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Introduction: Sorghum (Sorghum bicolor (L.) Moench) is an agriculturally and

economically important staple crop that has immense potential as a bioenergy

feedstock due to its relatively high productivity on marginal lands. To capitalize

on and further improve sorghum as a potential source of sustainable biofuel, it

is essential to understand the genomic mechanisms underlying complex traits

related to yield, composition, and environmental adaptations.

Methods: Expanding on a recently developedmapping population, we generated

de novo genome assemblies for 10 parental genotypes from this population and

identified a comprehensive set of over 24 thousand large structural variants (SVs)

and over 10.5 million single nucleotide polymorphisms (SNPs).

Results: We show that SVs and nonsynonymous SNPs are enriched in different

gene categories, emphasizing the need for long read sequencing in crop

species to identify novel variation. Furthermore, we highlight SVs and SNPs

occurring in genes and pathways with known associations to critical

bioenergy-related phenotypes and characterize the landscape of genetic

differences between sweet and cellulosic genotypes.

Discussion: These resources can be integrated into both ongoing and future

mapping and trait discovery for sorghum and its myriad uses including food,

feed, bioenergy, and increasingly as a carbon dioxide removal mechanism.

KEYWORDS

sorghum, genome assembly and annotations, pangenomics, bioenergy,
structural variation
Abbreviations: CP-NAM, Carbon Partitioning Nested Association Mapping; SV, Structural Variant; SNP,

Single Nucleotide Polymorphism; TE, Transposable Element; LTR, Long Terminal Repeat; GO,

Gene Ontology.
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Introduction

Sorghum (Sorghum bicolor (L.) Moench) is a versatile,

adaptable, and widely grown cereal crop that is valued for its

efficiency, drought tolerance, and ability to grow in marginalized

soils (Wayne Smith and Frederiksen, 2000). Present-day

genotypes exhibit extensive genetic, phenotypic, morphological,

and physiological diversity which stems both from their historical

spread and modern breeding efforts aimed at optimizing sorghum

for different end uses. With its wealth of naturally occurring

genetic diversity and advantageous traits, sorghum has enormous

value as a sustainable, fast-growing, and high-yielding bioenergy

crop (Calviño and Messing, 2012).

Currently, sorghum is classified into four major ideotypes:

grain, sweet, cellulosic, and forage. All of these types can be used

in different bioenergy production methods (Wu et al., 2010), but

to fully capitalize on their potential, it is essential to gain a better

understanding of the genomic changes driving traits related to

yield, carbon partitioning, and local adaptation. However, these

types of traits are often difficult to dissect due to the nature of

their underlying genetic architecture (Brachi et al., 2011), which

can involve hundreds to thousands of genes and complex

mutations that are not easily captured by short-read sequencing.

Structural genomic mutations are an important source of

variation in many species, and can play key roles in phenotypic

diversification and evolution. Advances in sequencing

technology, especially the advent of high-throughput long-read

sequencing, have made the detection of structural variants

feasible in many plant species where these types of changes

were previously uncharacterized. More recently, there has also

been a surge in the generation of pan-genomic data for a number

of important crop species, which has offered exciting new

insights into the extensive diversity of these plants and the

potential influence of complex structural mutations on

agronomically important phenotypes (2022; Golicz et al., 2016;

Zhang et al., 2019; Danilevicz et al., 2020; Zhou et al., 2020; Della

Coletta et al., 2021; Hufford et al., 2021; Li et al., 2021).

Previous genomic work in sorghum has linked structural

mutations to a number of key traits including dwarfing (Multani

et al., 2003), juicy stalks (Zhang et al., 2018), chilling tolerance

(Wu et al., 2019), and flowering time (Li et al., 2018). A whole-

genome comparison of the sweet sorghum genotype ‘Rio’ with

‘BTx623,’ (a short-statured, early maturing grain sorghum)

found hundreds of gene presence/absence variations (PAVs),

several of which occurred among known sucrose transporters

(Cooper et al., 2019). Furthermore, a genome-wide association

study (GWAS) exploring the genetic architecture of bioenergy-

related traits found that a large deletion in a sorghum-specific

iron transporter was linked to stalk sugar accumulation (2020;

Brenton et al., 2016). Most recently, we undertook a broad

survey of genome-wide deletions in a panel of nearly 350 diverse

sorghum accessions, and found large deletions in multiple genes
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related to biotic and abiotic stress responses that were unique to

particular geographic origins, and appeared to play a role in local

adaptation (Songsomboon et al., 2021).

Taken together, these results suggest that unraveling

complex traits in sorghum and other crops will require a

comprehensive picture of both structural and single nucleotide

mutations. In this study, we have expanded on the recently

published Carbon-Partitioning Nested Association Mapping

(CP-NAM) population that was developed and publicly

released as a key genetic resource for the characterization and

improvement of sorghum for multiple different end uses (2022;

Boatwright et al., 2021; Kumar et al., 2022). We generated high-

quality de novo genome assemblies for 10 of the CP-NAM

parents and used these genomes to identify millions of novel

variants, including a number of large structural variants (SVs)

occurring in genes or pathways that could be essential for

optimizing sorghum as a bioenergy feedstock.
Materials and methods

Sample collection and sequencing

Seeds for each genotype were ordered from the U.S.

Department of Agriculture’s Germplasm Resource Information

Network (GRIN)(https://www.ars-grin.gov/) and grown in the

greenhouses at the North Carolina Research Campus (NCRC) in

Kannapolis, NC. High-molecular-weight DNA was extracted

from each sample using a modified high-salt CTAB extraction

protocol (Inglis et al., 2018). Purified DNA was sent to the David

H. Murdock Research Institute (DHRMI) for quality control,

library preparation, and sequencing on a PacBio Sequel I system.
De novo assembly

Raw subreads for each genotype were combined and

converted to FASTQ format using the bam2fastx toolkit from

PacBio. Reads were then corrected, trimmed, and assembled

using Canu(v2.1.1) (Koren et al., 2017). For one of the

genotypes, ‘Grassl’, Canu failed to produce contigs due to

reduced read coverage after trimming, so the final assembly

was instead produced using Flye(v2.9) with the Canu corrected

reads (Kolmogorov et al., 2019).

The resulting contigs for all genotypes were scaffolded into

chromosomes using RagTag (v2.1.0) (Alonge et al., 2021) and

the parameters ‘-r -g 1 -m 10000000’. Contigs were ordered

based on their alignment to the BTx623 v3.1 reference genome

(Paterson et al., 2009) with minimap2 (Li, 2018). RagTag was

run without the correction step to avoid unnecessary

fragmentation of the contigs and unplaced contigs were

discarded. Assembled genome metrics were assessed both
frontiersin.org
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before and after scaffolding using QUAST(5.2.0) (Gurevich

et al., 2013).
Annotation

Protein and non-coding genes were annotated by building a

pan-gene working set using representative pan-gene models

selected from a comparative analysis of gene family trees from

18 Sorghum genomes (McCormick et al., 2018; Deschamps et al.,

2018; Cooper et al., 2019; Wang et al., 2021; Tao et al., 2021)

sourced from SorghumBase(https://www.sorghumbase.org/).

This pan-gene representative was propagated onto the 10

sorghum genome assemblies using Liftoff (v1.6.3) (Shumate

and Salzberg, 2021) with parameters(-a 0.95 -s 0.95 -p 20

-copies -cds -polish). The gene structures were updated with

available transcriptome evidence from Btx623 using PASA

(v2.4.1) (Haas et al., 2003). Additional improvements to

structural annotations were done in PASA using full length

sequenced cDNAs and sorghum ESTs downloaded from NCBI

using the query (EST[Keyword]) AND sorghum[Organism].

The working set was assigned Annotation Edit Distance(AED)

scores using MAKER-P (v3.0) (Campbell et al., 2014) and

transcripts with AED score < 1 were classified as protein

coding. Those with AED=1 were further filtered to keep any

non-BTx623 based models with a minimum protein length of 50

amino acids and a complete CDS as protein coding. The

remaining models with AED=1 were classified as non-coding.

Gene ID assignment was made as per the existing nomenclature

schema established for Sorghum reference genomes

(McCormick et al., 2018).

On average, approximately 55 thousand working sets of

models were generated for each sorghum line, out of which an

average of 41 thousand were coding and roughly 13 thousand

were non-coding (Supplementary Table 1). More than half

(61%) of the protein coding models mapped to a BTx623

reference gene, along with 23% of the non-coding models

(Supplementary Figure 1A). On average ~42% single exon

genes come from the reference BTx623 genome, while ~52%

come from non-BTX623 lines. ~92% of the single exon genes

that are not found in non-sorghum reference genomes, are

found in two or more sorghum accessions. ~29% of these have

a supporting AED score of less than 1 (Supplementary

Figure 1B). Functional domain identification was completed

with InterProScan (v5.38-76.0) (Jones et al., 2014). TRaCE

(Olson and Ware, 2020) was used to assign canonical

transcripts based on domain coverage, protein length, and

similarity to transcripts assembled by Stringtie. Finally, the

protein coding annotations were imported to Ensembl core

databases, verified, and validated for translation using the

Ensembl API (Stabenau et al., 2004).

In order to assign gene ages, protein sequences were aligned

to the canonical translations of gene models from Zea mays,
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Oryza sativa, Brachypodium distachyon, and Arabidopsis

thaliana obtained from Gramene release 62 (Tello-Ruiz et al.,

2020) using USEARCH v11.0.667_i86linux32 (Edgar, 2010). If

there was a hit with minimum sequence identity of 50% (-id 0.5)

to an Arabidopsis protein, the gene was classified as being from

Viridiplanteae, if there was a hit to rice the gene was classified as

Poaceae, and if a hit was to maize the gene was classified as

Andropogoneae. If there were no hits then the gene was

classified as sorghum specific.
Repeat analysis

Transposable elements (TEs) were identified and annotated

in each genome using EDTA (Ou et al., 2019). TE-greedy-nester

(Lexa et al., 2020) was used to further annotate both complete

and fragmented Long Terminal Repeat (LTR) retrotransposons.

Sequence divergence in the LTR regions was used to estimate

retrotransposon age (SanMiguel et al., 1998; Jedlicka et al., 2020).

The left and right LTR sequences were extracted from the

assembled genomes using the coordinates reported by TE-

greedy-nester and the getfasta tool from the BEDTools

package(v2.29.0) (Quinlan and Hall, 2010). For each TE, the

two LTR sequences were aligned using Clustal-W (Thompson

et al., 1994) as implemented in the R package msa (Bodenhofer

et al., 2015). Genetic distance was calculated based on the K80

model using the dist.dna function in the R package phangorn

(Schliep, 2011). The time of divergence was calculated based on

the equation T=K/(2 * r) (Bowen and McDonald, 2001), where T

is the time of divergence, K is the genetic distance, and r is the

substitution rate. A value of 0.013 mutations per million years

was used for r, consistent with the molecular clock rate for LTRs

estimated in rice (Ma and Bennetzen, 2004). To determine if any

of the shell genes across all the genotypes had overlaps with TEs,

a custom python script was used to match the annotated shell

gene coordinates with TE coordinates identified by TE-greedy-

nester (Lexa et al., 2020). A flanking sequence of 1000bp

upstream and downstream was considered. In order to find

the overlaps, only the contigs that were placed into

chromosomes by RagTag(v2.1.0) (Alonge et al., 2021) were

included since the unplaced contig sequences were not a part

of TE-greedy-nester analysis.
Variant calling

Filtered and scaffolded reads were realigned to the BTx623

reference genome using the nucmer program from the

MUMmer(v4.0) package (Delcher et al., 2003; Marçais et al.,

2018) with the following parameters ‘-c 100 -b 500 -l 50’.

Alignments were filtered using the delta-filter program from

the MUMmer package with the parameters ‘-m -i 90 -l 100’ and

converted to coordinate files using show-coords with the
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parameters ‘-THrd’. Variants were then called using Syri(v1.6)

(Goel et al., 2019).

Individual Syri VCF files were split by variant type (SNPs,

Deletions, Insertions, Inversions, and Translocations) resulting in

separate files for each variant type for each genotype. Insertions or

deletions smaller than 50 bp were classified as small indels while

those equal to or larger than 50 bp were classified as SVs. More

complex SV types that could not be validated with raw reads were

not considered for further analysis.

The Syri program produces a nonstandard VCF format

which includes information on variants from overlapping

syntenic blocks. This can result in duplicated variants and

fragmented insertions that must be addressed before

subsequent analysis with downstream tools. Duplicates of

existing variants were removed for all variant types, and

fragmented insertions were combined into single variants

(Supplementary Figure 2). These processed variant files were

then zipped and indexed using bgzip and tabix (Li et al., 2009)

and then merged across genotypes using the merge function

from the bcftools package with the parameters ‘-0 -I ‘ChrB:join,

Parent:join,DupType:join,modified:join’ -O v’. This resulted in

one variant file for each type of variant that included the

genotypes for all individuals. Insertions, deletions, and SNPs

were then annotated using SIFT (v2.4) (Vaser et al., 2016) and

the BTx623 version 3.1.1 annotation to identify overlap with

genes for insertions and deletions and missense prediction for

single nucleotide variants.
Phylogeny

Gene PAVs was called from pan-gene lift-off annotation

information using custom python scripts. As per default liftoff

parameters, gene presence was identified with a threshold of 95

percent similarity. PAVs for each genotype were encoded as a

binary vector (with 0 indicating gene absence, and 1 indicating

presence). Distance between genotypes was then calculated
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using the dist() function from the stats(v3.6.2) package in R

using the Jaccard distance, and a phylogenetic tree was

constructed using the NJ() function from the phangorn

package. The SNP phylogeny used to confirm the PAV

phylogeny was created using SNPs called from the program

Syri. Similar to the PAV tree, this phylogeny was built based on a

presence/absence binary matrix of SNPs. Genetic distance was

calculated using the dist() function and the NJ() function in R.
Gene ontology analysis

Gene ontology (GO) terms for genes affected by large

insertions and deletions or nonsynonymous SNPs were

curated from the publicly available annotation information file

associated with BTx623 v3.1.1 in phytozome (https://

phytozome-next.jgi.doe.gov/). GO enrichment analysis was

performed using the R package topGO(v1.0) (Alexa and

Rahnenfuhrer, 2016). The classic Fisher’s Test was used to

assess significance of enriched terms, and terms with a p-value

<0.05 were considered significant and kept for further analysis.

Redundant and highly similar GO terms were defined and

reduced based on semantic similarity using the R packages

AnnotationForge (Carlson and Pages, 2022) and rrvgo

(Sayols, 2020).
Results

Assembly quality and characteristics

To capture the genetic diversity of bioenergy sorghum, we

sequenced the parents of the previously established CP-NAM

population, which included globally diverse genotypes

representative of sweet, cellulosic, grain and forage type

bioenergy sorghums (Boatwright et al., 2021) (Table 1). The

initial contig-level assemblies showed a range of N50 values, with
TABLE 1 Genotype origins, races, and types.

Name Alternate ID Race Origin Type

Grassl PI 154844 Caudatum Uganda Sweet & Cellulosic

PI 329311 IS 11069 Durra Ethiopia Cellulosic

PI 506069 Mbonou Guinea-bicolor Togo Cellulosic

PI 510757 AP79-714 Durra Cameroon Cellulosic

Chinese Amber PI 22913 Bicolor China Sweet

Rio PI 563295 Durra-caudatum USA Sweet

Leoti PI 586454 Kafir-bicolor Hungary Sweet

PI 229841 IS 2382 Kafir South Africa Grain

(Continued)
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the lowest being 176 kb and the highest at over 3 Mbp

(Supplementary Table 2). The three sweet genotypes in

particular had a higher number of raw reads and more

contiguous assemblies than the other types (Figures 1A, B),

most likely as a result of differences in the effectiveness of the
Frontiers in Plant Science 05
extraction protocol. After scaffolding and filtering unplaced

contigs, all 10 genotypes showed similar levels of high

contiguity, with final assembly sizes that were 90-98% the size

of the BTx623 reference genome and over 90% of known

BTx623 genes contained within the scaffolds (Figures 1C, D).
TABLE 1 Continued

Name Alternate ID Race Origin Type

PI 297155 IS 13633 Kafir Uganda Grain, Forage

PI 655972 Pink Kafir Kafir USA Forage

Information adapted from GRIN and (Boatwright et al., 2021).
A B

DC

FIGURE 1

Assembly metrics for 10 sorghum genotypes. (A) Contig N50 levels for different ideotypes show higher contiguity for sweet genotypes. (B) Raw
read counts prior to assembly are highly correlated with contig N50, and sweet genotypes (orange) have higher read counts than cellulosic
(green) or grain (yellow) genotypes. (C) Assembled genome size after scaffolding and filtering for each genotype shows that despite differences
in mean contig size, the final assemblies for both sweet and non-sweet types are very close to the expected reference genome size (horizontal
black line). (D) The number of BTx623 genes contained within the final scaffolds is very similar across all genotypes regardless of type.
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Gene annotation

Genes shared across deeper evolutionary time scales were

more conserved than sorghum-specific genes (Figure 2). The

sweet genotypes show slightly more conserved genes when

compared to other genotypes (Figure 2). Out of 62,044 genes

annotated in the pan-genome, around 36.69 percent(22,762

genes) were found to be core to all genotypes, 50.32 percent

(31,218 genes) were shell genes (present in more than one

genome, but not all of the genomes), and 12.99 percent(8,064

genes) were found to be cloud genes (unique to a single

genome) (Supplementary Figure 3A). The majority of shell

genes were present in 9 of 10 genomes, with the second largest

proportion of shell genes being present in 2 of 10 genomes

(Supplementary Figure 3B). Of shell genes identified, 44 and 45

were identified to be exclusive to all sweet and all non-sweet

genotypes respectively. Only 1-2 percent of shell genes in each

genotype overlapped with or were flanked by LTRs, indicating

that transposable element activity was not mediating the

m a j o r i t y o f o b s e r v e d g e n e c o n t e n t v a r i a t i o n

(Supplementary Table 3).
Genomic landscape of variation

Over 10.5 million single nucleotide variants were called

across the 10 genomes, as well as over 7.4 million small indels

and over 24 thousand large structural variants (insertions and

deletions ≥ 50 bp) (Figure 3, Tables 2, 3). Well over half (~65%)
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of these variants were defined as cloud variation (Table 3), while

the remaining variants were mostly shell. Only a small handful

of core variants were present in all of the genotypes except the

BTx623 reference. Phylogenetic relationships were inferred

using gene presence/absence to estimate genetic distance

(Supplementary Figure 4A), demonstrating that sweet,

cellulosic, and grain genotypes come from separate clades

within the category of bioenergy-type sorghum. These results

were confirmed by SNP phylogeny (Supplementary Figure 4B).
Genes affected by structural variants
and SNPs

There was a total of 171,000 SNPs that were found to be both

located in genic regions and encoding nonsynonymous variants,

and more than 2.5 thousand large SVs present in genic regions.

GO enrichment analyses of affected genes revealed that SNPs

and SVs tended to impact distinct categories of genes (Figure 4),

with protein phosphorylation being the only significant category

to appear in both datasets.

In addition to protein phosphorylation, genes impacted by

large insertions or deletions showed enrichment in GO categories

related to Golgi vesicle transport, photosynthesis, nucleoside

metabolism, protein modifications, and programmed cell death

(Figure 4B). Nonsynonymous SNPs, on the other hand, were

enriched in genes involved in pollen-pistil interactions, cell wall

biogenesis, cell proliferation, posttranscriptional regulation and

polysaccharide metabolism (Figure 4A).
FIGURE 2

Age of protein coding genes among the sorghum lines based on minimum sequence identity. Bar color indicates the level of phylogenetic
conservation, with blue indicating genes conserved across monocots and dicots; peach indicating the proportion of genes shared among the
grasses; yellow indicating the proportion of genes shared between sorghum and maize, and light purple representing the proportion of
sorghum-specific genes.
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FIGURE 3

Genomic landscape of variation averaged across the 10 genomes. Density estimates in tracks A-C were performed in 1Mb non-overlapping
sliding windows. (A) and (B) respectively show average SNP density and average SV density, with lighter colors indicating cloud variants and
darker colors indicating shell and core variants. (C) shows the average TE density, and (D) shows TE age averaged across 1Mb sliding windows.
Red indicates younger TEs while gray indicates older. Vertical blue bars spanning all tracks indicate the approximate position of the centromeres
of each chromosome.
TABLE 2 Variants found in each NAM parent genotype.

Genotype Deletions (bp>=50) Insertions (bp>=50) Indels (bp<50) SNPs Nonsynonymous

Grassl 2,721 1,714 976,703 2,659,850 37,265

PI 329311 3,560 1,956 1,319,281 3,321,035 47,482

PI 506069 3,531 1,865 888,425 3,003,469 47,555

(Continued)
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Repeat analysis

Overall, the TE composition was highly similar across all 10

genotypes (Figures 5, 3), with the LTR-Gypsy superfamily

comprising the majority of elements. The age analysis revealed

an abundance of younger TEs, with a mean age of 1.28 million
Frontiers in Plant Science 08
years old along with a high frequency of very young TEs

approximately 0.1 million years old and very few old TEs (6-8

million years) (Figure 5; Supplementary Figure 5). Most (97.5%)

of the TEs were non-nested, with TE-greedy-nester reporting the

presence of only a handful (2.5%) of nested TEs. The overall

distribution of TE age followed a similar pattern across all of the
TABLE 2 Continued

Genotype Deletions (bp>=50) Insertions (bp>=50) Indels (bp<50) SNPs Nonsynonymous

PI 510757 2,952 1,919 1,593,228 2,859,852 44,168

Chinese Amber 3,560 1,744 994,023 2,975,137 48,780

Rio 2,563 1,791 717,304 2,119,637 35,714

Leoti 3,279 1,435 785,360 2,790,452 43,473

PI 229841 2,830 1,490 1,447,030 2,546,090 41,679

PI 297155 2,412 1,335 1,151,594 2,052,203 34,863

PI 655972 2,401 1,113 631,705 1,953,106 32,758
TABLE 3 Core vs. Shell vs. Cloud variants.

Type Deletions Insertions Total SVs Indels SNPs

Core 34 28 62 12,231 103,065

Shell 6,306 2,250 8,556 1,246,552 5,245,181

Cloud 7,855 8,232 16,087 6,195,713 5,416,344

Total 14,195 10,510 24,705 7,454,496 10,764,590
fro
A B

FIGURE 4

Enriched GO terms for genes impacted by (A) nonsynonymous SNPs and (B) large SVs. GO terms in each dataset were clustered and plotted
based on semantic similarity as described in the Materials and Methods. Circle size is proportional to p-value, with larger circles indicating more
significant terms.
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genotypes, with younger TEs being randomly distributed

throughout the genome (Figure 3, Supplementary Figure 6A-J)

as previously observed by (Paterson et al., 2009).
Differences in sweet and
non-sweet genotypes

Structural variants that were present in all three sweet

genotypes (Leoti, ChineseAmber, and Rio) but either absent

from or rare among non-sweet genotypes, were significantly

enriched among genes with functions related to metal ion

transport, in particular iron ion transport, as well as genes

involved in oxidative stress response, cell cycle arrest, and

phosphatidylserine biosynthetic processes. Conversely, variants

found only in all of the non-sweet genotypes tended to impact

very different categories of genes, such as those involved in

glycolytic processes, cytochrome assembly, and both RNA and

DNA regulation (Figure 6).
Discussion

Unraveling the molecular mechanisms controlling complex

traits such as carbon partitioning, yield, and stress response is an

essential step for crop improvement efforts aimed at creating

effective and sustainable bioenergy feedstocks for the future.

However, not only do these types of traits often involve changes

in large numbers of genes, but an ever-increasing number of

pan-genomics studies in crop plants have demonstrated that

these changes can encompass complex structural mutations in

addition to SNPs (2022; Cooper et al., 2019; Zhang et al., 2019;

Brenton et al., 2020; Zhou et al., 2020; Hufford et al., 2021;

Songsomboon et al., 2021). Therefore, the development of
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multiple reference-quality genomes within crop species is

critical to the exploration of complex genetic architectures and

has clear benefits when compared to a single reference genome,

especially in the case of larger structural variants (Della Coletta

et al., 2021). By de novo assembling 10 new high-quality

genomes for the parents of the CP-NAM population

(Boatwright et al., 2022), we have been able to uncover

millions of novel variants, including thousands of large

insertions and deletions.

Importantly, we found that SVs within coding regions

impacted different types of genes compared to SNPs,

highlighting the importance of incorporating both into future

trait mapping studies. Many nonsynonymous SNPs that were

segregating among the genotypes occurred in gene categories

that have previously been linked to carbon allocation in sorghum

and other closely related species. For instance, protein

phosphorylation induces key signaling cascades in plants that

control a variety of processes, and protein kinases have been

shown to be highly differentially expressed in both sweet

sorghum (Cooper et al., 2019) and sugarcane (Waclawovsky

et al., 2010) during stem sugar accumulation. Similarly, genes

involved in the regulation of plant hormones such as auxin were

also enriched for non-coding SNPs, and these pathways are

known to be essential for vegetative plant growth and stem

elongation, both of which are key phenotypes for biomass

accumulation (Kebrom et al., 2017).

Like SNPs, gene-impacting SVs were also found to affect

many genes related to protein phosphorylation; in fact, this was

the top category among genes containing large variants. But

other categories enriched for high-impact insertions and

deletions were distinct from the SNP dataset, and contained

many genes involved in pathways related to both abiotic and

biotic stress responses, which has been observed before in

diverse bioenergy sorghums (Songsomboon et al., 2021).
A B

FIGURE 5

TE age and composition. (A) A stacked bar plot describing the distribution of TE counts by age across all genotypes. Alternating colors indicate
different genotypes, and distributions are stacked in the order of the labels in figure 5b (i.e., the bottom yellow distribution shows the TE age
frequencies for pi655972, while the top shows the distribution for Grassl)., T he Y-axis is number of TEs and the X-axis is their age in millions of
years. (B) The proportion of superfamilies of TEs based on average counts of each superfamily across all genomes.
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Additionally our study identified structural variants affecting

genes involved in tRNA nucleoside modifications, programmed

cell death in response to symbionts, and photosynthetic light

response, all of which were previously identified by other studies

as GO terms of interest in relation to sorghum stress response

(Ortiz et al., 2017; Wang et al., 2017).
Frontiers in Plant Science 10
SVs strictly occurring in either sweet or non-sweet genotypes

also offer unique insights into the differences between these types

that could be key to dissecting differences in carbon allocation in

sorghum. Of particular interest is the fact that SVs restricted to

sweet sorghum genotypes affected many genes related to metal

metabolism and iron transport. This connection between iron
FIGURE 6

Enriched GO terms for genes impacted by SVs and Indels in both Non-Sweet and Sweet Genotypes. Orange bars indicated gene categories in
sweet genotypes that were significantly impacted (p<0.05). Green bars indicated gene categories in non-Sweet genotypes that were
significantly impacted (p<0.05). The length of each bar corresponds to significance (-log(p-value)). Terms have been clustered and sorted based
on semantic similarity.
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transport and sugar accumulation has been observed in other

comparative genomic studies of sorghum (2020; Brenton et al.,

2016; Cooper et al., 2019), and appears to be a key factor

distinguishing sweet sorghums from both cellulosic and

grain types.

Over a third of protein coding genes and over 75 percent of

noncoding genes annotated in this study did not map back to the

Btx623 reference genome. With a growing number of studies

illustrating the importance of noncoding DNA and RNA as

potential regulatory elements (Waititu et al., 2020), it is evident

that large pan-genome annotations are vital in quickly

identifying and annotating potential regulatory ‘pseudo-genes’

as well as protein coding genes that are divergent from the

common reference. Previous pan-genome studies in sorghum

and maize have identified high levels of gene content variation,

with 53-64 percent of genes identified as non-core (Tao et al.,

2021; Ruperao et al., 2021; Hufford et al., 2021). We corroborate

these findings with about 63 percent of our genes being

identified as either shell or cloud to our population, despite

this particular population lacking wild representation, indicating

relatively high amounts of latent variation, even among

domesticated varieties of sorghum.

Taken together, our results demonstrate the value of

exploring genome-wide patterns of both SNPs and larger

structural variants to gain new insights into the genetic

architectures of complex and agronomically important traits.

To advance both sorghum breeding efforts and our

understanding of crop plant evolution, we have generated this

new extensive dataset that is publicly available through

SorghumBase (Gladman et al., 2022) and which can be readily

integrated into an already valuable genetic resource for future

mapping studies.
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