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Significance statement 35 
 36 
The development of a computational approach that enables accurate and robust ancestry inference from cancer-37 
derived molecular profiles without matching cancer-free data provides a valuable methodology for genetic ancestry-38 
oriented cancer research. 39  40 
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 41 
 42 

 43 
Abstract Genetic ancestry-oriented cancer research requires the ability to perform accurate and robust genetic 44 
ancestry inference from existing cancer-derived data, including whole exome sequencing, transcriptome 45 
sequencing, and targeted gene panels, very often in the absence of matching cancer-free genomic data. Here we 46 
examined the feasibility and accuracy of computational inference of genetic ancestry relying exclusively on cancer-47 
derived data. A data synthesis framework was developed to optimize and assess the performance of the ancestry 48 
inference for any given input cancer-derived molecular profile. In its core procedure, the ancestral background of 49 
the profiled patient is replaced with one of any number of individuals with known ancestry. The data synthesis 50 
framework is applicable to multiple profiling platforms, making it possible to assess the performance of inference 51 
specifically for a given molecular profile and separately for each continental-level ancestry; this ability extends to all 52 
ancestries, including those without statistically sufficient representation in the existing cancer data. The inference 53 
procedure was demonstrated to be accurate and robust in a wide range of sequencing depths. Testing of the 54 
approach in four representative cancer types and across three molecular profiling modalities showed that 55 
continental-level ancestry of patients can be inferred with high accuracy, as quantified by its agreement with the 56 
gold standard of deriving ancestry from matching cancer-free molecular data. This study demonstrates that vast 57 
amounts of existing cancer-derived molecular data are potentially amenable to ancestry-oriented studies of the 58 
disease without requiring matching cancer-free genomes or patient self-reported ancestry. 59 

 60 
 61 
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Introduction 62 
There is ample epidemiological evidence that race and/or ethnicity are important determinants of 63 
incidence, clinical course and outcome in multiple types of cancer (1-5). As such, these categories 64 
must be taken into account in the analysis of molecular data derived from cancer. A number of 65 
recently published large-scale genomic studies of cancer point to differences in the molecular make-66 
up of the disease among groups of different ancestral background and to the need for more 67 
molecular data to power discovery of such differences (6-11). 68 

Ancestry annotation of cancer-derived data largely draws on two sources: patient’s self-identified 69 
race and/or ethnicity (SIRE) and patient’s cancer-free genotype. SIRE is often missing, sometimes 70 
inaccurate and usually incomplete. As a recent analysis (12) of PubMed database entries since 2010 71 
reveals, patients’ SIRE is massively under-reported in genome and exome sequencing studies of 72 
cancer, with only 37% of these reporting race, and 17% reporting ethnicity. Furthermore, SIRE is 73 
not always consistent with genetic ancestry. Finally, a self-declaring patient is often given a choice 74 
from a small number of broad racial or ethnic categories, which fail to capture complete ancestral 75 
information, especially in cases of mixed ancestry (13). 76 

A far more accurate and detailed ancestral characterization may be obtained by genotyping a 77 
patient’s DNA from a cancer-free tissue. Powerful methods exist for ancestry inference from 78 
germline DNA sequence (14-17). These methods were recently used to determine ancestry of 79 
approximately 10,000 patients profiled by The Cancer Genome Atlas (TCGA) (7,11). However, 80 
genotyping of DNA from patient-matched cancer-free specimens is not part of standard clinical 81 
practice, where the purpose of DNA profiling is often identification of mutations with known 82 
oncogenic effects, such as those in the Catalog Of Somatic Mutations In Cancer (COSMIC) 83 
database (18). As a result, it is not performed routinely outside academic clinical centers or major 84 
research projects. There also are studies yielding sequence data from tumors, whose purpose does 85 
not require germline profiling. RNA sequencing (RNA-seq) for expression quantification is in this 86 
category. Finally, peripheral blood is most often the source of germline DNA in the clinic, but this is 87 
not always the case for diseases of the hematopoietic system, such as leukemia, wherein cancer 88 
cells are massively present in circulation. In summary, matched germline DNA sequence is not 89 
universally available for cancer-derived molecular data. In such cases, it is necessary to infer ancestry 90 
from the nucleic acid sequence of the tumor itself. 91 

Standard methods of ancestry inference commonly rely on population specificity of germline 92 
single-nucleotide variants (SNV). Whole-genome (WGS) or whole-exome sequences (WES), at depths 93 
sufficient for reliably calling single-nucleotide variants, and readouts from genotyping microarrays, 94 
are therefore data types most suitable for this purpose. However, such detailed DNA profiling is 95 
often not performed in molecular studies of cancer. In such cases, it is necessary to infer ancestry 96 
from other types of tumor-derived data, including RNA sequence and DNA sequence for a small 97 
panel of genes, e.g., FoundationOne® CDx (19). 98 

For all types of tumor-derived sequence, accurate inference of ancestry is a potential challenge. 99 
Tumor genome is often replete with somatic alterations, including loss of heterozygosity (LOH), 100 
copy number variants (CNV), translocations, microsatellite instabilities and SNV. These alterations 101 
interfere with germline genotyping of the patient that is used as input for inference of genetic 102 
ancestry. Structural variants, especially LOH and CNV, are the most likely to affect the germline 103 
genotyping, and thereby the genetic ancestry calls. This effect is especially clearly seen in the case of 104 
LOH, as a result of which heterozygous genotypes are transformed into homozygous, but other 105 
types of alterations also are, to various degrees, potential obstacles to accurate ancestry inference. 106 
Tumor RNA-seq presents additional challenges, namely, extremely uneven coverage of the 107 
transcript due to a broad range of RNA expression levels and distortions due to allele-specific 108 
expression. Gene panels represent a very small fraction of the genome, whose sufficiency for 109 
ancestry inference is not clear and may vary from panel to panel. In addition, cancer gene panels 110 
are enriched in cancer driver genes, which tend to undergo somatic alteration more frequently than 111 
other parts of the genome. 112 

Important recent publications on ancestral effects in cancer reported patient ancestry inferred 113 
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from matching cancer-free DNA (7,8,11). At the same time, there has been much less work on 114 
ancestry inference from tumor-derived nucleic acids (7,11,20-23). Collectively, this work 115 
demonstrates the feasibility of accurate genetic ancestry inference from cancer-derived DNA 116 
profiled by SNP arrays or by high-coverage gene panels, such as the FoundationOne® CDx gene 117 
panel (19). However, to our knowledge, no systematic computational framework for ancestry 118 
inference from cancer-derived molecular data, across assay and cancer types, has been developed 119 
to date. There is presently no ability to assess the inference accuracy specifically for a given input 120 
tumor-derived molecular profile with all its attendant properties, including the data quality and the 121 
depth of coverage. Reliable and accurate ancestry inference from tumor-derived nucleic acids thus 122 
represents an unmet need, which the present work aims to address. 123 

For this purpose, we designed an inference procedure having in mind a scenario, likely to occur in 124 
studies of existing data or of archived tissue specimens, with an input molecular profile of a tumor 125 
from a single patient, and no matching cancer-free sequence available. The profile in question may 126 
have its unique set of sequence properties. These include the target sequence and uniformity of its 127 
coverage depth, read length and sequencing quality. These profile-specific properties may be vastly 128 
dissimilar from those in the available public data sets with reliably known genetic ancestry of the 129 
patients. Furthermore, not all ancestries are equally easy to infer: for example, an American 130 
ancestral category is sometimes difficult to distinguish either from African or from European 131 
ancestry. This profile specificity would make it impossible to confidently assess the accuracy of the 132 
inference procedure for the input profile from its performance with the public cancer-derived data in 133 
aggregate. In order to overcome this difficulty, we developed a computational technique, which is 134 
described schematically in Figure 1, wherein the ancestral background of the patient is supplanted in 135 
the input profile by one of an unrelated individual with known ancestry. A similar data synthesis 136 
procedure was employed in our prior work in a different genomic context (24). We next apply 137 
established methods of ancestry inference to this synthetic profile and compare the result to that 138 
known ancestry. Generating multiple such synthetic profiles allows us to assess how accurate the 139 
ancestry inference is for the patient, both overall and as a function of the profile’s continental-level 140 
ancestry. Furthermore, using synthetic data, we are able to optimize the inference procedure with 141 
respect to parameters on which it depends. Importantly, this assessment and optimization 142 
procedure does not require the profile in question to be part of a larger data set from a cohort of 143 
patients with a similar diagnosis. Very often in existing cancer-derived data, such cohorts do not 144 
provide statistically meaningful representation of non-European ancestries. This insufficiency is not 145 
an impediment to the application of our methodology. 146 

In the following, we assess the accuracy of global ancestry calls from tumor exomes, narrowly 147 
targeted gene panels and RNA sequences, in comparison to such calls from matching germline 148 
genotypes, as profiled by exome sequencing or genotyping microarrays. We do so for four cancer 149 
types, namely, pancreatic adenocarcinoma (PDAC), ovarian cystadenocarcinoma (OV) and breast 150 
carcinoma (BRCA) as representative types of epithelial tumors, and acute myeloid leukemia (AML), as 151 
an example of hematopoietic malignancy. Each of these data sets was chosen because it presents a 152 
challenge for patients’ ancestry inference and/or an opportunity to test our approach. Specifically, OV 153 
is characterized by massive copy number alterations, often spanning much of the genome. Our 154 
PDAC data originate from patient-derived organoid (PDO) models of the disease (25). In PDO, near-155 
100% tumor purity is achieved, exacerbating effects of copy number loss and loss of heterozygosity 156 
on the sequence. In BRCA, a large patient cohort size makes it possible for us to choose an 157 
ancestrally diverse subset of the data for testing our methods. In AML the peripheral blood, the 158 
usual source of cancer-free DNA, may be severely contaminated by the cancer. 159 

Methods and Materials 160 
Data sets and pre-processing 161 
The data sets used in this work originate from four sources: TCGA collection for ovarian 162 
cystadenocarcinoma (26) (TCGA-OV), an ancestrally diverse subset of TCGA collection for breast 163 
carcinoma (27) (TCGA-BRCA), Beat AML clinical trial (28) (Beat AML), and a study of pancreatic ductal 164 
adenocarcinoma using patient-derived organoids (25) (PDAC). For all four, the data used are 165 
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summarized in the form of Venn diagrams in Figure 2A-D and tabulated in Supplementary Table S1. 166 
These data include cancer DNA (whole-exome or whole-genome) sequence, cancer RNA sequence and 167 
matching normal DNA (whole-exome or whole-genome) sequence. As explained in the following, 168 
genetic ancestry inferred from the latter was used as the ground truth in assessing the performance 169 
of ancestry inference from the cancer-derived data cohort-wide for each of the four cohorts. Also 170 
available for comparison was the donor SIRE, as depicted in Figure 2E. In addition, published 171 
genetic ancestry calls from matching cancer-free genotypes, representing a consensus of five 172 
inference pipelines (C5), were available for comparison with our findings for the TCGA-OV and 173 
TCGA-BRCA cohorts (7). 174 

Throughout the study, we used the 1000 Genomes (1KG) data set, with no relatives for the 175 
individuals included (29-31), as reference, against which patient molecular data were compared to 176 
infer continental-level global ancestry. The latter is defined as a categorical variable taking five values: 177 
African (AFR), East Asian (EAS), European (EUR), American (AMR) and South Asian (SAS). These are 178 
called super-populations in the 1KG terminology. Each super-population comprises a number of 179 
subcontinental-level populations, as explained in the 1000 Genomes consortium publications (31). 180 
The composition of the 1KG data, as used in this study, is summarized in Supplementary Table S2. 181 

In all cases, read data mapped to the hg38 version of the human genome were used. In order to 182 
study ancestry inference from targeted panels, the cancer-derived whole-exome data were reduced 183 
to reads mapping to the FoundationOne® CDx cancer-related gene panel (19). The pre-processing 184 
is illustrated in the first part of the Figure 3. Reads in the cancer patient-derived data were filtered 185 
for quality using a cutoff phred score of 20. Following this filter, single-nucleotide substitutions were 186 
called at all positions with read coverage of at least 10, using snp-pileup in FACETS (32) and Varscan 187 
version 2.4.4 (33). This set of positions is called the high-confidence substitution (HCS) set in the 188 
following. From the 1000 Genomes (1KG) variant call data in the Variant Call Format (VCF) (34), 189 
genomic positions where substitution variants occur at a frequency of at least 0.01 in at least one of 190 
the super-populations comprising 1KG were selected as a basis for the ancestry inference. This set 191 
is referred to as the high-frequency substitution (HFS) set in the following. The genotype was called 192 
at the HFS positions in the cancer-derived profile with the coverage above 10. This subset of the HFS 193 
positions is referred to as high-confidence genotype (HCG) set in the following. In the HCG set, the 194 
total read count and the read counts for the reference and the alternative (according to HFS) alleles 195 
were determined. A genotype at an HCG position was considered undetermined if the excess of the 196 
total read count over the sum of the reference and alternative counts was inconsistent with the error 197 
of 0.001 at the p =  0.001  level of significance. The same rule was used to call a heterozygous 198 
genotype. The HCG genomic positions were pruned to reduce correlation between neighboring 199 
genotypes using Bioconductor SNPRelate package version 1.22.0 (35), resulting in the pruned high-200 
confidence genotype (PHCG) set of positions. 201 
 202 
Ancestry inference 203 
Figure 3 lays out the workflow for ancestry inference. For a given cancer-derived profile, principal 204 
component analysis of the 1KG genotypes reduced to the PHCG was performed, and D top principal 205 
components retained. The patient genotype reduced to PHCG was projected onto the subspace 206 
spanned by these D components. Within this subspace, the patient’s ancestry was called as that of 207 
the 1KG super-population with the highest number of 1KG individuals among K nearest neighbors of 208 
the patient’s genotype, using Euclidean distance in the D-dimensional subspace. If two or more 209 
super-populations were found tied in the nearest-neighbor count, no ancestry call was made for the 210 
patient. Only two such ties were observed in this work. 211 

Measures of performance 212 
We evaluate the performance of the ancestry inference by comparison to the ancestry inferred from 213 
the matching cancer-free data, wherever the latter are available. This is the case for the entirety of 214 
Beat AML, TCGA-OV and TCGA-BRCA data. For all three, we infer the ancestry from the matching 215 
cancer-free exome profiles. In the case of TCGA-OV and TCGA-BRCA data, we also compare the 216 
results to the consensus ancestry calls (7). 217 
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In the case of PDAC matching cancer-free WGS data are available for 22 patient cases (Figure 2), 218 
and our assessment of accuracy is based on this subset of the data. We compute, for each dataset, 219 
the 5  ×  5  confusion matrix (CM) for the 1KG superpopulation calls from the cancer-derived and 220 
cancer-free data sources. From the CM, the call accuracy is computed as the sum of the diagonal 221 
terms divided by that of the whole CM. Since the ancestral composition of all data sets considered 222 
here except TCGA-BRCA is heavily skewed towards the European super-population, we also 223 
compute the multi-class version of the area under the receiver operating characteristic curve 224 
(AUROC) (36). AUROC is a measure of the call quality which compensates for the asymmetry in 225 
the class sizes. We use an R package pROC (CRAN version 1.16.2) (37) for this purpose, and 226 
compute both the class-specific AUROC for each super-population and the 5-class overall AUROC. 227 
In the class-specific case, we use a version DeLong’s algorithm (38,39) as implemented in the pROC 228 
package to compute the AUROC confidence intervals. In the overall 5-class case the confidence 229 
intervals are computed using bootstrap with 100-fold sampling.  230 

Data synthesis 231 
Data synthesis is defined here as replacement of PHCG genotypes in a cancer-derived profile P by 232 
those found in the genome of an unrelated individual U. Ingredients required for this procedure are: 233 
(a) allele fraction (AF) estimates in P, as explained in detail in the Supplementary Methods and 234 
illustrated in Figure S1; and (b) the haplotype of U in the portion of the genome covered by P. With this 235 
knowledge, the procedure, depicted in Figure 4, consists of the following steps. First, sequence reads 236 
comprising P are distributed at random among the alleles with probabilities equal to the observed 237 
allele fractions. Second, in each haplotype block in the genome of U that is covered by P, allele 238 
assignment is made at random, yielding variant and reference read counts for each PHCG 239 
substitution in the genome of U within the scope of P. 240 
 241 
Inference parameter optimization using synthetic data 242 
In order to optimize ancestry inference parameters D and K for a given cancer-derived molecular 243 
profile, we generate a synthetic data set by repeatedly pairing the profile with 1KG genomes. A 244 
subset of 780 1KG genomes is set aside for this purpose by drawing at random 30 genomes from 245 
each of the 26 ancestral populations represented in 1KG. Genetic ancestry is then inferred for each of 246 
the 780 synthetic profiles following the procedure described in the Ancestry Inference subsection, 247 
each time with the 1KG genome used for synthesis removed from the reference data set. The 248 
inference performance is then assessed as the 5-class AUROC, as explained in the Measures of 249 
Performance subsection. AUROC is computed for the D, K pairs in a range of values of these 250 
parameters, and the optimal D, K pairs yielding the highest accuracy are identified. Throughout this 251 
work, AUROC was computed for all D and K in the rectangle 3    D  11; 3    K  15. For all 252 
combinations of data sources and profiling modalities considered, a set of D, K pairs was found 253 
where the performance was optimal or differed from the optimum by no more than 3% (Figure 5). 254 

Down-sampling of sequence data 255 
In order to down-sample the sequence data to a desired fraction f of the original coverage, we 256 
sampled reads from the original patient profile P with the Bernoulli probability f without 257 
replacement. The ancestry inference procedure was then performed with the resulting sample of 258 
reads. 259 

 260 
Software used in making figures 261 
All diagrams were made using draw.io version 15.7.3 (http://www.diagrams.net). The Venn diagrams 262 
in Figure 2 were produced with CRAN packages VennDiagram version 1.7.3 (40) and multipanelfigure 263 
version 2.1.2 (41). The bar plot in Figure 2 and the plots in Figure 5 were made using packages ggplot2 264 
(version 3.3.6, RRID: SCR_014601) and cowplot (version 1.1.1, RRID: SCR_018081).  265 
 266 
Software and data availability 267 
Ancestry inference methods introduced in this work are implemented in an R language package 268 
RAIDS (Robust Ancestry Inference using Data Synthesis) is publicly available, under the Apache-2.0 269 
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license, at https://github.com/KrasnitzLab/RAIDS. Documentation for this software is available at 270 
https://krasnitzlab.github.io/RAIDS/. The data analyzed in this study were obtained from the 271 
National Center for Biotechnology (NCBI) database of Genotypes and Phenotypes (dbGaP) 272 
archive under accession numbers phs001611.v1.p1, phs001657.v1.p1 and phs000178.v11.p8. 273 

 274 
Results 275 
We assessed the performance of genetic ancestry inference from three genomic data types: whole 276 
exomes, gene panels targeting exomes of several hundred cancer-related genes each and RNA 277 
sequences. Our assessment relied on molecular data collected from four patient cohorts, each 278 
representing a cancer type, namely, tissue donors to the Cold Spring Harbor Laboratory (CSHL) 279 
pancreatic ductal adenocarcinoma (PDAC) library of patient-derived organoids; acute myeloid 280 
leukemia (AML) patients enrolled in Beat AML clinical trial; patients comprising TCGA ovarian cancer 281 
cohort (TCGA-OV) (26) and a subset of TCGA breast cancer cohort (TCGA-BRCA). Throughout the 282 
study we used the 1000 Genomes (1KG) genotype collection as our population reference. 283 

As explained in detail in the Methods and Materials section, for inference of genetic ancestry we 284 
employed principal-component analysis (PCA) in combination with K-nearest-neighbor 285 
classification. For a subset of patients in each cohort we individually assessed the performance of 286 
the ancestry inference, as a function of the parameters K and D, the number of principal dimensions 287 
retained. We relied on data synthesis for this assessment. Both super-population-specific and overall 288 
AUROC values were computed in a range of D, K pairs, as illustrated in Figure 5 for 10 PDAC 289 
patients and AMR-specific AUROC and in Figure S2 for all other cohorts and super-populations. 290 
Optimal D, K pairs maximizing the overall AUROC were chosen. From this subset of patients we 291 
observed, for each cancer type considered and for each of the three molecular profiling modalities, 292 
an optimal range of D and K parameters where the performance of inference was consistently high in 293 
the subset and only weakly dependent on these parameters (Figure S2). For all four tumor types, our 294 
overall performance findings using data synthesis are summarized in Tables S3-S6. We then 295 
selected and used, for the remainder of the patients with this cancer type and for this profiling 296 
modality, a pair D and K values from within the optimal range. As an additional validation of our 297 
parameter optimization procedure, we applied it to cancer-free WES profiles of TCGA-OV and 298 
TCGA-BRCA patients included in this study. Comparing the resulting ancestry calls to the consensus 299 
calls (C5) by TCGA (7), we find the two to be in good agreement (Tables S7-S10). 300 

We also assessed the cohort-wide performance of our ancestry calls from the original cancer-301 
derived molecular data, by comparison to the gold standard of ancestry as determined from the 302 
matching cancer-free genotypes. For Beat AML, TCGA-OV and TCGA-BRCA patients, we performed 303 
ancestry inference from cancer-free patient exomes, using the same methodology as we did for the 304 
cancer-derived sequences of these patients. In the case of PDAC, cancer-free whole-genome 305 
sequencing data were available, and used for the same purpose for a portion of the patient cohort. 306 
For all four cohorts, we summarize our cohort-wide findings in Table 1. We also used the C5 307 
ancestry calls (7) in our performance assessment for TCGA-OV and TCGA-BRCA and found close 308 
agreement for both these cohorts (Tables S7-S10). 309 

We note that in all patient cohorts we analyze here except TCGA-BRCA (Table 2 and Table 310 
S11) the sampling of patients with non-European ancestries is statistically insufficient for a purely 311 
cohort-based assessment of performance (Table S12-S14). We therefore report cohort-wide overall 312 
but not super-population specific AUROC values for Beat AML, TCGA-OV and TCGA-BRCA. Using data 313 
synthesis, we are able to compensate for this data shortfall in non-European ancestries and 314 
estimate super-population specific AUROC, as explained above (Tables S15-S18 and Figure S2). We do 315 
report super-population-specific AUROC for TCGA-BRCA and for the aggregate of all four cohorts. 316 

The results of our analysis as presented in Tables S15-S18, lead to the following key 317 
observations. First, we demonstrate a consistently high performance of our inference procedure 318 
across all cohorts and profiling modalities. Second, the super-population specific performance was 319 
the highest for the European and both Asian super populations. The slightly lower accuracy as 320 
observed for the African and American super-populations is likely due to a greater genetic variability 321 
within the African super-population and to a higher degree of (the predominantly European) 322 
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admixture in both super-populations. Third, the optimal choice of the D, K inference parameters, in 323 
general, depends on an individual cancer-derived molecular profile, even within the same cancer 324 
type and profiling modality (Figure S2 B,G,L). Full results of our inferential analysis for the patients 325 
in all four cohorts are compiled in Table S19. 326 

In order to examine whether our inference procedure is robust against variation in the sequence 327 
target coverage, we re-computed the ancestry calls for a subset of ten TCGA-OV patients, with the 328 
cancer-derived whole-exome and RNA sequences of these patients down-sampled to between 75% 329 
and 10% of the original coverage. The results, presented in (Figure S3) exhibit no substantial 330 
sensitivity of the inference accuracy to the depth of coverage in this range. 331 
Discussion 332 
With this work, we introduce a systematic approach to ancestry inference from cancer-derived 333 
molecular data. The approach is rooted in a combination of an established, extensively used PCA-334 
based technique of ancestry inference with a central idea of inference parameter optimization using 335 
data synthesized in silico. Crucially, this combination permits a statistically rigorous assessment of 336 
inference accuracy for an individual cancer-derived molecular profile, with its unique biological (e.g. 337 
cancer type) and technical (e.g., sequencing depth and quality) properties. Synthetic data here 338 
are used as a substitute for a real-world set of molecular profiles sharing these properties and 339 
with known ground-truth genetic ancestry. It is unrealistic to expect such a real-world set to be 340 
available in all cases. Our tests of the resulting computational methodology on a representative 341 
subset of cancer-derived data demonstrate its accurate and robust performance. As we describe in 342 
detail in the Methods section, our data synthesis method relies on heuristic components for an 343 
estimate of the allele fractions throughout the cancer-derived profile. This estimate can be made 344 
more rigorous by using haplotypes in future implementations of the method, but the present version 345 
produces allele fractions in good agreement with published allele fractions (ASCAT2 results in 346 
(42,43)). 347 

A line of research and development initiated with this work must be extended in several 348 
directions. First, the performance of the methods presented must be examined more 349 
comprehensively across cancer types, and sequence properties, such as quality and depth. This 350 
task is computing-intensive but feasible given extensive, well annotated repositories of cancer-351 
derived data, such as those resulting from TCGA Research Network (44) and International Cancer 352 
Genome Consortium (ICGC) (45) projects. For these, the genetic ancestry of the patients either is 353 
known or can be readily established using matching cancer-free molecular data. Second, an 354 
extension of our approach to additional profiling modalities should be examined. Chief among these 355 
are low-coverage whole-genome sequences commonly used for copy-number analysis, single-356 
molecule, long-read sequences, chromatin-accessibility profiles (ATAC-seq) and cytosine-converted 357 
sequences used for methylation profiling. Each of these presents unique challenges and 358 
opportunities for the ancestry inference. For example, in the low-coverage whole-genome profiles 359 
the sparsity of coverage is compensated by its whole-genome breadth, whereas in the long-read 360 
sequences the trade-off is between the high sequence error rate and the long-distance phasing 361 
afforded by the read length. Third, while the present work relied on PCA followed by nearest-362 
neighbor classification for ancestry assessment, alternatives including UMAP for the former and 363 
Random Forest or Support Vector Machine for the latter exist and should be evaluated. Third, 364 
future method development should be extended beyond inference of global ancestry to that of local 365 
ancestry and ancestral admixture. Such an extension is particularly important in the study of cancer 366 
in strongly admixed super-populations, such as AFR and AMR, and may require more extensive 367 
reference data, in addition to the 1KG reference used here. Finally, beyond cancer, our 368 
methodology can be applied to any molecular data from which ancestry inference is challenging. 369 
Examples include RNA-seq of non-cancer origin and sequences originating in any kind of 370 
fragmentary or damaged nucleic-acid specimens, such as those encountered in forensic, 371 
archaeological or paleontological contexts. 372 

We anticipate the computational approach described here to have a major, two-fold, impact on 373 
investigation of links between ancestry and cancer. First, it will become possible to massively boost 374 
the statistical power of such studies by leveraging existing tumor-derived molecular data sets without 375 
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matching germline sequences or ancestry annotation. Our search of the Gene Expression Omnibus 376 
(GEO) database alone has identified over 1,250 such data sets, containing RNA expression data for 377 
nearly 48,000 cancer tissue specimens. Such resources dwarf those of fully annotated repositories, 378 
such as TCGA (44) and ICGC (45). Other molecular data repositories are likely to contain resources 379 
of this category on a similar order of magnitude. Second, hundreds of thousands of tumor tissue 380 
specimens stored at multiple clinical centers constitute another major resource for ancestry-aware 381 
molecular studies of cancer. Here again, matching normal tissue specimens are often absent, and 382 
so is ethnic or racial annotation for the patients. According to a recent estimate (46), such annotation 383 
is missing in electronic health records (EHR) of over 50% of patients. Where the donor SIRE is 384 
provided by the EHR, it can be used to guide the initial specimen collection for a study of ancestral 385 
effects in cancer, with a subsequent genetic ancestry validation using methods developed in this 386 
work. In summary, inferential tools presented here will make massive resources of archival tissues 387 
available for ancestry-oriented cancer research. 388 

Multiple directions of exploratory and correlative analysis are open to pursuit with the accurate 389 
ancestry annotation made possible by the methods described here, even in the absence of matching 390 
cancer-free molecular data. Single-nucleotide and other small-scale somatic alterations may be 391 
identified in cancer-only exomes, both whole and restricted to specialized gene panels, using 392 
methods developed for this purpose (47) alongside databases of frequent somatic variants in cancer 393 
(18) and of frequent germline variants like gnomAD (48) and 1KG (31). Copy number variants and 394 
losses of heterozygosity in cancer exomes are overwhelmingly somatic and may be determined 395 
computationally (49,50). Cancer RNA expression quantification is feasible in the absence of the 396 
germline genotype of the patient, including alllele- and isoform-specific analysis. These and similar 397 
genomic and transcriptional properties may be explored for associations with ancestral background 398 
of the patients. 399 
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Tables 
 

Study D K Accuracy 95% CI AUROC 95% CI 

TCGA-OV WES 5 13 0.998 0.994-1 0.993 0.992-0.994 

TCGA-OV Panel 4 12 0.984 0.972-0.996 0.966 0.965-0.967 

TCGA-OV RNA-seq 7 12 0.993 0.983-1 0.977 0.975-0.979 

BeatAML WES 5 13 0.989 0.978-1 0.978 0.976-0.980 

BeatAML Panel 4 13 0.991 0.981-1 0.999 0.999-0.999 

BeatAML RNA-seq 4 13 0.992 0.981-1 0.999 0.999-0.999 

PDAC WES 8 13 1 NA NA NA 

PDAC Panel 6 5 0.952 0.861-1 0.958 NA 

PDAC RNA-seq 4 13 1 NA NA NA 

TCGA-BRCA WES 4 9 1 NA NA NA 

TCGA-BRCA Panel 4 9 0.995 0.984-1 0.995 0.994-0.996 

TCGA-BRCA RNA-seq 4 9 0.995 0.984-1 0.995 0.994-0.996 

Aggregate WES - - 0.993 0.981-1 0.997 0.997-0.998 

Aggregate Panel - - 0.988 0.972-1 0.987 0.986-0.988 

Aggregate RNA-seq - - 0.993 0.981-1 0.993 0.993-0.994 

 

Table 1. Overall cohort-wide performance measures for super-population calls from cancer-derived molecular data, as 
compared to the matching cancer-free WES or (in the case of PDAC) WGS. A reliable estimate of the confidence intervals (CI) 
was not possible in the case of PDAC, due to the small number of cases with matching cancer-free genotypes. The D and K 
values shown provide consistently high performance in each respective data set. 
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(a) TCGA-BRCA WES (b) Aggregate WES 

    Inferred   Inferred 
  pop EAS EUR AFR AMR SAS pop EAS EUR AFR AMR SAS 

C
an

ce
r-

fr
ee

 W
E

S
 EAS 47 0 0 0 0 EAS 69 0 0 0 0 

EUR 0 56 0 0 0 EUR 0 732 0 6 0 

AFR 0 0 51 0 0 AFR 0 0 96 0 0 

AMR 0 0 0 25 0 AMR 0 1 0 70 0 

SAS 0 0 0 0 4 SAS 0 0 0 0 14 

(c) TCGA-BRCA Panel (b) Aggregate Panel 

    Inferred   Inferred 
  pop EAS EUR AFR AMR SAS pop EAS EUR AFR AMR SAS 

C
an

ce
r-

fr
ee

 W
E

S
 EAS 47 0 0 0 0 EAS 69 0 0 0 0 

EUR 0 56 0 0 0 EUR 0 733 0 5 0 

AFR 0 0 51 0 0 AFR 0 0 95 1 0 

AMR 0 0 0 24 1 AMR 0 5 0 65 1 

SAS 0 0 0 0 4 SAS 0 0 0 0 14 

(a) TCGA-BRCA RNA (b) Aggregate RNA 
    Inferred   Inferred 
  pop EAS EUR AFR AMR SAS pop EAS EUR AFR AMR SAS 

C
an

ce
r-

fr
ee

 W
E

S
 EAS 47 0 0 0 0 EAS 62 0 0 0 0 

EUR 0 56 0 0 0 EUR 0 521 0 2 0 

AFR 0 0 51 0 0 AFR 0 0 83 0 0 

AMR 0 0 0 24 1 AMR 1 1 0 59 1 

SAS 0 0 0 0 4 SAS 0 0 0 0 10 
 
Table 2. Confusion matrices comparing TCGA-BRCA or aggregate of all patients’ super-population calls from the cancer-derived 
molecular profiles for the three profiling modalities (rows) to those from the matching cancer-free WES. 
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Figure Legends 
 
Figure 1. An overview of genetic ancestry inference from cancer-derived molecular data using data synthesis. 
 

Figure 2. Summary of the molecular data used in this study. These originate from four patient cohorts: A)donors to TCGA 
ovarian cancer collection B) Beat AML clinical trial C) pancreatic ductal adenocarcinoma patients donating to CSHL patient-
derived organoid collection D) a subset of donors to TCGA breast cancer collection. E) SIRE composition for the TCGA-OV, 
Beat AML, PDAC and TCGA-BRCA cohorts and in aggregate over all four cohorts. UNK means not reported or unknown. 
 
Figure 3. A flowchart of the inference of genetic ancestry. 
 
Figure 4. An overview of the data synthesis. 
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Figure 5. Dependence of AMR-specific AUROC on the inference parameters D and K, computed using data synthesis for 

10 PDAC patients and the three profiling modalities: WES, RNA-seq and FoundationOne® CDx panels. The central 
AUROC values are shown in solid, and the 95% CI in dashed, lines. 
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