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Spatial and temporal correlations in neural networks with structured connectivity
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Correlated fluctuations in the activity of neural populations reflect the network’s dynamics and connectivity.
The temporal and spatial dimensions of neural correlations are interdependent. However, prior theoretical work
mainly analyzed correlations in either spatial or temporal domains, oblivious to their interplay. We show that the
network dynamics and connectivity jointly define the spatiotemporal profile of neural correlations. We derive
analytical expressions for pairwise correlations in networks of binary units with spatially arranged connectivity
in one and two dimensions. We find that spatial interactions among units generate multiple timescales in
auto- and cross-correlations. Each timescale is associated with fluctuations at a particular spatial frequency,
making a hierarchical contribution to the correlations. External inputs can modulate the correlation timescales
when spatial interactions are nonlinear, and the modulation effect depends on the operating regime of network
dynamics. These theoretical results open new ways to relate connectivity and dynamics in cortical networks via
measurements of spatiotemporal neural correlations.
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I. INTRODUCTION

Neocortical activity fluctuates endogenously on multiple
spatial and temporal scales. These intrinsic fluctuations are
usually quantified by correlations in neural activity. The
spatial scale of correlations is measured by equal-time cross-
correlations between spike counts in pairs of neurons [1].
The spatial correlations decrease with lateral distance be-
tween neurons in the cortex [2–7]. The temporal scale of
correlations is measured by the decay rate of time-delayed
autocorrelation of activity in single neurons and time-delayed
cross-correlations between pairs of neurons. Timescales of
spontaneous neural activity range widely from tens of mil-
liseconds [8] up to several seconds [9] and increase from
sensory to association and prefrontal cortical areas [8,10,11].
Spatial and temporal correlations of neural activity can
be modulated during changes in behavioral states, such as
selective attention [1,5,12–18] or working memory main-
tenance [10], and relate to computations across different
cognitive tasks [19–21]. Hence, understanding how neural
correlations arise from the network connectivity and dynamics
will help to identify mechanisms of neural computations in the
brain.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Theoretical models suggest that spatial and temporal cor-
relations in neural activity originate from the connectivity
structure of biological circuits. In mammalian neocortex, the
wiring of neural circuits is highly structured in space. Neurons
in primate cortex are organized in minicolumns which consist
of ∼80–100 vertically connected neurons spanning all cor-
tical layers [22,23]. Minicolumns form local spatial clusters
through short-range horizontal connections tiling the lateral
dimension of the cortex [22]. The spatial organization of local
intracortical connectivity is consistent with the dependence
of cross-correlations on distance [4–6,24–26]. Similarly, net-
work models suggest that differences in timescales across
cortical areas may be directly related to areal differences in
recurrent connectivity strength in the primate cortex [27].

These prior theoretical studies considered either spatial
or temporal dimensions of neural correlations separately. In
the spatial domain, network models with spatially arranged
connectivity can produce spatial patterns of neural correla-
tions with realistic distance dependence. This mechanism has
been demonstrated in different types of network models in-
cluding networks of spiking model neurons [4,24,25], binary
units [18,26], and rate units [5,6]. In the temporal domain,
theoretical studies of neural correlations focused primarily
on randomly connected networks. Recurrent interactions in
these networks generate slow timescales in autocorrelation,
which can be significantly longer than the membrane time
constant of individual neurons [28–32]. In these models, slow
timescales can arise from operating in the transition to chaos
regime [28–30] or from metastable transitions between finite
randomly connected clusters [32]. Moreover, a heterogeneous
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distribution of self-coupling strengths can generate heteroge-
neous timescales across network units [33,34].

Temporal and spatial correlations arise from the same
spatiotemporal dynamics in the network and are therefore
intertwined. However, prior theoretical work did not explore
the relationship between correlations in these two domains,
especially in networks with spatially arranged connectiv-
ity. Theoretical understanding of how the interplay between
temporal and spatial correlations arises from the network’s
dynamics and connectivity will provide tight constraints on
models of cortical dynamics.

We show that spatial and temporal correlations are tightly
interdependent in networks with stochastic dynamics and
spatially arranged connectivity. We study analytically and
in numerical simulations the spatiotemporal correlations in
networks of binary units with connectivity arranged in one-
and two-dimensional spaces. These networks generate rich
spatiotemporal patterns of activity varying across multiple
temporal and spatial scales [Fig. 1(a)]. To analyze the spa-
tiotemporal structure of neural correlations, we compute the
auto- and cross-correlation functions [Fig. 1(a)] analytically,
decomposing the correlation functions into a series of spa-
tial frequency modes. We find that each spatial frequency
mode is related to a specific timescale. The linear combina-
tion of spatial frequency modes defines the temporal profile
of autocorrelation and time-delayed cross-correlations, and
the spatial profile of equal-time cross-correlation [Fig. 1(b)].
To understand how the spatiotemporal scales of correlations
depend on the connectivity structure, we consider networks
with spatial connectivity ranging from nearest-neighbor to
all-to-all connectivity [Fig. 1(c)]. Our calculations show that
the weights and timescales associated with nonzero spatial-
frequency modes decrease heterogeneously with broader
spatial connectivity, affecting both the spatial and tempo-
ral scales of correlations. Moreover, the external input in
networks with nonlinear interactions can modulate the fluc-
tuations of mean activity and timescales of correlations
with effects depending on the operating regime of network
dynamics.

The organization of the paper is as follows. In Sec. II, we
define the network models and derive general forms of dy-
namical equations for correlations. We use these equations to
compute the spatiotemporal structure of correlations in one-
(Sec. III) and two-dimensional (Sec. IV) models with spatially
arranged connectivity. In Sec. V, we investigate how the input
current modulates timescales of correlations in different oper-
ating regimes of network dynamics.

II. NETWORK MODELS

A. The network architecture

We consider networks of binary interacting units [36–40]
with spatially structured connectivity. We study one- and
two-dimensional networks with different ranges of spatial
connectivity (controlled by connectivity radius parameter in
our models). In the one-dimensional model, N units are
evenly spaced on a ring with the periodic boundary condition
[Fig. 2(a)]. In the two-dimensional model, N2 units are evenly
placed on the nodes of N × N square lattice with periodic
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FIG. 1. Summary of the main theoretical results. (a) Neural net-
works with spatially arranged connectivity (upper left) generate rich
spatiotemporal dynamics (upper right, activity traces of two units
at locations x1 and x2), characterized by three types of correlation
functions. 1© Equal-time cross-correlation C(x1, x2) is the correlation
between activity of two units at the same time as a function of
distance � = |x1 − x2|. 2© Autocorrelation A(t ) is the correlation
between activity of a unit at two different times as a function of
time-lag t . 3© Time-delayed cross-correlation C(x1, x2, t ) is the corre-
lation between activity of two units at locations x1 and x2 at different
times as a function of time-lag t . (b) Spatiotemporal correlations
can be decomposed into a series of spatial frequency modes. Each
spatial frequency mode is related to a specific timescale, contribut-
ing hierarchically with decreasing weights to the overall pattern of
correlations. (c) When we increase the spatial connectivity range, the
weights and timescales of nonzero spatial-frequency modes decrease
heterogeneously, affecting both the spatial and temporal scales of
correlations.

boundary conditions [Fig. 2(b)]. In both models, units re-
ceive directed connections from their neighbors within a ball
of the radius R in Chebyshev distances (L∞ norm) in one
or two dimensions. The strength of connectivity is uniform
across all connected units. In models with R = 1, each unit
only receives inputs from its nearest neighbors, which we
refer to as nearest-neighbor connectivity. We refer to models
with R > 1 as models with long-range connectivity. When
changing the connectivity radius R, we scale the strength of
recurrent interactions by the ratio of the number of connected
units for R = 1 and R > 1, so that the total maximum strength
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FIG. 2. The network architecture. (a) One-dimensional network
with nearest-neighbor (R = 1, left) and long-range connectivity (R >

1, right). (b) Two-dimensional network with nearest-neighbor (R =
1, left) and long-range connectivity (R > 1, right).

of recurrent interactions (i.e., the sum of interactions when all
connected units are in the same state) for any R is the same as
for R = 1.

In one-dimensional models, the perimeter of the ring is L,
so the distance between neighboring nodes on the ring is a =
L/N , where a denotes the lattice constant [Fig. 2(a)]. Thus
the spatial position of unit i is xi = a · i, i = 0, . . . , N − 1.
For connectivity radius R, each target unit i receives directed
connections from 2R nearby units ranging from i − R, i −
R + 1, . . . , i + R (R = 1, 2, . . . , N/2). The strength of con-
nectivity is uniform across these 2R units and scaled by 1/R
to keep the total maximum interaction strengths the same for
any R. When R = 1, each unit i only receives inputs from two
nearest neighbors i − 1 and i + 1.

In two-dimensional models, the side length of square lat-
tice is L, so both the horizontal and vertical distance between
neighboring nodes are a = L/N , where a denotes the lattice
constant [Fig. 2(b)]. We use indices (i, j) to denote a unit
located at spatial position (xi, x j), where xi = i · a and x j =
j · a, i, j = 0, 1, . . . , N − 1. For connectivity radius R, each
unit (i, j) receives directed connections from [(2R + 1)2 − 1]
nearby units denoted as (i′, j′), where i′ = i − R, i − R +
1, . . . , i + R and j′ = j − R, j − R + 1, . . . , j + R, (i′, j′) �=
(i, j) [Fig. 2(b)]. The strength of connectivity is uniform
across these [(2R + 1)2 − 1] units and scaled by 8/[(2R +
1)2 − 1] (where 8 is the number of connected units for R = 1).
When R = 1, unit (i, j) only receives inputs from eight nearest
neighbors (i′, j′), where max(|i − i′|, | j − j′|) = 1.

B. Dynamics of binary units

In the network model, each unit i can be in one of two states
Si ∈ {0, 1}. These states could represent the presence (Si = 1)
or absence (Si = 0) of a spike in a time-bin for a single neuron
or the high or low activity state in a local group of neurons
such as a cortical minicolumn [41]. For simplicity, we call
these states active (Si = 1) and inactive (Si = 0).

The state of each unit Si ∈ {0, 1} is updated based on tran-
sition rates between active-to-inactive and inactive-to-active
states, given by ω(1 → 0) and ω(0 → 1), respectively. We
parametrize the transition rates as

ω(0 → 1) = α1 + β ′
1 F

⎛
⎝∑

j

S j

⎞
⎠,

ω(1 → 0) = α2 − β ′
2 F

⎛
⎝∑

j

S j

⎞
⎠. (1)

Here α1 and α2 are the intrinsic transition rates of one unit
in the absence of network interactions. The second term in
these expressions represents modulation of transition rates
due to interactions with connected units in the network. In
the interaction terms,

∑
j S j represents the sum of activity

of units directly connected to unit i. We assume that all
connected units uniformly contribute to the transition rate
of the target unit (i.e., have uniform connectivity strength
to the target unit). A nonlinear activation function F is a
monotonically increasing function of x that satisfies condi-
tions F (0) = 0, F (∞) = 1. In previous models of binary-unit
networks [36–40], F (x) is usually approximated by a Heav-
iside function with a fixed threshold. Here we consider F of
the form

F

⎛
⎝∑

j

S j

⎞
⎠ = 1 − exp

⎛
⎝−θ

n

∑
j

S j

⎞
⎠, (2)

where θ is a positive constant that controls the gain of recur-
rent inputs, and n is the number of connected neighbors to
each target unit. In Secs. III and IV, we use the linear approx-
imation of the activation function to obtain analytical results
for correlations in the steady-state regime. Due to lineariza-
tion, these results do not depend on a specific choice of the
activation function. In Sec. V, we consider more general non-
linear interactions, in which case the shape of the activation
function affects the number and stability of solutions for the
mean activity and input-dependent changes in correlations.

The parameters β ′
1 and β ′

2 control the interaction strength.
To satisfy the condition of transition rate being positive, we
require α2 − β ′

2 � 0. In our models, we assume the connectiv-
ity is excitatory, hence β ′

1 > 0 and β ′
2 > 0. Thus inputs from

active neighbors will increase the transition rate from inactive
to active state ω(0 → 1) and suppress the transition rate from
active to inactive state ω(1 → 0). Since the connectivity is
spatially organized, nearby units are more likely to become ac-
tive simultaneously. Therefore the recurrent interaction tends
to enhance the spatial clustering of high activity states. Com-
bining ω(0 → 1) and ω(1 → 0), the general expression of
transition rate is given by

ω(Si → 1 − Si ) = ω(0 → 1) + [ω(1 → 0) − ω(0 → 1)]Si.

(3)

1. Linearized approximation

We study correlated patterns of activity fluctuations at
the steady state. Outside the steady state regime, the activ-
ity is unstable and we cannot define activity fluctuations as
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perturbations around a fixed point. Hence, we focus on a
region of model parameters in which after a sufficiently long
time, the global network activity reaches an equilibrium state
at a fixed point. In this case, linearization of the dynamical
equations around the fixed point provides a good approxi-
mation and simplifies derivations of correlation functions. In
our main analyses, we use the linear approximation of the
interaction terms

β ′
1 F

⎛
⎝∑

j

S j

⎞
⎠ ∼ β ′

1 F ′(0) ·
⎛
⎝∑

j

S j

⎞
⎠ = β1 ·

⎛
⎝∑

j

S j

⎞
⎠,

(4)

β ′
2 F

⎛
⎝∑

j

S j

⎞
⎠ ∼ β ′

2 F ′(0) ·
⎛
⎝∑

j

S j

⎞
⎠ = β2 ·

⎛
⎝∑

j

S j

⎞
⎠,

(5)

where we defined the effective interaction strengths

β1 = β ′
1 F ′(0) = θ

n
β ′

1, β2 = β ′
2 F ′(0) = θ

n
β ′

2. (6)

Here we assumed that the mean global activity is close to zero,
so F ′(S) ≈ F ′(0) and F (S) ≈ 0. With these conditions, the
linearized transition rates become

ω(0 → 1) = α1 + β1 ·
⎛
⎝∑

j

S j

⎞
⎠,

ω(1 → 0) = α2 − β2 ·
⎛
⎝∑

j

S j

⎞
⎠. (7)

We discuss the case when mean activity S̄ is non-negligible in
Sec. V.

2. Simulations of network dynamics

We verify our analytical derivations using numerical sim-
ulations of the network models (Fig. 3). We simulate the
networks in discrete time using transition probabilities in-
stead of transition rates. Specifically, the state of each unit
is updated at each time step tk (k indexes time steps with
tk − tk−1 = �t) based on the transition probabilities:

p(0 → 1) = pext + pr ·
⎛
⎝∑

j

S j

⎞
⎠, (8)

p(1 → 0) = 1 − pext − ps − pr ·
⎛
⎝∑

j

S j

⎞
⎠. (9)

Here ps is the self-excitation probability, pext is the probability
of external excitation, and pr is the probability of recurrent
excitation from active neighbors.

∑
j S j denotes the number of

active neighbors for the target unit. This transition probability
scheme is a discrete-time approximation of continuous-time
dynamics with the transition rates Eq. (7), linked via the
parameter transformation (Appendix A):

α1 = pext

[ − ln ps

(1 − ps)�t

]
, β1 = pr

[ − ln ps

(1 − ps)�t

]
, (10)
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FIG. 3. Simulations of a two-dimensional network model (N ×
N = 10 000 units) with nearest-neighbor connectivity. (a) Snapshots
of population activity. (b) Time series of activity states for six ex-
ample units sampled from two local neighborhoods indicated with
circles in a.

α2 = (1 − ps − pext )

[ − ln ps

(1 − ps)�t

]
, β2 = pr

[ − ln ps

(1 − ps)�t

]
.

(11)

The simulation code for both one- and two-dimensional net-
work models is publicly available in Ref. [35].

C. Dynamical equations for the mean activity and correlations

We use the master equation to derive the dynamical
equation for the mean activity and the general forms of
time-evolution equations for the correlation functions (Ap-
pendix B) [36–40]. We assume β1 = β2 in all calculations and
model simulations unless stated otherwise.

The mean activity 〈Si〉(t ) of unit i at time t [where 〈·〉
denotes averaging over the distribution of all possible config-
urations, Eq. (B2)] obeys the equation:

τ0
d

dt
〈Si〉(t ) = α1

α1 + α2
− 〈Si〉 + β1

α1 + α2

〈∑
j

S j

〉
, (12)

with τ0 is given by

τ0 = 1

α1 + α2
. (13)

Equation (12) shows that in the absence of network inter-
actions (β1 = 0), the activity of each unit drifts toward the
same mean value α1/(α1 + α2) with the intrinsic timescale
τ0. For finite interaction strength, we derive the steady-state
solution for the mean global activity S̄, defined as S̄ =∑

i limt→∞〈Si(t )〉/Nd (d is the dimension of the network
model). We set the left-hand side of Eq. (12) to zero and
then average over all units to obtain α1/(α1 + α2) − S̄ +
[β1/(α1 + α2)]nrS̄ = 0. Solving this equation for S̄ yields

S̄ = α1

α1 + α2

1

1 − nr
[

β1

α1+α2

] , (14)
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where nr is the number of units connected to a target unit.
With the connectivity radius R, nr = 2R for one-dimensional
models, and nr = (2R + 1)2 − 1 for two-dimensional mod-
els. Thus the mean activity is scaled by a factor of 1/[1 −
nrβ1/(α1 + α2)], which describes the effect of network inter-
actions.

The value of S̄ sets the upper bound on the interaction
strength, since S̄ is a non-negative number, which implies
nrβ1/(α1 + α2) < 1. When the interaction strength exceeds
this bound, the network activity becomes unstable and the
mean-field approximation fails. We focus on the strong in-
teraction regime which is close to the threshold of instability,
i.e., nrβ1/(α1 + α2) ≈ 1. For one- and two- dimensional mod-
els with nearest-neighbor connectivity, the strong interaction
limit is 2β1/(α1 + α2) ≈ 1 and 8β1/(α1 + α2) ≈ 1, respec-
tively. In Secs. III C and IV C, we show that in this regime,
spatial recurrent interactions generate slow timescales in auto-
and cross-correlations that are much longer than intrinsic
timescale τ0.

To compute neural correlations, we analyze the dynamics
of fluctuations around the fixed point of the mean global activ-
ity S̄. We define the activity fluctuation of unit i as δSi = Si −
S̄. The equal-time cross-correlation function is then defined
as 〈δSi(t )δS j (t )〉 (i �= j), the time-delayed cross-correlation
function is 〈δSi(t )δS j (t + τ )〉 (i �= j), and the autocorrelation
function is 〈δSi(t )δSi(t + τ )〉 [Fig. 1(a)].

The mean global activity S̄ also determines the average
variance of activity, which is the average autocorrelation
at zero time lag: A(0) = ∑

i limt→∞〈δSi(t )δSi(t )〉/Nd . Using
the property of binary units 〈Si〉 = 〈S2

i 〉, we can express A(0)
via S̄:

A(0) = lim
t→∞

1

Nd

∑
i

〈δSi(t )δSi(t )〉

= lim
t→∞

[
1

Nd

∑
i

〈(Si(t ) − S̄)(Si(t ) − S̄)〉
]

= lim
t→∞

1

Nd

∑
i

〈
S2

i

〉− (S̄)2

= lim
t→∞

1

Nd

∑
i

〈Si〉 − (S̄)2 = S̄(1 − S̄). (15)

To obtain the analytical expressions for correlations, we
used the general form time-evolution equations for correla-
tion functions (Appendix B) derived based on the master
equation formalism [26,36–40]. We then applied Fourier
expansion of these time-evolution equations to solve for
the average equal-time and time-delayed cross-correlations
and autocorrelations. Fourier expansion was used in previ-
ous work but only to study equal-time cross-correlations in
one-dimensional binary network models [26] and firing-rate
networks [6] with spatial connectivity. Next, we obtained
the steady-state solution based on the Fourier transformation
of time-evolution of equal-time cross-correlation function.
Finally, we solved the time-evolution equation of time-
delayed cross-correlations and autocorrelations, where initial
conditions are given by the steady state of equal-time cross-
correlations. In Secs. III and IV, we discuss the analytical

solutions and numerical simulations of these correlations in
different network configurations.

III. ONE-DIMENSIONAL MODELS

In this section, we study spatiotemporal patterns of cor-
relations in the one-dimensional models [Fig. 2(a)]. We
analytically compute three types of correlation functions: au-
tocorrelation, time-delayed cross-correlation and equal-time
cross-correlation [Fig. 1(a)]. Autocorrelation A(t ) is the cor-
relation between activity of a unit at two different times
as a function of time lag t . Time-delayed cross-correlation
C(x1, x2, t ) is the correlation between activity of two units at
locations x1 and x2 at different times as a function of time lag
t . Equal-time cross-correlation C(x1, x2) is the time-delayed
cross-correlation evaluated at zero time lag [Fig. 1(a)]. We
use Fourier transformation to derive the analytical form of the
auto- and cross-correlations and study their dependence on the
spatial network structure.

A. Correlation functions in Fourier space

The one-dimensional model contains N units. Each unit is
located in position x, x = j · a, j = 0, . . . , N − 1, with pe-
riodic boundary condition: x + N · a = x [Fig. 2(a)]. We can
expand the state S(x) of the unit at position x in Fourier space
(here we omit the time index of S(x) for notation clarity):

S(x) =
∑

k

eikxS̃(k) =
∑

k

eik jaS̃(k), (16)

where S̃(k) denotes the state variable in Fourier space with the
wave number k. The periodic boundary condition requires the
state variable to be invariant under translation S(x + Na) =
S(x), which restricts the allowed values of the wave number
in Fourier space:

S(x + Na) =
∑

k

[eikxS̃(k)]eikNa =
∑

k

[eikxS̃(k)], (17)

hence,

eikNa = 1, kNa = 2πm, m = 0,±1,±2, . . . (18)

Without loss of generality, we can define the Fourier mode
spectrum to be N discrete values: k = 2πn/(Na) = 2πn/L,
where n = 0, 1, . . . , N − 1, which is analogous to the first
Brillouin zone in solid state physics [42].

Similarly, we can expand the equal-time pairwise corre-
lation function between the units located at x1 and x2 as
(omitting the time index)

C(x1, x2) = 〈δS(x1)δS(x2)〉
=
∑

k1

∑
k2

eik1x1 eik2x2〈δS̃(k1)δS̃(k2)〉. (19)

We are interested in the average correlation function C(x1, x2)
with a fixed difference between x1 and x2: x = x1 − x2, termed
C(x):

C(x) = 1

N

(N−1)a∑
x2=0

C(x + x2, x2). (20)
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This correlation function can be expanded in Fourier space:

C(x) = 1

N

∑
x2

〈δS(x + x2)δS(x2)〉

= 1

N

∑
x2

∑
k1

∑
k2

eik1(x2+x)eik2x2〈δS̃(k1)δS̃(k2)〉

=
2π (N−1)

L∑
k=0

eikx〈δS̃(k)δS̃(−k)〉

=
2π (N−1)

L∑
k=0

eikxC̃(k), (21)

where C̃(k) is the amplitude of k-th Fourier mode of cor-
relation function, C̃(k) = 〈δS̃(k)δS̃(−k)〉 = ∑

x C(x)e−ikx/N .
To derive the third line in Eq. (21), we used the identity
for the Dirac delta distribution

∑
x2

ei(k1+k2 )x2/N = δ(k1 +
k2) to remove the summation over k2:

∑
k1

∑
k2

eik1xδ(k1 +
k2)〈δS̃(k1)δS̃(k2)〉 = ∑

k eikx〈δS̃(k)δS̃(−k)〉. Here, we focus
on the case when the correlation function is symmetric C(x) =
C(−x), in which case the correlation function can be ex-
pressed as a function of distance � = |x1 − x2|. The distance
� takes N/2 discrete values: � = na, n = 1, 2, . . . , N/2. In
this case, the Fourier modes of correlation function are re-
stricted to take N/2 values: k = 0, . . . , N/2 − 1:

C(�) = 2

2π (N/2−1)
L∑

k=0

eik�C̃(k), � > 0. (22)

Without loss of generality, here and below, we assume N to
be an even integer. By using the identity C(�) = C(−�), we
can rewrite the Eq. (22) as

C(�) = 2

2π (N/2−1)
L∑

k=0

cos(k�)C̃(k), � > 0, (23)

where C̃(k) is the inverse Fourier transformation of C(�):

C̃(k) = 2

N

Na/2∑
�=a

e−ik�C(�). (24)

For the time-delayed cross-correlation function, we can
also define the average correlation:

C(x, t ) = 1

N

∑
x2

〈δS(x + x2, t0)δS(x2, t0 + t )〉, (25)

and expand it in Fourier space as a function of distance using
time-dependent Fourier amplitudes C̃(k, t ):

C(�, t ) = 2

2π (N/2−1)
L∑

k=0

cos(k�)C̃(k, t ), � > 0. (26)

C(�, t ) has the initial condition C(�, t = 0) ≡ C(�), which
gives C̃(k, t = 0) ≡ C̃(k).

The average autocorrelation is defined as

A(t ) = lim
t0→∞

∑
x

〈δS(x, t0)δS(x, t0 + t )〉/N. (27)

Since the average autocorrelation does not have spatial depen-
dence, we do not directly apply Fourier transformation.

B. Time-evolution equations for the average correlation
functions

We can simplify the general equations for correlations
(Appendix B) to obtain the time-evolution equations for the
average correlation functions C(x), C(x, t ), A(t ) defined in
Sec. III A. By solving these equations in Fourier space, we
obtain the Fourier amplitudes C̃(k) and then compute C(�),
C(�, t ) using Eqs. (23) and (26). In the case of nearest-
neighbor connectivity (R = 1), the steady-state equation for
equal-time cross-correlation function reads

C(x) = β1

α1 + α2
[C(x − a) + C(x + a)

+ (δx,−a + δx,a)A(0)]. (28)

The time-evolution equation for the time-delayed cross-
correlation function is

τ0
d

dt
C(x, t ) = − C(x, t )

+ β1

α1 + α2
[C(x − a, t ) + C(x + a, t )

+ (δx,−a + δx,a)A(t )]. (29)

The time-evolution equation for the time-delayed autocorrela-
tion function is

τ0
d

dt
A(t ) = −A(t ) + β1

α1 + α2
2C(a, t ). (30)

Here, we can see that the cross-correlations contribute to the
autocorrelation function.

For the one-dimensional model with connectivity radius
R > 1 (i.e., long-range connectivity), we denote the average
equal-time cross-correlation with fixed position difference
x as C(x; R), the average time-delayed cross-correlation
C(x, t ; R), and the autocorrelation A(t ; R). Similar to the case
of nearest-neighbor connectivity, we obtain the steady-state
equation for C(x; R):

C(x; R)

= β1

(α1 + α2)R

[
R∑

m=1

(C(x − ma; R) + C(x + ma; R))

+
R∑

m=1

(δx,ma + δx,N−ma)A(0; R)

]
; (31)

the time-evolution equation for C(x, t ; R):

τ0
d

dt
C(x, t ; R) = −C(x, t ; R)

+ β1

(α1 + α2)R

[
R∑

m=1

(C(x − ma, t ; R) + C(x + ma, t ; R))

+
R∑

m=1

(δx,ma + δx,N−ma)A(t ; R)

]
; (32)
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and the time-evolution equation for A(t ; R):

τ0
d

dt
A(t ; R) = −A(t ; R)

+ β1

(α1 + α2)R

[
2

R∑
m=1

C(ma, t ; R)

]
. (33)

C. Spatiotemporal structure of correlation functions

1. Nearest-neighbor connectivity

Here we study the spatiotemporal structure of correla-
tion functions in the case of nearest-neighbor connectivity
[Fig. 2(a)]. Equation (30) describes the time evolution of
autocorrelation function. The first term on the right-hand side
of the equation represents the decay of autocorrelation with
the rate given by the intrinsic timescale τ0. In the limit of
weak interactions β1 → 0, we can neglect the contribution of
cross-correlation to the autocorrelation and obtain the solution
for autocorrelation as

A(t ) = A(0) exp

(
− t

τ0

)
, t � 0. (34)

For finite interaction strength β1 > 0, the cross-correlation
C(a, t ) acts as an external source term that brings additional
temporal structures into A(t ). Therefore A(t ) contains two
types of timescales: the intrinsic timescale τ0 that is indepen-
dent of network interactions, and the interaction timescales
that are shared with cross-correlation C(a, t ).

(a) Spatial frequency modes and equal-time cross-
correlation. To get the analytical form of C(a, t ), we first solve
Eq. (28) and get C(�), which provides the initial condition for
C(�, t ) at t = 0. Then, we can solve Eq. (29) to find C(�, t ).
Equations (28) and (29) are coupled equations for C(x) and
C(x ± a), but they can be decoupled in Fourier space. Using
Eq. (28), for each Fourier mode k, we obtain

C̃(k) = 2β1

α1 + α2
cos(ka)C̃(k) + 2β1

α1 + α2
cos(ka)

1

N
A(0).

(35)
Then, C̃(k) is given by

C̃(k) =
2β1

α1+α2
cos(ka)

1 − 2β1

α1+α2
cos(ka)

1

N
A(0). (36)

In this expression, the factor 1/N comes from the normal-
ization of the discrete Fourier transformation. The inverse
Fourier transformation of C̃(k) leads to C(�):

C(�) = A(0) exp

(
− �

Lc

)
, (37)

where we defined the correlation length Lc:

Lc = a · 1

ln
(

α1+α2
2β1

+
√

( α1+α2
2β1

)2 − 1
) . (38)

Our analytical calculation of C(�) agrees well with the equal-
time cross-correlation function computed from the model
simulations [Fig. 4(a)]. In the limit of strong interactions,
2β1/(α1 + α2) → 1, the correlation length can be approxi-
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FIG. 4. Analytical and simulation results for the spatiotemporal
cross-correlations in the one-dimensional model with nearest-
neighbor connectivity. (a) Equal-time cross-correlation C(�) as a
function of distance �. (b) Time-delayed cross-correlation func-
tion C(�, t ) for a range of distances (� = a, 2a, 3a, 4a). The
parameters are α1 = 1.0653 × 10−4/�t , α2 = 0.1277/�t , β1 =
0.0586/�t , �t = 1 ms, and N = 100.

mated as

Lc ≈ a
1√

2( α1+α2
2β1

− 1)
. (39)

(b) Timescales of spatial frequency modes and time-
delayed cross-correlation. Next, we compute the time-delayed
cross-correlation. Equation (29) includes both auto- and cross-
correlations. The autocorrelation A(t ) contains the intrinsic
timescale τ0, which, as we will show, is faster than dominant
timescales in the cross-correlation. Therefore here we neglect
A(t ) on the right-hand side of Eq. (29). Under this approxima-
tion, the Fourier transformation of Eq. (29) is given by

d

dt
C̃(k, t ) ≈ 1

τ0

[
−C̃(k, t ) + β1

α1 + α2
[2 cos(ka)]C̃(k, t )

]

= − 1

τ (k)
C̃(k, t ). (40)

Here τ (k) is the interaction timescale for mode k [Fig. 5(a)]
defined as

τ (k) = τ0

1 − β1

α1+α2
[2 cos(ka)]

. (41)

Equation (40) shows that each spatial Fourier mode C̃(k)
fluctuates independently with the timescale τ (k):

C̃(k, t ) = C̃(k) exp

(
− t

τ (k)

)
. (42)

Thus the time-dependence of C(�, t ) is described by a su-
perposition of N/2 Fourier modes where each mode has a
characteristic timescale τ (k) with the weight C̃(k) cos(k�):

C(�, t ) = 2

2π (N/2−1)
L∑

k=0

C̃(k) cos(k�) exp

(
− t

τ (k)

)
. (43)

Our analytical calculation of C(�, t ) agrees well with the
results from numerical simulations [Fig. 4(b)]. We find that
C(�, t ) decay in time much slower than the intrinsic timescale
τ0, indicating that interaction timescales are much longer than
τ0. At short time lags, the decay rate of C(�, t ) decreases with
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FIG. 5. Timescales of cross-correlations C(�, t ) and their corre-
sponding weights for different distances � in the one-dimensional
model with the nearest-neighbor connectivity. (a) Interaction
timescales τ (k) for each spatial Fourier mode k. (b) Normal-
ized weights 2C̃(k) cos(k�)/C(�) for each timescale τ (k). The
parameters are α1 = 1.0653 × 10−4/�t , α2 = 0.1277/�t , β1 =
0.0586/�t , �t = 1 ms, and N = 100.

increasing distance � [seen as flattening profile of C(�, t ) at
short time lags].

To understand these distance-dependent changes in the
temporal profile of correlations, we analyze the spectrum of
interaction timescales τ (k) and their corresponding weights
in the analytical form of C(�, t ) [Eq. (43)]. The spectrum of
τ (k) is a monotonically decreasing function of k in the domain
[0, 2π (N/2 − 1)/L] [Fig. 5(a)]. The lowest mode, k = 0, has
the largest timescale, which we denote the global timescale:

τ global = τ (k = 0) = τ0

1 − 2 β1

α1+α2

. (44)

τ global is always slower than (or equal to) the intrin-
sic timescale τ global � τ0. When the interactions are very
weak (β1/(α1 + α2)  1), τ global ≈ τ0. In the limit of strong

interactions (1 − 2β1/(α1 + α2) ≈ 0), τ global � τ0. The cor-
responding spatial Fourier mode C̃(k = 0) = 2

∑
� C(�)/N

is the spatial average of the cross-correlation C(�) and
describes the spatially homogeneous component of the cross-
correlation. For all other Fourier modes, timescale τ (k)
decreases gradually with increasing k and reaches τ0 at
k/(2π/L) = N/4. For k/(2π/L) ∈ [N/4, (N/2 − 1)], τ (k) is
smaller than τ0, but weights of these modes are negligible.

To understand the structure of weights for interaction
timescales τ (k) in C(�, t ), we define the average timescale
τ (�) of the correlation function

τ (�) = 1

C(�)

∫ +∞

0
C(�, t )dt =

[
2C̃(0)

C(�)

]
τ global

+
2π (N/2−1)

L∑
k= 2π

L

[
2C̃(k) cos(k�)

C(�)

]
τ (k). (45)

This expression shows that the average timescale of cross-
correlation τ (�) is a weighted sum of N/2 timescales,
where the normalized relative weight for mode k is given by
[2C̃(k) cos(k�)/C(�)]. These weights define the relative con-
tribution of different Fourier modes to the cross-correlation.

The relative weights of timescales τ (k) depend on the dis-
tance � [Fig. 5(b)], leading to a distance-dependent temporal
profile of C(�, t ) [Fig. 4(b)]. In particular, the distribution
of relative weights shifts towards the low-k modes with
increasing � [Fig. 5(b)]. Thus high-k modes (short-range spa-
tial correlations) contribute to cross-correlations with larger
weights at shorter distances �, whereas low-k modes (long-
range spatial correlations) dominate at longer distances. For
� = a, the relative weights monotonically decrease with
k, with non-negligible values concentrated in the region
k/(2π/L) ∈ [0, N/4] where the interaction timescales τk > τ0

(Fig. 5). Therefore averaging all modes leads to τ0 < τ (�) <

τglobal, which explains the magnitude of slope of C(� = a, t )
[Fig. 4(b)]. For larger �, the range of k with non-negligible
positive weights shifts toward smaller values, enhancing the
relative contributions of larger timescales τ (k). As a result,
τ (�) is positively correlated with �. Moreover, when � >

a [e.g., � = 4a in Fig. 5(b)], there are negative weights
for k modes in the range k/(2π/L) ∈ [0, N/4], which pro-
duce difference-of-exponentials components [ai exp(−t/τi ) −
a j exp(−t/τ j )] in correlations. These components lead to a
slow decay of correlations at short time lags, flattening the
temporal profile of correlations [Fig. 4(b)].

(c) Analytical form of autocorrelation. Using the analytical
approximation of C(�, t ), we can solve Eq. (30) to obtain the
analytical form of autocorrelation:

A(t ) = A(0) exp

(
− t

τ0

)

+ 2

2π (N/2−1)
L∑

k=0

τ (k)

τ (k) − τ0

2β1

α1 + α2
C̃(k) cos(ka)

×
[

exp

(
− t

τ (k)

)]
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FIG. 6. Analytical and simulation results for autocorrelation A(t )
in the one-dimensional model with nearest-neighbor connectivity.
[(a)–(c)] Autocorrelation function for different ranges of time lags
[short (a), intermediate (b), and long (c)]. Red line - analytical solu-
tion, pink dots - simulation results, black dashed line - exponential
function with the decay rate set by the intrinsic timescale, grey
dashed line - exponential function with the decay rate set by the
global timescale. The autocorrelation obtained from model simu-
lations is not shown for long time lags in c due to the limitation
of statistical sampling [44]. (d) Comparison of temporal profiles of
autocorrelation (red line) and cross-correlations. The parameters are
α1 = 1.0653 × 10−4/�t , α2 = 0.1277/�t , β1 = 0.0586/�t , �t =
1 ms, and N = 100.

= A(0) exp

(
− t

τ0

)

+ 2

2π (N/2−1)
L∑

k=0

C̃(k)

[
exp

(
− t

τ (k)

)]
. (46)

This equation shows that A(t ) contains N/2 + 1 timescales:
the intrinsic timescale τ0 [Eq. (13)] and N/2 interac-
tion timescales τ (k) [Eq. (41)] inherited from the cross-
correlation. The mixture of these timescales defines the
temporal profile of autocorrelation. At short time lags, the de-
cay of autocorrelation is dominated by the intrinsic timescale
[Fig. 6(a)]. At intermediate time lags, the autocorrelation de-
cays with a characteristic timescale similar to τ (�) which is
between τ0 and τglobal [Fig. 6(b)]. In the limit of long time
lags, the timescale of decay approaches the global timescale
τglobal [Fig. 6(c)]. The autocorrelation obtained from model
simulations is not shown at very long time lags [Fig. 6(c)], be-
cause the sample autocorrelation is corrupted by the statistical
bias arising from the finite sample size [44]. Due to this bias,
the sample autocorrelation becomes systematically negative at
long time lags (not visible on the logarithmic scale) even for
processes with a strictly positive ground-truth autocorrelation.
Finally, at time lags much larger than τ0, the autocorrelation
and cross-correlations decay at a similar rate [Fig. 6(d)], con-
firming the effects of shared Fourier amplitudes C̃(k) in auto-
and cross-correlations [Eq. (46)].
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FIG. 7. Equal-time cross-correlations C(�; R) as a function of
distance for the one-dimensional model with different connectiv-
ity radius R. The parameters are α1 = 1.0653 × 10−4/�t , α2 =
0.1277/�t , β1 = 0.0586/�t , �t = 1 ms, and N = 100.

2. Long-range connectivity

Here we study correlations in one-dimensional models
with long-range connectivity [R > 1, Fig. 2(a)]. We investi-
gate how the connectivity radius R affects the spatiotemporal
patterns of correlations.

(a) Spatial scales of correlations. Same as for the nearest-
neighbor connectivity, we solve the steady-state equation for
cross-correlation Eq. (31) in Fourier space. The Fourier am-
plitudes of equal-time cross-correlation C̃(k; R) are given by

C̃(k; R) =
2β1

(α1+α2 )R
sin( R

2 ka)

sin( 1
2 ka)

cos
[

1
2 ka(R + 1)

]
1 − 2β1

(α1+α2 )R
sin( R

2 ka)

sin( 1
2 ka)

cos
[

1
2 ka(R + 1)

] 1

N
A(0).

(47)
This equation shows that k = 0 mode is independent of R.
For all other modes, the magnitude of C̃(k; R) decreases with
increasing connectivity radius R, especially for high-k modes
(short-range correlations, Fig. 8). Thus increasing R leads
to more spatially homogeneous correlations (i.e., reduces
the distance-dependence of correlations). This effect is evi-
dent in the position space, where equal-time cross-correlation
C(�; R) is given by

C(�; R) ≈ A(0) exp

(
− �

LR

)
(48)

with the correlation length LR

LR =
(

R + 1

2

)
Lc. (49)

To compute C(�; R), here we used the approxima-
tion sin(Rka/2)/[sin(ka/2)R] ≈ 1 when R � 1 to simplify
C̃(k; R). Lc is the correlation length for the model with nearest-
neighbor interactions [R = 1, Eq. (38)]. Equation (49) shows
that the correlation length LR is proportional to connectivity
radius R. With increasing R, the network activity is more
homogeneous, which is reflected in an increase of the corre-
lation length. C(�, R) estimated from the model simulations
exhibits an increase in the correlation length [measured as the
slope of C(�, R) in the logarithmic-linear coordinates] with
increasing R that is in agreement with the analytical prediction
(Fig. 7).
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(b) Timescales of spatial frequency modes. To understand
how the connectivity radius R affects the temporal structure
of correlations, we solve the equation for the time-delayed
cross-correlation [Eq. (32)] in Fourier space, under the ap-
proximation of neglecting A(t ; R) [similar to the case R = 1,
Eq. (40)]. The timescale of each mode C̃(k, t ; R) is determined
by the equation:

d

dt
C̃(k, t ; R) ≈ − 1

τ (k; R)
C̃(k, t ; R), (50)

where the interaction timescales are

τ (k; R) = τ0

1 − 2β1

(α1+α2 )R
sin( R

2 ka)

sin( 1
2 ka)

cos[ 1
2 ka(R + 1)]

. (51)

Equation (51) shows that τ (k; R) depends on the interaction
radius R in heterogeneous manner, depending on the value
of k (Fig. 8). Specifically, for k = 0, the global timescale is
invariant to the change of R:

τ (k = 0; R) ≡ τglobal, (52)

which means the timescale of global activity fluctuations is
the same in all networks with different R. For finite-k modes,
the associated timescales decrease with increasing R, and ap-
proach the intrinsic timescale τ0. In the limit of large R, the
cross-correlation has only two nondegenerate timescales: τ0

and τglobal.
(c) Timescales of correlations. Next, we compute the

time-delayed cross-correlation and autocorrelation functions
for networks with long-range connectivity. Summing over
all Fourier modes, the time-delayed cross-correlation in the

position space is given by

C(�, t ; R) = 2

2π (N/2−1)
L∑

k=0

C̃(k; R) cos(k�) exp

(
− t

τ (k; R)

)
.

(53)
Combining Eqs. (53) and (33), we obtain an analytical form
of autocorrelation for networks with long-range connectivity:

A(t ; R) = A(0) exp

(
− t

τ0

)

+ 2

2π (N/2−1)
L∑

k=0

τ (k; R)

τ (k; R) − τ0

2β1

α1 + α2
C̃(k; R)

× 1

R

sin
(

R
2 ka

)
sin
(

1
2 ka

) cos

[
1

2
(R + 1)ka

]

×
[

exp

(
− t

τ (k; R)

)]
,

= A(0) exp

(
− t

τ0

)

+
2π (N/2−1)

L∑
k=0

2C̃(k; R)

[
exp

(
− t

τ (k; R)

)]
. (54)

To simplify the second term of A(t ; R), we substituted the
explicit form of τ (k; R) [Eq. (51)] in this equation and
obtained the identity: [τ (k; R)/(τ (k; R) − τ0)] × 2β1/(α1 +
α2)/R × sin( R

2 ka)/ sin( 1
2 ka) ≡ 1.

Similar to the case of nearest-neighbor interactions, A(t ; R)
contains N/2 + 1 timescales: the intrinsic time scale τ0

[Eq. (13)] and N/2 interaction timescales τ (k; R) [Eq. (51)]
inherited from cross-correlation C(�, t ; R). In A(t ; R), the
amplitude of τ (k; R) is C̃(k; R). Changing the connectivity
radius R affects both the amplitudes and the corresponding
timescales τ (k; R) (Fig. 8), leading to R-dependent changes in
autocorrelation. With increasing R, the relative weight of τ0

is enhanced due to reduction of C̃(k; R) for finite-k models.
Accordingly, in autocorrelation A(t ; R), the crossover from
τ0 to the average interaction timescale [mixture of τ (k; R)]
occurs at a larger time lag t [Fig. 9(a)]. Since in the large
time lag limit, the autocorrelation is dominated by the largest
interaction timescale τglobal, the autocorrelations decay at the
same rate for all values of R in this region [Fig. 9(b)].

In summary, the connectivity radius R affects both the spa-
tial and temporal structure of correlation functions. Increasing
R diminishes the nonzero spatial-frequency components in
equal-time cross-correlation and suppresses the amplitude of
interaction timescales (except for the global timescale) in
the autocorrelation. In the large R limit, cross-correlations
become spatially homogeneous, and autocorrelations contain
only two residual timescales, the intrinsic timescale and the
global timescale.

IV. TWO-DIMENSIONAL MODELS

In this section, we generalize the analytical methods used
for the one-dimensional models to study the spatiotemporal
correlations in the two-dimensional models [Fig. 2(b)]. Sim-
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FIG. 9. The autocorrelation A(t ; R) of the one-dimensional mod-
els with different connectivity radius R plotted for different ranges
of time lags [(a) short and (b) intermediate]. Lines - analytical
calculations, dots - simulation results. The parameters are α1 =
1.0653 × 10−4/�t , α2 = 0.1277/�t , β1 = 0.0586/�t , �t = 1 ms,
and N = 100.

ilar to the one-dimensional model, we can expand the state
of each unit in Fourier space. We denote the location of units
on the lattice as (x1, x2), where x1 = n1a, x2 = n2a, n1,2 =
0, . . . , N − 1. The periodic boundary conditions are x1 +
Na = x1, x2 + Na = x2. Similar to Sec. III A, the periodic
boundary conditions lead to discrete modes in Fourier space:
k1 = 2πm1/(Na) = 2πm1/L, k2 = 2πm2/(Na) = 2πm2/L,
where m1,2 = 0, . . . , N − 1. Then, the activity state of the unit
at (x1, x2) is

S(x1, x2) =
2π (N−1)/L∑

k1,k2=0

eik1x1 eik2x2 S̃(k1, k2). (55)

A. Correlations in two dimensions

The equal-time cross-correlation in two dimensions is
given by

C2(x, y) = 〈δS(x1, x2, t )δS(y1, y2, t )〉
=
∑
k1,k2

∑
k′

1k′
2

eik1x1 eik2x2 eik′
1y1 eik′

2y2

×〈δS̃(k1, k2)δS̃(k′
1, k′

2)〉. (56)

Here vectors x and y denote (x1, x2) and (y1, y2), respec-
tively. Similar to the case of one dimension, we can define
the average cross-correlation for the fixed spatial difference
x = x1 − x2 and y = y1 − y2:

C2(x, y) = 1

N2

(N−1)a∑
x1=0

(N−1)a∑
y1=0

C2(x, y). (57)

We expand C2(x, y) in Fourier space. We focus on the
special case when the correlation function is symmetric,
C2(x, y) = C2(−x, y) and C2(x, y) = C2(x,−y), and intro-
duce C2(�1,�2), which is the average cross-correlation
for fixed two-dimensional distance (�1, �2), where �1 =
|x1 − y1|, �2 = |x2 − y2| (Fig. 10). The distance �1,2 can
take N/2 values, �1,2 = a, 2a, . . . ., (N/2)a. Therefore there
are (N/2) × (N/2) = N2/4 discrete Fourier modes, k1,2 =

(x1, x2)

(y1, y2)

Δ1 = |x1 − y1|
Δ2 = |x2 − y2|

C2(Δ)Δ

Δ

C2(Δ1, Δ2)

FIG. 10. Schematic of computing the average cross-correlation
function in the two-dimensional model with nearest-neighbor in-
teractions. Blue dots mark a pair of correlated units. Pink regions
denote the range of local connectivity. The average correlation C2(�)
is computed by averaging correlations C2(�1, �2) over all pairs of
units with max(�1, �2) = �, which for the reference unit at (y1, y2)
corresponds to all units on the light blue square.

2πn1,2/L, n1,2 = 0, 1, . . . (N/2 − 1):

C2(�1,�2) = 4

2π (N/2−1)
L∑

k1,k2=0

cos(k1�1) cos(k2�2)C̃2(k1, k2).

(58)
The inverse Fourier transformation is given by

C̃2(k1, k2) = 4

N2

∑
�1,�2

C(�1,�2)e−ik1�1−ik2�2 . (59)

We also define the average correlation C2(�) for fixed
distance �, where we average over all pairs of C2(�1,�2)
with the constraint max(�1,�2) = � (Fig. 10). C2(�) can be
expressed as a linear summation of C̃2(k1, k2):

C2(�) = 1

2�/a

∑
max(�1,�2 )=�

C2(�1,�2)

= 4

2π (N/2−1)
L∑

k1,k2=0

1

2�/a

[
sin
(

1
2 k1�

)
sin
(

1
2 k1a

) cos

(
1

2
k1(� + a)

)

× cos(k2�) + sin
(

1
2 k2�

)
sin
(

1
2 k2a

) cos

(
1

2
k2(� + a)

)

× cos(k1�)]C̃2(k1, k2). (60)

The time-delayed cross-correlation in two dimensions is
defined as

C2(x, y, t ) = 〈δS(x1, x2, t0)δS(y1, y2, t0 + t )〉. (61)

The initial condition is given by equal-time correlations:
C2(x, y, t = 0) = C2(x, y). Similarly, we can define average
time-delayed cross-correlation C2(�1,�2, t ), which has the

013005-11



SHI, ZERAATI, LEVINA, AND ENGEL PHYSICAL REVIEW RESEARCH 5, 013005 (2023)

amplitudes C̃2(k1, k2, t ) in Fourier space:

C2(�1,�2, t ) =
2π (N/2−1)

L∑
k1,k2=0

cos(k1�1) cos(k2�2)C̃2(k1, k2, t ),

(62)
with initial condition C̃2(k1, k2, t = 0) = C̃2(k1, k2). We can
also define the average correlation C2(�, t ) for fixed distance
� by replacing C̃2(k1, k2) with C̃2(k1, k2, t ) in Eq. (60).

The average autocorrelation in two-dimensional models is
defined as

A2(t ) = lim
t0→∞

∑
x,y

〈δS(x, y, t0)δS(x, y, t0 + t )〉/N2. (63)

B. Spatial structure of correlations

Next, we study the dependence of cross-correlation on
the spatial distance. In the case of nearest-neighbor inter-
actions, we solve the steady state equation for equal-time
cross-correlation in Fourier space (Appendix C) and find the
amplitude of each spatial Fourier mode (k1, k2) as

C̃2(k1, k2)

=
2β1

α1+α2
[2 cos(k1a) cos(k2a) + cos(k1a) + cos(k2a)]

1 − 2β1

α1+α2
[(2 cos(k1a) cos(k2a) + cos(k1a) + cos(k2a)]

× 1

N2
A(0). (64)

An inverse Fourier transformation of C̃2(k1, k2) gives rise to
C2(�1,�2):

C2(�1,�2) = A(0) exp

(
−�1 + �2

Lc,2

)
. (65)

Here Lc,2 is defined as the correlation length in two dimen-
sions:

Lc,2 = a · 1

ln
(

f +
√

f 2 − 1
) , (66)

where

f = −1

2
+ 1

2

√
1 + α1 + α2

β1
. (67)

In the limit of strong interaction, 8β1/(α1 + α2) → 1, the
correlation length can be approximated as

Lc,2 ≈ a ·
√

3

2

1√(
α1+α2

8β1
− 1

) . (68)

Equal-time cross-correlations decay exponentially with in-
creasing distance. Figure 11(a) shows C2(�1,�2) as a
function of distance for �1 = �2, where Lc,2 is given by
Eq. (66). The spatial profile of the average correlation C2(�)
can be obtained by combining Eqs. (60) and (64) [Fig. 11(b)].

C. Timescales of correlations

Here we explore timescales of auto- and cross-correlations
in the two-dimensional model with the nearest-neighbor con-
nectivity.
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FIG. 11. Analytical and simulation results for the spatial depen-
dence of equal-time cross-correlation in the two-dimensional model
with nearest-neighbor connectivity. (a) Cross-correlation C2(�1, �2)
as a function of distance for �1 = �2. (b) Average cross-correlation
C2(�) as a function of distance �. The parameters are α1 =
1.0653 × 10−4/�t , α2 = 0.1277/�t , β1 = 0.0146/�t , and �t = 1
ms. Number of units: N2, N = 100.

1. Cross-correlation

To find the temporal profiles of time-delayed auto- and
cross-correlations, we first solve the time-evolution equa-
tions in Fourier space (Appendix C). Under the approximation
of neglecting autocorrelation in the time-evolution equa-
tion for time-delayed cross-correlations, we find that each
Fourier mode C̃2(k1, k2, t ) is associated with a timescale
τ (k1, k2) that is given by

τ (k1, k2)

= τ0

1 − 2β1

α1+α2
[2 cos(k1a) cos(k2a) + cos(k1a) + cos(k2a)]

.

(69)

τ (k1, k2) is a monotonically decreasing function of k1 and k2

(Fig. 12). When k1 = k2 = 0, τ (k1, k2) has the maximal value

τglobal,2D = τ (k1 = 0, k2 = 0) = τ0

1 − 8 β1

α1+α2

. (70)

Analogous to the one-dimensional model, this maximal
timescale τglobal,2D is associated with the global, spatially ho-
mogeneous mode C̃(0, 0) of fluctuations. In the limit of strong
interactions (8β1/(α1 + α2) → 1), the interaction timescales
τ (k1, k2) � τ0. At the small-k region k1,2/(2π/L) < N/8,

0
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FIG. 12. Interaction timescales τ (k1, k2) for Fourier modes
(k1, k2) for the two-dimensional model with nearest-neighbor
connectivity. The parameters are α1 = 1.0653 × 10−4/�t , α2 =
0.1277/�t , β1 = 0.0146/�t , �t = 1 ms, and N = 100.
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the interaction timescales τ (k1, k2) are relatively large and
τ (k1, k2) � τ0. In the large k-region k1,2/(2π/L) � N/4, the
timescales are smaller than the intrinsic timescale τ (k1, k2) �
τ0.

We can use the Fourier modes C̃2(k1, k2, t ) to de-
scribe the temporal profile of time-delayed cross-correlation
C(�1,�2, t ). Each mode C̃2(k1, k2, t ) is an exponential decay
function of time lag t with a time constant τ (k1, k2):

C̃2(k1, k2, t ) = C̃2(k1, k2) exp

(
− t

τ (k1, k2)

)
. (71)

The temporal profile of C(�1,�2, t ) can be described
by a superposition of N2/4 Fourier modes where each
mode has a characteristic timescale τ (k1, k2) and weight
4C̃(k1, k2) cos(k1�1) cos(k2�2):

C2(�1,�2, t ) =
2π (N/2−1)

L∑
k1,k2=0

4C̃2(k1, k2) cos(k1�) cos(k2�)

× exp

(
− t

τ (k1, k2)

)
.

=
2π (N/2−1)

L∑
k1,k2=0

M1(�1,�2; k1, k2)

× exp

(
− t

τ (k1, k2)

)
. (72)

Here we defined M1(�1,�2; k1, k2) to be the weight of each
mode (k1, k2):

M1(�1,�2; k1, k2) = 4C̃2(k1, k2) cos(k1�) cos(k2�). (73)

Given the spectrum of timescales τ (k1, k2), the structure of
M1(�1,�2; k1, k2) in k-space fully determines the temporal
profile of cross-correlations. Since M1(�1,�2; k1, k2) also
depends on the spatial distance (�1,�2), the temporal and
spatial scales of correlations are intertwined. For the minimal
distance �1 = �2 = a, we find that the amplitude M1 is
always positive in the entire domain of k space [Fig. 13(a)],
hence C2(a, a, t ) is a monotonically decaying function of time
with a super-linear slope in the logarithmic scale [Fig. 14(a)].
With increasing distance (�1,�2), M1 displays oscillatory
patterns in k space switching between positive and negative
values [Figs. 13(b)–13(d)]. In this case, some exponential
components with similar timescales cancel, leading to an ul-
traslow time decay (plateau) of correlations C2(�1,�2, t ) at
the short time lags [Fig. 14(a)].

To quantify how the average temporal profile of cross-
correlations depends on distance, we compute the average
interaction timescale for cross-correlation C(�1,�2, t ):

τ (�1,�2)

= 1

C(�1,�2)

∫ +∞

0
C(�1,�2, t )dt

=
2π (N/2−1)

L∑
k1,k2=0

[
4C̃2(k1, k2) cos(k1�1) cos(k2�2)

C(�1,�2)

]
τ (k1, k2).

(74)
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FIG. 13. Weights M1(�1, �2; k1, k2 ) of cross-correlation
C2(�1,�2, t ) for each spatial frequency mode (k1, k2) in the
two-dimensional model with nearest-neighbor connectivity.
The parameters are α1 = 1.0653 × 10−4/�t , α2 = 0.1277/�t ,
β1 = 0.0146/�t , �t = 1 ms, and N = 100.

As we can see from numerical values of τ (�1,�2)
[Fig. 14(c)], when � increases from the minimal distance � =
a, the average interaction timescale increases and reaches
a peak at � = 7a. When � increases further, the average
timescale decreases and approaches a value close to τglobal,2D,
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FIG. 14. Analytical and simulation results for the temporal pro-
file of time-delayed cross-correlation in two-dimensional models
with nearest-neighbor connectivity. (a) Cross-correlation function
C2(�1,�2, t ) for �1 = �2 for a range of different distances �1.
(b) Average cross-correlation C2(�, t ) for a range of different dis-
tances �. (c) Average interaction timescales of cross-correlations
(τ (�,�)). The parameters are α1 = 1.0653 × 10−4/�t , α2 =
0.1277/�t , β1 = 0.0146/�t , �t = 1 ms, and N = 100.
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FIG. 15. Weights M2(�; k1, k2 ) of the average cross-correlation
C2(�, t ) for each spatial frequency mode (k1, k2) in the
two-dimensional model with nearest-neighbor connectivity.
The parameters are α1 = 1.0653 × 10−4/�t , α2 = 0.1277/�t ,
β1 = 0.0146/�t , �t = 1 ms, and N = 100.

because at large distances �, C2(�,�, t ) is dominated by the
homogeneous (distance-independent) component, which has
a global timescale τglobal,2D.

The average time-delayed correlation C(�, t ) can also be
written as a summation of C̃2(k1, k2, t ):

C2(�, t ) = 1

2�/a

∑
max(�1,�2 )=�

C2(�1,�2, t )

=
2π (N/2−1)

L∑
k1,k2=0

4

2�/a

[
sin
(

1
2 k1�

)
sin
(

1
2 k1a

) cos

(
1

2
k1(� + a)

)

× cos(k2�) + sin
(

1
2 k2�

)
sin
(

1
2 k2a

) cos

(
1

2
k2(� + a)

)

× cos(k1�)]C̃2(k1, k2) exp

(
− t

τ (k1, k2)

)

=
2π (N/2−1)

L∑
k1,k2=0

M2(�; k1, k2) exp

(
− t

τ (k1, k2)

)
. (75)

Here we defined M2(�; k1, k2) to be the weight of each mode
(k1, k2) in C2(�, t ). The patterns of M2 in k space are shown
in Fig. 15 for different distances �. Qualitatively, M2 has a
similar behavior as M1. When � = a, M2 is always positive,
creating a super-linear correlation C2(�, t ) in the logarithmic
scale. When � > a, M2 oscillates between negative and posi-
tive values in the small-k region, generating a slow time decay
(plateau) of C2(�, t ) at short time lags [Fig. 14(b)].

2. Autocorrelation

We obtain the analytical form of autocorrelation A2(t )
by solving the time-evolution equation [Eq. (C3)]. In the

limit of weak interactions β1/(α1 + α2) → 0, A2(t ) is an
exponential decay function with time constant τ0: A2(t ) =
A(0) exp(−t/τ0). For finite interaction strength, time depen-
dence of A2(t ) is influenced by the cross-correlation terms
C2(a, a, t ), C2(a, 0, t ) and C2(0, a, t ). Therefore A2(t ) inherits
N2/4 interaction timescales τ (k1, k2) [Eq. (69)] from the time-
delayed cross-correlation. Altogether, A2(t ) contains N2/4
interaction timescales and an intrinsic timescale τ0, with the
following analytical expression:

A2(t ) = A(0) exp

(
− t

τ0

)

+4

2π (N/2−1)
L∑

k1,k2=0

τ (k1, k2)

τ (k1, k2) − τ0

2β1

α1 + α2
C̃2(k1, k2)

× [cos(k1a) + cos(k2a) + 2 cos(k1a) cos(k2a)]

×
[

exp

(
− t

τ (k1, k2)

)]

= A(0) exp

(
− t

τ0

)

+4

2π (N/2−1)
L∑

k1,k2=0

C̃2(k1, k2)

[
exp

(
− t

τ (k1, k2)

)]
. (76)

The temporal decay pattern of A2(t ) is dominated by dif-
ferent timescales at different ranges of time lags. At short time
lags, A2(t ) decays with the intrinsic timescale τ0 (Fig. 16 a).
At intermediate time lags, A2(t ) decays with an intermediate
timescale that is in between τ0 and τglobal,2D [Fig. 16(a)].
This intermediate timescale comes from a superposition of all
interaction timescales τ (k1, k2) and is similar to the timescales
of cross-correlations C2(�1,�2, t ) [Fig. 16(c)], which reflects
the link between auto- and cross-correlations. In the limit
of large time lags, the time decay of A2(t ) is dominated by
the largest timescale τglobal,2D and contributions of all other
timescales are negligible [Fig. 16(b)].

To quantify the average temporal profile of the interac-
tion part of autocorrelation and its relation to the average
timescales of cross-correlations, we define the average inter-
action timescale 〈τ 〉AC as a time integral of autocorrelation
after subtracting the component associated with the intrinsic
timescale:

〈τ 〉AC =
∫ +∞

0 [A2(t ) − A(0) exp(−t/τ0)]dt

[A2(t = 0) − A(0)]

=
2π (N/2−1)

L∑
k1,k2=0

[
4C̃2(k1, k2)

C2(0, 0)

]
τ (k1, k2). (77)

Here C2(0, 0) = 4
∑ 2π (N/2−1)

L
k1,k2=0 C̃2(k1, k2). As we can see from

numerical values of 〈τ 〉AC and 〈τ (�1,�2)〉 [Fig. 16(d)],
the average interaction timescale of autocorrelation is sim-
ilar to the average interaction timescale of cross-correlation
C2(�1 = a,�2 = a, t ), indicating the link between auto- and
cross-correlations.
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FIG. 16. Analytical and simulation results for autocorrelation
A2(t ) in two-dimensional models with nearest-neighbor connectivity.
(a) and (b) Autocorrelation function for different ranges of time
lags [short and intermediate (a) and long (b)]. Red line - analytical
solution, pink dots - simulation results. Dashed lines - exponential
functions with the decay rate set by the intrinsic timescale (black),
the global timescale (grey), and the average interaction timescale
〈τ 〉AC (cyan). The autocorrelation obtained from model simulations
is not shown for long time lags due to the limitation of statistical
sampling [44]. (c) Comparison of temporal profiles of autocorre-
lation (red line) and cross-correlations. (d) Exponential functions
with decay rate set by the average interaction timescales of auto-
(〈τ 〉AC) and cross-correlations (τ (�,�)). The parameters are α1 =
1.0653 × 10−4/�t , α2 = 0.1277/�t , β1 = 0.0146/�t , �t = 1 ms,
and N = 100.

D. Long-range connectivity

In this section, we investigate how the spatial extent of in-
teractions affects the spatiotemporal correlations. We analyze
correlations in two-dimensional networks with connectivity
range R > 1. In these models [Fig. 2(b)], a unit (x1, x2)
connects to a unit (y1, y2) within the range �1,�2 � Ra
(�1 = |x1 − y1|,�2 = |x2 − y2|). The strength of interactions
are normalized by 8/[(2R + 1)2 − 1], such that the total
recurrent input to a given unit is invariant to the change
of R. We define equal-time cross-correlation C2(�1,�2; R),
time-delayed cross-correlation C2(�1,�2, t ; R), and autocor-
relation A2(t ; R).

1. Spatial scales of cross-correlations

Solving the time-evolution equation for the cross-
correlation function with the long-range connectivity (Ap-
pendix C), we find the Fourier amplitudes of equal-time
cross-correlation C2(�1,�2; R):

C̃2(k1, k2; R) =
8β1

α1+α2
f (k1, k2; R)

1 − 8β1

α1+α2
f (k1, k2; R)

1

N2
A(0). (78)
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FIG. 17. Fourier modes 4C̃2(k1, k2; R) for different values of
connectivity radius R in the two-dimensional model with long-
range connectivity. The parameters are α1 = 1.0653 × 10−4/�t ,
α2 = 0.1277/�t , β1 = 0.0146/�t , �t = 1 ms, and N = 100.

Here f (k1, k2; R) is defined as

f (k1, k2; R) =
[

1

(2R + 1)2 − 1

]

×
[(

1 + 2
sin
(

R
2 k1a

)
sin
(

1
2 k1a

) cos

(
1

2
(R + 1)k1a

))

×
(

1 + 2
sin
(

R
2 k2a

)
sin
(

1
2 k2a

)
)

× cos

(
1

2
(R + 1)k2a

)
− 1

]
. (79)

For R � 1, f (k1, k2; R) is approximately reduced to

f (k1, k2; R) ≈ sin
(

R
2 k1a

)
sin
(

R
2 k2a

)
R2 sin

(
1
2 k1a

)
sin
(

1
2 k2a

)
× cos

(
1

2
Rk1a

)
cos

(
1

2
Rk2a

)
. (80)

This equation shows that f (k1, k2; R) has a maximal value
at k1,2 = 0 and approaches zero at k1,2 = π/(Ra). Hence,
the non-negligible values of f (k1, k2; R) are restricted to the
region k1,2 ∈ [0, π/(Ra)]. Therefore f (k1, k2; R) is a low pass
filter with the width [0, π/(Ra)]. The maximal value f (k1 =
0, k2 = 0; R) ≡ 1 does not depend on R, whereas the band
width scales with 1/R. Hence increasing R acts to reduce
the number of k modes that contribute to f (k1, k2; R). The
dependence of f (k1, k2; R) on R is reflected in C̃(k1, k2; R).
The amplitude of zero-k mode C̃(0, 0; R) does not depend on
R, and non-negligible values of C̃(k1, k2; R) are restricted to
the region k1,2 ∈ [0, π/(Ra)] (Fig. 17).

As spatial scale of correlation C2(�1,�2; R) scales
approximately with the inverse of Fourier wave number k,
the correlation length should scale approximately with R.
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FIG. 18. Equal-time cross-correlations C2(�1, �2; R) as a func-
tion of distance �1 = �2 for two-dimensional models with different
connectivity radius R. The parameters are α1 = 1.0653 × 10−4/�t ,
α2 = 0.1277/�t , β1 = 0.0146/�t , �t = 1 ms, and N = 100.

Indeed, we find that f (k1, k2; R) ≈ cos((R +
1)k1a/2) cos((R + 1)k2a/2) in the limit of R � 1, and
the equal-time cross-correlation is then

C2(�1,�2; R) ≈ A(0) exp

(
−�1 + �2

LR,2

)
, (81)

where the correlation length is proportional to R:

LR,2 =
(

R + 1

2

)
Lc,2. (82)

Numerical values of C2(�1,�2; R) for intermediate R con-
firm that the decay rate of correlations with distance
(inverse of the correlation length) decreases with increas-
ing R (Fig. 18), which indicates the diminishing amplitudes
of high wave-number modes. When R reaches the maximal
value R = N/2, only the zero-k mode has a nonzero ampli-
tude, hence C2(�1,�2; R = N/2) becomes a homogeneous
(distance independent) function. In summary, the increase
of interaction-radius R smooths the spatial profile of the
equal-time cross-correlation by reducing the amplitudes of all
nonzero wave number modes.

2. Timescales of cross-correlations

To understand how temporal patterns of correlations
depend on the connectivity range, we solve the time-
evolution equation for the time-delayed cross-correlation
C2(�1,�2, t ; R). We solve this equation in Fourier space with
the approximation of neglecting A2(t ; R) terms (Appendix C).
We find that each mode C̃2(k1, k2, t ; R) is an exponential decay
function of time lag t with an interaction timescale

τ (k1, k2; R) = τ0

1 − 8β1

α1+α2
f (k1, k2; R)

. (83)

Then, the time-delayed cross-correlation can be written as a
weighted sum of N2/4 modes, where each mode carries an
interaction timescale τ (k1, k2; R):

C2(�1,�2, t ; R) = 4

2π (N/2−1)
L∑

k1,k2=0

C̃2(k1, k2; R) cos(k1�) cos(k2�)

× exp

(
− t

τ (k1, k2; R)

)
. (84)
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FIG. 19. Interaction timescales τ (k1, k2; R) for the
two-dimensional model with long-range connectivity. (a) τ (k1, k2; R)
as a function of R for k1 = k2. [(b)–(d)] τ (k1, k2; R) in the k space for
different values of R. The parameters are α1 = 1.0653 × 10−4/�t ,
α2 = 0.1277/�t , β1 = 0.0146/�t , �t = 1 ms, and N = 100.

Equation (83) shows that the magnitude of timescales
τ (k1, k2; R) depend on R. In particular, the global timescale as-
sociated with k1 = k2 = 0 mode does not depend on R: τ (k1 =
0, k2 = 0; R)=τglabal,2D. All other interaction timescales de-
crease with the increasing R and are pushed towards the value
of the intrinsic timescale τ0 (Fig. 19).

3. Timescales of autocorrelation

Autocorrelation A2(t ; R) is given by the combination of
a component with the intrinsic timescale τ0 and N2/4 com-
ponents inherited from the cross-correlation modes with
interaction timescales τ (k1, k2; R):

A2(t ; R) = A(0) exp

(
− t

τ0

)

+ 4

2π (N/2−1)
L∑

k1,k2=0

τ (k1, k2; R)

τ (k1, k2; R) − τ0

8β1

α1 + α2
C̃2(k1, k2; R)

× f (k1, k2; R)

[
exp

(
− t

τ (k1, k2; R)

)]

= A(0) exp

(
− t

τ0

)

+ 4

2π (N/2−1)
L∑

k1,k2=0

C̃2(k1, k2; R)

[
exp

(
− t

τ (k1, k2; R)

)]
.

(85)

In the derivation of Eq. (85), we substituted the explicit form
of τ (k1, k2; R) from Eq. (83) and simplified the second term
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FIG. 20. Autocorrelation function A2(t ; R) for different ranges of
time lags [short (a) and intermediate (b)] for two-dimensional models
with different connectivity radius R. Lines - analytical solution, dots
- simulation results. The parameters are α1 = 1.0653 × 10−4/�t ,
α2 = 0.1277/�t , β1 = 0.0146/�t , �t = 1 ms, and N = 100.

in A2(t ; R) by noting that [τ (k1, k2; R)/(τ (k1, k2; R) − τ0)] ·
8β1/(α1 + α2) · f (k1, k2; R) ≡ 1.

The temporal profile of autocorrelation is influenced by the
relative weights of intrinsic timescale τ0 and the interaction
timescales. At short time lags t ≈ τ0, A2(t ; R) decays with the
timescale τ0. At intermediate time lags, A2(t ; R) decays with
an intermediate timescale which reflects the cumulative effect
of all interaction timescales. In between these two regions,
the autocorrelation slope (in the logarithmic-linear coordi-
nates) changes abruptly indicating a crossover from decay
rate dominated by τ0 to the intermediate timescales. Since
the amplitudes C̃2(k1, k2; R) of interaction timescales decrease
with increasing R (except the zero-k mode), the time lag
where the crossover occurs increases monotonically with R
[Fig. 20(a)]. At large time lags, the overall decay rate is gov-
erned by τglobal,2D. Since the amplitude of zero-k mode with
the global timescale τglobal,2D is independent of R (Fig. 17),
autocorrelations of models with different R exhibit the same
slope at large time lags, with different intercepts reflecting the
R dependence of components associated with other interaction
timescales [Fig. 20(b)].

In summary, we studied spatiotemporal patterns of cor-
relations in one-dimensional (Sec. III) and two-dimensional
network models (Sec. VI). We derived analytical expressions
for correlation functions by solving time-evolution equations.
The solutions for autocorrelation and time-delayed cross-
correlation consist of a series of spatial frequency modes k.
Each mode is associated with temporal correlations decay-
ing exponentially as a function of time lag t : exp(−t/τk ).
The amplitudes of these spatial modes determine the spatial
correlation-length L of equal-time cross-correlation, which
describes how correlations between pairs of units decay with
distance x: exp(−x/L). The timescales and weights of spa-
tial frequency modes depend on the connectivity range. We
studied models with instantaneous recurrent interactions, such
that the transition rate w(Si ) at time t is a function of the
network units’ state at the same time. Our methods can be
generalized to models with synaptic transmission delays. In
Appendix D, we derive time-evolution equations for corre-
lations in the models with synaptic transmission delay and
briefly discuss the effect of synaptic delay on the mean activity
and timescales of correlations.

V. OPERATING REGIME OF NETWORK DYNAMICS AND
TIMESCALES OF CORRELATIONS

In previous sections, we focused on the case where the
mean global activity S̄ was very close to zero. Here we discuss
how the mean global activity affects correlations. We show
that increasing mean global activity can increase or decrease
the intrinsic timescale of correlations, depending on the sign
of β ′

1 − β ′
2. Previous studies of binary neuron models [36–40]

analyzed only the special case β ′
1 = β ′

2, in which the intrinsic
timescale does not depend on the mean global activity. The
mean global activity also affects effective interaction strengths
β1,2 and therefore influences the interaction timescales of
correlations. We also show how the external input affects
the magnitude of the mean global activity, its stability, and
timescales of correlations in different operating regimes of
network dynamics.

A. The mean global activity and the intrinsic timescale of
correlation

The mean global activity modulates the transition rates and
therefore can affect the intrinsic timescale. In the derivation
of transition rates ω(0 → 1) and ω(1 → 0) [Eq. (1)], we can
perform Taylor expansion around the mean global activity S̄.
The expansion for the interaction terms are given by

β ′
1 F

⎛
⎝∑

j

S j

⎞
⎠ = β ′

1 F ′(nS̄)

⎛
⎝∑

j

S j

⎞
⎠+ β ′

1F0

= β1

⎛
⎝∑

j

S j

⎞
⎠+ β ′

1F0, (86)

β ′
2 F

⎛
⎝∑

j

S j

⎞
⎠ = β ′

2 F ′(nS̄)

⎛
⎝∑

j

S j

⎞
⎠+ β ′

2F0

= β2

⎛
⎝∑

j

S j

⎞
⎠+ β ′

2F0, (87)

where F0 is defined as

F0 = F (nS̄) − nS̄F ′(nS̄) + O([

⎛
⎝∑

j

S j

⎞
⎠− nS̄]2). (88)

Here F ′ denotes the derivative of F . Since the activation
function is

F (nS̄) = 1 − exp(−θ S̄), (89)

the explicit forms of F0 and dF0/dS̄ are

F0 ≈ [1 − (1 + θ S̄) exp(−θ S̄)] > 0, 0 � S̄ � 1; (90)

d

dS̄
F0 = θ2S̄ exp(−θ S̄) > 0, 0 � S̄ � 1. (91)

The interaction strengths in the linearized approximation are

β1 = β ′
1 F ′(nS̄), β2 = β ′

2 F ′(nS̄). (92)

When the mean global activity S̄  1, we can neglect F0

term and replace F ′(nS̄) in the expressions for the inter-
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action strengths by F ′(0). However, when the mean global
activity S̄ is of order one, we have to include the contribution
from F0 as well as modulations of interaction strengths due
to F ′(nS̄). In this case, we can rewrite the transition rates
as

ω(0 → 1) = [α1 + β ′
1F0] + β ′

1 F
(∑

i±
S

)

= αeff
1 + β1

(∑
i±

S

)
, (93)

ω(1 → 0) = [α2 − β ′
2F0] − β ′

2 F
(∑

i±
S

)

= αeff
2 − β2

(∑
i±

S

)
. (94)

Thus the effective intrinsic transition rates are activity depen-
dent:

αeff
1 = α1 + β ′

1F0, (95)

αeff
2 = α2 − β ′

2F0. (96)

With these effective intrinsic transition rates, the intrinsic
timescale also becomes activity dependent. Based on Eq. (13),
the equation for the intrinsic timescale can be rewritten
as

τ ′
0 = 1

αeff
1 + αeff

2

= 1

α1 + α2 + (β ′
1 − β ′

2)F0
. (97)

According to this equation, increasing mean global activity S̄
leads to a decrease of τ ′

0 when (β ′
1 − β ′

2) > 0 and to an in-
crease of τ ′

0 when (β ′
1 − β ′

2) < 0. The changes of the intrinsic
timescale result from a nonlinear activation function and large
values of the mean global activity S̄. In the linear networks,
F0 is zero and the intrinsic timescale is constant.

B. Influence of external input on the operating regime of
network dynamics and interaction timescales

In models with nonlinear interactions, the linear response
of the system (derivative of the activation function) depends
on the mean global activity and inputs. We show that for
fixed interaction strength, the external input current changes
the operating regime of network dynamics, which affects the
magnitude of the mean global activity, its stability, and the
intrinsic and interaction timescales.

The activation function with the external input is defined
as

F (nS̄ + I ) = 1 − exp(−θ S̄ − I ), (98)

where I represents a constant global input current (here we
only consider the case I � 0). In the steady-state, the mean
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FIG. 21. Possible solutions for the global network activity. In the
(x, y) plane, the intersections between the curve x = S̄, y = g(S̄; I )
(blue line) and the straight line x = S̄, y = S̄ (dashed line) are so-
lutions of Eq. (99) for the mean global activity S̄. (a) Only one
stable solution (red dot). α1 = 0.05/�t , α2 = 0.5/�t , β1 = 1/�t ,
β2 = 0.5/�t , I = 0, and θ = 0.5. (b) Two stable solutions (filled
dots) and one unstable solution (empty dot). α1 = 0.025/�t , α2 =
0.5/�t , β1 = 0.015/�t , β2 = 0.5/�t , I = 0, and θ = 0.5. (c) One
stable solution (red dot) in the sublinear region. α1 = 0.04/�t , α2 =
0.5/�t , β1 = 0.024/�t , β2 = 0.5/�t , I = 0, and θ = 5. (d) One
stable solution (red dot) in the superlinear region. α1 = 0.017/�t ,
α2 = 0.45/�t , β1 = 0.01/�t , β2 = 0.45/�t , I = 0, and θ = 5.

global activity S̄ follows the equation:

S̄ ≈ 〈ω(0 → 1)〉
〈ω(0 → 1)〉 + 〈ω(1 → 0)〉

≈ α1 + β ′
1F (nS̄ + I )

α1 + α2 + (β ′
1 − β ′

2)F (nS̄ + I )
. (99)

Since 0 < F � 1 and F (∞) = 1, in the large input limit I →
∞, we have S̄(I → ∞) = α1+β ′

1
α1+α2+(β ′

1−β ′
2 ) .

Equation (99) can have different solutions for S̄ depending
on the sign of (β ′

1 − β ′
2). To find these solutions, we define the

function g(S̄; I ):

g(S̄; I ) = α1 + β ′
1F (nS̄ + I )

α1 + α2 + (β ′
1 − β ′

2)F (nS̄ + I )
. (100)

The solutions of Eq. (99) are the intersections between the
curve x = S̄, y = g(S̄; I ) and the straight line x = S̄, y = S̄ in
the (x, y) plane (Fig. 21). The number and locations of the
intersections depend on the first and second derivatives of
g(S̄; I ). The first derivative of g(S̄; I ) is

g′(S̄; I ) = [β ′
1(α1 + α2) − α1(β ′

1 − β ′
2)]F ′(nS̄ + I )

[α1 + α2 + (β ′
1 − β ′

2)F (nS̄ + I )]2
, (101)
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and the second derivative is

g′′(S̄; I ) = [β ′
1(α1 + α2) − α1(β ′

1 − β ′
2)]

F ′(nS̄ + I )[−2(β ′
1 − β ′

2)F ′(nS̄ + I ) − θ (α1 + α2 + (β ′
1 − β ′

2)F (nS̄ + I ))]

[α1 + α2 + (β ′
1 − β ′

2)F (nS̄ + I )]3

= [β ′
1(α1 + α2) − α1(β ′

1 − β ′
2)]

F ′(nS̄ + I )[−(β ′
1 − β ′

2)F ′(nS̄ + I ) − θ (α1 + α2 + (β ′
1 − β ′

2))]

[α1 + α2 + (β ′
1 − β ′

2)F (nS̄ + I )]3
. (102)

To determine the stability of solutions for S̄, we consider a small deviation δS̄ around the solution S̄ = g(S̄; I ). The magnitude of
fluctuation of the mean global activity is equal to g′(nS̄ + I )δS̄.

Using the solution for S̄, we can determine the effect of external input on the intrinsic [Eq. (97)] and interaction timescales.
For simplicity, we consider only a representative interaction timescale, the global timescale, which is the largest interaction
timescales. For a given mean global activity S̄ and external input I , the global timescale is

τglobal = τ ′
0

1 − nβ1

αeff
1 +αeff

2

= τ ′
0

1 − nβ ′
1F ′(nS̄+I )

α1+α2+(β ′
1−β ′

2 )F0

= 1

α1 + α2 + (β ′
1 − β ′

2)F0 − nβ ′
1F ′(nS̄ + I )

= 1

α1 + α2 + (β ′
1 − β ′

2)[1 − (θ S̄ + 1)e−θ S̄−I ] − β ′
1θe−θ S̄−I

. (103)

To study the dependence of τglobal on S̄, we take the derivative
of the denominator with respect to S̄:

d

dS̄
τglobal ∝ −[(β ′

1 − β ′
2)S̄ + β ′

1]θ2e−θ S̄−I . (104)

Since both timescales τ ′
0 and τglobal depend on S̄, the external

input can affect the timescales by changing S̄. If F is a linear
function of S̄, then both F0 and F ′ are independent of S̄ and
hence the input does not influence the timescales [43].

Depending on the parameters α1,2, β1,2, θ , there are two
classes of solutions for S̄ depending on the sign of (β ′

1 − β ′
2).

In the following, we discuss these possible solutions and how
they affect the intrinsic and global timescales.

1. (β′
1 − β′

2 ) > 0

When (β ′
1 − β ′

2) > 0, since parameters α1,2, β1,2 and θ are
positive definite, g′′(S̄; I ) and g′(S̄; I ) have opposite signs:

g′′(S̄; I )

g′(S̄; I )

= [−(β ′
1 − β ′

2)F ′(nS̄ + I ) − θ (α1 + α2 + (β ′
1 − β ′

2))]

[α1 + α2 + (β ′
1 − β ′

2)F (nS̄ + I )]3

< 0, (105)

which means that g(S̄; I ) always has a sub-linear behavior.
The absolute value of the derivative ḡ′(S̄; I ) exponentially
decreases with increasing nS̄ + I and approaches zero in the
asymptotic limit. In this case, the first derivative is positive
ḡ′(S̄; I ) > 0, and the second derivative is negative ḡ′′(S̄; I ) <

0, hence the asymptotic value of S̄(I → ∞) ≡ g(S̄ = 1; I )
is larger than the noninteraction component α1/(α1 + α2)
(which is g(S = 0; I )).

In this configuration, there is only one solution for S̄, in
the range from α1/(α1 + α2) to S̄(I → ∞) [Fig. 21(a)]. With
increasing current I , the global activity S̄ increases, leading to
a reduction in both the intrinsic timescale τ ′

0 and the global
interaction timescale τglobal.

2. (β′
1 − β′

2 ) < 0

When (β ′
1 − β ′

2) < 0, the first derivative is positive
g′(S̄; I ) > 0, so g(S̄; I ) is an increasing function of nS̄ + I .
Depending on the interaction strength θ , g′′(S̄; I ) can be pos-
itive or negative. Hence, we classify the operating regime of
activity S̄ based on the sign of g′′(S̄; I ):

(1) Two stable solutions of S̄ and one unstable solution
[Fig. 21(b)]. If g′(0; I ) > 1, and there are two solutions for the
equation

g′(S̄; I ) − 1 = 0|S̄=S̄1,S̄2
, (106)

where S̄1 and S̄2 are two solutions of the equation g(S̄) = S̄,
and they satisfy the constraints:

g(S̄1, I ) < S̄1 − I; g(S̄2, I ) < S̄2 − I, (107)

then, there are three solutions for S̄. One stable solution within
[0, S1], where g′′(S̄; I ) > 0 (supralinear), one unstable solu-
tion within [S1, S2] and one stable solution within [S2, 1],
where g′′(S̄; I ) < 0 (sublinear).

(2) One solution for S̄ in the sublinear or supralinear re-
gion [Figs. 21(c) and 21(d)]. When conditions in case (a) are
not satisfied, there is always one solution for S̄ in sublinear or
supralinear region.

Considering these different solutions, with increasing I , the
mean global activity S̄ increases, leading to an increase in
intrinsic timescale τ ′

0. When −|β ′
1 − β ′

2|S̄ + β ′
1 > 0, τglobal de-

creases with I . When −|β ′
1 − β ′

2|S̄ + β ′
1 < 0, τglobal increases

with I .

VI. DISCUSSION

We studied the spatial and temporal scales of neural corre-
lations in binary-unit networks with connectivity arranged in
one- and two-dimensional space. We used the time-evolution
equations for correlation functions derived from the master
equation. We solved these equations using the discrete Fourier
transform and translational symmetry of the model and ob-
tained analytical solutions for spatiotemporal correlations. We
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found that the spatial and temporal scales of correlations are
related to each other and shaped by the spatial profile of the
recurrent connectivity. Finally, we showed that external inputs
can control the operating regime of the global network activity
and thus influence the timescales of correlations. To confirm
our theoretical results, we performed numerical simulations
and found a good agreement between analytical solutions and
simulation results.

One of our key findings is that spatial recurrent interactions
generate multiple timescales in network dynamics. The spatial
interactions we considered are similar to the spatial connec-
tivity structure in the primate cortex. The distance-dependent
connectivity perseveres the translational symmetry, hence in
Fourier space, each spatial Fourier mode of correlations is
approximately decoupled and evolves with a unique charac-
teristic interaction timescale. In the strong interaction limit,
the interaction timescales can be significantly larger than the
intrinsic timescale. The overall temporal profile of correla-
tions arises from a superposition of all Fourier modes with
distinct timescales. These interaction timescales depend on
the spatial range of connectivity in heterogeneous manner.
In particular, local spatial connectivity tends to enhance a
broad spectrum of interaction timescales, while homogeneous
all-to-all connectivity eliminates all interaction timescales ex-
cept for the global timescale associated with the spatially
homogeneous component of correlations. Therefore, in our
network models, multiple timescales are inherently coupled to
the spatial connectivity, which is different from other models
where heterogeneous timescales are generated by single-cell
proprieties such as self-couplings [33]. The relation between
timescales and connectivity has been analyzed in a deter-
ministic linear network model [34], where timescales are
defined by the eigenvalues of the connectivity matrix. Here
we study the relation between structural connectivity and
timescales of neural correlations in stochastic networks of
binary-units.

Another major contribution of our work is to establish the
link between spatial and temporal scales of correlations. Our
theory predicts that slow interaction timescales in autocorre-
lations of networks with spatial connectivity are generated
by correlations between the activity of units at different
distances. In these networks, correlations at different dis-
tance have distinct amplitude spectra of their spatial Fourier
modes. Since each Fourier mode carries a unique interac-
tion timescale, the overall temporal structure of correlations
depends on the spatial distance. In particular, the average
interaction timescale tends to be larger for correlations be-
tween pairs of neurons with a larger distance. This feature
is supported by analyses of spiking activity in primate visual
cortex [18].

We showed that when the interaction between the net-
work units is nonlinear, the external input current changes
the operating regime of network dynamics and modi-
fies the intrinsic and interaction timescales of correlations.
This mechanism of modulating timescales through exter-
nal input may have implications in biological circuits. For
example, in neocortex top-down inputs from higher cor-
tical areas can regulate dynamics of cortical states in
sensory areas [12], which may modulate timescales of
fluctuations [5,18,41].

In this paper, we considered models with spatial connec-
tivity patterns where each unit connects to all its neighbors
within a radius R. In the future, it would be interesting
to extend the current framework to study network models
with random spatial connectivity. In this case, the connec-
tivity patterns can be described by random band matrices.
According to theories of random band matrices [45], the
spatial correlation undergoes a transition from localiza-
tion to delocalization phases, when the range of spatial
connectivity exceeds certain thresholds. In addition, we fo-
cused here on the regime with a stable activity. Another
future extension is to explore the spatiotemporal correla-
tions in the dynamical regime where rate dynamics are
chaotic [28,46].

Our theory of spatiotemporal correlations in spatially struc-
tured recurrent networks can be applied to the analysis of
spatial network models used in artificial intelligence, e.g.,
in reservoir computing. The reservoir computing framework
exploits the recurrent dynamics of a neural network, called
reservoir, to map input signals to the desired output by
optimizing only the readout weights [47–50]. The computa-
tional performance of a reservoir depends on its connectivity
structure. Although random networks are commonly used
for reservoir computing [47,51,52], spatially structured net-
works can achieve comparable performance [53]. Reservoirs
with spatially arranged connectivity are simple to imple-
ment in physical substrates, e.g., thin nanofilm ferromagnetic
materials, which enable fast, low-power analog computa-
tion [54]. Spatially arranged connectivity is a particular
case of sparse connectivity. The reservoir networks usually
have sparse connectivity, following the intuition that de-
coupling the state variables leads to a richer representation
of the input signal [47]. Our analysis suggests another ad-
vantage of sparsity in spatial networks. The sparse spatial
connectivity (small R) generates wider distributed weights
of different spatial frequency modes (Fig. 8). Since each
spatial mode carries a unique timescale, sparsity leads to a
broader spectrum of timescales. Therefore the sparse spa-
tial network is able to capture a richer temporal structure
of desired output signals, enhancing performance of a reser-
voir computer. In the future, it would be interesting to
apply our theory to explore properties of reservoir computing
models.
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APPENDIX A: RELATION BETWEEN THE CONTINUOUS-TIME ANALYTICAL MODEL AND DISCRETE-TIME
SIMULATIONS

In simulations of binary-unit network models, we update the state of units based on transition probabilities at discrete time
steps. In the analytical calculations, on the other hand, we describe the dynamics using the instantaneous transition rates in
continuous time. Here, we discuss how these two different representations of dynamics are related to each other.

In discrete-time dynamics, the state of a binary unit Si ∈ {0, 1} is updated at each time step �t based on the transition
probabilities, which depend on the sum of states of its directly connected neighbors (denoted by

∑
j S j):

p(0 → 1; Si = 0) = pext + F

⎛
⎝∑

j

S j

⎞
⎠, (A1)

p(0 → 0; Si = 0) = 1 − p(0 → 1; Si = 0), (A2)

p(1 → 0; Si = 1) = 1 − pext − ps − F

⎛
⎝∑

j

S j

⎞
⎠, (A3)

p(1 → 1; Si = 1) = 1 − p(1 → 0; Si = 1). (A4)

Here, we define the interaction term as a linear function

F

⎛
⎝∑

j

S j

⎞
⎠ = pr ·

⎛
⎝∑

j

S j

⎞
⎠. (A5)

Generally, F should satisfy the condition F (0) = 0, F (∞) = 1, and F (x) is a monotonically increasing function of x. When
the mean global activity of the network is much smaller than 1, the above linear definition serves as a good approximation. Thus,
for each unit, we define a transition matrix between binary states:(

P(Si(t + �t ) = 0|Si(t ) = 0) P(Si(t + �t ) = 1|Si(t ) = 0)
P(Si(t + �t ) = 0|Si(t ) = 1) P(Si(t + �t ) = 1|Si(t ) = 1)

)
.

Using Eqs. (A1)–(A4), we can write the transition matrix as

P(�t ) =
(

1 − pext − F pext + F
1 − pext − ps − F ps + pext + F

)
. (A6)

In our analytical calculations of binary-unit dynamics, we use the instantaneous transition rates α1,2 and β1,2 to describe the
changes in the probability density of the states. To link transition rate parameters to transition probabilities (pext, ps, pr), we use
the fact that the transition matrix P(�t ) can be approximated by the matrix exponential of transition rate matrix eQ�t , where the
transition rate matrix Q is given by

Q =
(−ω(0 → 1) ω(0 → 1)

ω(1 → 0) −ω(1 → 0)

)
. (A7)

Here, ω(0 → 1) describes the transition rate from state 0 to 1, and ω(1 → 0) describes the transition rate from state 1 to 0. Then,
the matrix exponential of transition rate matrix can be written as

eQ�t =
(

ω(1→0)
ω(0→1)+ω(1→0) + ω(0→1)

ω(0→1)+ω(1→0) e
−[ω(0→1)+ω(1→0)]�t ω(0→1)

ω(0→1)+ω(1→0) − ω(0→1)
ω(0→1)+ω(1→0) e

−[ω(0→1)+ω(1→0)]�t

ω(1→0)
ω(0→1)+ω(1→0) − ω(1→0)

ω(0→1)+ω(1→0) e
−[ω(0→1)+ω(1→0)]�t ω(0→1)

ω(0→1)+ω(1→0) + ω(1→0)
ω(0→1)+ω(1→0) e

−[ω(0→1)+ω(1→0)]�t

)
. (A8)

Solving eQ�t = P(�t ) and using Eqs. (A1)–(A5), we have

ω(0 → 1) =
⎡
⎣pext + F

⎛
⎝∑

j

S j

⎞
⎠
⎤
⎦[ − ln ps

(1 − ps)�t

]
= α1 + β ′

1 F

⎛
⎝∑

j

S j

⎞
⎠ = α1 + β1 ·

⎛
⎝∑

j

S j

⎞
⎠, (A9)

where transition rates α1 and β1 are given by

α1 = pext

[ − ln ps

(1 − ps)�t

]
, (A10)

β1 = pr

[ − ln ps

(1 − ps)�t

]
, (A11)
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and

ω(1 → 0) =
⎡
⎣(1 − ps − pext − F

⎛
⎝∑

j

S j

⎞
⎠
⎤
⎦[ − ln ps

(1 − ps)�t

]
= α2 − β ′

2 F

⎛
⎝∑

j

S j

⎞
⎠ = α2 − β2

⎛
⎝∑

j

S j

⎞
⎠, (A12)

where transition rates α2 and β2 are given by

α2 = (1 − ps − pext )

[ − ln ps

(1 − ps)�t

]
. (A13)

β2 = pr

[ − ln ps

(1 − ps)�t

]
. (A14)

We see that for the transition rates corresponding to the parameters of discrete model, β1 = β2.

APPENDIX B: DERIVATION OF DYNAMICAL EQUATIONS FOR THE MOMENTS

We denote the probability of the network to be in a certain configuration {S} = {S1, S2, . . . , SN } at time t by P({S}, t ). The
master equation describes the time evolution of P({S}, t ), which is given by [36–40]

d

dt
P({S}, t ) = −

∑
i

P({S}, t )w(Si ) +
∑

i

P({S}i∗, t )w(1 − Si ), (B1)

where {S}i∗ = {S1, S2, . . . , 1 − Si, . . . , SN } and w(Si ) is the transition rate from state Si to 1 − Si.
Using the master equation, one can write down the equation for the time evolution of arbitrary moments. For example, the

average activity of a unit i is defined as

〈Si〉(t ) =
∑
{S}

P({S}, t )Si, (B2)

where we sum over all configurations of variables {S} at a given time t . The time evolution of the average activity is given by

d

dt
〈Si〉(t ) = d

dt

⎛
⎝∑

{S}
P({S}, t )Si

⎞
⎠ =

∑
{S}

(
d

dt
P({S}, t )

)
Si. (B3)

Substituting the master equation (B1), we have

d

dt
〈Si〉(t ) = −

∑
{S}

∑
l

P({S}, t )w(Sl )Si +
∑
{S}

∑
l

P({S}l∗, t )w(1 − Sl )Si

= −
∑
{S}

∑
l

P({S}, t )w(Sl )Si +
∑
{S}

∑
l,l �=i

P({S}, t )w(Sl )Si +
∑
{S}

P({S}, t )w(Si )(1 − Si )

= −
∑
{S}

P({S}, t )w(Si )Si +
∑
{S}

P({S}, t )w(Si )(1 − Si )

=
∑
{S}

P({S}, t )[w(Si )(1 − 2Si )]. (B4)

On the second line in the above equation,
∑

{S} P({S}, t ) and
∑

{S} P({S}l∗, t ) sum over all possible configurations. Since each
configuration in which Sl = 1 has a complementary configuration in which Sl = 0 and vice versa, we can replace the expressions∑

l P({S}l∗, t )w(1 − Sl )Si by
∑

l P({S}, t )w(Sl )Si for l �= i and P({S}i∗, t )w(1 − Si )Si by P({S}, t )w(Si )(1 − Si ) for l = i. Then,
the first two terms in the equation −∑{S}

∑
l P({S}, t )w(Sl )Si and

∑
{S}
∑

l,l �=i P({S}, t )w(Sl )Si cancel out for l �= i, and only
the term −∑{S} P({S}, t )w(Si )Si remains. Similarly, the rate of change of the second moment for each pair of units is

d

dt
〈SiS j〉(t ) =

∑
{S}

P({S}, t )[w(Si )(1 − 2Si )S j + w(S j )(1 − 2S j )Si]. (B5)

The time evolution of time-delayed second moment can be computed as [36–40]

d

dτ
〈Si(t )S j (t + τ )〉 =

∑
{S}

P({S}, t )Si
d

dτ

⎛
⎝∑

{σ }
P({σ }, t + τ |{S}, t )σ j

⎞
⎠, (B6)
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where P({σ }, t + τ |{S}, t ) is conditional probability of finding the system in configuration {σ } at time t + τ , given that it was in
configuration {S} at time t . Since the conditional probability obeys the same master equation, we have

d

dτ
〈Si(t )S j (t + τ )〉 = 〈Si(t )(1 − 2S j (t + τ ))w(S j (t + τ ))〉. (B7)

Substituting the explicit form of the transition rates and summing over all configurations, we get the following coupled
equations for the first moment [36–40]:

d

dt
〈Si〉(t ) = α1 − (α1 + α2)〈Si〉 + β1

〈∑
l; l→i

Sl

〉
+ (β2 − β1)

〈
Si

∑
l; l→i

Sl

〉
. (B8)

Here,
∑

l; l→i Sl denotes the sum of states of units directly connected to unit i. Subtracting the mean δSi = Si − 〈Si〉, we find the
time-evolution equation for equal-time correlation as

d

dt
〈δSi(t )δS j (t )〉 = −2(α1 + α2)〈δSiδS j〉 + β1

⎛
⎝〈∑

l; l→i

δSl · δS j

〉
+
〈
δSi

∑
l; l→ j

δSl

〉⎞⎠

+ (β2 − β1)

⎛
⎝〈δSi

∑
l; l→i

δSlδS j〉 + 〈δSiδS j

∑
l; l→ j

δSl

〉⎞⎠ , here i �= j. (B9)

Substituting the explicit form of transition rates into the time-evolution of time-delayed quadratic moment, we find the time-
evolution equation for autocorrelation

d

dτ
〈δSi(t )δSi(t + τ )〉 = −(α1 + α2)

〈
δSi(t )δSi(t + τ )〉 + β1〈δSi(t )

∑
l; l→i

δSl (t + τ )

〉

+ (β2 − β1)

⎛
⎝〈δSi(t )δSi(t + τ )

∑
l; l→i

δSl (t + τ )

〉⎞⎠ (B10)

and the time-evolution equation for the time-delayed cross-correlation

d

dτ
〈δSi(t )δS j (t + τ )〉 = − (α1 + α2)〈δSi(t )δS j (t + τ )〉 + β1

〈
δSi(t )

∑
l; l→ j

δSl (t + τ )

〉

+(β2 − β1)

⎛
⎝〈δSi(t )δS j (t + τ )

∑
l; l→ j

δSl (t + τ )

〉⎞⎠ , here i �= j. (B11)

APPENDIX C: TIME EVOLUTION OF AVERAGED CORRELATION FUNCTIONS IN TWO-DIMENSIONAL MODEL

For the two-dimensional models with nearest-neighbor connectivity, the steady state equation for equal-time cross-correlation
function is given by

C2(x1, x2) = β1

α1 + α2
[C2(x1 − a, x2) + C2(x1 + a, x2) + C2(x1, x2 + a) + C2(x1, x2 − a) + C2(x1 + a, x2 + a)

+C2(x1 + a, x2 − a) + C2(x1 − a, x2 + a) + C2(x1 − a, x2 − a) + (δx1,0δx2,a + δx1,0δx2,−a + δx1,−aδx2,0

+ δx1,aδx2,0 + δx1,aδx2,a + δx1,aδx2,−a + δx1,−aδx2,a + δx1,−aδx2,−a)A(0)]. (C1)

The time-evolution equation for the time-delayed cross-correlation function is

τ0
d

dt
C2(x1, x2, t ) = −C2(x1, x2, t ) + β1

α1 + α2
[C2(x1 − a, x2, t ) + C2(x1, x2 − a, t ) + C2(x1 + a, x2, t ) + C2(x1, x2 + a, t )

+C2(x1 + a, x2 + a, t ) + C2(x1 + a, x2 − a, t ) + C2(x1 − a, x2 + a, t ) + C2(x1 − a, x2 − a, t )

+ (δx1,0δx2,a+ δx1,0δx2,−a+ δx1,−aδx2,0+ δx1,aδx2,0+ δx1,aδx2,a + δx1,aδx2,−a + δx1,−aδx2,a+ δx1,−aδx2,−a)A2(t )].

(C2)

The time-evolution equation for the average autocorrelation function is

τ0
d

dt
A2(t ) = −A2(t ) + β1

α1 + α2
[4C2(a, a, t ) + 2C2(a, 0, t ) + 2C2(0, a, t )]. (C3)

013005-23



SHI, ZERAATI, LEVINA, AND ENGEL PHYSICAL REVIEW RESEARCH 5, 013005 (2023)

In Fourier space, the steady state equation for C̃2(k1, k2) is given by

C̃2(k1, k2) = 2β1

α1 + α2
[cos(k1a) + cos(k2a) + 2 cos(k1a) cos(k2a)]C̃2(k1, k2)

+ 2β1

α1 + α2

4

N2
[cos(k1a) + cos(k2a) + 2 cos(k1a) cos(k2a)]A(0). (C4)

The time-evolution equation for C̃2(k1, k2, t ) is

τ0
d

dt
C̃2(k1, k2, t ) = −C̃2(k1, k2, t ) + 2β1

α1 + α2
[cos(k1a) + cos(k2a) + 2 cos(k1a) cos(k2a)]C̃2(k1, k2, t ) + 2β1

α1 + α2

4

N2

× [cos(k1a) + cos(k2a) + 2 cos(k1a) cos(k2a)]A(t )

≈ − τ0

τ (k1, k2)
C̃2(k1, k2, t ). (C5)

For the two-dimensional models with long-range connectivity (R > 1), the steady state equation for equal-time cross-
correlation function is given by

C2(x1, x2; R) = β1

α1 + α2

⎡
⎣ R∑

m1,m2=−R

C2(x1 + m1a, x2 + m2a; R) − C2(x1, x2; R)

⎤
⎦+ β1

α1 + α2

R∑
m1,m2=−R

[δx1+m1a,x2+m2a]A(0). (C6)

The time-evolution equation for the time-delayed cross-correlation function is

τ0
d

dt
C2(x1, x2, t ; R) = −C2(x1, x2, t ; R) + β1

α1 + α2

⎡
⎣ R∑

m1,m2=−R

C2(x1 + m1a, x2 + m2a, t ; R) − C2(x1, x2, t ; R)

⎤
⎦

+ β1

α1 + α2

R∑
m1,m2=−R

[δx1+m1a,x2+m2a]A(0). (C7)

The time-evolution equation for the autocorrelation function A2(t ; R) is

τ0
d

dt
A2(t ; R) = −A2(t ; R) + β1

α1 + α2

⎡
⎣ R∑

m1,m2=−R

C2(m1a, m2a, t ; R)

⎤
⎦. (C8)

Solving the equations for C2(x1, x2), C2(x1, x2, t ), C2(x1, x2; R), and C2(x1, x2, t ; R) and take the value x1 = �1, x2 = �2, we can
get average correlations with fixed distance (�1,�2): C2(�1,�2), C2(�1,�2, t ), C2(�1,�2; R), and C2(�1,�2, t ; R).

APPENDIX D: DYNAMICAL EQUATIONS FOR THE MOMENTS IN NETWORKS WITH SYNAPTIC TRANSMISSION DELAY

In the model with a constant synaptic transmission delay τD > 0, the transition rate of unit i at time t is determined by its
current state at time t and the states of connected units j at an earlier time t − τD:

w(Si(t )) → w(Si(t ), σ j (t − τD)), (D1)

where σ j represents the states of connected units j at t − τD (i �= j). In this case, the master equation of time evolution of
P({S}, t ) is modified as

d

dt
P({S}, t ) = −

∑
i

∑
{σ }

P({S}, t |{σ }, t − τD)w(Si, σ )P({σ }, t − τD)

+
∑

i

∑
{σ }

P({S}∗i, t |{σ }, t − τD)w(1 − Si, σ )P({σ }, t − τD), (D2)

where {S}i∗ = {S1, S2, . . . , 1 − Si, . . . , SN } and {σ } = {σ1, σ2, . . . , σi−1, σi+1, . . . , σN }. With this form of master equation, we
find the time evolution of average activity

d

dt
〈Si〉(t ) = α1 − (α1 + α2)〈Si〉 + β1

〈∑
l; l→i

σl〉 + (β2 − β1)〈Si

∑
l; l→i

σl

〉
. (D3)

When β1 = β2 and in the steady state, since 〈σi〉 = 〈Si(t − τD)〉 = 〈Si(t )〉, we find that the mean global activity S̄ is the same as
in the case without synaptic delay [Eq. (14)]. Similarly, using master equation Eq. (D2), we find the time-evolution equation for
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equal-time correlation:

d

dt
〈δSi(t )δS j (t )〉 = −2(α1 + α2)〈δSiδS j〉 + β1

⎛
⎝〈∑

l; l→i

δσl · δS j

〉
+
〈
δSi

∑
l; l→ j

δσl

〉⎞⎠

+(β2 − β1)

⎛
⎝〈δSi

∑
l; l→i

δσlδS j

〉
+
〈
δSiδS j

∑
l; l→ j

δσl

〉⎞⎠, here i �= j, (D4)

the time-evolution equation for autocorrelation:

d

dτ
〈δSi(t )δSi(t + τ )〉 = −(α1 + α2)〈δSi(t )δSi(t + τ )〉 + β1

〈
δSi(t )

∑
l; l→i

δσl (t + τ − τD)

〉

+(β2 − β1)

⎛
⎝〈δSi(t )δSi(t + τ )

∑
l; l→i

δσl (t + τ − τD)

〉⎞⎠, (D5)

and the time-evolution equation for the time-delayed cross-correlation:

d

dτ
〈δSi(t )δS j (t + τ )〉 = − (α1 + α2)〈δSi(t )δS j (t + τ )〉 + β1

〈
δSi(t )

∑
l; l→ j

δσl (t + τ − τD)

〉
+ (β2 − β1)

×
⎛
⎝〈δSi(t )δS j (t + τ )

∑
l; l→ j

δσl (t + τ − τD)

〉⎞⎠, here i �= j. (D6)

By solving these equations for autocorrelation and cross-correlation, we find that the synaptic delay affects the temporal scales
of correlations. Here we use one-dimensional model with nearest-neighbor interactions as an example to demonstrate the effects
of synaptic delay.

By taking the spatial average, we find the time-evolution equations for the average correlation functions C(x), C(x, t ), A(t )
defined in Sec. III A:

C(x) = β1

α1 + α2
[C(x − a; τD) + C(x + a, τD) + (δx,−a + δx,a)A(τD)]. (D7)

τ0
d

dt
C(x, t ) = −C(x, t ) + β1

α1 + α2
[C(x − a, t − τD) + C(x + a, t − τD) + (δx,−a + δx,a)A(τD)], (D8)

τ0
d

dt
A(t ) = −A(t ) + β1

α1 + α2
2C(a, t − τD). (D9)

Solving Eq. (D8) in Fourier space, we find the time-evolution equation of Fourier mode C̃(k, t ):

d

dt
C̃(k, t ) ≈ 1

τ0

[
−C̃(k, t ) + β1

α1 + α2
[2 cos(ka)]e

τD
τ (k) C̃(k, t )

]
= − 1

τ (k)
C̃(k, t ). (D10)

Here the interaction timescale τ (k) for k mode is given by the equation:

τ (k) = τ0/

[
1 − β1

α1 + α2
[2 cos(ka)]e

τD
τ (k)

]
. (D11)

This equation has the form x = c1 − c2e−x, and the solution is given by Lambert W function, which is commonly used in solving
ordinary delay differential equations. Comparing Eq. (D11) to the expression of τ (k) without synaptic delay [Eq. (41)], we see
that τ (k) is reduced for k in the range 2π/L × [0, N/4 − 1], while increases for k in the range 2π/L × [N/4, N/2 − 1]. Since
the major contributions of large timescales is in the range 2π/L × [0, N/4 − 1], the synaptic transmission delay overall reduces
the average timescales of cross-correlations.

Solving Eq. (D9), the autocorrelation is given by

A(t ) = A(0) exp

(
− t

τ0

)
+ 2

2π (N/2−1)
L∑

k=0

C̃(k)

[
exp

(
− (t − τD)

τ (k)

)]
. (D12)

This expression shows that in the model with synaptic delay, autocorrelation also shares the same set of interaction timescales
with cross-correlation. Therefore the average timescale of autocorrelation is also reduced in the presence of synaptic transmission
delay.
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