at least in part

mediated by GC-induced cancer cell-intrinsic CyC secretion.

Altogether, these findings demonstrate that the capacity of
sufficient data in hospitalized COVID-19 patients treated with DEX or standard

harité Hospital, Germany. Day 1 in the Calgary, Canada, cohort refers to a time

the mean.

12) from Jerby-Anon et al.64 Clusters defined by correlation to reference PBMC

n classified as tumors.

) tumor cells. Cachexia is defined by >15% body weight loss, and pre-cachexia

or inoculation.

yC during tumor progression in C26 model.

tent after 0-, 6-, 12-, 18-, or 24-h treatment with 100 nM DEX. Each time point

H, vehicle; DEX, dexamethasone.
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Figure 6. CyC directs recruitment of TREM2+ macrophages and promotes failure of cancer immunotherapy

(A) Tumor growth curves (mean and standard error of the mean) for single-flank sgScrambled (n = 8) and CST3�/� (CST3 knockout [KO], n = 8) tumors; 100,000

cells were inoculated in right flank (cohort A).

(B) Tumor growth curves (mean and standard error of the mean) for biflank paired sgScrambled (n = 5) andCST3�/� (n = 5) tumors; 50,000 cells were inoculated in

both flanks (cohort C). Mice received three doses of anti-PD-L1 antibody. p values refer to paired two-sided t tests.

(C and D) Proliferation index (proportion of Ki67+ cells/total cells) (C) and proportion (D) of non-epithelial cells in histological sections from paired biflank

sgScrambled and CST3�/� tumors (pooled cohorts C and D). p values refer to paired two-sided t tests.

(E) Uniform manifold approximation and projection (UMAP) of 14,416 cells, annotated with cell type, from 4 tumor samples (2 sgScrambled, 2 CST3�/�).
(F) Proportion of Trem2+ macrophages in sgScrambled and CST3�/� tumors; p value is adjusted p value from linear model of logit-transformed proportions.

(G) Number of Trem2+ cells per mm2 from digital image analysis of Trem2 immunohistochemistry in paired biflank sections from sgScrambled and CST3�/�

tumors. p value refers to paired two-sided t test.

(H) Multivariate (Cox and logistic) regression of Z scored CyC-production PGS against immuno-oncology biomarkers (progression-free survival [PFS], overall

survival [OS], durable clinical benefit [DCB]) in meta-analysis of European patients (n = 685) treated with checkpoint immunotherapy (anti-CTLA4 or anti-PD1/PD-

(legend continued on next page)
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GCs to induce CyC secretion is highly context dependent, and

can be co-opted by cancer cells, suggesting a possible immuno-

modulatory selective advantage for cancer cells.

CyC directs recruitment of Trem2+ macrophages and
failure of cancer immunotherapy
To investigate how CyC expression would provide a selective

advantage to cancer cells, we used transient transfection with

Cas9 and CST3-specific guide RNAs (gRNAs) to generate a

CST3-knockout (CST3�/�) clone of the Mm1 cell line, which is

derived from a liver metastasis of the autochthonous KPCmodel

of pancreatic cancer,73 which recapitulates the low immunoge-

nicity and immunotherapy responsiveness of the human pancre-

atic cancer. Knockout was confirmed for extracellular CyC pro-

tein levels (Figure S6A) and Sanger sequencing of the

predicted edit site (Figure S6B), which confirmed 97% editing ef-

ficiency. Isogenic sgScrambled and CST3�/� Mm1 clones had

equivalent doubling times in vitro (sgScrambled: 23.3 h, 95%

confidence interval [CI] 21.6–25.4; CST3�/�: 24 h, 95% CI

22.4–25.8; Figure S6C). In contrast, CST3�/� tumors had mark-

edly attenuated growth kinetics in vivo (Figure 6A, independent

replication; Figure S6D) and significantly lower endpoint tumor

weights (Figure S6E, independent replication; Figure S6F). Three

findings linked together led us to hypothesize that CyC might

have an immunosuppressive function: the growth defect of

CST3�/� tumors was only detectable in vivo, CyC is a known

potent inhibitor of cysteine proteases,74 such as those involved

in antigen presentation,75 and observation that CyC is a GC

response gene. To minimize the effect of mouse-specific factors

and to maximize the immune selective pressure on tumors, we

inoculated mice with a sgScrambled tumor on the left flank

and a CST3�/� tumor on the right flank (termed biflank model),

and we treated mice with 2–3 doses of anti-PD-L1 antibody.

This experiment confirmed the suppressed growth of CST3�/�

versus paired sgScrambled tumors (Figures 6B and S6G–S6I).

Consistent with this, the proportion of Ki67+ cells was signifi-

cantly lower inCST3�/� versus paired sgScrambled tumors (Fig-

ure 6C). In contrast, growth kinetics were similar between tumors

formed from sgScrambled and CST3�/� Mm1 clones inoculated

in immunodeficient (Rag1-null) mice (Figure S6J), consistent with

an immune-dependent growth detect in CST3�/� tumors.

To investigate whether altered growth kinetics reflected re-

modeling of the tumor microenvironment, we performed pan-

cytokeratin immunohistochemistry and automated image seg-

mentation to score the epithelial and non-epithelial areas in

each tumor section (Figure S6K). The fraction of non-epithelial

cells was markedly reduced in paired CST3�/� versus

sgScrambled tumors (Figure 6D). In order to identify whether

the depletion of specific non-epithelial cell types could explain

this observation, we performed scRNA-seq on 2 sgScrambled

and 2 CST3�/� uni-flank tumors, with 14,416 cells spanning 14

cell types passing quality control criteria (Figures 6E and S7A;
L1). Sample sizes for each clinical endpoint were n = 342, 685, and 670, respectiv

bars reflect 95% confidence interval. Lower hazard ratios (survival, Cox regression

therapeutic outcomes (annotated with purple arrow).

(I) Sensitivity analysis indicating odds ratio and 95% confidence interval for DCB i

*p < 0.05; **p < 0.01, ***p < 0.001.

Boxplots show median (central line) with interquartile range (IQR; box) and extre
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Table S7). scRNA-seq profiles of cancer cells confirmed

CST3 knockout in this compartment (Figure S7B;

p = 9.16e�30, pseudobulk likelihood ratio test) but not in other

compartments (p > 0.05). To identify enriched or depleted cell

types, we implemented the propeller method,76 which models

the logit-transformed cell type proportions as a function of

the CST3 genotype. At 5% false discovery rate (FDR), we iden-

tified a single-cell population, annotated as Trem2+ macro-

phages, that was significantly depleted in CST3�/� tumors

(adjusted p = 0.004, moderated ANOVA test, ratio = 0.098; Fig-

ure 6F). We validated depletion of Trem2+ cells by digital image

analysis of Trem2 immunohistochemistry (IHC) in a non-over-

lapping cohort of biflank sgScrambled and CST3�/� tumor sec-

tions (Figure 6G). We identified a highly non-random distribu-

tion of Trem2+ cells in both sgScrambled and CST3�/�

sections, with a marked enrichment of Trem2+ cells in the outer

rim of the tumor (Figure S7C). These findings suggest that CyC

can influence migration or expansion of Trem2+ macrophages

and that Trem2+ macrophages might regulate trafficking of im-

mune cells into the tumor.

As Trem2+ monocytes can be detected in blood samples,77

we hypothesized that GC treatment in critically ill patients would

be associated with expansion of Trem2+monocytes in blood. To

investigate this, we reanalyzed CD14+ monocyte scRNA-seq

profiles from patients admitted to the intensive care unit (ICU)

with COVID-1967 and recovered dropped-out features to impute

cluster gene expression,78 thereby identifying a cluster of

Trem2+ monocytes (termed cluster 0; Figure S7D). We identified

significant expansion of cluster 0 at day 7 versus day 1 in patients

treated with dexamethasone (adjusted p = 0.004, moderated

ANOVA test, ratio = 16.1; Figure S7E) but not in dexametha-

sone-naive patients (adjusted p = 0.749, ratio = 2.12; Figure S7F).

This would support a stepwise model in which GC agonists in-

crease extracellular CyC levels (Figure 5C), which in turn pro-

motes recruitment or expansion of Trem2+ myeloid cells.

Others have shown that TREM2+ macrophages play a highly

immunosuppressive role in the tumor microenvironment79 and

are known to be associated with failure of CPI targeting the

PD-1/PD-L1 axis.80,81 We hypothesized that increased CyC, by

either inducing recruitment or expansion of Trem2+ macro-

phages or both, would be associated with reduced efficacy of

CPI. Consistent with this, analyzing CST3 gene expression in

TCGA tumors showed significantly elevated CST3 in the ‘‘immu-

nologically quiet’’ immune subtype (C5 TCGA, p < 1e�10, Tu-

key’s test against all other subtypes; Figure S8A), which is char-

acterized by the highest macrophage and lowest lymphocyte

abundance. To investigate whether dynamically increased

CST3 gene expression would be associated with resistance to

CPI, we reviewed paired pre- and post-treatment tumor biopsy

scRNA-seq from patients (n = 8) with metastatic basal cell carci-

noma (BCC) treated with anti-PD-1.82 Patients were split into re-

sponders (n = 3) and non-responders (n = 5; Figure S8B)
ely. In each model, covariates included PC1–4, sex, and primary cancer. Error

) or higher odds ratios (durable clinical benefit, logistic regression) reflect better

n each cancer type. p values refer to two-sided t tests unless otherwise stated.

ma (whiskers at 1.53 IQR).
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according to radiological response. Pre-treatmentCST3 expres-

sion inmacrophages, dendritic cells (DCs), cancer-associated fi-

broblasts (CAFs), and tumor clusters did not predict CPI respon-

siveness (p > 0.05, paired t test). However, we observed

evidence for significant dynamic CST3 upregulation in CAFs

and DCs in non-responder patients (p < 0.05, paired t test;

Figures S8C–S8F).

We considered that the CyC-production PGS could reason-

ably capture the capacity to dynamically regulate secretion of

CyC and thus predict failure of CPI. To estimate theCyC-produc-

tion PGS in patients treated with CPI, we collated 8 published

cohorts of patients with cancer treated with anti-PD-1, anti-

PD-L1, or anti-CTLA-4 therapies with available germline exome

sequencing (termed panIO cohort; Figure S6B; Table S2A). 685

patients with EUR ancestry passed quality control for inclusion

(cohort characteristics summarized in Table S2B). Following

imputation of common variants, the exome-wide CyC-produc-

tion PGS was scored in each patient. Using multivariate Cox

regression adjusted for sex, genetic ancestry, and tumor type,

we demonstrated that the CyC-production PGS was associated

with significantly worse progression-free survival (HR = 1.29,

p = 0.0005) and worse overall survival (HR = 1.09, p = 0.10; Fig-

ure 6H). Using logistic regression with the same covariates, we

further demonstrated that the PGS was associated with signifi-

cantly reduced odds of durable clinical benefit (OR = 0.78,

p = 0.003; Figure 6H). This latter effect was broadly consistent

in each tumor type (Figure 6I). Altogether, these findings suggest

that increased intratumoral CyC production may make a sub-

stantial contribution to failure of cancer immunotherapy and

that this effect may be mediated by recruitment of TREM2+

macrophages.

DISCUSSION

This work proposes a mechanistic link between GC signaling,

CyC, and Trem2+ macrophages. We investigated CyC’s biolog-

ical and clinical relevance using a combination of genetic ana-

lyses and in vitro and in vivo experimental medicine approaches,

as well as clinically relevant prognostic and predictive studies

and make contributions to two knowledge gaps.

Firstly, estimation of renal function is central to clinical practice

by defining disease states, capturing acute systemic illness, and

informing optimal medication dosing. Therefore, the relative

strengths and weaknesses of CyC as a marker of renal function

have substantial clinical relevance. CyC performs well as a renal

function marker in healthy individuals, but its performance dete-

riorates in patients with acute disease and patients who receive

GC agonists such as prednisolone, for example patients who

have had a renal transplant.54 Our findings provide additional

context for seemingly contradictory studies11,83 measuring the

effect of GC treatment on CyC levels by demonstrating that

GC-inducible CyC secretion is context dependent and not

detected systemically in healthymice and humans. An inflamma-

tory stimulus could drive differentiation of monocytes to macro-

phages, in turn upregulating GR and enabling GC-dependent

gene programs,62 such as GC-inducible expression of CST3.

Such a regulatory system would function to precisely tune the

GC response program to minimize the off-target effects of
GCs, which are well recognized in clinical practice.84 However,

we recognize that GCs have pleiotropic effects and that other

mechanisms may contribute to our observations. Furthermore,

our data demonstrate that GCs are necessary (Figures 5A and

5B) but not sufficient (Figures 4H–4J) for induction of CyC in all

biological contexts. In the context of inflammatory diseases,

such as COVID-19, however, we show that dexamethasone

treatment induces detectable increases in systemic CyC levels

and have recently reported that CyC levels are dynamically regu-

lated in COVID-19 patients and correlate with in-hospital mortal-

ity.49 Altogether, this adds to the discourse of whether CyC is a

robust marker of renal function in patients with significant inflam-

matory disease,54 for whomcorrect estimation of kidney function

is important.

Secondly, despite the widespread adoption of exogenous

GCs as a treatment for inflammatory conditions and for treating

autoimmune adverse effects of CPI, the exact mechanisms by

which GCs cause immunosuppression remain elusive.84 Our

findings, together with work from others, suggest that CyC

may be an effector of GC-induced immunosuppression: CyC

is biologically active as a potent cysteine protease inhibitor,74

CyC secretion can be induced by GC agonists in inflammatory

macrophages, and this process is co-opted by cancer cells, for

which the immune system is a dominant selection pressure.85

Furthermore, CyC levels are highest in cerebrospinal and sem-

inal fluid,74 suggesting a role in immune privilege. We recognize

that the GC effect is not exclusive to CyC and that CyC may

function as one of many mechanisms of GC-induced immuno-

suppression. In support of this model, cancer cell-intrinsic CyC

knockout attenuates tumor growth kinetics and proliferation in

immunocompetent mice, consistent with evidence that germ-

line CST3 knockout abrogates metastasis in vivo.86 Using sin-

gle-cell omics and population genetics, we propose a model

in which CyC is associated with recruitment of immunosup-

pressive Trem2+ macrophages,80,81 which in turn promote

failure of cancer immunotherapy. Alternatively, CyC may be

necessary for the survival or maintenance of Trem2 expression

in tumor-resident Trem2+ macrophages rather than promoting

their recruitment. Future work has to determine the precise mo-

lecular mechanism by which this sequence occurs, as well as

the origin of Trem2+ macrophages in the tumor microenviron-

ment. One potential link is apolipoprotein E (ApoE), which is

known to be secreted by cancer cells87 and is a high-affinity

ligand for the Trem2 receptor (Kd = 6 nM).88 Ligation of the

Trem2 receptor by ApoE is sufficient to promote phagocytosis

in TREM2-expressing microglial (brain-resident macrophage)

cells and, in turn, activates Apoe RNA expression,89 suggesting

an autocrine positive feedback loop. Given that ApoE can be

proteolytically processed90 and that CyC is a potent protease

inhibitor, CyC may act to regulate ApoE availability in the tumor

microenvironment, thereby regulating recruitment and prolifera-

tion of Trem2+ macrophages. Furthermore, evidence that

M2-like macrophages appear to not only modulate the trans-

eQTL association at rs2749527 between cortisol and CST3

expression but also express TREM280,91 suggests the exis-

tence of a single autocrine loop driving GC-induced

expansion of TREM2+ macrophages. In support of connectivity

between CyC, ApoE, and TREM2, Trem2-knockout mice have
Cell Genomics 3, 100347, August 9, 2023 13
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accelerated amyloid burden in mouse models of Alzheimer’s

disease (AD),92 TREM2 R47H mutations impair ApoE binding88

and increase the risk of human AD,93 while CyC knockout is

associated with reduced amyloid burden.94 Consistent with a

direct immunosuppressive function of CyC, we demonstrate

that germline predisposition to CyC production is significantly

associated with substantial remodeling of the intertumoral

immune landscape and failure of cancer immunotherapy. The

evidence that the CyC-production PGS predicts failure of

immunotherapy requires experimental confirmation in future

work. If confirmed, a combination of PD-1/PD-L1 blockade

and CyC inhibition may offer a therapeutic approach in patients

who do not respond to CPI.

Limitations of the study
While the focus on human datasets allowed us to investigate

clinically relevant questions, we acknowledge that many of the

analyses presented are limited by their associative nature. We

have necessarily adopted several surrogate measures of CyC

production, including CST3mRNA expression and CyC-residual

(from blood tests) and CyC-production PGSs (from germline ge-

netics). The time-dependent positive correlation between CST3

mRNA expression and extracellular CyC protein in vitro

(Figures 5A and 5B), as well as the association between the

CyC-production PGS and CST3mRNA expression in the spleen

(Figure 4A) indicate that thesemeasures are linked and can prob-

ably be used interchangeably. Although associations between

measured plasma CyC levels and clinical outcomes have the

potential to be confounded in multiple directions, we and

others argue that associations between patient-level PGSs and

outcomes are more robust, potentially capturing causal associ-

ations.95 Also, we performed all PGS analyses in either a held-

out validation cohort (for the UKB) or an independent non-over-

lapping cohort (TCGA, panIO) to mitigate against the risk of

overfitting.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-TREM2 antibody Proteintech 13483-1-AP

Anti-Ki67 antibody Thermo Fisher 14-5698-82

Anti-pan-cyclokeratin antibody

(HRP-conjugated)

Novus Bio NBP1-48348H

Anti-F4/80 antibody Thermo Fisher 14-4801-82

Critical commercial assays

Human Cystatin C ELISA Kit R&D DSCTC0

Mouse Cystatin C ELISA Kit Abcam ab119590

Mouse Cystatin C ELISA Kit (SimpleStep) Abcam ab201280

Corticosterone ELISA IBL International RE52211

Deposited data

UK Biobank https://www.ukbiobank.ac.uk/

Genotype-Tissue Expression (GTEx https://gtexportal.org/home/ phs000424

The Cancer Genome Atlas https://portal.gdc.cancer.gov/ phs000178

STARNET N/A

Pan-UK Biobank project https://pan.ukbb.broadinstitute.org/ N/A

ENCODE https://www.encodeproject.org/ N/A

panIO patient cohort Accession codes detailed in Table S2A N/A

Single-cell RNA sequencing of

monocytes from COVID-19

patients – this paper

Figshare: https://doi.org/10.6084/m9.

figshare.14330795.v13, ‘covid.combined_

final.CD14.Mono.Robj’

N/A

GWAS summary statistics

(CyC-production) – this paper

GWAS Catalog: GCP000606 N/A

Polygenic score (CyC-production)

– this paper

Deposited on PGS Catalog:

PGP000463, https://doi.org/10.1101/

2021.08.17.21261668

N/A

Raw data for single-cell RNA sequencing

of mouse tumors – this paper

Deposited on Sequence Read Archive:

PRJNA961746

N/A

Processed data for single-cell RNA sequencing

of mouse tumors – this paper

Figshare: https://doi.org/10.6084/m9.

figshare.20063402

N/A

Single-cell RNA sequencing

from Yost et al.82
NCBI GEO: GSE123813 N/A

Single-cell RNA sequencing

from Jerby-Anon et al.96
Single cell portal: SCP109 N/A

Single-cell RNA sequencing

from Madissoon et al.55
Human Cell Atlas: https://data.humancellatlas.org/explore/projects/

c4077b3c-5c98-4d26-a614-246d12c2e5d7

N/A

Single-cell RNA sequencing

from Wilk et al.56
Single cell portal: SCP345 N/A

Digital pathology (scanned

slides from Mm1 model) –

this paper

Mendeley Data: https://doi.org/10.17632/kcwn7bpdf9.1 N/A

Experimental models: Cell lines

Mm1 cell line Gift from Tuveson Laboratory (Cold Spring

Harbor Laboratory)

N/A

A549 cell line ATCC N/A

C26 cell line Maintained in Janowitz Laboratory (Cold Spring

Harbor Laboratory)

N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

HeLa cell line Gift from Cold Spring Harbor Laboratory N/A

THP-1 cell line ATCC N/A

Primary human monocytes STEMCELL Technologies 70034

Experimental models: Organisms/strains

C57BL/6J Jax 000664

C57BL/6J; Rag1-KO Jax 002216

BALB/c Charles River N/A

BALB/cJ Jax 000651

Oligonucleotides

Primer sequences Detailed in Table S5 N/A

Guide RNA sequences Detailed in Table S6 N/A

Software and algorithms

Code to reproduce core

analyses – this paper

Zenodo: https://doi.org/10.5281/

zenodo.7921111

N/A

PLINK https://www.cog-genomics.org/plink/ N/A

Hail https://hail.is/ N/A

R https://www.r-project.org/ N/A

TOPMED https://imputation.biodatacatalyst.

nhlbi.nih.gov/#!

N/A

Genomic-SEM https://github.com/GenomicSEM/

GenomicSEM

N/A

LDSC https://github.com/bulik/ldsc N/A

LDpred2 https://privefl.github.io/bigsnpr N/A

Seurat https://github.com/satijalab/seurat N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the Lead Contact, Tobias Janowitz (janowitz@cshl.edu).

Materials availability
CyC�/� Mm1 cell line that was generated as part of this study is available from the lead contact with a completed material transfers

agreement.

Data and code availability
d Due to the data use agreements for the datasets analyzed in this manuscript, we are unable to directly share or distribute any

patient-level data except for COVID-19 patient scRNA-seq (reposited at https://doi.org/10.6084/m9.figshare.14330795.v13,

filename ‘covid.combined_final.CD14.Mono.Robj’). GWAS summary statistics are published alongside the study (, and poly-

genic scores are deposited in PGS Catalog (https://doi.org/10.1101/2021.08.17.21261668). To facilitate dataset requests

from applicable data use committees, we provide all accession codes for all datasets relating to this manuscript in the key re-

sources table and in Table S2A. UK Biobank data can be requested through the application process detailed at https://www.

ukbiobank.ac.uk/.

d Single-cell RNA sequencing raw sequencing data (FASTQ) is reposited in the Sequence Read Archive (SRA) under BioProject

PRJNA961746, while the processed Seurat matrix is available from Figshare (https://doi.org/10.6084/m9.figshare.20063402).

d Digital pathology derived from histological and immunohistochemical analyses of mouse tumor sections (Mm1 model) has

been deposited at https://data.mendeley.com/datasets/kcwn7bpdf9/1.

d Code to reproduce core computational and statistical analyses has been reposited on Github at https://github.com/

Janowitz-Lab/cystatinc (https://doi.org/10.5281/zenodo.7921111).

d Where data use agreements allow, additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell line models
Human lung carcinoma cell line A549 was purchased from ATCC (CCL-185). Human cervical cancer cell line HeLa was obtained from

Cold Spring Harbor Laboratory. Human acute monocytic leukemic cell line THP-1 was purchased from ATCC (TIB-202). Mm1 cells

were a gift from D. Tuveson (Cold Spring Harbor Laboratory, NY), and are derived from a liver metastasis in the KPC model of

pancreatic ductal adenocarcinoma.73 A549, HeLa and Mm1 cell lines were cultured in DMEM (Gibco 11965092, 4mM glutamine)

supplemented with 10% FBS and 1% penicillin-streptomycin. THP-1 and C26 cells were cultured in RPMI (Gibco 11875093,

2mM glutamine) supplemented with 10% FBS and 1% penicillin-streptomycin. Macrophage-like differentiation in THP-1 cells was

induced by treatment with 50nM PMA (Sigma) for 48 h, before replacement with PMA-free media and recovery for 24 h prior to treat-

ment. Cell viability was checked by trypan blue method and was consistently above 95% prior to seeding. All cell lines were cultured

at 37�C in 5% CO2. Dexamethasone and PMA (phorbol 12-myristate 13-acetate) were purchased from Sigma-Aldrich. DMEM and

RPMI cell culture media, fetal bovine serum (FBS), penicillin/streptomycin (P/S) and Dulbecco’s phosphate-buffered saline (DPBS)

were purchased from Gibco.

Mouse models
Wild-type BALB/cmice obtained fromCharles River Laboratories (for C26model of cancer progression) and Jax (for dexamethasone

treatment); andwild-type and Rag1-KOC57BL/6Jmicewere obtained from Jax. All mice examined as part of this study weremale as

C26 and Mm1 lines were isolated frommale mice. Mice were allowed to acclimatize for 7 days from arrival in the Cold Spring Harbor

Laboratory animal facility. All animal experiments and care were performed in accordance with the Cold Spring Harbor Laboratory

(CSHL) Institutional Animal Care and Use Committee (IACUC) and the National Institutes of Health Guide for the Care and Use of

Laboratory Animals. Mice were kept in specific pathogen-free conditions on a 24 h 12:12 light-dark cycle. Tumor samples were

obtained by dissection of mice after euthanasia by cervical dislocation and tumor weights were routinely recorded. Plasma samples

were obtained from tail bleeds and terminal cardiac bleeds. Tail bleeds were performed using a scalpel via tail venesection, and

terminal bleedswere obtained at endpoint (cachexia) through exsanguination via cardiac puncture under isoflurane anesthesia. Sam-

ples were kept on ice at all times. Plasma samples were collected into heparin-coated capillary tubes to avoid coagulation and were

processed as follows: centrifuge spin at 14,000 rpm for 5 min at 4�C, snap frozen in liquid nitrogen, and stored at �80�C.

Human studies
This study incorporates human subjects from three independent studies. All human subjects gave informed consent, and all studies

were approved by the respective institutional review boards.

1. Cohort 1. This cohort has been reported previously59 and refers to a prospective, single-center, single-blind randomized cross-

over clinical trial that recruited 10 subjects (men and women) with primary adrenal insufficiency (Addison’s disease). The study

was approved by the Ethics Review Board of the University of Gothenburg, Sweden (permit no. 374-13, 8 August 2013) and

conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all subjects before

participation. The study was registered at ClinicalTrials.gov with identifier NCT02152553.

2. Cohort 2. This cohort has been reported previously67 and refers to a prospective study that recruited 14 patients with COVID-

19 necessitating admission to ICU, of which 6 received dexamethasone treatment as part of their clinical course. All patients or

their surrogate decision-makers gave informed consent for participation. This study was approved by the Conjoint Health

Research Ethics Board at the University of Calgary (Ethics ID: REB20-0481) and is consistent with the Declaration of Helsinki.

3. Cohort 3. This cohort (Pa-COVID-19 study) has been reported previously68 and refers to a prospective observational cohort

study at Charité Universitätsmedizin Berlin. Patients with a PCR-confirmed diagnosis of SARS-CoV-2 infection were eligible

for inclusion in the study. The Pa-COVID-19 study is carried out according to the Declaration of Helsinki and the principles

of Good Clinical Practice (ICH 1996) where applicable and was approved by the ethics committee of Charité- Universitätsme-

dizin Berlin (EA2/066/20).

METHOD DETAILS

Differentiation of human monocytes to macrophages and dendritic cells
Human Peripheral Blood Monocytes were obtained from STEMCELL Technologies (70034). For monocyte-to-macrophage differen-

tiation, monocytes were seeded in 96-well tissue-culture treated plates at 1x10 5 cells/well in ImmunoCult-SF Macrophage Medium

(10961) containing 50 ng/mL macrophage colony stimulating factor (M-CSF, 78057.1) for 4 days. M0-like macrophages were

further differentiated into M1-like macrophages by addition of 50 ng/mL interferon-gamma (IFNg, 78020.1) and 10 ng/mL Lipopoly-

saccharides (LPS, Thermo Fisher) and M2-like macrophages by addition of 10 ng/mL interleukin-4 (IL-4,78045.1) for 2 days. For

monocyte-to-dendritic cell differentiation, 1x105 cells/well were seeded in 96-well tissue-culture treated plates and grown in

ImmunoCult Dendritic Cell Differentiation Medium (10985) for 5 days. On day 5, ImmunoCult Dendritic Cell Maturation Supplements

(10989) were added into the immature dendritic cells for 2 days.
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In vitro glucocorticoid treatment
For cancer cell line (A549, C26, THP-1) experiments, cells were plated in 6 well plates, at a density of approximately 500,000 cells/

well. For primary cell experiments, cells were plated in 96-well plates as described above. For suspension cells (monocyte-like THP-1

cells, primary monocytes, primary mature dendritic cells), cell-repellent plates were used to seed cells prior to dexamethasone treat-

ment (Nunc or CellStar). Cells reached confluence on day one or day two after being seeded. For time course experiments, cells were

seeded and harvested at the same time, with the only variable being the duration of treatment with 100nM dexamethasone (varied

between 0 and 18 h), with 0-h treatment acting as the control. For single-timepoint experiments, cells were treated with either 100nM

dexamethasone (Sigma) or 0.01% ethanol for 18 h prior to harvesting. For mature dendritic cell experiments, 10nM dexamethasone

was used to minimize cytotoxicity.97 For each experiment all samples were harvested concurrently.

For quantification of extracellular CyC, cell supernatant was collected at harvesting, spun at 10000 x g for 5 min to remove debris,

and analyzed by ELISA (Human Cystatin C ELISA Kit, R&D Systems; Mouse Cystatin C ELISA Kit, Abcam/ab119590), with each sam-

ple profiled in duplicate. For quantification of cellular protein content, cells were washed with DPBS and ice-cold RIPA buffer with

protease and phosphatase inhibitors (Thermo Fisher) or buffer APL (Qiagen) was added to each well. The cell lysate was passed

through a 25G syringe for homogenization and spun for 10000 x g for 15 min, at 4�C. For RIPA lysates, protein content was deter-

mined by BCA assay (Thermo Fisher), with each sample profiled in duplicate. For APL lysates, samples were processed according to

the AllPrep RNA/Protein Kit (Qiagen) manufacturer’s protocol, with protein content determined by Nanodrop spectrophotometry.

Normalized extracellular CyC concentrations were determined by dividing the ELISA-derived CyC concentration (ng/mL) by the

cellular protein content (mg).

For quantitative real-time PCR (RT-PCR), RNA was extracted using the RNeasy Mini Kit (Qiagen) or the AllPrep RNA/Protein Kit

(Qiagen) and reverse transcribed using SuperScript IV VILO Master Mix (Thermo Fisher) according to the manufacturer’s protocol.

Four housekeeping genes (GUSB, PPIA, RPL15, RPL19) with minimal variation on GC treatment were selected on the basis of a liter-

ature review98 and differential expression analysis in ENCODE RNA-seq data (accession ENCSR897XFT), implemented in edgeR.

Primers were designed using NCBI Primer-BLAST, with exon-spanning primers designedwhere possible (primer sequences detailed

in Table S5). PCR was performed using the PowerTrack SYBR Green Master Mix (Thermo Fisher) using the QuantStudio 6 Flex

(Thermo Fisher) instrument, using a 10mL reaction volume in technical triplicate according to the manufacturer’s protocol. The

threshold cycle was determined by the Second Derivative Maximummethod and the expression of each target was normalized rela-

tive to the geometric mean of endogenous controls.

In vivo glucocorticoid treatment
Wild-type BALB/c and C57BL/6J were treated with a single high dose (20 mg/kg) of dexamethasone given intraperitoneally (IP) at

9a.m. Dexamethasone 21-phosphate disodium salt (Sigma) was dissolved in PBS and filter sterilized prior to injection. Tail vein sam-

ples were taken 24- and 48-h following IP dosing, and plasma levels of CyC were determined with Mouse Cystatin C ELISA Kit

(ab119590), Abcam.

Glucocorticoid treatment in human subjects
Glucocorticoid treatment in human cohort 1 has been reported previously.59 Briefly, subjects were randomized to a 22-h treatment

(commencing at 9a.m.) with placebo (intravenous 0.9% saline) or near-physiological glucocorticoid treatment with intravenous hy-

drocortisone. During the GC exposure, hydrocortisone was administered at a varying dose of 0.024 mg/kg/h between 9 a.m. and 12

p.m. (first day), 0.012 mg/kg/h between 12 p.m. and 8 p.m. (first day), 0.008 mg/kg/h between 8 p.m. and 12 a.m. (first day), and

0.030 mg/kg/h between 12 a.m. and 7 a.m. (second day). After 2 weeks, subjects were given whichever treatment they had no

yet received, as part of a crossover study design. Blood samples were collected in the morning of the second intervention day (6

a.m.) and plasma was isolated. Plasma CyC and creatinine were measured used validated clinical assays (creatinine: Alinity c

Creatinine (Enzymatic) Reagent Kit; CyC: Gentian Cystatin C Immunoassay) at the laboratory of Sahlgrenska University Hospital

in Gothenburg, Sweden.

CyC quantification in patients with COVID-19
For human cohort 2, serum samples were collected as specified timepoints (timepoint 1: within 72 h of admission/referred to as day 1,

and timepoint 2: 7 days after timepoint 1).67 ELISA-based serum cystatin C measurement was performed by Eve Technologies

(Custom Human Kidney Injury Panel – Cystatin C). For human cohort 3, plasma sampling for plasma proteomics by mass spectrom-

etry was performed three times per week subsequent to inclusion. Sample processing, mass spectrometry and data analysis were

performed as described previously,2 allowing for quantification of plasma CyC levels in 309 patients. Out of these patients, 131 had

available paired serum creatinine for at least one timepoint, as well as clinical outcome data (COVID-specific mortality). For patients

with at least one creatininemeasurement, missing data were imputedwith themost recent value. PlasmaCyC levels were scaled by a

factor of 300, so that the cohort mean was comparable to the mean serum CyC recorded in the UKB cohort (field 30720, units mg/L).

For each patient, a creatinine-CyC (C2) ratio was calculated at each timepoint, using CKD-EPI eGFR equations with the race term set

to 0.
Cell Genomics 3, 100347, August 9, 2023 e4



Article
ll

OPEN ACCESS
In vivo model of cancer progression
Experiments with the C26 model were performed using 8-weeks old wild-type BALB/c male mice. Mice were inoculated subcutane-

ously in their right flank with the syngeneic C26 colorectal cancer cell line (2x106 viable cells in 100mL RPMI vehicle) that induces

cachexia. Prior to inoculation, C26 cells were dissociated with trypsin, followed by resuspension in FBS-free RPMI and counting

of the viable cell concentration (trypan blue). C26-tumor bearing mice were termed pre-cachectic from 18 days post-inoculation

and were defined as cachectic when their weight loss exceeded 15% from peak body weight. Plasma levels of CyCwere determined

with Mouse Cystatin C ELISA Kit (ab119590), Abcam. Corticosterone levels were quantified using Corticosterone ELISA (RE52211)

from IBL International (TECAN).

Establishment of isogenic CyC�/� cell line
We prioritized experimentation with the Mm1 (KPC-derived) cell line as we have found this line to behave highly reproducibly across

different experimenters over time, allowing us to place greater confidence on the findings from each experiment. Mm1 were tran-

siently transfected with CRISPR plasmids (PX459, GenScript) encoding either a guide RNA (gRNA) specific to a coding region in

mouse Cst3 or a non-targeting (scrambled) gRNA. We tested two Cst3-specific gRNAs and one scrambled gRNA from a pre-vali-

dated database.99 Guide RNA sequences are summarized in Table S6. Mm1 cells were seeded into 24-well plates with 50,000 cells

per well and after 24 h, they were transfected with 500ng plasmid using Lipofectamine 3000 (Thermo Fisher) according to the man-

ufacturer’s protocol. We included a GFP-expressing plasmid to assess transfection efficiency. After 48 h, the media was changed

and replaced with DMEM media supplemented with 5 mg/ml puromycin. After 72 h, the media was replaced with DMEM media

for 24 h, followed by isolation of monoclonal populations by serial dilutions in a 96-well plate. To identify clones with CyC knockout,

we measured CyC in the cell supernatant for each clone using the Mouse Cystatin C ELISA Kit (ab201280), Abcam. To verify the

presence of truncating mutations in the Cst3 coding region, we extracted genomic DNA from each clone (Qiagen DNeasy Blood

and Tissue Kit) and performed targeted polymerase chain reaction (PCR) amplification and Sanger sequencing of the predicted

gRNA binding sites. The editing efficiency was assessed using the Synthego ICE Analysis tool (https://ice.synthego.com/).

Characterization of isogenic CyC�/� cell line
To compare the in vitro growth kinetics of isogenic sgScrambled and CyC�/� cell lines, cells were seeded into 6-well plates with

200,000 cell per well, with three biological replicates per clonal cell line. Each well was scanned every 2 h using an IncuCyte S3

Live Cell Analysis Instrument using the phase channel according to themanufacturer’s protocol. Cell confluence was estimated using

the Incucyte Cell-By-Cell analysis module, and was normalized to the first timepoint. The doubling time was estimated by fitting a

model of log(time) as a function of confluence. To compare the in vivo growth kinetics of isogenic sgScrambled and CyC�/� cell lines,

mice were inoculated subcutaneously with 50,000–200,000 cells in the flank. For uni-flank experiments, mice were inoculated in the

right flank; for biflank experiments, mice were inoculated in both left and right flanks, with the sgScrambled tumors on the left flank

and the CyC�/� tumor on the right flank. For tumor inoculation, Mm1 cells were dissociated with trypsin followed by resuspension in

FBS-containing DMEM, counting of the viable cell concentration (trypan blue) and resuspension in sterile PBS. 10-20mL of PBS-sus-

pended cell mixture was combined with an equal volume of Cultrex Reduced Growth Factor Basement Membrane Extract (3433-

010-01, R&D Systems) on ice. Immediately prior to inoculation, the suspended cell mixture is thawed to room temperature and

loaded into insulin syringes (328440, BD). Mice were monitored regularly until palpable tumors formed, after which point the longest

and shortest dimensions of each tumor was measured every 3–4 days using calipers. For anti-PD-L1 treatment, mice were treated

with 200mg of anti-PD-L1 monoclonal antibody (BioXCell, BP010) every 3 days, given intraperitoneally (IP). Unless otherwise stated,

mice were sacrificed by cervical dislocation once tumors exceeded 20mm on one axis.

Single-cell RNA sequencing of mouse tumors
Tumors were finely minced at 4�C and transferred into tumor digestion medium containing collagenase/hyaluronidase and DNase I in

RPMI 1640 with glutamine, then incubated on a shaker for 45 min at 37C and 300rpm. Freed cells were collected by passing through

the dissociated tumor and media into a 70um cell strainer and quenching with FACS buffer (2% fetal bovine serum in sterile PBS) at

4�C. Cells were spun down at 300g for 5 min at 4�C, the pellet resuspended in ice-cold ammonium chloride solution for 5 min and

quenchedwith FACSbuffer. Cells were spun down again and resuspended in FACSbuffer. Viable cells were quantified by trypan blue

method and samples were then subject to dead cell removal (EasySep Dead Cell Removal Kit, STEMCELL). Prior to library prepa-

ration, viability and cell number were re-assessed with a Countess II FL using AOPI (PN- CS2-0106-5mL, NexcelomBioscience). Sin-

gle-cell RNA-seq libraries targeting 8,000 cells per sample were generated using the ChromiumNext GEMSingle Cell 3ʹReagent Kits
v3.1 (PN-1000121, 10x Genomics) according to the manufacturer’s instructions. Final libraries were sequenced to at least 25,000

reads per cell with the Illumina NextSeq 2000 and aligned with Cell Ranger (version 6.0.0, 10x Genomics) to the mm10 reference

genome (refdata-gex-mm10-2020-A, 10x Genomics).

Tumor immunohistochemistry
Tumors were harvested and embedded in tissue molds containing OCT (Sakura) and frozen on dry ice prior to storage at�80�C. IHC
staining were performed at CSHL Tissue Imaging Shared Facility. OCT embedded fresh tissue blocks were sectioned with Thermo

#NX50 cryostat. 10mm thick sections were collected andmounted on positive charged glass slides (VWR superfrost plus micro slide)
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IHC slides were stained on DISCOVERY ULTRA IHC/ISH research platform (Roche) following standard protocols. Briefly, after fixa-

tion, slides were incubated with primary antibody at 37�C for 1h andDiscovery multimer detection system (Discovery OmniMapHRP,

Discovery DAB, Roche) was used to detect and amplify immuno-signals. Primary antibodies: Ki67 (Thermo Fisher 14-5698-82), 1:500

dilution; Pan-CK (Novus Bio NBP1-48348H), 1:100 dilution; TREM2 (Proteintech 13483-1-AP), 1:150 dilution.

Tumor in situ hybridization
Staining was performed using the RNAscope platform (ACD), according to the manufacturer’s protocol for the RNAscope 2.5 HD

Detection Reagent (red, 322360) and technical note for fresh-frozen tissue (320536). Tissue sections were fixed with 4% PFA for

15 min at 4�C, and dehydrated with a series of ethanol washes (50%, 70%, 100%, 100%) for 5 min each. The sections were pre-

treated with hydrogen peroxide for 10min, washed oncewith distilled water, pretreatedwith Protease IV for 30min at RT andwashed

with 1X PBS. Sections were then individually hybridized for 2 h at 40�C, with probes targeting either TREM2 (404111, ACD), DapB

(negative control; 310043, ACD) or PPIB (positive control; 313911, ACD). After hybridization, sections were washed twice with 1X

PBS for 2 min and subject to 6 amplification steps (30 min at 40�C, 15 min at 40�C, 30 min at 40�C, 15 min at 40�C, 30 min RT,

15 min RT) prior to detection. Signal was detected using Fast Red reagent (322360, ACD) for 10 min at RT, and briefly washing

with tap water prior to counterstaining with hematoxylin. Slides were mounted using xylene and EcoMount. Images were scanned

using a Leica-Aperio Versa slide scanner.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cohort genomic data quality control
UK Biobank

UK Biobank (UKB)-provided measured genotype, imputed genotype (GRCh37, imputed data release 3) and phenotype data100

was accessed as part of application 58510. We selected subjects with available imputed genomic data (field 22028) and at least

one paired creatinine (field 30700) and CyC measurement (field 30720), and excluded subjects with sex chromosome aneuploidy

(field 22019), discordant genetic sex (fields 31 and 22001), excess heterozygosity and missing rate (field 22027). To classify ge-

netic ancestry, we lifted over directly genotyped and linkage disequilibrium (LD)-pruned high-quality variants (biallelic SNPs, MAF

>0.1%, call rate >99%) to GRCh38 and merged with variants available from an integrated callset (call rate >95%) derived from

1000 Genomes and Human Genome Diversity Project (HGDP, gnomAD). LD pruning was implemented using PLINK1.9 with pa-

rameters ‘–indep-pairwise 50 5 0.2’. Principal components (1–10) were computed using the unrelated reference subjects (PC-

relate kinship coefficient <0.05) then projected onto all reference and UKB subjects. Next, a random forest classifier was trained

using ancestry data from the reference cohort, implemented in the gnomAD package for Hail. This classifier was applied to the

UKB subjects, and genetic ancestry was assigned with a minimum probability of 70% (Table S1). Relatedness data was extracted

from the UKB-provided kinship matrix, generated using KING software. For the EUR ancestry group, subjects were split into a

discovery cohort (n = 381,764 subjects) and validation cohort (n = 50,000 subjects), with the validation cohort comprising a

random selection from unrelated UKB subjects (KING kinship coefficient <0.0442). For all other ancestry groups, all subjects

were used as discovery cohort. For all analyses using imputed data, we filtered to variants with INFO score >0.8 and MAF

>1% across whole cohort.

GTEx project
Whole-genome sequencing data (GRCh38) and controlled-access metadata (including time of death) was accessed through dbGaP

(phs000424.v8.p2) as part of application 26811. The provided imputed data had already undergone extensive quality control, how-

ever, we removed an additional 9 subjects with a PC-relate kinship coefficient >0.05.We identified EUR ancestry subjects (n = 678) as

above using 1000G/HGDP reference data to train a random forest classifier that was applied to genotype-tissue expression (GTEX)

subjects, using high-quality LD-pruned common variants (biallelic SNPs, MAF >0.1%, call rate >99%, r2 < 0.1), LD pruning was im-

plemented using the ‘ld_prune’ function in Hail, subsequent to removal of high-LD regions.101 In this smaller cohort, ancestry was

defined using a minimum probability of 50% followed by removal of PCA outliers with a PCA Z score >5.

The Cancer Genome Atlas
Germline array data (Birdseed format, GRCh37) was downloaded from the GDC Legacy archive as part of dbGaP application 26811,

before conversion to VCF format. For sample QC, we started with a sample list defined by Sayaman et al.,102 which selected one

germline sample per subject, prioritizing blood-derived or high call-rate samples, while removing sampleswith excess heterozygosity

or hematological malignancies. For additional sample QC, we removed samples with discordant sex (using the impute_sex function

in Hail), excess hetero- or homo-zygosity (Z score >3, using agg.inbreeding function in Hail), related subjects (PC-relate kinship co-

efficient >0.05) and called genetic ancestry as described for the GTEX cohort (n = 7260 EUR patients). For imputation in the unrelated

EUR population, we selected variants with call rate >95% and MAF >0.1%. Imputation was performed using the TOPMED server,

which automatically lifts over variants to GRCh38. For the final cleaned dataset, we selected autosomal variants imputed with

r2 > 0.6 and MAF >0.1%.
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STARNET
Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) is a cohort of 600 Caucasian patents of Eastern

European origin, with a confirmed diagnosis of coronary artery disease. Genomic data quality control has been described

previously.52 Briefly, array-based genotyping was performed on germline DNA from blood, followed by imputation against the

1000 Genomes phase 1 SNPs. Comparison of population structure with 1000 Genomes cohort confirmed that all STARNET subjects

had European genetic ancestry.

Immunotherapy meta-cohort
We requested access to 8 cohorts of patients treated with CPI (anti-PD-1, anti-PD-L1 and/or anti-CTLA4) with available germline

exome sequencing and clinical outcome (Tables S2A and S2B). Clinical annotations were downloaded from the supplemental

data from associated manuscripts or requested directly from principal investigators. Samples were excluded if there was insufficient

data to report at least one outcome measure (overall survival, progression-free survival, durable clinical benefit). Durable clinical

benefit (binary) was defined by patients with no radiological progression >6 months or overall survival >1 year. Harmonized germline

short variant calling was implemented using nf-core/sarek pipeline, with Strelka mutation caller103 and GRCh38 reference genome.

gVCFs were merged using Illumina gvcfgenotyper tool and imported into Hail for processing. Samples with discordant sex (n = 13)

were identified by comparison of sex reported in clinical metadata and genetic sex determined from integration of X chromosome

heterozygosity and Y chromosome genotype counts (via PLINK 1.9 impute-sex function). For the small minority of patients without

supplied sex (n = 4), sex was genetically imputed. For variant QC, calls filtered by Strelka were removed, SNPs calls required a min-

imum depth of 7 while indel calls required a minimum depth of 10. Each variant required a call rate >90% and at least one ‘high-qual-

ity’ call defined as one homozygous ALT call or one heterozygous ALT call (with allele balance >15% for SNP or >20% for indel).

Samples with a call rate <90% or excess hetero- or homozygosity (Z score >3) were removed. No subjects had >third degree relat-

edness, which also excludes the possibility of duplicates samples in the cohort. EUR ancestry subjects were identified as for GTEX

cohort. Imputation of EUR population was performed using the TOPMED server. For the final cleaned dataset, we selected auto-

somal variants imputed with r2 > 0.6 and MAF >0.1%.

Computation of principal components
We computed 20 principal components (PCs) on all subjects (including related) and all genotyped variants, as per the BOLT-LMM

manual, implemented in PLINK2 (–pca function). Due to computational complexity, the PLINK2 PCA approximation (–approx) was

used for the EUR population. To account for genetic ancestry in downstream analyses, PCs (1–4) were computed on high-quality

linkage disequilibrium (LD)-pruned variants (biallelic SNPs,MAF >0.1%, call rate >99%, r2 < 0.1), with SNPs in known high-LD regions

removed.101 For UKB, high-quality SNPswere derived from the ‘in_PCA’ field from the UKB-provided SNPQC file. In the UKB cohort,

PCs were computed with related subjects removed (approach described above), and then projected onto all remaining samples, us-

ing the ‘run_pca_with_relateds’ function in the gnomAD package for Hail. In other cohorts (where related subjects were removed),

PCs were computed using the ‘hwe_normalized_pca’ function in Hail.

Genome-wide association analysis
eGFR-CyC and eGFR-Cr were calculated using CKD-EPI equations54 implemented in the nephro package for R, with race term set to

0 for all subjects. For subjects wemore than 1 paired creatinine and CyCmeasurement, we selected the earliest complete datapoint.

Genome-wide association analyses (GWAS) in the discovery cohorts (for eGFR-CyC and eGFR-Cr were performed in each ancestry

group, including related subjects, using BOLT-LMM9with covariates including age (field 21003), age,2 sex (field 31), genotyping array

(binarized from field 22000), recruitment center (field 54), and genetic PCs 1–20 (described above). LD score matrices for each

ancestry group were downloaded from the Pan-UK Biobank project (https://pan.ukbb.broadinstitute.org/). To assess for confound-

ing we determined the attenuation ratio of each trait via LD score regression, which was within the expected range for polygenic traits

(Table S3).104

Structural equation modeling
Structural equation modelling of eGFR-Cr and eGFR-Cy summary statistics was implemented in the Genomic-SEM package for R33

and performed as per the GWAS-by-subtraction tutorial (https://rpubs.com/MichelNivard/565885). Briefly, for EUR, AFR and CSA

populations, we performed LD score regression using LD matrices from the Pan-UK Biobank Project (https://pan.ukbb.

broadinstitute.org/). We designed a structural equationmodel (summarized in Figure 1C), with latent traits estimated using the userG-

WAS function parallelized across each chromosome. Summary statistics for each latent trait (renal function, CyC-production) were

extracted and effective sample sizes were estimated using the script provided by the Genomic-SEM authors (https://github.com/

GenomicSEM/GenomicSEM/wiki/5.-User-Specified-Models-with-SNP-Effects). CyC-production summary statistics were stan-

dardized by setting A1 as the GRCh37 ALT allele and A2 as the GRCh37 REF allele, andmultiplying the effect size of CyC-production

by �1 so a higher effect size reflects increased CyC production.
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Processing of summary statistics
Clumping was performed in the EUR eGFR-CyC summary statistics, implemented in PLINK 1.9 with parameters clump-r2 0.001,

clump-p1 5e-8, clump-p2 5e-8 and clump-kb 10000 using 1000 Genomes reference data (derived from European subjects). For

each clump, the index SNP (SNP with lowest p value) was annotated using the OpenTargets Genetics (https://genetics.

opentargets.org/) variant-to-gene pipeline,105 which integrates both proximity and functional genomics data. For the small minority

of variants (n = 2) not represented in theOpenTargets database, the index SNPwas annotated to the nearest coding gene. Partitioned

heritability analysis was performed using the LDSC package for R106 using the provided datasets, as per the tutorial by the package

authors (https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses). For each trait and tissue-sample pair, we extracted the

t-statistic as the ratio of the coefficient and standard error. To compare cell type-specific enrichment between renal function and

CyC-production latent traits, we computed the absolute difference in t-statistic between eGFR-CyC and each latent trait, for each

tissue sample. Colocalization analysis was performed using the coloc package for R,51 using the single-variant assumption. Gene

set enrichment analysis of CyC-production latent trait was performed using MAGMA,107 implemented in the FUMA web server

(https://fuma.ctglab.nl/) with a 0kb gene window. Mendelian randomization analysis, using cis-eQTLs probes for CST3, was imple-

mented in GCTA-SMR108 using SMR-formatted eQTL data from the eQTLGen Consortium.58

Derivation and application of polygenic scores
CyC-production polygenic scores (PGS) were derived using LDpred244 (automaticmodel) according to the package vignette (https://

privefl.github.io/bigsnpr/articles/LDpred2.html). For the genome-wide score, HapMap3 variants were intersected with high-quality

genomic variants available for all of UKB (array), TCGA (array) and GTEX (WGS) cohorts (n = 1,031,527). For the exome-wide score,

HapMap3 variants were intersected with high-quality exonic variants from the panIO cohort (n = 352,549). The provided UKB LD

reference was used for PGS derivation. Model fitting was confirmed by visual inspection of chain convergence for each PGS. The

PLINK2 linear scoring function (–score) was used to apply the PGS to each cohort and to avoid exclusion of duplicate dbSNP

IDs, the source data was filtered to the PGS variants according to position and alleles. The sample-level PGS was normalized by

Z-scoring in each cohort. To generate a patient-level surrogate for CyC production, we modeled eGFR-CyC as a function of

eGFR-Cr and sex, with intercept set as 0. We computed the residual of this model, termed CyC-residual, which is multiplied by

�1 so that increasing CyC-residual reflects increased serum CyC relative to creatinine.

Functional genomics
ChIP-seq (for GR/NR3C1, timeseries accession: ENCSR210PYP) and ATAC-seq (timeseries accession: ENCSR385LRX) data for

A549 cells treated with dexamethasone was downloaded from the ENCODE data portal (https://www.encodeproject.org/). Data

was processed using the ENCODE data analysis pipeline, generating a p value for each signal peak that reflects enrichment of

DNA sequences. Data at theCST3 locuswas plotted using the karyoploteR package109 for R. Enhancer activity scores (‘ABC scores’)

derived from the validated activity-by-contact model,63 applied to 131 biosamples, was downloaded from ftp://ftp.broadinstitute.

org/outgoing/lincRNA/ABC/Nasser2021-Full-ABC-Output/. Scores for the distal enhancer element at theCST3 locus reflecting anal-

ysis of data derived THP-1 cells were extracted, and data from THP-1 cells treatedwith PMAwas compared to data from naive THP-1

cells.

Gene expression profiling
For GTEX and ENCODE gene expression profiling, gene-level counts derived from STAR-aligned RNA sequencing (RNA-seq) reads

were downloaded from theGTEX (https://GTExportal.org/home/datasets) and ENCODE (timeseries accession: ENCSR897XFT) data

portals respectively. TMMand library size normalizationwere applied using the edgeRpackage110 for R, generating TMM-normalized

log-counts per million (CPM) expression values that can be compared between samples. For TCGA gene expression profiling, batch-

and expression quantile-normalized data (RNA-seq) was downloaded from the PanCancer Atlas repository (https://gdc.cancer.gov/

about-data/publications/pancanatlas). For STARNET gene expression profiling was performed as previously described109 – briefly,

gene counts were adjusted for GC content, library size and quantile-normalized implemented in EDAseq,111 prior to log-transforma-

tion. For digital cytometry analysis implemented in CIBERSORTx70 (for STARNET and GTEX cohorts), gene expression was normal-

ized to gene length to generate transcripts per million (TPM) expression values. CIBERSORTx was run in absolute mode with LM22

reference set, 100 permutations and B-mode batch correction.

eQTL analysis
Expression quantitative loci (eQTLs) were identified in the STARNET52 cohort using the Kruskal Wallis test statistic (additive model),

as implemented by the tool kruX,112 using individual-level genotype and gene expression data (data processing described above). To

identify associations between CST3 and SNPs present at the SERPINA6/SERPINA1 loci, we carried out this association analysis us-

ing 72 SNPs previously shown to be significantly associated with plasma cortisol.50 This approach was applied to all non-vascular

tissues (n = 5) in the STARNET cohort (subcutaneous fat, visceral abdominal fat, skeletal muscle, liver, blood). As the 72 SNPs re-

flecting 4 independent LD blocks, we modeled this analysis as 20 (4 LD blocks, 5 tissues) independent hypotheses and so the Bon-

ferroni-corrected significance threshold was 0.0025. For independent validation of the significant eQTL associations in GTEX, we

performed Kruskal Wallis tests in two tissues (visceral adipose fat, liver) using the ‘kruskal.test’ function for R, using individual-level
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genotype and gene expression data (data processing described above). For further characterization of significant eQTLs, we con-

structed a recessive linear model of CST3 gene expression as a function of genotype (binarized to 0/1 versus 2), using the ‘lm’ func-

tion for R.

scRNA-seq analysis
For analysis of single-cell RNA sequencing (scRNA-seq) profiles of human skin tumors, scRNA-seq expression matrices and meta-

data for Jerby-Anon et al.96 and Yost et al.82 were downloaded from Single Cell Portal (accession SCP109) and GEO (accession

GSE123813), respectively. For analysis of scRNA-seq profiles of spleen and PBMCs, scRNA-seq expression matrices were down-

loaded from For Yost et al. the peritumoral T cell-specific samples were excluded from the analysis. Count or normalized expression

data was imported into Seurat113 (version 4.0), filtered (according to number of features, <10,000, andmitochondrial content, <7.5%,

per cell), log-normalized (if applicable) and scaled. Highly variable features (n = 2000) were used for principal component analysis

followed by clustering (Louvain algorithm). Immune clusters were annotated by comparison to reference PBMC data, implemented

in clustifyR package for R.60 Unannotated clusters (presumed to reflect one of tumor, cancer-associated fibroblast or endothelial

cells) were manually annotated via established marker gene expression98 and clonal copy number variation profiles, examined using

the inferCNV114 package for R. Patient-level pseudobulk cluster-specific expression data was extracted using the ‘AverageExpres-

sion’ function in Seurat.

For analysis of scRNA-seq profiles of murine Mm1 tumors, cellranger-processed data was imported into Seurat113 (version 4.0).

Quality control steps included removal of putative doublet cells (implemented in DoubletFinder115) and removal of cells with >20%

mitochondrial genome-aligned reads or fewer than 200 features (UMIs). Data processing in Seurat included normalization, scaling

(regressing out the effect of cell cycle genes), integration, Louvain clustering, dimensionality reduction and visualization. Each cluster

was annotated as one of 14 cellular populations according to expression of validated marker genes (summarized in Table S7, and

Figure S7A) Differential gene expression was identified from pseudobulk data, implemented in the Libra package for R.116 Differen-

tially enriched/depleted cell populations were identified by modeling logit-transformed cell proportions as a function of tumor geno-

type, implemented in the speckle package for R.76

To assess changes in the monocyte population following dexamethasone, we reanalyzed whole blood scRNA-Seq datasets from

ICU-admitted COVID-19 patients treated with or without dexamethasone.67 Initial data pre-processing and cell identity annotations

were performed as described previously. Briefly, cell identity annotations were generated by mapping single-cell transcriptomes to

the PBMC scRNA/CITE-seq multi-omic reference (Azimuth).113 To identify a high-confidence TREM2+monocyte population, we ex-

tracted cells annotated as CD14+ monocytes and repeated batch effect correction (implemented using the ‘FindIntegrationAnchors’

function in Seurat), dimensionality reduction, and clustering. High-confidence Trem2+ monocytes were identified by expression of

known TREM2+monocyte markers (TREM2, APOE, CSF1R81,89), identified by gene-weighted density estimation implemented in the

Nebulosa package for R.78 Differentially enriched/depleted cell populations were identified as above.

Cosinor regression
Cosinor regression for gene expression (FKBP5, CST3) as a function of time was performed using the cosinor package for R. A co-

sinor model has 4 parameters – MESOR (intercept), period (assumed as 24 h), amplitude and acrophase (timing of activity peak). The

aim of this analysis is to estimate the amplitude of variation in gene expression of a 24-h cycle. Gene expression was derived from

TMM-normalized TPM data (implemented in edgeR), to facilitate intra- and inter-sample comparisons. For UKB, time referred to time

of sampling and for GTEX, time referred to time of death; both rounded to the nearest hour in 24-h clock. Amplitude coefficients were

extracted from the transformed coefficients table.

UKB cancer cohort
To identify patients who were treated with non-topical exogenous GCs, we reviewed field 20003 for coded medications bio-equiv-

alent to dexamethasone or prednisolone. Subject lifespan was extracted from analysis of fields 40007 and 34. Parental lifespan was

extracted from analysis of fields 2946, 1845, 1797, 1835, 1807 and 3526. Using cancer registry data (fields 40005, 40012, 40008,

40011), ICD10-coded cancer diagnoses were extracted and mapped to Phecodes (https://phewascatalog.org/). Using a curated

list of operation codes (OPCS-4) reflecting curative procedures for 13 main tumor groups (Table S4), we mapped each cancer diag-

nosis to matched surgeries that occurred no more than 90 days prior to the coding entry. To account for variation in operation data

availability prior to 2000, we filtered the data to cancers that were diagnosed after the year 2000. In cases where a patient was coded

with a cancer of the same primary type more than once, the entries were merged. Patients with more than one discrete cancer diag-

nosis were excluded (n = 2435 subjects) due to the difficulty in defining the time since diagnosis. For recruited patients who had died,

wemanually reviewed details from the death certificate (field 40010) to identify descriptions that were consistent with cancer-specific

mortality.

Survival analyses
For Cox regression of overall and cancer-specific survival against CyC-residual, the time variable usedwas time from blood sampling

to death or last follow-up date (nominally June 2020). For subjects with multiple CyC-residual datapoints over time, each datapoint

was annotated with survival time relative to blood sampling and treated independently. Model covariates included age (at blood
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sampling), sex, body mass index (BMI), hemoglobin, eGFR-Cr, C-reactive protein. For Cox regression of lifespan (for subject and

parents) against CyC-production PGS in the UKB validation cohort, we used age at death or age at most recent follow-up as the

time variable. Model covariates included year of birth (of subject, as parental birth years are not recorded) to account for historical

increases in mean lifespan.

For Cox regression of cancer-specific survival against CyC-production PGS, it was necessary to consider bias from left truncation,

where patients who died between diagnosis and the recruitment period would not be recruited. To account for this, the time interval

used for Cox regression of overall and cancer-specific survival against CyC-production PGS in UKB referred to time from recruitment

to death or data cut-off (June 2020). In contrast, TCGA patients were generally recruited close to the time of cancer diagnosis, prior to

surgical resection of tumor and so time from diagnosis to death or last-follow-up date was used. Cancer-specific survival was ex-

tracted from the ‘DSS’ and ‘DSS.time’ fields in the TCGA clinical data resource available as part of the PanCancer Atlas (https://

gdc.cancer.gov/about-data/publications/pancanatlas). Cancer-specific survival analyses with respect to CyC-production PGS

were adjusted for age of diagnosis, genetic ancestry (PC1-4), sex (except sex-specific cancers), and a term reflecting whether cura-

tive surgery was performed. For UKB this term was derived from matching with curative operation codes as described above, for

TCGA this term was derived from the field ‘residual_tumor’ in the clinical data resource. UKB-specific PGS-cancer survival analyses

were additionally adjusted for recruitment center (to account for regional heterogeneity in cancer outcomes) and genotyping array.

Pan-cancer inverse variance-weighted meta-analysis in each cohort (UKB, TCGA) was implemented in the meta package for R64 us-

ing both fixed and random effects models.

For phenome-wide time-to-event analysis in UKB, all UKB ‘first occurrence’ fields and cancer registry data (fields 40005 and

40006) were extracted, with ICD10 codes mapped to Phecodes. If multiple ICD10 codes mapped to a single Phecode, the earliest

date of diagnosis was selected. For each time-to-event Phecode, the time variable was defined as time from birth to first occurrence

of diagnosis or most recent follow-up date. To account for region-specific variability in health record linkage, this date was deter-

mined by either the most recent coded diagnosis or most recent UKB center visit. Each phenotype-specific Cox regression was

adjusted for sex, genetic ancestry (PC1-4) and year of birth (to account for historical variation in disease risk).

Digital pathology analyses
Digital image analysis of H + E stains as well as Trem2, panCK and Ki67 IHC were performed using HALO digital image analysis soft-

ware version v3.4.2986.151 (Indica Labs, Corrales, NM, USA). All H&E scans were reviewed by two pathologists (DL and VHK), and

the regions of viable respectively necrotic tissue was determined and computed. Necrotic tissue was excluded for further analysis. In

order to analyze the tumor/stroma interaction, a deep neural network algorithm was trained on the panCK scans to recognize epithe-

lial and non-epithelial compartments. Graphical overlays for both compartments simplified the quality control of the tissue classifier.

The total area of the two compartments was then calculated automatically.

The ‘Multiplex IHC v3.1.4’ algorithm of HALOwas implemented for analysis of Ki67 and Trem2 IHC. The nuclei and the chromogens

were detected by color deconvolution with thresholds determined by internal controls. For Ki67 IHC, a proliferation index (Ki67+ cells/

total cells) was calculated. For Trem2 IHC, the proportion of Trem2+ per unit tissue area was calculated, and the distance of each

Trem2+ cell from the tumor border was measured using the proximity analysis tool of HALO.

Statistical analysis
Significance testing refers to two-tailed unpaired t-tests with the assumption of unequal variance unless stated otherwise. For biflank

tumor experiments, differences were assessed using two-tailed paired t-tests. For statistical and computational analyses, we used R

(version 4.0.2) and Python (version 3.7.4) implemented as a Jupyter Notebook.
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